xref: /openbmc/linux/fs/fuse/file.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 #include <linux/fs.h>
22 
23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
24 				      struct fuse_page_desc **desc)
25 {
26 	struct page **pages;
27 
28 	pages = kzalloc(npages * (sizeof(struct page *) +
29 				  sizeof(struct fuse_page_desc)), flags);
30 	*desc = (void *) (pages + npages);
31 
32 	return pages;
33 }
34 
35 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
36 			  int opcode, struct fuse_open_out *outargp)
37 {
38 	struct fuse_open_in inarg;
39 	FUSE_ARGS(args);
40 
41 	memset(&inarg, 0, sizeof(inarg));
42 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
43 	if (!fc->atomic_o_trunc)
44 		inarg.flags &= ~O_TRUNC;
45 	args.opcode = opcode;
46 	args.nodeid = nodeid;
47 	args.in_numargs = 1;
48 	args.in_args[0].size = sizeof(inarg);
49 	args.in_args[0].value = &inarg;
50 	args.out_numargs = 1;
51 	args.out_args[0].size = sizeof(*outargp);
52 	args.out_args[0].value = outargp;
53 
54 	return fuse_simple_request(fc, &args);
55 }
56 
57 struct fuse_release_args {
58 	struct fuse_args args;
59 	struct fuse_release_in inarg;
60 	struct inode *inode;
61 };
62 
63 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
64 {
65 	struct fuse_file *ff;
66 
67 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
68 	if (unlikely(!ff))
69 		return NULL;
70 
71 	ff->fc = fc;
72 	ff->release_args = kzalloc(sizeof(*ff->release_args),
73 				   GFP_KERNEL_ACCOUNT);
74 	if (!ff->release_args) {
75 		kfree(ff);
76 		return NULL;
77 	}
78 
79 	INIT_LIST_HEAD(&ff->write_entry);
80 	mutex_init(&ff->readdir.lock);
81 	refcount_set(&ff->count, 1);
82 	RB_CLEAR_NODE(&ff->polled_node);
83 	init_waitqueue_head(&ff->poll_wait);
84 
85 	ff->kh = atomic64_inc_return(&fc->khctr);
86 
87 	return ff;
88 }
89 
90 void fuse_file_free(struct fuse_file *ff)
91 {
92 	kfree(ff->release_args);
93 	mutex_destroy(&ff->readdir.lock);
94 	kfree(ff);
95 }
96 
97 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 {
99 	refcount_inc(&ff->count);
100 	return ff;
101 }
102 
103 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
104 			     int error)
105 {
106 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107 
108 	iput(ra->inode);
109 	kfree(ra);
110 }
111 
112 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 {
114 	if (refcount_dec_and_test(&ff->count)) {
115 		struct fuse_args *args = &ff->release_args->args;
116 
117 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
118 			/* Do nothing when client does not implement 'open' */
119 			fuse_release_end(ff->fc, args, 0);
120 		} else if (sync) {
121 			fuse_simple_request(ff->fc, args);
122 			fuse_release_end(ff->fc, args, 0);
123 		} else {
124 			args->end = fuse_release_end;
125 			if (fuse_simple_background(ff->fc, args,
126 						   GFP_KERNEL | __GFP_NOFAIL))
127 				fuse_release_end(ff->fc, args, -ENOTCONN);
128 		}
129 		kfree(ff);
130 	}
131 }
132 
133 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
134 		 bool isdir)
135 {
136 	struct fuse_file *ff;
137 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
138 
139 	ff = fuse_file_alloc(fc);
140 	if (!ff)
141 		return -ENOMEM;
142 
143 	ff->fh = 0;
144 	/* Default for no-open */
145 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
146 	if (isdir ? !fc->no_opendir : !fc->no_open) {
147 		struct fuse_open_out outarg;
148 		int err;
149 
150 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
151 		if (!err) {
152 			ff->fh = outarg.fh;
153 			ff->open_flags = outarg.open_flags;
154 
155 		} else if (err != -ENOSYS) {
156 			fuse_file_free(ff);
157 			return err;
158 		} else {
159 			if (isdir)
160 				fc->no_opendir = 1;
161 			else
162 				fc->no_open = 1;
163 		}
164 	}
165 
166 	if (isdir)
167 		ff->open_flags &= ~FOPEN_DIRECT_IO;
168 
169 	ff->nodeid = nodeid;
170 	file->private_data = ff;
171 
172 	return 0;
173 }
174 EXPORT_SYMBOL_GPL(fuse_do_open);
175 
176 static void fuse_link_write_file(struct file *file)
177 {
178 	struct inode *inode = file_inode(file);
179 	struct fuse_inode *fi = get_fuse_inode(inode);
180 	struct fuse_file *ff = file->private_data;
181 	/*
182 	 * file may be written through mmap, so chain it onto the
183 	 * inodes's write_file list
184 	 */
185 	spin_lock(&fi->lock);
186 	if (list_empty(&ff->write_entry))
187 		list_add(&ff->write_entry, &fi->write_files);
188 	spin_unlock(&fi->lock);
189 }
190 
191 void fuse_finish_open(struct inode *inode, struct file *file)
192 {
193 	struct fuse_file *ff = file->private_data;
194 	struct fuse_conn *fc = get_fuse_conn(inode);
195 
196 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
197 		invalidate_inode_pages2(inode->i_mapping);
198 	if (ff->open_flags & FOPEN_STREAM)
199 		stream_open(inode, file);
200 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
201 		nonseekable_open(inode, file);
202 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
203 		struct fuse_inode *fi = get_fuse_inode(inode);
204 
205 		spin_lock(&fi->lock);
206 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
207 		i_size_write(inode, 0);
208 		spin_unlock(&fi->lock);
209 		fuse_invalidate_attr(inode);
210 		if (fc->writeback_cache)
211 			file_update_time(file);
212 	}
213 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
214 		fuse_link_write_file(file);
215 }
216 
217 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
218 {
219 	struct fuse_conn *fc = get_fuse_conn(inode);
220 	int err;
221 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
222 			  fc->atomic_o_trunc &&
223 			  fc->writeback_cache;
224 
225 	err = generic_file_open(inode, file);
226 	if (err)
227 		return err;
228 
229 	if (is_wb_truncate) {
230 		inode_lock(inode);
231 		fuse_set_nowrite(inode);
232 	}
233 
234 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
235 
236 	if (!err)
237 		fuse_finish_open(inode, file);
238 
239 	if (is_wb_truncate) {
240 		fuse_release_nowrite(inode);
241 		inode_unlock(inode);
242 	}
243 
244 	return err;
245 }
246 
247 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
248 				 int flags, int opcode)
249 {
250 	struct fuse_conn *fc = ff->fc;
251 	struct fuse_release_args *ra = ff->release_args;
252 
253 	/* Inode is NULL on error path of fuse_create_open() */
254 	if (likely(fi)) {
255 		spin_lock(&fi->lock);
256 		list_del(&ff->write_entry);
257 		spin_unlock(&fi->lock);
258 	}
259 	spin_lock(&fc->lock);
260 	if (!RB_EMPTY_NODE(&ff->polled_node))
261 		rb_erase(&ff->polled_node, &fc->polled_files);
262 	spin_unlock(&fc->lock);
263 
264 	wake_up_interruptible_all(&ff->poll_wait);
265 
266 	ra->inarg.fh = ff->fh;
267 	ra->inarg.flags = flags;
268 	ra->args.in_numargs = 1;
269 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
270 	ra->args.in_args[0].value = &ra->inarg;
271 	ra->args.opcode = opcode;
272 	ra->args.nodeid = ff->nodeid;
273 	ra->args.force = true;
274 	ra->args.nocreds = true;
275 }
276 
277 void fuse_release_common(struct file *file, bool isdir)
278 {
279 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
280 	struct fuse_file *ff = file->private_data;
281 	struct fuse_release_args *ra = ff->release_args;
282 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
283 
284 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
285 
286 	if (ff->flock) {
287 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
288 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
289 							  (fl_owner_t) file);
290 	}
291 	/* Hold inode until release is finished */
292 	ra->inode = igrab(file_inode(file));
293 
294 	/*
295 	 * Normally this will send the RELEASE request, however if
296 	 * some asynchronous READ or WRITE requests are outstanding,
297 	 * the sending will be delayed.
298 	 *
299 	 * Make the release synchronous if this is a fuseblk mount,
300 	 * synchronous RELEASE is allowed (and desirable) in this case
301 	 * because the server can be trusted not to screw up.
302 	 */
303 	fuse_file_put(ff, ff->fc->destroy, isdir);
304 }
305 
306 static int fuse_open(struct inode *inode, struct file *file)
307 {
308 	return fuse_open_common(inode, file, false);
309 }
310 
311 static int fuse_release(struct inode *inode, struct file *file)
312 {
313 	struct fuse_conn *fc = get_fuse_conn(inode);
314 
315 	/* see fuse_vma_close() for !writeback_cache case */
316 	if (fc->writeback_cache)
317 		write_inode_now(inode, 1);
318 
319 	fuse_release_common(file, false);
320 
321 	/* return value is ignored by VFS */
322 	return 0;
323 }
324 
325 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
326 {
327 	WARN_ON(refcount_read(&ff->count) > 1);
328 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
329 	/*
330 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
331 	 * synchronous, we are fine with not doing igrab() here"
332 	 */
333 	fuse_file_put(ff, true, false);
334 }
335 EXPORT_SYMBOL_GPL(fuse_sync_release);
336 
337 /*
338  * Scramble the ID space with XTEA, so that the value of the files_struct
339  * pointer is not exposed to userspace.
340  */
341 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
342 {
343 	u32 *k = fc->scramble_key;
344 	u64 v = (unsigned long) id;
345 	u32 v0 = v;
346 	u32 v1 = v >> 32;
347 	u32 sum = 0;
348 	int i;
349 
350 	for (i = 0; i < 32; i++) {
351 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
352 		sum += 0x9E3779B9;
353 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
354 	}
355 
356 	return (u64) v0 + ((u64) v1 << 32);
357 }
358 
359 struct fuse_writepage_args {
360 	struct fuse_io_args ia;
361 	struct rb_node writepages_entry;
362 	struct list_head queue_entry;
363 	struct fuse_writepage_args *next;
364 	struct inode *inode;
365 };
366 
367 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
368 					    pgoff_t idx_from, pgoff_t idx_to)
369 {
370 	struct rb_node *n;
371 
372 	n = fi->writepages.rb_node;
373 
374 	while (n) {
375 		struct fuse_writepage_args *wpa;
376 		pgoff_t curr_index;
377 
378 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
379 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
380 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
381 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
382 			n = n->rb_right;
383 		else if (idx_to < curr_index)
384 			n = n->rb_left;
385 		else
386 			return wpa;
387 	}
388 	return NULL;
389 }
390 
391 /*
392  * Check if any page in a range is under writeback
393  *
394  * This is currently done by walking the list of writepage requests
395  * for the inode, which can be pretty inefficient.
396  */
397 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
398 				   pgoff_t idx_to)
399 {
400 	struct fuse_inode *fi = get_fuse_inode(inode);
401 	bool found;
402 
403 	spin_lock(&fi->lock);
404 	found = fuse_find_writeback(fi, idx_from, idx_to);
405 	spin_unlock(&fi->lock);
406 
407 	return found;
408 }
409 
410 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
411 {
412 	return fuse_range_is_writeback(inode, index, index);
413 }
414 
415 /*
416  * Wait for page writeback to be completed.
417  *
418  * Since fuse doesn't rely on the VM writeback tracking, this has to
419  * use some other means.
420  */
421 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
422 {
423 	struct fuse_inode *fi = get_fuse_inode(inode);
424 
425 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
426 }
427 
428 /*
429  * Wait for all pending writepages on the inode to finish.
430  *
431  * This is currently done by blocking further writes with FUSE_NOWRITE
432  * and waiting for all sent writes to complete.
433  *
434  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
435  * could conflict with truncation.
436  */
437 static void fuse_sync_writes(struct inode *inode)
438 {
439 	fuse_set_nowrite(inode);
440 	fuse_release_nowrite(inode);
441 }
442 
443 static int fuse_flush(struct file *file, fl_owner_t id)
444 {
445 	struct inode *inode = file_inode(file);
446 	struct fuse_conn *fc = get_fuse_conn(inode);
447 	struct fuse_file *ff = file->private_data;
448 	struct fuse_flush_in inarg;
449 	FUSE_ARGS(args);
450 	int err;
451 
452 	if (is_bad_inode(inode))
453 		return -EIO;
454 
455 	err = write_inode_now(inode, 1);
456 	if (err)
457 		return err;
458 
459 	inode_lock(inode);
460 	fuse_sync_writes(inode);
461 	inode_unlock(inode);
462 
463 	err = filemap_check_errors(file->f_mapping);
464 	if (err)
465 		return err;
466 
467 	err = 0;
468 	if (fc->no_flush)
469 		goto inval_attr_out;
470 
471 	memset(&inarg, 0, sizeof(inarg));
472 	inarg.fh = ff->fh;
473 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
474 	args.opcode = FUSE_FLUSH;
475 	args.nodeid = get_node_id(inode);
476 	args.in_numargs = 1;
477 	args.in_args[0].size = sizeof(inarg);
478 	args.in_args[0].value = &inarg;
479 	args.force = true;
480 
481 	err = fuse_simple_request(fc, &args);
482 	if (err == -ENOSYS) {
483 		fc->no_flush = 1;
484 		err = 0;
485 	}
486 
487 inval_attr_out:
488 	/*
489 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
490 	 * enabled, i_blocks from cached attr may not be accurate.
491 	 */
492 	if (!err && fc->writeback_cache)
493 		fuse_invalidate_attr(inode);
494 	return err;
495 }
496 
497 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
498 		      int datasync, int opcode)
499 {
500 	struct inode *inode = file->f_mapping->host;
501 	struct fuse_conn *fc = get_fuse_conn(inode);
502 	struct fuse_file *ff = file->private_data;
503 	FUSE_ARGS(args);
504 	struct fuse_fsync_in inarg;
505 
506 	memset(&inarg, 0, sizeof(inarg));
507 	inarg.fh = ff->fh;
508 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
509 	args.opcode = opcode;
510 	args.nodeid = get_node_id(inode);
511 	args.in_numargs = 1;
512 	args.in_args[0].size = sizeof(inarg);
513 	args.in_args[0].value = &inarg;
514 	return fuse_simple_request(fc, &args);
515 }
516 
517 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
518 		      int datasync)
519 {
520 	struct inode *inode = file->f_mapping->host;
521 	struct fuse_conn *fc = get_fuse_conn(inode);
522 	int err;
523 
524 	if (is_bad_inode(inode))
525 		return -EIO;
526 
527 	inode_lock(inode);
528 
529 	/*
530 	 * Start writeback against all dirty pages of the inode, then
531 	 * wait for all outstanding writes, before sending the FSYNC
532 	 * request.
533 	 */
534 	err = file_write_and_wait_range(file, start, end);
535 	if (err)
536 		goto out;
537 
538 	fuse_sync_writes(inode);
539 
540 	/*
541 	 * Due to implementation of fuse writeback
542 	 * file_write_and_wait_range() does not catch errors.
543 	 * We have to do this directly after fuse_sync_writes()
544 	 */
545 	err = file_check_and_advance_wb_err(file);
546 	if (err)
547 		goto out;
548 
549 	err = sync_inode_metadata(inode, 1);
550 	if (err)
551 		goto out;
552 
553 	if (fc->no_fsync)
554 		goto out;
555 
556 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
557 	if (err == -ENOSYS) {
558 		fc->no_fsync = 1;
559 		err = 0;
560 	}
561 out:
562 	inode_unlock(inode);
563 
564 	return err;
565 }
566 
567 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
568 			 size_t count, int opcode)
569 {
570 	struct fuse_file *ff = file->private_data;
571 	struct fuse_args *args = &ia->ap.args;
572 
573 	ia->read.in.fh = ff->fh;
574 	ia->read.in.offset = pos;
575 	ia->read.in.size = count;
576 	ia->read.in.flags = file->f_flags;
577 	args->opcode = opcode;
578 	args->nodeid = ff->nodeid;
579 	args->in_numargs = 1;
580 	args->in_args[0].size = sizeof(ia->read.in);
581 	args->in_args[0].value = &ia->read.in;
582 	args->out_argvar = true;
583 	args->out_numargs = 1;
584 	args->out_args[0].size = count;
585 }
586 
587 static void fuse_release_user_pages(struct fuse_args_pages *ap,
588 				    bool should_dirty)
589 {
590 	unsigned int i;
591 
592 	for (i = 0; i < ap->num_pages; i++) {
593 		if (should_dirty)
594 			set_page_dirty_lock(ap->pages[i]);
595 		put_page(ap->pages[i]);
596 	}
597 }
598 
599 static void fuse_io_release(struct kref *kref)
600 {
601 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
602 }
603 
604 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
605 {
606 	if (io->err)
607 		return io->err;
608 
609 	if (io->bytes >= 0 && io->write)
610 		return -EIO;
611 
612 	return io->bytes < 0 ? io->size : io->bytes;
613 }
614 
615 /**
616  * In case of short read, the caller sets 'pos' to the position of
617  * actual end of fuse request in IO request. Otherwise, if bytes_requested
618  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
619  *
620  * An example:
621  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
622  * both submitted asynchronously. The first of them was ACKed by userspace as
623  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
624  * second request was ACKed as short, e.g. only 1K was read, resulting in
625  * pos == 33K.
626  *
627  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
628  * will be equal to the length of the longest contiguous fragment of
629  * transferred data starting from the beginning of IO request.
630  */
631 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
632 {
633 	int left;
634 
635 	spin_lock(&io->lock);
636 	if (err)
637 		io->err = io->err ? : err;
638 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
639 		io->bytes = pos;
640 
641 	left = --io->reqs;
642 	if (!left && io->blocking)
643 		complete(io->done);
644 	spin_unlock(&io->lock);
645 
646 	if (!left && !io->blocking) {
647 		ssize_t res = fuse_get_res_by_io(io);
648 
649 		if (res >= 0) {
650 			struct inode *inode = file_inode(io->iocb->ki_filp);
651 			struct fuse_conn *fc = get_fuse_conn(inode);
652 			struct fuse_inode *fi = get_fuse_inode(inode);
653 
654 			spin_lock(&fi->lock);
655 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
656 			spin_unlock(&fi->lock);
657 		}
658 
659 		io->iocb->ki_complete(io->iocb, res, 0);
660 	}
661 
662 	kref_put(&io->refcnt, fuse_io_release);
663 }
664 
665 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
666 					  unsigned int npages)
667 {
668 	struct fuse_io_args *ia;
669 
670 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
671 	if (ia) {
672 		ia->io = io;
673 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
674 						&ia->ap.descs);
675 		if (!ia->ap.pages) {
676 			kfree(ia);
677 			ia = NULL;
678 		}
679 	}
680 	return ia;
681 }
682 
683 static void fuse_io_free(struct fuse_io_args *ia)
684 {
685 	kfree(ia->ap.pages);
686 	kfree(ia);
687 }
688 
689 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
690 				  int err)
691 {
692 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
693 	struct fuse_io_priv *io = ia->io;
694 	ssize_t pos = -1;
695 
696 	fuse_release_user_pages(&ia->ap, io->should_dirty);
697 
698 	if (err) {
699 		/* Nothing */
700 	} else if (io->write) {
701 		if (ia->write.out.size > ia->write.in.size) {
702 			err = -EIO;
703 		} else if (ia->write.in.size != ia->write.out.size) {
704 			pos = ia->write.in.offset - io->offset +
705 				ia->write.out.size;
706 		}
707 	} else {
708 		u32 outsize = args->out_args[0].size;
709 
710 		if (ia->read.in.size != outsize)
711 			pos = ia->read.in.offset - io->offset + outsize;
712 	}
713 
714 	fuse_aio_complete(io, err, pos);
715 	fuse_io_free(ia);
716 }
717 
718 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
719 				   struct fuse_io_args *ia, size_t num_bytes)
720 {
721 	ssize_t err;
722 	struct fuse_io_priv *io = ia->io;
723 
724 	spin_lock(&io->lock);
725 	kref_get(&io->refcnt);
726 	io->size += num_bytes;
727 	io->reqs++;
728 	spin_unlock(&io->lock);
729 
730 	ia->ap.args.end = fuse_aio_complete_req;
731 	ia->ap.args.may_block = io->should_dirty;
732 	err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
733 	if (err)
734 		fuse_aio_complete_req(fc, &ia->ap.args, err);
735 
736 	return num_bytes;
737 }
738 
739 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
740 			      fl_owner_t owner)
741 {
742 	struct file *file = ia->io->iocb->ki_filp;
743 	struct fuse_file *ff = file->private_data;
744 	struct fuse_conn *fc = ff->fc;
745 
746 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
747 	if (owner != NULL) {
748 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
749 		ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
750 	}
751 
752 	if (ia->io->async)
753 		return fuse_async_req_send(fc, ia, count);
754 
755 	return fuse_simple_request(fc, &ia->ap.args);
756 }
757 
758 static void fuse_read_update_size(struct inode *inode, loff_t size,
759 				  u64 attr_ver)
760 {
761 	struct fuse_conn *fc = get_fuse_conn(inode);
762 	struct fuse_inode *fi = get_fuse_inode(inode);
763 
764 	spin_lock(&fi->lock);
765 	if (attr_ver == fi->attr_version && size < inode->i_size &&
766 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
767 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
768 		i_size_write(inode, size);
769 	}
770 	spin_unlock(&fi->lock);
771 }
772 
773 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
774 			    struct fuse_args_pages *ap)
775 {
776 	struct fuse_conn *fc = get_fuse_conn(inode);
777 
778 	if (fc->writeback_cache) {
779 		/*
780 		 * A hole in a file. Some data after the hole are in page cache,
781 		 * but have not reached the client fs yet. So, the hole is not
782 		 * present there.
783 		 */
784 		int i;
785 		int start_idx = num_read >> PAGE_SHIFT;
786 		size_t off = num_read & (PAGE_SIZE - 1);
787 
788 		for (i = start_idx; i < ap->num_pages; i++) {
789 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
790 			off = 0;
791 		}
792 	} else {
793 		loff_t pos = page_offset(ap->pages[0]) + num_read;
794 		fuse_read_update_size(inode, pos, attr_ver);
795 	}
796 }
797 
798 static int fuse_do_readpage(struct file *file, struct page *page)
799 {
800 	struct inode *inode = page->mapping->host;
801 	struct fuse_conn *fc = get_fuse_conn(inode);
802 	loff_t pos = page_offset(page);
803 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
804 	struct fuse_io_args ia = {
805 		.ap.args.page_zeroing = true,
806 		.ap.args.out_pages = true,
807 		.ap.num_pages = 1,
808 		.ap.pages = &page,
809 		.ap.descs = &desc,
810 	};
811 	ssize_t res;
812 	u64 attr_ver;
813 
814 	/*
815 	 * Page writeback can extend beyond the lifetime of the
816 	 * page-cache page, so make sure we read a properly synced
817 	 * page.
818 	 */
819 	fuse_wait_on_page_writeback(inode, page->index);
820 
821 	attr_ver = fuse_get_attr_version(fc);
822 
823 	/* Don't overflow end offset */
824 	if (pos + (desc.length - 1) == LLONG_MAX)
825 		desc.length--;
826 
827 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
828 	res = fuse_simple_request(fc, &ia.ap.args);
829 	if (res < 0)
830 		return res;
831 	/*
832 	 * Short read means EOF.  If file size is larger, truncate it
833 	 */
834 	if (res < desc.length)
835 		fuse_short_read(inode, attr_ver, res, &ia.ap);
836 
837 	SetPageUptodate(page);
838 
839 	return 0;
840 }
841 
842 static int fuse_readpage(struct file *file, struct page *page)
843 {
844 	struct inode *inode = page->mapping->host;
845 	int err;
846 
847 	err = -EIO;
848 	if (is_bad_inode(inode))
849 		goto out;
850 
851 	err = fuse_do_readpage(file, page);
852 	fuse_invalidate_atime(inode);
853  out:
854 	unlock_page(page);
855 	return err;
856 }
857 
858 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
859 			       int err)
860 {
861 	int i;
862 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
863 	struct fuse_args_pages *ap = &ia->ap;
864 	size_t count = ia->read.in.size;
865 	size_t num_read = args->out_args[0].size;
866 	struct address_space *mapping = NULL;
867 
868 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
869 		mapping = ap->pages[i]->mapping;
870 
871 	if (mapping) {
872 		struct inode *inode = mapping->host;
873 
874 		/*
875 		 * Short read means EOF. If file size is larger, truncate it
876 		 */
877 		if (!err && num_read < count)
878 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
879 
880 		fuse_invalidate_atime(inode);
881 	}
882 
883 	for (i = 0; i < ap->num_pages; i++) {
884 		struct page *page = ap->pages[i];
885 
886 		if (!err)
887 			SetPageUptodate(page);
888 		else
889 			SetPageError(page);
890 		unlock_page(page);
891 		put_page(page);
892 	}
893 	if (ia->ff)
894 		fuse_file_put(ia->ff, false, false);
895 
896 	fuse_io_free(ia);
897 }
898 
899 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
900 {
901 	struct fuse_file *ff = file->private_data;
902 	struct fuse_conn *fc = ff->fc;
903 	struct fuse_args_pages *ap = &ia->ap;
904 	loff_t pos = page_offset(ap->pages[0]);
905 	size_t count = ap->num_pages << PAGE_SHIFT;
906 	ssize_t res;
907 	int err;
908 
909 	ap->args.out_pages = true;
910 	ap->args.page_zeroing = true;
911 	ap->args.page_replace = true;
912 
913 	/* Don't overflow end offset */
914 	if (pos + (count - 1) == LLONG_MAX) {
915 		count--;
916 		ap->descs[ap->num_pages - 1].length--;
917 	}
918 	WARN_ON((loff_t) (pos + count) < 0);
919 
920 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
921 	ia->read.attr_ver = fuse_get_attr_version(fc);
922 	if (fc->async_read) {
923 		ia->ff = fuse_file_get(ff);
924 		ap->args.end = fuse_readpages_end;
925 		err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
926 		if (!err)
927 			return;
928 	} else {
929 		res = fuse_simple_request(fc, &ap->args);
930 		err = res < 0 ? res : 0;
931 	}
932 	fuse_readpages_end(fc, &ap->args, err);
933 }
934 
935 static void fuse_readahead(struct readahead_control *rac)
936 {
937 	struct inode *inode = rac->mapping->host;
938 	struct fuse_conn *fc = get_fuse_conn(inode);
939 	unsigned int i, max_pages, nr_pages = 0;
940 
941 	if (is_bad_inode(inode))
942 		return;
943 
944 	max_pages = min_t(unsigned int, fc->max_pages,
945 			fc->max_read / PAGE_SIZE);
946 
947 	for (;;) {
948 		struct fuse_io_args *ia;
949 		struct fuse_args_pages *ap;
950 
951 		nr_pages = readahead_count(rac) - nr_pages;
952 		if (nr_pages > max_pages)
953 			nr_pages = max_pages;
954 		if (nr_pages == 0)
955 			break;
956 		ia = fuse_io_alloc(NULL, nr_pages);
957 		if (!ia)
958 			return;
959 		ap = &ia->ap;
960 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
961 		for (i = 0; i < nr_pages; i++) {
962 			fuse_wait_on_page_writeback(inode,
963 						    readahead_index(rac) + i);
964 			ap->descs[i].length = PAGE_SIZE;
965 		}
966 		ap->num_pages = nr_pages;
967 		fuse_send_readpages(ia, rac->file);
968 	}
969 }
970 
971 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
972 {
973 	struct inode *inode = iocb->ki_filp->f_mapping->host;
974 	struct fuse_conn *fc = get_fuse_conn(inode);
975 
976 	/*
977 	 * In auto invalidate mode, always update attributes on read.
978 	 * Otherwise, only update if we attempt to read past EOF (to ensure
979 	 * i_size is up to date).
980 	 */
981 	if (fc->auto_inval_data ||
982 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
983 		int err;
984 		err = fuse_update_attributes(inode, iocb->ki_filp);
985 		if (err)
986 			return err;
987 	}
988 
989 	return generic_file_read_iter(iocb, to);
990 }
991 
992 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
993 				 loff_t pos, size_t count)
994 {
995 	struct fuse_args *args = &ia->ap.args;
996 
997 	ia->write.in.fh = ff->fh;
998 	ia->write.in.offset = pos;
999 	ia->write.in.size = count;
1000 	args->opcode = FUSE_WRITE;
1001 	args->nodeid = ff->nodeid;
1002 	args->in_numargs = 2;
1003 	if (ff->fc->minor < 9)
1004 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1005 	else
1006 		args->in_args[0].size = sizeof(ia->write.in);
1007 	args->in_args[0].value = &ia->write.in;
1008 	args->in_args[1].size = count;
1009 	args->out_numargs = 1;
1010 	args->out_args[0].size = sizeof(ia->write.out);
1011 	args->out_args[0].value = &ia->write.out;
1012 }
1013 
1014 static unsigned int fuse_write_flags(struct kiocb *iocb)
1015 {
1016 	unsigned int flags = iocb->ki_filp->f_flags;
1017 
1018 	if (iocb->ki_flags & IOCB_DSYNC)
1019 		flags |= O_DSYNC;
1020 	if (iocb->ki_flags & IOCB_SYNC)
1021 		flags |= O_SYNC;
1022 
1023 	return flags;
1024 }
1025 
1026 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1027 			       size_t count, fl_owner_t owner)
1028 {
1029 	struct kiocb *iocb = ia->io->iocb;
1030 	struct file *file = iocb->ki_filp;
1031 	struct fuse_file *ff = file->private_data;
1032 	struct fuse_conn *fc = ff->fc;
1033 	struct fuse_write_in *inarg = &ia->write.in;
1034 	ssize_t err;
1035 
1036 	fuse_write_args_fill(ia, ff, pos, count);
1037 	inarg->flags = fuse_write_flags(iocb);
1038 	if (owner != NULL) {
1039 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1040 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1041 	}
1042 
1043 	if (ia->io->async)
1044 		return fuse_async_req_send(fc, ia, count);
1045 
1046 	err = fuse_simple_request(fc, &ia->ap.args);
1047 	if (!err && ia->write.out.size > count)
1048 		err = -EIO;
1049 
1050 	return err ?: ia->write.out.size;
1051 }
1052 
1053 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1054 {
1055 	struct fuse_conn *fc = get_fuse_conn(inode);
1056 	struct fuse_inode *fi = get_fuse_inode(inode);
1057 	bool ret = false;
1058 
1059 	spin_lock(&fi->lock);
1060 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1061 	if (pos > inode->i_size) {
1062 		i_size_write(inode, pos);
1063 		ret = true;
1064 	}
1065 	spin_unlock(&fi->lock);
1066 
1067 	return ret;
1068 }
1069 
1070 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1071 				     struct kiocb *iocb, struct inode *inode,
1072 				     loff_t pos, size_t count)
1073 {
1074 	struct fuse_args_pages *ap = &ia->ap;
1075 	struct file *file = iocb->ki_filp;
1076 	struct fuse_file *ff = file->private_data;
1077 	struct fuse_conn *fc = ff->fc;
1078 	unsigned int offset, i;
1079 	int err;
1080 
1081 	for (i = 0; i < ap->num_pages; i++)
1082 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1083 
1084 	fuse_write_args_fill(ia, ff, pos, count);
1085 	ia->write.in.flags = fuse_write_flags(iocb);
1086 
1087 	err = fuse_simple_request(fc, &ap->args);
1088 	if (!err && ia->write.out.size > count)
1089 		err = -EIO;
1090 
1091 	offset = ap->descs[0].offset;
1092 	count = ia->write.out.size;
1093 	for (i = 0; i < ap->num_pages; i++) {
1094 		struct page *page = ap->pages[i];
1095 
1096 		if (!err && !offset && count >= PAGE_SIZE)
1097 			SetPageUptodate(page);
1098 
1099 		if (count > PAGE_SIZE - offset)
1100 			count -= PAGE_SIZE - offset;
1101 		else
1102 			count = 0;
1103 		offset = 0;
1104 
1105 		unlock_page(page);
1106 		put_page(page);
1107 	}
1108 
1109 	return err;
1110 }
1111 
1112 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1113 				     struct address_space *mapping,
1114 				     struct iov_iter *ii, loff_t pos,
1115 				     unsigned int max_pages)
1116 {
1117 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1118 	unsigned offset = pos & (PAGE_SIZE - 1);
1119 	size_t count = 0;
1120 	int err;
1121 
1122 	ap->args.in_pages = true;
1123 	ap->descs[0].offset = offset;
1124 
1125 	do {
1126 		size_t tmp;
1127 		struct page *page;
1128 		pgoff_t index = pos >> PAGE_SHIFT;
1129 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1130 				     iov_iter_count(ii));
1131 
1132 		bytes = min_t(size_t, bytes, fc->max_write - count);
1133 
1134  again:
1135 		err = -EFAULT;
1136 		if (iov_iter_fault_in_readable(ii, bytes))
1137 			break;
1138 
1139 		err = -ENOMEM;
1140 		page = grab_cache_page_write_begin(mapping, index, 0);
1141 		if (!page)
1142 			break;
1143 
1144 		if (mapping_writably_mapped(mapping))
1145 			flush_dcache_page(page);
1146 
1147 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1148 		flush_dcache_page(page);
1149 
1150 		iov_iter_advance(ii, tmp);
1151 		if (!tmp) {
1152 			unlock_page(page);
1153 			put_page(page);
1154 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1155 			goto again;
1156 		}
1157 
1158 		err = 0;
1159 		ap->pages[ap->num_pages] = page;
1160 		ap->descs[ap->num_pages].length = tmp;
1161 		ap->num_pages++;
1162 
1163 		count += tmp;
1164 		pos += tmp;
1165 		offset += tmp;
1166 		if (offset == PAGE_SIZE)
1167 			offset = 0;
1168 
1169 		if (!fc->big_writes)
1170 			break;
1171 	} while (iov_iter_count(ii) && count < fc->max_write &&
1172 		 ap->num_pages < max_pages && offset == 0);
1173 
1174 	return count > 0 ? count : err;
1175 }
1176 
1177 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1178 				     unsigned int max_pages)
1179 {
1180 	return min_t(unsigned int,
1181 		     ((pos + len - 1) >> PAGE_SHIFT) -
1182 		     (pos >> PAGE_SHIFT) + 1,
1183 		     max_pages);
1184 }
1185 
1186 static ssize_t fuse_perform_write(struct kiocb *iocb,
1187 				  struct address_space *mapping,
1188 				  struct iov_iter *ii, loff_t pos)
1189 {
1190 	struct inode *inode = mapping->host;
1191 	struct fuse_conn *fc = get_fuse_conn(inode);
1192 	struct fuse_inode *fi = get_fuse_inode(inode);
1193 	int err = 0;
1194 	ssize_t res = 0;
1195 
1196 	if (inode->i_size < pos + iov_iter_count(ii))
1197 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1198 
1199 	do {
1200 		ssize_t count;
1201 		struct fuse_io_args ia = {};
1202 		struct fuse_args_pages *ap = &ia.ap;
1203 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1204 						      fc->max_pages);
1205 
1206 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1207 		if (!ap->pages) {
1208 			err = -ENOMEM;
1209 			break;
1210 		}
1211 
1212 		count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1213 		if (count <= 0) {
1214 			err = count;
1215 		} else {
1216 			err = fuse_send_write_pages(&ia, iocb, inode,
1217 						    pos, count);
1218 			if (!err) {
1219 				size_t num_written = ia.write.out.size;
1220 
1221 				res += num_written;
1222 				pos += num_written;
1223 
1224 				/* break out of the loop on short write */
1225 				if (num_written != count)
1226 					err = -EIO;
1227 			}
1228 		}
1229 		kfree(ap->pages);
1230 	} while (!err && iov_iter_count(ii));
1231 
1232 	if (res > 0)
1233 		fuse_write_update_size(inode, pos);
1234 
1235 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1236 	fuse_invalidate_attr(inode);
1237 
1238 	return res > 0 ? res : err;
1239 }
1240 
1241 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1242 {
1243 	struct file *file = iocb->ki_filp;
1244 	struct address_space *mapping = file->f_mapping;
1245 	ssize_t written = 0;
1246 	ssize_t written_buffered = 0;
1247 	struct inode *inode = mapping->host;
1248 	ssize_t err;
1249 	loff_t endbyte = 0;
1250 
1251 	if (get_fuse_conn(inode)->writeback_cache) {
1252 		/* Update size (EOF optimization) and mode (SUID clearing) */
1253 		err = fuse_update_attributes(mapping->host, file);
1254 		if (err)
1255 			return err;
1256 
1257 		return generic_file_write_iter(iocb, from);
1258 	}
1259 
1260 	inode_lock(inode);
1261 
1262 	/* We can write back this queue in page reclaim */
1263 	current->backing_dev_info = inode_to_bdi(inode);
1264 
1265 	err = generic_write_checks(iocb, from);
1266 	if (err <= 0)
1267 		goto out;
1268 
1269 	err = file_remove_privs(file);
1270 	if (err)
1271 		goto out;
1272 
1273 	err = file_update_time(file);
1274 	if (err)
1275 		goto out;
1276 
1277 	if (iocb->ki_flags & IOCB_DIRECT) {
1278 		loff_t pos = iocb->ki_pos;
1279 		written = generic_file_direct_write(iocb, from);
1280 		if (written < 0 || !iov_iter_count(from))
1281 			goto out;
1282 
1283 		pos += written;
1284 
1285 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1286 		if (written_buffered < 0) {
1287 			err = written_buffered;
1288 			goto out;
1289 		}
1290 		endbyte = pos + written_buffered - 1;
1291 
1292 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1293 						   endbyte);
1294 		if (err)
1295 			goto out;
1296 
1297 		invalidate_mapping_pages(file->f_mapping,
1298 					 pos >> PAGE_SHIFT,
1299 					 endbyte >> PAGE_SHIFT);
1300 
1301 		written += written_buffered;
1302 		iocb->ki_pos = pos + written_buffered;
1303 	} else {
1304 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1305 		if (written >= 0)
1306 			iocb->ki_pos += written;
1307 	}
1308 out:
1309 	current->backing_dev_info = NULL;
1310 	inode_unlock(inode);
1311 	if (written > 0)
1312 		written = generic_write_sync(iocb, written);
1313 
1314 	return written ? written : err;
1315 }
1316 
1317 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1318 					       unsigned int index,
1319 					       unsigned int nr_pages)
1320 {
1321 	int i;
1322 
1323 	for (i = index; i < index + nr_pages; i++)
1324 		descs[i].length = PAGE_SIZE - descs[i].offset;
1325 }
1326 
1327 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1328 {
1329 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1330 }
1331 
1332 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1333 					size_t max_size)
1334 {
1335 	return min(iov_iter_single_seg_count(ii), max_size);
1336 }
1337 
1338 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1339 			       size_t *nbytesp, int write,
1340 			       unsigned int max_pages)
1341 {
1342 	size_t nbytes = 0;  /* # bytes already packed in req */
1343 	ssize_t ret = 0;
1344 
1345 	/* Special case for kernel I/O: can copy directly into the buffer */
1346 	if (iov_iter_is_kvec(ii)) {
1347 		unsigned long user_addr = fuse_get_user_addr(ii);
1348 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1349 
1350 		if (write)
1351 			ap->args.in_args[1].value = (void *) user_addr;
1352 		else
1353 			ap->args.out_args[0].value = (void *) user_addr;
1354 
1355 		iov_iter_advance(ii, frag_size);
1356 		*nbytesp = frag_size;
1357 		return 0;
1358 	}
1359 
1360 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1361 		unsigned npages;
1362 		size_t start;
1363 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1364 					*nbytesp - nbytes,
1365 					max_pages - ap->num_pages,
1366 					&start);
1367 		if (ret < 0)
1368 			break;
1369 
1370 		iov_iter_advance(ii, ret);
1371 		nbytes += ret;
1372 
1373 		ret += start;
1374 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1375 
1376 		ap->descs[ap->num_pages].offset = start;
1377 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1378 
1379 		ap->num_pages += npages;
1380 		ap->descs[ap->num_pages - 1].length -=
1381 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1382 	}
1383 
1384 	if (write)
1385 		ap->args.in_pages = true;
1386 	else
1387 		ap->args.out_pages = true;
1388 
1389 	*nbytesp = nbytes;
1390 
1391 	return ret < 0 ? ret : 0;
1392 }
1393 
1394 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1395 		       loff_t *ppos, int flags)
1396 {
1397 	int write = flags & FUSE_DIO_WRITE;
1398 	int cuse = flags & FUSE_DIO_CUSE;
1399 	struct file *file = io->iocb->ki_filp;
1400 	struct inode *inode = file->f_mapping->host;
1401 	struct fuse_file *ff = file->private_data;
1402 	struct fuse_conn *fc = ff->fc;
1403 	size_t nmax = write ? fc->max_write : fc->max_read;
1404 	loff_t pos = *ppos;
1405 	size_t count = iov_iter_count(iter);
1406 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1407 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1408 	ssize_t res = 0;
1409 	int err = 0;
1410 	struct fuse_io_args *ia;
1411 	unsigned int max_pages;
1412 
1413 	max_pages = iov_iter_npages(iter, fc->max_pages);
1414 	ia = fuse_io_alloc(io, max_pages);
1415 	if (!ia)
1416 		return -ENOMEM;
1417 
1418 	ia->io = io;
1419 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1420 		if (!write)
1421 			inode_lock(inode);
1422 		fuse_sync_writes(inode);
1423 		if (!write)
1424 			inode_unlock(inode);
1425 	}
1426 
1427 	io->should_dirty = !write && iter_is_iovec(iter);
1428 	while (count) {
1429 		ssize_t nres;
1430 		fl_owner_t owner = current->files;
1431 		size_t nbytes = min(count, nmax);
1432 
1433 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1434 					  max_pages);
1435 		if (err && !nbytes)
1436 			break;
1437 
1438 		if (write) {
1439 			if (!capable(CAP_FSETID))
1440 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1441 
1442 			nres = fuse_send_write(ia, pos, nbytes, owner);
1443 		} else {
1444 			nres = fuse_send_read(ia, pos, nbytes, owner);
1445 		}
1446 
1447 		if (!io->async || nres < 0) {
1448 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1449 			fuse_io_free(ia);
1450 		}
1451 		ia = NULL;
1452 		if (nres < 0) {
1453 			iov_iter_revert(iter, nbytes);
1454 			err = nres;
1455 			break;
1456 		}
1457 		WARN_ON(nres > nbytes);
1458 
1459 		count -= nres;
1460 		res += nres;
1461 		pos += nres;
1462 		if (nres != nbytes) {
1463 			iov_iter_revert(iter, nbytes - nres);
1464 			break;
1465 		}
1466 		if (count) {
1467 			max_pages = iov_iter_npages(iter, fc->max_pages);
1468 			ia = fuse_io_alloc(io, max_pages);
1469 			if (!ia)
1470 				break;
1471 		}
1472 	}
1473 	if (ia)
1474 		fuse_io_free(ia);
1475 	if (res > 0)
1476 		*ppos = pos;
1477 
1478 	return res > 0 ? res : err;
1479 }
1480 EXPORT_SYMBOL_GPL(fuse_direct_io);
1481 
1482 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1483 				  struct iov_iter *iter,
1484 				  loff_t *ppos)
1485 {
1486 	ssize_t res;
1487 	struct inode *inode = file_inode(io->iocb->ki_filp);
1488 
1489 	res = fuse_direct_io(io, iter, ppos, 0);
1490 
1491 	fuse_invalidate_atime(inode);
1492 
1493 	return res;
1494 }
1495 
1496 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1497 
1498 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1499 {
1500 	ssize_t res;
1501 
1502 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1503 		res = fuse_direct_IO(iocb, to);
1504 	} else {
1505 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1506 
1507 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1508 	}
1509 
1510 	return res;
1511 }
1512 
1513 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1514 {
1515 	struct inode *inode = file_inode(iocb->ki_filp);
1516 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1517 	ssize_t res;
1518 
1519 	/* Don't allow parallel writes to the same file */
1520 	inode_lock(inode);
1521 	res = generic_write_checks(iocb, from);
1522 	if (res > 0) {
1523 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1524 			res = fuse_direct_IO(iocb, from);
1525 		} else {
1526 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1527 					     FUSE_DIO_WRITE);
1528 		}
1529 	}
1530 	fuse_invalidate_attr(inode);
1531 	if (res > 0)
1532 		fuse_write_update_size(inode, iocb->ki_pos);
1533 	inode_unlock(inode);
1534 
1535 	return res;
1536 }
1537 
1538 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1539 {
1540 	struct file *file = iocb->ki_filp;
1541 	struct fuse_file *ff = file->private_data;
1542 
1543 	if (is_bad_inode(file_inode(file)))
1544 		return -EIO;
1545 
1546 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1547 		return fuse_cache_read_iter(iocb, to);
1548 	else
1549 		return fuse_direct_read_iter(iocb, to);
1550 }
1551 
1552 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1553 {
1554 	struct file *file = iocb->ki_filp;
1555 	struct fuse_file *ff = file->private_data;
1556 
1557 	if (is_bad_inode(file_inode(file)))
1558 		return -EIO;
1559 
1560 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1561 		return fuse_cache_write_iter(iocb, from);
1562 	else
1563 		return fuse_direct_write_iter(iocb, from);
1564 }
1565 
1566 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1567 {
1568 	struct fuse_args_pages *ap = &wpa->ia.ap;
1569 	int i;
1570 
1571 	for (i = 0; i < ap->num_pages; i++)
1572 		__free_page(ap->pages[i]);
1573 
1574 	if (wpa->ia.ff)
1575 		fuse_file_put(wpa->ia.ff, false, false);
1576 
1577 	kfree(ap->pages);
1578 	kfree(wpa);
1579 }
1580 
1581 static void fuse_writepage_finish(struct fuse_conn *fc,
1582 				  struct fuse_writepage_args *wpa)
1583 {
1584 	struct fuse_args_pages *ap = &wpa->ia.ap;
1585 	struct inode *inode = wpa->inode;
1586 	struct fuse_inode *fi = get_fuse_inode(inode);
1587 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1588 	int i;
1589 
1590 	for (i = 0; i < ap->num_pages; i++) {
1591 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1592 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1593 		wb_writeout_inc(&bdi->wb);
1594 	}
1595 	wake_up(&fi->page_waitq);
1596 }
1597 
1598 /* Called under fi->lock, may release and reacquire it */
1599 static void fuse_send_writepage(struct fuse_conn *fc,
1600 				struct fuse_writepage_args *wpa, loff_t size)
1601 __releases(fi->lock)
1602 __acquires(fi->lock)
1603 {
1604 	struct fuse_writepage_args *aux, *next;
1605 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1606 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1607 	struct fuse_args *args = &wpa->ia.ap.args;
1608 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1609 	int err;
1610 
1611 	fi->writectr++;
1612 	if (inarg->offset + data_size <= size) {
1613 		inarg->size = data_size;
1614 	} else if (inarg->offset < size) {
1615 		inarg->size = size - inarg->offset;
1616 	} else {
1617 		/* Got truncated off completely */
1618 		goto out_free;
1619 	}
1620 
1621 	args->in_args[1].size = inarg->size;
1622 	args->force = true;
1623 	args->nocreds = true;
1624 
1625 	err = fuse_simple_background(fc, args, GFP_ATOMIC);
1626 	if (err == -ENOMEM) {
1627 		spin_unlock(&fi->lock);
1628 		err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1629 		spin_lock(&fi->lock);
1630 	}
1631 
1632 	/* Fails on broken connection only */
1633 	if (unlikely(err))
1634 		goto out_free;
1635 
1636 	return;
1637 
1638  out_free:
1639 	fi->writectr--;
1640 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1641 	fuse_writepage_finish(fc, wpa);
1642 	spin_unlock(&fi->lock);
1643 
1644 	/* After fuse_writepage_finish() aux request list is private */
1645 	for (aux = wpa->next; aux; aux = next) {
1646 		next = aux->next;
1647 		aux->next = NULL;
1648 		fuse_writepage_free(aux);
1649 	}
1650 
1651 	fuse_writepage_free(wpa);
1652 	spin_lock(&fi->lock);
1653 }
1654 
1655 /*
1656  * If fi->writectr is positive (no truncate or fsync going on) send
1657  * all queued writepage requests.
1658  *
1659  * Called with fi->lock
1660  */
1661 void fuse_flush_writepages(struct inode *inode)
1662 __releases(fi->lock)
1663 __acquires(fi->lock)
1664 {
1665 	struct fuse_conn *fc = get_fuse_conn(inode);
1666 	struct fuse_inode *fi = get_fuse_inode(inode);
1667 	loff_t crop = i_size_read(inode);
1668 	struct fuse_writepage_args *wpa;
1669 
1670 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1671 		wpa = list_entry(fi->queued_writes.next,
1672 				 struct fuse_writepage_args, queue_entry);
1673 		list_del_init(&wpa->queue_entry);
1674 		fuse_send_writepage(fc, wpa, crop);
1675 	}
1676 }
1677 
1678 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root,
1679 						struct fuse_writepage_args *wpa)
1680 {
1681 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1682 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1683 	struct rb_node **p = &root->rb_node;
1684 	struct rb_node  *parent = NULL;
1685 
1686 	WARN_ON(!wpa->ia.ap.num_pages);
1687 	while (*p) {
1688 		struct fuse_writepage_args *curr;
1689 		pgoff_t curr_index;
1690 
1691 		parent = *p;
1692 		curr = rb_entry(parent, struct fuse_writepage_args,
1693 				writepages_entry);
1694 		WARN_ON(curr->inode != wpa->inode);
1695 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1696 
1697 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1698 			p = &(*p)->rb_right;
1699 		else if (idx_to < curr_index)
1700 			p = &(*p)->rb_left;
1701 		else
1702 			return curr;
1703 	}
1704 
1705 	rb_link_node(&wpa->writepages_entry, parent, p);
1706 	rb_insert_color(&wpa->writepages_entry, root);
1707 	return NULL;
1708 }
1709 
1710 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1711 {
1712 	WARN_ON(fuse_insert_writeback(root, wpa));
1713 }
1714 
1715 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1716 			       int error)
1717 {
1718 	struct fuse_writepage_args *wpa =
1719 		container_of(args, typeof(*wpa), ia.ap.args);
1720 	struct inode *inode = wpa->inode;
1721 	struct fuse_inode *fi = get_fuse_inode(inode);
1722 
1723 	mapping_set_error(inode->i_mapping, error);
1724 	spin_lock(&fi->lock);
1725 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1726 	while (wpa->next) {
1727 		struct fuse_conn *fc = get_fuse_conn(inode);
1728 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1729 		struct fuse_writepage_args *next = wpa->next;
1730 
1731 		wpa->next = next->next;
1732 		next->next = NULL;
1733 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1734 		tree_insert(&fi->writepages, next);
1735 
1736 		/*
1737 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1738 		 * based on primary request size.
1739 		 *
1740 		 * 1st case (trivial): there are no concurrent activities using
1741 		 * fuse_set/release_nowrite.  Then we're on safe side because
1742 		 * fuse_flush_writepages() would call fuse_send_writepage()
1743 		 * anyway.
1744 		 *
1745 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1746 		 * now for completion of all in-flight requests.  This happens
1747 		 * rarely and no more than once per page, so this should be
1748 		 * okay.
1749 		 *
1750 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1751 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1752 		 * that fuse_set_nowrite returned implies that all in-flight
1753 		 * requests were completed along with all of their secondary
1754 		 * requests.  Further primary requests are blocked by negative
1755 		 * writectr.  Hence there cannot be any in-flight requests and
1756 		 * no invocations of fuse_writepage_end() while we're in
1757 		 * fuse_set_nowrite..fuse_release_nowrite section.
1758 		 */
1759 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1760 	}
1761 	fi->writectr--;
1762 	fuse_writepage_finish(fc, wpa);
1763 	spin_unlock(&fi->lock);
1764 	fuse_writepage_free(wpa);
1765 }
1766 
1767 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1768 					       struct fuse_inode *fi)
1769 {
1770 	struct fuse_file *ff = NULL;
1771 
1772 	spin_lock(&fi->lock);
1773 	if (!list_empty(&fi->write_files)) {
1774 		ff = list_entry(fi->write_files.next, struct fuse_file,
1775 				write_entry);
1776 		fuse_file_get(ff);
1777 	}
1778 	spin_unlock(&fi->lock);
1779 
1780 	return ff;
1781 }
1782 
1783 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1784 					     struct fuse_inode *fi)
1785 {
1786 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1787 	WARN_ON(!ff);
1788 	return ff;
1789 }
1790 
1791 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1792 {
1793 	struct fuse_conn *fc = get_fuse_conn(inode);
1794 	struct fuse_inode *fi = get_fuse_inode(inode);
1795 	struct fuse_file *ff;
1796 	int err;
1797 
1798 	ff = __fuse_write_file_get(fc, fi);
1799 	err = fuse_flush_times(inode, ff);
1800 	if (ff)
1801 		fuse_file_put(ff, false, false);
1802 
1803 	return err;
1804 }
1805 
1806 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1807 {
1808 	struct fuse_writepage_args *wpa;
1809 	struct fuse_args_pages *ap;
1810 
1811 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1812 	if (wpa) {
1813 		ap = &wpa->ia.ap;
1814 		ap->num_pages = 0;
1815 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1816 		if (!ap->pages) {
1817 			kfree(wpa);
1818 			wpa = NULL;
1819 		}
1820 	}
1821 	return wpa;
1822 
1823 }
1824 
1825 static int fuse_writepage_locked(struct page *page)
1826 {
1827 	struct address_space *mapping = page->mapping;
1828 	struct inode *inode = mapping->host;
1829 	struct fuse_conn *fc = get_fuse_conn(inode);
1830 	struct fuse_inode *fi = get_fuse_inode(inode);
1831 	struct fuse_writepage_args *wpa;
1832 	struct fuse_args_pages *ap;
1833 	struct page *tmp_page;
1834 	int error = -ENOMEM;
1835 
1836 	set_page_writeback(page);
1837 
1838 	wpa = fuse_writepage_args_alloc();
1839 	if (!wpa)
1840 		goto err;
1841 	ap = &wpa->ia.ap;
1842 
1843 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1844 	if (!tmp_page)
1845 		goto err_free;
1846 
1847 	error = -EIO;
1848 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1849 	if (!wpa->ia.ff)
1850 		goto err_nofile;
1851 
1852 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1853 
1854 	copy_highpage(tmp_page, page);
1855 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1856 	wpa->next = NULL;
1857 	ap->args.in_pages = true;
1858 	ap->num_pages = 1;
1859 	ap->pages[0] = tmp_page;
1860 	ap->descs[0].offset = 0;
1861 	ap->descs[0].length = PAGE_SIZE;
1862 	ap->args.end = fuse_writepage_end;
1863 	wpa->inode = inode;
1864 
1865 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1866 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1867 
1868 	spin_lock(&fi->lock);
1869 	tree_insert(&fi->writepages, wpa);
1870 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1871 	fuse_flush_writepages(inode);
1872 	spin_unlock(&fi->lock);
1873 
1874 	end_page_writeback(page);
1875 
1876 	return 0;
1877 
1878 err_nofile:
1879 	__free_page(tmp_page);
1880 err_free:
1881 	kfree(wpa);
1882 err:
1883 	mapping_set_error(page->mapping, error);
1884 	end_page_writeback(page);
1885 	return error;
1886 }
1887 
1888 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1889 {
1890 	int err;
1891 
1892 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1893 		/*
1894 		 * ->writepages() should be called for sync() and friends.  We
1895 		 * should only get here on direct reclaim and then we are
1896 		 * allowed to skip a page which is already in flight
1897 		 */
1898 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1899 
1900 		redirty_page_for_writepage(wbc, page);
1901 		unlock_page(page);
1902 		return 0;
1903 	}
1904 
1905 	err = fuse_writepage_locked(page);
1906 	unlock_page(page);
1907 
1908 	return err;
1909 }
1910 
1911 struct fuse_fill_wb_data {
1912 	struct fuse_writepage_args *wpa;
1913 	struct fuse_file *ff;
1914 	struct inode *inode;
1915 	struct page **orig_pages;
1916 	unsigned int max_pages;
1917 };
1918 
1919 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1920 {
1921 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1922 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1923 	struct page **pages;
1924 	struct fuse_page_desc *descs;
1925 	unsigned int npages = min_t(unsigned int,
1926 				    max_t(unsigned int, data->max_pages * 2,
1927 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1928 				    fc->max_pages);
1929 	WARN_ON(npages <= data->max_pages);
1930 
1931 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1932 	if (!pages)
1933 		return false;
1934 
1935 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1936 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1937 	kfree(ap->pages);
1938 	ap->pages = pages;
1939 	ap->descs = descs;
1940 	data->max_pages = npages;
1941 
1942 	return true;
1943 }
1944 
1945 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1946 {
1947 	struct fuse_writepage_args *wpa = data->wpa;
1948 	struct inode *inode = data->inode;
1949 	struct fuse_inode *fi = get_fuse_inode(inode);
1950 	int num_pages = wpa->ia.ap.num_pages;
1951 	int i;
1952 
1953 	wpa->ia.ff = fuse_file_get(data->ff);
1954 	spin_lock(&fi->lock);
1955 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1956 	fuse_flush_writepages(inode);
1957 	spin_unlock(&fi->lock);
1958 
1959 	for (i = 0; i < num_pages; i++)
1960 		end_page_writeback(data->orig_pages[i]);
1961 }
1962 
1963 /*
1964  * Check under fi->lock if the page is under writeback, and insert it onto the
1965  * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's
1966  * one already added for a page at this offset.  If there's none, then insert
1967  * this new request onto the auxiliary list, otherwise reuse the existing one by
1968  * swapping the new temp page with the old one.
1969  */
1970 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa,
1971 			       struct page *page)
1972 {
1973 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1974 	struct fuse_writepage_args *tmp;
1975 	struct fuse_writepage_args *old_wpa;
1976 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1977 
1978 	WARN_ON(new_ap->num_pages != 0);
1979 	new_ap->num_pages = 1;
1980 
1981 	spin_lock(&fi->lock);
1982 	old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa);
1983 	if (!old_wpa) {
1984 		spin_unlock(&fi->lock);
1985 		return true;
1986 	}
1987 
1988 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1989 		pgoff_t curr_index;
1990 
1991 		WARN_ON(tmp->inode != new_wpa->inode);
1992 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1993 		if (curr_index == page->index) {
1994 			WARN_ON(tmp->ia.ap.num_pages != 1);
1995 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1996 			break;
1997 		}
1998 	}
1999 
2000 	if (!tmp) {
2001 		new_wpa->next = old_wpa->next;
2002 		old_wpa->next = new_wpa;
2003 	}
2004 
2005 	spin_unlock(&fi->lock);
2006 
2007 	if (tmp) {
2008 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2009 
2010 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2011 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2012 		wb_writeout_inc(&bdi->wb);
2013 		fuse_writepage_free(new_wpa);
2014 	}
2015 
2016 	return false;
2017 }
2018 
2019 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page,
2020 				     struct fuse_args_pages *ap,
2021 				     struct fuse_fill_wb_data *data)
2022 {
2023 	WARN_ON(!ap->num_pages);
2024 
2025 	/*
2026 	 * Being under writeback is unlikely but possible.  For example direct
2027 	 * read to an mmaped fuse file will set the page dirty twice; once when
2028 	 * the pages are faulted with get_user_pages(), and then after the read
2029 	 * completed.
2030 	 */
2031 	if (fuse_page_is_writeback(data->inode, page->index))
2032 		return true;
2033 
2034 	/* Reached max pages */
2035 	if (ap->num_pages == fc->max_pages)
2036 		return true;
2037 
2038 	/* Reached max write bytes */
2039 	if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write)
2040 		return true;
2041 
2042 	/* Discontinuity */
2043 	if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)
2044 		return true;
2045 
2046 	/* Need to grow the pages array?  If so, did the expansion fail? */
2047 	if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data))
2048 		return true;
2049 
2050 	return false;
2051 }
2052 
2053 static int fuse_writepages_fill(struct page *page,
2054 		struct writeback_control *wbc, void *_data)
2055 {
2056 	struct fuse_fill_wb_data *data = _data;
2057 	struct fuse_writepage_args *wpa = data->wpa;
2058 	struct fuse_args_pages *ap = &wpa->ia.ap;
2059 	struct inode *inode = data->inode;
2060 	struct fuse_inode *fi = get_fuse_inode(inode);
2061 	struct fuse_conn *fc = get_fuse_conn(inode);
2062 	struct page *tmp_page;
2063 	int err;
2064 
2065 	if (!data->ff) {
2066 		err = -EIO;
2067 		data->ff = fuse_write_file_get(fc, fi);
2068 		if (!data->ff)
2069 			goto out_unlock;
2070 	}
2071 
2072 	if (wpa && fuse_writepage_need_send(fc, page, ap, data)) {
2073 		fuse_writepages_send(data);
2074 		data->wpa = NULL;
2075 	}
2076 
2077 	err = -ENOMEM;
2078 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2079 	if (!tmp_page)
2080 		goto out_unlock;
2081 
2082 	/*
2083 	 * The page must not be redirtied until the writeout is completed
2084 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2085 	 * there could be more than one temporary page instance for each real
2086 	 * page.
2087 	 *
2088 	 * This is ensured by holding the page lock in page_mkwrite() while
2089 	 * checking fuse_page_is_writeback().  We already hold the page lock
2090 	 * since clear_page_dirty_for_io() and keep it held until we add the
2091 	 * request to the fi->writepages list and increment ap->num_pages.
2092 	 * After this fuse_page_is_writeback() will indicate that the page is
2093 	 * under writeback, so we can release the page lock.
2094 	 */
2095 	if (data->wpa == NULL) {
2096 		err = -ENOMEM;
2097 		wpa = fuse_writepage_args_alloc();
2098 		if (!wpa) {
2099 			__free_page(tmp_page);
2100 			goto out_unlock;
2101 		}
2102 		data->max_pages = 1;
2103 
2104 		ap = &wpa->ia.ap;
2105 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2106 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2107 		wpa->next = NULL;
2108 		ap->args.in_pages = true;
2109 		ap->args.end = fuse_writepage_end;
2110 		ap->num_pages = 0;
2111 		wpa->inode = inode;
2112 	}
2113 	set_page_writeback(page);
2114 
2115 	copy_highpage(tmp_page, page);
2116 	ap->pages[ap->num_pages] = tmp_page;
2117 	ap->descs[ap->num_pages].offset = 0;
2118 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2119 	data->orig_pages[ap->num_pages] = page;
2120 
2121 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2122 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2123 
2124 	err = 0;
2125 	if (data->wpa) {
2126 		/*
2127 		 * Protected by fi->lock against concurrent access by
2128 		 * fuse_page_is_writeback().
2129 		 */
2130 		spin_lock(&fi->lock);
2131 		ap->num_pages++;
2132 		spin_unlock(&fi->lock);
2133 	} else if (fuse_writepage_add(wpa, page)) {
2134 		data->wpa = wpa;
2135 	} else {
2136 		end_page_writeback(page);
2137 	}
2138 out_unlock:
2139 	unlock_page(page);
2140 
2141 	return err;
2142 }
2143 
2144 static int fuse_writepages(struct address_space *mapping,
2145 			   struct writeback_control *wbc)
2146 {
2147 	struct inode *inode = mapping->host;
2148 	struct fuse_conn *fc = get_fuse_conn(inode);
2149 	struct fuse_fill_wb_data data;
2150 	int err;
2151 
2152 	err = -EIO;
2153 	if (is_bad_inode(inode))
2154 		goto out;
2155 
2156 	data.inode = inode;
2157 	data.wpa = NULL;
2158 	data.ff = NULL;
2159 
2160 	err = -ENOMEM;
2161 	data.orig_pages = kcalloc(fc->max_pages,
2162 				  sizeof(struct page *),
2163 				  GFP_NOFS);
2164 	if (!data.orig_pages)
2165 		goto out;
2166 
2167 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2168 	if (data.wpa) {
2169 		WARN_ON(!data.wpa->ia.ap.num_pages);
2170 		fuse_writepages_send(&data);
2171 	}
2172 	if (data.ff)
2173 		fuse_file_put(data.ff, false, false);
2174 
2175 	kfree(data.orig_pages);
2176 out:
2177 	return err;
2178 }
2179 
2180 /*
2181  * It's worthy to make sure that space is reserved on disk for the write,
2182  * but how to implement it without killing performance need more thinking.
2183  */
2184 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2185 		loff_t pos, unsigned len, unsigned flags,
2186 		struct page **pagep, void **fsdata)
2187 {
2188 	pgoff_t index = pos >> PAGE_SHIFT;
2189 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2190 	struct page *page;
2191 	loff_t fsize;
2192 	int err = -ENOMEM;
2193 
2194 	WARN_ON(!fc->writeback_cache);
2195 
2196 	page = grab_cache_page_write_begin(mapping, index, flags);
2197 	if (!page)
2198 		goto error;
2199 
2200 	fuse_wait_on_page_writeback(mapping->host, page->index);
2201 
2202 	if (PageUptodate(page) || len == PAGE_SIZE)
2203 		goto success;
2204 	/*
2205 	 * Check if the start this page comes after the end of file, in which
2206 	 * case the readpage can be optimized away.
2207 	 */
2208 	fsize = i_size_read(mapping->host);
2209 	if (fsize <= (pos & PAGE_MASK)) {
2210 		size_t off = pos & ~PAGE_MASK;
2211 		if (off)
2212 			zero_user_segment(page, 0, off);
2213 		goto success;
2214 	}
2215 	err = fuse_do_readpage(file, page);
2216 	if (err)
2217 		goto cleanup;
2218 success:
2219 	*pagep = page;
2220 	return 0;
2221 
2222 cleanup:
2223 	unlock_page(page);
2224 	put_page(page);
2225 error:
2226 	return err;
2227 }
2228 
2229 static int fuse_write_end(struct file *file, struct address_space *mapping,
2230 		loff_t pos, unsigned len, unsigned copied,
2231 		struct page *page, void *fsdata)
2232 {
2233 	struct inode *inode = page->mapping->host;
2234 
2235 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2236 	if (!copied)
2237 		goto unlock;
2238 
2239 	if (!PageUptodate(page)) {
2240 		/* Zero any unwritten bytes at the end of the page */
2241 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2242 		if (endoff)
2243 			zero_user_segment(page, endoff, PAGE_SIZE);
2244 		SetPageUptodate(page);
2245 	}
2246 
2247 	fuse_write_update_size(inode, pos + copied);
2248 	set_page_dirty(page);
2249 
2250 unlock:
2251 	unlock_page(page);
2252 	put_page(page);
2253 
2254 	return copied;
2255 }
2256 
2257 static int fuse_launder_page(struct page *page)
2258 {
2259 	int err = 0;
2260 	if (clear_page_dirty_for_io(page)) {
2261 		struct inode *inode = page->mapping->host;
2262 		err = fuse_writepage_locked(page);
2263 		if (!err)
2264 			fuse_wait_on_page_writeback(inode, page->index);
2265 	}
2266 	return err;
2267 }
2268 
2269 /*
2270  * Write back dirty pages now, because there may not be any suitable
2271  * open files later
2272  */
2273 static void fuse_vma_close(struct vm_area_struct *vma)
2274 {
2275 	filemap_write_and_wait(vma->vm_file->f_mapping);
2276 }
2277 
2278 /*
2279  * Wait for writeback against this page to complete before allowing it
2280  * to be marked dirty again, and hence written back again, possibly
2281  * before the previous writepage completed.
2282  *
2283  * Block here, instead of in ->writepage(), so that the userspace fs
2284  * can only block processes actually operating on the filesystem.
2285  *
2286  * Otherwise unprivileged userspace fs would be able to block
2287  * unrelated:
2288  *
2289  * - page migration
2290  * - sync(2)
2291  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2292  */
2293 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2294 {
2295 	struct page *page = vmf->page;
2296 	struct inode *inode = file_inode(vmf->vma->vm_file);
2297 
2298 	file_update_time(vmf->vma->vm_file);
2299 	lock_page(page);
2300 	if (page->mapping != inode->i_mapping) {
2301 		unlock_page(page);
2302 		return VM_FAULT_NOPAGE;
2303 	}
2304 
2305 	fuse_wait_on_page_writeback(inode, page->index);
2306 	return VM_FAULT_LOCKED;
2307 }
2308 
2309 static const struct vm_operations_struct fuse_file_vm_ops = {
2310 	.close		= fuse_vma_close,
2311 	.fault		= filemap_fault,
2312 	.map_pages	= filemap_map_pages,
2313 	.page_mkwrite	= fuse_page_mkwrite,
2314 };
2315 
2316 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2317 {
2318 	struct fuse_file *ff = file->private_data;
2319 
2320 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2321 		/* Can't provide the coherency needed for MAP_SHARED */
2322 		if (vma->vm_flags & VM_MAYSHARE)
2323 			return -ENODEV;
2324 
2325 		invalidate_inode_pages2(file->f_mapping);
2326 
2327 		return generic_file_mmap(file, vma);
2328 	}
2329 
2330 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2331 		fuse_link_write_file(file);
2332 
2333 	file_accessed(file);
2334 	vma->vm_ops = &fuse_file_vm_ops;
2335 	return 0;
2336 }
2337 
2338 static int convert_fuse_file_lock(struct fuse_conn *fc,
2339 				  const struct fuse_file_lock *ffl,
2340 				  struct file_lock *fl)
2341 {
2342 	switch (ffl->type) {
2343 	case F_UNLCK:
2344 		break;
2345 
2346 	case F_RDLCK:
2347 	case F_WRLCK:
2348 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2349 		    ffl->end < ffl->start)
2350 			return -EIO;
2351 
2352 		fl->fl_start = ffl->start;
2353 		fl->fl_end = ffl->end;
2354 
2355 		/*
2356 		 * Convert pid into init's pid namespace.  The locks API will
2357 		 * translate it into the caller's pid namespace.
2358 		 */
2359 		rcu_read_lock();
2360 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2361 		rcu_read_unlock();
2362 		break;
2363 
2364 	default:
2365 		return -EIO;
2366 	}
2367 	fl->fl_type = ffl->type;
2368 	return 0;
2369 }
2370 
2371 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2372 			 const struct file_lock *fl, int opcode, pid_t pid,
2373 			 int flock, struct fuse_lk_in *inarg)
2374 {
2375 	struct inode *inode = file_inode(file);
2376 	struct fuse_conn *fc = get_fuse_conn(inode);
2377 	struct fuse_file *ff = file->private_data;
2378 
2379 	memset(inarg, 0, sizeof(*inarg));
2380 	inarg->fh = ff->fh;
2381 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2382 	inarg->lk.start = fl->fl_start;
2383 	inarg->lk.end = fl->fl_end;
2384 	inarg->lk.type = fl->fl_type;
2385 	inarg->lk.pid = pid;
2386 	if (flock)
2387 		inarg->lk_flags |= FUSE_LK_FLOCK;
2388 	args->opcode = opcode;
2389 	args->nodeid = get_node_id(inode);
2390 	args->in_numargs = 1;
2391 	args->in_args[0].size = sizeof(*inarg);
2392 	args->in_args[0].value = inarg;
2393 }
2394 
2395 static int fuse_getlk(struct file *file, struct file_lock *fl)
2396 {
2397 	struct inode *inode = file_inode(file);
2398 	struct fuse_conn *fc = get_fuse_conn(inode);
2399 	FUSE_ARGS(args);
2400 	struct fuse_lk_in inarg;
2401 	struct fuse_lk_out outarg;
2402 	int err;
2403 
2404 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2405 	args.out_numargs = 1;
2406 	args.out_args[0].size = sizeof(outarg);
2407 	args.out_args[0].value = &outarg;
2408 	err = fuse_simple_request(fc, &args);
2409 	if (!err)
2410 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2411 
2412 	return err;
2413 }
2414 
2415 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2416 {
2417 	struct inode *inode = file_inode(file);
2418 	struct fuse_conn *fc = get_fuse_conn(inode);
2419 	FUSE_ARGS(args);
2420 	struct fuse_lk_in inarg;
2421 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2422 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2423 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2424 	int err;
2425 
2426 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2427 		/* NLM needs asynchronous locks, which we don't support yet */
2428 		return -ENOLCK;
2429 	}
2430 
2431 	/* Unlock on close is handled by the flush method */
2432 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2433 		return 0;
2434 
2435 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2436 	err = fuse_simple_request(fc, &args);
2437 
2438 	/* locking is restartable */
2439 	if (err == -EINTR)
2440 		err = -ERESTARTSYS;
2441 
2442 	return err;
2443 }
2444 
2445 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2446 {
2447 	struct inode *inode = file_inode(file);
2448 	struct fuse_conn *fc = get_fuse_conn(inode);
2449 	int err;
2450 
2451 	if (cmd == F_CANCELLK) {
2452 		err = 0;
2453 	} else if (cmd == F_GETLK) {
2454 		if (fc->no_lock) {
2455 			posix_test_lock(file, fl);
2456 			err = 0;
2457 		} else
2458 			err = fuse_getlk(file, fl);
2459 	} else {
2460 		if (fc->no_lock)
2461 			err = posix_lock_file(file, fl, NULL);
2462 		else
2463 			err = fuse_setlk(file, fl, 0);
2464 	}
2465 	return err;
2466 }
2467 
2468 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2469 {
2470 	struct inode *inode = file_inode(file);
2471 	struct fuse_conn *fc = get_fuse_conn(inode);
2472 	int err;
2473 
2474 	if (fc->no_flock) {
2475 		err = locks_lock_file_wait(file, fl);
2476 	} else {
2477 		struct fuse_file *ff = file->private_data;
2478 
2479 		/* emulate flock with POSIX locks */
2480 		ff->flock = true;
2481 		err = fuse_setlk(file, fl, 1);
2482 	}
2483 
2484 	return err;
2485 }
2486 
2487 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2488 {
2489 	struct inode *inode = mapping->host;
2490 	struct fuse_conn *fc = get_fuse_conn(inode);
2491 	FUSE_ARGS(args);
2492 	struct fuse_bmap_in inarg;
2493 	struct fuse_bmap_out outarg;
2494 	int err;
2495 
2496 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2497 		return 0;
2498 
2499 	memset(&inarg, 0, sizeof(inarg));
2500 	inarg.block = block;
2501 	inarg.blocksize = inode->i_sb->s_blocksize;
2502 	args.opcode = FUSE_BMAP;
2503 	args.nodeid = get_node_id(inode);
2504 	args.in_numargs = 1;
2505 	args.in_args[0].size = sizeof(inarg);
2506 	args.in_args[0].value = &inarg;
2507 	args.out_numargs = 1;
2508 	args.out_args[0].size = sizeof(outarg);
2509 	args.out_args[0].value = &outarg;
2510 	err = fuse_simple_request(fc, &args);
2511 	if (err == -ENOSYS)
2512 		fc->no_bmap = 1;
2513 
2514 	return err ? 0 : outarg.block;
2515 }
2516 
2517 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2518 {
2519 	struct inode *inode = file->f_mapping->host;
2520 	struct fuse_conn *fc = get_fuse_conn(inode);
2521 	struct fuse_file *ff = file->private_data;
2522 	FUSE_ARGS(args);
2523 	struct fuse_lseek_in inarg = {
2524 		.fh = ff->fh,
2525 		.offset = offset,
2526 		.whence = whence
2527 	};
2528 	struct fuse_lseek_out outarg;
2529 	int err;
2530 
2531 	if (fc->no_lseek)
2532 		goto fallback;
2533 
2534 	args.opcode = FUSE_LSEEK;
2535 	args.nodeid = ff->nodeid;
2536 	args.in_numargs = 1;
2537 	args.in_args[0].size = sizeof(inarg);
2538 	args.in_args[0].value = &inarg;
2539 	args.out_numargs = 1;
2540 	args.out_args[0].size = sizeof(outarg);
2541 	args.out_args[0].value = &outarg;
2542 	err = fuse_simple_request(fc, &args);
2543 	if (err) {
2544 		if (err == -ENOSYS) {
2545 			fc->no_lseek = 1;
2546 			goto fallback;
2547 		}
2548 		return err;
2549 	}
2550 
2551 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2552 
2553 fallback:
2554 	err = fuse_update_attributes(inode, file);
2555 	if (!err)
2556 		return generic_file_llseek(file, offset, whence);
2557 	else
2558 		return err;
2559 }
2560 
2561 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2562 {
2563 	loff_t retval;
2564 	struct inode *inode = file_inode(file);
2565 
2566 	switch (whence) {
2567 	case SEEK_SET:
2568 	case SEEK_CUR:
2569 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2570 		retval = generic_file_llseek(file, offset, whence);
2571 		break;
2572 	case SEEK_END:
2573 		inode_lock(inode);
2574 		retval = fuse_update_attributes(inode, file);
2575 		if (!retval)
2576 			retval = generic_file_llseek(file, offset, whence);
2577 		inode_unlock(inode);
2578 		break;
2579 	case SEEK_HOLE:
2580 	case SEEK_DATA:
2581 		inode_lock(inode);
2582 		retval = fuse_lseek(file, offset, whence);
2583 		inode_unlock(inode);
2584 		break;
2585 	default:
2586 		retval = -EINVAL;
2587 	}
2588 
2589 	return retval;
2590 }
2591 
2592 /*
2593  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2594  * ABI was defined to be 'struct iovec' which is different on 32bit
2595  * and 64bit.  Fortunately we can determine which structure the server
2596  * used from the size of the reply.
2597  */
2598 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2599 				     size_t transferred, unsigned count,
2600 				     bool is_compat)
2601 {
2602 #ifdef CONFIG_COMPAT
2603 	if (count * sizeof(struct compat_iovec) == transferred) {
2604 		struct compat_iovec *ciov = src;
2605 		unsigned i;
2606 
2607 		/*
2608 		 * With this interface a 32bit server cannot support
2609 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2610 		 * requests
2611 		 */
2612 		if (!is_compat)
2613 			return -EINVAL;
2614 
2615 		for (i = 0; i < count; i++) {
2616 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2617 			dst[i].iov_len = ciov[i].iov_len;
2618 		}
2619 		return 0;
2620 	}
2621 #endif
2622 
2623 	if (count * sizeof(struct iovec) != transferred)
2624 		return -EIO;
2625 
2626 	memcpy(dst, src, transferred);
2627 	return 0;
2628 }
2629 
2630 /* Make sure iov_length() won't overflow */
2631 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2632 				 size_t count)
2633 {
2634 	size_t n;
2635 	u32 max = fc->max_pages << PAGE_SHIFT;
2636 
2637 	for (n = 0; n < count; n++, iov++) {
2638 		if (iov->iov_len > (size_t) max)
2639 			return -ENOMEM;
2640 		max -= iov->iov_len;
2641 	}
2642 	return 0;
2643 }
2644 
2645 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2646 				 void *src, size_t transferred, unsigned count,
2647 				 bool is_compat)
2648 {
2649 	unsigned i;
2650 	struct fuse_ioctl_iovec *fiov = src;
2651 
2652 	if (fc->minor < 16) {
2653 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2654 						 count, is_compat);
2655 	}
2656 
2657 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2658 		return -EIO;
2659 
2660 	for (i = 0; i < count; i++) {
2661 		/* Did the server supply an inappropriate value? */
2662 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2663 		    fiov[i].len != (unsigned long) fiov[i].len)
2664 			return -EIO;
2665 
2666 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2667 		dst[i].iov_len = (size_t) fiov[i].len;
2668 
2669 #ifdef CONFIG_COMPAT
2670 		if (is_compat &&
2671 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2672 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2673 			return -EIO;
2674 #endif
2675 	}
2676 
2677 	return 0;
2678 }
2679 
2680 
2681 /*
2682  * For ioctls, there is no generic way to determine how much memory
2683  * needs to be read and/or written.  Furthermore, ioctls are allowed
2684  * to dereference the passed pointer, so the parameter requires deep
2685  * copying but FUSE has no idea whatsoever about what to copy in or
2686  * out.
2687  *
2688  * This is solved by allowing FUSE server to retry ioctl with
2689  * necessary in/out iovecs.  Let's assume the ioctl implementation
2690  * needs to read in the following structure.
2691  *
2692  * struct a {
2693  *	char	*buf;
2694  *	size_t	buflen;
2695  * }
2696  *
2697  * On the first callout to FUSE server, inarg->in_size and
2698  * inarg->out_size will be NULL; then, the server completes the ioctl
2699  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2700  * the actual iov array to
2701  *
2702  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2703  *
2704  * which tells FUSE to copy in the requested area and retry the ioctl.
2705  * On the second round, the server has access to the structure and
2706  * from that it can tell what to look for next, so on the invocation,
2707  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2708  *
2709  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2710  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2711  *
2712  * FUSE will copy both struct a and the pointed buffer from the
2713  * process doing the ioctl and retry ioctl with both struct a and the
2714  * buffer.
2715  *
2716  * This time, FUSE server has everything it needs and completes ioctl
2717  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2718  *
2719  * Copying data out works the same way.
2720  *
2721  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2722  * automatically initializes in and out iovs by decoding @cmd with
2723  * _IOC_* macros and the server is not allowed to request RETRY.  This
2724  * limits ioctl data transfers to well-formed ioctls and is the forced
2725  * behavior for all FUSE servers.
2726  */
2727 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2728 		   unsigned int flags)
2729 {
2730 	struct fuse_file *ff = file->private_data;
2731 	struct fuse_conn *fc = ff->fc;
2732 	struct fuse_ioctl_in inarg = {
2733 		.fh = ff->fh,
2734 		.cmd = cmd,
2735 		.arg = arg,
2736 		.flags = flags
2737 	};
2738 	struct fuse_ioctl_out outarg;
2739 	struct iovec *iov_page = NULL;
2740 	struct iovec *in_iov = NULL, *out_iov = NULL;
2741 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2742 	size_t in_size, out_size, c;
2743 	ssize_t transferred;
2744 	int err, i;
2745 	struct iov_iter ii;
2746 	struct fuse_args_pages ap = {};
2747 
2748 #if BITS_PER_LONG == 32
2749 	inarg.flags |= FUSE_IOCTL_32BIT;
2750 #else
2751 	if (flags & FUSE_IOCTL_COMPAT) {
2752 		inarg.flags |= FUSE_IOCTL_32BIT;
2753 #ifdef CONFIG_X86_X32
2754 		if (in_x32_syscall())
2755 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2756 #endif
2757 	}
2758 #endif
2759 
2760 	/* assume all the iovs returned by client always fits in a page */
2761 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2762 
2763 	err = -ENOMEM;
2764 	ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2765 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2766 	if (!ap.pages || !iov_page)
2767 		goto out;
2768 
2769 	fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2770 
2771 	/*
2772 	 * If restricted, initialize IO parameters as encoded in @cmd.
2773 	 * RETRY from server is not allowed.
2774 	 */
2775 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2776 		struct iovec *iov = iov_page;
2777 
2778 		iov->iov_base = (void __user *)arg;
2779 
2780 		switch (cmd) {
2781 		case FS_IOC_GETFLAGS:
2782 		case FS_IOC_SETFLAGS:
2783 			iov->iov_len = sizeof(int);
2784 			break;
2785 		default:
2786 			iov->iov_len = _IOC_SIZE(cmd);
2787 			break;
2788 		}
2789 
2790 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2791 			in_iov = iov;
2792 			in_iovs = 1;
2793 		}
2794 
2795 		if (_IOC_DIR(cmd) & _IOC_READ) {
2796 			out_iov = iov;
2797 			out_iovs = 1;
2798 		}
2799 	}
2800 
2801  retry:
2802 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2803 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2804 
2805 	/*
2806 	 * Out data can be used either for actual out data or iovs,
2807 	 * make sure there always is at least one page.
2808 	 */
2809 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2810 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2811 
2812 	/* make sure there are enough buffer pages and init request with them */
2813 	err = -ENOMEM;
2814 	if (max_pages > fc->max_pages)
2815 		goto out;
2816 	while (ap.num_pages < max_pages) {
2817 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2818 		if (!ap.pages[ap.num_pages])
2819 			goto out;
2820 		ap.num_pages++;
2821 	}
2822 
2823 
2824 	/* okay, let's send it to the client */
2825 	ap.args.opcode = FUSE_IOCTL;
2826 	ap.args.nodeid = ff->nodeid;
2827 	ap.args.in_numargs = 1;
2828 	ap.args.in_args[0].size = sizeof(inarg);
2829 	ap.args.in_args[0].value = &inarg;
2830 	if (in_size) {
2831 		ap.args.in_numargs++;
2832 		ap.args.in_args[1].size = in_size;
2833 		ap.args.in_pages = true;
2834 
2835 		err = -EFAULT;
2836 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2837 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2838 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2839 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2840 				goto out;
2841 		}
2842 	}
2843 
2844 	ap.args.out_numargs = 2;
2845 	ap.args.out_args[0].size = sizeof(outarg);
2846 	ap.args.out_args[0].value = &outarg;
2847 	ap.args.out_args[1].size = out_size;
2848 	ap.args.out_pages = true;
2849 	ap.args.out_argvar = true;
2850 
2851 	transferred = fuse_simple_request(fc, &ap.args);
2852 	err = transferred;
2853 	if (transferred < 0)
2854 		goto out;
2855 
2856 	/* did it ask for retry? */
2857 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2858 		void *vaddr;
2859 
2860 		/* no retry if in restricted mode */
2861 		err = -EIO;
2862 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2863 			goto out;
2864 
2865 		in_iovs = outarg.in_iovs;
2866 		out_iovs = outarg.out_iovs;
2867 
2868 		/*
2869 		 * Make sure things are in boundary, separate checks
2870 		 * are to protect against overflow.
2871 		 */
2872 		err = -ENOMEM;
2873 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2874 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2875 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2876 			goto out;
2877 
2878 		vaddr = kmap_atomic(ap.pages[0]);
2879 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2880 					    transferred, in_iovs + out_iovs,
2881 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2882 		kunmap_atomic(vaddr);
2883 		if (err)
2884 			goto out;
2885 
2886 		in_iov = iov_page;
2887 		out_iov = in_iov + in_iovs;
2888 
2889 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2890 		if (err)
2891 			goto out;
2892 
2893 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2894 		if (err)
2895 			goto out;
2896 
2897 		goto retry;
2898 	}
2899 
2900 	err = -EIO;
2901 	if (transferred > inarg.out_size)
2902 		goto out;
2903 
2904 	err = -EFAULT;
2905 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2906 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2907 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2908 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2909 			goto out;
2910 	}
2911 	err = 0;
2912  out:
2913 	free_page((unsigned long) iov_page);
2914 	while (ap.num_pages)
2915 		__free_page(ap.pages[--ap.num_pages]);
2916 	kfree(ap.pages);
2917 
2918 	return err ? err : outarg.result;
2919 }
2920 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2921 
2922 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2923 		       unsigned long arg, unsigned int flags)
2924 {
2925 	struct inode *inode = file_inode(file);
2926 	struct fuse_conn *fc = get_fuse_conn(inode);
2927 
2928 	if (!fuse_allow_current_process(fc))
2929 		return -EACCES;
2930 
2931 	if (is_bad_inode(inode))
2932 		return -EIO;
2933 
2934 	return fuse_do_ioctl(file, cmd, arg, flags);
2935 }
2936 
2937 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2938 			    unsigned long arg)
2939 {
2940 	return fuse_ioctl_common(file, cmd, arg, 0);
2941 }
2942 
2943 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2944 				   unsigned long arg)
2945 {
2946 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2947 }
2948 
2949 /*
2950  * All files which have been polled are linked to RB tree
2951  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2952  * find the matching one.
2953  */
2954 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2955 					      struct rb_node **parent_out)
2956 {
2957 	struct rb_node **link = &fc->polled_files.rb_node;
2958 	struct rb_node *last = NULL;
2959 
2960 	while (*link) {
2961 		struct fuse_file *ff;
2962 
2963 		last = *link;
2964 		ff = rb_entry(last, struct fuse_file, polled_node);
2965 
2966 		if (kh < ff->kh)
2967 			link = &last->rb_left;
2968 		else if (kh > ff->kh)
2969 			link = &last->rb_right;
2970 		else
2971 			return link;
2972 	}
2973 
2974 	if (parent_out)
2975 		*parent_out = last;
2976 	return link;
2977 }
2978 
2979 /*
2980  * The file is about to be polled.  Make sure it's on the polled_files
2981  * RB tree.  Note that files once added to the polled_files tree are
2982  * not removed before the file is released.  This is because a file
2983  * polled once is likely to be polled again.
2984  */
2985 static void fuse_register_polled_file(struct fuse_conn *fc,
2986 				      struct fuse_file *ff)
2987 {
2988 	spin_lock(&fc->lock);
2989 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2990 		struct rb_node **link, *parent;
2991 
2992 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2993 		BUG_ON(*link);
2994 		rb_link_node(&ff->polled_node, parent, link);
2995 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2996 	}
2997 	spin_unlock(&fc->lock);
2998 }
2999 
3000 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
3001 {
3002 	struct fuse_file *ff = file->private_data;
3003 	struct fuse_conn *fc = ff->fc;
3004 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
3005 	struct fuse_poll_out outarg;
3006 	FUSE_ARGS(args);
3007 	int err;
3008 
3009 	if (fc->no_poll)
3010 		return DEFAULT_POLLMASK;
3011 
3012 	poll_wait(file, &ff->poll_wait, wait);
3013 	inarg.events = mangle_poll(poll_requested_events(wait));
3014 
3015 	/*
3016 	 * Ask for notification iff there's someone waiting for it.
3017 	 * The client may ignore the flag and always notify.
3018 	 */
3019 	if (waitqueue_active(&ff->poll_wait)) {
3020 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
3021 		fuse_register_polled_file(fc, ff);
3022 	}
3023 
3024 	args.opcode = FUSE_POLL;
3025 	args.nodeid = ff->nodeid;
3026 	args.in_numargs = 1;
3027 	args.in_args[0].size = sizeof(inarg);
3028 	args.in_args[0].value = &inarg;
3029 	args.out_numargs = 1;
3030 	args.out_args[0].size = sizeof(outarg);
3031 	args.out_args[0].value = &outarg;
3032 	err = fuse_simple_request(fc, &args);
3033 
3034 	if (!err)
3035 		return demangle_poll(outarg.revents);
3036 	if (err == -ENOSYS) {
3037 		fc->no_poll = 1;
3038 		return DEFAULT_POLLMASK;
3039 	}
3040 	return EPOLLERR;
3041 }
3042 EXPORT_SYMBOL_GPL(fuse_file_poll);
3043 
3044 /*
3045  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3046  * wakes up the poll waiters.
3047  */
3048 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3049 			    struct fuse_notify_poll_wakeup_out *outarg)
3050 {
3051 	u64 kh = outarg->kh;
3052 	struct rb_node **link;
3053 
3054 	spin_lock(&fc->lock);
3055 
3056 	link = fuse_find_polled_node(fc, kh, NULL);
3057 	if (*link) {
3058 		struct fuse_file *ff;
3059 
3060 		ff = rb_entry(*link, struct fuse_file, polled_node);
3061 		wake_up_interruptible_sync(&ff->poll_wait);
3062 	}
3063 
3064 	spin_unlock(&fc->lock);
3065 	return 0;
3066 }
3067 
3068 static void fuse_do_truncate(struct file *file)
3069 {
3070 	struct inode *inode = file->f_mapping->host;
3071 	struct iattr attr;
3072 
3073 	attr.ia_valid = ATTR_SIZE;
3074 	attr.ia_size = i_size_read(inode);
3075 
3076 	attr.ia_file = file;
3077 	attr.ia_valid |= ATTR_FILE;
3078 
3079 	fuse_do_setattr(file_dentry(file), &attr, file);
3080 }
3081 
3082 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3083 {
3084 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3085 }
3086 
3087 static ssize_t
3088 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3089 {
3090 	DECLARE_COMPLETION_ONSTACK(wait);
3091 	ssize_t ret = 0;
3092 	struct file *file = iocb->ki_filp;
3093 	struct fuse_file *ff = file->private_data;
3094 	bool async_dio = ff->fc->async_dio;
3095 	loff_t pos = 0;
3096 	struct inode *inode;
3097 	loff_t i_size;
3098 	size_t count = iov_iter_count(iter);
3099 	loff_t offset = iocb->ki_pos;
3100 	struct fuse_io_priv *io;
3101 
3102 	pos = offset;
3103 	inode = file->f_mapping->host;
3104 	i_size = i_size_read(inode);
3105 
3106 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3107 		return 0;
3108 
3109 	/* optimization for short read */
3110 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3111 		if (offset >= i_size)
3112 			return 0;
3113 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3114 		count = iov_iter_count(iter);
3115 	}
3116 
3117 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3118 	if (!io)
3119 		return -ENOMEM;
3120 	spin_lock_init(&io->lock);
3121 	kref_init(&io->refcnt);
3122 	io->reqs = 1;
3123 	io->bytes = -1;
3124 	io->size = 0;
3125 	io->offset = offset;
3126 	io->write = (iov_iter_rw(iter) == WRITE);
3127 	io->err = 0;
3128 	/*
3129 	 * By default, we want to optimize all I/Os with async request
3130 	 * submission to the client filesystem if supported.
3131 	 */
3132 	io->async = async_dio;
3133 	io->iocb = iocb;
3134 	io->blocking = is_sync_kiocb(iocb);
3135 
3136 	/*
3137 	 * We cannot asynchronously extend the size of a file.
3138 	 * In such case the aio will behave exactly like sync io.
3139 	 */
3140 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3141 		io->blocking = true;
3142 
3143 	if (io->async && io->blocking) {
3144 		/*
3145 		 * Additional reference to keep io around after
3146 		 * calling fuse_aio_complete()
3147 		 */
3148 		kref_get(&io->refcnt);
3149 		io->done = &wait;
3150 	}
3151 
3152 	if (iov_iter_rw(iter) == WRITE) {
3153 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3154 		fuse_invalidate_attr(inode);
3155 	} else {
3156 		ret = __fuse_direct_read(io, iter, &pos);
3157 	}
3158 
3159 	if (io->async) {
3160 		bool blocking = io->blocking;
3161 
3162 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3163 
3164 		/* we have a non-extending, async request, so return */
3165 		if (!blocking)
3166 			return -EIOCBQUEUED;
3167 
3168 		wait_for_completion(&wait);
3169 		ret = fuse_get_res_by_io(io);
3170 	}
3171 
3172 	kref_put(&io->refcnt, fuse_io_release);
3173 
3174 	if (iov_iter_rw(iter) == WRITE) {
3175 		if (ret > 0)
3176 			fuse_write_update_size(inode, pos);
3177 		else if (ret < 0 && offset + count > i_size)
3178 			fuse_do_truncate(file);
3179 	}
3180 
3181 	return ret;
3182 }
3183 
3184 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3185 {
3186 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3187 
3188 	if (!err)
3189 		fuse_sync_writes(inode);
3190 
3191 	return err;
3192 }
3193 
3194 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3195 				loff_t length)
3196 {
3197 	struct fuse_file *ff = file->private_data;
3198 	struct inode *inode = file_inode(file);
3199 	struct fuse_inode *fi = get_fuse_inode(inode);
3200 	struct fuse_conn *fc = ff->fc;
3201 	FUSE_ARGS(args);
3202 	struct fuse_fallocate_in inarg = {
3203 		.fh = ff->fh,
3204 		.offset = offset,
3205 		.length = length,
3206 		.mode = mode
3207 	};
3208 	int err;
3209 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3210 			   (mode & FALLOC_FL_PUNCH_HOLE);
3211 
3212 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3213 		return -EOPNOTSUPP;
3214 
3215 	if (fc->no_fallocate)
3216 		return -EOPNOTSUPP;
3217 
3218 	if (lock_inode) {
3219 		inode_lock(inode);
3220 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3221 			loff_t endbyte = offset + length - 1;
3222 
3223 			err = fuse_writeback_range(inode, offset, endbyte);
3224 			if (err)
3225 				goto out;
3226 		}
3227 	}
3228 
3229 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3230 	    offset + length > i_size_read(inode)) {
3231 		err = inode_newsize_ok(inode, offset + length);
3232 		if (err)
3233 			goto out;
3234 	}
3235 
3236 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3237 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3238 
3239 	args.opcode = FUSE_FALLOCATE;
3240 	args.nodeid = ff->nodeid;
3241 	args.in_numargs = 1;
3242 	args.in_args[0].size = sizeof(inarg);
3243 	args.in_args[0].value = &inarg;
3244 	err = fuse_simple_request(fc, &args);
3245 	if (err == -ENOSYS) {
3246 		fc->no_fallocate = 1;
3247 		err = -EOPNOTSUPP;
3248 	}
3249 	if (err)
3250 		goto out;
3251 
3252 	/* we could have extended the file */
3253 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3254 		bool changed = fuse_write_update_size(inode, offset + length);
3255 
3256 		if (changed && fc->writeback_cache)
3257 			file_update_time(file);
3258 	}
3259 
3260 	if (mode & FALLOC_FL_PUNCH_HOLE)
3261 		truncate_pagecache_range(inode, offset, offset + length - 1);
3262 
3263 	fuse_invalidate_attr(inode);
3264 
3265 out:
3266 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3267 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3268 
3269 	if (lock_inode)
3270 		inode_unlock(inode);
3271 
3272 	return err;
3273 }
3274 
3275 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3276 				      struct file *file_out, loff_t pos_out,
3277 				      size_t len, unsigned int flags)
3278 {
3279 	struct fuse_file *ff_in = file_in->private_data;
3280 	struct fuse_file *ff_out = file_out->private_data;
3281 	struct inode *inode_in = file_inode(file_in);
3282 	struct inode *inode_out = file_inode(file_out);
3283 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3284 	struct fuse_conn *fc = ff_in->fc;
3285 	FUSE_ARGS(args);
3286 	struct fuse_copy_file_range_in inarg = {
3287 		.fh_in = ff_in->fh,
3288 		.off_in = pos_in,
3289 		.nodeid_out = ff_out->nodeid,
3290 		.fh_out = ff_out->fh,
3291 		.off_out = pos_out,
3292 		.len = len,
3293 		.flags = flags
3294 	};
3295 	struct fuse_write_out outarg;
3296 	ssize_t err;
3297 	/* mark unstable when write-back is not used, and file_out gets
3298 	 * extended */
3299 	bool is_unstable = (!fc->writeback_cache) &&
3300 			   ((pos_out + len) > inode_out->i_size);
3301 
3302 	if (fc->no_copy_file_range)
3303 		return -EOPNOTSUPP;
3304 
3305 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3306 		return -EXDEV;
3307 
3308 	inode_lock(inode_in);
3309 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3310 	inode_unlock(inode_in);
3311 	if (err)
3312 		return err;
3313 
3314 	inode_lock(inode_out);
3315 
3316 	err = file_modified(file_out);
3317 	if (err)
3318 		goto out;
3319 
3320 	/*
3321 	 * Write out dirty pages in the destination file before sending the COPY
3322 	 * request to userspace.  After the request is completed, truncate off
3323 	 * pages (including partial ones) from the cache that have been copied,
3324 	 * since these contain stale data at that point.
3325 	 *
3326 	 * This should be mostly correct, but if the COPY writes to partial
3327 	 * pages (at the start or end) and the parts not covered by the COPY are
3328 	 * written through a memory map after calling fuse_writeback_range(),
3329 	 * then these partial page modifications will be lost on truncation.
3330 	 *
3331 	 * It is unlikely that someone would rely on such mixed style
3332 	 * modifications.  Yet this does give less guarantees than if the
3333 	 * copying was performed with write(2).
3334 	 *
3335 	 * To fix this a i_mmap_sem style lock could be used to prevent new
3336 	 * faults while the copy is ongoing.
3337 	 */
3338 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3339 	if (err)
3340 		goto out;
3341 
3342 	if (is_unstable)
3343 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3344 
3345 	args.opcode = FUSE_COPY_FILE_RANGE;
3346 	args.nodeid = ff_in->nodeid;
3347 	args.in_numargs = 1;
3348 	args.in_args[0].size = sizeof(inarg);
3349 	args.in_args[0].value = &inarg;
3350 	args.out_numargs = 1;
3351 	args.out_args[0].size = sizeof(outarg);
3352 	args.out_args[0].value = &outarg;
3353 	err = fuse_simple_request(fc, &args);
3354 	if (err == -ENOSYS) {
3355 		fc->no_copy_file_range = 1;
3356 		err = -EOPNOTSUPP;
3357 	}
3358 	if (err)
3359 		goto out;
3360 
3361 	truncate_inode_pages_range(inode_out->i_mapping,
3362 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3363 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3364 
3365 	if (fc->writeback_cache) {
3366 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3367 		file_update_time(file_out);
3368 	}
3369 
3370 	fuse_invalidate_attr(inode_out);
3371 
3372 	err = outarg.size;
3373 out:
3374 	if (is_unstable)
3375 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3376 
3377 	inode_unlock(inode_out);
3378 	file_accessed(file_in);
3379 
3380 	return err;
3381 }
3382 
3383 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3384 				    struct file *dst_file, loff_t dst_off,
3385 				    size_t len, unsigned int flags)
3386 {
3387 	ssize_t ret;
3388 
3389 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3390 				     len, flags);
3391 
3392 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3393 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3394 					      dst_off, len, flags);
3395 	return ret;
3396 }
3397 
3398 static const struct file_operations fuse_file_operations = {
3399 	.llseek		= fuse_file_llseek,
3400 	.read_iter	= fuse_file_read_iter,
3401 	.write_iter	= fuse_file_write_iter,
3402 	.mmap		= fuse_file_mmap,
3403 	.open		= fuse_open,
3404 	.flush		= fuse_flush,
3405 	.release	= fuse_release,
3406 	.fsync		= fuse_fsync,
3407 	.lock		= fuse_file_lock,
3408 	.flock		= fuse_file_flock,
3409 	.splice_read	= generic_file_splice_read,
3410 	.splice_write	= iter_file_splice_write,
3411 	.unlocked_ioctl	= fuse_file_ioctl,
3412 	.compat_ioctl	= fuse_file_compat_ioctl,
3413 	.poll		= fuse_file_poll,
3414 	.fallocate	= fuse_file_fallocate,
3415 	.copy_file_range = fuse_copy_file_range,
3416 };
3417 
3418 static const struct address_space_operations fuse_file_aops  = {
3419 	.readpage	= fuse_readpage,
3420 	.readahead	= fuse_readahead,
3421 	.writepage	= fuse_writepage,
3422 	.writepages	= fuse_writepages,
3423 	.launder_page	= fuse_launder_page,
3424 	.set_page_dirty	= __set_page_dirty_nobuffers,
3425 	.bmap		= fuse_bmap,
3426 	.direct_IO	= fuse_direct_IO,
3427 	.write_begin	= fuse_write_begin,
3428 	.write_end	= fuse_write_end,
3429 };
3430 
3431 void fuse_init_file_inode(struct inode *inode)
3432 {
3433 	struct fuse_inode *fi = get_fuse_inode(inode);
3434 
3435 	inode->i_fop = &fuse_file_operations;
3436 	inode->i_data.a_ops = &fuse_file_aops;
3437 
3438 	INIT_LIST_HEAD(&fi->write_files);
3439 	INIT_LIST_HEAD(&fi->queued_writes);
3440 	fi->writectr = 0;
3441 	init_waitqueue_head(&fi->page_waitq);
3442 	fi->writepages = RB_ROOT;
3443 }
3444