1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/compat.h> 18 #include <linux/swap.h> 19 #include <linux/falloc.h> 20 #include <linux/uio.h> 21 22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags, 23 struct fuse_page_desc **desc) 24 { 25 struct page **pages; 26 27 pages = kzalloc(npages * (sizeof(struct page *) + 28 sizeof(struct fuse_page_desc)), flags); 29 *desc = (void *) (pages + npages); 30 31 return pages; 32 } 33 34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 35 int opcode, struct fuse_open_out *outargp) 36 { 37 struct fuse_open_in inarg; 38 FUSE_ARGS(args); 39 40 memset(&inarg, 0, sizeof(inarg)); 41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 42 if (!fc->atomic_o_trunc) 43 inarg.flags &= ~O_TRUNC; 44 args.opcode = opcode; 45 args.nodeid = nodeid; 46 args.in_numargs = 1; 47 args.in_args[0].size = sizeof(inarg); 48 args.in_args[0].value = &inarg; 49 args.out_numargs = 1; 50 args.out_args[0].size = sizeof(*outargp); 51 args.out_args[0].value = outargp; 52 53 return fuse_simple_request(fc, &args); 54 } 55 56 struct fuse_release_args { 57 struct fuse_args args; 58 struct fuse_release_in inarg; 59 struct inode *inode; 60 }; 61 62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 63 { 64 struct fuse_file *ff; 65 66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 67 if (unlikely(!ff)) 68 return NULL; 69 70 ff->fc = fc; 71 ff->release_args = kzalloc(sizeof(*ff->release_args), 72 GFP_KERNEL_ACCOUNT); 73 if (!ff->release_args) { 74 kfree(ff); 75 return NULL; 76 } 77 78 INIT_LIST_HEAD(&ff->write_entry); 79 mutex_init(&ff->readdir.lock); 80 refcount_set(&ff->count, 1); 81 RB_CLEAR_NODE(&ff->polled_node); 82 init_waitqueue_head(&ff->poll_wait); 83 84 ff->kh = atomic64_inc_return(&fc->khctr); 85 86 return ff; 87 } 88 89 void fuse_file_free(struct fuse_file *ff) 90 { 91 kfree(ff->release_args); 92 mutex_destroy(&ff->readdir.lock); 93 kfree(ff); 94 } 95 96 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 97 { 98 refcount_inc(&ff->count); 99 return ff; 100 } 101 102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args, 103 int error) 104 { 105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 106 107 iput(ra->inode); 108 kfree(ra); 109 } 110 111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 112 { 113 if (refcount_dec_and_test(&ff->count)) { 114 struct fuse_args *args = &ff->release_args->args; 115 116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) { 117 /* Do nothing when client does not implement 'open' */ 118 fuse_release_end(ff->fc, args, 0); 119 } else if (sync) { 120 fuse_simple_request(ff->fc, args); 121 fuse_release_end(ff->fc, args, 0); 122 } else { 123 args->end = fuse_release_end; 124 if (fuse_simple_background(ff->fc, args, 125 GFP_KERNEL | __GFP_NOFAIL)) 126 fuse_release_end(ff->fc, args, -ENOTCONN); 127 } 128 kfree(ff); 129 } 130 } 131 132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 133 bool isdir) 134 { 135 struct fuse_file *ff; 136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 137 138 ff = fuse_file_alloc(fc); 139 if (!ff) 140 return -ENOMEM; 141 142 ff->fh = 0; 143 /* Default for no-open */ 144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 145 if (isdir ? !fc->no_opendir : !fc->no_open) { 146 struct fuse_open_out outarg; 147 int err; 148 149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 150 if (!err) { 151 ff->fh = outarg.fh; 152 ff->open_flags = outarg.open_flags; 153 154 } else if (err != -ENOSYS) { 155 fuse_file_free(ff); 156 return err; 157 } else { 158 if (isdir) 159 fc->no_opendir = 1; 160 else 161 fc->no_open = 1; 162 } 163 } 164 165 if (isdir) 166 ff->open_flags &= ~FOPEN_DIRECT_IO; 167 168 ff->nodeid = nodeid; 169 file->private_data = ff; 170 171 return 0; 172 } 173 EXPORT_SYMBOL_GPL(fuse_do_open); 174 175 static void fuse_link_write_file(struct file *file) 176 { 177 struct inode *inode = file_inode(file); 178 struct fuse_inode *fi = get_fuse_inode(inode); 179 struct fuse_file *ff = file->private_data; 180 /* 181 * file may be written through mmap, so chain it onto the 182 * inodes's write_file list 183 */ 184 spin_lock(&fi->lock); 185 if (list_empty(&ff->write_entry)) 186 list_add(&ff->write_entry, &fi->write_files); 187 spin_unlock(&fi->lock); 188 } 189 190 void fuse_finish_open(struct inode *inode, struct file *file) 191 { 192 struct fuse_file *ff = file->private_data; 193 struct fuse_conn *fc = get_fuse_conn(inode); 194 195 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 196 invalidate_inode_pages2(inode->i_mapping); 197 if (ff->open_flags & FOPEN_STREAM) 198 stream_open(inode, file); 199 else if (ff->open_flags & FOPEN_NONSEEKABLE) 200 nonseekable_open(inode, file); 201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 202 struct fuse_inode *fi = get_fuse_inode(inode); 203 204 spin_lock(&fi->lock); 205 fi->attr_version = atomic64_inc_return(&fc->attr_version); 206 i_size_write(inode, 0); 207 spin_unlock(&fi->lock); 208 fuse_invalidate_attr(inode); 209 if (fc->writeback_cache) 210 file_update_time(file); 211 } 212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 213 fuse_link_write_file(file); 214 } 215 216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 217 { 218 struct fuse_conn *fc = get_fuse_conn(inode); 219 int err; 220 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 221 fc->atomic_o_trunc && 222 fc->writeback_cache; 223 224 err = generic_file_open(inode, file); 225 if (err) 226 return err; 227 228 if (is_wb_truncate) { 229 inode_lock(inode); 230 fuse_set_nowrite(inode); 231 } 232 233 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 234 235 if (!err) 236 fuse_finish_open(inode, file); 237 238 if (is_wb_truncate) { 239 fuse_release_nowrite(inode); 240 inode_unlock(inode); 241 } 242 243 return err; 244 } 245 246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 247 int flags, int opcode) 248 { 249 struct fuse_conn *fc = ff->fc; 250 struct fuse_release_args *ra = ff->release_args; 251 252 /* Inode is NULL on error path of fuse_create_open() */ 253 if (likely(fi)) { 254 spin_lock(&fi->lock); 255 list_del(&ff->write_entry); 256 spin_unlock(&fi->lock); 257 } 258 spin_lock(&fc->lock); 259 if (!RB_EMPTY_NODE(&ff->polled_node)) 260 rb_erase(&ff->polled_node, &fc->polled_files); 261 spin_unlock(&fc->lock); 262 263 wake_up_interruptible_all(&ff->poll_wait); 264 265 ra->inarg.fh = ff->fh; 266 ra->inarg.flags = flags; 267 ra->args.in_numargs = 1; 268 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 269 ra->args.in_args[0].value = &ra->inarg; 270 ra->args.opcode = opcode; 271 ra->args.nodeid = ff->nodeid; 272 ra->args.force = true; 273 ra->args.nocreds = true; 274 } 275 276 void fuse_release_common(struct file *file, bool isdir) 277 { 278 struct fuse_inode *fi = get_fuse_inode(file_inode(file)); 279 struct fuse_file *ff = file->private_data; 280 struct fuse_release_args *ra = ff->release_args; 281 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 282 283 fuse_prepare_release(fi, ff, file->f_flags, opcode); 284 285 if (ff->flock) { 286 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 287 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc, 288 (fl_owner_t) file); 289 } 290 /* Hold inode until release is finished */ 291 ra->inode = igrab(file_inode(file)); 292 293 /* 294 * Normally this will send the RELEASE request, however if 295 * some asynchronous READ or WRITE requests are outstanding, 296 * the sending will be delayed. 297 * 298 * Make the release synchronous if this is a fuseblk mount, 299 * synchronous RELEASE is allowed (and desirable) in this case 300 * because the server can be trusted not to screw up. 301 */ 302 fuse_file_put(ff, ff->fc->destroy, isdir); 303 } 304 305 static int fuse_open(struct inode *inode, struct file *file) 306 { 307 return fuse_open_common(inode, file, false); 308 } 309 310 static int fuse_release(struct inode *inode, struct file *file) 311 { 312 struct fuse_conn *fc = get_fuse_conn(inode); 313 314 /* see fuse_vma_close() for !writeback_cache case */ 315 if (fc->writeback_cache) 316 write_inode_now(inode, 1); 317 318 fuse_release_common(file, false); 319 320 /* return value is ignored by VFS */ 321 return 0; 322 } 323 324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags) 325 { 326 WARN_ON(refcount_read(&ff->count) > 1); 327 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 328 /* 329 * iput(NULL) is a no-op and since the refcount is 1 and everything's 330 * synchronous, we are fine with not doing igrab() here" 331 */ 332 fuse_file_put(ff, true, false); 333 } 334 EXPORT_SYMBOL_GPL(fuse_sync_release); 335 336 /* 337 * Scramble the ID space with XTEA, so that the value of the files_struct 338 * pointer is not exposed to userspace. 339 */ 340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 341 { 342 u32 *k = fc->scramble_key; 343 u64 v = (unsigned long) id; 344 u32 v0 = v; 345 u32 v1 = v >> 32; 346 u32 sum = 0; 347 int i; 348 349 for (i = 0; i < 32; i++) { 350 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 351 sum += 0x9E3779B9; 352 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 353 } 354 355 return (u64) v0 + ((u64) v1 << 32); 356 } 357 358 struct fuse_writepage_args { 359 struct fuse_io_args ia; 360 struct list_head writepages_entry; 361 struct list_head queue_entry; 362 struct fuse_writepage_args *next; 363 struct inode *inode; 364 }; 365 366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 367 pgoff_t idx_from, pgoff_t idx_to) 368 { 369 struct fuse_writepage_args *wpa; 370 371 list_for_each_entry(wpa, &fi->writepages, writepages_entry) { 372 pgoff_t curr_index; 373 374 WARN_ON(get_fuse_inode(wpa->inode) != fi); 375 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 376 if (idx_from < curr_index + wpa->ia.ap.num_pages && 377 curr_index <= idx_to) { 378 return wpa; 379 } 380 } 381 return NULL; 382 } 383 384 /* 385 * Check if any page in a range is under writeback 386 * 387 * This is currently done by walking the list of writepage requests 388 * for the inode, which can be pretty inefficient. 389 */ 390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 391 pgoff_t idx_to) 392 { 393 struct fuse_inode *fi = get_fuse_inode(inode); 394 bool found; 395 396 spin_lock(&fi->lock); 397 found = fuse_find_writeback(fi, idx_from, idx_to); 398 spin_unlock(&fi->lock); 399 400 return found; 401 } 402 403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 404 { 405 return fuse_range_is_writeback(inode, index, index); 406 } 407 408 /* 409 * Wait for page writeback to be completed. 410 * 411 * Since fuse doesn't rely on the VM writeback tracking, this has to 412 * use some other means. 413 */ 414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 415 { 416 struct fuse_inode *fi = get_fuse_inode(inode); 417 418 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 419 } 420 421 /* 422 * Wait for all pending writepages on the inode to finish. 423 * 424 * This is currently done by blocking further writes with FUSE_NOWRITE 425 * and waiting for all sent writes to complete. 426 * 427 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 428 * could conflict with truncation. 429 */ 430 static void fuse_sync_writes(struct inode *inode) 431 { 432 fuse_set_nowrite(inode); 433 fuse_release_nowrite(inode); 434 } 435 436 static int fuse_flush(struct file *file, fl_owner_t id) 437 { 438 struct inode *inode = file_inode(file); 439 struct fuse_conn *fc = get_fuse_conn(inode); 440 struct fuse_file *ff = file->private_data; 441 struct fuse_flush_in inarg; 442 FUSE_ARGS(args); 443 int err; 444 445 if (is_bad_inode(inode)) 446 return -EIO; 447 448 if (fc->no_flush) 449 return 0; 450 451 err = write_inode_now(inode, 1); 452 if (err) 453 return err; 454 455 inode_lock(inode); 456 fuse_sync_writes(inode); 457 inode_unlock(inode); 458 459 err = filemap_check_errors(file->f_mapping); 460 if (err) 461 return err; 462 463 memset(&inarg, 0, sizeof(inarg)); 464 inarg.fh = ff->fh; 465 inarg.lock_owner = fuse_lock_owner_id(fc, id); 466 args.opcode = FUSE_FLUSH; 467 args.nodeid = get_node_id(inode); 468 args.in_numargs = 1; 469 args.in_args[0].size = sizeof(inarg); 470 args.in_args[0].value = &inarg; 471 args.force = true; 472 473 err = fuse_simple_request(fc, &args); 474 if (err == -ENOSYS) { 475 fc->no_flush = 1; 476 err = 0; 477 } 478 return err; 479 } 480 481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 482 int datasync, int opcode) 483 { 484 struct inode *inode = file->f_mapping->host; 485 struct fuse_conn *fc = get_fuse_conn(inode); 486 struct fuse_file *ff = file->private_data; 487 FUSE_ARGS(args); 488 struct fuse_fsync_in inarg; 489 490 memset(&inarg, 0, sizeof(inarg)); 491 inarg.fh = ff->fh; 492 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 493 args.opcode = opcode; 494 args.nodeid = get_node_id(inode); 495 args.in_numargs = 1; 496 args.in_args[0].size = sizeof(inarg); 497 args.in_args[0].value = &inarg; 498 return fuse_simple_request(fc, &args); 499 } 500 501 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 502 int datasync) 503 { 504 struct inode *inode = file->f_mapping->host; 505 struct fuse_conn *fc = get_fuse_conn(inode); 506 int err; 507 508 if (is_bad_inode(inode)) 509 return -EIO; 510 511 inode_lock(inode); 512 513 /* 514 * Start writeback against all dirty pages of the inode, then 515 * wait for all outstanding writes, before sending the FSYNC 516 * request. 517 */ 518 err = file_write_and_wait_range(file, start, end); 519 if (err) 520 goto out; 521 522 fuse_sync_writes(inode); 523 524 /* 525 * Due to implementation of fuse writeback 526 * file_write_and_wait_range() does not catch errors. 527 * We have to do this directly after fuse_sync_writes() 528 */ 529 err = file_check_and_advance_wb_err(file); 530 if (err) 531 goto out; 532 533 err = sync_inode_metadata(inode, 1); 534 if (err) 535 goto out; 536 537 if (fc->no_fsync) 538 goto out; 539 540 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 541 if (err == -ENOSYS) { 542 fc->no_fsync = 1; 543 err = 0; 544 } 545 out: 546 inode_unlock(inode); 547 548 return err; 549 } 550 551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 552 size_t count, int opcode) 553 { 554 struct fuse_file *ff = file->private_data; 555 struct fuse_args *args = &ia->ap.args; 556 557 ia->read.in.fh = ff->fh; 558 ia->read.in.offset = pos; 559 ia->read.in.size = count; 560 ia->read.in.flags = file->f_flags; 561 args->opcode = opcode; 562 args->nodeid = ff->nodeid; 563 args->in_numargs = 1; 564 args->in_args[0].size = sizeof(ia->read.in); 565 args->in_args[0].value = &ia->read.in; 566 args->out_argvar = true; 567 args->out_numargs = 1; 568 args->out_args[0].size = count; 569 } 570 571 static void fuse_release_user_pages(struct fuse_args_pages *ap, 572 bool should_dirty) 573 { 574 unsigned int i; 575 576 for (i = 0; i < ap->num_pages; i++) { 577 if (should_dirty) 578 set_page_dirty_lock(ap->pages[i]); 579 put_page(ap->pages[i]); 580 } 581 } 582 583 static void fuse_io_release(struct kref *kref) 584 { 585 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 586 } 587 588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 589 { 590 if (io->err) 591 return io->err; 592 593 if (io->bytes >= 0 && io->write) 594 return -EIO; 595 596 return io->bytes < 0 ? io->size : io->bytes; 597 } 598 599 /** 600 * In case of short read, the caller sets 'pos' to the position of 601 * actual end of fuse request in IO request. Otherwise, if bytes_requested 602 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 603 * 604 * An example: 605 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 606 * both submitted asynchronously. The first of them was ACKed by userspace as 607 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 608 * second request was ACKed as short, e.g. only 1K was read, resulting in 609 * pos == 33K. 610 * 611 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 612 * will be equal to the length of the longest contiguous fragment of 613 * transferred data starting from the beginning of IO request. 614 */ 615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 616 { 617 int left; 618 619 spin_lock(&io->lock); 620 if (err) 621 io->err = io->err ? : err; 622 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 623 io->bytes = pos; 624 625 left = --io->reqs; 626 if (!left && io->blocking) 627 complete(io->done); 628 spin_unlock(&io->lock); 629 630 if (!left && !io->blocking) { 631 ssize_t res = fuse_get_res_by_io(io); 632 633 if (res >= 0) { 634 struct inode *inode = file_inode(io->iocb->ki_filp); 635 struct fuse_conn *fc = get_fuse_conn(inode); 636 struct fuse_inode *fi = get_fuse_inode(inode); 637 638 spin_lock(&fi->lock); 639 fi->attr_version = atomic64_inc_return(&fc->attr_version); 640 spin_unlock(&fi->lock); 641 } 642 643 io->iocb->ki_complete(io->iocb, res, 0); 644 } 645 646 kref_put(&io->refcnt, fuse_io_release); 647 } 648 649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 650 unsigned int npages) 651 { 652 struct fuse_io_args *ia; 653 654 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 655 if (ia) { 656 ia->io = io; 657 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 658 &ia->ap.descs); 659 if (!ia->ap.pages) { 660 kfree(ia); 661 ia = NULL; 662 } 663 } 664 return ia; 665 } 666 667 static void fuse_io_free(struct fuse_io_args *ia) 668 { 669 kfree(ia->ap.pages); 670 kfree(ia); 671 } 672 673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args, 674 int err) 675 { 676 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 677 struct fuse_io_priv *io = ia->io; 678 ssize_t pos = -1; 679 680 fuse_release_user_pages(&ia->ap, io->should_dirty); 681 682 if (err) { 683 /* Nothing */ 684 } else if (io->write) { 685 if (ia->write.out.size > ia->write.in.size) { 686 err = -EIO; 687 } else if (ia->write.in.size != ia->write.out.size) { 688 pos = ia->write.in.offset - io->offset + 689 ia->write.out.size; 690 } 691 } else { 692 u32 outsize = args->out_args[0].size; 693 694 if (ia->read.in.size != outsize) 695 pos = ia->read.in.offset - io->offset + outsize; 696 } 697 698 fuse_aio_complete(io, err, pos); 699 fuse_io_free(ia); 700 } 701 702 static ssize_t fuse_async_req_send(struct fuse_conn *fc, 703 struct fuse_io_args *ia, size_t num_bytes) 704 { 705 ssize_t err; 706 struct fuse_io_priv *io = ia->io; 707 708 spin_lock(&io->lock); 709 kref_get(&io->refcnt); 710 io->size += num_bytes; 711 io->reqs++; 712 spin_unlock(&io->lock); 713 714 ia->ap.args.end = fuse_aio_complete_req; 715 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL); 716 if (err) 717 fuse_aio_complete_req(fc, &ia->ap.args, err); 718 719 return num_bytes; 720 } 721 722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 723 fl_owner_t owner) 724 { 725 struct file *file = ia->io->iocb->ki_filp; 726 struct fuse_file *ff = file->private_data; 727 struct fuse_conn *fc = ff->fc; 728 729 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 730 if (owner != NULL) { 731 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 732 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner); 733 } 734 735 if (ia->io->async) 736 return fuse_async_req_send(fc, ia, count); 737 738 return fuse_simple_request(fc, &ia->ap.args); 739 } 740 741 static void fuse_read_update_size(struct inode *inode, loff_t size, 742 u64 attr_ver) 743 { 744 struct fuse_conn *fc = get_fuse_conn(inode); 745 struct fuse_inode *fi = get_fuse_inode(inode); 746 747 spin_lock(&fi->lock); 748 if (attr_ver == fi->attr_version && size < inode->i_size && 749 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 750 fi->attr_version = atomic64_inc_return(&fc->attr_version); 751 i_size_write(inode, size); 752 } 753 spin_unlock(&fi->lock); 754 } 755 756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 757 struct fuse_args_pages *ap) 758 { 759 struct fuse_conn *fc = get_fuse_conn(inode); 760 761 if (fc->writeback_cache) { 762 /* 763 * A hole in a file. Some data after the hole are in page cache, 764 * but have not reached the client fs yet. So, the hole is not 765 * present there. 766 */ 767 int i; 768 int start_idx = num_read >> PAGE_SHIFT; 769 size_t off = num_read & (PAGE_SIZE - 1); 770 771 for (i = start_idx; i < ap->num_pages; i++) { 772 zero_user_segment(ap->pages[i], off, PAGE_SIZE); 773 off = 0; 774 } 775 } else { 776 loff_t pos = page_offset(ap->pages[0]) + num_read; 777 fuse_read_update_size(inode, pos, attr_ver); 778 } 779 } 780 781 static int fuse_do_readpage(struct file *file, struct page *page) 782 { 783 struct inode *inode = page->mapping->host; 784 struct fuse_conn *fc = get_fuse_conn(inode); 785 loff_t pos = page_offset(page); 786 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 787 struct fuse_io_args ia = { 788 .ap.args.page_zeroing = true, 789 .ap.args.out_pages = true, 790 .ap.num_pages = 1, 791 .ap.pages = &page, 792 .ap.descs = &desc, 793 }; 794 ssize_t res; 795 u64 attr_ver; 796 797 /* 798 * Page writeback can extend beyond the lifetime of the 799 * page-cache page, so make sure we read a properly synced 800 * page. 801 */ 802 fuse_wait_on_page_writeback(inode, page->index); 803 804 attr_ver = fuse_get_attr_version(fc); 805 806 /* Don't overflow end offset */ 807 if (pos + (desc.length - 1) == LLONG_MAX) 808 desc.length--; 809 810 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 811 res = fuse_simple_request(fc, &ia.ap.args); 812 if (res < 0) 813 return res; 814 /* 815 * Short read means EOF. If file size is larger, truncate it 816 */ 817 if (res < desc.length) 818 fuse_short_read(inode, attr_ver, res, &ia.ap); 819 820 SetPageUptodate(page); 821 822 return 0; 823 } 824 825 static int fuse_readpage(struct file *file, struct page *page) 826 { 827 struct inode *inode = page->mapping->host; 828 int err; 829 830 err = -EIO; 831 if (is_bad_inode(inode)) 832 goto out; 833 834 err = fuse_do_readpage(file, page); 835 fuse_invalidate_atime(inode); 836 out: 837 unlock_page(page); 838 return err; 839 } 840 841 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args, 842 int err) 843 { 844 int i; 845 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 846 struct fuse_args_pages *ap = &ia->ap; 847 size_t count = ia->read.in.size; 848 size_t num_read = args->out_args[0].size; 849 struct address_space *mapping = NULL; 850 851 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 852 mapping = ap->pages[i]->mapping; 853 854 if (mapping) { 855 struct inode *inode = mapping->host; 856 857 /* 858 * Short read means EOF. If file size is larger, truncate it 859 */ 860 if (!err && num_read < count) 861 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 862 863 fuse_invalidate_atime(inode); 864 } 865 866 for (i = 0; i < ap->num_pages; i++) { 867 struct page *page = ap->pages[i]; 868 869 if (!err) 870 SetPageUptodate(page); 871 else 872 SetPageError(page); 873 unlock_page(page); 874 put_page(page); 875 } 876 if (ia->ff) 877 fuse_file_put(ia->ff, false, false); 878 879 fuse_io_free(ia); 880 } 881 882 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 883 { 884 struct fuse_file *ff = file->private_data; 885 struct fuse_conn *fc = ff->fc; 886 struct fuse_args_pages *ap = &ia->ap; 887 loff_t pos = page_offset(ap->pages[0]); 888 size_t count = ap->num_pages << PAGE_SHIFT; 889 ssize_t res; 890 int err; 891 892 ap->args.out_pages = true; 893 ap->args.page_zeroing = true; 894 ap->args.page_replace = true; 895 896 /* Don't overflow end offset */ 897 if (pos + (count - 1) == LLONG_MAX) { 898 count--; 899 ap->descs[ap->num_pages - 1].length--; 900 } 901 WARN_ON((loff_t) (pos + count) < 0); 902 903 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 904 ia->read.attr_ver = fuse_get_attr_version(fc); 905 if (fc->async_read) { 906 ia->ff = fuse_file_get(ff); 907 ap->args.end = fuse_readpages_end; 908 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL); 909 if (!err) 910 return; 911 } else { 912 res = fuse_simple_request(fc, &ap->args); 913 err = res < 0 ? res : 0; 914 } 915 fuse_readpages_end(fc, &ap->args, err); 916 } 917 918 static void fuse_readahead(struct readahead_control *rac) 919 { 920 struct inode *inode = rac->mapping->host; 921 struct fuse_conn *fc = get_fuse_conn(inode); 922 unsigned int i, max_pages, nr_pages = 0; 923 924 if (is_bad_inode(inode)) 925 return; 926 927 max_pages = min_t(unsigned int, fc->max_pages, 928 fc->max_read / PAGE_SIZE); 929 930 for (;;) { 931 struct fuse_io_args *ia; 932 struct fuse_args_pages *ap; 933 934 nr_pages = readahead_count(rac) - nr_pages; 935 if (nr_pages > max_pages) 936 nr_pages = max_pages; 937 if (nr_pages == 0) 938 break; 939 ia = fuse_io_alloc(NULL, nr_pages); 940 if (!ia) 941 return; 942 ap = &ia->ap; 943 nr_pages = __readahead_batch(rac, ap->pages, nr_pages); 944 for (i = 0; i < nr_pages; i++) { 945 fuse_wait_on_page_writeback(inode, 946 readahead_index(rac) + i); 947 ap->descs[i].length = PAGE_SIZE; 948 } 949 ap->num_pages = nr_pages; 950 fuse_send_readpages(ia, rac->file); 951 } 952 } 953 954 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 955 { 956 struct inode *inode = iocb->ki_filp->f_mapping->host; 957 struct fuse_conn *fc = get_fuse_conn(inode); 958 959 /* 960 * In auto invalidate mode, always update attributes on read. 961 * Otherwise, only update if we attempt to read past EOF (to ensure 962 * i_size is up to date). 963 */ 964 if (fc->auto_inval_data || 965 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 966 int err; 967 err = fuse_update_attributes(inode, iocb->ki_filp); 968 if (err) 969 return err; 970 } 971 972 return generic_file_read_iter(iocb, to); 973 } 974 975 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 976 loff_t pos, size_t count) 977 { 978 struct fuse_args *args = &ia->ap.args; 979 980 ia->write.in.fh = ff->fh; 981 ia->write.in.offset = pos; 982 ia->write.in.size = count; 983 args->opcode = FUSE_WRITE; 984 args->nodeid = ff->nodeid; 985 args->in_numargs = 2; 986 if (ff->fc->minor < 9) 987 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 988 else 989 args->in_args[0].size = sizeof(ia->write.in); 990 args->in_args[0].value = &ia->write.in; 991 args->in_args[1].size = count; 992 args->out_numargs = 1; 993 args->out_args[0].size = sizeof(ia->write.out); 994 args->out_args[0].value = &ia->write.out; 995 } 996 997 static unsigned int fuse_write_flags(struct kiocb *iocb) 998 { 999 unsigned int flags = iocb->ki_filp->f_flags; 1000 1001 if (iocb->ki_flags & IOCB_DSYNC) 1002 flags |= O_DSYNC; 1003 if (iocb->ki_flags & IOCB_SYNC) 1004 flags |= O_SYNC; 1005 1006 return flags; 1007 } 1008 1009 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1010 size_t count, fl_owner_t owner) 1011 { 1012 struct kiocb *iocb = ia->io->iocb; 1013 struct file *file = iocb->ki_filp; 1014 struct fuse_file *ff = file->private_data; 1015 struct fuse_conn *fc = ff->fc; 1016 struct fuse_write_in *inarg = &ia->write.in; 1017 ssize_t err; 1018 1019 fuse_write_args_fill(ia, ff, pos, count); 1020 inarg->flags = fuse_write_flags(iocb); 1021 if (owner != NULL) { 1022 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1023 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 1024 } 1025 1026 if (ia->io->async) 1027 return fuse_async_req_send(fc, ia, count); 1028 1029 err = fuse_simple_request(fc, &ia->ap.args); 1030 if (!err && ia->write.out.size > count) 1031 err = -EIO; 1032 1033 return err ?: ia->write.out.size; 1034 } 1035 1036 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1037 { 1038 struct fuse_conn *fc = get_fuse_conn(inode); 1039 struct fuse_inode *fi = get_fuse_inode(inode); 1040 bool ret = false; 1041 1042 spin_lock(&fi->lock); 1043 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1044 if (pos > inode->i_size) { 1045 i_size_write(inode, pos); 1046 ret = true; 1047 } 1048 spin_unlock(&fi->lock); 1049 1050 return ret; 1051 } 1052 1053 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1054 struct kiocb *iocb, struct inode *inode, 1055 loff_t pos, size_t count) 1056 { 1057 struct fuse_args_pages *ap = &ia->ap; 1058 struct file *file = iocb->ki_filp; 1059 struct fuse_file *ff = file->private_data; 1060 struct fuse_conn *fc = ff->fc; 1061 unsigned int offset, i; 1062 int err; 1063 1064 for (i = 0; i < ap->num_pages; i++) 1065 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1066 1067 fuse_write_args_fill(ia, ff, pos, count); 1068 ia->write.in.flags = fuse_write_flags(iocb); 1069 1070 err = fuse_simple_request(fc, &ap->args); 1071 if (!err && ia->write.out.size > count) 1072 err = -EIO; 1073 1074 offset = ap->descs[0].offset; 1075 count = ia->write.out.size; 1076 for (i = 0; i < ap->num_pages; i++) { 1077 struct page *page = ap->pages[i]; 1078 1079 if (!err && !offset && count >= PAGE_SIZE) 1080 SetPageUptodate(page); 1081 1082 if (count > PAGE_SIZE - offset) 1083 count -= PAGE_SIZE - offset; 1084 else 1085 count = 0; 1086 offset = 0; 1087 1088 unlock_page(page); 1089 put_page(page); 1090 } 1091 1092 return err; 1093 } 1094 1095 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap, 1096 struct address_space *mapping, 1097 struct iov_iter *ii, loff_t pos, 1098 unsigned int max_pages) 1099 { 1100 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1101 unsigned offset = pos & (PAGE_SIZE - 1); 1102 size_t count = 0; 1103 int err; 1104 1105 ap->args.in_pages = true; 1106 ap->descs[0].offset = offset; 1107 1108 do { 1109 size_t tmp; 1110 struct page *page; 1111 pgoff_t index = pos >> PAGE_SHIFT; 1112 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1113 iov_iter_count(ii)); 1114 1115 bytes = min_t(size_t, bytes, fc->max_write - count); 1116 1117 again: 1118 err = -EFAULT; 1119 if (iov_iter_fault_in_readable(ii, bytes)) 1120 break; 1121 1122 err = -ENOMEM; 1123 page = grab_cache_page_write_begin(mapping, index, 0); 1124 if (!page) 1125 break; 1126 1127 if (mapping_writably_mapped(mapping)) 1128 flush_dcache_page(page); 1129 1130 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1131 flush_dcache_page(page); 1132 1133 iov_iter_advance(ii, tmp); 1134 if (!tmp) { 1135 unlock_page(page); 1136 put_page(page); 1137 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1138 goto again; 1139 } 1140 1141 err = 0; 1142 ap->pages[ap->num_pages] = page; 1143 ap->descs[ap->num_pages].length = tmp; 1144 ap->num_pages++; 1145 1146 count += tmp; 1147 pos += tmp; 1148 offset += tmp; 1149 if (offset == PAGE_SIZE) 1150 offset = 0; 1151 1152 if (!fc->big_writes) 1153 break; 1154 } while (iov_iter_count(ii) && count < fc->max_write && 1155 ap->num_pages < max_pages && offset == 0); 1156 1157 return count > 0 ? count : err; 1158 } 1159 1160 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1161 unsigned int max_pages) 1162 { 1163 return min_t(unsigned int, 1164 ((pos + len - 1) >> PAGE_SHIFT) - 1165 (pos >> PAGE_SHIFT) + 1, 1166 max_pages); 1167 } 1168 1169 static ssize_t fuse_perform_write(struct kiocb *iocb, 1170 struct address_space *mapping, 1171 struct iov_iter *ii, loff_t pos) 1172 { 1173 struct inode *inode = mapping->host; 1174 struct fuse_conn *fc = get_fuse_conn(inode); 1175 struct fuse_inode *fi = get_fuse_inode(inode); 1176 int err = 0; 1177 ssize_t res = 0; 1178 1179 if (inode->i_size < pos + iov_iter_count(ii)) 1180 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1181 1182 do { 1183 ssize_t count; 1184 struct fuse_io_args ia = {}; 1185 struct fuse_args_pages *ap = &ia.ap; 1186 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1187 fc->max_pages); 1188 1189 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1190 if (!ap->pages) { 1191 err = -ENOMEM; 1192 break; 1193 } 1194 1195 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages); 1196 if (count <= 0) { 1197 err = count; 1198 } else { 1199 err = fuse_send_write_pages(&ia, iocb, inode, 1200 pos, count); 1201 if (!err) { 1202 size_t num_written = ia.write.out.size; 1203 1204 res += num_written; 1205 pos += num_written; 1206 1207 /* break out of the loop on short write */ 1208 if (num_written != count) 1209 err = -EIO; 1210 } 1211 } 1212 kfree(ap->pages); 1213 } while (!err && iov_iter_count(ii)); 1214 1215 if (res > 0) 1216 fuse_write_update_size(inode, pos); 1217 1218 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1219 fuse_invalidate_attr(inode); 1220 1221 return res > 0 ? res : err; 1222 } 1223 1224 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1225 { 1226 struct file *file = iocb->ki_filp; 1227 struct address_space *mapping = file->f_mapping; 1228 ssize_t written = 0; 1229 ssize_t written_buffered = 0; 1230 struct inode *inode = mapping->host; 1231 ssize_t err; 1232 loff_t endbyte = 0; 1233 1234 if (get_fuse_conn(inode)->writeback_cache) { 1235 /* Update size (EOF optimization) and mode (SUID clearing) */ 1236 err = fuse_update_attributes(mapping->host, file); 1237 if (err) 1238 return err; 1239 1240 return generic_file_write_iter(iocb, from); 1241 } 1242 1243 inode_lock(inode); 1244 1245 /* We can write back this queue in page reclaim */ 1246 current->backing_dev_info = inode_to_bdi(inode); 1247 1248 err = generic_write_checks(iocb, from); 1249 if (err <= 0) 1250 goto out; 1251 1252 err = file_remove_privs(file); 1253 if (err) 1254 goto out; 1255 1256 err = file_update_time(file); 1257 if (err) 1258 goto out; 1259 1260 if (iocb->ki_flags & IOCB_DIRECT) { 1261 loff_t pos = iocb->ki_pos; 1262 written = generic_file_direct_write(iocb, from); 1263 if (written < 0 || !iov_iter_count(from)) 1264 goto out; 1265 1266 pos += written; 1267 1268 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1269 if (written_buffered < 0) { 1270 err = written_buffered; 1271 goto out; 1272 } 1273 endbyte = pos + written_buffered - 1; 1274 1275 err = filemap_write_and_wait_range(file->f_mapping, pos, 1276 endbyte); 1277 if (err) 1278 goto out; 1279 1280 invalidate_mapping_pages(file->f_mapping, 1281 pos >> PAGE_SHIFT, 1282 endbyte >> PAGE_SHIFT); 1283 1284 written += written_buffered; 1285 iocb->ki_pos = pos + written_buffered; 1286 } else { 1287 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1288 if (written >= 0) 1289 iocb->ki_pos += written; 1290 } 1291 out: 1292 current->backing_dev_info = NULL; 1293 inode_unlock(inode); 1294 if (written > 0) 1295 written = generic_write_sync(iocb, written); 1296 1297 return written ? written : err; 1298 } 1299 1300 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs, 1301 unsigned int index, 1302 unsigned int nr_pages) 1303 { 1304 int i; 1305 1306 for (i = index; i < index + nr_pages; i++) 1307 descs[i].length = PAGE_SIZE - descs[i].offset; 1308 } 1309 1310 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1311 { 1312 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1313 } 1314 1315 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1316 size_t max_size) 1317 { 1318 return min(iov_iter_single_seg_count(ii), max_size); 1319 } 1320 1321 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1322 size_t *nbytesp, int write, 1323 unsigned int max_pages) 1324 { 1325 size_t nbytes = 0; /* # bytes already packed in req */ 1326 ssize_t ret = 0; 1327 1328 /* Special case for kernel I/O: can copy directly into the buffer */ 1329 if (iov_iter_is_kvec(ii)) { 1330 unsigned long user_addr = fuse_get_user_addr(ii); 1331 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1332 1333 if (write) 1334 ap->args.in_args[1].value = (void *) user_addr; 1335 else 1336 ap->args.out_args[0].value = (void *) user_addr; 1337 1338 iov_iter_advance(ii, frag_size); 1339 *nbytesp = frag_size; 1340 return 0; 1341 } 1342 1343 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1344 unsigned npages; 1345 size_t start; 1346 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1347 *nbytesp - nbytes, 1348 max_pages - ap->num_pages, 1349 &start); 1350 if (ret < 0) 1351 break; 1352 1353 iov_iter_advance(ii, ret); 1354 nbytes += ret; 1355 1356 ret += start; 1357 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1358 1359 ap->descs[ap->num_pages].offset = start; 1360 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1361 1362 ap->num_pages += npages; 1363 ap->descs[ap->num_pages - 1].length -= 1364 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1365 } 1366 1367 if (write) 1368 ap->args.in_pages = true; 1369 else 1370 ap->args.out_pages = true; 1371 1372 *nbytesp = nbytes; 1373 1374 return ret < 0 ? ret : 0; 1375 } 1376 1377 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1378 loff_t *ppos, int flags) 1379 { 1380 int write = flags & FUSE_DIO_WRITE; 1381 int cuse = flags & FUSE_DIO_CUSE; 1382 struct file *file = io->iocb->ki_filp; 1383 struct inode *inode = file->f_mapping->host; 1384 struct fuse_file *ff = file->private_data; 1385 struct fuse_conn *fc = ff->fc; 1386 size_t nmax = write ? fc->max_write : fc->max_read; 1387 loff_t pos = *ppos; 1388 size_t count = iov_iter_count(iter); 1389 pgoff_t idx_from = pos >> PAGE_SHIFT; 1390 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1391 ssize_t res = 0; 1392 int err = 0; 1393 struct fuse_io_args *ia; 1394 unsigned int max_pages; 1395 1396 max_pages = iov_iter_npages(iter, fc->max_pages); 1397 ia = fuse_io_alloc(io, max_pages); 1398 if (!ia) 1399 return -ENOMEM; 1400 1401 ia->io = io; 1402 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1403 if (!write) 1404 inode_lock(inode); 1405 fuse_sync_writes(inode); 1406 if (!write) 1407 inode_unlock(inode); 1408 } 1409 1410 io->should_dirty = !write && iter_is_iovec(iter); 1411 while (count) { 1412 ssize_t nres; 1413 fl_owner_t owner = current->files; 1414 size_t nbytes = min(count, nmax); 1415 1416 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1417 max_pages); 1418 if (err && !nbytes) 1419 break; 1420 1421 if (write) { 1422 if (!capable(CAP_FSETID)) 1423 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV; 1424 1425 nres = fuse_send_write(ia, pos, nbytes, owner); 1426 } else { 1427 nres = fuse_send_read(ia, pos, nbytes, owner); 1428 } 1429 1430 if (!io->async || nres < 0) { 1431 fuse_release_user_pages(&ia->ap, io->should_dirty); 1432 fuse_io_free(ia); 1433 } 1434 ia = NULL; 1435 if (nres < 0) { 1436 iov_iter_revert(iter, nbytes); 1437 err = nres; 1438 break; 1439 } 1440 WARN_ON(nres > nbytes); 1441 1442 count -= nres; 1443 res += nres; 1444 pos += nres; 1445 if (nres != nbytes) { 1446 iov_iter_revert(iter, nbytes - nres); 1447 break; 1448 } 1449 if (count) { 1450 max_pages = iov_iter_npages(iter, fc->max_pages); 1451 ia = fuse_io_alloc(io, max_pages); 1452 if (!ia) 1453 break; 1454 } 1455 } 1456 if (ia) 1457 fuse_io_free(ia); 1458 if (res > 0) 1459 *ppos = pos; 1460 1461 return res > 0 ? res : err; 1462 } 1463 EXPORT_SYMBOL_GPL(fuse_direct_io); 1464 1465 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1466 struct iov_iter *iter, 1467 loff_t *ppos) 1468 { 1469 ssize_t res; 1470 struct inode *inode = file_inode(io->iocb->ki_filp); 1471 1472 res = fuse_direct_io(io, iter, ppos, 0); 1473 1474 fuse_invalidate_atime(inode); 1475 1476 return res; 1477 } 1478 1479 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1480 1481 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1482 { 1483 ssize_t res; 1484 1485 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1486 res = fuse_direct_IO(iocb, to); 1487 } else { 1488 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1489 1490 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1491 } 1492 1493 return res; 1494 } 1495 1496 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1497 { 1498 struct inode *inode = file_inode(iocb->ki_filp); 1499 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1500 ssize_t res; 1501 1502 /* Don't allow parallel writes to the same file */ 1503 inode_lock(inode); 1504 res = generic_write_checks(iocb, from); 1505 if (res > 0) { 1506 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1507 res = fuse_direct_IO(iocb, from); 1508 } else { 1509 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1510 FUSE_DIO_WRITE); 1511 } 1512 } 1513 fuse_invalidate_attr(inode); 1514 if (res > 0) 1515 fuse_write_update_size(inode, iocb->ki_pos); 1516 inode_unlock(inode); 1517 1518 return res; 1519 } 1520 1521 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1522 { 1523 struct file *file = iocb->ki_filp; 1524 struct fuse_file *ff = file->private_data; 1525 1526 if (is_bad_inode(file_inode(file))) 1527 return -EIO; 1528 1529 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1530 return fuse_cache_read_iter(iocb, to); 1531 else 1532 return fuse_direct_read_iter(iocb, to); 1533 } 1534 1535 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1536 { 1537 struct file *file = iocb->ki_filp; 1538 struct fuse_file *ff = file->private_data; 1539 1540 if (is_bad_inode(file_inode(file))) 1541 return -EIO; 1542 1543 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1544 return fuse_cache_write_iter(iocb, from); 1545 else 1546 return fuse_direct_write_iter(iocb, from); 1547 } 1548 1549 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1550 { 1551 struct fuse_args_pages *ap = &wpa->ia.ap; 1552 int i; 1553 1554 for (i = 0; i < ap->num_pages; i++) 1555 __free_page(ap->pages[i]); 1556 1557 if (wpa->ia.ff) 1558 fuse_file_put(wpa->ia.ff, false, false); 1559 1560 kfree(ap->pages); 1561 kfree(wpa); 1562 } 1563 1564 static void fuse_writepage_finish(struct fuse_conn *fc, 1565 struct fuse_writepage_args *wpa) 1566 { 1567 struct fuse_args_pages *ap = &wpa->ia.ap; 1568 struct inode *inode = wpa->inode; 1569 struct fuse_inode *fi = get_fuse_inode(inode); 1570 struct backing_dev_info *bdi = inode_to_bdi(inode); 1571 int i; 1572 1573 list_del(&wpa->writepages_entry); 1574 for (i = 0; i < ap->num_pages; i++) { 1575 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1576 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1577 wb_writeout_inc(&bdi->wb); 1578 } 1579 wake_up(&fi->page_waitq); 1580 } 1581 1582 /* Called under fi->lock, may release and reacquire it */ 1583 static void fuse_send_writepage(struct fuse_conn *fc, 1584 struct fuse_writepage_args *wpa, loff_t size) 1585 __releases(fi->lock) 1586 __acquires(fi->lock) 1587 { 1588 struct fuse_writepage_args *aux, *next; 1589 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1590 struct fuse_write_in *inarg = &wpa->ia.write.in; 1591 struct fuse_args *args = &wpa->ia.ap.args; 1592 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1593 int err; 1594 1595 fi->writectr++; 1596 if (inarg->offset + data_size <= size) { 1597 inarg->size = data_size; 1598 } else if (inarg->offset < size) { 1599 inarg->size = size - inarg->offset; 1600 } else { 1601 /* Got truncated off completely */ 1602 goto out_free; 1603 } 1604 1605 args->in_args[1].size = inarg->size; 1606 args->force = true; 1607 args->nocreds = true; 1608 1609 err = fuse_simple_background(fc, args, GFP_ATOMIC); 1610 if (err == -ENOMEM) { 1611 spin_unlock(&fi->lock); 1612 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL); 1613 spin_lock(&fi->lock); 1614 } 1615 1616 /* Fails on broken connection only */ 1617 if (unlikely(err)) 1618 goto out_free; 1619 1620 return; 1621 1622 out_free: 1623 fi->writectr--; 1624 fuse_writepage_finish(fc, wpa); 1625 spin_unlock(&fi->lock); 1626 1627 /* After fuse_writepage_finish() aux request list is private */ 1628 for (aux = wpa->next; aux; aux = next) { 1629 next = aux->next; 1630 aux->next = NULL; 1631 fuse_writepage_free(aux); 1632 } 1633 1634 fuse_writepage_free(wpa); 1635 spin_lock(&fi->lock); 1636 } 1637 1638 /* 1639 * If fi->writectr is positive (no truncate or fsync going on) send 1640 * all queued writepage requests. 1641 * 1642 * Called with fi->lock 1643 */ 1644 void fuse_flush_writepages(struct inode *inode) 1645 __releases(fi->lock) 1646 __acquires(fi->lock) 1647 { 1648 struct fuse_conn *fc = get_fuse_conn(inode); 1649 struct fuse_inode *fi = get_fuse_inode(inode); 1650 loff_t crop = i_size_read(inode); 1651 struct fuse_writepage_args *wpa; 1652 1653 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1654 wpa = list_entry(fi->queued_writes.next, 1655 struct fuse_writepage_args, queue_entry); 1656 list_del_init(&wpa->queue_entry); 1657 fuse_send_writepage(fc, wpa, crop); 1658 } 1659 } 1660 1661 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args, 1662 int error) 1663 { 1664 struct fuse_writepage_args *wpa = 1665 container_of(args, typeof(*wpa), ia.ap.args); 1666 struct inode *inode = wpa->inode; 1667 struct fuse_inode *fi = get_fuse_inode(inode); 1668 1669 mapping_set_error(inode->i_mapping, error); 1670 spin_lock(&fi->lock); 1671 while (wpa->next) { 1672 struct fuse_conn *fc = get_fuse_conn(inode); 1673 struct fuse_write_in *inarg = &wpa->ia.write.in; 1674 struct fuse_writepage_args *next = wpa->next; 1675 1676 wpa->next = next->next; 1677 next->next = NULL; 1678 next->ia.ff = fuse_file_get(wpa->ia.ff); 1679 list_add(&next->writepages_entry, &fi->writepages); 1680 1681 /* 1682 * Skip fuse_flush_writepages() to make it easy to crop requests 1683 * based on primary request size. 1684 * 1685 * 1st case (trivial): there are no concurrent activities using 1686 * fuse_set/release_nowrite. Then we're on safe side because 1687 * fuse_flush_writepages() would call fuse_send_writepage() 1688 * anyway. 1689 * 1690 * 2nd case: someone called fuse_set_nowrite and it is waiting 1691 * now for completion of all in-flight requests. This happens 1692 * rarely and no more than once per page, so this should be 1693 * okay. 1694 * 1695 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1696 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1697 * that fuse_set_nowrite returned implies that all in-flight 1698 * requests were completed along with all of their secondary 1699 * requests. Further primary requests are blocked by negative 1700 * writectr. Hence there cannot be any in-flight requests and 1701 * no invocations of fuse_writepage_end() while we're in 1702 * fuse_set_nowrite..fuse_release_nowrite section. 1703 */ 1704 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1705 } 1706 fi->writectr--; 1707 fuse_writepage_finish(fc, wpa); 1708 spin_unlock(&fi->lock); 1709 fuse_writepage_free(wpa); 1710 } 1711 1712 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1713 struct fuse_inode *fi) 1714 { 1715 struct fuse_file *ff = NULL; 1716 1717 spin_lock(&fi->lock); 1718 if (!list_empty(&fi->write_files)) { 1719 ff = list_entry(fi->write_files.next, struct fuse_file, 1720 write_entry); 1721 fuse_file_get(ff); 1722 } 1723 spin_unlock(&fi->lock); 1724 1725 return ff; 1726 } 1727 1728 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1729 struct fuse_inode *fi) 1730 { 1731 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1732 WARN_ON(!ff); 1733 return ff; 1734 } 1735 1736 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1737 { 1738 struct fuse_conn *fc = get_fuse_conn(inode); 1739 struct fuse_inode *fi = get_fuse_inode(inode); 1740 struct fuse_file *ff; 1741 int err; 1742 1743 ff = __fuse_write_file_get(fc, fi); 1744 err = fuse_flush_times(inode, ff); 1745 if (ff) 1746 fuse_file_put(ff, false, false); 1747 1748 return err; 1749 } 1750 1751 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1752 { 1753 struct fuse_writepage_args *wpa; 1754 struct fuse_args_pages *ap; 1755 1756 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1757 if (wpa) { 1758 ap = &wpa->ia.ap; 1759 ap->num_pages = 0; 1760 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1761 if (!ap->pages) { 1762 kfree(wpa); 1763 wpa = NULL; 1764 } 1765 } 1766 return wpa; 1767 1768 } 1769 1770 static int fuse_writepage_locked(struct page *page) 1771 { 1772 struct address_space *mapping = page->mapping; 1773 struct inode *inode = mapping->host; 1774 struct fuse_conn *fc = get_fuse_conn(inode); 1775 struct fuse_inode *fi = get_fuse_inode(inode); 1776 struct fuse_writepage_args *wpa; 1777 struct fuse_args_pages *ap; 1778 struct page *tmp_page; 1779 int error = -ENOMEM; 1780 1781 set_page_writeback(page); 1782 1783 wpa = fuse_writepage_args_alloc(); 1784 if (!wpa) 1785 goto err; 1786 ap = &wpa->ia.ap; 1787 1788 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1789 if (!tmp_page) 1790 goto err_free; 1791 1792 error = -EIO; 1793 wpa->ia.ff = fuse_write_file_get(fc, fi); 1794 if (!wpa->ia.ff) 1795 goto err_nofile; 1796 1797 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1798 1799 copy_highpage(tmp_page, page); 1800 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1801 wpa->next = NULL; 1802 ap->args.in_pages = true; 1803 ap->num_pages = 1; 1804 ap->pages[0] = tmp_page; 1805 ap->descs[0].offset = 0; 1806 ap->descs[0].length = PAGE_SIZE; 1807 ap->args.end = fuse_writepage_end; 1808 wpa->inode = inode; 1809 1810 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1811 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1812 1813 spin_lock(&fi->lock); 1814 list_add(&wpa->writepages_entry, &fi->writepages); 1815 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1816 fuse_flush_writepages(inode); 1817 spin_unlock(&fi->lock); 1818 1819 end_page_writeback(page); 1820 1821 return 0; 1822 1823 err_nofile: 1824 __free_page(tmp_page); 1825 err_free: 1826 kfree(wpa); 1827 err: 1828 mapping_set_error(page->mapping, error); 1829 end_page_writeback(page); 1830 return error; 1831 } 1832 1833 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1834 { 1835 int err; 1836 1837 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1838 /* 1839 * ->writepages() should be called for sync() and friends. We 1840 * should only get here on direct reclaim and then we are 1841 * allowed to skip a page which is already in flight 1842 */ 1843 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1844 1845 redirty_page_for_writepage(wbc, page); 1846 unlock_page(page); 1847 return 0; 1848 } 1849 1850 err = fuse_writepage_locked(page); 1851 unlock_page(page); 1852 1853 return err; 1854 } 1855 1856 struct fuse_fill_wb_data { 1857 struct fuse_writepage_args *wpa; 1858 struct fuse_file *ff; 1859 struct inode *inode; 1860 struct page **orig_pages; 1861 unsigned int max_pages; 1862 }; 1863 1864 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1865 { 1866 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1867 struct fuse_conn *fc = get_fuse_conn(data->inode); 1868 struct page **pages; 1869 struct fuse_page_desc *descs; 1870 unsigned int npages = min_t(unsigned int, 1871 max_t(unsigned int, data->max_pages * 2, 1872 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 1873 fc->max_pages); 1874 WARN_ON(npages <= data->max_pages); 1875 1876 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 1877 if (!pages) 1878 return false; 1879 1880 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 1881 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 1882 kfree(ap->pages); 1883 ap->pages = pages; 1884 ap->descs = descs; 1885 data->max_pages = npages; 1886 1887 return true; 1888 } 1889 1890 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1891 { 1892 struct fuse_writepage_args *wpa = data->wpa; 1893 struct inode *inode = data->inode; 1894 struct fuse_inode *fi = get_fuse_inode(inode); 1895 int num_pages = wpa->ia.ap.num_pages; 1896 int i; 1897 1898 wpa->ia.ff = fuse_file_get(data->ff); 1899 spin_lock(&fi->lock); 1900 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1901 fuse_flush_writepages(inode); 1902 spin_unlock(&fi->lock); 1903 1904 for (i = 0; i < num_pages; i++) 1905 end_page_writeback(data->orig_pages[i]); 1906 } 1907 1908 /* 1909 * First recheck under fi->lock if the offending offset is still under 1910 * writeback. If yes, then iterate auxiliary write requests, to see if there's 1911 * one already added for a page at this offset. If there's none, then insert 1912 * this new request onto the auxiliary list, otherwise reuse the existing one by 1913 * copying the new page contents over to the old temporary page. 1914 */ 1915 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa, 1916 struct page *page) 1917 { 1918 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 1919 struct fuse_writepage_args *tmp; 1920 struct fuse_writepage_args *old_wpa; 1921 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 1922 1923 WARN_ON(new_ap->num_pages != 0); 1924 1925 spin_lock(&fi->lock); 1926 list_del(&new_wpa->writepages_entry); 1927 old_wpa = fuse_find_writeback(fi, page->index, page->index); 1928 if (!old_wpa) { 1929 list_add(&new_wpa->writepages_entry, &fi->writepages); 1930 spin_unlock(&fi->lock); 1931 return false; 1932 } 1933 1934 new_ap->num_pages = 1; 1935 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 1936 pgoff_t curr_index; 1937 1938 WARN_ON(tmp->inode != new_wpa->inode); 1939 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 1940 if (curr_index == page->index) { 1941 WARN_ON(tmp->ia.ap.num_pages != 1); 1942 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 1943 break; 1944 } 1945 } 1946 1947 if (!tmp) { 1948 new_wpa->next = old_wpa->next; 1949 old_wpa->next = new_wpa; 1950 } 1951 1952 spin_unlock(&fi->lock); 1953 1954 if (tmp) { 1955 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 1956 1957 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1958 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 1959 wb_writeout_inc(&bdi->wb); 1960 fuse_writepage_free(new_wpa); 1961 } 1962 1963 return true; 1964 } 1965 1966 static int fuse_writepages_fill(struct page *page, 1967 struct writeback_control *wbc, void *_data) 1968 { 1969 struct fuse_fill_wb_data *data = _data; 1970 struct fuse_writepage_args *wpa = data->wpa; 1971 struct fuse_args_pages *ap = &wpa->ia.ap; 1972 struct inode *inode = data->inode; 1973 struct fuse_inode *fi = get_fuse_inode(inode); 1974 struct fuse_conn *fc = get_fuse_conn(inode); 1975 struct page *tmp_page; 1976 bool is_writeback; 1977 int err; 1978 1979 if (!data->ff) { 1980 err = -EIO; 1981 data->ff = fuse_write_file_get(fc, fi); 1982 if (!data->ff) 1983 goto out_unlock; 1984 } 1985 1986 /* 1987 * Being under writeback is unlikely but possible. For example direct 1988 * read to an mmaped fuse file will set the page dirty twice; once when 1989 * the pages are faulted with get_user_pages(), and then after the read 1990 * completed. 1991 */ 1992 is_writeback = fuse_page_is_writeback(inode, page->index); 1993 1994 if (wpa && ap->num_pages && 1995 (is_writeback || ap->num_pages == fc->max_pages || 1996 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write || 1997 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) { 1998 fuse_writepages_send(data); 1999 data->wpa = NULL; 2000 } else if (wpa && ap->num_pages == data->max_pages) { 2001 if (!fuse_pages_realloc(data)) { 2002 fuse_writepages_send(data); 2003 data->wpa = NULL; 2004 } 2005 } 2006 2007 err = -ENOMEM; 2008 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2009 if (!tmp_page) 2010 goto out_unlock; 2011 2012 /* 2013 * The page must not be redirtied until the writeout is completed 2014 * (i.e. userspace has sent a reply to the write request). Otherwise 2015 * there could be more than one temporary page instance for each real 2016 * page. 2017 * 2018 * This is ensured by holding the page lock in page_mkwrite() while 2019 * checking fuse_page_is_writeback(). We already hold the page lock 2020 * since clear_page_dirty_for_io() and keep it held until we add the 2021 * request to the fi->writepages list and increment ap->num_pages. 2022 * After this fuse_page_is_writeback() will indicate that the page is 2023 * under writeback, so we can release the page lock. 2024 */ 2025 if (data->wpa == NULL) { 2026 err = -ENOMEM; 2027 wpa = fuse_writepage_args_alloc(); 2028 if (!wpa) { 2029 __free_page(tmp_page); 2030 goto out_unlock; 2031 } 2032 data->max_pages = 1; 2033 2034 ap = &wpa->ia.ap; 2035 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2036 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2037 wpa->next = NULL; 2038 ap->args.in_pages = true; 2039 ap->args.end = fuse_writepage_end; 2040 ap->num_pages = 0; 2041 wpa->inode = inode; 2042 2043 spin_lock(&fi->lock); 2044 list_add(&wpa->writepages_entry, &fi->writepages); 2045 spin_unlock(&fi->lock); 2046 2047 data->wpa = wpa; 2048 } 2049 set_page_writeback(page); 2050 2051 copy_highpage(tmp_page, page); 2052 ap->pages[ap->num_pages] = tmp_page; 2053 ap->descs[ap->num_pages].offset = 0; 2054 ap->descs[ap->num_pages].length = PAGE_SIZE; 2055 2056 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2057 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2058 2059 err = 0; 2060 if (is_writeback && fuse_writepage_in_flight(wpa, page)) { 2061 end_page_writeback(page); 2062 data->wpa = NULL; 2063 goto out_unlock; 2064 } 2065 data->orig_pages[ap->num_pages] = page; 2066 2067 /* 2068 * Protected by fi->lock against concurrent access by 2069 * fuse_page_is_writeback(). 2070 */ 2071 spin_lock(&fi->lock); 2072 ap->num_pages++; 2073 spin_unlock(&fi->lock); 2074 2075 out_unlock: 2076 unlock_page(page); 2077 2078 return err; 2079 } 2080 2081 static int fuse_writepages(struct address_space *mapping, 2082 struct writeback_control *wbc) 2083 { 2084 struct inode *inode = mapping->host; 2085 struct fuse_conn *fc = get_fuse_conn(inode); 2086 struct fuse_fill_wb_data data; 2087 int err; 2088 2089 err = -EIO; 2090 if (is_bad_inode(inode)) 2091 goto out; 2092 2093 data.inode = inode; 2094 data.wpa = NULL; 2095 data.ff = NULL; 2096 2097 err = -ENOMEM; 2098 data.orig_pages = kcalloc(fc->max_pages, 2099 sizeof(struct page *), 2100 GFP_NOFS); 2101 if (!data.orig_pages) 2102 goto out; 2103 2104 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2105 if (data.wpa) { 2106 /* Ignore errors if we can write at least one page */ 2107 WARN_ON(!data.wpa->ia.ap.num_pages); 2108 fuse_writepages_send(&data); 2109 err = 0; 2110 } 2111 if (data.ff) 2112 fuse_file_put(data.ff, false, false); 2113 2114 kfree(data.orig_pages); 2115 out: 2116 return err; 2117 } 2118 2119 /* 2120 * It's worthy to make sure that space is reserved on disk for the write, 2121 * but how to implement it without killing performance need more thinking. 2122 */ 2123 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2124 loff_t pos, unsigned len, unsigned flags, 2125 struct page **pagep, void **fsdata) 2126 { 2127 pgoff_t index = pos >> PAGE_SHIFT; 2128 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2129 struct page *page; 2130 loff_t fsize; 2131 int err = -ENOMEM; 2132 2133 WARN_ON(!fc->writeback_cache); 2134 2135 page = grab_cache_page_write_begin(mapping, index, flags); 2136 if (!page) 2137 goto error; 2138 2139 fuse_wait_on_page_writeback(mapping->host, page->index); 2140 2141 if (PageUptodate(page) || len == PAGE_SIZE) 2142 goto success; 2143 /* 2144 * Check if the start this page comes after the end of file, in which 2145 * case the readpage can be optimized away. 2146 */ 2147 fsize = i_size_read(mapping->host); 2148 if (fsize <= (pos & PAGE_MASK)) { 2149 size_t off = pos & ~PAGE_MASK; 2150 if (off) 2151 zero_user_segment(page, 0, off); 2152 goto success; 2153 } 2154 err = fuse_do_readpage(file, page); 2155 if (err) 2156 goto cleanup; 2157 success: 2158 *pagep = page; 2159 return 0; 2160 2161 cleanup: 2162 unlock_page(page); 2163 put_page(page); 2164 error: 2165 return err; 2166 } 2167 2168 static int fuse_write_end(struct file *file, struct address_space *mapping, 2169 loff_t pos, unsigned len, unsigned copied, 2170 struct page *page, void *fsdata) 2171 { 2172 struct inode *inode = page->mapping->host; 2173 2174 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2175 if (!copied) 2176 goto unlock; 2177 2178 if (!PageUptodate(page)) { 2179 /* Zero any unwritten bytes at the end of the page */ 2180 size_t endoff = (pos + copied) & ~PAGE_MASK; 2181 if (endoff) 2182 zero_user_segment(page, endoff, PAGE_SIZE); 2183 SetPageUptodate(page); 2184 } 2185 2186 fuse_write_update_size(inode, pos + copied); 2187 set_page_dirty(page); 2188 2189 unlock: 2190 unlock_page(page); 2191 put_page(page); 2192 2193 return copied; 2194 } 2195 2196 static int fuse_launder_page(struct page *page) 2197 { 2198 int err = 0; 2199 if (clear_page_dirty_for_io(page)) { 2200 struct inode *inode = page->mapping->host; 2201 err = fuse_writepage_locked(page); 2202 if (!err) 2203 fuse_wait_on_page_writeback(inode, page->index); 2204 } 2205 return err; 2206 } 2207 2208 /* 2209 * Write back dirty pages now, because there may not be any suitable 2210 * open files later 2211 */ 2212 static void fuse_vma_close(struct vm_area_struct *vma) 2213 { 2214 filemap_write_and_wait(vma->vm_file->f_mapping); 2215 } 2216 2217 /* 2218 * Wait for writeback against this page to complete before allowing it 2219 * to be marked dirty again, and hence written back again, possibly 2220 * before the previous writepage completed. 2221 * 2222 * Block here, instead of in ->writepage(), so that the userspace fs 2223 * can only block processes actually operating on the filesystem. 2224 * 2225 * Otherwise unprivileged userspace fs would be able to block 2226 * unrelated: 2227 * 2228 * - page migration 2229 * - sync(2) 2230 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2231 */ 2232 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2233 { 2234 struct page *page = vmf->page; 2235 struct inode *inode = file_inode(vmf->vma->vm_file); 2236 2237 file_update_time(vmf->vma->vm_file); 2238 lock_page(page); 2239 if (page->mapping != inode->i_mapping) { 2240 unlock_page(page); 2241 return VM_FAULT_NOPAGE; 2242 } 2243 2244 fuse_wait_on_page_writeback(inode, page->index); 2245 return VM_FAULT_LOCKED; 2246 } 2247 2248 static const struct vm_operations_struct fuse_file_vm_ops = { 2249 .close = fuse_vma_close, 2250 .fault = filemap_fault, 2251 .map_pages = filemap_map_pages, 2252 .page_mkwrite = fuse_page_mkwrite, 2253 }; 2254 2255 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2256 { 2257 struct fuse_file *ff = file->private_data; 2258 2259 if (ff->open_flags & FOPEN_DIRECT_IO) { 2260 /* Can't provide the coherency needed for MAP_SHARED */ 2261 if (vma->vm_flags & VM_MAYSHARE) 2262 return -ENODEV; 2263 2264 invalidate_inode_pages2(file->f_mapping); 2265 2266 return generic_file_mmap(file, vma); 2267 } 2268 2269 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2270 fuse_link_write_file(file); 2271 2272 file_accessed(file); 2273 vma->vm_ops = &fuse_file_vm_ops; 2274 return 0; 2275 } 2276 2277 static int convert_fuse_file_lock(struct fuse_conn *fc, 2278 const struct fuse_file_lock *ffl, 2279 struct file_lock *fl) 2280 { 2281 switch (ffl->type) { 2282 case F_UNLCK: 2283 break; 2284 2285 case F_RDLCK: 2286 case F_WRLCK: 2287 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2288 ffl->end < ffl->start) 2289 return -EIO; 2290 2291 fl->fl_start = ffl->start; 2292 fl->fl_end = ffl->end; 2293 2294 /* 2295 * Convert pid into init's pid namespace. The locks API will 2296 * translate it into the caller's pid namespace. 2297 */ 2298 rcu_read_lock(); 2299 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2300 rcu_read_unlock(); 2301 break; 2302 2303 default: 2304 return -EIO; 2305 } 2306 fl->fl_type = ffl->type; 2307 return 0; 2308 } 2309 2310 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2311 const struct file_lock *fl, int opcode, pid_t pid, 2312 int flock, struct fuse_lk_in *inarg) 2313 { 2314 struct inode *inode = file_inode(file); 2315 struct fuse_conn *fc = get_fuse_conn(inode); 2316 struct fuse_file *ff = file->private_data; 2317 2318 memset(inarg, 0, sizeof(*inarg)); 2319 inarg->fh = ff->fh; 2320 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2321 inarg->lk.start = fl->fl_start; 2322 inarg->lk.end = fl->fl_end; 2323 inarg->lk.type = fl->fl_type; 2324 inarg->lk.pid = pid; 2325 if (flock) 2326 inarg->lk_flags |= FUSE_LK_FLOCK; 2327 args->opcode = opcode; 2328 args->nodeid = get_node_id(inode); 2329 args->in_numargs = 1; 2330 args->in_args[0].size = sizeof(*inarg); 2331 args->in_args[0].value = inarg; 2332 } 2333 2334 static int fuse_getlk(struct file *file, struct file_lock *fl) 2335 { 2336 struct inode *inode = file_inode(file); 2337 struct fuse_conn *fc = get_fuse_conn(inode); 2338 FUSE_ARGS(args); 2339 struct fuse_lk_in inarg; 2340 struct fuse_lk_out outarg; 2341 int err; 2342 2343 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2344 args.out_numargs = 1; 2345 args.out_args[0].size = sizeof(outarg); 2346 args.out_args[0].value = &outarg; 2347 err = fuse_simple_request(fc, &args); 2348 if (!err) 2349 err = convert_fuse_file_lock(fc, &outarg.lk, fl); 2350 2351 return err; 2352 } 2353 2354 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2355 { 2356 struct inode *inode = file_inode(file); 2357 struct fuse_conn *fc = get_fuse_conn(inode); 2358 FUSE_ARGS(args); 2359 struct fuse_lk_in inarg; 2360 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2361 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2362 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns); 2363 int err; 2364 2365 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2366 /* NLM needs asynchronous locks, which we don't support yet */ 2367 return -ENOLCK; 2368 } 2369 2370 /* Unlock on close is handled by the flush method */ 2371 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2372 return 0; 2373 2374 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2375 err = fuse_simple_request(fc, &args); 2376 2377 /* locking is restartable */ 2378 if (err == -EINTR) 2379 err = -ERESTARTSYS; 2380 2381 return err; 2382 } 2383 2384 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2385 { 2386 struct inode *inode = file_inode(file); 2387 struct fuse_conn *fc = get_fuse_conn(inode); 2388 int err; 2389 2390 if (cmd == F_CANCELLK) { 2391 err = 0; 2392 } else if (cmd == F_GETLK) { 2393 if (fc->no_lock) { 2394 posix_test_lock(file, fl); 2395 err = 0; 2396 } else 2397 err = fuse_getlk(file, fl); 2398 } else { 2399 if (fc->no_lock) 2400 err = posix_lock_file(file, fl, NULL); 2401 else 2402 err = fuse_setlk(file, fl, 0); 2403 } 2404 return err; 2405 } 2406 2407 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2408 { 2409 struct inode *inode = file_inode(file); 2410 struct fuse_conn *fc = get_fuse_conn(inode); 2411 int err; 2412 2413 if (fc->no_flock) { 2414 err = locks_lock_file_wait(file, fl); 2415 } else { 2416 struct fuse_file *ff = file->private_data; 2417 2418 /* emulate flock with POSIX locks */ 2419 ff->flock = true; 2420 err = fuse_setlk(file, fl, 1); 2421 } 2422 2423 return err; 2424 } 2425 2426 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2427 { 2428 struct inode *inode = mapping->host; 2429 struct fuse_conn *fc = get_fuse_conn(inode); 2430 FUSE_ARGS(args); 2431 struct fuse_bmap_in inarg; 2432 struct fuse_bmap_out outarg; 2433 int err; 2434 2435 if (!inode->i_sb->s_bdev || fc->no_bmap) 2436 return 0; 2437 2438 memset(&inarg, 0, sizeof(inarg)); 2439 inarg.block = block; 2440 inarg.blocksize = inode->i_sb->s_blocksize; 2441 args.opcode = FUSE_BMAP; 2442 args.nodeid = get_node_id(inode); 2443 args.in_numargs = 1; 2444 args.in_args[0].size = sizeof(inarg); 2445 args.in_args[0].value = &inarg; 2446 args.out_numargs = 1; 2447 args.out_args[0].size = sizeof(outarg); 2448 args.out_args[0].value = &outarg; 2449 err = fuse_simple_request(fc, &args); 2450 if (err == -ENOSYS) 2451 fc->no_bmap = 1; 2452 2453 return err ? 0 : outarg.block; 2454 } 2455 2456 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2457 { 2458 struct inode *inode = file->f_mapping->host; 2459 struct fuse_conn *fc = get_fuse_conn(inode); 2460 struct fuse_file *ff = file->private_data; 2461 FUSE_ARGS(args); 2462 struct fuse_lseek_in inarg = { 2463 .fh = ff->fh, 2464 .offset = offset, 2465 .whence = whence 2466 }; 2467 struct fuse_lseek_out outarg; 2468 int err; 2469 2470 if (fc->no_lseek) 2471 goto fallback; 2472 2473 args.opcode = FUSE_LSEEK; 2474 args.nodeid = ff->nodeid; 2475 args.in_numargs = 1; 2476 args.in_args[0].size = sizeof(inarg); 2477 args.in_args[0].value = &inarg; 2478 args.out_numargs = 1; 2479 args.out_args[0].size = sizeof(outarg); 2480 args.out_args[0].value = &outarg; 2481 err = fuse_simple_request(fc, &args); 2482 if (err) { 2483 if (err == -ENOSYS) { 2484 fc->no_lseek = 1; 2485 goto fallback; 2486 } 2487 return err; 2488 } 2489 2490 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2491 2492 fallback: 2493 err = fuse_update_attributes(inode, file); 2494 if (!err) 2495 return generic_file_llseek(file, offset, whence); 2496 else 2497 return err; 2498 } 2499 2500 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2501 { 2502 loff_t retval; 2503 struct inode *inode = file_inode(file); 2504 2505 switch (whence) { 2506 case SEEK_SET: 2507 case SEEK_CUR: 2508 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2509 retval = generic_file_llseek(file, offset, whence); 2510 break; 2511 case SEEK_END: 2512 inode_lock(inode); 2513 retval = fuse_update_attributes(inode, file); 2514 if (!retval) 2515 retval = generic_file_llseek(file, offset, whence); 2516 inode_unlock(inode); 2517 break; 2518 case SEEK_HOLE: 2519 case SEEK_DATA: 2520 inode_lock(inode); 2521 retval = fuse_lseek(file, offset, whence); 2522 inode_unlock(inode); 2523 break; 2524 default: 2525 retval = -EINVAL; 2526 } 2527 2528 return retval; 2529 } 2530 2531 /* 2532 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2533 * ABI was defined to be 'struct iovec' which is different on 32bit 2534 * and 64bit. Fortunately we can determine which structure the server 2535 * used from the size of the reply. 2536 */ 2537 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2538 size_t transferred, unsigned count, 2539 bool is_compat) 2540 { 2541 #ifdef CONFIG_COMPAT 2542 if (count * sizeof(struct compat_iovec) == transferred) { 2543 struct compat_iovec *ciov = src; 2544 unsigned i; 2545 2546 /* 2547 * With this interface a 32bit server cannot support 2548 * non-compat (i.e. ones coming from 64bit apps) ioctl 2549 * requests 2550 */ 2551 if (!is_compat) 2552 return -EINVAL; 2553 2554 for (i = 0; i < count; i++) { 2555 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2556 dst[i].iov_len = ciov[i].iov_len; 2557 } 2558 return 0; 2559 } 2560 #endif 2561 2562 if (count * sizeof(struct iovec) != transferred) 2563 return -EIO; 2564 2565 memcpy(dst, src, transferred); 2566 return 0; 2567 } 2568 2569 /* Make sure iov_length() won't overflow */ 2570 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov, 2571 size_t count) 2572 { 2573 size_t n; 2574 u32 max = fc->max_pages << PAGE_SHIFT; 2575 2576 for (n = 0; n < count; n++, iov++) { 2577 if (iov->iov_len > (size_t) max) 2578 return -ENOMEM; 2579 max -= iov->iov_len; 2580 } 2581 return 0; 2582 } 2583 2584 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2585 void *src, size_t transferred, unsigned count, 2586 bool is_compat) 2587 { 2588 unsigned i; 2589 struct fuse_ioctl_iovec *fiov = src; 2590 2591 if (fc->minor < 16) { 2592 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2593 count, is_compat); 2594 } 2595 2596 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2597 return -EIO; 2598 2599 for (i = 0; i < count; i++) { 2600 /* Did the server supply an inappropriate value? */ 2601 if (fiov[i].base != (unsigned long) fiov[i].base || 2602 fiov[i].len != (unsigned long) fiov[i].len) 2603 return -EIO; 2604 2605 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2606 dst[i].iov_len = (size_t) fiov[i].len; 2607 2608 #ifdef CONFIG_COMPAT 2609 if (is_compat && 2610 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2611 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2612 return -EIO; 2613 #endif 2614 } 2615 2616 return 0; 2617 } 2618 2619 2620 /* 2621 * For ioctls, there is no generic way to determine how much memory 2622 * needs to be read and/or written. Furthermore, ioctls are allowed 2623 * to dereference the passed pointer, so the parameter requires deep 2624 * copying but FUSE has no idea whatsoever about what to copy in or 2625 * out. 2626 * 2627 * This is solved by allowing FUSE server to retry ioctl with 2628 * necessary in/out iovecs. Let's assume the ioctl implementation 2629 * needs to read in the following structure. 2630 * 2631 * struct a { 2632 * char *buf; 2633 * size_t buflen; 2634 * } 2635 * 2636 * On the first callout to FUSE server, inarg->in_size and 2637 * inarg->out_size will be NULL; then, the server completes the ioctl 2638 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2639 * the actual iov array to 2640 * 2641 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2642 * 2643 * which tells FUSE to copy in the requested area and retry the ioctl. 2644 * On the second round, the server has access to the structure and 2645 * from that it can tell what to look for next, so on the invocation, 2646 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2647 * 2648 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2649 * { .iov_base = a.buf, .iov_len = a.buflen } } 2650 * 2651 * FUSE will copy both struct a and the pointed buffer from the 2652 * process doing the ioctl and retry ioctl with both struct a and the 2653 * buffer. 2654 * 2655 * This time, FUSE server has everything it needs and completes ioctl 2656 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2657 * 2658 * Copying data out works the same way. 2659 * 2660 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2661 * automatically initializes in and out iovs by decoding @cmd with 2662 * _IOC_* macros and the server is not allowed to request RETRY. This 2663 * limits ioctl data transfers to well-formed ioctls and is the forced 2664 * behavior for all FUSE servers. 2665 */ 2666 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2667 unsigned int flags) 2668 { 2669 struct fuse_file *ff = file->private_data; 2670 struct fuse_conn *fc = ff->fc; 2671 struct fuse_ioctl_in inarg = { 2672 .fh = ff->fh, 2673 .cmd = cmd, 2674 .arg = arg, 2675 .flags = flags 2676 }; 2677 struct fuse_ioctl_out outarg; 2678 struct iovec *iov_page = NULL; 2679 struct iovec *in_iov = NULL, *out_iov = NULL; 2680 unsigned int in_iovs = 0, out_iovs = 0, max_pages; 2681 size_t in_size, out_size, c; 2682 ssize_t transferred; 2683 int err, i; 2684 struct iov_iter ii; 2685 struct fuse_args_pages ap = {}; 2686 2687 #if BITS_PER_LONG == 32 2688 inarg.flags |= FUSE_IOCTL_32BIT; 2689 #else 2690 if (flags & FUSE_IOCTL_COMPAT) { 2691 inarg.flags |= FUSE_IOCTL_32BIT; 2692 #ifdef CONFIG_X86_X32 2693 if (in_x32_syscall()) 2694 inarg.flags |= FUSE_IOCTL_COMPAT_X32; 2695 #endif 2696 } 2697 #endif 2698 2699 /* assume all the iovs returned by client always fits in a page */ 2700 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2701 2702 err = -ENOMEM; 2703 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs); 2704 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2705 if (!ap.pages || !iov_page) 2706 goto out; 2707 2708 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages); 2709 2710 /* 2711 * If restricted, initialize IO parameters as encoded in @cmd. 2712 * RETRY from server is not allowed. 2713 */ 2714 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2715 struct iovec *iov = iov_page; 2716 2717 iov->iov_base = (void __user *)arg; 2718 iov->iov_len = _IOC_SIZE(cmd); 2719 2720 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2721 in_iov = iov; 2722 in_iovs = 1; 2723 } 2724 2725 if (_IOC_DIR(cmd) & _IOC_READ) { 2726 out_iov = iov; 2727 out_iovs = 1; 2728 } 2729 } 2730 2731 retry: 2732 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2733 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2734 2735 /* 2736 * Out data can be used either for actual out data or iovs, 2737 * make sure there always is at least one page. 2738 */ 2739 out_size = max_t(size_t, out_size, PAGE_SIZE); 2740 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2741 2742 /* make sure there are enough buffer pages and init request with them */ 2743 err = -ENOMEM; 2744 if (max_pages > fc->max_pages) 2745 goto out; 2746 while (ap.num_pages < max_pages) { 2747 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2748 if (!ap.pages[ap.num_pages]) 2749 goto out; 2750 ap.num_pages++; 2751 } 2752 2753 2754 /* okay, let's send it to the client */ 2755 ap.args.opcode = FUSE_IOCTL; 2756 ap.args.nodeid = ff->nodeid; 2757 ap.args.in_numargs = 1; 2758 ap.args.in_args[0].size = sizeof(inarg); 2759 ap.args.in_args[0].value = &inarg; 2760 if (in_size) { 2761 ap.args.in_numargs++; 2762 ap.args.in_args[1].size = in_size; 2763 ap.args.in_pages = true; 2764 2765 err = -EFAULT; 2766 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size); 2767 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2768 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2769 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2770 goto out; 2771 } 2772 } 2773 2774 ap.args.out_numargs = 2; 2775 ap.args.out_args[0].size = sizeof(outarg); 2776 ap.args.out_args[0].value = &outarg; 2777 ap.args.out_args[1].size = out_size; 2778 ap.args.out_pages = true; 2779 ap.args.out_argvar = true; 2780 2781 transferred = fuse_simple_request(fc, &ap.args); 2782 err = transferred; 2783 if (transferred < 0) 2784 goto out; 2785 2786 /* did it ask for retry? */ 2787 if (outarg.flags & FUSE_IOCTL_RETRY) { 2788 void *vaddr; 2789 2790 /* no retry if in restricted mode */ 2791 err = -EIO; 2792 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2793 goto out; 2794 2795 in_iovs = outarg.in_iovs; 2796 out_iovs = outarg.out_iovs; 2797 2798 /* 2799 * Make sure things are in boundary, separate checks 2800 * are to protect against overflow. 2801 */ 2802 err = -ENOMEM; 2803 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2804 out_iovs > FUSE_IOCTL_MAX_IOV || 2805 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2806 goto out; 2807 2808 vaddr = kmap_atomic(ap.pages[0]); 2809 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2810 transferred, in_iovs + out_iovs, 2811 (flags & FUSE_IOCTL_COMPAT) != 0); 2812 kunmap_atomic(vaddr); 2813 if (err) 2814 goto out; 2815 2816 in_iov = iov_page; 2817 out_iov = in_iov + in_iovs; 2818 2819 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs); 2820 if (err) 2821 goto out; 2822 2823 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs); 2824 if (err) 2825 goto out; 2826 2827 goto retry; 2828 } 2829 2830 err = -EIO; 2831 if (transferred > inarg.out_size) 2832 goto out; 2833 2834 err = -EFAULT; 2835 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred); 2836 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2837 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2838 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2839 goto out; 2840 } 2841 err = 0; 2842 out: 2843 free_page((unsigned long) iov_page); 2844 while (ap.num_pages) 2845 __free_page(ap.pages[--ap.num_pages]); 2846 kfree(ap.pages); 2847 2848 return err ? err : outarg.result; 2849 } 2850 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2851 2852 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2853 unsigned long arg, unsigned int flags) 2854 { 2855 struct inode *inode = file_inode(file); 2856 struct fuse_conn *fc = get_fuse_conn(inode); 2857 2858 if (!fuse_allow_current_process(fc)) 2859 return -EACCES; 2860 2861 if (is_bad_inode(inode)) 2862 return -EIO; 2863 2864 return fuse_do_ioctl(file, cmd, arg, flags); 2865 } 2866 2867 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2868 unsigned long arg) 2869 { 2870 return fuse_ioctl_common(file, cmd, arg, 0); 2871 } 2872 2873 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2874 unsigned long arg) 2875 { 2876 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2877 } 2878 2879 /* 2880 * All files which have been polled are linked to RB tree 2881 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2882 * find the matching one. 2883 */ 2884 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2885 struct rb_node **parent_out) 2886 { 2887 struct rb_node **link = &fc->polled_files.rb_node; 2888 struct rb_node *last = NULL; 2889 2890 while (*link) { 2891 struct fuse_file *ff; 2892 2893 last = *link; 2894 ff = rb_entry(last, struct fuse_file, polled_node); 2895 2896 if (kh < ff->kh) 2897 link = &last->rb_left; 2898 else if (kh > ff->kh) 2899 link = &last->rb_right; 2900 else 2901 return link; 2902 } 2903 2904 if (parent_out) 2905 *parent_out = last; 2906 return link; 2907 } 2908 2909 /* 2910 * The file is about to be polled. Make sure it's on the polled_files 2911 * RB tree. Note that files once added to the polled_files tree are 2912 * not removed before the file is released. This is because a file 2913 * polled once is likely to be polled again. 2914 */ 2915 static void fuse_register_polled_file(struct fuse_conn *fc, 2916 struct fuse_file *ff) 2917 { 2918 spin_lock(&fc->lock); 2919 if (RB_EMPTY_NODE(&ff->polled_node)) { 2920 struct rb_node **link, *uninitialized_var(parent); 2921 2922 link = fuse_find_polled_node(fc, ff->kh, &parent); 2923 BUG_ON(*link); 2924 rb_link_node(&ff->polled_node, parent, link); 2925 rb_insert_color(&ff->polled_node, &fc->polled_files); 2926 } 2927 spin_unlock(&fc->lock); 2928 } 2929 2930 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2931 { 2932 struct fuse_file *ff = file->private_data; 2933 struct fuse_conn *fc = ff->fc; 2934 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2935 struct fuse_poll_out outarg; 2936 FUSE_ARGS(args); 2937 int err; 2938 2939 if (fc->no_poll) 2940 return DEFAULT_POLLMASK; 2941 2942 poll_wait(file, &ff->poll_wait, wait); 2943 inarg.events = mangle_poll(poll_requested_events(wait)); 2944 2945 /* 2946 * Ask for notification iff there's someone waiting for it. 2947 * The client may ignore the flag and always notify. 2948 */ 2949 if (waitqueue_active(&ff->poll_wait)) { 2950 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2951 fuse_register_polled_file(fc, ff); 2952 } 2953 2954 args.opcode = FUSE_POLL; 2955 args.nodeid = ff->nodeid; 2956 args.in_numargs = 1; 2957 args.in_args[0].size = sizeof(inarg); 2958 args.in_args[0].value = &inarg; 2959 args.out_numargs = 1; 2960 args.out_args[0].size = sizeof(outarg); 2961 args.out_args[0].value = &outarg; 2962 err = fuse_simple_request(fc, &args); 2963 2964 if (!err) 2965 return demangle_poll(outarg.revents); 2966 if (err == -ENOSYS) { 2967 fc->no_poll = 1; 2968 return DEFAULT_POLLMASK; 2969 } 2970 return EPOLLERR; 2971 } 2972 EXPORT_SYMBOL_GPL(fuse_file_poll); 2973 2974 /* 2975 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2976 * wakes up the poll waiters. 2977 */ 2978 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2979 struct fuse_notify_poll_wakeup_out *outarg) 2980 { 2981 u64 kh = outarg->kh; 2982 struct rb_node **link; 2983 2984 spin_lock(&fc->lock); 2985 2986 link = fuse_find_polled_node(fc, kh, NULL); 2987 if (*link) { 2988 struct fuse_file *ff; 2989 2990 ff = rb_entry(*link, struct fuse_file, polled_node); 2991 wake_up_interruptible_sync(&ff->poll_wait); 2992 } 2993 2994 spin_unlock(&fc->lock); 2995 return 0; 2996 } 2997 2998 static void fuse_do_truncate(struct file *file) 2999 { 3000 struct inode *inode = file->f_mapping->host; 3001 struct iattr attr; 3002 3003 attr.ia_valid = ATTR_SIZE; 3004 attr.ia_size = i_size_read(inode); 3005 3006 attr.ia_file = file; 3007 attr.ia_valid |= ATTR_FILE; 3008 3009 fuse_do_setattr(file_dentry(file), &attr, file); 3010 } 3011 3012 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 3013 { 3014 return round_up(off, fc->max_pages << PAGE_SHIFT); 3015 } 3016 3017 static ssize_t 3018 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3019 { 3020 DECLARE_COMPLETION_ONSTACK(wait); 3021 ssize_t ret = 0; 3022 struct file *file = iocb->ki_filp; 3023 struct fuse_file *ff = file->private_data; 3024 bool async_dio = ff->fc->async_dio; 3025 loff_t pos = 0; 3026 struct inode *inode; 3027 loff_t i_size; 3028 size_t count = iov_iter_count(iter); 3029 loff_t offset = iocb->ki_pos; 3030 struct fuse_io_priv *io; 3031 3032 pos = offset; 3033 inode = file->f_mapping->host; 3034 i_size = i_size_read(inode); 3035 3036 if ((iov_iter_rw(iter) == READ) && (offset > i_size)) 3037 return 0; 3038 3039 /* optimization for short read */ 3040 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) { 3041 if (offset >= i_size) 3042 return 0; 3043 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset)); 3044 count = iov_iter_count(iter); 3045 } 3046 3047 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3048 if (!io) 3049 return -ENOMEM; 3050 spin_lock_init(&io->lock); 3051 kref_init(&io->refcnt); 3052 io->reqs = 1; 3053 io->bytes = -1; 3054 io->size = 0; 3055 io->offset = offset; 3056 io->write = (iov_iter_rw(iter) == WRITE); 3057 io->err = 0; 3058 /* 3059 * By default, we want to optimize all I/Os with async request 3060 * submission to the client filesystem if supported. 3061 */ 3062 io->async = async_dio; 3063 io->iocb = iocb; 3064 io->blocking = is_sync_kiocb(iocb); 3065 3066 /* 3067 * We cannot asynchronously extend the size of a file. 3068 * In such case the aio will behave exactly like sync io. 3069 */ 3070 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE) 3071 io->blocking = true; 3072 3073 if (io->async && io->blocking) { 3074 /* 3075 * Additional reference to keep io around after 3076 * calling fuse_aio_complete() 3077 */ 3078 kref_get(&io->refcnt); 3079 io->done = &wait; 3080 } 3081 3082 if (iov_iter_rw(iter) == WRITE) { 3083 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3084 fuse_invalidate_attr(inode); 3085 } else { 3086 ret = __fuse_direct_read(io, iter, &pos); 3087 } 3088 3089 if (io->async) { 3090 bool blocking = io->blocking; 3091 3092 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3093 3094 /* we have a non-extending, async request, so return */ 3095 if (!blocking) 3096 return -EIOCBQUEUED; 3097 3098 wait_for_completion(&wait); 3099 ret = fuse_get_res_by_io(io); 3100 } 3101 3102 kref_put(&io->refcnt, fuse_io_release); 3103 3104 if (iov_iter_rw(iter) == WRITE) { 3105 if (ret > 0) 3106 fuse_write_update_size(inode, pos); 3107 else if (ret < 0 && offset + count > i_size) 3108 fuse_do_truncate(file); 3109 } 3110 3111 return ret; 3112 } 3113 3114 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3115 { 3116 int err = filemap_write_and_wait_range(inode->i_mapping, start, end); 3117 3118 if (!err) 3119 fuse_sync_writes(inode); 3120 3121 return err; 3122 } 3123 3124 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3125 loff_t length) 3126 { 3127 struct fuse_file *ff = file->private_data; 3128 struct inode *inode = file_inode(file); 3129 struct fuse_inode *fi = get_fuse_inode(inode); 3130 struct fuse_conn *fc = ff->fc; 3131 FUSE_ARGS(args); 3132 struct fuse_fallocate_in inarg = { 3133 .fh = ff->fh, 3134 .offset = offset, 3135 .length = length, 3136 .mode = mode 3137 }; 3138 int err; 3139 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 3140 (mode & FALLOC_FL_PUNCH_HOLE); 3141 3142 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3143 return -EOPNOTSUPP; 3144 3145 if (fc->no_fallocate) 3146 return -EOPNOTSUPP; 3147 3148 if (lock_inode) { 3149 inode_lock(inode); 3150 if (mode & FALLOC_FL_PUNCH_HOLE) { 3151 loff_t endbyte = offset + length - 1; 3152 3153 err = fuse_writeback_range(inode, offset, endbyte); 3154 if (err) 3155 goto out; 3156 } 3157 } 3158 3159 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3160 offset + length > i_size_read(inode)) { 3161 err = inode_newsize_ok(inode, offset + length); 3162 if (err) 3163 goto out; 3164 } 3165 3166 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3167 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3168 3169 args.opcode = FUSE_FALLOCATE; 3170 args.nodeid = ff->nodeid; 3171 args.in_numargs = 1; 3172 args.in_args[0].size = sizeof(inarg); 3173 args.in_args[0].value = &inarg; 3174 err = fuse_simple_request(fc, &args); 3175 if (err == -ENOSYS) { 3176 fc->no_fallocate = 1; 3177 err = -EOPNOTSUPP; 3178 } 3179 if (err) 3180 goto out; 3181 3182 /* we could have extended the file */ 3183 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3184 bool changed = fuse_write_update_size(inode, offset + length); 3185 3186 if (changed && fc->writeback_cache) 3187 file_update_time(file); 3188 } 3189 3190 if (mode & FALLOC_FL_PUNCH_HOLE) 3191 truncate_pagecache_range(inode, offset, offset + length - 1); 3192 3193 fuse_invalidate_attr(inode); 3194 3195 out: 3196 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3197 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3198 3199 if (lock_inode) 3200 inode_unlock(inode); 3201 3202 return err; 3203 } 3204 3205 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3206 struct file *file_out, loff_t pos_out, 3207 size_t len, unsigned int flags) 3208 { 3209 struct fuse_file *ff_in = file_in->private_data; 3210 struct fuse_file *ff_out = file_out->private_data; 3211 struct inode *inode_in = file_inode(file_in); 3212 struct inode *inode_out = file_inode(file_out); 3213 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3214 struct fuse_conn *fc = ff_in->fc; 3215 FUSE_ARGS(args); 3216 struct fuse_copy_file_range_in inarg = { 3217 .fh_in = ff_in->fh, 3218 .off_in = pos_in, 3219 .nodeid_out = ff_out->nodeid, 3220 .fh_out = ff_out->fh, 3221 .off_out = pos_out, 3222 .len = len, 3223 .flags = flags 3224 }; 3225 struct fuse_write_out outarg; 3226 ssize_t err; 3227 /* mark unstable when write-back is not used, and file_out gets 3228 * extended */ 3229 bool is_unstable = (!fc->writeback_cache) && 3230 ((pos_out + len) > inode_out->i_size); 3231 3232 if (fc->no_copy_file_range) 3233 return -EOPNOTSUPP; 3234 3235 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3236 return -EXDEV; 3237 3238 if (fc->writeback_cache) { 3239 inode_lock(inode_in); 3240 err = fuse_writeback_range(inode_in, pos_in, pos_in + len); 3241 inode_unlock(inode_in); 3242 if (err) 3243 return err; 3244 } 3245 3246 inode_lock(inode_out); 3247 3248 err = file_modified(file_out); 3249 if (err) 3250 goto out; 3251 3252 if (fc->writeback_cache) { 3253 err = fuse_writeback_range(inode_out, pos_out, pos_out + len); 3254 if (err) 3255 goto out; 3256 } 3257 3258 if (is_unstable) 3259 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3260 3261 args.opcode = FUSE_COPY_FILE_RANGE; 3262 args.nodeid = ff_in->nodeid; 3263 args.in_numargs = 1; 3264 args.in_args[0].size = sizeof(inarg); 3265 args.in_args[0].value = &inarg; 3266 args.out_numargs = 1; 3267 args.out_args[0].size = sizeof(outarg); 3268 args.out_args[0].value = &outarg; 3269 err = fuse_simple_request(fc, &args); 3270 if (err == -ENOSYS) { 3271 fc->no_copy_file_range = 1; 3272 err = -EOPNOTSUPP; 3273 } 3274 if (err) 3275 goto out; 3276 3277 if (fc->writeback_cache) { 3278 fuse_write_update_size(inode_out, pos_out + outarg.size); 3279 file_update_time(file_out); 3280 } 3281 3282 fuse_invalidate_attr(inode_out); 3283 3284 err = outarg.size; 3285 out: 3286 if (is_unstable) 3287 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3288 3289 inode_unlock(inode_out); 3290 file_accessed(file_in); 3291 3292 return err; 3293 } 3294 3295 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3296 struct file *dst_file, loff_t dst_off, 3297 size_t len, unsigned int flags) 3298 { 3299 ssize_t ret; 3300 3301 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3302 len, flags); 3303 3304 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3305 ret = generic_copy_file_range(src_file, src_off, dst_file, 3306 dst_off, len, flags); 3307 return ret; 3308 } 3309 3310 static const struct file_operations fuse_file_operations = { 3311 .llseek = fuse_file_llseek, 3312 .read_iter = fuse_file_read_iter, 3313 .write_iter = fuse_file_write_iter, 3314 .mmap = fuse_file_mmap, 3315 .open = fuse_open, 3316 .flush = fuse_flush, 3317 .release = fuse_release, 3318 .fsync = fuse_fsync, 3319 .lock = fuse_file_lock, 3320 .flock = fuse_file_flock, 3321 .splice_read = generic_file_splice_read, 3322 .splice_write = iter_file_splice_write, 3323 .unlocked_ioctl = fuse_file_ioctl, 3324 .compat_ioctl = fuse_file_compat_ioctl, 3325 .poll = fuse_file_poll, 3326 .fallocate = fuse_file_fallocate, 3327 .copy_file_range = fuse_copy_file_range, 3328 }; 3329 3330 static const struct address_space_operations fuse_file_aops = { 3331 .readpage = fuse_readpage, 3332 .readahead = fuse_readahead, 3333 .writepage = fuse_writepage, 3334 .writepages = fuse_writepages, 3335 .launder_page = fuse_launder_page, 3336 .set_page_dirty = __set_page_dirty_nobuffers, 3337 .bmap = fuse_bmap, 3338 .direct_IO = fuse_direct_IO, 3339 .write_begin = fuse_write_begin, 3340 .write_end = fuse_write_end, 3341 }; 3342 3343 void fuse_init_file_inode(struct inode *inode) 3344 { 3345 struct fuse_inode *fi = get_fuse_inode(inode); 3346 3347 inode->i_fop = &fuse_file_operations; 3348 inode->i_data.a_ops = &fuse_file_aops; 3349 3350 INIT_LIST_HEAD(&fi->write_files); 3351 INIT_LIST_HEAD(&fi->queued_writes); 3352 fi->writectr = 0; 3353 init_waitqueue_head(&fi->page_waitq); 3354 INIT_LIST_HEAD(&fi->writepages); 3355 } 3356