xref: /openbmc/linux/fs/fuse/file.c (revision 83268fa6)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static const struct file_operations fuse_direct_io_file_operations;
23 
24 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
25 			  int opcode, struct fuse_open_out *outargp)
26 {
27 	struct fuse_open_in inarg;
28 	FUSE_ARGS(args);
29 
30 	memset(&inarg, 0, sizeof(inarg));
31 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
32 	if (!fc->atomic_o_trunc)
33 		inarg.flags &= ~O_TRUNC;
34 	args.in.h.opcode = opcode;
35 	args.in.h.nodeid = nodeid;
36 	args.in.numargs = 1;
37 	args.in.args[0].size = sizeof(inarg);
38 	args.in.args[0].value = &inarg;
39 	args.out.numargs = 1;
40 	args.out.args[0].size = sizeof(*outargp);
41 	args.out.args[0].value = outargp;
42 
43 	return fuse_simple_request(fc, &args);
44 }
45 
46 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
47 {
48 	struct fuse_file *ff;
49 
50 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL);
51 	if (unlikely(!ff))
52 		return NULL;
53 
54 	ff->fc = fc;
55 	ff->reserved_req = fuse_request_alloc(0);
56 	if (unlikely(!ff->reserved_req)) {
57 		kfree(ff);
58 		return NULL;
59 	}
60 
61 	INIT_LIST_HEAD(&ff->write_entry);
62 	mutex_init(&ff->readdir.lock);
63 	refcount_set(&ff->count, 1);
64 	RB_CLEAR_NODE(&ff->polled_node);
65 	init_waitqueue_head(&ff->poll_wait);
66 
67 	spin_lock(&fc->lock);
68 	ff->kh = ++fc->khctr;
69 	spin_unlock(&fc->lock);
70 
71 	return ff;
72 }
73 
74 void fuse_file_free(struct fuse_file *ff)
75 {
76 	fuse_request_free(ff->reserved_req);
77 	mutex_destroy(&ff->readdir.lock);
78 	kfree(ff);
79 }
80 
81 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
82 {
83 	refcount_inc(&ff->count);
84 	return ff;
85 }
86 
87 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
88 {
89 	iput(req->misc.release.inode);
90 }
91 
92 static void fuse_file_put(struct fuse_file *ff, bool sync)
93 {
94 	if (refcount_dec_and_test(&ff->count)) {
95 		struct fuse_req *req = ff->reserved_req;
96 
97 		if (ff->fc->no_open) {
98 			/*
99 			 * Drop the release request when client does not
100 			 * implement 'open'
101 			 */
102 			__clear_bit(FR_BACKGROUND, &req->flags);
103 			iput(req->misc.release.inode);
104 			fuse_put_request(ff->fc, req);
105 		} else if (sync) {
106 			__set_bit(FR_FORCE, &req->flags);
107 			__clear_bit(FR_BACKGROUND, &req->flags);
108 			fuse_request_send(ff->fc, req);
109 			iput(req->misc.release.inode);
110 			fuse_put_request(ff->fc, req);
111 		} else {
112 			req->end = fuse_release_end;
113 			__set_bit(FR_BACKGROUND, &req->flags);
114 			fuse_request_send_background(ff->fc, req);
115 		}
116 		kfree(ff);
117 	}
118 }
119 
120 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
121 		 bool isdir)
122 {
123 	struct fuse_file *ff;
124 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
125 
126 	ff = fuse_file_alloc(fc);
127 	if (!ff)
128 		return -ENOMEM;
129 
130 	ff->fh = 0;
131 	ff->open_flags = FOPEN_KEEP_CACHE; /* Default for no-open */
132 	if (!fc->no_open || isdir) {
133 		struct fuse_open_out outarg;
134 		int err;
135 
136 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
137 		if (!err) {
138 			ff->fh = outarg.fh;
139 			ff->open_flags = outarg.open_flags;
140 
141 		} else if (err != -ENOSYS || isdir) {
142 			fuse_file_free(ff);
143 			return err;
144 		} else {
145 			fc->no_open = 1;
146 		}
147 	}
148 
149 	if (isdir)
150 		ff->open_flags &= ~FOPEN_DIRECT_IO;
151 
152 	ff->nodeid = nodeid;
153 	file->private_data = ff;
154 
155 	return 0;
156 }
157 EXPORT_SYMBOL_GPL(fuse_do_open);
158 
159 static void fuse_link_write_file(struct file *file)
160 {
161 	struct inode *inode = file_inode(file);
162 	struct fuse_conn *fc = get_fuse_conn(inode);
163 	struct fuse_inode *fi = get_fuse_inode(inode);
164 	struct fuse_file *ff = file->private_data;
165 	/*
166 	 * file may be written through mmap, so chain it onto the
167 	 * inodes's write_file list
168 	 */
169 	spin_lock(&fc->lock);
170 	if (list_empty(&ff->write_entry))
171 		list_add(&ff->write_entry, &fi->write_files);
172 	spin_unlock(&fc->lock);
173 }
174 
175 void fuse_finish_open(struct inode *inode, struct file *file)
176 {
177 	struct fuse_file *ff = file->private_data;
178 	struct fuse_conn *fc = get_fuse_conn(inode);
179 
180 	if (ff->open_flags & FOPEN_DIRECT_IO)
181 		file->f_op = &fuse_direct_io_file_operations;
182 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
183 		invalidate_inode_pages2(inode->i_mapping);
184 	if (ff->open_flags & FOPEN_NONSEEKABLE)
185 		nonseekable_open(inode, file);
186 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
187 		struct fuse_inode *fi = get_fuse_inode(inode);
188 
189 		spin_lock(&fc->lock);
190 		fi->attr_version = ++fc->attr_version;
191 		i_size_write(inode, 0);
192 		spin_unlock(&fc->lock);
193 		fuse_invalidate_attr(inode);
194 		if (fc->writeback_cache)
195 			file_update_time(file);
196 	}
197 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
198 		fuse_link_write_file(file);
199 }
200 
201 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
202 {
203 	struct fuse_conn *fc = get_fuse_conn(inode);
204 	int err;
205 	bool lock_inode = (file->f_flags & O_TRUNC) &&
206 			  fc->atomic_o_trunc &&
207 			  fc->writeback_cache;
208 
209 	err = generic_file_open(inode, file);
210 	if (err)
211 		return err;
212 
213 	if (lock_inode)
214 		inode_lock(inode);
215 
216 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
217 
218 	if (!err)
219 		fuse_finish_open(inode, file);
220 
221 	if (lock_inode)
222 		inode_unlock(inode);
223 
224 	return err;
225 }
226 
227 static void fuse_prepare_release(struct fuse_file *ff, int flags, int opcode)
228 {
229 	struct fuse_conn *fc = ff->fc;
230 	struct fuse_req *req = ff->reserved_req;
231 	struct fuse_release_in *inarg = &req->misc.release.in;
232 
233 	spin_lock(&fc->lock);
234 	list_del(&ff->write_entry);
235 	if (!RB_EMPTY_NODE(&ff->polled_node))
236 		rb_erase(&ff->polled_node, &fc->polled_files);
237 	spin_unlock(&fc->lock);
238 
239 	wake_up_interruptible_all(&ff->poll_wait);
240 
241 	inarg->fh = ff->fh;
242 	inarg->flags = flags;
243 	req->in.h.opcode = opcode;
244 	req->in.h.nodeid = ff->nodeid;
245 	req->in.numargs = 1;
246 	req->in.args[0].size = sizeof(struct fuse_release_in);
247 	req->in.args[0].value = inarg;
248 }
249 
250 void fuse_release_common(struct file *file, int opcode)
251 {
252 	struct fuse_file *ff = file->private_data;
253 	struct fuse_req *req = ff->reserved_req;
254 
255 	fuse_prepare_release(ff, file->f_flags, opcode);
256 
257 	if (ff->flock) {
258 		struct fuse_release_in *inarg = &req->misc.release.in;
259 		inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
260 		inarg->lock_owner = fuse_lock_owner_id(ff->fc,
261 						       (fl_owner_t) file);
262 	}
263 	/* Hold inode until release is finished */
264 	req->misc.release.inode = igrab(file_inode(file));
265 
266 	/*
267 	 * Normally this will send the RELEASE request, however if
268 	 * some asynchronous READ or WRITE requests are outstanding,
269 	 * the sending will be delayed.
270 	 *
271 	 * Make the release synchronous if this is a fuseblk mount,
272 	 * synchronous RELEASE is allowed (and desirable) in this case
273 	 * because the server can be trusted not to screw up.
274 	 */
275 	fuse_file_put(ff, ff->fc->destroy_req != NULL);
276 }
277 
278 static int fuse_open(struct inode *inode, struct file *file)
279 {
280 	return fuse_open_common(inode, file, false);
281 }
282 
283 static int fuse_release(struct inode *inode, struct file *file)
284 {
285 	struct fuse_conn *fc = get_fuse_conn(inode);
286 
287 	/* see fuse_vma_close() for !writeback_cache case */
288 	if (fc->writeback_cache)
289 		write_inode_now(inode, 1);
290 
291 	fuse_release_common(file, FUSE_RELEASE);
292 
293 	/* return value is ignored by VFS */
294 	return 0;
295 }
296 
297 void fuse_sync_release(struct fuse_file *ff, int flags)
298 {
299 	WARN_ON(refcount_read(&ff->count) > 1);
300 	fuse_prepare_release(ff, flags, FUSE_RELEASE);
301 	/*
302 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
303 	 * synchronous, we are fine with not doing igrab() here"
304 	 */
305 	fuse_file_put(ff, true);
306 }
307 EXPORT_SYMBOL_GPL(fuse_sync_release);
308 
309 /*
310  * Scramble the ID space with XTEA, so that the value of the files_struct
311  * pointer is not exposed to userspace.
312  */
313 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
314 {
315 	u32 *k = fc->scramble_key;
316 	u64 v = (unsigned long) id;
317 	u32 v0 = v;
318 	u32 v1 = v >> 32;
319 	u32 sum = 0;
320 	int i;
321 
322 	for (i = 0; i < 32; i++) {
323 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
324 		sum += 0x9E3779B9;
325 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
326 	}
327 
328 	return (u64) v0 + ((u64) v1 << 32);
329 }
330 
331 /*
332  * Check if any page in a range is under writeback
333  *
334  * This is currently done by walking the list of writepage requests
335  * for the inode, which can be pretty inefficient.
336  */
337 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
338 				   pgoff_t idx_to)
339 {
340 	struct fuse_conn *fc = get_fuse_conn(inode);
341 	struct fuse_inode *fi = get_fuse_inode(inode);
342 	struct fuse_req *req;
343 	bool found = false;
344 
345 	spin_lock(&fc->lock);
346 	list_for_each_entry(req, &fi->writepages, writepages_entry) {
347 		pgoff_t curr_index;
348 
349 		BUG_ON(req->inode != inode);
350 		curr_index = req->misc.write.in.offset >> PAGE_SHIFT;
351 		if (idx_from < curr_index + req->num_pages &&
352 		    curr_index <= idx_to) {
353 			found = true;
354 			break;
355 		}
356 	}
357 	spin_unlock(&fc->lock);
358 
359 	return found;
360 }
361 
362 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
363 {
364 	return fuse_range_is_writeback(inode, index, index);
365 }
366 
367 /*
368  * Wait for page writeback to be completed.
369  *
370  * Since fuse doesn't rely on the VM writeback tracking, this has to
371  * use some other means.
372  */
373 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
374 {
375 	struct fuse_inode *fi = get_fuse_inode(inode);
376 
377 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
378 	return 0;
379 }
380 
381 /*
382  * Wait for all pending writepages on the inode to finish.
383  *
384  * This is currently done by blocking further writes with FUSE_NOWRITE
385  * and waiting for all sent writes to complete.
386  *
387  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
388  * could conflict with truncation.
389  */
390 static void fuse_sync_writes(struct inode *inode)
391 {
392 	fuse_set_nowrite(inode);
393 	fuse_release_nowrite(inode);
394 }
395 
396 static int fuse_flush(struct file *file, fl_owner_t id)
397 {
398 	struct inode *inode = file_inode(file);
399 	struct fuse_conn *fc = get_fuse_conn(inode);
400 	struct fuse_file *ff = file->private_data;
401 	struct fuse_req *req;
402 	struct fuse_flush_in inarg;
403 	int err;
404 
405 	if (is_bad_inode(inode))
406 		return -EIO;
407 
408 	if (fc->no_flush)
409 		return 0;
410 
411 	err = write_inode_now(inode, 1);
412 	if (err)
413 		return err;
414 
415 	inode_lock(inode);
416 	fuse_sync_writes(inode);
417 	inode_unlock(inode);
418 
419 	err = filemap_check_errors(file->f_mapping);
420 	if (err)
421 		return err;
422 
423 	req = fuse_get_req_nofail_nopages(fc, file);
424 	memset(&inarg, 0, sizeof(inarg));
425 	inarg.fh = ff->fh;
426 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
427 	req->in.h.opcode = FUSE_FLUSH;
428 	req->in.h.nodeid = get_node_id(inode);
429 	req->in.numargs = 1;
430 	req->in.args[0].size = sizeof(inarg);
431 	req->in.args[0].value = &inarg;
432 	__set_bit(FR_FORCE, &req->flags);
433 	fuse_request_send(fc, req);
434 	err = req->out.h.error;
435 	fuse_put_request(fc, req);
436 	if (err == -ENOSYS) {
437 		fc->no_flush = 1;
438 		err = 0;
439 	}
440 	return err;
441 }
442 
443 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
444 		      int datasync, int isdir)
445 {
446 	struct inode *inode = file->f_mapping->host;
447 	struct fuse_conn *fc = get_fuse_conn(inode);
448 	struct fuse_file *ff = file->private_data;
449 	FUSE_ARGS(args);
450 	struct fuse_fsync_in inarg;
451 	int err;
452 
453 	if (is_bad_inode(inode))
454 		return -EIO;
455 
456 	inode_lock(inode);
457 
458 	/*
459 	 * Start writeback against all dirty pages of the inode, then
460 	 * wait for all outstanding writes, before sending the FSYNC
461 	 * request.
462 	 */
463 	err = file_write_and_wait_range(file, start, end);
464 	if (err)
465 		goto out;
466 
467 	fuse_sync_writes(inode);
468 
469 	/*
470 	 * Due to implementation of fuse writeback
471 	 * file_write_and_wait_range() does not catch errors.
472 	 * We have to do this directly after fuse_sync_writes()
473 	 */
474 	err = file_check_and_advance_wb_err(file);
475 	if (err)
476 		goto out;
477 
478 	err = sync_inode_metadata(inode, 1);
479 	if (err)
480 		goto out;
481 
482 	if ((!isdir && fc->no_fsync) || (isdir && fc->no_fsyncdir))
483 		goto out;
484 
485 	memset(&inarg, 0, sizeof(inarg));
486 	inarg.fh = ff->fh;
487 	inarg.fsync_flags = datasync ? 1 : 0;
488 	args.in.h.opcode = isdir ? FUSE_FSYNCDIR : FUSE_FSYNC;
489 	args.in.h.nodeid = get_node_id(inode);
490 	args.in.numargs = 1;
491 	args.in.args[0].size = sizeof(inarg);
492 	args.in.args[0].value = &inarg;
493 	err = fuse_simple_request(fc, &args);
494 	if (err == -ENOSYS) {
495 		if (isdir)
496 			fc->no_fsyncdir = 1;
497 		else
498 			fc->no_fsync = 1;
499 		err = 0;
500 	}
501 out:
502 	inode_unlock(inode);
503 	return err;
504 }
505 
506 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
507 		      int datasync)
508 {
509 	return fuse_fsync_common(file, start, end, datasync, 0);
510 }
511 
512 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
513 		    size_t count, int opcode)
514 {
515 	struct fuse_read_in *inarg = &req->misc.read.in;
516 	struct fuse_file *ff = file->private_data;
517 
518 	inarg->fh = ff->fh;
519 	inarg->offset = pos;
520 	inarg->size = count;
521 	inarg->flags = file->f_flags;
522 	req->in.h.opcode = opcode;
523 	req->in.h.nodeid = ff->nodeid;
524 	req->in.numargs = 1;
525 	req->in.args[0].size = sizeof(struct fuse_read_in);
526 	req->in.args[0].value = inarg;
527 	req->out.argvar = 1;
528 	req->out.numargs = 1;
529 	req->out.args[0].size = count;
530 }
531 
532 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty)
533 {
534 	unsigned i;
535 
536 	for (i = 0; i < req->num_pages; i++) {
537 		struct page *page = req->pages[i];
538 		if (should_dirty)
539 			set_page_dirty_lock(page);
540 		put_page(page);
541 	}
542 }
543 
544 static void fuse_io_release(struct kref *kref)
545 {
546 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
547 }
548 
549 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
550 {
551 	if (io->err)
552 		return io->err;
553 
554 	if (io->bytes >= 0 && io->write)
555 		return -EIO;
556 
557 	return io->bytes < 0 ? io->size : io->bytes;
558 }
559 
560 /**
561  * In case of short read, the caller sets 'pos' to the position of
562  * actual end of fuse request in IO request. Otherwise, if bytes_requested
563  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
564  *
565  * An example:
566  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
567  * both submitted asynchronously. The first of them was ACKed by userspace as
568  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
569  * second request was ACKed as short, e.g. only 1K was read, resulting in
570  * pos == 33K.
571  *
572  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
573  * will be equal to the length of the longest contiguous fragment of
574  * transferred data starting from the beginning of IO request.
575  */
576 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
577 {
578 	int left;
579 
580 	spin_lock(&io->lock);
581 	if (err)
582 		io->err = io->err ? : err;
583 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
584 		io->bytes = pos;
585 
586 	left = --io->reqs;
587 	if (!left && io->blocking)
588 		complete(io->done);
589 	spin_unlock(&io->lock);
590 
591 	if (!left && !io->blocking) {
592 		ssize_t res = fuse_get_res_by_io(io);
593 
594 		if (res >= 0) {
595 			struct inode *inode = file_inode(io->iocb->ki_filp);
596 			struct fuse_conn *fc = get_fuse_conn(inode);
597 			struct fuse_inode *fi = get_fuse_inode(inode);
598 
599 			spin_lock(&fc->lock);
600 			fi->attr_version = ++fc->attr_version;
601 			spin_unlock(&fc->lock);
602 		}
603 
604 		io->iocb->ki_complete(io->iocb, res, 0);
605 	}
606 
607 	kref_put(&io->refcnt, fuse_io_release);
608 }
609 
610 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
611 {
612 	struct fuse_io_priv *io = req->io;
613 	ssize_t pos = -1;
614 
615 	fuse_release_user_pages(req, io->should_dirty);
616 
617 	if (io->write) {
618 		if (req->misc.write.in.size != req->misc.write.out.size)
619 			pos = req->misc.write.in.offset - io->offset +
620 				req->misc.write.out.size;
621 	} else {
622 		if (req->misc.read.in.size != req->out.args[0].size)
623 			pos = req->misc.read.in.offset - io->offset +
624 				req->out.args[0].size;
625 	}
626 
627 	fuse_aio_complete(io, req->out.h.error, pos);
628 }
629 
630 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
631 		size_t num_bytes, struct fuse_io_priv *io)
632 {
633 	spin_lock(&io->lock);
634 	kref_get(&io->refcnt);
635 	io->size += num_bytes;
636 	io->reqs++;
637 	spin_unlock(&io->lock);
638 
639 	req->io = io;
640 	req->end = fuse_aio_complete_req;
641 
642 	__fuse_get_request(req);
643 	fuse_request_send_background(fc, req);
644 
645 	return num_bytes;
646 }
647 
648 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
649 			     loff_t pos, size_t count, fl_owner_t owner)
650 {
651 	struct file *file = io->iocb->ki_filp;
652 	struct fuse_file *ff = file->private_data;
653 	struct fuse_conn *fc = ff->fc;
654 
655 	fuse_read_fill(req, file, pos, count, FUSE_READ);
656 	if (owner != NULL) {
657 		struct fuse_read_in *inarg = &req->misc.read.in;
658 
659 		inarg->read_flags |= FUSE_READ_LOCKOWNER;
660 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
661 	}
662 
663 	if (io->async)
664 		return fuse_async_req_send(fc, req, count, io);
665 
666 	fuse_request_send(fc, req);
667 	return req->out.args[0].size;
668 }
669 
670 static void fuse_read_update_size(struct inode *inode, loff_t size,
671 				  u64 attr_ver)
672 {
673 	struct fuse_conn *fc = get_fuse_conn(inode);
674 	struct fuse_inode *fi = get_fuse_inode(inode);
675 
676 	spin_lock(&fc->lock);
677 	if (attr_ver == fi->attr_version && size < inode->i_size &&
678 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
679 		fi->attr_version = ++fc->attr_version;
680 		i_size_write(inode, size);
681 	}
682 	spin_unlock(&fc->lock);
683 }
684 
685 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
686 			    u64 attr_ver)
687 {
688 	size_t num_read = req->out.args[0].size;
689 	struct fuse_conn *fc = get_fuse_conn(inode);
690 
691 	if (fc->writeback_cache) {
692 		/*
693 		 * A hole in a file. Some data after the hole are in page cache,
694 		 * but have not reached the client fs yet. So, the hole is not
695 		 * present there.
696 		 */
697 		int i;
698 		int start_idx = num_read >> PAGE_SHIFT;
699 		size_t off = num_read & (PAGE_SIZE - 1);
700 
701 		for (i = start_idx; i < req->num_pages; i++) {
702 			zero_user_segment(req->pages[i], off, PAGE_SIZE);
703 			off = 0;
704 		}
705 	} else {
706 		loff_t pos = page_offset(req->pages[0]) + num_read;
707 		fuse_read_update_size(inode, pos, attr_ver);
708 	}
709 }
710 
711 static int fuse_do_readpage(struct file *file, struct page *page)
712 {
713 	struct kiocb iocb;
714 	struct fuse_io_priv io;
715 	struct inode *inode = page->mapping->host;
716 	struct fuse_conn *fc = get_fuse_conn(inode);
717 	struct fuse_req *req;
718 	size_t num_read;
719 	loff_t pos = page_offset(page);
720 	size_t count = PAGE_SIZE;
721 	u64 attr_ver;
722 	int err;
723 
724 	/*
725 	 * Page writeback can extend beyond the lifetime of the
726 	 * page-cache page, so make sure we read a properly synced
727 	 * page.
728 	 */
729 	fuse_wait_on_page_writeback(inode, page->index);
730 
731 	req = fuse_get_req(fc, 1);
732 	if (IS_ERR(req))
733 		return PTR_ERR(req);
734 
735 	attr_ver = fuse_get_attr_version(fc);
736 
737 	req->out.page_zeroing = 1;
738 	req->out.argpages = 1;
739 	req->num_pages = 1;
740 	req->pages[0] = page;
741 	req->page_descs[0].length = count;
742 	init_sync_kiocb(&iocb, file);
743 	io = (struct fuse_io_priv) FUSE_IO_PRIV_SYNC(&iocb);
744 	num_read = fuse_send_read(req, &io, pos, count, NULL);
745 	err = req->out.h.error;
746 
747 	if (!err) {
748 		/*
749 		 * Short read means EOF.  If file size is larger, truncate it
750 		 */
751 		if (num_read < count)
752 			fuse_short_read(req, inode, attr_ver);
753 
754 		SetPageUptodate(page);
755 	}
756 
757 	fuse_put_request(fc, req);
758 
759 	return err;
760 }
761 
762 static int fuse_readpage(struct file *file, struct page *page)
763 {
764 	struct inode *inode = page->mapping->host;
765 	int err;
766 
767 	err = -EIO;
768 	if (is_bad_inode(inode))
769 		goto out;
770 
771 	err = fuse_do_readpage(file, page);
772 	fuse_invalidate_atime(inode);
773  out:
774 	unlock_page(page);
775 	return err;
776 }
777 
778 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
779 {
780 	int i;
781 	size_t count = req->misc.read.in.size;
782 	size_t num_read = req->out.args[0].size;
783 	struct address_space *mapping = NULL;
784 
785 	for (i = 0; mapping == NULL && i < req->num_pages; i++)
786 		mapping = req->pages[i]->mapping;
787 
788 	if (mapping) {
789 		struct inode *inode = mapping->host;
790 
791 		/*
792 		 * Short read means EOF. If file size is larger, truncate it
793 		 */
794 		if (!req->out.h.error && num_read < count)
795 			fuse_short_read(req, inode, req->misc.read.attr_ver);
796 
797 		fuse_invalidate_atime(inode);
798 	}
799 
800 	for (i = 0; i < req->num_pages; i++) {
801 		struct page *page = req->pages[i];
802 		if (!req->out.h.error)
803 			SetPageUptodate(page);
804 		else
805 			SetPageError(page);
806 		unlock_page(page);
807 		put_page(page);
808 	}
809 	if (req->ff)
810 		fuse_file_put(req->ff, false);
811 }
812 
813 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
814 {
815 	struct fuse_file *ff = file->private_data;
816 	struct fuse_conn *fc = ff->fc;
817 	loff_t pos = page_offset(req->pages[0]);
818 	size_t count = req->num_pages << PAGE_SHIFT;
819 
820 	req->out.argpages = 1;
821 	req->out.page_zeroing = 1;
822 	req->out.page_replace = 1;
823 	fuse_read_fill(req, file, pos, count, FUSE_READ);
824 	req->misc.read.attr_ver = fuse_get_attr_version(fc);
825 	if (fc->async_read) {
826 		req->ff = fuse_file_get(ff);
827 		req->end = fuse_readpages_end;
828 		fuse_request_send_background(fc, req);
829 	} else {
830 		fuse_request_send(fc, req);
831 		fuse_readpages_end(fc, req);
832 		fuse_put_request(fc, req);
833 	}
834 }
835 
836 struct fuse_fill_data {
837 	struct fuse_req *req;
838 	struct file *file;
839 	struct inode *inode;
840 	unsigned nr_pages;
841 };
842 
843 static int fuse_readpages_fill(void *_data, struct page *page)
844 {
845 	struct fuse_fill_data *data = _data;
846 	struct fuse_req *req = data->req;
847 	struct inode *inode = data->inode;
848 	struct fuse_conn *fc = get_fuse_conn(inode);
849 
850 	fuse_wait_on_page_writeback(inode, page->index);
851 
852 	if (req->num_pages &&
853 	    (req->num_pages == fc->max_pages ||
854 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_read ||
855 	     req->pages[req->num_pages - 1]->index + 1 != page->index)) {
856 		unsigned int nr_alloc = min_t(unsigned int, data->nr_pages,
857 					      fc->max_pages);
858 		fuse_send_readpages(req, data->file);
859 		if (fc->async_read)
860 			req = fuse_get_req_for_background(fc, nr_alloc);
861 		else
862 			req = fuse_get_req(fc, nr_alloc);
863 
864 		data->req = req;
865 		if (IS_ERR(req)) {
866 			unlock_page(page);
867 			return PTR_ERR(req);
868 		}
869 	}
870 
871 	if (WARN_ON(req->num_pages >= req->max_pages)) {
872 		unlock_page(page);
873 		fuse_put_request(fc, req);
874 		return -EIO;
875 	}
876 
877 	get_page(page);
878 	req->pages[req->num_pages] = page;
879 	req->page_descs[req->num_pages].length = PAGE_SIZE;
880 	req->num_pages++;
881 	data->nr_pages--;
882 	return 0;
883 }
884 
885 static int fuse_readpages(struct file *file, struct address_space *mapping,
886 			  struct list_head *pages, unsigned nr_pages)
887 {
888 	struct inode *inode = mapping->host;
889 	struct fuse_conn *fc = get_fuse_conn(inode);
890 	struct fuse_fill_data data;
891 	int err;
892 	unsigned int nr_alloc = min_t(unsigned int, nr_pages, fc->max_pages);
893 
894 	err = -EIO;
895 	if (is_bad_inode(inode))
896 		goto out;
897 
898 	data.file = file;
899 	data.inode = inode;
900 	if (fc->async_read)
901 		data.req = fuse_get_req_for_background(fc, nr_alloc);
902 	else
903 		data.req = fuse_get_req(fc, nr_alloc);
904 	data.nr_pages = nr_pages;
905 	err = PTR_ERR(data.req);
906 	if (IS_ERR(data.req))
907 		goto out;
908 
909 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
910 	if (!err) {
911 		if (data.req->num_pages)
912 			fuse_send_readpages(data.req, file);
913 		else
914 			fuse_put_request(fc, data.req);
915 	}
916 out:
917 	return err;
918 }
919 
920 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
921 {
922 	struct inode *inode = iocb->ki_filp->f_mapping->host;
923 	struct fuse_conn *fc = get_fuse_conn(inode);
924 
925 	/*
926 	 * In auto invalidate mode, always update attributes on read.
927 	 * Otherwise, only update if we attempt to read past EOF (to ensure
928 	 * i_size is up to date).
929 	 */
930 	if (fc->auto_inval_data ||
931 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
932 		int err;
933 		err = fuse_update_attributes(inode, iocb->ki_filp);
934 		if (err)
935 			return err;
936 	}
937 
938 	return generic_file_read_iter(iocb, to);
939 }
940 
941 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
942 			    loff_t pos, size_t count)
943 {
944 	struct fuse_write_in *inarg = &req->misc.write.in;
945 	struct fuse_write_out *outarg = &req->misc.write.out;
946 
947 	inarg->fh = ff->fh;
948 	inarg->offset = pos;
949 	inarg->size = count;
950 	req->in.h.opcode = FUSE_WRITE;
951 	req->in.h.nodeid = ff->nodeid;
952 	req->in.numargs = 2;
953 	if (ff->fc->minor < 9)
954 		req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
955 	else
956 		req->in.args[0].size = sizeof(struct fuse_write_in);
957 	req->in.args[0].value = inarg;
958 	req->in.args[1].size = count;
959 	req->out.numargs = 1;
960 	req->out.args[0].size = sizeof(struct fuse_write_out);
961 	req->out.args[0].value = outarg;
962 }
963 
964 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
965 			      loff_t pos, size_t count, fl_owner_t owner)
966 {
967 	struct kiocb *iocb = io->iocb;
968 	struct file *file = iocb->ki_filp;
969 	struct fuse_file *ff = file->private_data;
970 	struct fuse_conn *fc = ff->fc;
971 	struct fuse_write_in *inarg = &req->misc.write.in;
972 
973 	fuse_write_fill(req, ff, pos, count);
974 	inarg->flags = file->f_flags;
975 	if (iocb->ki_flags & IOCB_DSYNC)
976 		inarg->flags |= O_DSYNC;
977 	if (iocb->ki_flags & IOCB_SYNC)
978 		inarg->flags |= O_SYNC;
979 	if (owner != NULL) {
980 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
981 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
982 	}
983 
984 	if (io->async)
985 		return fuse_async_req_send(fc, req, count, io);
986 
987 	fuse_request_send(fc, req);
988 	return req->misc.write.out.size;
989 }
990 
991 bool fuse_write_update_size(struct inode *inode, loff_t pos)
992 {
993 	struct fuse_conn *fc = get_fuse_conn(inode);
994 	struct fuse_inode *fi = get_fuse_inode(inode);
995 	bool ret = false;
996 
997 	spin_lock(&fc->lock);
998 	fi->attr_version = ++fc->attr_version;
999 	if (pos > inode->i_size) {
1000 		i_size_write(inode, pos);
1001 		ret = true;
1002 	}
1003 	spin_unlock(&fc->lock);
1004 
1005 	return ret;
1006 }
1007 
1008 static size_t fuse_send_write_pages(struct fuse_req *req, struct kiocb *iocb,
1009 				    struct inode *inode, loff_t pos,
1010 				    size_t count)
1011 {
1012 	size_t res;
1013 	unsigned offset;
1014 	unsigned i;
1015 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1016 
1017 	for (i = 0; i < req->num_pages; i++)
1018 		fuse_wait_on_page_writeback(inode, req->pages[i]->index);
1019 
1020 	res = fuse_send_write(req, &io, pos, count, NULL);
1021 
1022 	offset = req->page_descs[0].offset;
1023 	count = res;
1024 	for (i = 0; i < req->num_pages; i++) {
1025 		struct page *page = req->pages[i];
1026 
1027 		if (!req->out.h.error && !offset && count >= PAGE_SIZE)
1028 			SetPageUptodate(page);
1029 
1030 		if (count > PAGE_SIZE - offset)
1031 			count -= PAGE_SIZE - offset;
1032 		else
1033 			count = 0;
1034 		offset = 0;
1035 
1036 		unlock_page(page);
1037 		put_page(page);
1038 	}
1039 
1040 	return res;
1041 }
1042 
1043 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1044 			       struct address_space *mapping,
1045 			       struct iov_iter *ii, loff_t pos)
1046 {
1047 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1048 	unsigned offset = pos & (PAGE_SIZE - 1);
1049 	size_t count = 0;
1050 	int err;
1051 
1052 	req->in.argpages = 1;
1053 	req->page_descs[0].offset = offset;
1054 
1055 	do {
1056 		size_t tmp;
1057 		struct page *page;
1058 		pgoff_t index = pos >> PAGE_SHIFT;
1059 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1060 				     iov_iter_count(ii));
1061 
1062 		bytes = min_t(size_t, bytes, fc->max_write - count);
1063 
1064  again:
1065 		err = -EFAULT;
1066 		if (iov_iter_fault_in_readable(ii, bytes))
1067 			break;
1068 
1069 		err = -ENOMEM;
1070 		page = grab_cache_page_write_begin(mapping, index, 0);
1071 		if (!page)
1072 			break;
1073 
1074 		if (mapping_writably_mapped(mapping))
1075 			flush_dcache_page(page);
1076 
1077 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1078 		flush_dcache_page(page);
1079 
1080 		iov_iter_advance(ii, tmp);
1081 		if (!tmp) {
1082 			unlock_page(page);
1083 			put_page(page);
1084 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1085 			goto again;
1086 		}
1087 
1088 		err = 0;
1089 		req->pages[req->num_pages] = page;
1090 		req->page_descs[req->num_pages].length = tmp;
1091 		req->num_pages++;
1092 
1093 		count += tmp;
1094 		pos += tmp;
1095 		offset += tmp;
1096 		if (offset == PAGE_SIZE)
1097 			offset = 0;
1098 
1099 		if (!fc->big_writes)
1100 			break;
1101 	} while (iov_iter_count(ii) && count < fc->max_write &&
1102 		 req->num_pages < req->max_pages && offset == 0);
1103 
1104 	return count > 0 ? count : err;
1105 }
1106 
1107 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1108 				     unsigned int max_pages)
1109 {
1110 	return min_t(unsigned int,
1111 		     ((pos + len - 1) >> PAGE_SHIFT) -
1112 		     (pos >> PAGE_SHIFT) + 1,
1113 		     max_pages);
1114 }
1115 
1116 static ssize_t fuse_perform_write(struct kiocb *iocb,
1117 				  struct address_space *mapping,
1118 				  struct iov_iter *ii, loff_t pos)
1119 {
1120 	struct inode *inode = mapping->host;
1121 	struct fuse_conn *fc = get_fuse_conn(inode);
1122 	struct fuse_inode *fi = get_fuse_inode(inode);
1123 	int err = 0;
1124 	ssize_t res = 0;
1125 
1126 	if (is_bad_inode(inode))
1127 		return -EIO;
1128 
1129 	if (inode->i_size < pos + iov_iter_count(ii))
1130 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1131 
1132 	do {
1133 		struct fuse_req *req;
1134 		ssize_t count;
1135 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1136 						      fc->max_pages);
1137 
1138 		req = fuse_get_req(fc, nr_pages);
1139 		if (IS_ERR(req)) {
1140 			err = PTR_ERR(req);
1141 			break;
1142 		}
1143 
1144 		count = fuse_fill_write_pages(req, mapping, ii, pos);
1145 		if (count <= 0) {
1146 			err = count;
1147 		} else {
1148 			size_t num_written;
1149 
1150 			num_written = fuse_send_write_pages(req, iocb, inode,
1151 							    pos, count);
1152 			err = req->out.h.error;
1153 			if (!err) {
1154 				res += num_written;
1155 				pos += num_written;
1156 
1157 				/* break out of the loop on short write */
1158 				if (num_written != count)
1159 					err = -EIO;
1160 			}
1161 		}
1162 		fuse_put_request(fc, req);
1163 	} while (!err && iov_iter_count(ii));
1164 
1165 	if (res > 0)
1166 		fuse_write_update_size(inode, pos);
1167 
1168 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1169 	fuse_invalidate_attr(inode);
1170 
1171 	return res > 0 ? res : err;
1172 }
1173 
1174 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1175 {
1176 	struct file *file = iocb->ki_filp;
1177 	struct address_space *mapping = file->f_mapping;
1178 	ssize_t written = 0;
1179 	ssize_t written_buffered = 0;
1180 	struct inode *inode = mapping->host;
1181 	ssize_t err;
1182 	loff_t endbyte = 0;
1183 
1184 	if (get_fuse_conn(inode)->writeback_cache) {
1185 		/* Update size (EOF optimization) and mode (SUID clearing) */
1186 		err = fuse_update_attributes(mapping->host, file);
1187 		if (err)
1188 			return err;
1189 
1190 		return generic_file_write_iter(iocb, from);
1191 	}
1192 
1193 	inode_lock(inode);
1194 
1195 	/* We can write back this queue in page reclaim */
1196 	current->backing_dev_info = inode_to_bdi(inode);
1197 
1198 	err = generic_write_checks(iocb, from);
1199 	if (err <= 0)
1200 		goto out;
1201 
1202 	err = file_remove_privs(file);
1203 	if (err)
1204 		goto out;
1205 
1206 	err = file_update_time(file);
1207 	if (err)
1208 		goto out;
1209 
1210 	if (iocb->ki_flags & IOCB_DIRECT) {
1211 		loff_t pos = iocb->ki_pos;
1212 		written = generic_file_direct_write(iocb, from);
1213 		if (written < 0 || !iov_iter_count(from))
1214 			goto out;
1215 
1216 		pos += written;
1217 
1218 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1219 		if (written_buffered < 0) {
1220 			err = written_buffered;
1221 			goto out;
1222 		}
1223 		endbyte = pos + written_buffered - 1;
1224 
1225 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1226 						   endbyte);
1227 		if (err)
1228 			goto out;
1229 
1230 		invalidate_mapping_pages(file->f_mapping,
1231 					 pos >> PAGE_SHIFT,
1232 					 endbyte >> PAGE_SHIFT);
1233 
1234 		written += written_buffered;
1235 		iocb->ki_pos = pos + written_buffered;
1236 	} else {
1237 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1238 		if (written >= 0)
1239 			iocb->ki_pos += written;
1240 	}
1241 out:
1242 	current->backing_dev_info = NULL;
1243 	inode_unlock(inode);
1244 	if (written > 0)
1245 		written = generic_write_sync(iocb, written);
1246 
1247 	return written ? written : err;
1248 }
1249 
1250 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1251 		unsigned index, unsigned nr_pages)
1252 {
1253 	int i;
1254 
1255 	for (i = index; i < index + nr_pages; i++)
1256 		req->page_descs[i].length = PAGE_SIZE -
1257 			req->page_descs[i].offset;
1258 }
1259 
1260 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1261 {
1262 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1263 }
1264 
1265 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1266 					size_t max_size)
1267 {
1268 	return min(iov_iter_single_seg_count(ii), max_size);
1269 }
1270 
1271 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1272 			       size_t *nbytesp, int write)
1273 {
1274 	size_t nbytes = 0;  /* # bytes already packed in req */
1275 	ssize_t ret = 0;
1276 
1277 	/* Special case for kernel I/O: can copy directly into the buffer */
1278 	if (iov_iter_is_kvec(ii)) {
1279 		unsigned long user_addr = fuse_get_user_addr(ii);
1280 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1281 
1282 		if (write)
1283 			req->in.args[1].value = (void *) user_addr;
1284 		else
1285 			req->out.args[0].value = (void *) user_addr;
1286 
1287 		iov_iter_advance(ii, frag_size);
1288 		*nbytesp = frag_size;
1289 		return 0;
1290 	}
1291 
1292 	while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1293 		unsigned npages;
1294 		size_t start;
1295 		ret = iov_iter_get_pages(ii, &req->pages[req->num_pages],
1296 					*nbytesp - nbytes,
1297 					req->max_pages - req->num_pages,
1298 					&start);
1299 		if (ret < 0)
1300 			break;
1301 
1302 		iov_iter_advance(ii, ret);
1303 		nbytes += ret;
1304 
1305 		ret += start;
1306 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1307 
1308 		req->page_descs[req->num_pages].offset = start;
1309 		fuse_page_descs_length_init(req, req->num_pages, npages);
1310 
1311 		req->num_pages += npages;
1312 		req->page_descs[req->num_pages - 1].length -=
1313 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1314 	}
1315 
1316 	if (write)
1317 		req->in.argpages = 1;
1318 	else
1319 		req->out.argpages = 1;
1320 
1321 	*nbytesp = nbytes;
1322 
1323 	return ret < 0 ? ret : 0;
1324 }
1325 
1326 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1327 		       loff_t *ppos, int flags)
1328 {
1329 	int write = flags & FUSE_DIO_WRITE;
1330 	int cuse = flags & FUSE_DIO_CUSE;
1331 	struct file *file = io->iocb->ki_filp;
1332 	struct inode *inode = file->f_mapping->host;
1333 	struct fuse_file *ff = file->private_data;
1334 	struct fuse_conn *fc = ff->fc;
1335 	size_t nmax = write ? fc->max_write : fc->max_read;
1336 	loff_t pos = *ppos;
1337 	size_t count = iov_iter_count(iter);
1338 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1339 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1340 	ssize_t res = 0;
1341 	struct fuse_req *req;
1342 	int err = 0;
1343 
1344 	if (io->async)
1345 		req = fuse_get_req_for_background(fc, iov_iter_npages(iter,
1346 								fc->max_pages));
1347 	else
1348 		req = fuse_get_req(fc, iov_iter_npages(iter, fc->max_pages));
1349 	if (IS_ERR(req))
1350 		return PTR_ERR(req);
1351 
1352 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1353 		if (!write)
1354 			inode_lock(inode);
1355 		fuse_sync_writes(inode);
1356 		if (!write)
1357 			inode_unlock(inode);
1358 	}
1359 
1360 	io->should_dirty = !write && iter_is_iovec(iter);
1361 	while (count) {
1362 		size_t nres;
1363 		fl_owner_t owner = current->files;
1364 		size_t nbytes = min(count, nmax);
1365 		err = fuse_get_user_pages(req, iter, &nbytes, write);
1366 		if (err && !nbytes)
1367 			break;
1368 
1369 		if (write)
1370 			nres = fuse_send_write(req, io, pos, nbytes, owner);
1371 		else
1372 			nres = fuse_send_read(req, io, pos, nbytes, owner);
1373 
1374 		if (!io->async)
1375 			fuse_release_user_pages(req, io->should_dirty);
1376 		if (req->out.h.error) {
1377 			err = req->out.h.error;
1378 			break;
1379 		} else if (nres > nbytes) {
1380 			res = 0;
1381 			err = -EIO;
1382 			break;
1383 		}
1384 		count -= nres;
1385 		res += nres;
1386 		pos += nres;
1387 		if (nres != nbytes)
1388 			break;
1389 		if (count) {
1390 			fuse_put_request(fc, req);
1391 			if (io->async)
1392 				req = fuse_get_req_for_background(fc,
1393 					iov_iter_npages(iter, fc->max_pages));
1394 			else
1395 				req = fuse_get_req(fc, iov_iter_npages(iter,
1396 								fc->max_pages));
1397 			if (IS_ERR(req))
1398 				break;
1399 		}
1400 	}
1401 	if (!IS_ERR(req))
1402 		fuse_put_request(fc, req);
1403 	if (res > 0)
1404 		*ppos = pos;
1405 
1406 	return res > 0 ? res : err;
1407 }
1408 EXPORT_SYMBOL_GPL(fuse_direct_io);
1409 
1410 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1411 				  struct iov_iter *iter,
1412 				  loff_t *ppos)
1413 {
1414 	ssize_t res;
1415 	struct inode *inode = file_inode(io->iocb->ki_filp);
1416 
1417 	if (is_bad_inode(inode))
1418 		return -EIO;
1419 
1420 	res = fuse_direct_io(io, iter, ppos, 0);
1421 
1422 	fuse_invalidate_atime(inode);
1423 
1424 	return res;
1425 }
1426 
1427 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1428 {
1429 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1430 	return __fuse_direct_read(&io, to, &iocb->ki_pos);
1431 }
1432 
1433 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1434 {
1435 	struct inode *inode = file_inode(iocb->ki_filp);
1436 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1437 	ssize_t res;
1438 
1439 	if (is_bad_inode(inode))
1440 		return -EIO;
1441 
1442 	/* Don't allow parallel writes to the same file */
1443 	inode_lock(inode);
1444 	res = generic_write_checks(iocb, from);
1445 	if (res > 0)
1446 		res = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE);
1447 	fuse_invalidate_attr(inode);
1448 	if (res > 0)
1449 		fuse_write_update_size(inode, iocb->ki_pos);
1450 	inode_unlock(inode);
1451 
1452 	return res;
1453 }
1454 
1455 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1456 {
1457 	int i;
1458 
1459 	for (i = 0; i < req->num_pages; i++)
1460 		__free_page(req->pages[i]);
1461 
1462 	if (req->ff)
1463 		fuse_file_put(req->ff, false);
1464 }
1465 
1466 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1467 {
1468 	struct inode *inode = req->inode;
1469 	struct fuse_inode *fi = get_fuse_inode(inode);
1470 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1471 	int i;
1472 
1473 	list_del(&req->writepages_entry);
1474 	for (i = 0; i < req->num_pages; i++) {
1475 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1476 		dec_node_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1477 		wb_writeout_inc(&bdi->wb);
1478 	}
1479 	wake_up(&fi->page_waitq);
1480 }
1481 
1482 /* Called under fc->lock, may release and reacquire it */
1483 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1484 				loff_t size)
1485 __releases(fc->lock)
1486 __acquires(fc->lock)
1487 {
1488 	struct fuse_inode *fi = get_fuse_inode(req->inode);
1489 	struct fuse_write_in *inarg = &req->misc.write.in;
1490 	__u64 data_size = req->num_pages * PAGE_SIZE;
1491 	bool queued;
1492 
1493 	if (!fc->connected)
1494 		goto out_free;
1495 
1496 	if (inarg->offset + data_size <= size) {
1497 		inarg->size = data_size;
1498 	} else if (inarg->offset < size) {
1499 		inarg->size = size - inarg->offset;
1500 	} else {
1501 		/* Got truncated off completely */
1502 		goto out_free;
1503 	}
1504 
1505 	req->in.args[1].size = inarg->size;
1506 	fi->writectr++;
1507 	queued = fuse_request_queue_background(fc, req);
1508 	WARN_ON(!queued);
1509 	return;
1510 
1511  out_free:
1512 	fuse_writepage_finish(fc, req);
1513 	spin_unlock(&fc->lock);
1514 	fuse_writepage_free(fc, req);
1515 	fuse_put_request(fc, req);
1516 	spin_lock(&fc->lock);
1517 }
1518 
1519 /*
1520  * If fi->writectr is positive (no truncate or fsync going on) send
1521  * all queued writepage requests.
1522  *
1523  * Called with fc->lock
1524  */
1525 void fuse_flush_writepages(struct inode *inode)
1526 __releases(fc->lock)
1527 __acquires(fc->lock)
1528 {
1529 	struct fuse_conn *fc = get_fuse_conn(inode);
1530 	struct fuse_inode *fi = get_fuse_inode(inode);
1531 	size_t crop = i_size_read(inode);
1532 	struct fuse_req *req;
1533 
1534 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1535 		req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1536 		list_del_init(&req->list);
1537 		fuse_send_writepage(fc, req, crop);
1538 	}
1539 }
1540 
1541 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1542 {
1543 	struct inode *inode = req->inode;
1544 	struct fuse_inode *fi = get_fuse_inode(inode);
1545 
1546 	mapping_set_error(inode->i_mapping, req->out.h.error);
1547 	spin_lock(&fc->lock);
1548 	while (req->misc.write.next) {
1549 		struct fuse_conn *fc = get_fuse_conn(inode);
1550 		struct fuse_write_in *inarg = &req->misc.write.in;
1551 		struct fuse_req *next = req->misc.write.next;
1552 		req->misc.write.next = next->misc.write.next;
1553 		next->misc.write.next = NULL;
1554 		next->ff = fuse_file_get(req->ff);
1555 		list_add(&next->writepages_entry, &fi->writepages);
1556 
1557 		/*
1558 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1559 		 * based on primary request size.
1560 		 *
1561 		 * 1st case (trivial): there are no concurrent activities using
1562 		 * fuse_set/release_nowrite.  Then we're on safe side because
1563 		 * fuse_flush_writepages() would call fuse_send_writepage()
1564 		 * anyway.
1565 		 *
1566 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1567 		 * now for completion of all in-flight requests.  This happens
1568 		 * rarely and no more than once per page, so this should be
1569 		 * okay.
1570 		 *
1571 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1572 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1573 		 * that fuse_set_nowrite returned implies that all in-flight
1574 		 * requests were completed along with all of their secondary
1575 		 * requests.  Further primary requests are blocked by negative
1576 		 * writectr.  Hence there cannot be any in-flight requests and
1577 		 * no invocations of fuse_writepage_end() while we're in
1578 		 * fuse_set_nowrite..fuse_release_nowrite section.
1579 		 */
1580 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1581 	}
1582 	fi->writectr--;
1583 	fuse_writepage_finish(fc, req);
1584 	spin_unlock(&fc->lock);
1585 	fuse_writepage_free(fc, req);
1586 }
1587 
1588 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1589 					       struct fuse_inode *fi)
1590 {
1591 	struct fuse_file *ff = NULL;
1592 
1593 	spin_lock(&fc->lock);
1594 	if (!list_empty(&fi->write_files)) {
1595 		ff = list_entry(fi->write_files.next, struct fuse_file,
1596 				write_entry);
1597 		fuse_file_get(ff);
1598 	}
1599 	spin_unlock(&fc->lock);
1600 
1601 	return ff;
1602 }
1603 
1604 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1605 					     struct fuse_inode *fi)
1606 {
1607 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1608 	WARN_ON(!ff);
1609 	return ff;
1610 }
1611 
1612 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1613 {
1614 	struct fuse_conn *fc = get_fuse_conn(inode);
1615 	struct fuse_inode *fi = get_fuse_inode(inode);
1616 	struct fuse_file *ff;
1617 	int err;
1618 
1619 	ff = __fuse_write_file_get(fc, fi);
1620 	err = fuse_flush_times(inode, ff);
1621 	if (ff)
1622 		fuse_file_put(ff, 0);
1623 
1624 	return err;
1625 }
1626 
1627 static int fuse_writepage_locked(struct page *page)
1628 {
1629 	struct address_space *mapping = page->mapping;
1630 	struct inode *inode = mapping->host;
1631 	struct fuse_conn *fc = get_fuse_conn(inode);
1632 	struct fuse_inode *fi = get_fuse_inode(inode);
1633 	struct fuse_req *req;
1634 	struct page *tmp_page;
1635 	int error = -ENOMEM;
1636 
1637 	set_page_writeback(page);
1638 
1639 	req = fuse_request_alloc_nofs(1);
1640 	if (!req)
1641 		goto err;
1642 
1643 	/* writeback always goes to bg_queue */
1644 	__set_bit(FR_BACKGROUND, &req->flags);
1645 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1646 	if (!tmp_page)
1647 		goto err_free;
1648 
1649 	error = -EIO;
1650 	req->ff = fuse_write_file_get(fc, fi);
1651 	if (!req->ff)
1652 		goto err_nofile;
1653 
1654 	fuse_write_fill(req, req->ff, page_offset(page), 0);
1655 
1656 	copy_highpage(tmp_page, page);
1657 	req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1658 	req->misc.write.next = NULL;
1659 	req->in.argpages = 1;
1660 	req->num_pages = 1;
1661 	req->pages[0] = tmp_page;
1662 	req->page_descs[0].offset = 0;
1663 	req->page_descs[0].length = PAGE_SIZE;
1664 	req->end = fuse_writepage_end;
1665 	req->inode = inode;
1666 
1667 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1668 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1669 
1670 	spin_lock(&fc->lock);
1671 	list_add(&req->writepages_entry, &fi->writepages);
1672 	list_add_tail(&req->list, &fi->queued_writes);
1673 	fuse_flush_writepages(inode);
1674 	spin_unlock(&fc->lock);
1675 
1676 	end_page_writeback(page);
1677 
1678 	return 0;
1679 
1680 err_nofile:
1681 	__free_page(tmp_page);
1682 err_free:
1683 	fuse_request_free(req);
1684 err:
1685 	mapping_set_error(page->mapping, error);
1686 	end_page_writeback(page);
1687 	return error;
1688 }
1689 
1690 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1691 {
1692 	int err;
1693 
1694 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1695 		/*
1696 		 * ->writepages() should be called for sync() and friends.  We
1697 		 * should only get here on direct reclaim and then we are
1698 		 * allowed to skip a page which is already in flight
1699 		 */
1700 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1701 
1702 		redirty_page_for_writepage(wbc, page);
1703 		return 0;
1704 	}
1705 
1706 	err = fuse_writepage_locked(page);
1707 	unlock_page(page);
1708 
1709 	return err;
1710 }
1711 
1712 struct fuse_fill_wb_data {
1713 	struct fuse_req *req;
1714 	struct fuse_file *ff;
1715 	struct inode *inode;
1716 	struct page **orig_pages;
1717 };
1718 
1719 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1720 {
1721 	struct fuse_req *req = data->req;
1722 	struct inode *inode = data->inode;
1723 	struct fuse_conn *fc = get_fuse_conn(inode);
1724 	struct fuse_inode *fi = get_fuse_inode(inode);
1725 	int num_pages = req->num_pages;
1726 	int i;
1727 
1728 	req->ff = fuse_file_get(data->ff);
1729 	spin_lock(&fc->lock);
1730 	list_add_tail(&req->list, &fi->queued_writes);
1731 	fuse_flush_writepages(inode);
1732 	spin_unlock(&fc->lock);
1733 
1734 	for (i = 0; i < num_pages; i++)
1735 		end_page_writeback(data->orig_pages[i]);
1736 }
1737 
1738 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1739 				     struct page *page)
1740 {
1741 	struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1742 	struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1743 	struct fuse_req *tmp;
1744 	struct fuse_req *old_req;
1745 	bool found = false;
1746 	pgoff_t curr_index;
1747 
1748 	BUG_ON(new_req->num_pages != 0);
1749 
1750 	spin_lock(&fc->lock);
1751 	list_del(&new_req->writepages_entry);
1752 	list_for_each_entry(old_req, &fi->writepages, writepages_entry) {
1753 		BUG_ON(old_req->inode != new_req->inode);
1754 		curr_index = old_req->misc.write.in.offset >> PAGE_SHIFT;
1755 		if (curr_index <= page->index &&
1756 		    page->index < curr_index + old_req->num_pages) {
1757 			found = true;
1758 			break;
1759 		}
1760 	}
1761 	if (!found) {
1762 		list_add(&new_req->writepages_entry, &fi->writepages);
1763 		goto out_unlock;
1764 	}
1765 
1766 	new_req->num_pages = 1;
1767 	for (tmp = old_req; tmp != NULL; tmp = tmp->misc.write.next) {
1768 		BUG_ON(tmp->inode != new_req->inode);
1769 		curr_index = tmp->misc.write.in.offset >> PAGE_SHIFT;
1770 		if (tmp->num_pages == 1 &&
1771 		    curr_index == page->index) {
1772 			old_req = tmp;
1773 		}
1774 	}
1775 
1776 	if (old_req->num_pages == 1 && test_bit(FR_PENDING, &old_req->flags)) {
1777 		struct backing_dev_info *bdi = inode_to_bdi(page->mapping->host);
1778 
1779 		copy_highpage(old_req->pages[0], page);
1780 		spin_unlock(&fc->lock);
1781 
1782 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1783 		dec_node_page_state(page, NR_WRITEBACK_TEMP);
1784 		wb_writeout_inc(&bdi->wb);
1785 		fuse_writepage_free(fc, new_req);
1786 		fuse_request_free(new_req);
1787 		goto out;
1788 	} else {
1789 		new_req->misc.write.next = old_req->misc.write.next;
1790 		old_req->misc.write.next = new_req;
1791 	}
1792 out_unlock:
1793 	spin_unlock(&fc->lock);
1794 out:
1795 	return found;
1796 }
1797 
1798 static int fuse_writepages_fill(struct page *page,
1799 		struct writeback_control *wbc, void *_data)
1800 {
1801 	struct fuse_fill_wb_data *data = _data;
1802 	struct fuse_req *req = data->req;
1803 	struct inode *inode = data->inode;
1804 	struct fuse_conn *fc = get_fuse_conn(inode);
1805 	struct page *tmp_page;
1806 	bool is_writeback;
1807 	int err;
1808 
1809 	if (!data->ff) {
1810 		err = -EIO;
1811 		data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1812 		if (!data->ff)
1813 			goto out_unlock;
1814 	}
1815 
1816 	/*
1817 	 * Being under writeback is unlikely but possible.  For example direct
1818 	 * read to an mmaped fuse file will set the page dirty twice; once when
1819 	 * the pages are faulted with get_user_pages(), and then after the read
1820 	 * completed.
1821 	 */
1822 	is_writeback = fuse_page_is_writeback(inode, page->index);
1823 
1824 	if (req && req->num_pages &&
1825 	    (is_writeback || req->num_pages == fc->max_pages ||
1826 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_write ||
1827 	     data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1828 		fuse_writepages_send(data);
1829 		data->req = NULL;
1830 	} else if (req && req->num_pages == req->max_pages) {
1831 		if (!fuse_req_realloc_pages(fc, req, GFP_NOFS)) {
1832 			fuse_writepages_send(data);
1833 			req = data->req = NULL;
1834 		}
1835 	}
1836 
1837 	err = -ENOMEM;
1838 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1839 	if (!tmp_page)
1840 		goto out_unlock;
1841 
1842 	/*
1843 	 * The page must not be redirtied until the writeout is completed
1844 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
1845 	 * there could be more than one temporary page instance for each real
1846 	 * page.
1847 	 *
1848 	 * This is ensured by holding the page lock in page_mkwrite() while
1849 	 * checking fuse_page_is_writeback().  We already hold the page lock
1850 	 * since clear_page_dirty_for_io() and keep it held until we add the
1851 	 * request to the fi->writepages list and increment req->num_pages.
1852 	 * After this fuse_page_is_writeback() will indicate that the page is
1853 	 * under writeback, so we can release the page lock.
1854 	 */
1855 	if (data->req == NULL) {
1856 		struct fuse_inode *fi = get_fuse_inode(inode);
1857 
1858 		err = -ENOMEM;
1859 		req = fuse_request_alloc_nofs(FUSE_REQ_INLINE_PAGES);
1860 		if (!req) {
1861 			__free_page(tmp_page);
1862 			goto out_unlock;
1863 		}
1864 
1865 		fuse_write_fill(req, data->ff, page_offset(page), 0);
1866 		req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1867 		req->misc.write.next = NULL;
1868 		req->in.argpages = 1;
1869 		__set_bit(FR_BACKGROUND, &req->flags);
1870 		req->num_pages = 0;
1871 		req->end = fuse_writepage_end;
1872 		req->inode = inode;
1873 
1874 		spin_lock(&fc->lock);
1875 		list_add(&req->writepages_entry, &fi->writepages);
1876 		spin_unlock(&fc->lock);
1877 
1878 		data->req = req;
1879 	}
1880 	set_page_writeback(page);
1881 
1882 	copy_highpage(tmp_page, page);
1883 	req->pages[req->num_pages] = tmp_page;
1884 	req->page_descs[req->num_pages].offset = 0;
1885 	req->page_descs[req->num_pages].length = PAGE_SIZE;
1886 
1887 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1888 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1889 
1890 	err = 0;
1891 	if (is_writeback && fuse_writepage_in_flight(req, page)) {
1892 		end_page_writeback(page);
1893 		data->req = NULL;
1894 		goto out_unlock;
1895 	}
1896 	data->orig_pages[req->num_pages] = page;
1897 
1898 	/*
1899 	 * Protected by fc->lock against concurrent access by
1900 	 * fuse_page_is_writeback().
1901 	 */
1902 	spin_lock(&fc->lock);
1903 	req->num_pages++;
1904 	spin_unlock(&fc->lock);
1905 
1906 out_unlock:
1907 	unlock_page(page);
1908 
1909 	return err;
1910 }
1911 
1912 static int fuse_writepages(struct address_space *mapping,
1913 			   struct writeback_control *wbc)
1914 {
1915 	struct inode *inode = mapping->host;
1916 	struct fuse_conn *fc = get_fuse_conn(inode);
1917 	struct fuse_fill_wb_data data;
1918 	int err;
1919 
1920 	err = -EIO;
1921 	if (is_bad_inode(inode))
1922 		goto out;
1923 
1924 	data.inode = inode;
1925 	data.req = NULL;
1926 	data.ff = NULL;
1927 
1928 	err = -ENOMEM;
1929 	data.orig_pages = kcalloc(fc->max_pages,
1930 				  sizeof(struct page *),
1931 				  GFP_NOFS);
1932 	if (!data.orig_pages)
1933 		goto out;
1934 
1935 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1936 	if (data.req) {
1937 		/* Ignore errors if we can write at least one page */
1938 		BUG_ON(!data.req->num_pages);
1939 		fuse_writepages_send(&data);
1940 		err = 0;
1941 	}
1942 	if (data.ff)
1943 		fuse_file_put(data.ff, false);
1944 
1945 	kfree(data.orig_pages);
1946 out:
1947 	return err;
1948 }
1949 
1950 /*
1951  * It's worthy to make sure that space is reserved on disk for the write,
1952  * but how to implement it without killing performance need more thinking.
1953  */
1954 static int fuse_write_begin(struct file *file, struct address_space *mapping,
1955 		loff_t pos, unsigned len, unsigned flags,
1956 		struct page **pagep, void **fsdata)
1957 {
1958 	pgoff_t index = pos >> PAGE_SHIFT;
1959 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
1960 	struct page *page;
1961 	loff_t fsize;
1962 	int err = -ENOMEM;
1963 
1964 	WARN_ON(!fc->writeback_cache);
1965 
1966 	page = grab_cache_page_write_begin(mapping, index, flags);
1967 	if (!page)
1968 		goto error;
1969 
1970 	fuse_wait_on_page_writeback(mapping->host, page->index);
1971 
1972 	if (PageUptodate(page) || len == PAGE_SIZE)
1973 		goto success;
1974 	/*
1975 	 * Check if the start this page comes after the end of file, in which
1976 	 * case the readpage can be optimized away.
1977 	 */
1978 	fsize = i_size_read(mapping->host);
1979 	if (fsize <= (pos & PAGE_MASK)) {
1980 		size_t off = pos & ~PAGE_MASK;
1981 		if (off)
1982 			zero_user_segment(page, 0, off);
1983 		goto success;
1984 	}
1985 	err = fuse_do_readpage(file, page);
1986 	if (err)
1987 		goto cleanup;
1988 success:
1989 	*pagep = page;
1990 	return 0;
1991 
1992 cleanup:
1993 	unlock_page(page);
1994 	put_page(page);
1995 error:
1996 	return err;
1997 }
1998 
1999 static int fuse_write_end(struct file *file, struct address_space *mapping,
2000 		loff_t pos, unsigned len, unsigned copied,
2001 		struct page *page, void *fsdata)
2002 {
2003 	struct inode *inode = page->mapping->host;
2004 
2005 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2006 	if (!copied)
2007 		goto unlock;
2008 
2009 	if (!PageUptodate(page)) {
2010 		/* Zero any unwritten bytes at the end of the page */
2011 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2012 		if (endoff)
2013 			zero_user_segment(page, endoff, PAGE_SIZE);
2014 		SetPageUptodate(page);
2015 	}
2016 
2017 	fuse_write_update_size(inode, pos + copied);
2018 	set_page_dirty(page);
2019 
2020 unlock:
2021 	unlock_page(page);
2022 	put_page(page);
2023 
2024 	return copied;
2025 }
2026 
2027 static int fuse_launder_page(struct page *page)
2028 {
2029 	int err = 0;
2030 	if (clear_page_dirty_for_io(page)) {
2031 		struct inode *inode = page->mapping->host;
2032 		err = fuse_writepage_locked(page);
2033 		if (!err)
2034 			fuse_wait_on_page_writeback(inode, page->index);
2035 	}
2036 	return err;
2037 }
2038 
2039 /*
2040  * Write back dirty pages now, because there may not be any suitable
2041  * open files later
2042  */
2043 static void fuse_vma_close(struct vm_area_struct *vma)
2044 {
2045 	filemap_write_and_wait(vma->vm_file->f_mapping);
2046 }
2047 
2048 /*
2049  * Wait for writeback against this page to complete before allowing it
2050  * to be marked dirty again, and hence written back again, possibly
2051  * before the previous writepage completed.
2052  *
2053  * Block here, instead of in ->writepage(), so that the userspace fs
2054  * can only block processes actually operating on the filesystem.
2055  *
2056  * Otherwise unprivileged userspace fs would be able to block
2057  * unrelated:
2058  *
2059  * - page migration
2060  * - sync(2)
2061  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2062  */
2063 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2064 {
2065 	struct page *page = vmf->page;
2066 	struct inode *inode = file_inode(vmf->vma->vm_file);
2067 
2068 	file_update_time(vmf->vma->vm_file);
2069 	lock_page(page);
2070 	if (page->mapping != inode->i_mapping) {
2071 		unlock_page(page);
2072 		return VM_FAULT_NOPAGE;
2073 	}
2074 
2075 	fuse_wait_on_page_writeback(inode, page->index);
2076 	return VM_FAULT_LOCKED;
2077 }
2078 
2079 static const struct vm_operations_struct fuse_file_vm_ops = {
2080 	.close		= fuse_vma_close,
2081 	.fault		= filemap_fault,
2082 	.map_pages	= filemap_map_pages,
2083 	.page_mkwrite	= fuse_page_mkwrite,
2084 };
2085 
2086 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2087 {
2088 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2089 		fuse_link_write_file(file);
2090 
2091 	file_accessed(file);
2092 	vma->vm_ops = &fuse_file_vm_ops;
2093 	return 0;
2094 }
2095 
2096 static int fuse_direct_mmap(struct file *file, struct vm_area_struct *vma)
2097 {
2098 	/* Can't provide the coherency needed for MAP_SHARED */
2099 	if (vma->vm_flags & VM_MAYSHARE)
2100 		return -ENODEV;
2101 
2102 	invalidate_inode_pages2(file->f_mapping);
2103 
2104 	return generic_file_mmap(file, vma);
2105 }
2106 
2107 static int convert_fuse_file_lock(struct fuse_conn *fc,
2108 				  const struct fuse_file_lock *ffl,
2109 				  struct file_lock *fl)
2110 {
2111 	switch (ffl->type) {
2112 	case F_UNLCK:
2113 		break;
2114 
2115 	case F_RDLCK:
2116 	case F_WRLCK:
2117 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2118 		    ffl->end < ffl->start)
2119 			return -EIO;
2120 
2121 		fl->fl_start = ffl->start;
2122 		fl->fl_end = ffl->end;
2123 
2124 		/*
2125 		 * Convert pid into init's pid namespace.  The locks API will
2126 		 * translate it into the caller's pid namespace.
2127 		 */
2128 		rcu_read_lock();
2129 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2130 		rcu_read_unlock();
2131 		break;
2132 
2133 	default:
2134 		return -EIO;
2135 	}
2136 	fl->fl_type = ffl->type;
2137 	return 0;
2138 }
2139 
2140 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2141 			 const struct file_lock *fl, int opcode, pid_t pid,
2142 			 int flock, struct fuse_lk_in *inarg)
2143 {
2144 	struct inode *inode = file_inode(file);
2145 	struct fuse_conn *fc = get_fuse_conn(inode);
2146 	struct fuse_file *ff = file->private_data;
2147 
2148 	memset(inarg, 0, sizeof(*inarg));
2149 	inarg->fh = ff->fh;
2150 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2151 	inarg->lk.start = fl->fl_start;
2152 	inarg->lk.end = fl->fl_end;
2153 	inarg->lk.type = fl->fl_type;
2154 	inarg->lk.pid = pid;
2155 	if (flock)
2156 		inarg->lk_flags |= FUSE_LK_FLOCK;
2157 	args->in.h.opcode = opcode;
2158 	args->in.h.nodeid = get_node_id(inode);
2159 	args->in.numargs = 1;
2160 	args->in.args[0].size = sizeof(*inarg);
2161 	args->in.args[0].value = inarg;
2162 }
2163 
2164 static int fuse_getlk(struct file *file, struct file_lock *fl)
2165 {
2166 	struct inode *inode = file_inode(file);
2167 	struct fuse_conn *fc = get_fuse_conn(inode);
2168 	FUSE_ARGS(args);
2169 	struct fuse_lk_in inarg;
2170 	struct fuse_lk_out outarg;
2171 	int err;
2172 
2173 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2174 	args.out.numargs = 1;
2175 	args.out.args[0].size = sizeof(outarg);
2176 	args.out.args[0].value = &outarg;
2177 	err = fuse_simple_request(fc, &args);
2178 	if (!err)
2179 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2180 
2181 	return err;
2182 }
2183 
2184 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2185 {
2186 	struct inode *inode = file_inode(file);
2187 	struct fuse_conn *fc = get_fuse_conn(inode);
2188 	FUSE_ARGS(args);
2189 	struct fuse_lk_in inarg;
2190 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2191 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2192 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2193 	int err;
2194 
2195 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2196 		/* NLM needs asynchronous locks, which we don't support yet */
2197 		return -ENOLCK;
2198 	}
2199 
2200 	/* Unlock on close is handled by the flush method */
2201 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2202 		return 0;
2203 
2204 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2205 	err = fuse_simple_request(fc, &args);
2206 
2207 	/* locking is restartable */
2208 	if (err == -EINTR)
2209 		err = -ERESTARTSYS;
2210 
2211 	return err;
2212 }
2213 
2214 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2215 {
2216 	struct inode *inode = file_inode(file);
2217 	struct fuse_conn *fc = get_fuse_conn(inode);
2218 	int err;
2219 
2220 	if (cmd == F_CANCELLK) {
2221 		err = 0;
2222 	} else if (cmd == F_GETLK) {
2223 		if (fc->no_lock) {
2224 			posix_test_lock(file, fl);
2225 			err = 0;
2226 		} else
2227 			err = fuse_getlk(file, fl);
2228 	} else {
2229 		if (fc->no_lock)
2230 			err = posix_lock_file(file, fl, NULL);
2231 		else
2232 			err = fuse_setlk(file, fl, 0);
2233 	}
2234 	return err;
2235 }
2236 
2237 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2238 {
2239 	struct inode *inode = file_inode(file);
2240 	struct fuse_conn *fc = get_fuse_conn(inode);
2241 	int err;
2242 
2243 	if (fc->no_flock) {
2244 		err = locks_lock_file_wait(file, fl);
2245 	} else {
2246 		struct fuse_file *ff = file->private_data;
2247 
2248 		/* emulate flock with POSIX locks */
2249 		ff->flock = true;
2250 		err = fuse_setlk(file, fl, 1);
2251 	}
2252 
2253 	return err;
2254 }
2255 
2256 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2257 {
2258 	struct inode *inode = mapping->host;
2259 	struct fuse_conn *fc = get_fuse_conn(inode);
2260 	FUSE_ARGS(args);
2261 	struct fuse_bmap_in inarg;
2262 	struct fuse_bmap_out outarg;
2263 	int err;
2264 
2265 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2266 		return 0;
2267 
2268 	memset(&inarg, 0, sizeof(inarg));
2269 	inarg.block = block;
2270 	inarg.blocksize = inode->i_sb->s_blocksize;
2271 	args.in.h.opcode = FUSE_BMAP;
2272 	args.in.h.nodeid = get_node_id(inode);
2273 	args.in.numargs = 1;
2274 	args.in.args[0].size = sizeof(inarg);
2275 	args.in.args[0].value = &inarg;
2276 	args.out.numargs = 1;
2277 	args.out.args[0].size = sizeof(outarg);
2278 	args.out.args[0].value = &outarg;
2279 	err = fuse_simple_request(fc, &args);
2280 	if (err == -ENOSYS)
2281 		fc->no_bmap = 1;
2282 
2283 	return err ? 0 : outarg.block;
2284 }
2285 
2286 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2287 {
2288 	struct inode *inode = file->f_mapping->host;
2289 	struct fuse_conn *fc = get_fuse_conn(inode);
2290 	struct fuse_file *ff = file->private_data;
2291 	FUSE_ARGS(args);
2292 	struct fuse_lseek_in inarg = {
2293 		.fh = ff->fh,
2294 		.offset = offset,
2295 		.whence = whence
2296 	};
2297 	struct fuse_lseek_out outarg;
2298 	int err;
2299 
2300 	if (fc->no_lseek)
2301 		goto fallback;
2302 
2303 	args.in.h.opcode = FUSE_LSEEK;
2304 	args.in.h.nodeid = ff->nodeid;
2305 	args.in.numargs = 1;
2306 	args.in.args[0].size = sizeof(inarg);
2307 	args.in.args[0].value = &inarg;
2308 	args.out.numargs = 1;
2309 	args.out.args[0].size = sizeof(outarg);
2310 	args.out.args[0].value = &outarg;
2311 	err = fuse_simple_request(fc, &args);
2312 	if (err) {
2313 		if (err == -ENOSYS) {
2314 			fc->no_lseek = 1;
2315 			goto fallback;
2316 		}
2317 		return err;
2318 	}
2319 
2320 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2321 
2322 fallback:
2323 	err = fuse_update_attributes(inode, file);
2324 	if (!err)
2325 		return generic_file_llseek(file, offset, whence);
2326 	else
2327 		return err;
2328 }
2329 
2330 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2331 {
2332 	loff_t retval;
2333 	struct inode *inode = file_inode(file);
2334 
2335 	switch (whence) {
2336 	case SEEK_SET:
2337 	case SEEK_CUR:
2338 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2339 		retval = generic_file_llseek(file, offset, whence);
2340 		break;
2341 	case SEEK_END:
2342 		inode_lock(inode);
2343 		retval = fuse_update_attributes(inode, file);
2344 		if (!retval)
2345 			retval = generic_file_llseek(file, offset, whence);
2346 		inode_unlock(inode);
2347 		break;
2348 	case SEEK_HOLE:
2349 	case SEEK_DATA:
2350 		inode_lock(inode);
2351 		retval = fuse_lseek(file, offset, whence);
2352 		inode_unlock(inode);
2353 		break;
2354 	default:
2355 		retval = -EINVAL;
2356 	}
2357 
2358 	return retval;
2359 }
2360 
2361 /*
2362  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2363  * ABI was defined to be 'struct iovec' which is different on 32bit
2364  * and 64bit.  Fortunately we can determine which structure the server
2365  * used from the size of the reply.
2366  */
2367 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2368 				     size_t transferred, unsigned count,
2369 				     bool is_compat)
2370 {
2371 #ifdef CONFIG_COMPAT
2372 	if (count * sizeof(struct compat_iovec) == transferred) {
2373 		struct compat_iovec *ciov = src;
2374 		unsigned i;
2375 
2376 		/*
2377 		 * With this interface a 32bit server cannot support
2378 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2379 		 * requests
2380 		 */
2381 		if (!is_compat)
2382 			return -EINVAL;
2383 
2384 		for (i = 0; i < count; i++) {
2385 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2386 			dst[i].iov_len = ciov[i].iov_len;
2387 		}
2388 		return 0;
2389 	}
2390 #endif
2391 
2392 	if (count * sizeof(struct iovec) != transferred)
2393 		return -EIO;
2394 
2395 	memcpy(dst, src, transferred);
2396 	return 0;
2397 }
2398 
2399 /* Make sure iov_length() won't overflow */
2400 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2401 				 size_t count)
2402 {
2403 	size_t n;
2404 	u32 max = fc->max_pages << PAGE_SHIFT;
2405 
2406 	for (n = 0; n < count; n++, iov++) {
2407 		if (iov->iov_len > (size_t) max)
2408 			return -ENOMEM;
2409 		max -= iov->iov_len;
2410 	}
2411 	return 0;
2412 }
2413 
2414 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2415 				 void *src, size_t transferred, unsigned count,
2416 				 bool is_compat)
2417 {
2418 	unsigned i;
2419 	struct fuse_ioctl_iovec *fiov = src;
2420 
2421 	if (fc->minor < 16) {
2422 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2423 						 count, is_compat);
2424 	}
2425 
2426 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2427 		return -EIO;
2428 
2429 	for (i = 0; i < count; i++) {
2430 		/* Did the server supply an inappropriate value? */
2431 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2432 		    fiov[i].len != (unsigned long) fiov[i].len)
2433 			return -EIO;
2434 
2435 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2436 		dst[i].iov_len = (size_t) fiov[i].len;
2437 
2438 #ifdef CONFIG_COMPAT
2439 		if (is_compat &&
2440 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2441 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2442 			return -EIO;
2443 #endif
2444 	}
2445 
2446 	return 0;
2447 }
2448 
2449 
2450 /*
2451  * For ioctls, there is no generic way to determine how much memory
2452  * needs to be read and/or written.  Furthermore, ioctls are allowed
2453  * to dereference the passed pointer, so the parameter requires deep
2454  * copying but FUSE has no idea whatsoever about what to copy in or
2455  * out.
2456  *
2457  * This is solved by allowing FUSE server to retry ioctl with
2458  * necessary in/out iovecs.  Let's assume the ioctl implementation
2459  * needs to read in the following structure.
2460  *
2461  * struct a {
2462  *	char	*buf;
2463  *	size_t	buflen;
2464  * }
2465  *
2466  * On the first callout to FUSE server, inarg->in_size and
2467  * inarg->out_size will be NULL; then, the server completes the ioctl
2468  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2469  * the actual iov array to
2470  *
2471  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2472  *
2473  * which tells FUSE to copy in the requested area and retry the ioctl.
2474  * On the second round, the server has access to the structure and
2475  * from that it can tell what to look for next, so on the invocation,
2476  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2477  *
2478  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2479  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2480  *
2481  * FUSE will copy both struct a and the pointed buffer from the
2482  * process doing the ioctl and retry ioctl with both struct a and the
2483  * buffer.
2484  *
2485  * This time, FUSE server has everything it needs and completes ioctl
2486  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2487  *
2488  * Copying data out works the same way.
2489  *
2490  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2491  * automatically initializes in and out iovs by decoding @cmd with
2492  * _IOC_* macros and the server is not allowed to request RETRY.  This
2493  * limits ioctl data transfers to well-formed ioctls and is the forced
2494  * behavior for all FUSE servers.
2495  */
2496 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2497 		   unsigned int flags)
2498 {
2499 	struct fuse_file *ff = file->private_data;
2500 	struct fuse_conn *fc = ff->fc;
2501 	struct fuse_ioctl_in inarg = {
2502 		.fh = ff->fh,
2503 		.cmd = cmd,
2504 		.arg = arg,
2505 		.flags = flags
2506 	};
2507 	struct fuse_ioctl_out outarg;
2508 	struct fuse_req *req = NULL;
2509 	struct page **pages = NULL;
2510 	struct iovec *iov_page = NULL;
2511 	struct iovec *in_iov = NULL, *out_iov = NULL;
2512 	unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2513 	size_t in_size, out_size, transferred, c;
2514 	int err, i;
2515 	struct iov_iter ii;
2516 
2517 #if BITS_PER_LONG == 32
2518 	inarg.flags |= FUSE_IOCTL_32BIT;
2519 #else
2520 	if (flags & FUSE_IOCTL_COMPAT)
2521 		inarg.flags |= FUSE_IOCTL_32BIT;
2522 #endif
2523 
2524 	/* assume all the iovs returned by client always fits in a page */
2525 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2526 
2527 	err = -ENOMEM;
2528 	pages = kcalloc(fc->max_pages, sizeof(pages[0]), GFP_KERNEL);
2529 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2530 	if (!pages || !iov_page)
2531 		goto out;
2532 
2533 	/*
2534 	 * If restricted, initialize IO parameters as encoded in @cmd.
2535 	 * RETRY from server is not allowed.
2536 	 */
2537 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2538 		struct iovec *iov = iov_page;
2539 
2540 		iov->iov_base = (void __user *)arg;
2541 		iov->iov_len = _IOC_SIZE(cmd);
2542 
2543 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2544 			in_iov = iov;
2545 			in_iovs = 1;
2546 		}
2547 
2548 		if (_IOC_DIR(cmd) & _IOC_READ) {
2549 			out_iov = iov;
2550 			out_iovs = 1;
2551 		}
2552 	}
2553 
2554  retry:
2555 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2556 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2557 
2558 	/*
2559 	 * Out data can be used either for actual out data or iovs,
2560 	 * make sure there always is at least one page.
2561 	 */
2562 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2563 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2564 
2565 	/* make sure there are enough buffer pages and init request with them */
2566 	err = -ENOMEM;
2567 	if (max_pages > fc->max_pages)
2568 		goto out;
2569 	while (num_pages < max_pages) {
2570 		pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2571 		if (!pages[num_pages])
2572 			goto out;
2573 		num_pages++;
2574 	}
2575 
2576 	req = fuse_get_req(fc, num_pages);
2577 	if (IS_ERR(req)) {
2578 		err = PTR_ERR(req);
2579 		req = NULL;
2580 		goto out;
2581 	}
2582 	memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2583 	req->num_pages = num_pages;
2584 	fuse_page_descs_length_init(req, 0, req->num_pages);
2585 
2586 	/* okay, let's send it to the client */
2587 	req->in.h.opcode = FUSE_IOCTL;
2588 	req->in.h.nodeid = ff->nodeid;
2589 	req->in.numargs = 1;
2590 	req->in.args[0].size = sizeof(inarg);
2591 	req->in.args[0].value = &inarg;
2592 	if (in_size) {
2593 		req->in.numargs++;
2594 		req->in.args[1].size = in_size;
2595 		req->in.argpages = 1;
2596 
2597 		err = -EFAULT;
2598 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2599 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2600 			c = copy_page_from_iter(pages[i], 0, PAGE_SIZE, &ii);
2601 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2602 				goto out;
2603 		}
2604 	}
2605 
2606 	req->out.numargs = 2;
2607 	req->out.args[0].size = sizeof(outarg);
2608 	req->out.args[0].value = &outarg;
2609 	req->out.args[1].size = out_size;
2610 	req->out.argpages = 1;
2611 	req->out.argvar = 1;
2612 
2613 	fuse_request_send(fc, req);
2614 	err = req->out.h.error;
2615 	transferred = req->out.args[1].size;
2616 	fuse_put_request(fc, req);
2617 	req = NULL;
2618 	if (err)
2619 		goto out;
2620 
2621 	/* did it ask for retry? */
2622 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2623 		void *vaddr;
2624 
2625 		/* no retry if in restricted mode */
2626 		err = -EIO;
2627 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2628 			goto out;
2629 
2630 		in_iovs = outarg.in_iovs;
2631 		out_iovs = outarg.out_iovs;
2632 
2633 		/*
2634 		 * Make sure things are in boundary, separate checks
2635 		 * are to protect against overflow.
2636 		 */
2637 		err = -ENOMEM;
2638 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2639 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2640 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2641 			goto out;
2642 
2643 		vaddr = kmap_atomic(pages[0]);
2644 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2645 					    transferred, in_iovs + out_iovs,
2646 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2647 		kunmap_atomic(vaddr);
2648 		if (err)
2649 			goto out;
2650 
2651 		in_iov = iov_page;
2652 		out_iov = in_iov + in_iovs;
2653 
2654 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2655 		if (err)
2656 			goto out;
2657 
2658 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2659 		if (err)
2660 			goto out;
2661 
2662 		goto retry;
2663 	}
2664 
2665 	err = -EIO;
2666 	if (transferred > inarg.out_size)
2667 		goto out;
2668 
2669 	err = -EFAULT;
2670 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2671 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2672 		c = copy_page_to_iter(pages[i], 0, PAGE_SIZE, &ii);
2673 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2674 			goto out;
2675 	}
2676 	err = 0;
2677  out:
2678 	if (req)
2679 		fuse_put_request(fc, req);
2680 	free_page((unsigned long) iov_page);
2681 	while (num_pages)
2682 		__free_page(pages[--num_pages]);
2683 	kfree(pages);
2684 
2685 	return err ? err : outarg.result;
2686 }
2687 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2688 
2689 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2690 		       unsigned long arg, unsigned int flags)
2691 {
2692 	struct inode *inode = file_inode(file);
2693 	struct fuse_conn *fc = get_fuse_conn(inode);
2694 
2695 	if (!fuse_allow_current_process(fc))
2696 		return -EACCES;
2697 
2698 	if (is_bad_inode(inode))
2699 		return -EIO;
2700 
2701 	return fuse_do_ioctl(file, cmd, arg, flags);
2702 }
2703 
2704 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2705 			    unsigned long arg)
2706 {
2707 	return fuse_ioctl_common(file, cmd, arg, 0);
2708 }
2709 
2710 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2711 				   unsigned long arg)
2712 {
2713 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2714 }
2715 
2716 /*
2717  * All files which have been polled are linked to RB tree
2718  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2719  * find the matching one.
2720  */
2721 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2722 					      struct rb_node **parent_out)
2723 {
2724 	struct rb_node **link = &fc->polled_files.rb_node;
2725 	struct rb_node *last = NULL;
2726 
2727 	while (*link) {
2728 		struct fuse_file *ff;
2729 
2730 		last = *link;
2731 		ff = rb_entry(last, struct fuse_file, polled_node);
2732 
2733 		if (kh < ff->kh)
2734 			link = &last->rb_left;
2735 		else if (kh > ff->kh)
2736 			link = &last->rb_right;
2737 		else
2738 			return link;
2739 	}
2740 
2741 	if (parent_out)
2742 		*parent_out = last;
2743 	return link;
2744 }
2745 
2746 /*
2747  * The file is about to be polled.  Make sure it's on the polled_files
2748  * RB tree.  Note that files once added to the polled_files tree are
2749  * not removed before the file is released.  This is because a file
2750  * polled once is likely to be polled again.
2751  */
2752 static void fuse_register_polled_file(struct fuse_conn *fc,
2753 				      struct fuse_file *ff)
2754 {
2755 	spin_lock(&fc->lock);
2756 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2757 		struct rb_node **link, *uninitialized_var(parent);
2758 
2759 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2760 		BUG_ON(*link);
2761 		rb_link_node(&ff->polled_node, parent, link);
2762 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2763 	}
2764 	spin_unlock(&fc->lock);
2765 }
2766 
2767 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2768 {
2769 	struct fuse_file *ff = file->private_data;
2770 	struct fuse_conn *fc = ff->fc;
2771 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2772 	struct fuse_poll_out outarg;
2773 	FUSE_ARGS(args);
2774 	int err;
2775 
2776 	if (fc->no_poll)
2777 		return DEFAULT_POLLMASK;
2778 
2779 	poll_wait(file, &ff->poll_wait, wait);
2780 	inarg.events = mangle_poll(poll_requested_events(wait));
2781 
2782 	/*
2783 	 * Ask for notification iff there's someone waiting for it.
2784 	 * The client may ignore the flag and always notify.
2785 	 */
2786 	if (waitqueue_active(&ff->poll_wait)) {
2787 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2788 		fuse_register_polled_file(fc, ff);
2789 	}
2790 
2791 	args.in.h.opcode = FUSE_POLL;
2792 	args.in.h.nodeid = ff->nodeid;
2793 	args.in.numargs = 1;
2794 	args.in.args[0].size = sizeof(inarg);
2795 	args.in.args[0].value = &inarg;
2796 	args.out.numargs = 1;
2797 	args.out.args[0].size = sizeof(outarg);
2798 	args.out.args[0].value = &outarg;
2799 	err = fuse_simple_request(fc, &args);
2800 
2801 	if (!err)
2802 		return demangle_poll(outarg.revents);
2803 	if (err == -ENOSYS) {
2804 		fc->no_poll = 1;
2805 		return DEFAULT_POLLMASK;
2806 	}
2807 	return EPOLLERR;
2808 }
2809 EXPORT_SYMBOL_GPL(fuse_file_poll);
2810 
2811 /*
2812  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2813  * wakes up the poll waiters.
2814  */
2815 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2816 			    struct fuse_notify_poll_wakeup_out *outarg)
2817 {
2818 	u64 kh = outarg->kh;
2819 	struct rb_node **link;
2820 
2821 	spin_lock(&fc->lock);
2822 
2823 	link = fuse_find_polled_node(fc, kh, NULL);
2824 	if (*link) {
2825 		struct fuse_file *ff;
2826 
2827 		ff = rb_entry(*link, struct fuse_file, polled_node);
2828 		wake_up_interruptible_sync(&ff->poll_wait);
2829 	}
2830 
2831 	spin_unlock(&fc->lock);
2832 	return 0;
2833 }
2834 
2835 static void fuse_do_truncate(struct file *file)
2836 {
2837 	struct inode *inode = file->f_mapping->host;
2838 	struct iattr attr;
2839 
2840 	attr.ia_valid = ATTR_SIZE;
2841 	attr.ia_size = i_size_read(inode);
2842 
2843 	attr.ia_file = file;
2844 	attr.ia_valid |= ATTR_FILE;
2845 
2846 	fuse_do_setattr(file_dentry(file), &attr, file);
2847 }
2848 
2849 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2850 {
2851 	return round_up(off, fc->max_pages << PAGE_SHIFT);
2852 }
2853 
2854 static ssize_t
2855 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2856 {
2857 	DECLARE_COMPLETION_ONSTACK(wait);
2858 	ssize_t ret = 0;
2859 	struct file *file = iocb->ki_filp;
2860 	struct fuse_file *ff = file->private_data;
2861 	bool async_dio = ff->fc->async_dio;
2862 	loff_t pos = 0;
2863 	struct inode *inode;
2864 	loff_t i_size;
2865 	size_t count = iov_iter_count(iter);
2866 	loff_t offset = iocb->ki_pos;
2867 	struct fuse_io_priv *io;
2868 
2869 	pos = offset;
2870 	inode = file->f_mapping->host;
2871 	i_size = i_size_read(inode);
2872 
2873 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
2874 		return 0;
2875 
2876 	/* optimization for short read */
2877 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
2878 		if (offset >= i_size)
2879 			return 0;
2880 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
2881 		count = iov_iter_count(iter);
2882 	}
2883 
2884 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2885 	if (!io)
2886 		return -ENOMEM;
2887 	spin_lock_init(&io->lock);
2888 	kref_init(&io->refcnt);
2889 	io->reqs = 1;
2890 	io->bytes = -1;
2891 	io->size = 0;
2892 	io->offset = offset;
2893 	io->write = (iov_iter_rw(iter) == WRITE);
2894 	io->err = 0;
2895 	/*
2896 	 * By default, we want to optimize all I/Os with async request
2897 	 * submission to the client filesystem if supported.
2898 	 */
2899 	io->async = async_dio;
2900 	io->iocb = iocb;
2901 	io->blocking = is_sync_kiocb(iocb);
2902 
2903 	/*
2904 	 * We cannot asynchronously extend the size of a file.
2905 	 * In such case the aio will behave exactly like sync io.
2906 	 */
2907 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
2908 		io->blocking = true;
2909 
2910 	if (io->async && io->blocking) {
2911 		/*
2912 		 * Additional reference to keep io around after
2913 		 * calling fuse_aio_complete()
2914 		 */
2915 		kref_get(&io->refcnt);
2916 		io->done = &wait;
2917 	}
2918 
2919 	if (iov_iter_rw(iter) == WRITE) {
2920 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2921 		fuse_invalidate_attr(inode);
2922 	} else {
2923 		ret = __fuse_direct_read(io, iter, &pos);
2924 	}
2925 
2926 	if (io->async) {
2927 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2928 
2929 		/* we have a non-extending, async request, so return */
2930 		if (!io->blocking)
2931 			return -EIOCBQUEUED;
2932 
2933 		wait_for_completion(&wait);
2934 		ret = fuse_get_res_by_io(io);
2935 	}
2936 
2937 	kref_put(&io->refcnt, fuse_io_release);
2938 
2939 	if (iov_iter_rw(iter) == WRITE) {
2940 		if (ret > 0)
2941 			fuse_write_update_size(inode, pos);
2942 		else if (ret < 0 && offset + count > i_size)
2943 			fuse_do_truncate(file);
2944 	}
2945 
2946 	return ret;
2947 }
2948 
2949 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
2950 				loff_t length)
2951 {
2952 	struct fuse_file *ff = file->private_data;
2953 	struct inode *inode = file_inode(file);
2954 	struct fuse_inode *fi = get_fuse_inode(inode);
2955 	struct fuse_conn *fc = ff->fc;
2956 	FUSE_ARGS(args);
2957 	struct fuse_fallocate_in inarg = {
2958 		.fh = ff->fh,
2959 		.offset = offset,
2960 		.length = length,
2961 		.mode = mode
2962 	};
2963 	int err;
2964 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
2965 			   (mode & FALLOC_FL_PUNCH_HOLE);
2966 
2967 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2968 		return -EOPNOTSUPP;
2969 
2970 	if (fc->no_fallocate)
2971 		return -EOPNOTSUPP;
2972 
2973 	if (lock_inode) {
2974 		inode_lock(inode);
2975 		if (mode & FALLOC_FL_PUNCH_HOLE) {
2976 			loff_t endbyte = offset + length - 1;
2977 			err = filemap_write_and_wait_range(inode->i_mapping,
2978 							   offset, endbyte);
2979 			if (err)
2980 				goto out;
2981 
2982 			fuse_sync_writes(inode);
2983 		}
2984 	}
2985 
2986 	if (!(mode & FALLOC_FL_KEEP_SIZE))
2987 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
2988 
2989 	args.in.h.opcode = FUSE_FALLOCATE;
2990 	args.in.h.nodeid = ff->nodeid;
2991 	args.in.numargs = 1;
2992 	args.in.args[0].size = sizeof(inarg);
2993 	args.in.args[0].value = &inarg;
2994 	err = fuse_simple_request(fc, &args);
2995 	if (err == -ENOSYS) {
2996 		fc->no_fallocate = 1;
2997 		err = -EOPNOTSUPP;
2998 	}
2999 	if (err)
3000 		goto out;
3001 
3002 	/* we could have extended the file */
3003 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3004 		bool changed = fuse_write_update_size(inode, offset + length);
3005 
3006 		if (changed && fc->writeback_cache)
3007 			file_update_time(file);
3008 	}
3009 
3010 	if (mode & FALLOC_FL_PUNCH_HOLE)
3011 		truncate_pagecache_range(inode, offset, offset + length - 1);
3012 
3013 	fuse_invalidate_attr(inode);
3014 
3015 out:
3016 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3017 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3018 
3019 	if (lock_inode)
3020 		inode_unlock(inode);
3021 
3022 	return err;
3023 }
3024 
3025 static ssize_t fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3026 				    struct file *file_out, loff_t pos_out,
3027 				    size_t len, unsigned int flags)
3028 {
3029 	struct fuse_file *ff_in = file_in->private_data;
3030 	struct fuse_file *ff_out = file_out->private_data;
3031 	struct inode *inode_out = file_inode(file_out);
3032 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3033 	struct fuse_conn *fc = ff_in->fc;
3034 	FUSE_ARGS(args);
3035 	struct fuse_copy_file_range_in inarg = {
3036 		.fh_in = ff_in->fh,
3037 		.off_in = pos_in,
3038 		.nodeid_out = ff_out->nodeid,
3039 		.fh_out = ff_out->fh,
3040 		.off_out = pos_out,
3041 		.len = len,
3042 		.flags = flags
3043 	};
3044 	struct fuse_write_out outarg;
3045 	ssize_t err;
3046 	/* mark unstable when write-back is not used, and file_out gets
3047 	 * extended */
3048 	bool is_unstable = (!fc->writeback_cache) &&
3049 			   ((pos_out + len) > inode_out->i_size);
3050 
3051 	if (fc->no_copy_file_range)
3052 		return -EOPNOTSUPP;
3053 
3054 	inode_lock(inode_out);
3055 
3056 	if (fc->writeback_cache) {
3057 		err = filemap_write_and_wait_range(inode_out->i_mapping,
3058 						   pos_out, pos_out + len);
3059 		if (err)
3060 			goto out;
3061 
3062 		fuse_sync_writes(inode_out);
3063 	}
3064 
3065 	if (is_unstable)
3066 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3067 
3068 	args.in.h.opcode = FUSE_COPY_FILE_RANGE;
3069 	args.in.h.nodeid = ff_in->nodeid;
3070 	args.in.numargs = 1;
3071 	args.in.args[0].size = sizeof(inarg);
3072 	args.in.args[0].value = &inarg;
3073 	args.out.numargs = 1;
3074 	args.out.args[0].size = sizeof(outarg);
3075 	args.out.args[0].value = &outarg;
3076 	err = fuse_simple_request(fc, &args);
3077 	if (err == -ENOSYS) {
3078 		fc->no_copy_file_range = 1;
3079 		err = -EOPNOTSUPP;
3080 	}
3081 	if (err)
3082 		goto out;
3083 
3084 	if (fc->writeback_cache) {
3085 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3086 		file_update_time(file_out);
3087 	}
3088 
3089 	fuse_invalidate_attr(inode_out);
3090 
3091 	err = outarg.size;
3092 out:
3093 	if (is_unstable)
3094 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3095 
3096 	inode_unlock(inode_out);
3097 
3098 	return err;
3099 }
3100 
3101 static const struct file_operations fuse_file_operations = {
3102 	.llseek		= fuse_file_llseek,
3103 	.read_iter	= fuse_file_read_iter,
3104 	.write_iter	= fuse_file_write_iter,
3105 	.mmap		= fuse_file_mmap,
3106 	.open		= fuse_open,
3107 	.flush		= fuse_flush,
3108 	.release	= fuse_release,
3109 	.fsync		= fuse_fsync,
3110 	.lock		= fuse_file_lock,
3111 	.flock		= fuse_file_flock,
3112 	.splice_read	= generic_file_splice_read,
3113 	.unlocked_ioctl	= fuse_file_ioctl,
3114 	.compat_ioctl	= fuse_file_compat_ioctl,
3115 	.poll		= fuse_file_poll,
3116 	.fallocate	= fuse_file_fallocate,
3117 	.copy_file_range = fuse_copy_file_range,
3118 };
3119 
3120 static const struct file_operations fuse_direct_io_file_operations = {
3121 	.llseek		= fuse_file_llseek,
3122 	.read_iter	= fuse_direct_read_iter,
3123 	.write_iter	= fuse_direct_write_iter,
3124 	.mmap		= fuse_direct_mmap,
3125 	.open		= fuse_open,
3126 	.flush		= fuse_flush,
3127 	.release	= fuse_release,
3128 	.fsync		= fuse_fsync,
3129 	.lock		= fuse_file_lock,
3130 	.flock		= fuse_file_flock,
3131 	.unlocked_ioctl	= fuse_file_ioctl,
3132 	.compat_ioctl	= fuse_file_compat_ioctl,
3133 	.poll		= fuse_file_poll,
3134 	.fallocate	= fuse_file_fallocate,
3135 	/* no splice_read */
3136 };
3137 
3138 static const struct address_space_operations fuse_file_aops  = {
3139 	.readpage	= fuse_readpage,
3140 	.writepage	= fuse_writepage,
3141 	.writepages	= fuse_writepages,
3142 	.launder_page	= fuse_launder_page,
3143 	.readpages	= fuse_readpages,
3144 	.set_page_dirty	= __set_page_dirty_nobuffers,
3145 	.bmap		= fuse_bmap,
3146 	.direct_IO	= fuse_direct_IO,
3147 	.write_begin	= fuse_write_begin,
3148 	.write_end	= fuse_write_end,
3149 };
3150 
3151 void fuse_init_file_inode(struct inode *inode)
3152 {
3153 	struct fuse_inode *fi = get_fuse_inode(inode);
3154 
3155 	inode->i_fop = &fuse_file_operations;
3156 	inode->i_data.a_ops = &fuse_file_aops;
3157 
3158 	INIT_LIST_HEAD(&fi->write_files);
3159 	INIT_LIST_HEAD(&fi->queued_writes);
3160 	fi->writectr = 0;
3161 	init_waitqueue_head(&fi->page_waitq);
3162 	INIT_LIST_HEAD(&fi->writepages);
3163 }
3164