1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/module.h> 16 #include <linux/compat.h> 17 #include <linux/swap.h> 18 19 static const struct file_operations fuse_direct_io_file_operations; 20 21 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 22 int opcode, struct fuse_open_out *outargp) 23 { 24 struct fuse_open_in inarg; 25 struct fuse_req *req; 26 int err; 27 28 req = fuse_get_req(fc); 29 if (IS_ERR(req)) 30 return PTR_ERR(req); 31 32 memset(&inarg, 0, sizeof(inarg)); 33 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 34 if (!fc->atomic_o_trunc) 35 inarg.flags &= ~O_TRUNC; 36 req->in.h.opcode = opcode; 37 req->in.h.nodeid = nodeid; 38 req->in.numargs = 1; 39 req->in.args[0].size = sizeof(inarg); 40 req->in.args[0].value = &inarg; 41 req->out.numargs = 1; 42 req->out.args[0].size = sizeof(*outargp); 43 req->out.args[0].value = outargp; 44 fuse_request_send(fc, req); 45 err = req->out.h.error; 46 fuse_put_request(fc, req); 47 48 return err; 49 } 50 51 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 52 { 53 struct fuse_file *ff; 54 55 ff = kmalloc(sizeof(struct fuse_file), GFP_KERNEL); 56 if (unlikely(!ff)) 57 return NULL; 58 59 ff->fc = fc; 60 ff->reserved_req = fuse_request_alloc(); 61 if (unlikely(!ff->reserved_req)) { 62 kfree(ff); 63 return NULL; 64 } 65 66 INIT_LIST_HEAD(&ff->write_entry); 67 atomic_set(&ff->count, 0); 68 RB_CLEAR_NODE(&ff->polled_node); 69 init_waitqueue_head(&ff->poll_wait); 70 71 spin_lock(&fc->lock); 72 ff->kh = ++fc->khctr; 73 spin_unlock(&fc->lock); 74 75 return ff; 76 } 77 78 void fuse_file_free(struct fuse_file *ff) 79 { 80 fuse_request_free(ff->reserved_req); 81 kfree(ff); 82 } 83 84 struct fuse_file *fuse_file_get(struct fuse_file *ff) 85 { 86 atomic_inc(&ff->count); 87 return ff; 88 } 89 90 static void fuse_release_async(struct work_struct *work) 91 { 92 struct fuse_req *req; 93 struct fuse_conn *fc; 94 struct path path; 95 96 req = container_of(work, struct fuse_req, misc.release.work); 97 path = req->misc.release.path; 98 fc = get_fuse_conn(path.dentry->d_inode); 99 100 fuse_put_request(fc, req); 101 path_put(&path); 102 } 103 104 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req) 105 { 106 if (fc->destroy_req) { 107 /* 108 * If this is a fuseblk mount, then it's possible that 109 * releasing the path will result in releasing the 110 * super block and sending the DESTROY request. If 111 * the server is single threaded, this would hang. 112 * For this reason do the path_put() in a separate 113 * thread. 114 */ 115 atomic_inc(&req->count); 116 INIT_WORK(&req->misc.release.work, fuse_release_async); 117 schedule_work(&req->misc.release.work); 118 } else { 119 path_put(&req->misc.release.path); 120 } 121 } 122 123 static void fuse_file_put(struct fuse_file *ff, bool sync) 124 { 125 if (atomic_dec_and_test(&ff->count)) { 126 struct fuse_req *req = ff->reserved_req; 127 128 if (sync) { 129 fuse_request_send(ff->fc, req); 130 path_put(&req->misc.release.path); 131 fuse_put_request(ff->fc, req); 132 } else { 133 req->end = fuse_release_end; 134 fuse_request_send_background(ff->fc, req); 135 } 136 kfree(ff); 137 } 138 } 139 140 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 141 bool isdir) 142 { 143 struct fuse_open_out outarg; 144 struct fuse_file *ff; 145 int err; 146 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 147 148 ff = fuse_file_alloc(fc); 149 if (!ff) 150 return -ENOMEM; 151 152 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 153 if (err) { 154 fuse_file_free(ff); 155 return err; 156 } 157 158 if (isdir) 159 outarg.open_flags &= ~FOPEN_DIRECT_IO; 160 161 ff->fh = outarg.fh; 162 ff->nodeid = nodeid; 163 ff->open_flags = outarg.open_flags; 164 file->private_data = fuse_file_get(ff); 165 166 return 0; 167 } 168 EXPORT_SYMBOL_GPL(fuse_do_open); 169 170 void fuse_finish_open(struct inode *inode, struct file *file) 171 { 172 struct fuse_file *ff = file->private_data; 173 struct fuse_conn *fc = get_fuse_conn(inode); 174 175 if (ff->open_flags & FOPEN_DIRECT_IO) 176 file->f_op = &fuse_direct_io_file_operations; 177 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 178 invalidate_inode_pages2(inode->i_mapping); 179 if (ff->open_flags & FOPEN_NONSEEKABLE) 180 nonseekable_open(inode, file); 181 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 182 struct fuse_inode *fi = get_fuse_inode(inode); 183 184 spin_lock(&fc->lock); 185 fi->attr_version = ++fc->attr_version; 186 i_size_write(inode, 0); 187 spin_unlock(&fc->lock); 188 fuse_invalidate_attr(inode); 189 } 190 } 191 192 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 193 { 194 struct fuse_conn *fc = get_fuse_conn(inode); 195 int err; 196 197 err = generic_file_open(inode, file); 198 if (err) 199 return err; 200 201 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 202 if (err) 203 return err; 204 205 fuse_finish_open(inode, file); 206 207 return 0; 208 } 209 210 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode) 211 { 212 struct fuse_conn *fc = ff->fc; 213 struct fuse_req *req = ff->reserved_req; 214 struct fuse_release_in *inarg = &req->misc.release.in; 215 216 spin_lock(&fc->lock); 217 list_del(&ff->write_entry); 218 if (!RB_EMPTY_NODE(&ff->polled_node)) 219 rb_erase(&ff->polled_node, &fc->polled_files); 220 spin_unlock(&fc->lock); 221 222 wake_up_interruptible_all(&ff->poll_wait); 223 224 inarg->fh = ff->fh; 225 inarg->flags = flags; 226 req->in.h.opcode = opcode; 227 req->in.h.nodeid = ff->nodeid; 228 req->in.numargs = 1; 229 req->in.args[0].size = sizeof(struct fuse_release_in); 230 req->in.args[0].value = inarg; 231 } 232 233 void fuse_release_common(struct file *file, int opcode) 234 { 235 struct fuse_file *ff; 236 struct fuse_req *req; 237 238 ff = file->private_data; 239 if (unlikely(!ff)) 240 return; 241 242 req = ff->reserved_req; 243 fuse_prepare_release(ff, file->f_flags, opcode); 244 245 if (ff->flock) { 246 struct fuse_release_in *inarg = &req->misc.release.in; 247 inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 248 inarg->lock_owner = fuse_lock_owner_id(ff->fc, 249 (fl_owner_t) file); 250 } 251 /* Hold vfsmount and dentry until release is finished */ 252 path_get(&file->f_path); 253 req->misc.release.path = file->f_path; 254 255 /* 256 * Normally this will send the RELEASE request, however if 257 * some asynchronous READ or WRITE requests are outstanding, 258 * the sending will be delayed. 259 * 260 * Make the release synchronous if this is a fuseblk mount, 261 * synchronous RELEASE is allowed (and desirable) in this case 262 * because the server can be trusted not to screw up. 263 */ 264 fuse_file_put(ff, ff->fc->destroy_req != NULL); 265 } 266 267 static int fuse_open(struct inode *inode, struct file *file) 268 { 269 return fuse_open_common(inode, file, false); 270 } 271 272 static int fuse_release(struct inode *inode, struct file *file) 273 { 274 fuse_release_common(file, FUSE_RELEASE); 275 276 /* return value is ignored by VFS */ 277 return 0; 278 } 279 280 void fuse_sync_release(struct fuse_file *ff, int flags) 281 { 282 WARN_ON(atomic_read(&ff->count) > 1); 283 fuse_prepare_release(ff, flags, FUSE_RELEASE); 284 ff->reserved_req->force = 1; 285 fuse_request_send(ff->fc, ff->reserved_req); 286 fuse_put_request(ff->fc, ff->reserved_req); 287 kfree(ff); 288 } 289 EXPORT_SYMBOL_GPL(fuse_sync_release); 290 291 /* 292 * Scramble the ID space with XTEA, so that the value of the files_struct 293 * pointer is not exposed to userspace. 294 */ 295 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 296 { 297 u32 *k = fc->scramble_key; 298 u64 v = (unsigned long) id; 299 u32 v0 = v; 300 u32 v1 = v >> 32; 301 u32 sum = 0; 302 int i; 303 304 for (i = 0; i < 32; i++) { 305 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 306 sum += 0x9E3779B9; 307 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 308 } 309 310 return (u64) v0 + ((u64) v1 << 32); 311 } 312 313 /* 314 * Check if page is under writeback 315 * 316 * This is currently done by walking the list of writepage requests 317 * for the inode, which can be pretty inefficient. 318 */ 319 static bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 320 { 321 struct fuse_conn *fc = get_fuse_conn(inode); 322 struct fuse_inode *fi = get_fuse_inode(inode); 323 struct fuse_req *req; 324 bool found = false; 325 326 spin_lock(&fc->lock); 327 list_for_each_entry(req, &fi->writepages, writepages_entry) { 328 pgoff_t curr_index; 329 330 BUG_ON(req->inode != inode); 331 curr_index = req->misc.write.in.offset >> PAGE_CACHE_SHIFT; 332 if (curr_index == index) { 333 found = true; 334 break; 335 } 336 } 337 spin_unlock(&fc->lock); 338 339 return found; 340 } 341 342 /* 343 * Wait for page writeback to be completed. 344 * 345 * Since fuse doesn't rely on the VM writeback tracking, this has to 346 * use some other means. 347 */ 348 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 349 { 350 struct fuse_inode *fi = get_fuse_inode(inode); 351 352 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 353 return 0; 354 } 355 356 static int fuse_flush(struct file *file, fl_owner_t id) 357 { 358 struct inode *inode = file->f_path.dentry->d_inode; 359 struct fuse_conn *fc = get_fuse_conn(inode); 360 struct fuse_file *ff = file->private_data; 361 struct fuse_req *req; 362 struct fuse_flush_in inarg; 363 int err; 364 365 if (is_bad_inode(inode)) 366 return -EIO; 367 368 if (fc->no_flush) 369 return 0; 370 371 req = fuse_get_req_nofail(fc, file); 372 memset(&inarg, 0, sizeof(inarg)); 373 inarg.fh = ff->fh; 374 inarg.lock_owner = fuse_lock_owner_id(fc, id); 375 req->in.h.opcode = FUSE_FLUSH; 376 req->in.h.nodeid = get_node_id(inode); 377 req->in.numargs = 1; 378 req->in.args[0].size = sizeof(inarg); 379 req->in.args[0].value = &inarg; 380 req->force = 1; 381 fuse_request_send(fc, req); 382 err = req->out.h.error; 383 fuse_put_request(fc, req); 384 if (err == -ENOSYS) { 385 fc->no_flush = 1; 386 err = 0; 387 } 388 return err; 389 } 390 391 /* 392 * Wait for all pending writepages on the inode to finish. 393 * 394 * This is currently done by blocking further writes with FUSE_NOWRITE 395 * and waiting for all sent writes to complete. 396 * 397 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 398 * could conflict with truncation. 399 */ 400 static void fuse_sync_writes(struct inode *inode) 401 { 402 fuse_set_nowrite(inode); 403 fuse_release_nowrite(inode); 404 } 405 406 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 407 int datasync, int isdir) 408 { 409 struct inode *inode = file->f_mapping->host; 410 struct fuse_conn *fc = get_fuse_conn(inode); 411 struct fuse_file *ff = file->private_data; 412 struct fuse_req *req; 413 struct fuse_fsync_in inarg; 414 int err; 415 416 if (is_bad_inode(inode)) 417 return -EIO; 418 419 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 420 if (err) 421 return err; 422 423 if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir)) 424 return 0; 425 426 mutex_lock(&inode->i_mutex); 427 428 /* 429 * Start writeback against all dirty pages of the inode, then 430 * wait for all outstanding writes, before sending the FSYNC 431 * request. 432 */ 433 err = write_inode_now(inode, 0); 434 if (err) 435 goto out; 436 437 fuse_sync_writes(inode); 438 439 req = fuse_get_req(fc); 440 if (IS_ERR(req)) { 441 err = PTR_ERR(req); 442 goto out; 443 } 444 445 memset(&inarg, 0, sizeof(inarg)); 446 inarg.fh = ff->fh; 447 inarg.fsync_flags = datasync ? 1 : 0; 448 req->in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC; 449 req->in.h.nodeid = get_node_id(inode); 450 req->in.numargs = 1; 451 req->in.args[0].size = sizeof(inarg); 452 req->in.args[0].value = &inarg; 453 fuse_request_send(fc, req); 454 err = req->out.h.error; 455 fuse_put_request(fc, req); 456 if (err == -ENOSYS) { 457 if (isdir) 458 fc->no_fsyncdir = 1; 459 else 460 fc->no_fsync = 1; 461 err = 0; 462 } 463 out: 464 mutex_unlock(&inode->i_mutex); 465 return err; 466 } 467 468 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 469 int datasync) 470 { 471 return fuse_fsync_common(file, start, end, datasync, 0); 472 } 473 474 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos, 475 size_t count, int opcode) 476 { 477 struct fuse_read_in *inarg = &req->misc.read.in; 478 struct fuse_file *ff = file->private_data; 479 480 inarg->fh = ff->fh; 481 inarg->offset = pos; 482 inarg->size = count; 483 inarg->flags = file->f_flags; 484 req->in.h.opcode = opcode; 485 req->in.h.nodeid = ff->nodeid; 486 req->in.numargs = 1; 487 req->in.args[0].size = sizeof(struct fuse_read_in); 488 req->in.args[0].value = inarg; 489 req->out.argvar = 1; 490 req->out.numargs = 1; 491 req->out.args[0].size = count; 492 } 493 494 static size_t fuse_send_read(struct fuse_req *req, struct file *file, 495 loff_t pos, size_t count, fl_owner_t owner) 496 { 497 struct fuse_file *ff = file->private_data; 498 struct fuse_conn *fc = ff->fc; 499 500 fuse_read_fill(req, file, pos, count, FUSE_READ); 501 if (owner != NULL) { 502 struct fuse_read_in *inarg = &req->misc.read.in; 503 504 inarg->read_flags |= FUSE_READ_LOCKOWNER; 505 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 506 } 507 fuse_request_send(fc, req); 508 return req->out.args[0].size; 509 } 510 511 static void fuse_read_update_size(struct inode *inode, loff_t size, 512 u64 attr_ver) 513 { 514 struct fuse_conn *fc = get_fuse_conn(inode); 515 struct fuse_inode *fi = get_fuse_inode(inode); 516 517 spin_lock(&fc->lock); 518 if (attr_ver == fi->attr_version && size < inode->i_size) { 519 fi->attr_version = ++fc->attr_version; 520 i_size_write(inode, size); 521 } 522 spin_unlock(&fc->lock); 523 } 524 525 static int fuse_readpage(struct file *file, struct page *page) 526 { 527 struct inode *inode = page->mapping->host; 528 struct fuse_conn *fc = get_fuse_conn(inode); 529 struct fuse_req *req; 530 size_t num_read; 531 loff_t pos = page_offset(page); 532 size_t count = PAGE_CACHE_SIZE; 533 u64 attr_ver; 534 int err; 535 536 err = -EIO; 537 if (is_bad_inode(inode)) 538 goto out; 539 540 /* 541 * Page writeback can extend beyond the lifetime of the 542 * page-cache page, so make sure we read a properly synced 543 * page. 544 */ 545 fuse_wait_on_page_writeback(inode, page->index); 546 547 req = fuse_get_req(fc); 548 err = PTR_ERR(req); 549 if (IS_ERR(req)) 550 goto out; 551 552 attr_ver = fuse_get_attr_version(fc); 553 554 req->out.page_zeroing = 1; 555 req->out.argpages = 1; 556 req->num_pages = 1; 557 req->pages[0] = page; 558 num_read = fuse_send_read(req, file, pos, count, NULL); 559 err = req->out.h.error; 560 fuse_put_request(fc, req); 561 562 if (!err) { 563 /* 564 * Short read means EOF. If file size is larger, truncate it 565 */ 566 if (num_read < count) 567 fuse_read_update_size(inode, pos + num_read, attr_ver); 568 569 SetPageUptodate(page); 570 } 571 572 fuse_invalidate_attr(inode); /* atime changed */ 573 out: 574 unlock_page(page); 575 return err; 576 } 577 578 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req) 579 { 580 int i; 581 size_t count = req->misc.read.in.size; 582 size_t num_read = req->out.args[0].size; 583 struct address_space *mapping = NULL; 584 585 for (i = 0; mapping == NULL && i < req->num_pages; i++) 586 mapping = req->pages[i]->mapping; 587 588 if (mapping) { 589 struct inode *inode = mapping->host; 590 591 /* 592 * Short read means EOF. If file size is larger, truncate it 593 */ 594 if (!req->out.h.error && num_read < count) { 595 loff_t pos; 596 597 pos = page_offset(req->pages[0]) + num_read; 598 fuse_read_update_size(inode, pos, 599 req->misc.read.attr_ver); 600 } 601 fuse_invalidate_attr(inode); /* atime changed */ 602 } 603 604 for (i = 0; i < req->num_pages; i++) { 605 struct page *page = req->pages[i]; 606 if (!req->out.h.error) 607 SetPageUptodate(page); 608 else 609 SetPageError(page); 610 unlock_page(page); 611 page_cache_release(page); 612 } 613 if (req->ff) 614 fuse_file_put(req->ff, false); 615 } 616 617 static void fuse_send_readpages(struct fuse_req *req, struct file *file) 618 { 619 struct fuse_file *ff = file->private_data; 620 struct fuse_conn *fc = ff->fc; 621 loff_t pos = page_offset(req->pages[0]); 622 size_t count = req->num_pages << PAGE_CACHE_SHIFT; 623 624 req->out.argpages = 1; 625 req->out.page_zeroing = 1; 626 req->out.page_replace = 1; 627 fuse_read_fill(req, file, pos, count, FUSE_READ); 628 req->misc.read.attr_ver = fuse_get_attr_version(fc); 629 if (fc->async_read) { 630 req->ff = fuse_file_get(ff); 631 req->end = fuse_readpages_end; 632 fuse_request_send_background(fc, req); 633 } else { 634 fuse_request_send(fc, req); 635 fuse_readpages_end(fc, req); 636 fuse_put_request(fc, req); 637 } 638 } 639 640 struct fuse_fill_data { 641 struct fuse_req *req; 642 struct file *file; 643 struct inode *inode; 644 }; 645 646 static int fuse_readpages_fill(void *_data, struct page *page) 647 { 648 struct fuse_fill_data *data = _data; 649 struct fuse_req *req = data->req; 650 struct inode *inode = data->inode; 651 struct fuse_conn *fc = get_fuse_conn(inode); 652 653 fuse_wait_on_page_writeback(inode, page->index); 654 655 if (req->num_pages && 656 (req->num_pages == FUSE_MAX_PAGES_PER_REQ || 657 (req->num_pages + 1) * PAGE_CACHE_SIZE > fc->max_read || 658 req->pages[req->num_pages - 1]->index + 1 != page->index)) { 659 fuse_send_readpages(req, data->file); 660 data->req = req = fuse_get_req(fc); 661 if (IS_ERR(req)) { 662 unlock_page(page); 663 return PTR_ERR(req); 664 } 665 } 666 page_cache_get(page); 667 req->pages[req->num_pages] = page; 668 req->num_pages++; 669 return 0; 670 } 671 672 static int fuse_readpages(struct file *file, struct address_space *mapping, 673 struct list_head *pages, unsigned nr_pages) 674 { 675 struct inode *inode = mapping->host; 676 struct fuse_conn *fc = get_fuse_conn(inode); 677 struct fuse_fill_data data; 678 int err; 679 680 err = -EIO; 681 if (is_bad_inode(inode)) 682 goto out; 683 684 data.file = file; 685 data.inode = inode; 686 data.req = fuse_get_req(fc); 687 err = PTR_ERR(data.req); 688 if (IS_ERR(data.req)) 689 goto out; 690 691 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 692 if (!err) { 693 if (data.req->num_pages) 694 fuse_send_readpages(data.req, file); 695 else 696 fuse_put_request(fc, data.req); 697 } 698 out: 699 return err; 700 } 701 702 static ssize_t fuse_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 703 unsigned long nr_segs, loff_t pos) 704 { 705 struct inode *inode = iocb->ki_filp->f_mapping->host; 706 struct fuse_conn *fc = get_fuse_conn(inode); 707 708 /* 709 * In auto invalidate mode, always update attributes on read. 710 * Otherwise, only update if we attempt to read past EOF (to ensure 711 * i_size is up to date). 712 */ 713 if (fc->auto_inval_data || 714 (pos + iov_length(iov, nr_segs) > i_size_read(inode))) { 715 int err; 716 err = fuse_update_attributes(inode, NULL, iocb->ki_filp, NULL); 717 if (err) 718 return err; 719 } 720 721 return generic_file_aio_read(iocb, iov, nr_segs, pos); 722 } 723 724 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff, 725 loff_t pos, size_t count) 726 { 727 struct fuse_write_in *inarg = &req->misc.write.in; 728 struct fuse_write_out *outarg = &req->misc.write.out; 729 730 inarg->fh = ff->fh; 731 inarg->offset = pos; 732 inarg->size = count; 733 req->in.h.opcode = FUSE_WRITE; 734 req->in.h.nodeid = ff->nodeid; 735 req->in.numargs = 2; 736 if (ff->fc->minor < 9) 737 req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 738 else 739 req->in.args[0].size = sizeof(struct fuse_write_in); 740 req->in.args[0].value = inarg; 741 req->in.args[1].size = count; 742 req->out.numargs = 1; 743 req->out.args[0].size = sizeof(struct fuse_write_out); 744 req->out.args[0].value = outarg; 745 } 746 747 static size_t fuse_send_write(struct fuse_req *req, struct file *file, 748 loff_t pos, size_t count, fl_owner_t owner) 749 { 750 struct fuse_file *ff = file->private_data; 751 struct fuse_conn *fc = ff->fc; 752 struct fuse_write_in *inarg = &req->misc.write.in; 753 754 fuse_write_fill(req, ff, pos, count); 755 inarg->flags = file->f_flags; 756 if (owner != NULL) { 757 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 758 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 759 } 760 fuse_request_send(fc, req); 761 return req->misc.write.out.size; 762 } 763 764 void fuse_write_update_size(struct inode *inode, loff_t pos) 765 { 766 struct fuse_conn *fc = get_fuse_conn(inode); 767 struct fuse_inode *fi = get_fuse_inode(inode); 768 769 spin_lock(&fc->lock); 770 fi->attr_version = ++fc->attr_version; 771 if (pos > inode->i_size) 772 i_size_write(inode, pos); 773 spin_unlock(&fc->lock); 774 } 775 776 static size_t fuse_send_write_pages(struct fuse_req *req, struct file *file, 777 struct inode *inode, loff_t pos, 778 size_t count) 779 { 780 size_t res; 781 unsigned offset; 782 unsigned i; 783 784 for (i = 0; i < req->num_pages; i++) 785 fuse_wait_on_page_writeback(inode, req->pages[i]->index); 786 787 res = fuse_send_write(req, file, pos, count, NULL); 788 789 offset = req->page_offset; 790 count = res; 791 for (i = 0; i < req->num_pages; i++) { 792 struct page *page = req->pages[i]; 793 794 if (!req->out.h.error && !offset && count >= PAGE_CACHE_SIZE) 795 SetPageUptodate(page); 796 797 if (count > PAGE_CACHE_SIZE - offset) 798 count -= PAGE_CACHE_SIZE - offset; 799 else 800 count = 0; 801 offset = 0; 802 803 unlock_page(page); 804 page_cache_release(page); 805 } 806 807 return res; 808 } 809 810 static ssize_t fuse_fill_write_pages(struct fuse_req *req, 811 struct address_space *mapping, 812 struct iov_iter *ii, loff_t pos) 813 { 814 struct fuse_conn *fc = get_fuse_conn(mapping->host); 815 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 816 size_t count = 0; 817 int err; 818 819 req->in.argpages = 1; 820 req->page_offset = offset; 821 822 do { 823 size_t tmp; 824 struct page *page; 825 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 826 size_t bytes = min_t(size_t, PAGE_CACHE_SIZE - offset, 827 iov_iter_count(ii)); 828 829 bytes = min_t(size_t, bytes, fc->max_write - count); 830 831 again: 832 err = -EFAULT; 833 if (iov_iter_fault_in_readable(ii, bytes)) 834 break; 835 836 err = -ENOMEM; 837 page = grab_cache_page_write_begin(mapping, index, 0); 838 if (!page) 839 break; 840 841 if (mapping_writably_mapped(mapping)) 842 flush_dcache_page(page); 843 844 pagefault_disable(); 845 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 846 pagefault_enable(); 847 flush_dcache_page(page); 848 849 mark_page_accessed(page); 850 851 if (!tmp) { 852 unlock_page(page); 853 page_cache_release(page); 854 bytes = min(bytes, iov_iter_single_seg_count(ii)); 855 goto again; 856 } 857 858 err = 0; 859 req->pages[req->num_pages] = page; 860 req->num_pages++; 861 862 iov_iter_advance(ii, tmp); 863 count += tmp; 864 pos += tmp; 865 offset += tmp; 866 if (offset == PAGE_CACHE_SIZE) 867 offset = 0; 868 869 if (!fc->big_writes) 870 break; 871 } while (iov_iter_count(ii) && count < fc->max_write && 872 req->num_pages < FUSE_MAX_PAGES_PER_REQ && offset == 0); 873 874 return count > 0 ? count : err; 875 } 876 877 static ssize_t fuse_perform_write(struct file *file, 878 struct address_space *mapping, 879 struct iov_iter *ii, loff_t pos) 880 { 881 struct inode *inode = mapping->host; 882 struct fuse_conn *fc = get_fuse_conn(inode); 883 int err = 0; 884 ssize_t res = 0; 885 886 if (is_bad_inode(inode)) 887 return -EIO; 888 889 do { 890 struct fuse_req *req; 891 ssize_t count; 892 893 req = fuse_get_req(fc); 894 if (IS_ERR(req)) { 895 err = PTR_ERR(req); 896 break; 897 } 898 899 count = fuse_fill_write_pages(req, mapping, ii, pos); 900 if (count <= 0) { 901 err = count; 902 } else { 903 size_t num_written; 904 905 num_written = fuse_send_write_pages(req, file, inode, 906 pos, count); 907 err = req->out.h.error; 908 if (!err) { 909 res += num_written; 910 pos += num_written; 911 912 /* break out of the loop on short write */ 913 if (num_written != count) 914 err = -EIO; 915 } 916 } 917 fuse_put_request(fc, req); 918 } while (!err && iov_iter_count(ii)); 919 920 if (res > 0) 921 fuse_write_update_size(inode, pos); 922 923 fuse_invalidate_attr(inode); 924 925 return res > 0 ? res : err; 926 } 927 928 static ssize_t fuse_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 929 unsigned long nr_segs, loff_t pos) 930 { 931 struct file *file = iocb->ki_filp; 932 struct address_space *mapping = file->f_mapping; 933 size_t count = 0; 934 size_t ocount = 0; 935 ssize_t written = 0; 936 ssize_t written_buffered = 0; 937 struct inode *inode = mapping->host; 938 ssize_t err; 939 struct iov_iter i; 940 loff_t endbyte = 0; 941 942 WARN_ON(iocb->ki_pos != pos); 943 944 ocount = 0; 945 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 946 if (err) 947 return err; 948 949 count = ocount; 950 sb_start_write(inode->i_sb); 951 mutex_lock(&inode->i_mutex); 952 953 /* We can write back this queue in page reclaim */ 954 current->backing_dev_info = mapping->backing_dev_info; 955 956 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 957 if (err) 958 goto out; 959 960 if (count == 0) 961 goto out; 962 963 err = file_remove_suid(file); 964 if (err) 965 goto out; 966 967 err = file_update_time(file); 968 if (err) 969 goto out; 970 971 if (file->f_flags & O_DIRECT) { 972 written = generic_file_direct_write(iocb, iov, &nr_segs, 973 pos, &iocb->ki_pos, 974 count, ocount); 975 if (written < 0 || written == count) 976 goto out; 977 978 pos += written; 979 count -= written; 980 981 iov_iter_init(&i, iov, nr_segs, count, written); 982 written_buffered = fuse_perform_write(file, mapping, &i, pos); 983 if (written_buffered < 0) { 984 err = written_buffered; 985 goto out; 986 } 987 endbyte = pos + written_buffered - 1; 988 989 err = filemap_write_and_wait_range(file->f_mapping, pos, 990 endbyte); 991 if (err) 992 goto out; 993 994 invalidate_mapping_pages(file->f_mapping, 995 pos >> PAGE_CACHE_SHIFT, 996 endbyte >> PAGE_CACHE_SHIFT); 997 998 written += written_buffered; 999 iocb->ki_pos = pos + written_buffered; 1000 } else { 1001 iov_iter_init(&i, iov, nr_segs, count, 0); 1002 written = fuse_perform_write(file, mapping, &i, pos); 1003 if (written >= 0) 1004 iocb->ki_pos = pos + written; 1005 } 1006 out: 1007 current->backing_dev_info = NULL; 1008 mutex_unlock(&inode->i_mutex); 1009 sb_end_write(inode->i_sb); 1010 1011 return written ? written : err; 1012 } 1013 1014 static void fuse_release_user_pages(struct fuse_req *req, int write) 1015 { 1016 unsigned i; 1017 1018 for (i = 0; i < req->num_pages; i++) { 1019 struct page *page = req->pages[i]; 1020 if (write) 1021 set_page_dirty_lock(page); 1022 put_page(page); 1023 } 1024 } 1025 1026 static int fuse_get_user_pages(struct fuse_req *req, const char __user *buf, 1027 size_t *nbytesp, int write) 1028 { 1029 size_t nbytes = *nbytesp; 1030 unsigned long user_addr = (unsigned long) buf; 1031 unsigned offset = user_addr & ~PAGE_MASK; 1032 int npages; 1033 1034 /* Special case for kernel I/O: can copy directly into the buffer */ 1035 if (segment_eq(get_fs(), KERNEL_DS)) { 1036 if (write) 1037 req->in.args[1].value = (void *) user_addr; 1038 else 1039 req->out.args[0].value = (void *) user_addr; 1040 1041 return 0; 1042 } 1043 1044 nbytes = min_t(size_t, nbytes, FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT); 1045 npages = (nbytes + offset + PAGE_SIZE - 1) >> PAGE_SHIFT; 1046 npages = clamp(npages, 1, FUSE_MAX_PAGES_PER_REQ); 1047 npages = get_user_pages_fast(user_addr, npages, !write, req->pages); 1048 if (npages < 0) 1049 return npages; 1050 1051 req->num_pages = npages; 1052 req->page_offset = offset; 1053 1054 if (write) 1055 req->in.argpages = 1; 1056 else 1057 req->out.argpages = 1; 1058 1059 nbytes = (req->num_pages << PAGE_SHIFT) - req->page_offset; 1060 *nbytesp = min(*nbytesp, nbytes); 1061 1062 return 0; 1063 } 1064 1065 ssize_t fuse_direct_io(struct file *file, const char __user *buf, 1066 size_t count, loff_t *ppos, int write) 1067 { 1068 struct fuse_file *ff = file->private_data; 1069 struct fuse_conn *fc = ff->fc; 1070 size_t nmax = write ? fc->max_write : fc->max_read; 1071 loff_t pos = *ppos; 1072 ssize_t res = 0; 1073 struct fuse_req *req; 1074 1075 req = fuse_get_req(fc); 1076 if (IS_ERR(req)) 1077 return PTR_ERR(req); 1078 1079 while (count) { 1080 size_t nres; 1081 fl_owner_t owner = current->files; 1082 size_t nbytes = min(count, nmax); 1083 int err = fuse_get_user_pages(req, buf, &nbytes, write); 1084 if (err) { 1085 res = err; 1086 break; 1087 } 1088 1089 if (write) 1090 nres = fuse_send_write(req, file, pos, nbytes, owner); 1091 else 1092 nres = fuse_send_read(req, file, pos, nbytes, owner); 1093 1094 fuse_release_user_pages(req, !write); 1095 if (req->out.h.error) { 1096 if (!res) 1097 res = req->out.h.error; 1098 break; 1099 } else if (nres > nbytes) { 1100 res = -EIO; 1101 break; 1102 } 1103 count -= nres; 1104 res += nres; 1105 pos += nres; 1106 buf += nres; 1107 if (nres != nbytes) 1108 break; 1109 if (count) { 1110 fuse_put_request(fc, req); 1111 req = fuse_get_req(fc); 1112 if (IS_ERR(req)) 1113 break; 1114 } 1115 } 1116 if (!IS_ERR(req)) 1117 fuse_put_request(fc, req); 1118 if (res > 0) 1119 *ppos = pos; 1120 1121 return res; 1122 } 1123 EXPORT_SYMBOL_GPL(fuse_direct_io); 1124 1125 static ssize_t fuse_direct_read(struct file *file, char __user *buf, 1126 size_t count, loff_t *ppos) 1127 { 1128 ssize_t res; 1129 struct inode *inode = file->f_path.dentry->d_inode; 1130 1131 if (is_bad_inode(inode)) 1132 return -EIO; 1133 1134 res = fuse_direct_io(file, buf, count, ppos, 0); 1135 1136 fuse_invalidate_attr(inode); 1137 1138 return res; 1139 } 1140 1141 static ssize_t __fuse_direct_write(struct file *file, const char __user *buf, 1142 size_t count, loff_t *ppos) 1143 { 1144 struct inode *inode = file->f_path.dentry->d_inode; 1145 ssize_t res; 1146 1147 res = generic_write_checks(file, ppos, &count, 0); 1148 if (!res) { 1149 res = fuse_direct_io(file, buf, count, ppos, 1); 1150 if (res > 0) 1151 fuse_write_update_size(inode, *ppos); 1152 } 1153 1154 fuse_invalidate_attr(inode); 1155 1156 return res; 1157 } 1158 1159 static ssize_t fuse_direct_write(struct file *file, const char __user *buf, 1160 size_t count, loff_t *ppos) 1161 { 1162 struct inode *inode = file->f_path.dentry->d_inode; 1163 ssize_t res; 1164 1165 if (is_bad_inode(inode)) 1166 return -EIO; 1167 1168 /* Don't allow parallel writes to the same file */ 1169 mutex_lock(&inode->i_mutex); 1170 res = __fuse_direct_write(file, buf, count, ppos); 1171 mutex_unlock(&inode->i_mutex); 1172 1173 return res; 1174 } 1175 1176 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req) 1177 { 1178 __free_page(req->pages[0]); 1179 fuse_file_put(req->ff, false); 1180 } 1181 1182 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req) 1183 { 1184 struct inode *inode = req->inode; 1185 struct fuse_inode *fi = get_fuse_inode(inode); 1186 struct backing_dev_info *bdi = inode->i_mapping->backing_dev_info; 1187 1188 list_del(&req->writepages_entry); 1189 dec_bdi_stat(bdi, BDI_WRITEBACK); 1190 dec_zone_page_state(req->pages[0], NR_WRITEBACK_TEMP); 1191 bdi_writeout_inc(bdi); 1192 wake_up(&fi->page_waitq); 1193 } 1194 1195 /* Called under fc->lock, may release and reacquire it */ 1196 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req) 1197 __releases(fc->lock) 1198 __acquires(fc->lock) 1199 { 1200 struct fuse_inode *fi = get_fuse_inode(req->inode); 1201 loff_t size = i_size_read(req->inode); 1202 struct fuse_write_in *inarg = &req->misc.write.in; 1203 1204 if (!fc->connected) 1205 goto out_free; 1206 1207 if (inarg->offset + PAGE_CACHE_SIZE <= size) { 1208 inarg->size = PAGE_CACHE_SIZE; 1209 } else if (inarg->offset < size) { 1210 inarg->size = size & (PAGE_CACHE_SIZE - 1); 1211 } else { 1212 /* Got truncated off completely */ 1213 goto out_free; 1214 } 1215 1216 req->in.args[1].size = inarg->size; 1217 fi->writectr++; 1218 fuse_request_send_background_locked(fc, req); 1219 return; 1220 1221 out_free: 1222 fuse_writepage_finish(fc, req); 1223 spin_unlock(&fc->lock); 1224 fuse_writepage_free(fc, req); 1225 fuse_put_request(fc, req); 1226 spin_lock(&fc->lock); 1227 } 1228 1229 /* 1230 * If fi->writectr is positive (no truncate or fsync going on) send 1231 * all queued writepage requests. 1232 * 1233 * Called with fc->lock 1234 */ 1235 void fuse_flush_writepages(struct inode *inode) 1236 __releases(fc->lock) 1237 __acquires(fc->lock) 1238 { 1239 struct fuse_conn *fc = get_fuse_conn(inode); 1240 struct fuse_inode *fi = get_fuse_inode(inode); 1241 struct fuse_req *req; 1242 1243 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1244 req = list_entry(fi->queued_writes.next, struct fuse_req, list); 1245 list_del_init(&req->list); 1246 fuse_send_writepage(fc, req); 1247 } 1248 } 1249 1250 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req) 1251 { 1252 struct inode *inode = req->inode; 1253 struct fuse_inode *fi = get_fuse_inode(inode); 1254 1255 mapping_set_error(inode->i_mapping, req->out.h.error); 1256 spin_lock(&fc->lock); 1257 fi->writectr--; 1258 fuse_writepage_finish(fc, req); 1259 spin_unlock(&fc->lock); 1260 fuse_writepage_free(fc, req); 1261 } 1262 1263 static int fuse_writepage_locked(struct page *page) 1264 { 1265 struct address_space *mapping = page->mapping; 1266 struct inode *inode = mapping->host; 1267 struct fuse_conn *fc = get_fuse_conn(inode); 1268 struct fuse_inode *fi = get_fuse_inode(inode); 1269 struct fuse_req *req; 1270 struct fuse_file *ff; 1271 struct page *tmp_page; 1272 1273 set_page_writeback(page); 1274 1275 req = fuse_request_alloc_nofs(); 1276 if (!req) 1277 goto err; 1278 1279 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1280 if (!tmp_page) 1281 goto err_free; 1282 1283 spin_lock(&fc->lock); 1284 BUG_ON(list_empty(&fi->write_files)); 1285 ff = list_entry(fi->write_files.next, struct fuse_file, write_entry); 1286 req->ff = fuse_file_get(ff); 1287 spin_unlock(&fc->lock); 1288 1289 fuse_write_fill(req, ff, page_offset(page), 0); 1290 1291 copy_highpage(tmp_page, page); 1292 req->misc.write.in.write_flags |= FUSE_WRITE_CACHE; 1293 req->in.argpages = 1; 1294 req->num_pages = 1; 1295 req->pages[0] = tmp_page; 1296 req->page_offset = 0; 1297 req->end = fuse_writepage_end; 1298 req->inode = inode; 1299 1300 inc_bdi_stat(mapping->backing_dev_info, BDI_WRITEBACK); 1301 inc_zone_page_state(tmp_page, NR_WRITEBACK_TEMP); 1302 end_page_writeback(page); 1303 1304 spin_lock(&fc->lock); 1305 list_add(&req->writepages_entry, &fi->writepages); 1306 list_add_tail(&req->list, &fi->queued_writes); 1307 fuse_flush_writepages(inode); 1308 spin_unlock(&fc->lock); 1309 1310 return 0; 1311 1312 err_free: 1313 fuse_request_free(req); 1314 err: 1315 end_page_writeback(page); 1316 return -ENOMEM; 1317 } 1318 1319 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1320 { 1321 int err; 1322 1323 err = fuse_writepage_locked(page); 1324 unlock_page(page); 1325 1326 return err; 1327 } 1328 1329 static int fuse_launder_page(struct page *page) 1330 { 1331 int err = 0; 1332 if (clear_page_dirty_for_io(page)) { 1333 struct inode *inode = page->mapping->host; 1334 err = fuse_writepage_locked(page); 1335 if (!err) 1336 fuse_wait_on_page_writeback(inode, page->index); 1337 } 1338 return err; 1339 } 1340 1341 /* 1342 * Write back dirty pages now, because there may not be any suitable 1343 * open files later 1344 */ 1345 static void fuse_vma_close(struct vm_area_struct *vma) 1346 { 1347 filemap_write_and_wait(vma->vm_file->f_mapping); 1348 } 1349 1350 /* 1351 * Wait for writeback against this page to complete before allowing it 1352 * to be marked dirty again, and hence written back again, possibly 1353 * before the previous writepage completed. 1354 * 1355 * Block here, instead of in ->writepage(), so that the userspace fs 1356 * can only block processes actually operating on the filesystem. 1357 * 1358 * Otherwise unprivileged userspace fs would be able to block 1359 * unrelated: 1360 * 1361 * - page migration 1362 * - sync(2) 1363 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 1364 */ 1365 static int fuse_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 1366 { 1367 struct page *page = vmf->page; 1368 /* 1369 * Don't use page->mapping as it may become NULL from a 1370 * concurrent truncate. 1371 */ 1372 struct inode *inode = vma->vm_file->f_mapping->host; 1373 1374 fuse_wait_on_page_writeback(inode, page->index); 1375 return 0; 1376 } 1377 1378 static const struct vm_operations_struct fuse_file_vm_ops = { 1379 .close = fuse_vma_close, 1380 .fault = filemap_fault, 1381 .page_mkwrite = fuse_page_mkwrite, 1382 .remap_pages = generic_file_remap_pages, 1383 }; 1384 1385 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 1386 { 1387 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) { 1388 struct inode *inode = file->f_dentry->d_inode; 1389 struct fuse_conn *fc = get_fuse_conn(inode); 1390 struct fuse_inode *fi = get_fuse_inode(inode); 1391 struct fuse_file *ff = file->private_data; 1392 /* 1393 * file may be written through mmap, so chain it onto the 1394 * inodes's write_file list 1395 */ 1396 spin_lock(&fc->lock); 1397 if (list_empty(&ff->write_entry)) 1398 list_add(&ff->write_entry, &fi->write_files); 1399 spin_unlock(&fc->lock); 1400 } 1401 file_accessed(file); 1402 vma->vm_ops = &fuse_file_vm_ops; 1403 return 0; 1404 } 1405 1406 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma) 1407 { 1408 /* Can't provide the coherency needed for MAP_SHARED */ 1409 if (vma->vm_flags & VM_MAYSHARE) 1410 return -ENODEV; 1411 1412 invalidate_inode_pages2(file->f_mapping); 1413 1414 return generic_file_mmap(file, vma); 1415 } 1416 1417 static int convert_fuse_file_lock(const struct fuse_file_lock *ffl, 1418 struct file_lock *fl) 1419 { 1420 switch (ffl->type) { 1421 case F_UNLCK: 1422 break; 1423 1424 case F_RDLCK: 1425 case F_WRLCK: 1426 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 1427 ffl->end < ffl->start) 1428 return -EIO; 1429 1430 fl->fl_start = ffl->start; 1431 fl->fl_end = ffl->end; 1432 fl->fl_pid = ffl->pid; 1433 break; 1434 1435 default: 1436 return -EIO; 1437 } 1438 fl->fl_type = ffl->type; 1439 return 0; 1440 } 1441 1442 static void fuse_lk_fill(struct fuse_req *req, struct file *file, 1443 const struct file_lock *fl, int opcode, pid_t pid, 1444 int flock) 1445 { 1446 struct inode *inode = file->f_path.dentry->d_inode; 1447 struct fuse_conn *fc = get_fuse_conn(inode); 1448 struct fuse_file *ff = file->private_data; 1449 struct fuse_lk_in *arg = &req->misc.lk_in; 1450 1451 arg->fh = ff->fh; 1452 arg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 1453 arg->lk.start = fl->fl_start; 1454 arg->lk.end = fl->fl_end; 1455 arg->lk.type = fl->fl_type; 1456 arg->lk.pid = pid; 1457 if (flock) 1458 arg->lk_flags |= FUSE_LK_FLOCK; 1459 req->in.h.opcode = opcode; 1460 req->in.h.nodeid = get_node_id(inode); 1461 req->in.numargs = 1; 1462 req->in.args[0].size = sizeof(*arg); 1463 req->in.args[0].value = arg; 1464 } 1465 1466 static int fuse_getlk(struct file *file, struct file_lock *fl) 1467 { 1468 struct inode *inode = file->f_path.dentry->d_inode; 1469 struct fuse_conn *fc = get_fuse_conn(inode); 1470 struct fuse_req *req; 1471 struct fuse_lk_out outarg; 1472 int err; 1473 1474 req = fuse_get_req(fc); 1475 if (IS_ERR(req)) 1476 return PTR_ERR(req); 1477 1478 fuse_lk_fill(req, file, fl, FUSE_GETLK, 0, 0); 1479 req->out.numargs = 1; 1480 req->out.args[0].size = sizeof(outarg); 1481 req->out.args[0].value = &outarg; 1482 fuse_request_send(fc, req); 1483 err = req->out.h.error; 1484 fuse_put_request(fc, req); 1485 if (!err) 1486 err = convert_fuse_file_lock(&outarg.lk, fl); 1487 1488 return err; 1489 } 1490 1491 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 1492 { 1493 struct inode *inode = file->f_path.dentry->d_inode; 1494 struct fuse_conn *fc = get_fuse_conn(inode); 1495 struct fuse_req *req; 1496 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 1497 pid_t pid = fl->fl_type != F_UNLCK ? current->tgid : 0; 1498 int err; 1499 1500 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 1501 /* NLM needs asynchronous locks, which we don't support yet */ 1502 return -ENOLCK; 1503 } 1504 1505 /* Unlock on close is handled by the flush method */ 1506 if (fl->fl_flags & FL_CLOSE) 1507 return 0; 1508 1509 req = fuse_get_req(fc); 1510 if (IS_ERR(req)) 1511 return PTR_ERR(req); 1512 1513 fuse_lk_fill(req, file, fl, opcode, pid, flock); 1514 fuse_request_send(fc, req); 1515 err = req->out.h.error; 1516 /* locking is restartable */ 1517 if (err == -EINTR) 1518 err = -ERESTARTSYS; 1519 fuse_put_request(fc, req); 1520 return err; 1521 } 1522 1523 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 1524 { 1525 struct inode *inode = file->f_path.dentry->d_inode; 1526 struct fuse_conn *fc = get_fuse_conn(inode); 1527 int err; 1528 1529 if (cmd == F_CANCELLK) { 1530 err = 0; 1531 } else if (cmd == F_GETLK) { 1532 if (fc->no_lock) { 1533 posix_test_lock(file, fl); 1534 err = 0; 1535 } else 1536 err = fuse_getlk(file, fl); 1537 } else { 1538 if (fc->no_lock) 1539 err = posix_lock_file(file, fl, NULL); 1540 else 1541 err = fuse_setlk(file, fl, 0); 1542 } 1543 return err; 1544 } 1545 1546 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 1547 { 1548 struct inode *inode = file->f_path.dentry->d_inode; 1549 struct fuse_conn *fc = get_fuse_conn(inode); 1550 int err; 1551 1552 if (fc->no_flock) { 1553 err = flock_lock_file_wait(file, fl); 1554 } else { 1555 struct fuse_file *ff = file->private_data; 1556 1557 /* emulate flock with POSIX locks */ 1558 fl->fl_owner = (fl_owner_t) file; 1559 ff->flock = true; 1560 err = fuse_setlk(file, fl, 1); 1561 } 1562 1563 return err; 1564 } 1565 1566 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 1567 { 1568 struct inode *inode = mapping->host; 1569 struct fuse_conn *fc = get_fuse_conn(inode); 1570 struct fuse_req *req; 1571 struct fuse_bmap_in inarg; 1572 struct fuse_bmap_out outarg; 1573 int err; 1574 1575 if (!inode->i_sb->s_bdev || fc->no_bmap) 1576 return 0; 1577 1578 req = fuse_get_req(fc); 1579 if (IS_ERR(req)) 1580 return 0; 1581 1582 memset(&inarg, 0, sizeof(inarg)); 1583 inarg.block = block; 1584 inarg.blocksize = inode->i_sb->s_blocksize; 1585 req->in.h.opcode = FUSE_BMAP; 1586 req->in.h.nodeid = get_node_id(inode); 1587 req->in.numargs = 1; 1588 req->in.args[0].size = sizeof(inarg); 1589 req->in.args[0].value = &inarg; 1590 req->out.numargs = 1; 1591 req->out.args[0].size = sizeof(outarg); 1592 req->out.args[0].value = &outarg; 1593 fuse_request_send(fc, req); 1594 err = req->out.h.error; 1595 fuse_put_request(fc, req); 1596 if (err == -ENOSYS) 1597 fc->no_bmap = 1; 1598 1599 return err ? 0 : outarg.block; 1600 } 1601 1602 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int origin) 1603 { 1604 loff_t retval; 1605 struct inode *inode = file->f_path.dentry->d_inode; 1606 1607 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 1608 if (origin == SEEK_CUR || origin == SEEK_SET) 1609 return generic_file_llseek(file, offset, origin); 1610 1611 mutex_lock(&inode->i_mutex); 1612 retval = fuse_update_attributes(inode, NULL, file, NULL); 1613 if (!retval) 1614 retval = generic_file_llseek(file, offset, origin); 1615 mutex_unlock(&inode->i_mutex); 1616 1617 return retval; 1618 } 1619 1620 static int fuse_ioctl_copy_user(struct page **pages, struct iovec *iov, 1621 unsigned int nr_segs, size_t bytes, bool to_user) 1622 { 1623 struct iov_iter ii; 1624 int page_idx = 0; 1625 1626 if (!bytes) 1627 return 0; 1628 1629 iov_iter_init(&ii, iov, nr_segs, bytes, 0); 1630 1631 while (iov_iter_count(&ii)) { 1632 struct page *page = pages[page_idx++]; 1633 size_t todo = min_t(size_t, PAGE_SIZE, iov_iter_count(&ii)); 1634 void *kaddr; 1635 1636 kaddr = kmap(page); 1637 1638 while (todo) { 1639 char __user *uaddr = ii.iov->iov_base + ii.iov_offset; 1640 size_t iov_len = ii.iov->iov_len - ii.iov_offset; 1641 size_t copy = min(todo, iov_len); 1642 size_t left; 1643 1644 if (!to_user) 1645 left = copy_from_user(kaddr, uaddr, copy); 1646 else 1647 left = copy_to_user(uaddr, kaddr, copy); 1648 1649 if (unlikely(left)) 1650 return -EFAULT; 1651 1652 iov_iter_advance(&ii, copy); 1653 todo -= copy; 1654 kaddr += copy; 1655 } 1656 1657 kunmap(page); 1658 } 1659 1660 return 0; 1661 } 1662 1663 /* 1664 * CUSE servers compiled on 32bit broke on 64bit kernels because the 1665 * ABI was defined to be 'struct iovec' which is different on 32bit 1666 * and 64bit. Fortunately we can determine which structure the server 1667 * used from the size of the reply. 1668 */ 1669 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 1670 size_t transferred, unsigned count, 1671 bool is_compat) 1672 { 1673 #ifdef CONFIG_COMPAT 1674 if (count * sizeof(struct compat_iovec) == transferred) { 1675 struct compat_iovec *ciov = src; 1676 unsigned i; 1677 1678 /* 1679 * With this interface a 32bit server cannot support 1680 * non-compat (i.e. ones coming from 64bit apps) ioctl 1681 * requests 1682 */ 1683 if (!is_compat) 1684 return -EINVAL; 1685 1686 for (i = 0; i < count; i++) { 1687 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 1688 dst[i].iov_len = ciov[i].iov_len; 1689 } 1690 return 0; 1691 } 1692 #endif 1693 1694 if (count * sizeof(struct iovec) != transferred) 1695 return -EIO; 1696 1697 memcpy(dst, src, transferred); 1698 return 0; 1699 } 1700 1701 /* Make sure iov_length() won't overflow */ 1702 static int fuse_verify_ioctl_iov(struct iovec *iov, size_t count) 1703 { 1704 size_t n; 1705 u32 max = FUSE_MAX_PAGES_PER_REQ << PAGE_SHIFT; 1706 1707 for (n = 0; n < count; n++, iov++) { 1708 if (iov->iov_len > (size_t) max) 1709 return -ENOMEM; 1710 max -= iov->iov_len; 1711 } 1712 return 0; 1713 } 1714 1715 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 1716 void *src, size_t transferred, unsigned count, 1717 bool is_compat) 1718 { 1719 unsigned i; 1720 struct fuse_ioctl_iovec *fiov = src; 1721 1722 if (fc->minor < 16) { 1723 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 1724 count, is_compat); 1725 } 1726 1727 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 1728 return -EIO; 1729 1730 for (i = 0; i < count; i++) { 1731 /* Did the server supply an inappropriate value? */ 1732 if (fiov[i].base != (unsigned long) fiov[i].base || 1733 fiov[i].len != (unsigned long) fiov[i].len) 1734 return -EIO; 1735 1736 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 1737 dst[i].iov_len = (size_t) fiov[i].len; 1738 1739 #ifdef CONFIG_COMPAT 1740 if (is_compat && 1741 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 1742 (compat_size_t) dst[i].iov_len != fiov[i].len)) 1743 return -EIO; 1744 #endif 1745 } 1746 1747 return 0; 1748 } 1749 1750 1751 /* 1752 * For ioctls, there is no generic way to determine how much memory 1753 * needs to be read and/or written. Furthermore, ioctls are allowed 1754 * to dereference the passed pointer, so the parameter requires deep 1755 * copying but FUSE has no idea whatsoever about what to copy in or 1756 * out. 1757 * 1758 * This is solved by allowing FUSE server to retry ioctl with 1759 * necessary in/out iovecs. Let's assume the ioctl implementation 1760 * needs to read in the following structure. 1761 * 1762 * struct a { 1763 * char *buf; 1764 * size_t buflen; 1765 * } 1766 * 1767 * On the first callout to FUSE server, inarg->in_size and 1768 * inarg->out_size will be NULL; then, the server completes the ioctl 1769 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 1770 * the actual iov array to 1771 * 1772 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 1773 * 1774 * which tells FUSE to copy in the requested area and retry the ioctl. 1775 * On the second round, the server has access to the structure and 1776 * from that it can tell what to look for next, so on the invocation, 1777 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 1778 * 1779 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 1780 * { .iov_base = a.buf, .iov_len = a.buflen } } 1781 * 1782 * FUSE will copy both struct a and the pointed buffer from the 1783 * process doing the ioctl and retry ioctl with both struct a and the 1784 * buffer. 1785 * 1786 * This time, FUSE server has everything it needs and completes ioctl 1787 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 1788 * 1789 * Copying data out works the same way. 1790 * 1791 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 1792 * automatically initializes in and out iovs by decoding @cmd with 1793 * _IOC_* macros and the server is not allowed to request RETRY. This 1794 * limits ioctl data transfers to well-formed ioctls and is the forced 1795 * behavior for all FUSE servers. 1796 */ 1797 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 1798 unsigned int flags) 1799 { 1800 struct fuse_file *ff = file->private_data; 1801 struct fuse_conn *fc = ff->fc; 1802 struct fuse_ioctl_in inarg = { 1803 .fh = ff->fh, 1804 .cmd = cmd, 1805 .arg = arg, 1806 .flags = flags 1807 }; 1808 struct fuse_ioctl_out outarg; 1809 struct fuse_req *req = NULL; 1810 struct page **pages = NULL; 1811 struct iovec *iov_page = NULL; 1812 struct iovec *in_iov = NULL, *out_iov = NULL; 1813 unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages; 1814 size_t in_size, out_size, transferred; 1815 int err; 1816 1817 #if BITS_PER_LONG == 32 1818 inarg.flags |= FUSE_IOCTL_32BIT; 1819 #else 1820 if (flags & FUSE_IOCTL_COMPAT) 1821 inarg.flags |= FUSE_IOCTL_32BIT; 1822 #endif 1823 1824 /* assume all the iovs returned by client always fits in a page */ 1825 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 1826 1827 err = -ENOMEM; 1828 pages = kcalloc(FUSE_MAX_PAGES_PER_REQ, sizeof(pages[0]), GFP_KERNEL); 1829 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 1830 if (!pages || !iov_page) 1831 goto out; 1832 1833 /* 1834 * If restricted, initialize IO parameters as encoded in @cmd. 1835 * RETRY from server is not allowed. 1836 */ 1837 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 1838 struct iovec *iov = iov_page; 1839 1840 iov->iov_base = (void __user *)arg; 1841 iov->iov_len = _IOC_SIZE(cmd); 1842 1843 if (_IOC_DIR(cmd) & _IOC_WRITE) { 1844 in_iov = iov; 1845 in_iovs = 1; 1846 } 1847 1848 if (_IOC_DIR(cmd) & _IOC_READ) { 1849 out_iov = iov; 1850 out_iovs = 1; 1851 } 1852 } 1853 1854 retry: 1855 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 1856 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 1857 1858 /* 1859 * Out data can be used either for actual out data or iovs, 1860 * make sure there always is at least one page. 1861 */ 1862 out_size = max_t(size_t, out_size, PAGE_SIZE); 1863 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 1864 1865 /* make sure there are enough buffer pages and init request with them */ 1866 err = -ENOMEM; 1867 if (max_pages > FUSE_MAX_PAGES_PER_REQ) 1868 goto out; 1869 while (num_pages < max_pages) { 1870 pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 1871 if (!pages[num_pages]) 1872 goto out; 1873 num_pages++; 1874 } 1875 1876 req = fuse_get_req(fc); 1877 if (IS_ERR(req)) { 1878 err = PTR_ERR(req); 1879 req = NULL; 1880 goto out; 1881 } 1882 memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages); 1883 req->num_pages = num_pages; 1884 1885 /* okay, let's send it to the client */ 1886 req->in.h.opcode = FUSE_IOCTL; 1887 req->in.h.nodeid = ff->nodeid; 1888 req->in.numargs = 1; 1889 req->in.args[0].size = sizeof(inarg); 1890 req->in.args[0].value = &inarg; 1891 if (in_size) { 1892 req->in.numargs++; 1893 req->in.args[1].size = in_size; 1894 req->in.argpages = 1; 1895 1896 err = fuse_ioctl_copy_user(pages, in_iov, in_iovs, in_size, 1897 false); 1898 if (err) 1899 goto out; 1900 } 1901 1902 req->out.numargs = 2; 1903 req->out.args[0].size = sizeof(outarg); 1904 req->out.args[0].value = &outarg; 1905 req->out.args[1].size = out_size; 1906 req->out.argpages = 1; 1907 req->out.argvar = 1; 1908 1909 fuse_request_send(fc, req); 1910 err = req->out.h.error; 1911 transferred = req->out.args[1].size; 1912 fuse_put_request(fc, req); 1913 req = NULL; 1914 if (err) 1915 goto out; 1916 1917 /* did it ask for retry? */ 1918 if (outarg.flags & FUSE_IOCTL_RETRY) { 1919 void *vaddr; 1920 1921 /* no retry if in restricted mode */ 1922 err = -EIO; 1923 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 1924 goto out; 1925 1926 in_iovs = outarg.in_iovs; 1927 out_iovs = outarg.out_iovs; 1928 1929 /* 1930 * Make sure things are in boundary, separate checks 1931 * are to protect against overflow. 1932 */ 1933 err = -ENOMEM; 1934 if (in_iovs > FUSE_IOCTL_MAX_IOV || 1935 out_iovs > FUSE_IOCTL_MAX_IOV || 1936 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 1937 goto out; 1938 1939 vaddr = kmap_atomic(pages[0]); 1940 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 1941 transferred, in_iovs + out_iovs, 1942 (flags & FUSE_IOCTL_COMPAT) != 0); 1943 kunmap_atomic(vaddr); 1944 if (err) 1945 goto out; 1946 1947 in_iov = iov_page; 1948 out_iov = in_iov + in_iovs; 1949 1950 err = fuse_verify_ioctl_iov(in_iov, in_iovs); 1951 if (err) 1952 goto out; 1953 1954 err = fuse_verify_ioctl_iov(out_iov, out_iovs); 1955 if (err) 1956 goto out; 1957 1958 goto retry; 1959 } 1960 1961 err = -EIO; 1962 if (transferred > inarg.out_size) 1963 goto out; 1964 1965 err = fuse_ioctl_copy_user(pages, out_iov, out_iovs, transferred, true); 1966 out: 1967 if (req) 1968 fuse_put_request(fc, req); 1969 free_page((unsigned long) iov_page); 1970 while (num_pages) 1971 __free_page(pages[--num_pages]); 1972 kfree(pages); 1973 1974 return err ? err : outarg.result; 1975 } 1976 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 1977 1978 long fuse_ioctl_common(struct file *file, unsigned int cmd, 1979 unsigned long arg, unsigned int flags) 1980 { 1981 struct inode *inode = file->f_dentry->d_inode; 1982 struct fuse_conn *fc = get_fuse_conn(inode); 1983 1984 if (!fuse_allow_task(fc, current)) 1985 return -EACCES; 1986 1987 if (is_bad_inode(inode)) 1988 return -EIO; 1989 1990 return fuse_do_ioctl(file, cmd, arg, flags); 1991 } 1992 1993 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 1994 unsigned long arg) 1995 { 1996 return fuse_ioctl_common(file, cmd, arg, 0); 1997 } 1998 1999 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2000 unsigned long arg) 2001 { 2002 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2003 } 2004 2005 /* 2006 * All files which have been polled are linked to RB tree 2007 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2008 * find the matching one. 2009 */ 2010 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2011 struct rb_node **parent_out) 2012 { 2013 struct rb_node **link = &fc->polled_files.rb_node; 2014 struct rb_node *last = NULL; 2015 2016 while (*link) { 2017 struct fuse_file *ff; 2018 2019 last = *link; 2020 ff = rb_entry(last, struct fuse_file, polled_node); 2021 2022 if (kh < ff->kh) 2023 link = &last->rb_left; 2024 else if (kh > ff->kh) 2025 link = &last->rb_right; 2026 else 2027 return link; 2028 } 2029 2030 if (parent_out) 2031 *parent_out = last; 2032 return link; 2033 } 2034 2035 /* 2036 * The file is about to be polled. Make sure it's on the polled_files 2037 * RB tree. Note that files once added to the polled_files tree are 2038 * not removed before the file is released. This is because a file 2039 * polled once is likely to be polled again. 2040 */ 2041 static void fuse_register_polled_file(struct fuse_conn *fc, 2042 struct fuse_file *ff) 2043 { 2044 spin_lock(&fc->lock); 2045 if (RB_EMPTY_NODE(&ff->polled_node)) { 2046 struct rb_node **link, *parent; 2047 2048 link = fuse_find_polled_node(fc, ff->kh, &parent); 2049 BUG_ON(*link); 2050 rb_link_node(&ff->polled_node, parent, link); 2051 rb_insert_color(&ff->polled_node, &fc->polled_files); 2052 } 2053 spin_unlock(&fc->lock); 2054 } 2055 2056 unsigned fuse_file_poll(struct file *file, poll_table *wait) 2057 { 2058 struct fuse_file *ff = file->private_data; 2059 struct fuse_conn *fc = ff->fc; 2060 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2061 struct fuse_poll_out outarg; 2062 struct fuse_req *req; 2063 int err; 2064 2065 if (fc->no_poll) 2066 return DEFAULT_POLLMASK; 2067 2068 poll_wait(file, &ff->poll_wait, wait); 2069 2070 /* 2071 * Ask for notification iff there's someone waiting for it. 2072 * The client may ignore the flag and always notify. 2073 */ 2074 if (waitqueue_active(&ff->poll_wait)) { 2075 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2076 fuse_register_polled_file(fc, ff); 2077 } 2078 2079 req = fuse_get_req(fc); 2080 if (IS_ERR(req)) 2081 return POLLERR; 2082 2083 req->in.h.opcode = FUSE_POLL; 2084 req->in.h.nodeid = ff->nodeid; 2085 req->in.numargs = 1; 2086 req->in.args[0].size = sizeof(inarg); 2087 req->in.args[0].value = &inarg; 2088 req->out.numargs = 1; 2089 req->out.args[0].size = sizeof(outarg); 2090 req->out.args[0].value = &outarg; 2091 fuse_request_send(fc, req); 2092 err = req->out.h.error; 2093 fuse_put_request(fc, req); 2094 2095 if (!err) 2096 return outarg.revents; 2097 if (err == -ENOSYS) { 2098 fc->no_poll = 1; 2099 return DEFAULT_POLLMASK; 2100 } 2101 return POLLERR; 2102 } 2103 EXPORT_SYMBOL_GPL(fuse_file_poll); 2104 2105 /* 2106 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2107 * wakes up the poll waiters. 2108 */ 2109 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2110 struct fuse_notify_poll_wakeup_out *outarg) 2111 { 2112 u64 kh = outarg->kh; 2113 struct rb_node **link; 2114 2115 spin_lock(&fc->lock); 2116 2117 link = fuse_find_polled_node(fc, kh, NULL); 2118 if (*link) { 2119 struct fuse_file *ff; 2120 2121 ff = rb_entry(*link, struct fuse_file, polled_node); 2122 wake_up_interruptible_sync(&ff->poll_wait); 2123 } 2124 2125 spin_unlock(&fc->lock); 2126 return 0; 2127 } 2128 2129 static ssize_t fuse_loop_dio(struct file *filp, const struct iovec *iov, 2130 unsigned long nr_segs, loff_t *ppos, int rw) 2131 { 2132 const struct iovec *vector = iov; 2133 ssize_t ret = 0; 2134 2135 while (nr_segs > 0) { 2136 void __user *base; 2137 size_t len; 2138 ssize_t nr; 2139 2140 base = vector->iov_base; 2141 len = vector->iov_len; 2142 vector++; 2143 nr_segs--; 2144 2145 if (rw == WRITE) 2146 nr = __fuse_direct_write(filp, base, len, ppos); 2147 else 2148 nr = fuse_direct_read(filp, base, len, ppos); 2149 2150 if (nr < 0) { 2151 if (!ret) 2152 ret = nr; 2153 break; 2154 } 2155 ret += nr; 2156 if (nr != len) 2157 break; 2158 } 2159 2160 return ret; 2161 } 2162 2163 2164 static ssize_t 2165 fuse_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2166 loff_t offset, unsigned long nr_segs) 2167 { 2168 ssize_t ret = 0; 2169 struct file *file = NULL; 2170 loff_t pos = 0; 2171 2172 file = iocb->ki_filp; 2173 pos = offset; 2174 2175 ret = fuse_loop_dio(file, iov, nr_segs, &pos, rw); 2176 2177 return ret; 2178 } 2179 2180 long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2181 loff_t length) 2182 { 2183 struct fuse_file *ff = file->private_data; 2184 struct fuse_conn *fc = ff->fc; 2185 struct fuse_req *req; 2186 struct fuse_fallocate_in inarg = { 2187 .fh = ff->fh, 2188 .offset = offset, 2189 .length = length, 2190 .mode = mode 2191 }; 2192 int err; 2193 2194 if (fc->no_fallocate) 2195 return -EOPNOTSUPP; 2196 2197 req = fuse_get_req(fc); 2198 if (IS_ERR(req)) 2199 return PTR_ERR(req); 2200 2201 req->in.h.opcode = FUSE_FALLOCATE; 2202 req->in.h.nodeid = ff->nodeid; 2203 req->in.numargs = 1; 2204 req->in.args[0].size = sizeof(inarg); 2205 req->in.args[0].value = &inarg; 2206 fuse_request_send(fc, req); 2207 err = req->out.h.error; 2208 if (err == -ENOSYS) { 2209 fc->no_fallocate = 1; 2210 err = -EOPNOTSUPP; 2211 } 2212 fuse_put_request(fc, req); 2213 2214 return err; 2215 } 2216 EXPORT_SYMBOL_GPL(fuse_file_fallocate); 2217 2218 static const struct file_operations fuse_file_operations = { 2219 .llseek = fuse_file_llseek, 2220 .read = do_sync_read, 2221 .aio_read = fuse_file_aio_read, 2222 .write = do_sync_write, 2223 .aio_write = fuse_file_aio_write, 2224 .mmap = fuse_file_mmap, 2225 .open = fuse_open, 2226 .flush = fuse_flush, 2227 .release = fuse_release, 2228 .fsync = fuse_fsync, 2229 .lock = fuse_file_lock, 2230 .flock = fuse_file_flock, 2231 .splice_read = generic_file_splice_read, 2232 .unlocked_ioctl = fuse_file_ioctl, 2233 .compat_ioctl = fuse_file_compat_ioctl, 2234 .poll = fuse_file_poll, 2235 .fallocate = fuse_file_fallocate, 2236 }; 2237 2238 static const struct file_operations fuse_direct_io_file_operations = { 2239 .llseek = fuse_file_llseek, 2240 .read = fuse_direct_read, 2241 .write = fuse_direct_write, 2242 .mmap = fuse_direct_mmap, 2243 .open = fuse_open, 2244 .flush = fuse_flush, 2245 .release = fuse_release, 2246 .fsync = fuse_fsync, 2247 .lock = fuse_file_lock, 2248 .flock = fuse_file_flock, 2249 .unlocked_ioctl = fuse_file_ioctl, 2250 .compat_ioctl = fuse_file_compat_ioctl, 2251 .poll = fuse_file_poll, 2252 .fallocate = fuse_file_fallocate, 2253 /* no splice_read */ 2254 }; 2255 2256 static const struct address_space_operations fuse_file_aops = { 2257 .readpage = fuse_readpage, 2258 .writepage = fuse_writepage, 2259 .launder_page = fuse_launder_page, 2260 .readpages = fuse_readpages, 2261 .set_page_dirty = __set_page_dirty_nobuffers, 2262 .bmap = fuse_bmap, 2263 .direct_IO = fuse_direct_IO, 2264 }; 2265 2266 void fuse_init_file_inode(struct inode *inode) 2267 { 2268 inode->i_fop = &fuse_file_operations; 2269 inode->i_data.a_ops = &fuse_file_aops; 2270 } 2271