1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/module.h> 16 #include <linux/compat.h> 17 #include <linux/swap.h> 18 #include <linux/aio.h> 19 #include <linux/falloc.h> 20 21 static const struct file_operations fuse_direct_io_file_operations; 22 23 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 24 int opcode, struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 struct fuse_req *req; 28 int err; 29 30 req = fuse_get_req_nopages(fc); 31 if (IS_ERR(req)) 32 return PTR_ERR(req); 33 34 memset(&inarg, 0, sizeof(inarg)); 35 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 36 if (!fc->atomic_o_trunc) 37 inarg.flags &= ~O_TRUNC; 38 req->in.h.opcode = opcode; 39 req->in.h.nodeid = nodeid; 40 req->in.numargs = 1; 41 req->in.args[0].size = sizeof(inarg); 42 req->in.args[0].value = &inarg; 43 req->out.numargs = 1; 44 req->out.args[0].size = sizeof(*outargp); 45 req->out.args[0].value = outargp; 46 fuse_request_send(fc, req); 47 err = req->out.h.error; 48 fuse_put_request(fc, req); 49 50 return err; 51 } 52 53 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 54 { 55 struct fuse_file *ff; 56 57 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL); 58 if (unlikely(!ff)) 59 return NULL; 60 61 ff->fc = fc; 62 ff->reserved_req = fuse_request_alloc(0); 63 if (unlikely(!ff->reserved_req)) { 64 kfree(ff); 65 return NULL; 66 } 67 68 INIT_LIST_HEAD(&ff->write_entry); 69 atomic_set(&ff->count, 0); 70 RB_CLEAR_NODE(&ff->polled_node); 71 init_waitqueue_head(&ff->poll_wait); 72 73 spin_lock(&fc->lock); 74 ff->kh = ++fc->khctr; 75 spin_unlock(&fc->lock); 76 77 return ff; 78 } 79 80 void fuse_file_free(struct fuse_file *ff) 81 { 82 fuse_request_free(ff->reserved_req); 83 kfree(ff); 84 } 85 86 struct fuse_file *fuse_file_get(struct fuse_file *ff) 87 { 88 atomic_inc(&ff->count); 89 return ff; 90 } 91 92 static void fuse_release_async(struct work_struct *work) 93 { 94 struct fuse_req *req; 95 struct fuse_conn *fc; 96 struct path path; 97 98 req = container_of(work, struct fuse_req, misc.release.work); 99 path = req->misc.release.path; 100 fc = get_fuse_conn(path.dentry->d_inode); 101 102 fuse_put_request(fc, req); 103 path_put(&path); 104 } 105 106 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req) 107 { 108 if (fc->destroy_req) { 109 /* 110 * If this is a fuseblk mount, then it's possible that 111 * releasing the path will result in releasing the 112 * super block and sending the DESTROY request. If 113 * the server is single threaded, this would hang. 114 * For this reason do the path_put() in a separate 115 * thread. 116 */ 117 atomic_inc(&req->count); 118 INIT_WORK(&req->misc.release.work, fuse_release_async); 119 schedule_work(&req->misc.release.work); 120 } else { 121 path_put(&req->misc.release.path); 122 } 123 } 124 125 static void fuse_file_put(struct fuse_file *ff, bool sync) 126 { 127 if (atomic_dec_and_test(&ff->count)) { 128 struct fuse_req *req = ff->reserved_req; 129 130 if (ff->fc->no_open) { 131 /* 132 * Drop the release request when client does not 133 * implement 'open' 134 */ 135 req->background = 0; 136 path_put(&req->misc.release.path); 137 fuse_put_request(ff->fc, req); 138 } else if (sync) { 139 req->background = 0; 140 fuse_request_send(ff->fc, req); 141 path_put(&req->misc.release.path); 142 fuse_put_request(ff->fc, req); 143 } else { 144 req->end = fuse_release_end; 145 req->background = 1; 146 fuse_request_send_background(ff->fc, req); 147 } 148 kfree(ff); 149 } 150 } 151 152 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 153 bool isdir) 154 { 155 struct fuse_file *ff; 156 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 157 158 ff = fuse_file_alloc(fc); 159 if (!ff) 160 return -ENOMEM; 161 162 ff->fh = 0; 163 ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */ 164 if (!fc->no_open || isdir) { 165 struct fuse_open_out outarg; 166 int err; 167 168 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 169 if (!err) { 170 ff->fh = outarg.fh; 171 ff->open_flags = outarg.open_flags; 172 173 } else if (err != -ENOSYS || isdir) { 174 fuse_file_free(ff); 175 return err; 176 } else { 177 fc->no_open = 1; 178 } 179 } 180 181 if (isdir) 182 ff->open_flags &= ~FOPEN_DIRECT_IO; 183 184 ff->nodeid = nodeid; 185 file->private_data = fuse_file_get(ff); 186 187 return 0; 188 } 189 EXPORT_SYMBOL_GPL(fuse_do_open); 190 191 void fuse_finish_open(struct inode *inode, struct file *file) 192 { 193 struct fuse_file *ff = file->private_data; 194 struct fuse_conn *fc = get_fuse_conn(inode); 195 196 if (ff->open_flags & FOPEN_DIRECT_IO) 197 file->f_op = &fuse_direct_io_file_operations; 198 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 199 invalidate_inode_pages2(inode->i_mapping); 200 if (ff->open_flags & FOPEN_NONSEEKABLE) 201 nonseekable_open(inode, file); 202 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 203 struct fuse_inode *fi = get_fuse_inode(inode); 204 205 spin_lock(&fc->lock); 206 fi->attr_version = ++fc->attr_version; 207 i_size_write(inode, 0); 208 spin_unlock(&fc->lock); 209 fuse_invalidate_attr(inode); 210 } 211 } 212 213 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 214 { 215 struct fuse_conn *fc = get_fuse_conn(inode); 216 int err; 217 218 err = generic_file_open(inode, file); 219 if (err) 220 return err; 221 222 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 223 if (err) 224 return err; 225 226 fuse_finish_open(inode, file); 227 228 return 0; 229 } 230 231 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode) 232 { 233 struct fuse_conn *fc = ff->fc; 234 struct fuse_req *req = ff->reserved_req; 235 struct fuse_release_in *inarg = &req->misc.release.in; 236 237 spin_lock(&fc->lock); 238 list_del(&ff->write_entry); 239 if (!RB_EMPTY_NODE(&ff->polled_node)) 240 rb_erase(&ff->polled_node, &fc->polled_files); 241 spin_unlock(&fc->lock); 242 243 wake_up_interruptible_all(&ff->poll_wait); 244 245 inarg->fh = ff->fh; 246 inarg->flags = flags; 247 req->in.h.opcode = opcode; 248 req->in.h.nodeid = ff->nodeid; 249 req->in.numargs = 1; 250 req->in.args[0].size = sizeof(struct fuse_release_in); 251 req->in.args[0].value = inarg; 252 } 253 254 void fuse_release_common(struct file *file, int opcode) 255 { 256 struct fuse_file *ff; 257 struct fuse_req *req; 258 259 ff = file->private_data; 260 if (unlikely(!ff)) 261 return; 262 263 req = ff->reserved_req; 264 fuse_prepare_release(ff, file->f_flags, opcode); 265 266 if (ff->flock) { 267 struct fuse_release_in *inarg = &req->misc.release.in; 268 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 269 inarg->lock_owner = fuse_lock_owner_id(ff->fc, 270 (fl_owner_t) file); 271 } 272 /* Hold vfsmount and dentry until release is finished */ 273 path_get(&file->f_path); 274 req->misc.release.path = file->f_path; 275 276 /* 277 * Normally this will send the RELEASE request, however if 278 * some asynchronous READ or WRITE requests are outstanding, 279 * the sending will be delayed. 280 * 281 * Make the release synchronous if this is a fuseblk mount, 282 * synchronous RELEASE is allowed (and desirable) in this case 283 * because the server can be trusted not to screw up. 284 */ 285 fuse_file_put(ff, ff->fc->destroy_req != NULL); 286 } 287 288 static int fuse_open(struct inode *inode, struct file *file) 289 { 290 return fuse_open_common(inode, file, false); 291 } 292 293 static int fuse_release(struct inode *inode, struct file *file) 294 { 295 fuse_release_common(file, FUSE_RELEASE); 296 297 /* return value is ignored by VFS */ 298 return 0; 299 } 300 301 void fuse_sync_release(struct fuse_file *ff, int flags) 302 { 303 WARN_ON(atomic_read(&ff->count) > 1); 304 fuse_prepare_release(ff, flags, FUSE_RELEASE); 305 ff->reserved_req->force = 1; 306 ff->reserved_req->background = 0; 307 fuse_request_send(ff->fc, ff->reserved_req); 308 fuse_put_request(ff->fc, ff->reserved_req); 309 kfree(ff); 310 } 311 EXPORT_SYMBOL_GPL(fuse_sync_release); 312 313 /* 314 * Scramble the ID space with XTEA, so that the value of the files_struct 315 * pointer is not exposed to userspace. 316 */ 317 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 318 { 319 u32 *k = fc->scramble_key; 320 u64 v = (unsigned long) id; 321 u32 v0 = v; 322 u32 v1 = v >> 32; 323 u32 sum = 0; 324 int i; 325 326 for (i = 0; i < 32; i++) { 327 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 328 sum += 0x9E3779B9; 329 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 330 } 331 332 return (u64) v0 + ((u64) v1 << 32); 333 } 334 335 /* 336 * Check if page is under writeback 337 * 338 * This is currently done by walking the list of writepage requests 339 * for the inode, which can be pretty inefficient. 340 */ 341 static bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 342 { 343 struct fuse_conn *fc = get_fuse_conn(inode); 344 struct fuse_inode *fi = get_fuse_inode(inode); 345 struct fuse_req *req; 346 bool found = false; 347 348 spin_lock(&fc->lock); 349 list_for_each_entry(req, &fi->writepages, writepages_entry) { 350 pgoff_t curr_index; 351 352 BUG_ON(req->inode != inode); 353 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT; 354 if (curr_index <= index && 355 index < curr_index + req->num_pages) { 356 found = true; 357 break; 358 } 359 } 360 spin_unlock(&fc->lock); 361 362 return found; 363 } 364 365 /* 366 * Wait for page writeback to be completed. 367 * 368 * Since fuse doesn't rely on the VM writeback tracking, this has to 369 * use some other means. 370 */ 371 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 372 { 373 struct fuse_inode *fi = get_fuse_inode(inode); 374 375 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 376 return 0; 377 } 378 379 static int fuse_flush(struct file *file, fl_owner_t id) 380 { 381 struct inode *inode = file_inode(file); 382 struct fuse_conn *fc = get_fuse_conn(inode); 383 struct fuse_file *ff = file->private_data; 384 struct fuse_req *req; 385 struct fuse_flush_in inarg; 386 int err; 387 388 if (is_bad_inode(inode)) 389 return -EIO; 390 391 if (fc->no_flush) 392 return 0; 393 394 req = fuse_get_req_nofail_nopages(fc, file); 395 memset(&inarg, 0, sizeof(inarg)); 396 inarg.fh = ff->fh; 397 inarg.lock_owner = fuse_lock_owner_id(fc, id); 398 req->in.h.opcode = FUSE_FLUSH; 399 req->in.h.nodeid = get_node_id(inode); 400 req->in.numargs = 1; 401 req->in.args[0].size = sizeof(inarg); 402 req->in.args[0].value = &inarg; 403 req->force = 1; 404 fuse_request_send(fc, req); 405 err = req->out.h.error; 406 fuse_put_request(fc, req); 407 if (err == -ENOSYS) { 408 fc->no_flush = 1; 409 err = 0; 410 } 411 return err; 412 } 413 414 /* 415 * Wait for all pending writepages on the inode to finish. 416 * 417 * This is currently done by blocking further writes with FUSE_NOWRITE 418 * and waiting for all sent writes to complete. 419 * 420 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 421 * could conflict with truncation. 422 */ 423 static void fuse_sync_writes(struct inode *inode) 424 { 425 fuse_set_nowrite(inode); 426 fuse_release_nowrite(inode); 427 } 428 429 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 430 int datasync, int isdir) 431 { 432 struct inode *inode = file->f_mapping->host; 433 struct fuse_conn *fc = get_fuse_conn(inode); 434 struct fuse_file *ff = file->private_data; 435 struct fuse_req *req; 436 struct fuse_fsync_in inarg; 437 int err; 438 439 if (is_bad_inode(inode)) 440 return -EIO; 441 442 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 443 if (err) 444 return err; 445 446 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir)) 447 return 0; 448 449 mutex_lock(&inode->i_mutex); 450 451 /* 452 * Start writeback against all dirty pages of the inode, then 453 * wait for all outstanding writes, before sending the FSYNC 454 * request. 455 */ 456 err = write_inode_now(inode, 0); 457 if (err) 458 goto out; 459 460 fuse_sync_writes(inode); 461 462 req = fuse_get_req_nopages(fc); 463 if (IS_ERR(req)) { 464 err = PTR_ERR(req); 465 goto out; 466 } 467 468 memset(&inarg, 0, sizeof(inarg)); 469 inarg.fh = ff->fh; 470 inarg.fsync_flags = datasync ? 1 : 0; 471 req->in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC; 472 req->in.h.nodeid = get_node_id(inode); 473 req->in.numargs = 1; 474 req->in.args[0].size = sizeof(inarg); 475 req->in.args[0].value = &inarg; 476 fuse_request_send(fc, req); 477 err = req->out.h.error; 478 fuse_put_request(fc, req); 479 if (err == -ENOSYS) { 480 if (isdir) 481 fc->no_fsyncdir = 1; 482 else 483 fc->no_fsync = 1; 484 err = 0; 485 } 486 out: 487 mutex_unlock(&inode->i_mutex); 488 return err; 489 } 490 491 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 492 int datasync) 493 { 494 return fuse_fsync_common(file, start, end, datasync, 0); 495 } 496 497 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos, 498 size_t count, int opcode) 499 { 500 struct fuse_read_in *inarg = &req->misc.read.in; 501 struct fuse_file *ff = file->private_data; 502 503 inarg->fh = ff->fh; 504 inarg->offset = pos; 505 inarg->size = count; 506 inarg->flags = file->f_flags; 507 req->in.h.opcode = opcode; 508 req->in.h.nodeid = ff->nodeid; 509 req->in.numargs = 1; 510 req->in.args[0].size = sizeof(struct fuse_read_in); 511 req->in.args[0].value = inarg; 512 req->out.argvar = 1; 513 req->out.numargs = 1; 514 req->out.args[0].size = count; 515 } 516 517 static void fuse_release_user_pages(struct fuse_req *req, int write) 518 { 519 unsigned i; 520 521 for (i = 0; i < req->num_pages; i++) { 522 struct page *page = req->pages[i]; 523 if (write) 524 set_page_dirty_lock(page); 525 put_page(page); 526 } 527 } 528 529 /** 530 * In case of short read, the caller sets 'pos' to the position of 531 * actual end of fuse request in IO request. Otherwise, if bytes_requested 532 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 533 * 534 * An example: 535 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 536 * both submitted asynchronously. The first of them was ACKed by userspace as 537 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 538 * second request was ACKed as short, e.g. only 1K was read, resulting in 539 * pos == 33K. 540 * 541 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 542 * will be equal to the length of the longest contiguous fragment of 543 * transferred data starting from the beginning of IO request. 544 */ 545 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 546 { 547 int left; 548 549 spin_lock(&io->lock); 550 if (err) 551 io->err = io->err ? : err; 552 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 553 io->bytes = pos; 554 555 left = --io->reqs; 556 spin_unlock(&io->lock); 557 558 if (!left) { 559 long res; 560 561 if (io->err) 562 res = io->err; 563 else if (io->bytes >= 0 && io->write) 564 res = -EIO; 565 else { 566 res = io->bytes < 0 ? io->size : io->bytes; 567 568 if (!is_sync_kiocb(io->iocb)) { 569 struct inode *inode = file_inode(io->iocb->ki_filp); 570 struct fuse_conn *fc = get_fuse_conn(inode); 571 struct fuse_inode *fi = get_fuse_inode(inode); 572 573 spin_lock(&fc->lock); 574 fi->attr_version = ++fc->attr_version; 575 spin_unlock(&fc->lock); 576 } 577 } 578 579 aio_complete(io->iocb, res, 0); 580 kfree(io); 581 } 582 } 583 584 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req) 585 { 586 struct fuse_io_priv *io = req->io; 587 ssize_t pos = -1; 588 589 fuse_release_user_pages(req, !io->write); 590 591 if (io->write) { 592 if (req->misc.write.in.size != req->misc.write.out.size) 593 pos = req->misc.write.in.offset - io->offset + 594 req->misc.write.out.size; 595 } else { 596 if (req->misc.read.in.size != req->out.args[0].size) 597 pos = req->misc.read.in.offset - io->offset + 598 req->out.args[0].size; 599 } 600 601 fuse_aio_complete(io, req->out.h.error, pos); 602 } 603 604 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req, 605 size_t num_bytes, struct fuse_io_priv *io) 606 { 607 spin_lock(&io->lock); 608 io->size += num_bytes; 609 io->reqs++; 610 spin_unlock(&io->lock); 611 612 req->io = io; 613 req->end = fuse_aio_complete_req; 614 615 __fuse_get_request(req); 616 fuse_request_send_background(fc, req); 617 618 return num_bytes; 619 } 620 621 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io, 622 loff_t pos, size_t count, fl_owner_t owner) 623 { 624 struct file *file = io->file; 625 struct fuse_file *ff = file->private_data; 626 struct fuse_conn *fc = ff->fc; 627 628 fuse_read_fill(req, file, pos, count, FUSE_READ); 629 if (owner != NULL) { 630 struct fuse_read_in *inarg = &req->misc.read.in; 631 632 inarg->read_flags |= FUSE_READ_LOCKOWNER; 633 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 634 } 635 636 if (io->async) 637 return fuse_async_req_send(fc, req, count, io); 638 639 fuse_request_send(fc, req); 640 return req->out.args[0].size; 641 } 642 643 static void fuse_read_update_size(struct inode *inode, loff_t size, 644 u64 attr_ver) 645 { 646 struct fuse_conn *fc = get_fuse_conn(inode); 647 struct fuse_inode *fi = get_fuse_inode(inode); 648 649 spin_lock(&fc->lock); 650 if (attr_ver == fi->attr_version && size < inode->i_size && 651 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 652 fi->attr_version = ++fc->attr_version; 653 i_size_write(inode, size); 654 } 655 spin_unlock(&fc->lock); 656 } 657 658 static int fuse_readpage(struct file *file, struct page *page) 659 { 660 struct fuse_io_priv io = { .async = 0, .file = file }; 661 struct inode *inode = page->mapping->host; 662 struct fuse_conn *fc = get_fuse_conn(inode); 663 struct fuse_req *req; 664 size_t num_read; 665 loff_t pos = page_offset(page); 666 size_t count = PAGE_CACHE_SIZE; 667 u64 attr_ver; 668 int err; 669 670 err = -EIO; 671 if (is_bad_inode(inode)) 672 goto out; 673 674 /* 675 * Page writeback can extend beyond the lifetime of the 676 * page-cache page, so make sure we read a properly synced 677 * page. 678 */ 679 fuse_wait_on_page_writeback(inode, page->index); 680 681 req = fuse_get_req(fc, 1); 682 err = PTR_ERR(req); 683 if (IS_ERR(req)) 684 goto out; 685 686 attr_ver = fuse_get_attr_version(fc); 687 688 req->out.page_zeroing = 1; 689 req->out.argpages = 1; 690 req->num_pages = 1; 691 req->pages[0] = page; 692 req->page_descs[0].length = count; 693 num_read = fuse_send_read(req, &io, pos, count, NULL); 694 err = req->out.h.error; 695 fuse_put_request(fc, req); 696 697 if (!err) { 698 /* 699 * Short read means EOF. If file size is larger, truncate it 700 */ 701 if (num_read < count) 702 fuse_read_update_size(inode, pos + num_read, attr_ver); 703 704 SetPageUptodate(page); 705 } 706 707 fuse_invalidate_atime(inode); 708 out: 709 unlock_page(page); 710 return err; 711 } 712 713 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req) 714 { 715 int i; 716 size_t count = req->misc.read.in.size; 717 size_t num_read = req->out.args[0].size; 718 struct address_space *mapping = NULL; 719 720 for (i = 0; mapping == NULL && i < req->num_pages; i++) 721 mapping = req->pages[i]->mapping; 722 723 if (mapping) { 724 struct inode *inode = mapping->host; 725 726 /* 727 * Short read means EOF. If file size is larger, truncate it 728 */ 729 if (!req->out.h.error && num_read < count) { 730 loff_t pos; 731 732 pos = page_offset(req->pages[0]) + num_read; 733 fuse_read_update_size(inode, pos, 734 req->misc.read.attr_ver); 735 } 736 fuse_invalidate_atime(inode); 737 } 738 739 for (i = 0; i < req->num_pages; i++) { 740 struct page *page = req->pages[i]; 741 if (!req->out.h.error) 742 SetPageUptodate(page); 743 else 744 SetPageError(page); 745 unlock_page(page); 746 page_cache_release(page); 747 } 748 if (req->ff) 749 fuse_file_put(req->ff, false); 750 } 751 752 static void fuse_send_readpages(struct fuse_req *req, struct file *file) 753 { 754 struct fuse_file *ff = file->private_data; 755 struct fuse_conn *fc = ff->fc; 756 loff_t pos = page_offset(req->pages[0]); 757 size_t count = req->num_pages << PAGE_CACHE_SHIFT; 758 759 req->out.argpages = 1; 760 req->out.page_zeroing = 1; 761 req->out.page_replace = 1; 762 fuse_read_fill(req, file, pos, count, FUSE_READ); 763 req->misc.read.attr_ver = fuse_get_attr_version(fc); 764 if (fc->async_read) { 765 req->ff = fuse_file_get(ff); 766 req->end = fuse_readpages_end; 767 fuse_request_send_background(fc, req); 768 } else { 769 fuse_request_send(fc, req); 770 fuse_readpages_end(fc, req); 771 fuse_put_request(fc, req); 772 } 773 } 774 775 struct fuse_fill_data { 776 struct fuse_req *req; 777 struct file *file; 778 struct inode *inode; 779 unsigned nr_pages; 780 }; 781 782 static int fuse_readpages_fill(void *_data, struct page *page) 783 { 784 struct fuse_fill_data *data = _data; 785 struct fuse_req *req = data->req; 786 struct inode *inode = data->inode; 787 struct fuse_conn *fc = get_fuse_conn(inode); 788 789 fuse_wait_on_page_writeback(inode, page->index); 790 791 if (req->num_pages && 792 (req->num_pages == FUSE_MAX_PAGES_PER_REQ || 793 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read || 794 req->pages[req->num_pages - 1]->index + 1 != page->index)) { 795 int nr_alloc = min_t(unsigned, data->nr_pages, 796 FUSE_MAX_PAGES_PER_REQ); 797 fuse_send_readpages(req, data->file); 798 if (fc->async_read) 799 req = fuse_get_req_for_background(fc, nr_alloc); 800 else 801 req = fuse_get_req(fc, nr_alloc); 802 803 data->req = req; 804 if (IS_ERR(req)) { 805 unlock_page(page); 806 return PTR_ERR(req); 807 } 808 } 809 810 if (WARN_ON(req->num_pages >= req->max_pages)) { 811 fuse_put_request(fc, req); 812 return -EIO; 813 } 814 815 page_cache_get(page); 816 req->pages[req->num_pages] = page; 817 req->page_descs[req->num_pages].length = PAGE_SIZE; 818 req->num_pages++; 819 data->nr_pages--; 820 return 0; 821 } 822 823 static int fuse_readpages(struct file *file, struct address_space *mapping, 824 struct list_head *pages, unsigned nr_pages) 825 { 826 struct inode *inode = mapping->host; 827 struct fuse_conn *fc = get_fuse_conn(inode); 828 struct fuse_fill_data data; 829 int err; 830 int nr_alloc = min_t(unsigned, nr_pages, FUSE_MAX_PAGES_PER_REQ); 831 832 err = -EIO; 833 if (is_bad_inode(inode)) 834 goto out; 835 836 data.file = file; 837 data.inode = inode; 838 if (fc->async_read) 839 data.req = fuse_get_req_for_background(fc, nr_alloc); 840 else 841 data.req = fuse_get_req(fc, nr_alloc); 842 data.nr_pages = nr_pages; 843 err = PTR_ERR(data.req); 844 if (IS_ERR(data.req)) 845 goto out; 846 847 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 848 if (!err) { 849 if (data.req->num_pages) 850 fuse_send_readpages(data.req, file); 851 else 852 fuse_put_request(fc, data.req); 853 } 854 out: 855 return err; 856 } 857 858 static ssize_t fuse_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 859 unsigned long nr_segs, loff_t pos) 860 { 861 struct inode *inode = iocb->ki_filp->f_mapping->host; 862 struct fuse_conn *fc = get_fuse_conn(inode); 863 864 /* 865 * In auto invalidate mode, always update attributes on read. 866 * Otherwise, only update if we attempt to read past EOF (to ensure 867 * i_size is up to date). 868 */ 869 if (fc->auto_inval_data || 870 (pos + iov_length(iov, nr_segs) > i_size_read(inode))) { 871 int err; 872 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL); 873 if (err) 874 return err; 875 } 876 877 return generic_file_aio_read(iocb, iov, nr_segs, pos); 878 } 879 880 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff, 881 loff_t pos, size_t count) 882 { 883 struct fuse_write_in *inarg = &req->misc.write.in; 884 struct fuse_write_out *outarg = &req->misc.write.out; 885 886 inarg->fh = ff->fh; 887 inarg->offset = pos; 888 inarg->size = count; 889 req->in.h.opcode = FUSE_WRITE; 890 req->in.h.nodeid = ff->nodeid; 891 req->in.numargs = 2; 892 if (ff->fc->minor < 9) 893 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 894 else 895 req->in.args[0].size = sizeof(struct fuse_write_in); 896 req->in.args[0].value = inarg; 897 req->in.args[1].size = count; 898 req->out.numargs = 1; 899 req->out.args[0].size = sizeof(struct fuse_write_out); 900 req->out.args[0].value = outarg; 901 } 902 903 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io, 904 loff_t pos, size_t count, fl_owner_t owner) 905 { 906 struct file *file = io->file; 907 struct fuse_file *ff = file->private_data; 908 struct fuse_conn *fc = ff->fc; 909 struct fuse_write_in *inarg = &req->misc.write.in; 910 911 fuse_write_fill(req, ff, pos, count); 912 inarg->flags = file->f_flags; 913 if (owner != NULL) { 914 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 915 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 916 } 917 918 if (io->async) 919 return fuse_async_req_send(fc, req, count, io); 920 921 fuse_request_send(fc, req); 922 return req->misc.write.out.size; 923 } 924 925 void fuse_write_update_size(struct inode *inode, loff_t pos) 926 { 927 struct fuse_conn *fc = get_fuse_conn(inode); 928 struct fuse_inode *fi = get_fuse_inode(inode); 929 930 spin_lock(&fc->lock); 931 fi->attr_version = ++fc->attr_version; 932 if (pos > inode->i_size) 933 i_size_write(inode, pos); 934 spin_unlock(&fc->lock); 935 } 936 937 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file, 938 struct inode *inode, loff_t pos, 939 size_t count) 940 { 941 size_t res; 942 unsigned offset; 943 unsigned i; 944 struct fuse_io_priv io = { .async = 0, .file = file }; 945 946 for (i = 0; i < req->num_pages; i++) 947 fuse_wait_on_page_writeback(inode, req->pages[i]->index); 948 949 res = fuse_send_write(req, &io, pos, count, NULL); 950 951 offset = req->page_descs[0].offset; 952 count = res; 953 for (i = 0; i < req->num_pages; i++) { 954 struct page *page = req->pages[i]; 955 956 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE) 957 SetPageUptodate(page); 958 959 if (count > PAGE_CACHE_SIZE - offset) 960 count -= PAGE_CACHE_SIZE - offset; 961 else 962 count = 0; 963 offset = 0; 964 965 unlock_page(page); 966 page_cache_release(page); 967 } 968 969 return res; 970 } 971 972 static ssize_t fuse_fill_write_pages(struct fuse_req *req, 973 struct address_space *mapping, 974 struct iov_iter *ii, loff_t pos) 975 { 976 struct fuse_conn *fc = get_fuse_conn(mapping->host); 977 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 978 size_t count = 0; 979 int err; 980 981 req->in.argpages = 1; 982 req->page_descs[0].offset = offset; 983 984 do { 985 size_t tmp; 986 struct page *page; 987 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 988 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset, 989 iov_iter_count(ii)); 990 991 bytes = min_t(size_t, bytes, fc->max_write - count); 992 993 again: 994 err = -EFAULT; 995 if (iov_iter_fault_in_readable(ii, bytes)) 996 break; 997 998 err = -ENOMEM; 999 page = grab_cache_page_write_begin(mapping, index, 0); 1000 if (!page) 1001 break; 1002 1003 if (mapping_writably_mapped(mapping)) 1004 flush_dcache_page(page); 1005 1006 pagefault_disable(); 1007 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1008 pagefault_enable(); 1009 flush_dcache_page(page); 1010 1011 mark_page_accessed(page); 1012 1013 if (!tmp) { 1014 unlock_page(page); 1015 page_cache_release(page); 1016 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1017 goto again; 1018 } 1019 1020 err = 0; 1021 req->pages[req->num_pages] = page; 1022 req->page_descs[req->num_pages].length = tmp; 1023 req->num_pages++; 1024 1025 iov_iter_advance(ii, tmp); 1026 count += tmp; 1027 pos += tmp; 1028 offset += tmp; 1029 if (offset == PAGE_CACHE_SIZE) 1030 offset = 0; 1031 1032 if (!fc->big_writes) 1033 break; 1034 } while (iov_iter_count(ii) && count < fc->max_write && 1035 req->num_pages < req->max_pages && offset == 0); 1036 1037 return count > 0 ? count : err; 1038 } 1039 1040 static inline unsigned fuse_wr_pages(loff_t pos, size_t len) 1041 { 1042 return min_t(unsigned, 1043 ((pos + len - 1) >> PAGE_CACHE_SHIFT) - 1044 (pos >> PAGE_CACHE_SHIFT) + 1, 1045 FUSE_MAX_PAGES_PER_REQ); 1046 } 1047 1048 static ssize_t fuse_perform_write(struct file *file, 1049 struct address_space *mapping, 1050 struct iov_iter *ii, loff_t pos) 1051 { 1052 struct inode *inode = mapping->host; 1053 struct fuse_conn *fc = get_fuse_conn(inode); 1054 struct fuse_inode *fi = get_fuse_inode(inode); 1055 int err = 0; 1056 ssize_t res = 0; 1057 1058 if (is_bad_inode(inode)) 1059 return -EIO; 1060 1061 if (inode->i_size < pos + iov_iter_count(ii)) 1062 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1063 1064 do { 1065 struct fuse_req *req; 1066 ssize_t count; 1067 unsigned nr_pages = fuse_wr_pages(pos, iov_iter_count(ii)); 1068 1069 req = fuse_get_req(fc, nr_pages); 1070 if (IS_ERR(req)) { 1071 err = PTR_ERR(req); 1072 break; 1073 } 1074 1075 count = fuse_fill_write_pages(req, mapping, ii, pos); 1076 if (count <= 0) { 1077 err = count; 1078 } else { 1079 size_t num_written; 1080 1081 num_written = fuse_send_write_pages(req, file, inode, 1082 pos, count); 1083 err = req->out.h.error; 1084 if (!err) { 1085 res += num_written; 1086 pos += num_written; 1087 1088 /* break out of the loop on short write */ 1089 if (num_written != count) 1090 err = -EIO; 1091 } 1092 } 1093 fuse_put_request(fc, req); 1094 } while (!err && iov_iter_count(ii)); 1095 1096 if (res > 0) 1097 fuse_write_update_size(inode, pos); 1098 1099 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1100 fuse_invalidate_attr(inode); 1101 1102 return res > 0 ? res : err; 1103 } 1104 1105 static ssize_t fuse_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 1106 unsigned long nr_segs, loff_t pos) 1107 { 1108 struct file *file = iocb->ki_filp; 1109 struct address_space *mapping = file->f_mapping; 1110 size_t count = 0; 1111 size_t ocount = 0; 1112 ssize_t written = 0; 1113 ssize_t written_buffered = 0; 1114 struct inode *inode = mapping->host; 1115 ssize_t err; 1116 struct iov_iter i; 1117 loff_t endbyte = 0; 1118 1119 WARN_ON(iocb->ki_pos != pos); 1120 1121 ocount = 0; 1122 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 1123 if (err) 1124 return err; 1125 1126 count = ocount; 1127 mutex_lock(&inode->i_mutex); 1128 1129 /* We can write back this queue in page reclaim */ 1130 current->backing_dev_info = mapping->backing_dev_info; 1131 1132 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 1133 if (err) 1134 goto out; 1135 1136 if (count == 0) 1137 goto out; 1138 1139 err = file_remove_suid(file); 1140 if (err) 1141 goto out; 1142 1143 err = file_update_time(file); 1144 if (err) 1145 goto out; 1146 1147 if (file->f_flags & O_DIRECT) { 1148 written = generic_file_direct_write(iocb, iov, &nr_segs, 1149 pos, &iocb->ki_pos, 1150 count, ocount); 1151 if (written < 0 || written == count) 1152 goto out; 1153 1154 pos += written; 1155 count -= written; 1156 1157 iov_iter_init(&i, iov, nr_segs, count, written); 1158 written_buffered = fuse_perform_write(file, mapping, &i, pos); 1159 if (written_buffered < 0) { 1160 err = written_buffered; 1161 goto out; 1162 } 1163 endbyte = pos + written_buffered - 1; 1164 1165 err = filemap_write_and_wait_range(file->f_mapping, pos, 1166 endbyte); 1167 if (err) 1168 goto out; 1169 1170 invalidate_mapping_pages(file->f_mapping, 1171 pos >> PAGE_CACHE_SHIFT, 1172 endbyte >> PAGE_CACHE_SHIFT); 1173 1174 written += written_buffered; 1175 iocb->ki_pos = pos + written_buffered; 1176 } else { 1177 iov_iter_init(&i, iov, nr_segs, count, 0); 1178 written = fuse_perform_write(file, mapping, &i, pos); 1179 if (written >= 0) 1180 iocb->ki_pos = pos + written; 1181 } 1182 out: 1183 current->backing_dev_info = NULL; 1184 mutex_unlock(&inode->i_mutex); 1185 1186 return written ? written : err; 1187 } 1188 1189 static inline void fuse_page_descs_length_init(struct fuse_req *req, 1190 unsigned index, unsigned nr_pages) 1191 { 1192 int i; 1193 1194 for (i = index; i < index + nr_pages; i++) 1195 req->page_descs[i].length = PAGE_SIZE - 1196 req->page_descs[i].offset; 1197 } 1198 1199 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1200 { 1201 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1202 } 1203 1204 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1205 size_t max_size) 1206 { 1207 return min(iov_iter_single_seg_count(ii), max_size); 1208 } 1209 1210 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii, 1211 size_t *nbytesp, int write) 1212 { 1213 size_t nbytes = 0; /* # bytes already packed in req */ 1214 1215 /* Special case for kernel I/O: can copy directly into the buffer */ 1216 if (segment_eq(get_fs(), KERNEL_DS)) { 1217 unsigned long user_addr = fuse_get_user_addr(ii); 1218 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1219 1220 if (write) 1221 req->in.args[1].value = (void *) user_addr; 1222 else 1223 req->out.args[0].value = (void *) user_addr; 1224 1225 iov_iter_advance(ii, frag_size); 1226 *nbytesp = frag_size; 1227 return 0; 1228 } 1229 1230 while (nbytes < *nbytesp && req->num_pages < req->max_pages) { 1231 unsigned npages; 1232 unsigned long user_addr = fuse_get_user_addr(ii); 1233 unsigned offset = user_addr & ~PAGE_MASK; 1234 size_t frag_size = fuse_get_frag_size(ii, *nbytesp - nbytes); 1235 int ret; 1236 1237 unsigned n = req->max_pages - req->num_pages; 1238 frag_size = min_t(size_t, frag_size, n << PAGE_SHIFT); 1239 1240 npages = (frag_size + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 1241 npages = clamp(npages, 1U, n); 1242 1243 ret = get_user_pages_fast(user_addr, npages, !write, 1244 &req->pages[req->num_pages]); 1245 if (ret < 0) 1246 return ret; 1247 1248 npages = ret; 1249 frag_size = min_t(size_t, frag_size, 1250 (npages << PAGE_SHIFT) - offset); 1251 iov_iter_advance(ii, frag_size); 1252 1253 req->page_descs[req->num_pages].offset = offset; 1254 fuse_page_descs_length_init(req, req->num_pages, npages); 1255 1256 req->num_pages += npages; 1257 req->page_descs[req->num_pages - 1].length -= 1258 (npages << PAGE_SHIFT) - offset - frag_size; 1259 1260 nbytes += frag_size; 1261 } 1262 1263 if (write) 1264 req->in.argpages = 1; 1265 else 1266 req->out.argpages = 1; 1267 1268 *nbytesp = nbytes; 1269 1270 return 0; 1271 } 1272 1273 static inline int fuse_iter_npages(const struct iov_iter *ii_p) 1274 { 1275 struct iov_iter ii = *ii_p; 1276 int npages = 0; 1277 1278 while (iov_iter_count(&ii) && npages < FUSE_MAX_PAGES_PER_REQ) { 1279 unsigned long user_addr = fuse_get_user_addr(&ii); 1280 unsigned offset = user_addr & ~PAGE_MASK; 1281 size_t frag_size = iov_iter_single_seg_count(&ii); 1282 1283 npages += (frag_size + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 1284 iov_iter_advance(&ii, frag_size); 1285 } 1286 1287 return min(npages, FUSE_MAX_PAGES_PER_REQ); 1288 } 1289 1290 ssize_t fuse_direct_io(struct fuse_io_priv *io, const struct iovec *iov, 1291 unsigned long nr_segs, size_t count, loff_t *ppos, 1292 int write) 1293 { 1294 struct file *file = io->file; 1295 struct fuse_file *ff = file->private_data; 1296 struct fuse_conn *fc = ff->fc; 1297 size_t nmax = write ? fc->max_write : fc->max_read; 1298 loff_t pos = *ppos; 1299 ssize_t res = 0; 1300 struct fuse_req *req; 1301 struct iov_iter ii; 1302 1303 iov_iter_init(&ii, iov, nr_segs, count, 0); 1304 1305 if (io->async) 1306 req = fuse_get_req_for_background(fc, fuse_iter_npages(&ii)); 1307 else 1308 req = fuse_get_req(fc, fuse_iter_npages(&ii)); 1309 if (IS_ERR(req)) 1310 return PTR_ERR(req); 1311 1312 while (count) { 1313 size_t nres; 1314 fl_owner_t owner = current->files; 1315 size_t nbytes = min(count, nmax); 1316 int err = fuse_get_user_pages(req, &ii, &nbytes, write); 1317 if (err) { 1318 res = err; 1319 break; 1320 } 1321 1322 if (write) 1323 nres = fuse_send_write(req, io, pos, nbytes, owner); 1324 else 1325 nres = fuse_send_read(req, io, pos, nbytes, owner); 1326 1327 if (!io->async) 1328 fuse_release_user_pages(req, !write); 1329 if (req->out.h.error) { 1330 if (!res) 1331 res = req->out.h.error; 1332 break; 1333 } else if (nres > nbytes) { 1334 res = -EIO; 1335 break; 1336 } 1337 count -= nres; 1338 res += nres; 1339 pos += nres; 1340 if (nres != nbytes) 1341 break; 1342 if (count) { 1343 fuse_put_request(fc, req); 1344 if (io->async) 1345 req = fuse_get_req_for_background(fc, 1346 fuse_iter_npages(&ii)); 1347 else 1348 req = fuse_get_req(fc, fuse_iter_npages(&ii)); 1349 if (IS_ERR(req)) 1350 break; 1351 } 1352 } 1353 if (!IS_ERR(req)) 1354 fuse_put_request(fc, req); 1355 if (res > 0) 1356 *ppos = pos; 1357 1358 return res; 1359 } 1360 EXPORT_SYMBOL_GPL(fuse_direct_io); 1361 1362 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1363 const struct iovec *iov, 1364 unsigned long nr_segs, loff_t *ppos, 1365 size_t count) 1366 { 1367 ssize_t res; 1368 struct file *file = io->file; 1369 struct inode *inode = file_inode(file); 1370 1371 if (is_bad_inode(inode)) 1372 return -EIO; 1373 1374 res = fuse_direct_io(io, iov, nr_segs, count, ppos, 0); 1375 1376 fuse_invalidate_attr(inode); 1377 1378 return res; 1379 } 1380 1381 static ssize_t fuse_direct_read(struct file *file, char __user *buf, 1382 size_t count, loff_t *ppos) 1383 { 1384 struct fuse_io_priv io = { .async = 0, .file = file }; 1385 struct iovec iov = { .iov_base = buf, .iov_len = count }; 1386 return __fuse_direct_read(&io, &iov, 1, ppos, count); 1387 } 1388 1389 static ssize_t __fuse_direct_write(struct fuse_io_priv *io, 1390 const struct iovec *iov, 1391 unsigned long nr_segs, loff_t *ppos) 1392 { 1393 struct file *file = io->file; 1394 struct inode *inode = file_inode(file); 1395 size_t count = iov_length(iov, nr_segs); 1396 ssize_t res; 1397 1398 res = generic_write_checks(file, ppos, &count, 0); 1399 if (!res) 1400 res = fuse_direct_io(io, iov, nr_segs, count, ppos, 1); 1401 1402 fuse_invalidate_attr(inode); 1403 1404 return res; 1405 } 1406 1407 static ssize_t fuse_direct_write(struct file *file, const char __user *buf, 1408 size_t count, loff_t *ppos) 1409 { 1410 struct iovec iov = { .iov_base = (void __user *)buf, .iov_len = count }; 1411 struct inode *inode = file_inode(file); 1412 ssize_t res; 1413 struct fuse_io_priv io = { .async = 0, .file = file }; 1414 1415 if (is_bad_inode(inode)) 1416 return -EIO; 1417 1418 /* Don't allow parallel writes to the same file */ 1419 mutex_lock(&inode->i_mutex); 1420 res = __fuse_direct_write(&io, &iov, 1, ppos); 1421 if (res > 0) 1422 fuse_write_update_size(inode, *ppos); 1423 mutex_unlock(&inode->i_mutex); 1424 1425 return res; 1426 } 1427 1428 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req) 1429 { 1430 int i; 1431 1432 for (i = 0; i < req->num_pages; i++) 1433 __free_page(req->pages[i]); 1434 1435 if (req->ff) 1436 fuse_file_put(req->ff, false); 1437 } 1438 1439 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req) 1440 { 1441 struct inode *inode = req->inode; 1442 struct fuse_inode *fi = get_fuse_inode(inode); 1443 struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info; 1444 int i; 1445 1446 list_del(&req->writepages_entry); 1447 for (i = 0; i < req->num_pages; i++) { 1448 dec_bdi_stat(bdi, BDI_WRITEBACK); 1449 dec_zone_page_state(req->pages[i], NR_WRITEBACK_TEMP); 1450 bdi_writeout_inc(bdi); 1451 } 1452 wake_up(&fi->page_waitq); 1453 } 1454 1455 /* Called under fc->lock, may release and reacquire it */ 1456 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req, 1457 loff_t size) 1458 __releases(fc->lock) 1459 __acquires(fc->lock) 1460 { 1461 struct fuse_inode *fi = get_fuse_inode(req->inode); 1462 struct fuse_write_in *inarg = &req->misc.write.in; 1463 __u64 data_size = req->num_pages * PAGE_CACHE_SIZE; 1464 1465 if (!fc->connected) 1466 goto out_free; 1467 1468 if (inarg->offset + data_size <= size) { 1469 inarg->size = data_size; 1470 } else if (inarg->offset < size) { 1471 inarg->size = size - inarg->offset; 1472 } else { 1473 /* Got truncated off completely */ 1474 goto out_free; 1475 } 1476 1477 req->in.args[1].size = inarg->size; 1478 fi->writectr++; 1479 fuse_request_send_background_locked(fc, req); 1480 return; 1481 1482 out_free: 1483 fuse_writepage_finish(fc, req); 1484 spin_unlock(&fc->lock); 1485 fuse_writepage_free(fc, req); 1486 fuse_put_request(fc, req); 1487 spin_lock(&fc->lock); 1488 } 1489 1490 /* 1491 * If fi->writectr is positive (no truncate or fsync going on) send 1492 * all queued writepage requests. 1493 * 1494 * Called with fc->lock 1495 */ 1496 void fuse_flush_writepages(struct inode *inode) 1497 __releases(fc->lock) 1498 __acquires(fc->lock) 1499 { 1500 struct fuse_conn *fc = get_fuse_conn(inode); 1501 struct fuse_inode *fi = get_fuse_inode(inode); 1502 size_t crop = i_size_read(inode); 1503 struct fuse_req *req; 1504 1505 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1506 req = list_entry(fi->queued_writes.next, struct fuse_req, list); 1507 list_del_init(&req->list); 1508 fuse_send_writepage(fc, req, crop); 1509 } 1510 } 1511 1512 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req) 1513 { 1514 struct inode *inode = req->inode; 1515 struct fuse_inode *fi = get_fuse_inode(inode); 1516 1517 mapping_set_error(inode->i_mapping, req->out.h.error); 1518 spin_lock(&fc->lock); 1519 while (req->misc.write.next) { 1520 struct fuse_conn *fc = get_fuse_conn(inode); 1521 struct fuse_write_in *inarg = &req->misc.write.in; 1522 struct fuse_req *next = req->misc.write.next; 1523 req->misc.write.next = next->misc.write.next; 1524 next->misc.write.next = NULL; 1525 next->ff = fuse_file_get(req->ff); 1526 list_add(&next->writepages_entry, &fi->writepages); 1527 1528 /* 1529 * Skip fuse_flush_writepages() to make it easy to crop requests 1530 * based on primary request size. 1531 * 1532 * 1st case (trivial): there are no concurrent activities using 1533 * fuse_set/release_nowrite. Then we're on safe side because 1534 * fuse_flush_writepages() would call fuse_send_writepage() 1535 * anyway. 1536 * 1537 * 2nd case: someone called fuse_set_nowrite and it is waiting 1538 * now for completion of all in-flight requests. This happens 1539 * rarely and no more than once per page, so this should be 1540 * okay. 1541 * 1542 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1543 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1544 * that fuse_set_nowrite returned implies that all in-flight 1545 * requests were completed along with all of their secondary 1546 * requests. Further primary requests are blocked by negative 1547 * writectr. Hence there cannot be any in-flight requests and 1548 * no invocations of fuse_writepage_end() while we're in 1549 * fuse_set_nowrite..fuse_release_nowrite section. 1550 */ 1551 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1552 } 1553 fi->writectr--; 1554 fuse_writepage_finish(fc, req); 1555 spin_unlock(&fc->lock); 1556 fuse_writepage_free(fc, req); 1557 } 1558 1559 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1560 struct fuse_inode *fi) 1561 { 1562 struct fuse_file *ff = NULL; 1563 1564 spin_lock(&fc->lock); 1565 if (!WARN_ON(list_empty(&fi->write_files))) { 1566 ff = list_entry(fi->write_files.next, struct fuse_file, 1567 write_entry); 1568 fuse_file_get(ff); 1569 } 1570 spin_unlock(&fc->lock); 1571 1572 return ff; 1573 } 1574 1575 static int fuse_writepage_locked(struct page *page) 1576 { 1577 struct address_space *mapping = page->mapping; 1578 struct inode *inode = mapping->host; 1579 struct fuse_conn *fc = get_fuse_conn(inode); 1580 struct fuse_inode *fi = get_fuse_inode(inode); 1581 struct fuse_req *req; 1582 struct page *tmp_page; 1583 int error = -ENOMEM; 1584 1585 set_page_writeback(page); 1586 1587 req = fuse_request_alloc_nofs(1); 1588 if (!req) 1589 goto err; 1590 1591 req->background = 1; /* writeback always goes to bg_queue */ 1592 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1593 if (!tmp_page) 1594 goto err_free; 1595 1596 error = -EIO; 1597 req->ff = fuse_write_file_get(fc, fi); 1598 if (!req->ff) 1599 goto err_free; 1600 1601 fuse_write_fill(req, req->ff, page_offset(page), 0); 1602 1603 copy_highpage(tmp_page, page); 1604 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1605 req->misc.write.next = NULL; 1606 req->in.argpages = 1; 1607 req->num_pages = 1; 1608 req->pages[0] = tmp_page; 1609 req->page_descs[0].offset = 0; 1610 req->page_descs[0].length = PAGE_SIZE; 1611 req->end = fuse_writepage_end; 1612 req->inode = inode; 1613 1614 inc_bdi_stat(mapping->backing_dev_info, BDI_WRITEBACK); 1615 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP); 1616 1617 spin_lock(&fc->lock); 1618 list_add(&req->writepages_entry, &fi->writepages); 1619 list_add_tail(&req->list, &fi->queued_writes); 1620 fuse_flush_writepages(inode); 1621 spin_unlock(&fc->lock); 1622 1623 end_page_writeback(page); 1624 1625 return 0; 1626 1627 err_free: 1628 fuse_request_free(req); 1629 err: 1630 end_page_writeback(page); 1631 return error; 1632 } 1633 1634 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1635 { 1636 int err; 1637 1638 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1639 /* 1640 * ->writepages() should be called for sync() and friends. We 1641 * should only get here on direct reclaim and then we are 1642 * allowed to skip a page which is already in flight 1643 */ 1644 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1645 1646 redirty_page_for_writepage(wbc, page); 1647 return 0; 1648 } 1649 1650 err = fuse_writepage_locked(page); 1651 unlock_page(page); 1652 1653 return err; 1654 } 1655 1656 struct fuse_fill_wb_data { 1657 struct fuse_req *req; 1658 struct fuse_file *ff; 1659 struct inode *inode; 1660 struct page **orig_pages; 1661 }; 1662 1663 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1664 { 1665 struct fuse_req *req = data->req; 1666 struct inode *inode = data->inode; 1667 struct fuse_conn *fc = get_fuse_conn(inode); 1668 struct fuse_inode *fi = get_fuse_inode(inode); 1669 int num_pages = req->num_pages; 1670 int i; 1671 1672 req->ff = fuse_file_get(data->ff); 1673 spin_lock(&fc->lock); 1674 list_add_tail(&req->list, &fi->queued_writes); 1675 fuse_flush_writepages(inode); 1676 spin_unlock(&fc->lock); 1677 1678 for (i = 0; i < num_pages; i++) 1679 end_page_writeback(data->orig_pages[i]); 1680 } 1681 1682 static bool fuse_writepage_in_flight(struct fuse_req *new_req, 1683 struct page *page) 1684 { 1685 struct fuse_conn *fc = get_fuse_conn(new_req->inode); 1686 struct fuse_inode *fi = get_fuse_inode(new_req->inode); 1687 struct fuse_req *tmp; 1688 struct fuse_req *old_req; 1689 bool found = false; 1690 pgoff_t curr_index; 1691 1692 BUG_ON(new_req->num_pages != 0); 1693 1694 spin_lock(&fc->lock); 1695 list_del(&new_req->writepages_entry); 1696 list_for_each_entry(old_req, &fi->writepages, writepages_entry) { 1697 BUG_ON(old_req->inode != new_req->inode); 1698 curr_index = old_req->misc.write.in.offset >> PAGE_CACHE_SHIFT; 1699 if (curr_index <= page->index && 1700 page->index < curr_index + old_req->num_pages) { 1701 found = true; 1702 break; 1703 } 1704 } 1705 if (!found) { 1706 list_add(&new_req->writepages_entry, &fi->writepages); 1707 goto out_unlock; 1708 } 1709 1710 new_req->num_pages = 1; 1711 for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) { 1712 BUG_ON(tmp->inode != new_req->inode); 1713 curr_index = tmp->misc.write.in.offset >> PAGE_CACHE_SHIFT; 1714 if (tmp->num_pages == 1 && 1715 curr_index == page->index) { 1716 old_req = tmp; 1717 } 1718 } 1719 1720 if (old_req->num_pages == 1 && (old_req->state == FUSE_REQ_INIT || 1721 old_req->state == FUSE_REQ_PENDING)) { 1722 struct backing_dev_info *bdi = page->mapping->backing_dev_info; 1723 1724 copy_highpage(old_req->pages[0], page); 1725 spin_unlock(&fc->lock); 1726 1727 dec_bdi_stat(bdi, BDI_WRITEBACK); 1728 dec_zone_page_state(page, NR_WRITEBACK_TEMP); 1729 bdi_writeout_inc(bdi); 1730 fuse_writepage_free(fc, new_req); 1731 fuse_request_free(new_req); 1732 goto out; 1733 } else { 1734 new_req->misc.write.next = old_req->misc.write.next; 1735 old_req->misc.write.next = new_req; 1736 } 1737 out_unlock: 1738 spin_unlock(&fc->lock); 1739 out: 1740 return found; 1741 } 1742 1743 static int fuse_writepages_fill(struct page *page, 1744 struct writeback_control *wbc, void *_data) 1745 { 1746 struct fuse_fill_wb_data *data = _data; 1747 struct fuse_req *req = data->req; 1748 struct inode *inode = data->inode; 1749 struct fuse_conn *fc = get_fuse_conn(inode); 1750 struct page *tmp_page; 1751 bool is_writeback; 1752 int err; 1753 1754 if (!data->ff) { 1755 err = -EIO; 1756 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode)); 1757 if (!data->ff) 1758 goto out_unlock; 1759 } 1760 1761 /* 1762 * Being under writeback is unlikely but possible. For example direct 1763 * read to an mmaped fuse file will set the page dirty twice; once when 1764 * the pages are faulted with get_user_pages(), and then after the read 1765 * completed. 1766 */ 1767 is_writeback = fuse_page_is_writeback(inode, page->index); 1768 1769 if (req && req->num_pages && 1770 (is_writeback || req->num_pages == FUSE_MAX_PAGES_PER_REQ || 1771 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_write || 1772 data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) { 1773 fuse_writepages_send(data); 1774 data->req = NULL; 1775 } 1776 err = -ENOMEM; 1777 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1778 if (!tmp_page) 1779 goto out_unlock; 1780 1781 /* 1782 * The page must not be redirtied until the writeout is completed 1783 * (i.e. userspace has sent a reply to the write request). Otherwise 1784 * there could be more than one temporary page instance for each real 1785 * page. 1786 * 1787 * This is ensured by holding the page lock in page_mkwrite() while 1788 * checking fuse_page_is_writeback(). We already hold the page lock 1789 * since clear_page_dirty_for_io() and keep it held until we add the 1790 * request to the fi->writepages list and increment req->num_pages. 1791 * After this fuse_page_is_writeback() will indicate that the page is 1792 * under writeback, so we can release the page lock. 1793 */ 1794 if (data->req == NULL) { 1795 struct fuse_inode *fi = get_fuse_inode(inode); 1796 1797 err = -ENOMEM; 1798 req = fuse_request_alloc_nofs(FUSE_MAX_PAGES_PER_REQ); 1799 if (!req) { 1800 __free_page(tmp_page); 1801 goto out_unlock; 1802 } 1803 1804 fuse_write_fill(req, data->ff, page_offset(page), 0); 1805 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1806 req->misc.write.next = NULL; 1807 req->in.argpages = 1; 1808 req->background = 1; 1809 req->num_pages = 0; 1810 req->end = fuse_writepage_end; 1811 req->inode = inode; 1812 1813 spin_lock(&fc->lock); 1814 list_add(&req->writepages_entry, &fi->writepages); 1815 spin_unlock(&fc->lock); 1816 1817 data->req = req; 1818 } 1819 set_page_writeback(page); 1820 1821 copy_highpage(tmp_page, page); 1822 req->pages[req->num_pages] = tmp_page; 1823 req->page_descs[req->num_pages].offset = 0; 1824 req->page_descs[req->num_pages].length = PAGE_SIZE; 1825 1826 inc_bdi_stat(page->mapping->backing_dev_info, BDI_WRITEBACK); 1827 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP); 1828 1829 err = 0; 1830 if (is_writeback && fuse_writepage_in_flight(req, page)) { 1831 end_page_writeback(page); 1832 data->req = NULL; 1833 goto out_unlock; 1834 } 1835 data->orig_pages[req->num_pages] = page; 1836 1837 /* 1838 * Protected by fc->lock against concurrent access by 1839 * fuse_page_is_writeback(). 1840 */ 1841 spin_lock(&fc->lock); 1842 req->num_pages++; 1843 spin_unlock(&fc->lock); 1844 1845 out_unlock: 1846 unlock_page(page); 1847 1848 return err; 1849 } 1850 1851 static int fuse_writepages(struct address_space *mapping, 1852 struct writeback_control *wbc) 1853 { 1854 struct inode *inode = mapping->host; 1855 struct fuse_fill_wb_data data; 1856 int err; 1857 1858 err = -EIO; 1859 if (is_bad_inode(inode)) 1860 goto out; 1861 1862 data.inode = inode; 1863 data.req = NULL; 1864 data.ff = NULL; 1865 1866 err = -ENOMEM; 1867 data.orig_pages = kzalloc(sizeof(struct page *) * 1868 FUSE_MAX_PAGES_PER_REQ, 1869 GFP_NOFS); 1870 if (!data.orig_pages) 1871 goto out; 1872 1873 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 1874 if (data.req) { 1875 /* Ignore errors if we can write at least one page */ 1876 BUG_ON(!data.req->num_pages); 1877 fuse_writepages_send(&data); 1878 err = 0; 1879 } 1880 if (data.ff) 1881 fuse_file_put(data.ff, false); 1882 1883 kfree(data.orig_pages); 1884 out: 1885 return err; 1886 } 1887 1888 static int fuse_launder_page(struct page *page) 1889 { 1890 int err = 0; 1891 if (clear_page_dirty_for_io(page)) { 1892 struct inode *inode = page->mapping->host; 1893 err = fuse_writepage_locked(page); 1894 if (!err) 1895 fuse_wait_on_page_writeback(inode, page->index); 1896 } 1897 return err; 1898 } 1899 1900 /* 1901 * Write back dirty pages now, because there may not be any suitable 1902 * open files later 1903 */ 1904 static void fuse_vma_close(struct vm_area_struct *vma) 1905 { 1906 filemap_write_and_wait(vma->vm_file->f_mapping); 1907 } 1908 1909 /* 1910 * Wait for writeback against this page to complete before allowing it 1911 * to be marked dirty again, and hence written back again, possibly 1912 * before the previous writepage completed. 1913 * 1914 * Block here, instead of in ->writepage(), so that the userspace fs 1915 * can only block processes actually operating on the filesystem. 1916 * 1917 * Otherwise unprivileged userspace fs would be able to block 1918 * unrelated: 1919 * 1920 * - page migration 1921 * - sync(2) 1922 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 1923 */ 1924 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 1925 { 1926 struct page *page = vmf->page; 1927 struct inode *inode = file_inode(vma->vm_file); 1928 1929 file_update_time(vma->vm_file); 1930 lock_page(page); 1931 if (page->mapping != inode->i_mapping) { 1932 unlock_page(page); 1933 return VM_FAULT_NOPAGE; 1934 } 1935 1936 fuse_wait_on_page_writeback(inode, page->index); 1937 return VM_FAULT_LOCKED; 1938 } 1939 1940 static const struct vm_operations_struct fuse_file_vm_ops = { 1941 .close = fuse_vma_close, 1942 .fault = filemap_fault, 1943 .page_mkwrite = fuse_page_mkwrite, 1944 .remap_pages = generic_file_remap_pages, 1945 }; 1946 1947 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 1948 { 1949 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) { 1950 struct inode *inode = file_inode(file); 1951 struct fuse_conn *fc = get_fuse_conn(inode); 1952 struct fuse_inode *fi = get_fuse_inode(inode); 1953 struct fuse_file *ff = file->private_data; 1954 /* 1955 * file may be written through mmap, so chain it onto the 1956 * inodes's write_file list 1957 */ 1958 spin_lock(&fc->lock); 1959 if (list_empty(&ff->write_entry)) 1960 list_add(&ff->write_entry, &fi->write_files); 1961 spin_unlock(&fc->lock); 1962 } 1963 file_accessed(file); 1964 vma->vm_ops = &fuse_file_vm_ops; 1965 return 0; 1966 } 1967 1968 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma) 1969 { 1970 /* Can't provide the coherency needed for MAP_SHARED */ 1971 if (vma->vm_flags & VM_MAYSHARE) 1972 return -ENODEV; 1973 1974 invalidate_inode_pages2(file->f_mapping); 1975 1976 return generic_file_mmap(file, vma); 1977 } 1978 1979 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl, 1980 struct file_lock *fl) 1981 { 1982 switch (ffl->type) { 1983 case F_UNLCK: 1984 break; 1985 1986 case F_RDLCK: 1987 case F_WRLCK: 1988 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 1989 ffl->end < ffl->start) 1990 return -EIO; 1991 1992 fl->fl_start = ffl->start; 1993 fl->fl_end = ffl->end; 1994 fl->fl_pid = ffl->pid; 1995 break; 1996 1997 default: 1998 return -EIO; 1999 } 2000 fl->fl_type = ffl->type; 2001 return 0; 2002 } 2003 2004 static void fuse_lk_fill(struct fuse_req *req, struct file *file, 2005 const struct file_lock *fl, int opcode, pid_t pid, 2006 int flock) 2007 { 2008 struct inode *inode = file_inode(file); 2009 struct fuse_conn *fc = get_fuse_conn(inode); 2010 struct fuse_file *ff = file->private_data; 2011 struct fuse_lk_in *arg = &req->misc.lk_in; 2012 2013 arg->fh = ff->fh; 2014 arg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2015 arg->lk.start = fl->fl_start; 2016 arg->lk.end = fl->fl_end; 2017 arg->lk.type = fl->fl_type; 2018 arg->lk.pid = pid; 2019 if (flock) 2020 arg->lk_flags |= FUSE_LK_FLOCK; 2021 req->in.h.opcode = opcode; 2022 req->in.h.nodeid = get_node_id(inode); 2023 req->in.numargs = 1; 2024 req->in.args[0].size = sizeof(*arg); 2025 req->in.args[0].value = arg; 2026 } 2027 2028 static int fuse_getlk(struct file *file, struct file_lock *fl) 2029 { 2030 struct inode *inode = file_inode(file); 2031 struct fuse_conn *fc = get_fuse_conn(inode); 2032 struct fuse_req *req; 2033 struct fuse_lk_out outarg; 2034 int err; 2035 2036 req = fuse_get_req_nopages(fc); 2037 if (IS_ERR(req)) 2038 return PTR_ERR(req); 2039 2040 fuse_lk_fill(req, file, fl, FUSE_GETLK, 0, 0); 2041 req->out.numargs = 1; 2042 req->out.args[0].size = sizeof(outarg); 2043 req->out.args[0].value = &outarg; 2044 fuse_request_send(fc, req); 2045 err = req->out.h.error; 2046 fuse_put_request(fc, req); 2047 if (!err) 2048 err = convert_fuse_file_lock(&outarg.lk, fl); 2049 2050 return err; 2051 } 2052 2053 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2054 { 2055 struct inode *inode = file_inode(file); 2056 struct fuse_conn *fc = get_fuse_conn(inode); 2057 struct fuse_req *req; 2058 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2059 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0; 2060 int err; 2061 2062 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2063 /* NLM needs asynchronous locks, which we don't support yet */ 2064 return -ENOLCK; 2065 } 2066 2067 /* Unlock on close is handled by the flush method */ 2068 if (fl->fl_flags & FL_CLOSE) 2069 return 0; 2070 2071 req = fuse_get_req_nopages(fc); 2072 if (IS_ERR(req)) 2073 return PTR_ERR(req); 2074 2075 fuse_lk_fill(req, file, fl, opcode, pid, flock); 2076 fuse_request_send(fc, req); 2077 err = req->out.h.error; 2078 /* locking is restartable */ 2079 if (err == -EINTR) 2080 err = -ERESTARTSYS; 2081 fuse_put_request(fc, req); 2082 return err; 2083 } 2084 2085 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2086 { 2087 struct inode *inode = file_inode(file); 2088 struct fuse_conn *fc = get_fuse_conn(inode); 2089 int err; 2090 2091 if (cmd == F_CANCELLK) { 2092 err = 0; 2093 } else if (cmd == F_GETLK) { 2094 if (fc->no_lock) { 2095 posix_test_lock(file, fl); 2096 err = 0; 2097 } else 2098 err = fuse_getlk(file, fl); 2099 } else { 2100 if (fc->no_lock) 2101 err = posix_lock_file(file, fl, NULL); 2102 else 2103 err = fuse_setlk(file, fl, 0); 2104 } 2105 return err; 2106 } 2107 2108 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2109 { 2110 struct inode *inode = file_inode(file); 2111 struct fuse_conn *fc = get_fuse_conn(inode); 2112 int err; 2113 2114 if (fc->no_flock) { 2115 err = flock_lock_file_wait(file, fl); 2116 } else { 2117 struct fuse_file *ff = file->private_data; 2118 2119 /* emulate flock with POSIX locks */ 2120 fl->fl_owner = (fl_owner_t) file; 2121 ff->flock = true; 2122 err = fuse_setlk(file, fl, 1); 2123 } 2124 2125 return err; 2126 } 2127 2128 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2129 { 2130 struct inode *inode = mapping->host; 2131 struct fuse_conn *fc = get_fuse_conn(inode); 2132 struct fuse_req *req; 2133 struct fuse_bmap_in inarg; 2134 struct fuse_bmap_out outarg; 2135 int err; 2136 2137 if (!inode->i_sb->s_bdev || fc->no_bmap) 2138 return 0; 2139 2140 req = fuse_get_req_nopages(fc); 2141 if (IS_ERR(req)) 2142 return 0; 2143 2144 memset(&inarg, 0, sizeof(inarg)); 2145 inarg.block = block; 2146 inarg.blocksize = inode->i_sb->s_blocksize; 2147 req->in.h.opcode = FUSE_BMAP; 2148 req->in.h.nodeid = get_node_id(inode); 2149 req->in.numargs = 1; 2150 req->in.args[0].size = sizeof(inarg); 2151 req->in.args[0].value = &inarg; 2152 req->out.numargs = 1; 2153 req->out.args[0].size = sizeof(outarg); 2154 req->out.args[0].value = &outarg; 2155 fuse_request_send(fc, req); 2156 err = req->out.h.error; 2157 fuse_put_request(fc, req); 2158 if (err == -ENOSYS) 2159 fc->no_bmap = 1; 2160 2161 return err ? 0 : outarg.block; 2162 } 2163 2164 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2165 { 2166 loff_t retval; 2167 struct inode *inode = file_inode(file); 2168 2169 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2170 if (whence == SEEK_CUR || whence == SEEK_SET) 2171 return generic_file_llseek(file, offset, whence); 2172 2173 mutex_lock(&inode->i_mutex); 2174 retval = fuse_update_attributes(inode, NULL, file, NULL); 2175 if (!retval) 2176 retval = generic_file_llseek(file, offset, whence); 2177 mutex_unlock(&inode->i_mutex); 2178 2179 return retval; 2180 } 2181 2182 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov, 2183 unsigned int nr_segs, size_t bytes, bool to_user) 2184 { 2185 struct iov_iter ii; 2186 int page_idx = 0; 2187 2188 if (!bytes) 2189 return 0; 2190 2191 iov_iter_init(&ii, iov, nr_segs, bytes, 0); 2192 2193 while (iov_iter_count(&ii)) { 2194 struct page *page = pages[page_idx++]; 2195 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii)); 2196 void *kaddr; 2197 2198 kaddr = kmap(page); 2199 2200 while (todo) { 2201 char __user *uaddr = ii.iov->iov_base + ii.iov_offset; 2202 size_t iov_len = ii.iov->iov_len - ii.iov_offset; 2203 size_t copy = min(todo, iov_len); 2204 size_t left; 2205 2206 if (!to_user) 2207 left = copy_from_user(kaddr, uaddr, copy); 2208 else 2209 left = copy_to_user(uaddr, kaddr, copy); 2210 2211 if (unlikely(left)) 2212 return -EFAULT; 2213 2214 iov_iter_advance(&ii, copy); 2215 todo -= copy; 2216 kaddr += copy; 2217 } 2218 2219 kunmap(page); 2220 } 2221 2222 return 0; 2223 } 2224 2225 /* 2226 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2227 * ABI was defined to be 'struct iovec' which is different on 32bit 2228 * and 64bit. Fortunately we can determine which structure the server 2229 * used from the size of the reply. 2230 */ 2231 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2232 size_t transferred, unsigned count, 2233 bool is_compat) 2234 { 2235 #ifdef CONFIG_COMPAT 2236 if (count * sizeof(struct compat_iovec) == transferred) { 2237 struct compat_iovec *ciov = src; 2238 unsigned i; 2239 2240 /* 2241 * With this interface a 32bit server cannot support 2242 * non-compat (i.e. ones coming from 64bit apps) ioctl 2243 * requests 2244 */ 2245 if (!is_compat) 2246 return -EINVAL; 2247 2248 for (i = 0; i < count; i++) { 2249 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2250 dst[i].iov_len = ciov[i].iov_len; 2251 } 2252 return 0; 2253 } 2254 #endif 2255 2256 if (count * sizeof(struct iovec) != transferred) 2257 return -EIO; 2258 2259 memcpy(dst, src, transferred); 2260 return 0; 2261 } 2262 2263 /* Make sure iov_length() won't overflow */ 2264 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count) 2265 { 2266 size_t n; 2267 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT; 2268 2269 for (n = 0; n < count; n++, iov++) { 2270 if (iov->iov_len > (size_t) max) 2271 return -ENOMEM; 2272 max -= iov->iov_len; 2273 } 2274 return 0; 2275 } 2276 2277 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2278 void *src, size_t transferred, unsigned count, 2279 bool is_compat) 2280 { 2281 unsigned i; 2282 struct fuse_ioctl_iovec *fiov = src; 2283 2284 if (fc->minor < 16) { 2285 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2286 count, is_compat); 2287 } 2288 2289 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2290 return -EIO; 2291 2292 for (i = 0; i < count; i++) { 2293 /* Did the server supply an inappropriate value? */ 2294 if (fiov[i].base != (unsigned long) fiov[i].base || 2295 fiov[i].len != (unsigned long) fiov[i].len) 2296 return -EIO; 2297 2298 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2299 dst[i].iov_len = (size_t) fiov[i].len; 2300 2301 #ifdef CONFIG_COMPAT 2302 if (is_compat && 2303 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2304 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2305 return -EIO; 2306 #endif 2307 } 2308 2309 return 0; 2310 } 2311 2312 2313 /* 2314 * For ioctls, there is no generic way to determine how much memory 2315 * needs to be read and/or written. Furthermore, ioctls are allowed 2316 * to dereference the passed pointer, so the parameter requires deep 2317 * copying but FUSE has no idea whatsoever about what to copy in or 2318 * out. 2319 * 2320 * This is solved by allowing FUSE server to retry ioctl with 2321 * necessary in/out iovecs. Let's assume the ioctl implementation 2322 * needs to read in the following structure. 2323 * 2324 * struct a { 2325 * char *buf; 2326 * size_t buflen; 2327 * } 2328 * 2329 * On the first callout to FUSE server, inarg->in_size and 2330 * inarg->out_size will be NULL; then, the server completes the ioctl 2331 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2332 * the actual iov array to 2333 * 2334 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2335 * 2336 * which tells FUSE to copy in the requested area and retry the ioctl. 2337 * On the second round, the server has access to the structure and 2338 * from that it can tell what to look for next, so on the invocation, 2339 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2340 * 2341 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2342 * { .iov_base = a.buf, .iov_len = a.buflen } } 2343 * 2344 * FUSE will copy both struct a and the pointed buffer from the 2345 * process doing the ioctl and retry ioctl with both struct a and the 2346 * buffer. 2347 * 2348 * This time, FUSE server has everything it needs and completes ioctl 2349 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2350 * 2351 * Copying data out works the same way. 2352 * 2353 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2354 * automatically initializes in and out iovs by decoding @cmd with 2355 * _IOC_* macros and the server is not allowed to request RETRY. This 2356 * limits ioctl data transfers to well-formed ioctls and is the forced 2357 * behavior for all FUSE servers. 2358 */ 2359 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2360 unsigned int flags) 2361 { 2362 struct fuse_file *ff = file->private_data; 2363 struct fuse_conn *fc = ff->fc; 2364 struct fuse_ioctl_in inarg = { 2365 .fh = ff->fh, 2366 .cmd = cmd, 2367 .arg = arg, 2368 .flags = flags 2369 }; 2370 struct fuse_ioctl_out outarg; 2371 struct fuse_req *req = NULL; 2372 struct page **pages = NULL; 2373 struct iovec *iov_page = NULL; 2374 struct iovec *in_iov = NULL, *out_iov = NULL; 2375 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages; 2376 size_t in_size, out_size, transferred; 2377 int err; 2378 2379 #if BITS_PER_LONG == 32 2380 inarg.flags |= FUSE_IOCTL_32BIT; 2381 #else 2382 if (flags & FUSE_IOCTL_COMPAT) 2383 inarg.flags |= FUSE_IOCTL_32BIT; 2384 #endif 2385 2386 /* assume all the iovs returned by client always fits in a page */ 2387 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2388 2389 err = -ENOMEM; 2390 pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL); 2391 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2392 if (!pages || !iov_page) 2393 goto out; 2394 2395 /* 2396 * If restricted, initialize IO parameters as encoded in @cmd. 2397 * RETRY from server is not allowed. 2398 */ 2399 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2400 struct iovec *iov = iov_page; 2401 2402 iov->iov_base = (void __user *)arg; 2403 iov->iov_len = _IOC_SIZE(cmd); 2404 2405 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2406 in_iov = iov; 2407 in_iovs = 1; 2408 } 2409 2410 if (_IOC_DIR(cmd) & _IOC_READ) { 2411 out_iov = iov; 2412 out_iovs = 1; 2413 } 2414 } 2415 2416 retry: 2417 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2418 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2419 2420 /* 2421 * Out data can be used either for actual out data or iovs, 2422 * make sure there always is at least one page. 2423 */ 2424 out_size = max_t(size_t, out_size, PAGE_SIZE); 2425 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2426 2427 /* make sure there are enough buffer pages and init request with them */ 2428 err = -ENOMEM; 2429 if (max_pages > FUSE_MAX_PAGES_PER_REQ) 2430 goto out; 2431 while (num_pages < max_pages) { 2432 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2433 if (!pages[num_pages]) 2434 goto out; 2435 num_pages++; 2436 } 2437 2438 req = fuse_get_req(fc, num_pages); 2439 if (IS_ERR(req)) { 2440 err = PTR_ERR(req); 2441 req = NULL; 2442 goto out; 2443 } 2444 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages); 2445 req->num_pages = num_pages; 2446 fuse_page_descs_length_init(req, 0, req->num_pages); 2447 2448 /* okay, let's send it to the client */ 2449 req->in.h.opcode = FUSE_IOCTL; 2450 req->in.h.nodeid = ff->nodeid; 2451 req->in.numargs = 1; 2452 req->in.args[0].size = sizeof(inarg); 2453 req->in.args[0].value = &inarg; 2454 if (in_size) { 2455 req->in.numargs++; 2456 req->in.args[1].size = in_size; 2457 req->in.argpages = 1; 2458 2459 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size, 2460 false); 2461 if (err) 2462 goto out; 2463 } 2464 2465 req->out.numargs = 2; 2466 req->out.args[0].size = sizeof(outarg); 2467 req->out.args[0].value = &outarg; 2468 req->out.args[1].size = out_size; 2469 req->out.argpages = 1; 2470 req->out.argvar = 1; 2471 2472 fuse_request_send(fc, req); 2473 err = req->out.h.error; 2474 transferred = req->out.args[1].size; 2475 fuse_put_request(fc, req); 2476 req = NULL; 2477 if (err) 2478 goto out; 2479 2480 /* did it ask for retry? */ 2481 if (outarg.flags & FUSE_IOCTL_RETRY) { 2482 void *vaddr; 2483 2484 /* no retry if in restricted mode */ 2485 err = -EIO; 2486 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2487 goto out; 2488 2489 in_iovs = outarg.in_iovs; 2490 out_iovs = outarg.out_iovs; 2491 2492 /* 2493 * Make sure things are in boundary, separate checks 2494 * are to protect against overflow. 2495 */ 2496 err = -ENOMEM; 2497 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2498 out_iovs > FUSE_IOCTL_MAX_IOV || 2499 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2500 goto out; 2501 2502 vaddr = kmap_atomic(pages[0]); 2503 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2504 transferred, in_iovs + out_iovs, 2505 (flags & FUSE_IOCTL_COMPAT) != 0); 2506 kunmap_atomic(vaddr); 2507 if (err) 2508 goto out; 2509 2510 in_iov = iov_page; 2511 out_iov = in_iov + in_iovs; 2512 2513 err = fuse_verify_ioctl_iov(in_iov, in_iovs); 2514 if (err) 2515 goto out; 2516 2517 err = fuse_verify_ioctl_iov(out_iov, out_iovs); 2518 if (err) 2519 goto out; 2520 2521 goto retry; 2522 } 2523 2524 err = -EIO; 2525 if (transferred > inarg.out_size) 2526 goto out; 2527 2528 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true); 2529 out: 2530 if (req) 2531 fuse_put_request(fc, req); 2532 free_page((unsigned long) iov_page); 2533 while (num_pages) 2534 __free_page(pages[--num_pages]); 2535 kfree(pages); 2536 2537 return err ? err : outarg.result; 2538 } 2539 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2540 2541 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2542 unsigned long arg, unsigned int flags) 2543 { 2544 struct inode *inode = file_inode(file); 2545 struct fuse_conn *fc = get_fuse_conn(inode); 2546 2547 if (!fuse_allow_current_process(fc)) 2548 return -EACCES; 2549 2550 if (is_bad_inode(inode)) 2551 return -EIO; 2552 2553 return fuse_do_ioctl(file, cmd, arg, flags); 2554 } 2555 2556 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2557 unsigned long arg) 2558 { 2559 return fuse_ioctl_common(file, cmd, arg, 0); 2560 } 2561 2562 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2563 unsigned long arg) 2564 { 2565 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2566 } 2567 2568 /* 2569 * All files which have been polled are linked to RB tree 2570 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2571 * find the matching one. 2572 */ 2573 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2574 struct rb_node **parent_out) 2575 { 2576 struct rb_node **link = &fc->polled_files.rb_node; 2577 struct rb_node *last = NULL; 2578 2579 while (*link) { 2580 struct fuse_file *ff; 2581 2582 last = *link; 2583 ff = rb_entry(last, struct fuse_file, polled_node); 2584 2585 if (kh < ff->kh) 2586 link = &last->rb_left; 2587 else if (kh > ff->kh) 2588 link = &last->rb_right; 2589 else 2590 return link; 2591 } 2592 2593 if (parent_out) 2594 *parent_out = last; 2595 return link; 2596 } 2597 2598 /* 2599 * The file is about to be polled. Make sure it's on the polled_files 2600 * RB tree. Note that files once added to the polled_files tree are 2601 * not removed before the file is released. This is because a file 2602 * polled once is likely to be polled again. 2603 */ 2604 static void fuse_register_polled_file(struct fuse_conn *fc, 2605 struct fuse_file *ff) 2606 { 2607 spin_lock(&fc->lock); 2608 if (RB_EMPTY_NODE(&ff->polled_node)) { 2609 struct rb_node **link, *parent; 2610 2611 link = fuse_find_polled_node(fc, ff->kh, &parent); 2612 BUG_ON(*link); 2613 rb_link_node(&ff->polled_node, parent, link); 2614 rb_insert_color(&ff->polled_node, &fc->polled_files); 2615 } 2616 spin_unlock(&fc->lock); 2617 } 2618 2619 unsigned fuse_file_poll(struct file *file, poll_table *wait) 2620 { 2621 struct fuse_file *ff = file->private_data; 2622 struct fuse_conn *fc = ff->fc; 2623 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2624 struct fuse_poll_out outarg; 2625 struct fuse_req *req; 2626 int err; 2627 2628 if (fc->no_poll) 2629 return DEFAULT_POLLMASK; 2630 2631 poll_wait(file, &ff->poll_wait, wait); 2632 inarg.events = (__u32)poll_requested_events(wait); 2633 2634 /* 2635 * Ask for notification iff there's someone waiting for it. 2636 * The client may ignore the flag and always notify. 2637 */ 2638 if (waitqueue_active(&ff->poll_wait)) { 2639 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2640 fuse_register_polled_file(fc, ff); 2641 } 2642 2643 req = fuse_get_req_nopages(fc); 2644 if (IS_ERR(req)) 2645 return POLLERR; 2646 2647 req->in.h.opcode = FUSE_POLL; 2648 req->in.h.nodeid = ff->nodeid; 2649 req->in.numargs = 1; 2650 req->in.args[0].size = sizeof(inarg); 2651 req->in.args[0].value = &inarg; 2652 req->out.numargs = 1; 2653 req->out.args[0].size = sizeof(outarg); 2654 req->out.args[0].value = &outarg; 2655 fuse_request_send(fc, req); 2656 err = req->out.h.error; 2657 fuse_put_request(fc, req); 2658 2659 if (!err) 2660 return outarg.revents; 2661 if (err == -ENOSYS) { 2662 fc->no_poll = 1; 2663 return DEFAULT_POLLMASK; 2664 } 2665 return POLLERR; 2666 } 2667 EXPORT_SYMBOL_GPL(fuse_file_poll); 2668 2669 /* 2670 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2671 * wakes up the poll waiters. 2672 */ 2673 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2674 struct fuse_notify_poll_wakeup_out *outarg) 2675 { 2676 u64 kh = outarg->kh; 2677 struct rb_node **link; 2678 2679 spin_lock(&fc->lock); 2680 2681 link = fuse_find_polled_node(fc, kh, NULL); 2682 if (*link) { 2683 struct fuse_file *ff; 2684 2685 ff = rb_entry(*link, struct fuse_file, polled_node); 2686 wake_up_interruptible_sync(&ff->poll_wait); 2687 } 2688 2689 spin_unlock(&fc->lock); 2690 return 0; 2691 } 2692 2693 static void fuse_do_truncate(struct file *file) 2694 { 2695 struct inode *inode = file->f_mapping->host; 2696 struct iattr attr; 2697 2698 attr.ia_valid = ATTR_SIZE; 2699 attr.ia_size = i_size_read(inode); 2700 2701 attr.ia_file = file; 2702 attr.ia_valid |= ATTR_FILE; 2703 2704 fuse_do_setattr(inode, &attr, file); 2705 } 2706 2707 static inline loff_t fuse_round_up(loff_t off) 2708 { 2709 return round_up(off, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT); 2710 } 2711 2712 static ssize_t 2713 fuse_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2714 loff_t offset, unsigned long nr_segs) 2715 { 2716 ssize_t ret = 0; 2717 struct file *file = iocb->ki_filp; 2718 struct fuse_file *ff = file->private_data; 2719 bool async_dio = ff->fc->async_dio; 2720 loff_t pos = 0; 2721 struct inode *inode; 2722 loff_t i_size; 2723 size_t count = iov_length(iov, nr_segs); 2724 struct fuse_io_priv *io; 2725 2726 pos = offset; 2727 inode = file->f_mapping->host; 2728 i_size = i_size_read(inode); 2729 2730 if ((rw == READ) && (offset > i_size)) 2731 return 0; 2732 2733 /* optimization for short read */ 2734 if (async_dio && rw != WRITE && offset + count > i_size) { 2735 if (offset >= i_size) 2736 return 0; 2737 count = min_t(loff_t, count, fuse_round_up(i_size - offset)); 2738 } 2739 2740 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2741 if (!io) 2742 return -ENOMEM; 2743 spin_lock_init(&io->lock); 2744 io->reqs = 1; 2745 io->bytes = -1; 2746 io->size = 0; 2747 io->offset = offset; 2748 io->write = (rw == WRITE); 2749 io->err = 0; 2750 io->file = file; 2751 /* 2752 * By default, we want to optimize all I/Os with async request 2753 * submission to the client filesystem if supported. 2754 */ 2755 io->async = async_dio; 2756 io->iocb = iocb; 2757 2758 /* 2759 * We cannot asynchronously extend the size of a file. We have no method 2760 * to wait on real async I/O requests, so we must submit this request 2761 * synchronously. 2762 */ 2763 if (!is_sync_kiocb(iocb) && (offset + count > i_size) && rw == WRITE) 2764 io->async = false; 2765 2766 if (rw == WRITE) 2767 ret = __fuse_direct_write(io, iov, nr_segs, &pos); 2768 else 2769 ret = __fuse_direct_read(io, iov, nr_segs, &pos, count); 2770 2771 if (io->async) { 2772 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2773 2774 /* we have a non-extending, async request, so return */ 2775 if (!is_sync_kiocb(iocb)) 2776 return -EIOCBQUEUED; 2777 2778 ret = wait_on_sync_kiocb(iocb); 2779 } else { 2780 kfree(io); 2781 } 2782 2783 if (rw == WRITE) { 2784 if (ret > 0) 2785 fuse_write_update_size(inode, pos); 2786 else if (ret < 0 && offset + count > i_size) 2787 fuse_do_truncate(file); 2788 } 2789 2790 return ret; 2791 } 2792 2793 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2794 loff_t length) 2795 { 2796 struct fuse_file *ff = file->private_data; 2797 struct inode *inode = file->f_inode; 2798 struct fuse_inode *fi = get_fuse_inode(inode); 2799 struct fuse_conn *fc = ff->fc; 2800 struct fuse_req *req; 2801 struct fuse_fallocate_in inarg = { 2802 .fh = ff->fh, 2803 .offset = offset, 2804 .length = length, 2805 .mode = mode 2806 }; 2807 int err; 2808 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2809 (mode & FALLOC_FL_PUNCH_HOLE); 2810 2811 if (fc->no_fallocate) 2812 return -EOPNOTSUPP; 2813 2814 if (lock_inode) { 2815 mutex_lock(&inode->i_mutex); 2816 if (mode & FALLOC_FL_PUNCH_HOLE) { 2817 loff_t endbyte = offset + length - 1; 2818 err = filemap_write_and_wait_range(inode->i_mapping, 2819 offset, endbyte); 2820 if (err) 2821 goto out; 2822 2823 fuse_sync_writes(inode); 2824 } 2825 } 2826 2827 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2828 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2829 2830 req = fuse_get_req_nopages(fc); 2831 if (IS_ERR(req)) { 2832 err = PTR_ERR(req); 2833 goto out; 2834 } 2835 2836 req->in.h.opcode = FUSE_FALLOCATE; 2837 req->in.h.nodeid = ff->nodeid; 2838 req->in.numargs = 1; 2839 req->in.args[0].size = sizeof(inarg); 2840 req->in.args[0].value = &inarg; 2841 fuse_request_send(fc, req); 2842 err = req->out.h.error; 2843 if (err == -ENOSYS) { 2844 fc->no_fallocate = 1; 2845 err = -EOPNOTSUPP; 2846 } 2847 fuse_put_request(fc, req); 2848 2849 if (err) 2850 goto out; 2851 2852 /* we could have extended the file */ 2853 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2854 fuse_write_update_size(inode, offset + length); 2855 2856 if (mode & FALLOC_FL_PUNCH_HOLE) 2857 truncate_pagecache_range(inode, offset, offset + length - 1); 2858 2859 fuse_invalidate_attr(inode); 2860 2861 out: 2862 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2863 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2864 2865 if (lock_inode) 2866 mutex_unlock(&inode->i_mutex); 2867 2868 return err; 2869 } 2870 2871 static const struct file_operations fuse_file_operations = { 2872 .llseek = fuse_file_llseek, 2873 .read = do_sync_read, 2874 .aio_read = fuse_file_aio_read, 2875 .write = do_sync_write, 2876 .aio_write = fuse_file_aio_write, 2877 .mmap = fuse_file_mmap, 2878 .open = fuse_open, 2879 .flush = fuse_flush, 2880 .release = fuse_release, 2881 .fsync = fuse_fsync, 2882 .lock = fuse_file_lock, 2883 .flock = fuse_file_flock, 2884 .splice_read = generic_file_splice_read, 2885 .unlocked_ioctl = fuse_file_ioctl, 2886 .compat_ioctl = fuse_file_compat_ioctl, 2887 .poll = fuse_file_poll, 2888 .fallocate = fuse_file_fallocate, 2889 }; 2890 2891 static const struct file_operations fuse_direct_io_file_operations = { 2892 .llseek = fuse_file_llseek, 2893 .read = fuse_direct_read, 2894 .write = fuse_direct_write, 2895 .mmap = fuse_direct_mmap, 2896 .open = fuse_open, 2897 .flush = fuse_flush, 2898 .release = fuse_release, 2899 .fsync = fuse_fsync, 2900 .lock = fuse_file_lock, 2901 .flock = fuse_file_flock, 2902 .unlocked_ioctl = fuse_file_ioctl, 2903 .compat_ioctl = fuse_file_compat_ioctl, 2904 .poll = fuse_file_poll, 2905 .fallocate = fuse_file_fallocate, 2906 /* no splice_read */ 2907 }; 2908 2909 static const struct address_space_operations fuse_file_aops = { 2910 .readpage = fuse_readpage, 2911 .writepage = fuse_writepage, 2912 .writepages = fuse_writepages, 2913 .launder_page = fuse_launder_page, 2914 .readpages = fuse_readpages, 2915 .set_page_dirty = __set_page_dirty_nobuffers, 2916 .bmap = fuse_bmap, 2917 .direct_IO = fuse_direct_IO, 2918 }; 2919 2920 void fuse_init_file_inode(struct inode *inode) 2921 { 2922 inode->i_fop = &fuse_file_operations; 2923 inode->i_data.a_ops = &fuse_file_aops; 2924 } 2925