xref: /openbmc/linux/fs/fuse/file.c (revision 547840bd)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 				      struct fuse_page_desc **desc)
24 {
25 	struct page **pages;
26 
27 	pages = kzalloc(npages * (sizeof(struct page *) +
28 				  sizeof(struct fuse_page_desc)), flags);
29 	*desc = (void *) (pages + npages);
30 
31 	return pages;
32 }
33 
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 			  int opcode, struct fuse_open_out *outargp)
36 {
37 	struct fuse_open_in inarg;
38 	FUSE_ARGS(args);
39 
40 	memset(&inarg, 0, sizeof(inarg));
41 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 	if (!fc->atomic_o_trunc)
43 		inarg.flags &= ~O_TRUNC;
44 	args.opcode = opcode;
45 	args.nodeid = nodeid;
46 	args.in_numargs = 1;
47 	args.in_args[0].size = sizeof(inarg);
48 	args.in_args[0].value = &inarg;
49 	args.out_numargs = 1;
50 	args.out_args[0].size = sizeof(*outargp);
51 	args.out_args[0].value = outargp;
52 
53 	return fuse_simple_request(fc, &args);
54 }
55 
56 struct fuse_release_args {
57 	struct fuse_args args;
58 	struct fuse_release_in inarg;
59 	struct inode *inode;
60 };
61 
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
63 {
64 	struct fuse_file *ff;
65 
66 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
67 	if (unlikely(!ff))
68 		return NULL;
69 
70 	ff->fc = fc;
71 	ff->release_args = kzalloc(sizeof(*ff->release_args),
72 				   GFP_KERNEL_ACCOUNT);
73 	if (!ff->release_args) {
74 		kfree(ff);
75 		return NULL;
76 	}
77 
78 	INIT_LIST_HEAD(&ff->write_entry);
79 	mutex_init(&ff->readdir.lock);
80 	refcount_set(&ff->count, 1);
81 	RB_CLEAR_NODE(&ff->polled_node);
82 	init_waitqueue_head(&ff->poll_wait);
83 
84 	ff->kh = atomic64_inc_return(&fc->khctr);
85 
86 	return ff;
87 }
88 
89 void fuse_file_free(struct fuse_file *ff)
90 {
91 	kfree(ff->release_args);
92 	mutex_destroy(&ff->readdir.lock);
93 	kfree(ff);
94 }
95 
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
97 {
98 	refcount_inc(&ff->count);
99 	return ff;
100 }
101 
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
103 			     int error)
104 {
105 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
106 
107 	iput(ra->inode);
108 	kfree(ra);
109 }
110 
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
112 {
113 	if (refcount_dec_and_test(&ff->count)) {
114 		struct fuse_args *args = &ff->release_args->args;
115 
116 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 			/* Do nothing when client does not implement 'open' */
118 			fuse_release_end(ff->fc, args, 0);
119 		} else if (sync) {
120 			fuse_simple_request(ff->fc, args);
121 			fuse_release_end(ff->fc, args, 0);
122 		} else {
123 			args->end = fuse_release_end;
124 			if (fuse_simple_background(ff->fc, args,
125 						   GFP_KERNEL | __GFP_NOFAIL))
126 				fuse_release_end(ff->fc, args, -ENOTCONN);
127 		}
128 		kfree(ff);
129 	}
130 }
131 
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
133 		 bool isdir)
134 {
135 	struct fuse_file *ff;
136 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
137 
138 	ff = fuse_file_alloc(fc);
139 	if (!ff)
140 		return -ENOMEM;
141 
142 	ff->fh = 0;
143 	/* Default for no-open */
144 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 	if (isdir ? !fc->no_opendir : !fc->no_open) {
146 		struct fuse_open_out outarg;
147 		int err;
148 
149 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
150 		if (!err) {
151 			ff->fh = outarg.fh;
152 			ff->open_flags = outarg.open_flags;
153 
154 		} else if (err != -ENOSYS) {
155 			fuse_file_free(ff);
156 			return err;
157 		} else {
158 			if (isdir)
159 				fc->no_opendir = 1;
160 			else
161 				fc->no_open = 1;
162 		}
163 	}
164 
165 	if (isdir)
166 		ff->open_flags &= ~FOPEN_DIRECT_IO;
167 
168 	ff->nodeid = nodeid;
169 	file->private_data = ff;
170 
171 	return 0;
172 }
173 EXPORT_SYMBOL_GPL(fuse_do_open);
174 
175 static void fuse_link_write_file(struct file *file)
176 {
177 	struct inode *inode = file_inode(file);
178 	struct fuse_inode *fi = get_fuse_inode(inode);
179 	struct fuse_file *ff = file->private_data;
180 	/*
181 	 * file may be written through mmap, so chain it onto the
182 	 * inodes's write_file list
183 	 */
184 	spin_lock(&fi->lock);
185 	if (list_empty(&ff->write_entry))
186 		list_add(&ff->write_entry, &fi->write_files);
187 	spin_unlock(&fi->lock);
188 }
189 
190 void fuse_finish_open(struct inode *inode, struct file *file)
191 {
192 	struct fuse_file *ff = file->private_data;
193 	struct fuse_conn *fc = get_fuse_conn(inode);
194 
195 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 		invalidate_inode_pages2(inode->i_mapping);
197 	if (ff->open_flags & FOPEN_STREAM)
198 		stream_open(inode, file);
199 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 		nonseekable_open(inode, file);
201 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 		struct fuse_inode *fi = get_fuse_inode(inode);
203 
204 		spin_lock(&fi->lock);
205 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 		i_size_write(inode, 0);
207 		spin_unlock(&fi->lock);
208 		fuse_invalidate_attr(inode);
209 		if (fc->writeback_cache)
210 			file_update_time(file);
211 	}
212 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 		fuse_link_write_file(file);
214 }
215 
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
217 {
218 	struct fuse_conn *fc = get_fuse_conn(inode);
219 	int err;
220 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 			  fc->atomic_o_trunc &&
222 			  fc->writeback_cache;
223 
224 	err = generic_file_open(inode, file);
225 	if (err)
226 		return err;
227 
228 	if (is_wb_truncate) {
229 		inode_lock(inode);
230 		fuse_set_nowrite(inode);
231 	}
232 
233 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
234 
235 	if (!err)
236 		fuse_finish_open(inode, file);
237 
238 	if (is_wb_truncate) {
239 		fuse_release_nowrite(inode);
240 		inode_unlock(inode);
241 	}
242 
243 	return err;
244 }
245 
246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 				 int flags, int opcode)
248 {
249 	struct fuse_conn *fc = ff->fc;
250 	struct fuse_release_args *ra = ff->release_args;
251 
252 	/* Inode is NULL on error path of fuse_create_open() */
253 	if (likely(fi)) {
254 		spin_lock(&fi->lock);
255 		list_del(&ff->write_entry);
256 		spin_unlock(&fi->lock);
257 	}
258 	spin_lock(&fc->lock);
259 	if (!RB_EMPTY_NODE(&ff->polled_node))
260 		rb_erase(&ff->polled_node, &fc->polled_files);
261 	spin_unlock(&fc->lock);
262 
263 	wake_up_interruptible_all(&ff->poll_wait);
264 
265 	ra->inarg.fh = ff->fh;
266 	ra->inarg.flags = flags;
267 	ra->args.in_numargs = 1;
268 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 	ra->args.in_args[0].value = &ra->inarg;
270 	ra->args.opcode = opcode;
271 	ra->args.nodeid = ff->nodeid;
272 	ra->args.force = true;
273 	ra->args.nocreds = true;
274 }
275 
276 void fuse_release_common(struct file *file, bool isdir)
277 {
278 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 	struct fuse_file *ff = file->private_data;
280 	struct fuse_release_args *ra = ff->release_args;
281 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
282 
283 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
284 
285 	if (ff->flock) {
286 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
288 							  (fl_owner_t) file);
289 	}
290 	/* Hold inode until release is finished */
291 	ra->inode = igrab(file_inode(file));
292 
293 	/*
294 	 * Normally this will send the RELEASE request, however if
295 	 * some asynchronous READ or WRITE requests are outstanding,
296 	 * the sending will be delayed.
297 	 *
298 	 * Make the release synchronous if this is a fuseblk mount,
299 	 * synchronous RELEASE is allowed (and desirable) in this case
300 	 * because the server can be trusted not to screw up.
301 	 */
302 	fuse_file_put(ff, ff->fc->destroy, isdir);
303 }
304 
305 static int fuse_open(struct inode *inode, struct file *file)
306 {
307 	return fuse_open_common(inode, file, false);
308 }
309 
310 static int fuse_release(struct inode *inode, struct file *file)
311 {
312 	struct fuse_conn *fc = get_fuse_conn(inode);
313 
314 	/* see fuse_vma_close() for !writeback_cache case */
315 	if (fc->writeback_cache)
316 		write_inode_now(inode, 1);
317 
318 	fuse_release_common(file, false);
319 
320 	/* return value is ignored by VFS */
321 	return 0;
322 }
323 
324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
325 {
326 	WARN_ON(refcount_read(&ff->count) > 1);
327 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
328 	/*
329 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 	 * synchronous, we are fine with not doing igrab() here"
331 	 */
332 	fuse_file_put(ff, true, false);
333 }
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
335 
336 /*
337  * Scramble the ID space with XTEA, so that the value of the files_struct
338  * pointer is not exposed to userspace.
339  */
340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
341 {
342 	u32 *k = fc->scramble_key;
343 	u64 v = (unsigned long) id;
344 	u32 v0 = v;
345 	u32 v1 = v >> 32;
346 	u32 sum = 0;
347 	int i;
348 
349 	for (i = 0; i < 32; i++) {
350 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
351 		sum += 0x9E3779B9;
352 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
353 	}
354 
355 	return (u64) v0 + ((u64) v1 << 32);
356 }
357 
358 struct fuse_writepage_args {
359 	struct fuse_io_args ia;
360 	struct list_head writepages_entry;
361 	struct list_head queue_entry;
362 	struct fuse_writepage_args *next;
363 	struct inode *inode;
364 };
365 
366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 					    pgoff_t idx_from, pgoff_t idx_to)
368 {
369 	struct fuse_writepage_args *wpa;
370 
371 	list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
372 		pgoff_t curr_index;
373 
374 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
375 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
376 		if (idx_from < curr_index + wpa->ia.ap.num_pages &&
377 		    curr_index <= idx_to) {
378 			return wpa;
379 		}
380 	}
381 	return NULL;
382 }
383 
384 /*
385  * Check if any page in a range is under writeback
386  *
387  * This is currently done by walking the list of writepage requests
388  * for the inode, which can be pretty inefficient.
389  */
390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
391 				   pgoff_t idx_to)
392 {
393 	struct fuse_inode *fi = get_fuse_inode(inode);
394 	bool found;
395 
396 	spin_lock(&fi->lock);
397 	found = fuse_find_writeback(fi, idx_from, idx_to);
398 	spin_unlock(&fi->lock);
399 
400 	return found;
401 }
402 
403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
404 {
405 	return fuse_range_is_writeback(inode, index, index);
406 }
407 
408 /*
409  * Wait for page writeback to be completed.
410  *
411  * Since fuse doesn't rely on the VM writeback tracking, this has to
412  * use some other means.
413  */
414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
415 {
416 	struct fuse_inode *fi = get_fuse_inode(inode);
417 
418 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
419 }
420 
421 /*
422  * Wait for all pending writepages on the inode to finish.
423  *
424  * This is currently done by blocking further writes with FUSE_NOWRITE
425  * and waiting for all sent writes to complete.
426  *
427  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
428  * could conflict with truncation.
429  */
430 static void fuse_sync_writes(struct inode *inode)
431 {
432 	fuse_set_nowrite(inode);
433 	fuse_release_nowrite(inode);
434 }
435 
436 static int fuse_flush(struct file *file, fl_owner_t id)
437 {
438 	struct inode *inode = file_inode(file);
439 	struct fuse_conn *fc = get_fuse_conn(inode);
440 	struct fuse_file *ff = file->private_data;
441 	struct fuse_flush_in inarg;
442 	FUSE_ARGS(args);
443 	int err;
444 
445 	if (is_bad_inode(inode))
446 		return -EIO;
447 
448 	if (fc->no_flush)
449 		return 0;
450 
451 	err = write_inode_now(inode, 1);
452 	if (err)
453 		return err;
454 
455 	inode_lock(inode);
456 	fuse_sync_writes(inode);
457 	inode_unlock(inode);
458 
459 	err = filemap_check_errors(file->f_mapping);
460 	if (err)
461 		return err;
462 
463 	memset(&inarg, 0, sizeof(inarg));
464 	inarg.fh = ff->fh;
465 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
466 	args.opcode = FUSE_FLUSH;
467 	args.nodeid = get_node_id(inode);
468 	args.in_numargs = 1;
469 	args.in_args[0].size = sizeof(inarg);
470 	args.in_args[0].value = &inarg;
471 	args.force = true;
472 
473 	err = fuse_simple_request(fc, &args);
474 	if (err == -ENOSYS) {
475 		fc->no_flush = 1;
476 		err = 0;
477 	}
478 	return err;
479 }
480 
481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
482 		      int datasync, int opcode)
483 {
484 	struct inode *inode = file->f_mapping->host;
485 	struct fuse_conn *fc = get_fuse_conn(inode);
486 	struct fuse_file *ff = file->private_data;
487 	FUSE_ARGS(args);
488 	struct fuse_fsync_in inarg;
489 
490 	memset(&inarg, 0, sizeof(inarg));
491 	inarg.fh = ff->fh;
492 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
493 	args.opcode = opcode;
494 	args.nodeid = get_node_id(inode);
495 	args.in_numargs = 1;
496 	args.in_args[0].size = sizeof(inarg);
497 	args.in_args[0].value = &inarg;
498 	return fuse_simple_request(fc, &args);
499 }
500 
501 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
502 		      int datasync)
503 {
504 	struct inode *inode = file->f_mapping->host;
505 	struct fuse_conn *fc = get_fuse_conn(inode);
506 	int err;
507 
508 	if (is_bad_inode(inode))
509 		return -EIO;
510 
511 	inode_lock(inode);
512 
513 	/*
514 	 * Start writeback against all dirty pages of the inode, then
515 	 * wait for all outstanding writes, before sending the FSYNC
516 	 * request.
517 	 */
518 	err = file_write_and_wait_range(file, start, end);
519 	if (err)
520 		goto out;
521 
522 	fuse_sync_writes(inode);
523 
524 	/*
525 	 * Due to implementation of fuse writeback
526 	 * file_write_and_wait_range() does not catch errors.
527 	 * We have to do this directly after fuse_sync_writes()
528 	 */
529 	err = file_check_and_advance_wb_err(file);
530 	if (err)
531 		goto out;
532 
533 	err = sync_inode_metadata(inode, 1);
534 	if (err)
535 		goto out;
536 
537 	if (fc->no_fsync)
538 		goto out;
539 
540 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
541 	if (err == -ENOSYS) {
542 		fc->no_fsync = 1;
543 		err = 0;
544 	}
545 out:
546 	inode_unlock(inode);
547 
548 	return err;
549 }
550 
551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
552 			 size_t count, int opcode)
553 {
554 	struct fuse_file *ff = file->private_data;
555 	struct fuse_args *args = &ia->ap.args;
556 
557 	ia->read.in.fh = ff->fh;
558 	ia->read.in.offset = pos;
559 	ia->read.in.size = count;
560 	ia->read.in.flags = file->f_flags;
561 	args->opcode = opcode;
562 	args->nodeid = ff->nodeid;
563 	args->in_numargs = 1;
564 	args->in_args[0].size = sizeof(ia->read.in);
565 	args->in_args[0].value = &ia->read.in;
566 	args->out_argvar = true;
567 	args->out_numargs = 1;
568 	args->out_args[0].size = count;
569 }
570 
571 static void fuse_release_user_pages(struct fuse_args_pages *ap,
572 				    bool should_dirty)
573 {
574 	unsigned int i;
575 
576 	for (i = 0; i < ap->num_pages; i++) {
577 		if (should_dirty)
578 			set_page_dirty_lock(ap->pages[i]);
579 		put_page(ap->pages[i]);
580 	}
581 }
582 
583 static void fuse_io_release(struct kref *kref)
584 {
585 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
586 }
587 
588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
589 {
590 	if (io->err)
591 		return io->err;
592 
593 	if (io->bytes >= 0 && io->write)
594 		return -EIO;
595 
596 	return io->bytes < 0 ? io->size : io->bytes;
597 }
598 
599 /**
600  * In case of short read, the caller sets 'pos' to the position of
601  * actual end of fuse request in IO request. Otherwise, if bytes_requested
602  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
603  *
604  * An example:
605  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
606  * both submitted asynchronously. The first of them was ACKed by userspace as
607  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
608  * second request was ACKed as short, e.g. only 1K was read, resulting in
609  * pos == 33K.
610  *
611  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
612  * will be equal to the length of the longest contiguous fragment of
613  * transferred data starting from the beginning of IO request.
614  */
615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
616 {
617 	int left;
618 
619 	spin_lock(&io->lock);
620 	if (err)
621 		io->err = io->err ? : err;
622 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
623 		io->bytes = pos;
624 
625 	left = --io->reqs;
626 	if (!left && io->blocking)
627 		complete(io->done);
628 	spin_unlock(&io->lock);
629 
630 	if (!left && !io->blocking) {
631 		ssize_t res = fuse_get_res_by_io(io);
632 
633 		if (res >= 0) {
634 			struct inode *inode = file_inode(io->iocb->ki_filp);
635 			struct fuse_conn *fc = get_fuse_conn(inode);
636 			struct fuse_inode *fi = get_fuse_inode(inode);
637 
638 			spin_lock(&fi->lock);
639 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
640 			spin_unlock(&fi->lock);
641 		}
642 
643 		io->iocb->ki_complete(io->iocb, res, 0);
644 	}
645 
646 	kref_put(&io->refcnt, fuse_io_release);
647 }
648 
649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
650 					  unsigned int npages)
651 {
652 	struct fuse_io_args *ia;
653 
654 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
655 	if (ia) {
656 		ia->io = io;
657 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
658 						&ia->ap.descs);
659 		if (!ia->ap.pages) {
660 			kfree(ia);
661 			ia = NULL;
662 		}
663 	}
664 	return ia;
665 }
666 
667 static void fuse_io_free(struct fuse_io_args *ia)
668 {
669 	kfree(ia->ap.pages);
670 	kfree(ia);
671 }
672 
673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
674 				  int err)
675 {
676 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
677 	struct fuse_io_priv *io = ia->io;
678 	ssize_t pos = -1;
679 
680 	fuse_release_user_pages(&ia->ap, io->should_dirty);
681 
682 	if (err) {
683 		/* Nothing */
684 	} else if (io->write) {
685 		if (ia->write.out.size > ia->write.in.size) {
686 			err = -EIO;
687 		} else if (ia->write.in.size != ia->write.out.size) {
688 			pos = ia->write.in.offset - io->offset +
689 				ia->write.out.size;
690 		}
691 	} else {
692 		u32 outsize = args->out_args[0].size;
693 
694 		if (ia->read.in.size != outsize)
695 			pos = ia->read.in.offset - io->offset + outsize;
696 	}
697 
698 	fuse_aio_complete(io, err, pos);
699 	fuse_io_free(ia);
700 }
701 
702 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
703 				   struct fuse_io_args *ia, size_t num_bytes)
704 {
705 	ssize_t err;
706 	struct fuse_io_priv *io = ia->io;
707 
708 	spin_lock(&io->lock);
709 	kref_get(&io->refcnt);
710 	io->size += num_bytes;
711 	io->reqs++;
712 	spin_unlock(&io->lock);
713 
714 	ia->ap.args.end = fuse_aio_complete_req;
715 	err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
716 	if (err)
717 		fuse_aio_complete_req(fc, &ia->ap.args, err);
718 
719 	return num_bytes;
720 }
721 
722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
723 			      fl_owner_t owner)
724 {
725 	struct file *file = ia->io->iocb->ki_filp;
726 	struct fuse_file *ff = file->private_data;
727 	struct fuse_conn *fc = ff->fc;
728 
729 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
730 	if (owner != NULL) {
731 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
732 		ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
733 	}
734 
735 	if (ia->io->async)
736 		return fuse_async_req_send(fc, ia, count);
737 
738 	return fuse_simple_request(fc, &ia->ap.args);
739 }
740 
741 static void fuse_read_update_size(struct inode *inode, loff_t size,
742 				  u64 attr_ver)
743 {
744 	struct fuse_conn *fc = get_fuse_conn(inode);
745 	struct fuse_inode *fi = get_fuse_inode(inode);
746 
747 	spin_lock(&fi->lock);
748 	if (attr_ver == fi->attr_version && size < inode->i_size &&
749 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
750 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
751 		i_size_write(inode, size);
752 	}
753 	spin_unlock(&fi->lock);
754 }
755 
756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
757 			    struct fuse_args_pages *ap)
758 {
759 	struct fuse_conn *fc = get_fuse_conn(inode);
760 
761 	if (fc->writeback_cache) {
762 		/*
763 		 * A hole in a file. Some data after the hole are in page cache,
764 		 * but have not reached the client fs yet. So, the hole is not
765 		 * present there.
766 		 */
767 		int i;
768 		int start_idx = num_read >> PAGE_SHIFT;
769 		size_t off = num_read & (PAGE_SIZE - 1);
770 
771 		for (i = start_idx; i < ap->num_pages; i++) {
772 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
773 			off = 0;
774 		}
775 	} else {
776 		loff_t pos = page_offset(ap->pages[0]) + num_read;
777 		fuse_read_update_size(inode, pos, attr_ver);
778 	}
779 }
780 
781 static int fuse_do_readpage(struct file *file, struct page *page)
782 {
783 	struct inode *inode = page->mapping->host;
784 	struct fuse_conn *fc = get_fuse_conn(inode);
785 	loff_t pos = page_offset(page);
786 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
787 	struct fuse_io_args ia = {
788 		.ap.args.page_zeroing = true,
789 		.ap.args.out_pages = true,
790 		.ap.num_pages = 1,
791 		.ap.pages = &page,
792 		.ap.descs = &desc,
793 	};
794 	ssize_t res;
795 	u64 attr_ver;
796 
797 	/*
798 	 * Page writeback can extend beyond the lifetime of the
799 	 * page-cache page, so make sure we read a properly synced
800 	 * page.
801 	 */
802 	fuse_wait_on_page_writeback(inode, page->index);
803 
804 	attr_ver = fuse_get_attr_version(fc);
805 
806 	/* Don't overflow end offset */
807 	if (pos + (desc.length - 1) == LLONG_MAX)
808 		desc.length--;
809 
810 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
811 	res = fuse_simple_request(fc, &ia.ap.args);
812 	if (res < 0)
813 		return res;
814 	/*
815 	 * Short read means EOF.  If file size is larger, truncate it
816 	 */
817 	if (res < desc.length)
818 		fuse_short_read(inode, attr_ver, res, &ia.ap);
819 
820 	SetPageUptodate(page);
821 
822 	return 0;
823 }
824 
825 static int fuse_readpage(struct file *file, struct page *page)
826 {
827 	struct inode *inode = page->mapping->host;
828 	int err;
829 
830 	err = -EIO;
831 	if (is_bad_inode(inode))
832 		goto out;
833 
834 	err = fuse_do_readpage(file, page);
835 	fuse_invalidate_atime(inode);
836  out:
837 	unlock_page(page);
838 	return err;
839 }
840 
841 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
842 			       int err)
843 {
844 	int i;
845 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
846 	struct fuse_args_pages *ap = &ia->ap;
847 	size_t count = ia->read.in.size;
848 	size_t num_read = args->out_args[0].size;
849 	struct address_space *mapping = NULL;
850 
851 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
852 		mapping = ap->pages[i]->mapping;
853 
854 	if (mapping) {
855 		struct inode *inode = mapping->host;
856 
857 		/*
858 		 * Short read means EOF. If file size is larger, truncate it
859 		 */
860 		if (!err && num_read < count)
861 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
862 
863 		fuse_invalidate_atime(inode);
864 	}
865 
866 	for (i = 0; i < ap->num_pages; i++) {
867 		struct page *page = ap->pages[i];
868 
869 		if (!err)
870 			SetPageUptodate(page);
871 		else
872 			SetPageError(page);
873 		unlock_page(page);
874 		put_page(page);
875 	}
876 	if (ia->ff)
877 		fuse_file_put(ia->ff, false, false);
878 
879 	fuse_io_free(ia);
880 }
881 
882 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
883 {
884 	struct fuse_file *ff = file->private_data;
885 	struct fuse_conn *fc = ff->fc;
886 	struct fuse_args_pages *ap = &ia->ap;
887 	loff_t pos = page_offset(ap->pages[0]);
888 	size_t count = ap->num_pages << PAGE_SHIFT;
889 	ssize_t res;
890 	int err;
891 
892 	ap->args.out_pages = true;
893 	ap->args.page_zeroing = true;
894 	ap->args.page_replace = true;
895 
896 	/* Don't overflow end offset */
897 	if (pos + (count - 1) == LLONG_MAX) {
898 		count--;
899 		ap->descs[ap->num_pages - 1].length--;
900 	}
901 	WARN_ON((loff_t) (pos + count) < 0);
902 
903 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
904 	ia->read.attr_ver = fuse_get_attr_version(fc);
905 	if (fc->async_read) {
906 		ia->ff = fuse_file_get(ff);
907 		ap->args.end = fuse_readpages_end;
908 		err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
909 		if (!err)
910 			return;
911 	} else {
912 		res = fuse_simple_request(fc, &ap->args);
913 		err = res < 0 ? res : 0;
914 	}
915 	fuse_readpages_end(fc, &ap->args, err);
916 }
917 
918 static void fuse_readahead(struct readahead_control *rac)
919 {
920 	struct inode *inode = rac->mapping->host;
921 	struct fuse_conn *fc = get_fuse_conn(inode);
922 	unsigned int i, max_pages, nr_pages = 0;
923 
924 	if (is_bad_inode(inode))
925 		return;
926 
927 	max_pages = min_t(unsigned int, fc->max_pages,
928 			fc->max_read / PAGE_SIZE);
929 
930 	for (;;) {
931 		struct fuse_io_args *ia;
932 		struct fuse_args_pages *ap;
933 
934 		nr_pages = readahead_count(rac) - nr_pages;
935 		if (nr_pages > max_pages)
936 			nr_pages = max_pages;
937 		if (nr_pages == 0)
938 			break;
939 		ia = fuse_io_alloc(NULL, nr_pages);
940 		if (!ia)
941 			return;
942 		ap = &ia->ap;
943 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
944 		for (i = 0; i < nr_pages; i++) {
945 			fuse_wait_on_page_writeback(inode,
946 						    readahead_index(rac) + i);
947 			ap->descs[i].length = PAGE_SIZE;
948 		}
949 		ap->num_pages = nr_pages;
950 		fuse_send_readpages(ia, rac->file);
951 	}
952 }
953 
954 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
955 {
956 	struct inode *inode = iocb->ki_filp->f_mapping->host;
957 	struct fuse_conn *fc = get_fuse_conn(inode);
958 
959 	/*
960 	 * In auto invalidate mode, always update attributes on read.
961 	 * Otherwise, only update if we attempt to read past EOF (to ensure
962 	 * i_size is up to date).
963 	 */
964 	if (fc->auto_inval_data ||
965 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
966 		int err;
967 		err = fuse_update_attributes(inode, iocb->ki_filp);
968 		if (err)
969 			return err;
970 	}
971 
972 	return generic_file_read_iter(iocb, to);
973 }
974 
975 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
976 				 loff_t pos, size_t count)
977 {
978 	struct fuse_args *args = &ia->ap.args;
979 
980 	ia->write.in.fh = ff->fh;
981 	ia->write.in.offset = pos;
982 	ia->write.in.size = count;
983 	args->opcode = FUSE_WRITE;
984 	args->nodeid = ff->nodeid;
985 	args->in_numargs = 2;
986 	if (ff->fc->minor < 9)
987 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
988 	else
989 		args->in_args[0].size = sizeof(ia->write.in);
990 	args->in_args[0].value = &ia->write.in;
991 	args->in_args[1].size = count;
992 	args->out_numargs = 1;
993 	args->out_args[0].size = sizeof(ia->write.out);
994 	args->out_args[0].value = &ia->write.out;
995 }
996 
997 static unsigned int fuse_write_flags(struct kiocb *iocb)
998 {
999 	unsigned int flags = iocb->ki_filp->f_flags;
1000 
1001 	if (iocb->ki_flags & IOCB_DSYNC)
1002 		flags |= O_DSYNC;
1003 	if (iocb->ki_flags & IOCB_SYNC)
1004 		flags |= O_SYNC;
1005 
1006 	return flags;
1007 }
1008 
1009 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1010 			       size_t count, fl_owner_t owner)
1011 {
1012 	struct kiocb *iocb = ia->io->iocb;
1013 	struct file *file = iocb->ki_filp;
1014 	struct fuse_file *ff = file->private_data;
1015 	struct fuse_conn *fc = ff->fc;
1016 	struct fuse_write_in *inarg = &ia->write.in;
1017 	ssize_t err;
1018 
1019 	fuse_write_args_fill(ia, ff, pos, count);
1020 	inarg->flags = fuse_write_flags(iocb);
1021 	if (owner != NULL) {
1022 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1023 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1024 	}
1025 
1026 	if (ia->io->async)
1027 		return fuse_async_req_send(fc, ia, count);
1028 
1029 	err = fuse_simple_request(fc, &ia->ap.args);
1030 	if (!err && ia->write.out.size > count)
1031 		err = -EIO;
1032 
1033 	return err ?: ia->write.out.size;
1034 }
1035 
1036 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1037 {
1038 	struct fuse_conn *fc = get_fuse_conn(inode);
1039 	struct fuse_inode *fi = get_fuse_inode(inode);
1040 	bool ret = false;
1041 
1042 	spin_lock(&fi->lock);
1043 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1044 	if (pos > inode->i_size) {
1045 		i_size_write(inode, pos);
1046 		ret = true;
1047 	}
1048 	spin_unlock(&fi->lock);
1049 
1050 	return ret;
1051 }
1052 
1053 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1054 				     struct kiocb *iocb, struct inode *inode,
1055 				     loff_t pos, size_t count)
1056 {
1057 	struct fuse_args_pages *ap = &ia->ap;
1058 	struct file *file = iocb->ki_filp;
1059 	struct fuse_file *ff = file->private_data;
1060 	struct fuse_conn *fc = ff->fc;
1061 	unsigned int offset, i;
1062 	int err;
1063 
1064 	for (i = 0; i < ap->num_pages; i++)
1065 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1066 
1067 	fuse_write_args_fill(ia, ff, pos, count);
1068 	ia->write.in.flags = fuse_write_flags(iocb);
1069 
1070 	err = fuse_simple_request(fc, &ap->args);
1071 	if (!err && ia->write.out.size > count)
1072 		err = -EIO;
1073 
1074 	offset = ap->descs[0].offset;
1075 	count = ia->write.out.size;
1076 	for (i = 0; i < ap->num_pages; i++) {
1077 		struct page *page = ap->pages[i];
1078 
1079 		if (!err && !offset && count >= PAGE_SIZE)
1080 			SetPageUptodate(page);
1081 
1082 		if (count > PAGE_SIZE - offset)
1083 			count -= PAGE_SIZE - offset;
1084 		else
1085 			count = 0;
1086 		offset = 0;
1087 
1088 		unlock_page(page);
1089 		put_page(page);
1090 	}
1091 
1092 	return err;
1093 }
1094 
1095 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1096 				     struct address_space *mapping,
1097 				     struct iov_iter *ii, loff_t pos,
1098 				     unsigned int max_pages)
1099 {
1100 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1101 	unsigned offset = pos & (PAGE_SIZE - 1);
1102 	size_t count = 0;
1103 	int err;
1104 
1105 	ap->args.in_pages = true;
1106 	ap->descs[0].offset = offset;
1107 
1108 	do {
1109 		size_t tmp;
1110 		struct page *page;
1111 		pgoff_t index = pos >> PAGE_SHIFT;
1112 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1113 				     iov_iter_count(ii));
1114 
1115 		bytes = min_t(size_t, bytes, fc->max_write - count);
1116 
1117  again:
1118 		err = -EFAULT;
1119 		if (iov_iter_fault_in_readable(ii, bytes))
1120 			break;
1121 
1122 		err = -ENOMEM;
1123 		page = grab_cache_page_write_begin(mapping, index, 0);
1124 		if (!page)
1125 			break;
1126 
1127 		if (mapping_writably_mapped(mapping))
1128 			flush_dcache_page(page);
1129 
1130 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1131 		flush_dcache_page(page);
1132 
1133 		iov_iter_advance(ii, tmp);
1134 		if (!tmp) {
1135 			unlock_page(page);
1136 			put_page(page);
1137 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1138 			goto again;
1139 		}
1140 
1141 		err = 0;
1142 		ap->pages[ap->num_pages] = page;
1143 		ap->descs[ap->num_pages].length = tmp;
1144 		ap->num_pages++;
1145 
1146 		count += tmp;
1147 		pos += tmp;
1148 		offset += tmp;
1149 		if (offset == PAGE_SIZE)
1150 			offset = 0;
1151 
1152 		if (!fc->big_writes)
1153 			break;
1154 	} while (iov_iter_count(ii) && count < fc->max_write &&
1155 		 ap->num_pages < max_pages && offset == 0);
1156 
1157 	return count > 0 ? count : err;
1158 }
1159 
1160 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1161 				     unsigned int max_pages)
1162 {
1163 	return min_t(unsigned int,
1164 		     ((pos + len - 1) >> PAGE_SHIFT) -
1165 		     (pos >> PAGE_SHIFT) + 1,
1166 		     max_pages);
1167 }
1168 
1169 static ssize_t fuse_perform_write(struct kiocb *iocb,
1170 				  struct address_space *mapping,
1171 				  struct iov_iter *ii, loff_t pos)
1172 {
1173 	struct inode *inode = mapping->host;
1174 	struct fuse_conn *fc = get_fuse_conn(inode);
1175 	struct fuse_inode *fi = get_fuse_inode(inode);
1176 	int err = 0;
1177 	ssize_t res = 0;
1178 
1179 	if (inode->i_size < pos + iov_iter_count(ii))
1180 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1181 
1182 	do {
1183 		ssize_t count;
1184 		struct fuse_io_args ia = {};
1185 		struct fuse_args_pages *ap = &ia.ap;
1186 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1187 						      fc->max_pages);
1188 
1189 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1190 		if (!ap->pages) {
1191 			err = -ENOMEM;
1192 			break;
1193 		}
1194 
1195 		count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1196 		if (count <= 0) {
1197 			err = count;
1198 		} else {
1199 			err = fuse_send_write_pages(&ia, iocb, inode,
1200 						    pos, count);
1201 			if (!err) {
1202 				size_t num_written = ia.write.out.size;
1203 
1204 				res += num_written;
1205 				pos += num_written;
1206 
1207 				/* break out of the loop on short write */
1208 				if (num_written != count)
1209 					err = -EIO;
1210 			}
1211 		}
1212 		kfree(ap->pages);
1213 	} while (!err && iov_iter_count(ii));
1214 
1215 	if (res > 0)
1216 		fuse_write_update_size(inode, pos);
1217 
1218 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1219 	fuse_invalidate_attr(inode);
1220 
1221 	return res > 0 ? res : err;
1222 }
1223 
1224 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1225 {
1226 	struct file *file = iocb->ki_filp;
1227 	struct address_space *mapping = file->f_mapping;
1228 	ssize_t written = 0;
1229 	ssize_t written_buffered = 0;
1230 	struct inode *inode = mapping->host;
1231 	ssize_t err;
1232 	loff_t endbyte = 0;
1233 
1234 	if (get_fuse_conn(inode)->writeback_cache) {
1235 		/* Update size (EOF optimization) and mode (SUID clearing) */
1236 		err = fuse_update_attributes(mapping->host, file);
1237 		if (err)
1238 			return err;
1239 
1240 		return generic_file_write_iter(iocb, from);
1241 	}
1242 
1243 	inode_lock(inode);
1244 
1245 	/* We can write back this queue in page reclaim */
1246 	current->backing_dev_info = inode_to_bdi(inode);
1247 
1248 	err = generic_write_checks(iocb, from);
1249 	if (err <= 0)
1250 		goto out;
1251 
1252 	err = file_remove_privs(file);
1253 	if (err)
1254 		goto out;
1255 
1256 	err = file_update_time(file);
1257 	if (err)
1258 		goto out;
1259 
1260 	if (iocb->ki_flags & IOCB_DIRECT) {
1261 		loff_t pos = iocb->ki_pos;
1262 		written = generic_file_direct_write(iocb, from);
1263 		if (written < 0 || !iov_iter_count(from))
1264 			goto out;
1265 
1266 		pos += written;
1267 
1268 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1269 		if (written_buffered < 0) {
1270 			err = written_buffered;
1271 			goto out;
1272 		}
1273 		endbyte = pos + written_buffered - 1;
1274 
1275 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1276 						   endbyte);
1277 		if (err)
1278 			goto out;
1279 
1280 		invalidate_mapping_pages(file->f_mapping,
1281 					 pos >> PAGE_SHIFT,
1282 					 endbyte >> PAGE_SHIFT);
1283 
1284 		written += written_buffered;
1285 		iocb->ki_pos = pos + written_buffered;
1286 	} else {
1287 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1288 		if (written >= 0)
1289 			iocb->ki_pos += written;
1290 	}
1291 out:
1292 	current->backing_dev_info = NULL;
1293 	inode_unlock(inode);
1294 	if (written > 0)
1295 		written = generic_write_sync(iocb, written);
1296 
1297 	return written ? written : err;
1298 }
1299 
1300 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1301 					       unsigned int index,
1302 					       unsigned int nr_pages)
1303 {
1304 	int i;
1305 
1306 	for (i = index; i < index + nr_pages; i++)
1307 		descs[i].length = PAGE_SIZE - descs[i].offset;
1308 }
1309 
1310 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1311 {
1312 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1313 }
1314 
1315 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1316 					size_t max_size)
1317 {
1318 	return min(iov_iter_single_seg_count(ii), max_size);
1319 }
1320 
1321 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1322 			       size_t *nbytesp, int write,
1323 			       unsigned int max_pages)
1324 {
1325 	size_t nbytes = 0;  /* # bytes already packed in req */
1326 	ssize_t ret = 0;
1327 
1328 	/* Special case for kernel I/O: can copy directly into the buffer */
1329 	if (iov_iter_is_kvec(ii)) {
1330 		unsigned long user_addr = fuse_get_user_addr(ii);
1331 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1332 
1333 		if (write)
1334 			ap->args.in_args[1].value = (void *) user_addr;
1335 		else
1336 			ap->args.out_args[0].value = (void *) user_addr;
1337 
1338 		iov_iter_advance(ii, frag_size);
1339 		*nbytesp = frag_size;
1340 		return 0;
1341 	}
1342 
1343 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1344 		unsigned npages;
1345 		size_t start;
1346 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1347 					*nbytesp - nbytes,
1348 					max_pages - ap->num_pages,
1349 					&start);
1350 		if (ret < 0)
1351 			break;
1352 
1353 		iov_iter_advance(ii, ret);
1354 		nbytes += ret;
1355 
1356 		ret += start;
1357 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1358 
1359 		ap->descs[ap->num_pages].offset = start;
1360 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1361 
1362 		ap->num_pages += npages;
1363 		ap->descs[ap->num_pages - 1].length -=
1364 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1365 	}
1366 
1367 	if (write)
1368 		ap->args.in_pages = true;
1369 	else
1370 		ap->args.out_pages = true;
1371 
1372 	*nbytesp = nbytes;
1373 
1374 	return ret < 0 ? ret : 0;
1375 }
1376 
1377 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1378 		       loff_t *ppos, int flags)
1379 {
1380 	int write = flags & FUSE_DIO_WRITE;
1381 	int cuse = flags & FUSE_DIO_CUSE;
1382 	struct file *file = io->iocb->ki_filp;
1383 	struct inode *inode = file->f_mapping->host;
1384 	struct fuse_file *ff = file->private_data;
1385 	struct fuse_conn *fc = ff->fc;
1386 	size_t nmax = write ? fc->max_write : fc->max_read;
1387 	loff_t pos = *ppos;
1388 	size_t count = iov_iter_count(iter);
1389 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1390 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1391 	ssize_t res = 0;
1392 	int err = 0;
1393 	struct fuse_io_args *ia;
1394 	unsigned int max_pages;
1395 
1396 	max_pages = iov_iter_npages(iter, fc->max_pages);
1397 	ia = fuse_io_alloc(io, max_pages);
1398 	if (!ia)
1399 		return -ENOMEM;
1400 
1401 	ia->io = io;
1402 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1403 		if (!write)
1404 			inode_lock(inode);
1405 		fuse_sync_writes(inode);
1406 		if (!write)
1407 			inode_unlock(inode);
1408 	}
1409 
1410 	io->should_dirty = !write && iter_is_iovec(iter);
1411 	while (count) {
1412 		ssize_t nres;
1413 		fl_owner_t owner = current->files;
1414 		size_t nbytes = min(count, nmax);
1415 
1416 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1417 					  max_pages);
1418 		if (err && !nbytes)
1419 			break;
1420 
1421 		if (write) {
1422 			if (!capable(CAP_FSETID))
1423 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1424 
1425 			nres = fuse_send_write(ia, pos, nbytes, owner);
1426 		} else {
1427 			nres = fuse_send_read(ia, pos, nbytes, owner);
1428 		}
1429 
1430 		if (!io->async || nres < 0) {
1431 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1432 			fuse_io_free(ia);
1433 		}
1434 		ia = NULL;
1435 		if (nres < 0) {
1436 			iov_iter_revert(iter, nbytes);
1437 			err = nres;
1438 			break;
1439 		}
1440 		WARN_ON(nres > nbytes);
1441 
1442 		count -= nres;
1443 		res += nres;
1444 		pos += nres;
1445 		if (nres != nbytes) {
1446 			iov_iter_revert(iter, nbytes - nres);
1447 			break;
1448 		}
1449 		if (count) {
1450 			max_pages = iov_iter_npages(iter, fc->max_pages);
1451 			ia = fuse_io_alloc(io, max_pages);
1452 			if (!ia)
1453 				break;
1454 		}
1455 	}
1456 	if (ia)
1457 		fuse_io_free(ia);
1458 	if (res > 0)
1459 		*ppos = pos;
1460 
1461 	return res > 0 ? res : err;
1462 }
1463 EXPORT_SYMBOL_GPL(fuse_direct_io);
1464 
1465 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1466 				  struct iov_iter *iter,
1467 				  loff_t *ppos)
1468 {
1469 	ssize_t res;
1470 	struct inode *inode = file_inode(io->iocb->ki_filp);
1471 
1472 	res = fuse_direct_io(io, iter, ppos, 0);
1473 
1474 	fuse_invalidate_atime(inode);
1475 
1476 	return res;
1477 }
1478 
1479 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1480 
1481 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1482 {
1483 	ssize_t res;
1484 
1485 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1486 		res = fuse_direct_IO(iocb, to);
1487 	} else {
1488 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1489 
1490 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1491 	}
1492 
1493 	return res;
1494 }
1495 
1496 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1497 {
1498 	struct inode *inode = file_inode(iocb->ki_filp);
1499 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1500 	ssize_t res;
1501 
1502 	/* Don't allow parallel writes to the same file */
1503 	inode_lock(inode);
1504 	res = generic_write_checks(iocb, from);
1505 	if (res > 0) {
1506 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1507 			res = fuse_direct_IO(iocb, from);
1508 		} else {
1509 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1510 					     FUSE_DIO_WRITE);
1511 		}
1512 	}
1513 	fuse_invalidate_attr(inode);
1514 	if (res > 0)
1515 		fuse_write_update_size(inode, iocb->ki_pos);
1516 	inode_unlock(inode);
1517 
1518 	return res;
1519 }
1520 
1521 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1522 {
1523 	struct file *file = iocb->ki_filp;
1524 	struct fuse_file *ff = file->private_data;
1525 
1526 	if (is_bad_inode(file_inode(file)))
1527 		return -EIO;
1528 
1529 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1530 		return fuse_cache_read_iter(iocb, to);
1531 	else
1532 		return fuse_direct_read_iter(iocb, to);
1533 }
1534 
1535 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1536 {
1537 	struct file *file = iocb->ki_filp;
1538 	struct fuse_file *ff = file->private_data;
1539 
1540 	if (is_bad_inode(file_inode(file)))
1541 		return -EIO;
1542 
1543 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1544 		return fuse_cache_write_iter(iocb, from);
1545 	else
1546 		return fuse_direct_write_iter(iocb, from);
1547 }
1548 
1549 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1550 {
1551 	struct fuse_args_pages *ap = &wpa->ia.ap;
1552 	int i;
1553 
1554 	for (i = 0; i < ap->num_pages; i++)
1555 		__free_page(ap->pages[i]);
1556 
1557 	if (wpa->ia.ff)
1558 		fuse_file_put(wpa->ia.ff, false, false);
1559 
1560 	kfree(ap->pages);
1561 	kfree(wpa);
1562 }
1563 
1564 static void fuse_writepage_finish(struct fuse_conn *fc,
1565 				  struct fuse_writepage_args *wpa)
1566 {
1567 	struct fuse_args_pages *ap = &wpa->ia.ap;
1568 	struct inode *inode = wpa->inode;
1569 	struct fuse_inode *fi = get_fuse_inode(inode);
1570 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1571 	int i;
1572 
1573 	list_del(&wpa->writepages_entry);
1574 	for (i = 0; i < ap->num_pages; i++) {
1575 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1576 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1577 		wb_writeout_inc(&bdi->wb);
1578 	}
1579 	wake_up(&fi->page_waitq);
1580 }
1581 
1582 /* Called under fi->lock, may release and reacquire it */
1583 static void fuse_send_writepage(struct fuse_conn *fc,
1584 				struct fuse_writepage_args *wpa, loff_t size)
1585 __releases(fi->lock)
1586 __acquires(fi->lock)
1587 {
1588 	struct fuse_writepage_args *aux, *next;
1589 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1590 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1591 	struct fuse_args *args = &wpa->ia.ap.args;
1592 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1593 	int err;
1594 
1595 	fi->writectr++;
1596 	if (inarg->offset + data_size <= size) {
1597 		inarg->size = data_size;
1598 	} else if (inarg->offset < size) {
1599 		inarg->size = size - inarg->offset;
1600 	} else {
1601 		/* Got truncated off completely */
1602 		goto out_free;
1603 	}
1604 
1605 	args->in_args[1].size = inarg->size;
1606 	args->force = true;
1607 	args->nocreds = true;
1608 
1609 	err = fuse_simple_background(fc, args, GFP_ATOMIC);
1610 	if (err == -ENOMEM) {
1611 		spin_unlock(&fi->lock);
1612 		err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1613 		spin_lock(&fi->lock);
1614 	}
1615 
1616 	/* Fails on broken connection only */
1617 	if (unlikely(err))
1618 		goto out_free;
1619 
1620 	return;
1621 
1622  out_free:
1623 	fi->writectr--;
1624 	fuse_writepage_finish(fc, wpa);
1625 	spin_unlock(&fi->lock);
1626 
1627 	/* After fuse_writepage_finish() aux request list is private */
1628 	for (aux = wpa->next; aux; aux = next) {
1629 		next = aux->next;
1630 		aux->next = NULL;
1631 		fuse_writepage_free(aux);
1632 	}
1633 
1634 	fuse_writepage_free(wpa);
1635 	spin_lock(&fi->lock);
1636 }
1637 
1638 /*
1639  * If fi->writectr is positive (no truncate or fsync going on) send
1640  * all queued writepage requests.
1641  *
1642  * Called with fi->lock
1643  */
1644 void fuse_flush_writepages(struct inode *inode)
1645 __releases(fi->lock)
1646 __acquires(fi->lock)
1647 {
1648 	struct fuse_conn *fc = get_fuse_conn(inode);
1649 	struct fuse_inode *fi = get_fuse_inode(inode);
1650 	loff_t crop = i_size_read(inode);
1651 	struct fuse_writepage_args *wpa;
1652 
1653 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1654 		wpa = list_entry(fi->queued_writes.next,
1655 				 struct fuse_writepage_args, queue_entry);
1656 		list_del_init(&wpa->queue_entry);
1657 		fuse_send_writepage(fc, wpa, crop);
1658 	}
1659 }
1660 
1661 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1662 			       int error)
1663 {
1664 	struct fuse_writepage_args *wpa =
1665 		container_of(args, typeof(*wpa), ia.ap.args);
1666 	struct inode *inode = wpa->inode;
1667 	struct fuse_inode *fi = get_fuse_inode(inode);
1668 
1669 	mapping_set_error(inode->i_mapping, error);
1670 	spin_lock(&fi->lock);
1671 	while (wpa->next) {
1672 		struct fuse_conn *fc = get_fuse_conn(inode);
1673 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1674 		struct fuse_writepage_args *next = wpa->next;
1675 
1676 		wpa->next = next->next;
1677 		next->next = NULL;
1678 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1679 		list_add(&next->writepages_entry, &fi->writepages);
1680 
1681 		/*
1682 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1683 		 * based on primary request size.
1684 		 *
1685 		 * 1st case (trivial): there are no concurrent activities using
1686 		 * fuse_set/release_nowrite.  Then we're on safe side because
1687 		 * fuse_flush_writepages() would call fuse_send_writepage()
1688 		 * anyway.
1689 		 *
1690 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1691 		 * now for completion of all in-flight requests.  This happens
1692 		 * rarely and no more than once per page, so this should be
1693 		 * okay.
1694 		 *
1695 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1696 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1697 		 * that fuse_set_nowrite returned implies that all in-flight
1698 		 * requests were completed along with all of their secondary
1699 		 * requests.  Further primary requests are blocked by negative
1700 		 * writectr.  Hence there cannot be any in-flight requests and
1701 		 * no invocations of fuse_writepage_end() while we're in
1702 		 * fuse_set_nowrite..fuse_release_nowrite section.
1703 		 */
1704 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1705 	}
1706 	fi->writectr--;
1707 	fuse_writepage_finish(fc, wpa);
1708 	spin_unlock(&fi->lock);
1709 	fuse_writepage_free(wpa);
1710 }
1711 
1712 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1713 					       struct fuse_inode *fi)
1714 {
1715 	struct fuse_file *ff = NULL;
1716 
1717 	spin_lock(&fi->lock);
1718 	if (!list_empty(&fi->write_files)) {
1719 		ff = list_entry(fi->write_files.next, struct fuse_file,
1720 				write_entry);
1721 		fuse_file_get(ff);
1722 	}
1723 	spin_unlock(&fi->lock);
1724 
1725 	return ff;
1726 }
1727 
1728 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1729 					     struct fuse_inode *fi)
1730 {
1731 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1732 	WARN_ON(!ff);
1733 	return ff;
1734 }
1735 
1736 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1737 {
1738 	struct fuse_conn *fc = get_fuse_conn(inode);
1739 	struct fuse_inode *fi = get_fuse_inode(inode);
1740 	struct fuse_file *ff;
1741 	int err;
1742 
1743 	ff = __fuse_write_file_get(fc, fi);
1744 	err = fuse_flush_times(inode, ff);
1745 	if (ff)
1746 		fuse_file_put(ff, false, false);
1747 
1748 	return err;
1749 }
1750 
1751 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1752 {
1753 	struct fuse_writepage_args *wpa;
1754 	struct fuse_args_pages *ap;
1755 
1756 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1757 	if (wpa) {
1758 		ap = &wpa->ia.ap;
1759 		ap->num_pages = 0;
1760 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1761 		if (!ap->pages) {
1762 			kfree(wpa);
1763 			wpa = NULL;
1764 		}
1765 	}
1766 	return wpa;
1767 
1768 }
1769 
1770 static int fuse_writepage_locked(struct page *page)
1771 {
1772 	struct address_space *mapping = page->mapping;
1773 	struct inode *inode = mapping->host;
1774 	struct fuse_conn *fc = get_fuse_conn(inode);
1775 	struct fuse_inode *fi = get_fuse_inode(inode);
1776 	struct fuse_writepage_args *wpa;
1777 	struct fuse_args_pages *ap;
1778 	struct page *tmp_page;
1779 	int error = -ENOMEM;
1780 
1781 	set_page_writeback(page);
1782 
1783 	wpa = fuse_writepage_args_alloc();
1784 	if (!wpa)
1785 		goto err;
1786 	ap = &wpa->ia.ap;
1787 
1788 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1789 	if (!tmp_page)
1790 		goto err_free;
1791 
1792 	error = -EIO;
1793 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1794 	if (!wpa->ia.ff)
1795 		goto err_nofile;
1796 
1797 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1798 
1799 	copy_highpage(tmp_page, page);
1800 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1801 	wpa->next = NULL;
1802 	ap->args.in_pages = true;
1803 	ap->num_pages = 1;
1804 	ap->pages[0] = tmp_page;
1805 	ap->descs[0].offset = 0;
1806 	ap->descs[0].length = PAGE_SIZE;
1807 	ap->args.end = fuse_writepage_end;
1808 	wpa->inode = inode;
1809 
1810 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1811 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1812 
1813 	spin_lock(&fi->lock);
1814 	list_add(&wpa->writepages_entry, &fi->writepages);
1815 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1816 	fuse_flush_writepages(inode);
1817 	spin_unlock(&fi->lock);
1818 
1819 	end_page_writeback(page);
1820 
1821 	return 0;
1822 
1823 err_nofile:
1824 	__free_page(tmp_page);
1825 err_free:
1826 	kfree(wpa);
1827 err:
1828 	mapping_set_error(page->mapping, error);
1829 	end_page_writeback(page);
1830 	return error;
1831 }
1832 
1833 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1834 {
1835 	int err;
1836 
1837 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1838 		/*
1839 		 * ->writepages() should be called for sync() and friends.  We
1840 		 * should only get here on direct reclaim and then we are
1841 		 * allowed to skip a page which is already in flight
1842 		 */
1843 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1844 
1845 		redirty_page_for_writepage(wbc, page);
1846 		unlock_page(page);
1847 		return 0;
1848 	}
1849 
1850 	err = fuse_writepage_locked(page);
1851 	unlock_page(page);
1852 
1853 	return err;
1854 }
1855 
1856 struct fuse_fill_wb_data {
1857 	struct fuse_writepage_args *wpa;
1858 	struct fuse_file *ff;
1859 	struct inode *inode;
1860 	struct page **orig_pages;
1861 	unsigned int max_pages;
1862 };
1863 
1864 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1865 {
1866 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1867 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1868 	struct page **pages;
1869 	struct fuse_page_desc *descs;
1870 	unsigned int npages = min_t(unsigned int,
1871 				    max_t(unsigned int, data->max_pages * 2,
1872 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1873 				    fc->max_pages);
1874 	WARN_ON(npages <= data->max_pages);
1875 
1876 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1877 	if (!pages)
1878 		return false;
1879 
1880 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1881 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1882 	kfree(ap->pages);
1883 	ap->pages = pages;
1884 	ap->descs = descs;
1885 	data->max_pages = npages;
1886 
1887 	return true;
1888 }
1889 
1890 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1891 {
1892 	struct fuse_writepage_args *wpa = data->wpa;
1893 	struct inode *inode = data->inode;
1894 	struct fuse_inode *fi = get_fuse_inode(inode);
1895 	int num_pages = wpa->ia.ap.num_pages;
1896 	int i;
1897 
1898 	wpa->ia.ff = fuse_file_get(data->ff);
1899 	spin_lock(&fi->lock);
1900 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1901 	fuse_flush_writepages(inode);
1902 	spin_unlock(&fi->lock);
1903 
1904 	for (i = 0; i < num_pages; i++)
1905 		end_page_writeback(data->orig_pages[i]);
1906 }
1907 
1908 /*
1909  * First recheck under fi->lock if the offending offset is still under
1910  * writeback.  If yes, then iterate auxiliary write requests, to see if there's
1911  * one already added for a page at this offset.  If there's none, then insert
1912  * this new request onto the auxiliary list, otherwise reuse the existing one by
1913  * copying the new page contents over to the old temporary page.
1914  */
1915 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1916 				     struct page *page)
1917 {
1918 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1919 	struct fuse_writepage_args *tmp;
1920 	struct fuse_writepage_args *old_wpa;
1921 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1922 
1923 	WARN_ON(new_ap->num_pages != 0);
1924 
1925 	spin_lock(&fi->lock);
1926 	list_del(&new_wpa->writepages_entry);
1927 	old_wpa = fuse_find_writeback(fi, page->index, page->index);
1928 	if (!old_wpa) {
1929 		list_add(&new_wpa->writepages_entry, &fi->writepages);
1930 		spin_unlock(&fi->lock);
1931 		return false;
1932 	}
1933 
1934 	new_ap->num_pages = 1;
1935 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1936 		pgoff_t curr_index;
1937 
1938 		WARN_ON(tmp->inode != new_wpa->inode);
1939 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1940 		if (curr_index == page->index) {
1941 			WARN_ON(tmp->ia.ap.num_pages != 1);
1942 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1943 			break;
1944 		}
1945 	}
1946 
1947 	if (!tmp) {
1948 		new_wpa->next = old_wpa->next;
1949 		old_wpa->next = new_wpa;
1950 	}
1951 
1952 	spin_unlock(&fi->lock);
1953 
1954 	if (tmp) {
1955 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
1956 
1957 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1958 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
1959 		wb_writeout_inc(&bdi->wb);
1960 		fuse_writepage_free(new_wpa);
1961 	}
1962 
1963 	return true;
1964 }
1965 
1966 static int fuse_writepages_fill(struct page *page,
1967 		struct writeback_control *wbc, void *_data)
1968 {
1969 	struct fuse_fill_wb_data *data = _data;
1970 	struct fuse_writepage_args *wpa = data->wpa;
1971 	struct fuse_args_pages *ap = &wpa->ia.ap;
1972 	struct inode *inode = data->inode;
1973 	struct fuse_inode *fi = get_fuse_inode(inode);
1974 	struct fuse_conn *fc = get_fuse_conn(inode);
1975 	struct page *tmp_page;
1976 	bool is_writeback;
1977 	int err;
1978 
1979 	if (!data->ff) {
1980 		err = -EIO;
1981 		data->ff = fuse_write_file_get(fc, fi);
1982 		if (!data->ff)
1983 			goto out_unlock;
1984 	}
1985 
1986 	/*
1987 	 * Being under writeback is unlikely but possible.  For example direct
1988 	 * read to an mmaped fuse file will set the page dirty twice; once when
1989 	 * the pages are faulted with get_user_pages(), and then after the read
1990 	 * completed.
1991 	 */
1992 	is_writeback = fuse_page_is_writeback(inode, page->index);
1993 
1994 	if (wpa && ap->num_pages &&
1995 	    (is_writeback || ap->num_pages == fc->max_pages ||
1996 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
1997 	     data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
1998 		fuse_writepages_send(data);
1999 		data->wpa = NULL;
2000 	} else if (wpa && ap->num_pages == data->max_pages) {
2001 		if (!fuse_pages_realloc(data)) {
2002 			fuse_writepages_send(data);
2003 			data->wpa = NULL;
2004 		}
2005 	}
2006 
2007 	err = -ENOMEM;
2008 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2009 	if (!tmp_page)
2010 		goto out_unlock;
2011 
2012 	/*
2013 	 * The page must not be redirtied until the writeout is completed
2014 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2015 	 * there could be more than one temporary page instance for each real
2016 	 * page.
2017 	 *
2018 	 * This is ensured by holding the page lock in page_mkwrite() while
2019 	 * checking fuse_page_is_writeback().  We already hold the page lock
2020 	 * since clear_page_dirty_for_io() and keep it held until we add the
2021 	 * request to the fi->writepages list and increment ap->num_pages.
2022 	 * After this fuse_page_is_writeback() will indicate that the page is
2023 	 * under writeback, so we can release the page lock.
2024 	 */
2025 	if (data->wpa == NULL) {
2026 		err = -ENOMEM;
2027 		wpa = fuse_writepage_args_alloc();
2028 		if (!wpa) {
2029 			__free_page(tmp_page);
2030 			goto out_unlock;
2031 		}
2032 		data->max_pages = 1;
2033 
2034 		ap = &wpa->ia.ap;
2035 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2036 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2037 		wpa->next = NULL;
2038 		ap->args.in_pages = true;
2039 		ap->args.end = fuse_writepage_end;
2040 		ap->num_pages = 0;
2041 		wpa->inode = inode;
2042 
2043 		spin_lock(&fi->lock);
2044 		list_add(&wpa->writepages_entry, &fi->writepages);
2045 		spin_unlock(&fi->lock);
2046 
2047 		data->wpa = wpa;
2048 	}
2049 	set_page_writeback(page);
2050 
2051 	copy_highpage(tmp_page, page);
2052 	ap->pages[ap->num_pages] = tmp_page;
2053 	ap->descs[ap->num_pages].offset = 0;
2054 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2055 
2056 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2057 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2058 
2059 	err = 0;
2060 	if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2061 		end_page_writeback(page);
2062 		data->wpa = NULL;
2063 		goto out_unlock;
2064 	}
2065 	data->orig_pages[ap->num_pages] = page;
2066 
2067 	/*
2068 	 * Protected by fi->lock against concurrent access by
2069 	 * fuse_page_is_writeback().
2070 	 */
2071 	spin_lock(&fi->lock);
2072 	ap->num_pages++;
2073 	spin_unlock(&fi->lock);
2074 
2075 out_unlock:
2076 	unlock_page(page);
2077 
2078 	return err;
2079 }
2080 
2081 static int fuse_writepages(struct address_space *mapping,
2082 			   struct writeback_control *wbc)
2083 {
2084 	struct inode *inode = mapping->host;
2085 	struct fuse_conn *fc = get_fuse_conn(inode);
2086 	struct fuse_fill_wb_data data;
2087 	int err;
2088 
2089 	err = -EIO;
2090 	if (is_bad_inode(inode))
2091 		goto out;
2092 
2093 	data.inode = inode;
2094 	data.wpa = NULL;
2095 	data.ff = NULL;
2096 
2097 	err = -ENOMEM;
2098 	data.orig_pages = kcalloc(fc->max_pages,
2099 				  sizeof(struct page *),
2100 				  GFP_NOFS);
2101 	if (!data.orig_pages)
2102 		goto out;
2103 
2104 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2105 	if (data.wpa) {
2106 		/* Ignore errors if we can write at least one page */
2107 		WARN_ON(!data.wpa->ia.ap.num_pages);
2108 		fuse_writepages_send(&data);
2109 		err = 0;
2110 	}
2111 	if (data.ff)
2112 		fuse_file_put(data.ff, false, false);
2113 
2114 	kfree(data.orig_pages);
2115 out:
2116 	return err;
2117 }
2118 
2119 /*
2120  * It's worthy to make sure that space is reserved on disk for the write,
2121  * but how to implement it without killing performance need more thinking.
2122  */
2123 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2124 		loff_t pos, unsigned len, unsigned flags,
2125 		struct page **pagep, void **fsdata)
2126 {
2127 	pgoff_t index = pos >> PAGE_SHIFT;
2128 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2129 	struct page *page;
2130 	loff_t fsize;
2131 	int err = -ENOMEM;
2132 
2133 	WARN_ON(!fc->writeback_cache);
2134 
2135 	page = grab_cache_page_write_begin(mapping, index, flags);
2136 	if (!page)
2137 		goto error;
2138 
2139 	fuse_wait_on_page_writeback(mapping->host, page->index);
2140 
2141 	if (PageUptodate(page) || len == PAGE_SIZE)
2142 		goto success;
2143 	/*
2144 	 * Check if the start this page comes after the end of file, in which
2145 	 * case the readpage can be optimized away.
2146 	 */
2147 	fsize = i_size_read(mapping->host);
2148 	if (fsize <= (pos & PAGE_MASK)) {
2149 		size_t off = pos & ~PAGE_MASK;
2150 		if (off)
2151 			zero_user_segment(page, 0, off);
2152 		goto success;
2153 	}
2154 	err = fuse_do_readpage(file, page);
2155 	if (err)
2156 		goto cleanup;
2157 success:
2158 	*pagep = page;
2159 	return 0;
2160 
2161 cleanup:
2162 	unlock_page(page);
2163 	put_page(page);
2164 error:
2165 	return err;
2166 }
2167 
2168 static int fuse_write_end(struct file *file, struct address_space *mapping,
2169 		loff_t pos, unsigned len, unsigned copied,
2170 		struct page *page, void *fsdata)
2171 {
2172 	struct inode *inode = page->mapping->host;
2173 
2174 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2175 	if (!copied)
2176 		goto unlock;
2177 
2178 	if (!PageUptodate(page)) {
2179 		/* Zero any unwritten bytes at the end of the page */
2180 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2181 		if (endoff)
2182 			zero_user_segment(page, endoff, PAGE_SIZE);
2183 		SetPageUptodate(page);
2184 	}
2185 
2186 	fuse_write_update_size(inode, pos + copied);
2187 	set_page_dirty(page);
2188 
2189 unlock:
2190 	unlock_page(page);
2191 	put_page(page);
2192 
2193 	return copied;
2194 }
2195 
2196 static int fuse_launder_page(struct page *page)
2197 {
2198 	int err = 0;
2199 	if (clear_page_dirty_for_io(page)) {
2200 		struct inode *inode = page->mapping->host;
2201 		err = fuse_writepage_locked(page);
2202 		if (!err)
2203 			fuse_wait_on_page_writeback(inode, page->index);
2204 	}
2205 	return err;
2206 }
2207 
2208 /*
2209  * Write back dirty pages now, because there may not be any suitable
2210  * open files later
2211  */
2212 static void fuse_vma_close(struct vm_area_struct *vma)
2213 {
2214 	filemap_write_and_wait(vma->vm_file->f_mapping);
2215 }
2216 
2217 /*
2218  * Wait for writeback against this page to complete before allowing it
2219  * to be marked dirty again, and hence written back again, possibly
2220  * before the previous writepage completed.
2221  *
2222  * Block here, instead of in ->writepage(), so that the userspace fs
2223  * can only block processes actually operating on the filesystem.
2224  *
2225  * Otherwise unprivileged userspace fs would be able to block
2226  * unrelated:
2227  *
2228  * - page migration
2229  * - sync(2)
2230  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2231  */
2232 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2233 {
2234 	struct page *page = vmf->page;
2235 	struct inode *inode = file_inode(vmf->vma->vm_file);
2236 
2237 	file_update_time(vmf->vma->vm_file);
2238 	lock_page(page);
2239 	if (page->mapping != inode->i_mapping) {
2240 		unlock_page(page);
2241 		return VM_FAULT_NOPAGE;
2242 	}
2243 
2244 	fuse_wait_on_page_writeback(inode, page->index);
2245 	return VM_FAULT_LOCKED;
2246 }
2247 
2248 static const struct vm_operations_struct fuse_file_vm_ops = {
2249 	.close		= fuse_vma_close,
2250 	.fault		= filemap_fault,
2251 	.map_pages	= filemap_map_pages,
2252 	.page_mkwrite	= fuse_page_mkwrite,
2253 };
2254 
2255 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2256 {
2257 	struct fuse_file *ff = file->private_data;
2258 
2259 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2260 		/* Can't provide the coherency needed for MAP_SHARED */
2261 		if (vma->vm_flags & VM_MAYSHARE)
2262 			return -ENODEV;
2263 
2264 		invalidate_inode_pages2(file->f_mapping);
2265 
2266 		return generic_file_mmap(file, vma);
2267 	}
2268 
2269 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2270 		fuse_link_write_file(file);
2271 
2272 	file_accessed(file);
2273 	vma->vm_ops = &fuse_file_vm_ops;
2274 	return 0;
2275 }
2276 
2277 static int convert_fuse_file_lock(struct fuse_conn *fc,
2278 				  const struct fuse_file_lock *ffl,
2279 				  struct file_lock *fl)
2280 {
2281 	switch (ffl->type) {
2282 	case F_UNLCK:
2283 		break;
2284 
2285 	case F_RDLCK:
2286 	case F_WRLCK:
2287 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2288 		    ffl->end < ffl->start)
2289 			return -EIO;
2290 
2291 		fl->fl_start = ffl->start;
2292 		fl->fl_end = ffl->end;
2293 
2294 		/*
2295 		 * Convert pid into init's pid namespace.  The locks API will
2296 		 * translate it into the caller's pid namespace.
2297 		 */
2298 		rcu_read_lock();
2299 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2300 		rcu_read_unlock();
2301 		break;
2302 
2303 	default:
2304 		return -EIO;
2305 	}
2306 	fl->fl_type = ffl->type;
2307 	return 0;
2308 }
2309 
2310 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2311 			 const struct file_lock *fl, int opcode, pid_t pid,
2312 			 int flock, struct fuse_lk_in *inarg)
2313 {
2314 	struct inode *inode = file_inode(file);
2315 	struct fuse_conn *fc = get_fuse_conn(inode);
2316 	struct fuse_file *ff = file->private_data;
2317 
2318 	memset(inarg, 0, sizeof(*inarg));
2319 	inarg->fh = ff->fh;
2320 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2321 	inarg->lk.start = fl->fl_start;
2322 	inarg->lk.end = fl->fl_end;
2323 	inarg->lk.type = fl->fl_type;
2324 	inarg->lk.pid = pid;
2325 	if (flock)
2326 		inarg->lk_flags |= FUSE_LK_FLOCK;
2327 	args->opcode = opcode;
2328 	args->nodeid = get_node_id(inode);
2329 	args->in_numargs = 1;
2330 	args->in_args[0].size = sizeof(*inarg);
2331 	args->in_args[0].value = inarg;
2332 }
2333 
2334 static int fuse_getlk(struct file *file, struct file_lock *fl)
2335 {
2336 	struct inode *inode = file_inode(file);
2337 	struct fuse_conn *fc = get_fuse_conn(inode);
2338 	FUSE_ARGS(args);
2339 	struct fuse_lk_in inarg;
2340 	struct fuse_lk_out outarg;
2341 	int err;
2342 
2343 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2344 	args.out_numargs = 1;
2345 	args.out_args[0].size = sizeof(outarg);
2346 	args.out_args[0].value = &outarg;
2347 	err = fuse_simple_request(fc, &args);
2348 	if (!err)
2349 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2350 
2351 	return err;
2352 }
2353 
2354 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2355 {
2356 	struct inode *inode = file_inode(file);
2357 	struct fuse_conn *fc = get_fuse_conn(inode);
2358 	FUSE_ARGS(args);
2359 	struct fuse_lk_in inarg;
2360 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2361 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2362 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2363 	int err;
2364 
2365 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2366 		/* NLM needs asynchronous locks, which we don't support yet */
2367 		return -ENOLCK;
2368 	}
2369 
2370 	/* Unlock on close is handled by the flush method */
2371 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2372 		return 0;
2373 
2374 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2375 	err = fuse_simple_request(fc, &args);
2376 
2377 	/* locking is restartable */
2378 	if (err == -EINTR)
2379 		err = -ERESTARTSYS;
2380 
2381 	return err;
2382 }
2383 
2384 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2385 {
2386 	struct inode *inode = file_inode(file);
2387 	struct fuse_conn *fc = get_fuse_conn(inode);
2388 	int err;
2389 
2390 	if (cmd == F_CANCELLK) {
2391 		err = 0;
2392 	} else if (cmd == F_GETLK) {
2393 		if (fc->no_lock) {
2394 			posix_test_lock(file, fl);
2395 			err = 0;
2396 		} else
2397 			err = fuse_getlk(file, fl);
2398 	} else {
2399 		if (fc->no_lock)
2400 			err = posix_lock_file(file, fl, NULL);
2401 		else
2402 			err = fuse_setlk(file, fl, 0);
2403 	}
2404 	return err;
2405 }
2406 
2407 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2408 {
2409 	struct inode *inode = file_inode(file);
2410 	struct fuse_conn *fc = get_fuse_conn(inode);
2411 	int err;
2412 
2413 	if (fc->no_flock) {
2414 		err = locks_lock_file_wait(file, fl);
2415 	} else {
2416 		struct fuse_file *ff = file->private_data;
2417 
2418 		/* emulate flock with POSIX locks */
2419 		ff->flock = true;
2420 		err = fuse_setlk(file, fl, 1);
2421 	}
2422 
2423 	return err;
2424 }
2425 
2426 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2427 {
2428 	struct inode *inode = mapping->host;
2429 	struct fuse_conn *fc = get_fuse_conn(inode);
2430 	FUSE_ARGS(args);
2431 	struct fuse_bmap_in inarg;
2432 	struct fuse_bmap_out outarg;
2433 	int err;
2434 
2435 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2436 		return 0;
2437 
2438 	memset(&inarg, 0, sizeof(inarg));
2439 	inarg.block = block;
2440 	inarg.blocksize = inode->i_sb->s_blocksize;
2441 	args.opcode = FUSE_BMAP;
2442 	args.nodeid = get_node_id(inode);
2443 	args.in_numargs = 1;
2444 	args.in_args[0].size = sizeof(inarg);
2445 	args.in_args[0].value = &inarg;
2446 	args.out_numargs = 1;
2447 	args.out_args[0].size = sizeof(outarg);
2448 	args.out_args[0].value = &outarg;
2449 	err = fuse_simple_request(fc, &args);
2450 	if (err == -ENOSYS)
2451 		fc->no_bmap = 1;
2452 
2453 	return err ? 0 : outarg.block;
2454 }
2455 
2456 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2457 {
2458 	struct inode *inode = file->f_mapping->host;
2459 	struct fuse_conn *fc = get_fuse_conn(inode);
2460 	struct fuse_file *ff = file->private_data;
2461 	FUSE_ARGS(args);
2462 	struct fuse_lseek_in inarg = {
2463 		.fh = ff->fh,
2464 		.offset = offset,
2465 		.whence = whence
2466 	};
2467 	struct fuse_lseek_out outarg;
2468 	int err;
2469 
2470 	if (fc->no_lseek)
2471 		goto fallback;
2472 
2473 	args.opcode = FUSE_LSEEK;
2474 	args.nodeid = ff->nodeid;
2475 	args.in_numargs = 1;
2476 	args.in_args[0].size = sizeof(inarg);
2477 	args.in_args[0].value = &inarg;
2478 	args.out_numargs = 1;
2479 	args.out_args[0].size = sizeof(outarg);
2480 	args.out_args[0].value = &outarg;
2481 	err = fuse_simple_request(fc, &args);
2482 	if (err) {
2483 		if (err == -ENOSYS) {
2484 			fc->no_lseek = 1;
2485 			goto fallback;
2486 		}
2487 		return err;
2488 	}
2489 
2490 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2491 
2492 fallback:
2493 	err = fuse_update_attributes(inode, file);
2494 	if (!err)
2495 		return generic_file_llseek(file, offset, whence);
2496 	else
2497 		return err;
2498 }
2499 
2500 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2501 {
2502 	loff_t retval;
2503 	struct inode *inode = file_inode(file);
2504 
2505 	switch (whence) {
2506 	case SEEK_SET:
2507 	case SEEK_CUR:
2508 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2509 		retval = generic_file_llseek(file, offset, whence);
2510 		break;
2511 	case SEEK_END:
2512 		inode_lock(inode);
2513 		retval = fuse_update_attributes(inode, file);
2514 		if (!retval)
2515 			retval = generic_file_llseek(file, offset, whence);
2516 		inode_unlock(inode);
2517 		break;
2518 	case SEEK_HOLE:
2519 	case SEEK_DATA:
2520 		inode_lock(inode);
2521 		retval = fuse_lseek(file, offset, whence);
2522 		inode_unlock(inode);
2523 		break;
2524 	default:
2525 		retval = -EINVAL;
2526 	}
2527 
2528 	return retval;
2529 }
2530 
2531 /*
2532  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2533  * ABI was defined to be 'struct iovec' which is different on 32bit
2534  * and 64bit.  Fortunately we can determine which structure the server
2535  * used from the size of the reply.
2536  */
2537 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2538 				     size_t transferred, unsigned count,
2539 				     bool is_compat)
2540 {
2541 #ifdef CONFIG_COMPAT
2542 	if (count * sizeof(struct compat_iovec) == transferred) {
2543 		struct compat_iovec *ciov = src;
2544 		unsigned i;
2545 
2546 		/*
2547 		 * With this interface a 32bit server cannot support
2548 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2549 		 * requests
2550 		 */
2551 		if (!is_compat)
2552 			return -EINVAL;
2553 
2554 		for (i = 0; i < count; i++) {
2555 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2556 			dst[i].iov_len = ciov[i].iov_len;
2557 		}
2558 		return 0;
2559 	}
2560 #endif
2561 
2562 	if (count * sizeof(struct iovec) != transferred)
2563 		return -EIO;
2564 
2565 	memcpy(dst, src, transferred);
2566 	return 0;
2567 }
2568 
2569 /* Make sure iov_length() won't overflow */
2570 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2571 				 size_t count)
2572 {
2573 	size_t n;
2574 	u32 max = fc->max_pages << PAGE_SHIFT;
2575 
2576 	for (n = 0; n < count; n++, iov++) {
2577 		if (iov->iov_len > (size_t) max)
2578 			return -ENOMEM;
2579 		max -= iov->iov_len;
2580 	}
2581 	return 0;
2582 }
2583 
2584 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2585 				 void *src, size_t transferred, unsigned count,
2586 				 bool is_compat)
2587 {
2588 	unsigned i;
2589 	struct fuse_ioctl_iovec *fiov = src;
2590 
2591 	if (fc->minor < 16) {
2592 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2593 						 count, is_compat);
2594 	}
2595 
2596 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2597 		return -EIO;
2598 
2599 	for (i = 0; i < count; i++) {
2600 		/* Did the server supply an inappropriate value? */
2601 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2602 		    fiov[i].len != (unsigned long) fiov[i].len)
2603 			return -EIO;
2604 
2605 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2606 		dst[i].iov_len = (size_t) fiov[i].len;
2607 
2608 #ifdef CONFIG_COMPAT
2609 		if (is_compat &&
2610 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2611 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2612 			return -EIO;
2613 #endif
2614 	}
2615 
2616 	return 0;
2617 }
2618 
2619 
2620 /*
2621  * For ioctls, there is no generic way to determine how much memory
2622  * needs to be read and/or written.  Furthermore, ioctls are allowed
2623  * to dereference the passed pointer, so the parameter requires deep
2624  * copying but FUSE has no idea whatsoever about what to copy in or
2625  * out.
2626  *
2627  * This is solved by allowing FUSE server to retry ioctl with
2628  * necessary in/out iovecs.  Let's assume the ioctl implementation
2629  * needs to read in the following structure.
2630  *
2631  * struct a {
2632  *	char	*buf;
2633  *	size_t	buflen;
2634  * }
2635  *
2636  * On the first callout to FUSE server, inarg->in_size and
2637  * inarg->out_size will be NULL; then, the server completes the ioctl
2638  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2639  * the actual iov array to
2640  *
2641  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2642  *
2643  * which tells FUSE to copy in the requested area and retry the ioctl.
2644  * On the second round, the server has access to the structure and
2645  * from that it can tell what to look for next, so on the invocation,
2646  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2647  *
2648  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2649  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2650  *
2651  * FUSE will copy both struct a and the pointed buffer from the
2652  * process doing the ioctl and retry ioctl with both struct a and the
2653  * buffer.
2654  *
2655  * This time, FUSE server has everything it needs and completes ioctl
2656  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2657  *
2658  * Copying data out works the same way.
2659  *
2660  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2661  * automatically initializes in and out iovs by decoding @cmd with
2662  * _IOC_* macros and the server is not allowed to request RETRY.  This
2663  * limits ioctl data transfers to well-formed ioctls and is the forced
2664  * behavior for all FUSE servers.
2665  */
2666 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2667 		   unsigned int flags)
2668 {
2669 	struct fuse_file *ff = file->private_data;
2670 	struct fuse_conn *fc = ff->fc;
2671 	struct fuse_ioctl_in inarg = {
2672 		.fh = ff->fh,
2673 		.cmd = cmd,
2674 		.arg = arg,
2675 		.flags = flags
2676 	};
2677 	struct fuse_ioctl_out outarg;
2678 	struct iovec *iov_page = NULL;
2679 	struct iovec *in_iov = NULL, *out_iov = NULL;
2680 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2681 	size_t in_size, out_size, c;
2682 	ssize_t transferred;
2683 	int err, i;
2684 	struct iov_iter ii;
2685 	struct fuse_args_pages ap = {};
2686 
2687 #if BITS_PER_LONG == 32
2688 	inarg.flags |= FUSE_IOCTL_32BIT;
2689 #else
2690 	if (flags & FUSE_IOCTL_COMPAT) {
2691 		inarg.flags |= FUSE_IOCTL_32BIT;
2692 #ifdef CONFIG_X86_X32
2693 		if (in_x32_syscall())
2694 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2695 #endif
2696 	}
2697 #endif
2698 
2699 	/* assume all the iovs returned by client always fits in a page */
2700 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2701 
2702 	err = -ENOMEM;
2703 	ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2704 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2705 	if (!ap.pages || !iov_page)
2706 		goto out;
2707 
2708 	fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2709 
2710 	/*
2711 	 * If restricted, initialize IO parameters as encoded in @cmd.
2712 	 * RETRY from server is not allowed.
2713 	 */
2714 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2715 		struct iovec *iov = iov_page;
2716 
2717 		iov->iov_base = (void __user *)arg;
2718 		iov->iov_len = _IOC_SIZE(cmd);
2719 
2720 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2721 			in_iov = iov;
2722 			in_iovs = 1;
2723 		}
2724 
2725 		if (_IOC_DIR(cmd) & _IOC_READ) {
2726 			out_iov = iov;
2727 			out_iovs = 1;
2728 		}
2729 	}
2730 
2731  retry:
2732 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2733 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2734 
2735 	/*
2736 	 * Out data can be used either for actual out data or iovs,
2737 	 * make sure there always is at least one page.
2738 	 */
2739 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2740 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2741 
2742 	/* make sure there are enough buffer pages and init request with them */
2743 	err = -ENOMEM;
2744 	if (max_pages > fc->max_pages)
2745 		goto out;
2746 	while (ap.num_pages < max_pages) {
2747 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2748 		if (!ap.pages[ap.num_pages])
2749 			goto out;
2750 		ap.num_pages++;
2751 	}
2752 
2753 
2754 	/* okay, let's send it to the client */
2755 	ap.args.opcode = FUSE_IOCTL;
2756 	ap.args.nodeid = ff->nodeid;
2757 	ap.args.in_numargs = 1;
2758 	ap.args.in_args[0].size = sizeof(inarg);
2759 	ap.args.in_args[0].value = &inarg;
2760 	if (in_size) {
2761 		ap.args.in_numargs++;
2762 		ap.args.in_args[1].size = in_size;
2763 		ap.args.in_pages = true;
2764 
2765 		err = -EFAULT;
2766 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2767 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2768 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2769 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2770 				goto out;
2771 		}
2772 	}
2773 
2774 	ap.args.out_numargs = 2;
2775 	ap.args.out_args[0].size = sizeof(outarg);
2776 	ap.args.out_args[0].value = &outarg;
2777 	ap.args.out_args[1].size = out_size;
2778 	ap.args.out_pages = true;
2779 	ap.args.out_argvar = true;
2780 
2781 	transferred = fuse_simple_request(fc, &ap.args);
2782 	err = transferred;
2783 	if (transferred < 0)
2784 		goto out;
2785 
2786 	/* did it ask for retry? */
2787 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2788 		void *vaddr;
2789 
2790 		/* no retry if in restricted mode */
2791 		err = -EIO;
2792 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2793 			goto out;
2794 
2795 		in_iovs = outarg.in_iovs;
2796 		out_iovs = outarg.out_iovs;
2797 
2798 		/*
2799 		 * Make sure things are in boundary, separate checks
2800 		 * are to protect against overflow.
2801 		 */
2802 		err = -ENOMEM;
2803 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2804 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2805 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2806 			goto out;
2807 
2808 		vaddr = kmap_atomic(ap.pages[0]);
2809 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2810 					    transferred, in_iovs + out_iovs,
2811 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2812 		kunmap_atomic(vaddr);
2813 		if (err)
2814 			goto out;
2815 
2816 		in_iov = iov_page;
2817 		out_iov = in_iov + in_iovs;
2818 
2819 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2820 		if (err)
2821 			goto out;
2822 
2823 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2824 		if (err)
2825 			goto out;
2826 
2827 		goto retry;
2828 	}
2829 
2830 	err = -EIO;
2831 	if (transferred > inarg.out_size)
2832 		goto out;
2833 
2834 	err = -EFAULT;
2835 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2836 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2837 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2838 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2839 			goto out;
2840 	}
2841 	err = 0;
2842  out:
2843 	free_page((unsigned long) iov_page);
2844 	while (ap.num_pages)
2845 		__free_page(ap.pages[--ap.num_pages]);
2846 	kfree(ap.pages);
2847 
2848 	return err ? err : outarg.result;
2849 }
2850 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2851 
2852 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2853 		       unsigned long arg, unsigned int flags)
2854 {
2855 	struct inode *inode = file_inode(file);
2856 	struct fuse_conn *fc = get_fuse_conn(inode);
2857 
2858 	if (!fuse_allow_current_process(fc))
2859 		return -EACCES;
2860 
2861 	if (is_bad_inode(inode))
2862 		return -EIO;
2863 
2864 	return fuse_do_ioctl(file, cmd, arg, flags);
2865 }
2866 
2867 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2868 			    unsigned long arg)
2869 {
2870 	return fuse_ioctl_common(file, cmd, arg, 0);
2871 }
2872 
2873 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2874 				   unsigned long arg)
2875 {
2876 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2877 }
2878 
2879 /*
2880  * All files which have been polled are linked to RB tree
2881  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2882  * find the matching one.
2883  */
2884 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2885 					      struct rb_node **parent_out)
2886 {
2887 	struct rb_node **link = &fc->polled_files.rb_node;
2888 	struct rb_node *last = NULL;
2889 
2890 	while (*link) {
2891 		struct fuse_file *ff;
2892 
2893 		last = *link;
2894 		ff = rb_entry(last, struct fuse_file, polled_node);
2895 
2896 		if (kh < ff->kh)
2897 			link = &last->rb_left;
2898 		else if (kh > ff->kh)
2899 			link = &last->rb_right;
2900 		else
2901 			return link;
2902 	}
2903 
2904 	if (parent_out)
2905 		*parent_out = last;
2906 	return link;
2907 }
2908 
2909 /*
2910  * The file is about to be polled.  Make sure it's on the polled_files
2911  * RB tree.  Note that files once added to the polled_files tree are
2912  * not removed before the file is released.  This is because a file
2913  * polled once is likely to be polled again.
2914  */
2915 static void fuse_register_polled_file(struct fuse_conn *fc,
2916 				      struct fuse_file *ff)
2917 {
2918 	spin_lock(&fc->lock);
2919 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2920 		struct rb_node **link, *uninitialized_var(parent);
2921 
2922 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2923 		BUG_ON(*link);
2924 		rb_link_node(&ff->polled_node, parent, link);
2925 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2926 	}
2927 	spin_unlock(&fc->lock);
2928 }
2929 
2930 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2931 {
2932 	struct fuse_file *ff = file->private_data;
2933 	struct fuse_conn *fc = ff->fc;
2934 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2935 	struct fuse_poll_out outarg;
2936 	FUSE_ARGS(args);
2937 	int err;
2938 
2939 	if (fc->no_poll)
2940 		return DEFAULT_POLLMASK;
2941 
2942 	poll_wait(file, &ff->poll_wait, wait);
2943 	inarg.events = mangle_poll(poll_requested_events(wait));
2944 
2945 	/*
2946 	 * Ask for notification iff there's someone waiting for it.
2947 	 * The client may ignore the flag and always notify.
2948 	 */
2949 	if (waitqueue_active(&ff->poll_wait)) {
2950 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2951 		fuse_register_polled_file(fc, ff);
2952 	}
2953 
2954 	args.opcode = FUSE_POLL;
2955 	args.nodeid = ff->nodeid;
2956 	args.in_numargs = 1;
2957 	args.in_args[0].size = sizeof(inarg);
2958 	args.in_args[0].value = &inarg;
2959 	args.out_numargs = 1;
2960 	args.out_args[0].size = sizeof(outarg);
2961 	args.out_args[0].value = &outarg;
2962 	err = fuse_simple_request(fc, &args);
2963 
2964 	if (!err)
2965 		return demangle_poll(outarg.revents);
2966 	if (err == -ENOSYS) {
2967 		fc->no_poll = 1;
2968 		return DEFAULT_POLLMASK;
2969 	}
2970 	return EPOLLERR;
2971 }
2972 EXPORT_SYMBOL_GPL(fuse_file_poll);
2973 
2974 /*
2975  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2976  * wakes up the poll waiters.
2977  */
2978 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2979 			    struct fuse_notify_poll_wakeup_out *outarg)
2980 {
2981 	u64 kh = outarg->kh;
2982 	struct rb_node **link;
2983 
2984 	spin_lock(&fc->lock);
2985 
2986 	link = fuse_find_polled_node(fc, kh, NULL);
2987 	if (*link) {
2988 		struct fuse_file *ff;
2989 
2990 		ff = rb_entry(*link, struct fuse_file, polled_node);
2991 		wake_up_interruptible_sync(&ff->poll_wait);
2992 	}
2993 
2994 	spin_unlock(&fc->lock);
2995 	return 0;
2996 }
2997 
2998 static void fuse_do_truncate(struct file *file)
2999 {
3000 	struct inode *inode = file->f_mapping->host;
3001 	struct iattr attr;
3002 
3003 	attr.ia_valid = ATTR_SIZE;
3004 	attr.ia_size = i_size_read(inode);
3005 
3006 	attr.ia_file = file;
3007 	attr.ia_valid |= ATTR_FILE;
3008 
3009 	fuse_do_setattr(file_dentry(file), &attr, file);
3010 }
3011 
3012 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3013 {
3014 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3015 }
3016 
3017 static ssize_t
3018 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3019 {
3020 	DECLARE_COMPLETION_ONSTACK(wait);
3021 	ssize_t ret = 0;
3022 	struct file *file = iocb->ki_filp;
3023 	struct fuse_file *ff = file->private_data;
3024 	bool async_dio = ff->fc->async_dio;
3025 	loff_t pos = 0;
3026 	struct inode *inode;
3027 	loff_t i_size;
3028 	size_t count = iov_iter_count(iter);
3029 	loff_t offset = iocb->ki_pos;
3030 	struct fuse_io_priv *io;
3031 
3032 	pos = offset;
3033 	inode = file->f_mapping->host;
3034 	i_size = i_size_read(inode);
3035 
3036 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3037 		return 0;
3038 
3039 	/* optimization for short read */
3040 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3041 		if (offset >= i_size)
3042 			return 0;
3043 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3044 		count = iov_iter_count(iter);
3045 	}
3046 
3047 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3048 	if (!io)
3049 		return -ENOMEM;
3050 	spin_lock_init(&io->lock);
3051 	kref_init(&io->refcnt);
3052 	io->reqs = 1;
3053 	io->bytes = -1;
3054 	io->size = 0;
3055 	io->offset = offset;
3056 	io->write = (iov_iter_rw(iter) == WRITE);
3057 	io->err = 0;
3058 	/*
3059 	 * By default, we want to optimize all I/Os with async request
3060 	 * submission to the client filesystem if supported.
3061 	 */
3062 	io->async = async_dio;
3063 	io->iocb = iocb;
3064 	io->blocking = is_sync_kiocb(iocb);
3065 
3066 	/*
3067 	 * We cannot asynchronously extend the size of a file.
3068 	 * In such case the aio will behave exactly like sync io.
3069 	 */
3070 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3071 		io->blocking = true;
3072 
3073 	if (io->async && io->blocking) {
3074 		/*
3075 		 * Additional reference to keep io around after
3076 		 * calling fuse_aio_complete()
3077 		 */
3078 		kref_get(&io->refcnt);
3079 		io->done = &wait;
3080 	}
3081 
3082 	if (iov_iter_rw(iter) == WRITE) {
3083 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3084 		fuse_invalidate_attr(inode);
3085 	} else {
3086 		ret = __fuse_direct_read(io, iter, &pos);
3087 	}
3088 
3089 	if (io->async) {
3090 		bool blocking = io->blocking;
3091 
3092 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3093 
3094 		/* we have a non-extending, async request, so return */
3095 		if (!blocking)
3096 			return -EIOCBQUEUED;
3097 
3098 		wait_for_completion(&wait);
3099 		ret = fuse_get_res_by_io(io);
3100 	}
3101 
3102 	kref_put(&io->refcnt, fuse_io_release);
3103 
3104 	if (iov_iter_rw(iter) == WRITE) {
3105 		if (ret > 0)
3106 			fuse_write_update_size(inode, pos);
3107 		else if (ret < 0 && offset + count > i_size)
3108 			fuse_do_truncate(file);
3109 	}
3110 
3111 	return ret;
3112 }
3113 
3114 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3115 {
3116 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3117 
3118 	if (!err)
3119 		fuse_sync_writes(inode);
3120 
3121 	return err;
3122 }
3123 
3124 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3125 				loff_t length)
3126 {
3127 	struct fuse_file *ff = file->private_data;
3128 	struct inode *inode = file_inode(file);
3129 	struct fuse_inode *fi = get_fuse_inode(inode);
3130 	struct fuse_conn *fc = ff->fc;
3131 	FUSE_ARGS(args);
3132 	struct fuse_fallocate_in inarg = {
3133 		.fh = ff->fh,
3134 		.offset = offset,
3135 		.length = length,
3136 		.mode = mode
3137 	};
3138 	int err;
3139 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3140 			   (mode & FALLOC_FL_PUNCH_HOLE);
3141 
3142 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3143 		return -EOPNOTSUPP;
3144 
3145 	if (fc->no_fallocate)
3146 		return -EOPNOTSUPP;
3147 
3148 	if (lock_inode) {
3149 		inode_lock(inode);
3150 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3151 			loff_t endbyte = offset + length - 1;
3152 
3153 			err = fuse_writeback_range(inode, offset, endbyte);
3154 			if (err)
3155 				goto out;
3156 		}
3157 	}
3158 
3159 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3160 	    offset + length > i_size_read(inode)) {
3161 		err = inode_newsize_ok(inode, offset + length);
3162 		if (err)
3163 			goto out;
3164 	}
3165 
3166 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3167 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3168 
3169 	args.opcode = FUSE_FALLOCATE;
3170 	args.nodeid = ff->nodeid;
3171 	args.in_numargs = 1;
3172 	args.in_args[0].size = sizeof(inarg);
3173 	args.in_args[0].value = &inarg;
3174 	err = fuse_simple_request(fc, &args);
3175 	if (err == -ENOSYS) {
3176 		fc->no_fallocate = 1;
3177 		err = -EOPNOTSUPP;
3178 	}
3179 	if (err)
3180 		goto out;
3181 
3182 	/* we could have extended the file */
3183 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3184 		bool changed = fuse_write_update_size(inode, offset + length);
3185 
3186 		if (changed && fc->writeback_cache)
3187 			file_update_time(file);
3188 	}
3189 
3190 	if (mode & FALLOC_FL_PUNCH_HOLE)
3191 		truncate_pagecache_range(inode, offset, offset + length - 1);
3192 
3193 	fuse_invalidate_attr(inode);
3194 
3195 out:
3196 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3197 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3198 
3199 	if (lock_inode)
3200 		inode_unlock(inode);
3201 
3202 	return err;
3203 }
3204 
3205 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3206 				      struct file *file_out, loff_t pos_out,
3207 				      size_t len, unsigned int flags)
3208 {
3209 	struct fuse_file *ff_in = file_in->private_data;
3210 	struct fuse_file *ff_out = file_out->private_data;
3211 	struct inode *inode_in = file_inode(file_in);
3212 	struct inode *inode_out = file_inode(file_out);
3213 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3214 	struct fuse_conn *fc = ff_in->fc;
3215 	FUSE_ARGS(args);
3216 	struct fuse_copy_file_range_in inarg = {
3217 		.fh_in = ff_in->fh,
3218 		.off_in = pos_in,
3219 		.nodeid_out = ff_out->nodeid,
3220 		.fh_out = ff_out->fh,
3221 		.off_out = pos_out,
3222 		.len = len,
3223 		.flags = flags
3224 	};
3225 	struct fuse_write_out outarg;
3226 	ssize_t err;
3227 	/* mark unstable when write-back is not used, and file_out gets
3228 	 * extended */
3229 	bool is_unstable = (!fc->writeback_cache) &&
3230 			   ((pos_out + len) > inode_out->i_size);
3231 
3232 	if (fc->no_copy_file_range)
3233 		return -EOPNOTSUPP;
3234 
3235 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3236 		return -EXDEV;
3237 
3238 	if (fc->writeback_cache) {
3239 		inode_lock(inode_in);
3240 		err = fuse_writeback_range(inode_in, pos_in, pos_in + len);
3241 		inode_unlock(inode_in);
3242 		if (err)
3243 			return err;
3244 	}
3245 
3246 	inode_lock(inode_out);
3247 
3248 	err = file_modified(file_out);
3249 	if (err)
3250 		goto out;
3251 
3252 	if (fc->writeback_cache) {
3253 		err = fuse_writeback_range(inode_out, pos_out, pos_out + len);
3254 		if (err)
3255 			goto out;
3256 	}
3257 
3258 	if (is_unstable)
3259 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3260 
3261 	args.opcode = FUSE_COPY_FILE_RANGE;
3262 	args.nodeid = ff_in->nodeid;
3263 	args.in_numargs = 1;
3264 	args.in_args[0].size = sizeof(inarg);
3265 	args.in_args[0].value = &inarg;
3266 	args.out_numargs = 1;
3267 	args.out_args[0].size = sizeof(outarg);
3268 	args.out_args[0].value = &outarg;
3269 	err = fuse_simple_request(fc, &args);
3270 	if (err == -ENOSYS) {
3271 		fc->no_copy_file_range = 1;
3272 		err = -EOPNOTSUPP;
3273 	}
3274 	if (err)
3275 		goto out;
3276 
3277 	if (fc->writeback_cache) {
3278 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3279 		file_update_time(file_out);
3280 	}
3281 
3282 	fuse_invalidate_attr(inode_out);
3283 
3284 	err = outarg.size;
3285 out:
3286 	if (is_unstable)
3287 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3288 
3289 	inode_unlock(inode_out);
3290 	file_accessed(file_in);
3291 
3292 	return err;
3293 }
3294 
3295 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3296 				    struct file *dst_file, loff_t dst_off,
3297 				    size_t len, unsigned int flags)
3298 {
3299 	ssize_t ret;
3300 
3301 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3302 				     len, flags);
3303 
3304 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3305 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3306 					      dst_off, len, flags);
3307 	return ret;
3308 }
3309 
3310 static const struct file_operations fuse_file_operations = {
3311 	.llseek		= fuse_file_llseek,
3312 	.read_iter	= fuse_file_read_iter,
3313 	.write_iter	= fuse_file_write_iter,
3314 	.mmap		= fuse_file_mmap,
3315 	.open		= fuse_open,
3316 	.flush		= fuse_flush,
3317 	.release	= fuse_release,
3318 	.fsync		= fuse_fsync,
3319 	.lock		= fuse_file_lock,
3320 	.flock		= fuse_file_flock,
3321 	.splice_read	= generic_file_splice_read,
3322 	.splice_write	= iter_file_splice_write,
3323 	.unlocked_ioctl	= fuse_file_ioctl,
3324 	.compat_ioctl	= fuse_file_compat_ioctl,
3325 	.poll		= fuse_file_poll,
3326 	.fallocate	= fuse_file_fallocate,
3327 	.copy_file_range = fuse_copy_file_range,
3328 };
3329 
3330 static const struct address_space_operations fuse_file_aops  = {
3331 	.readpage	= fuse_readpage,
3332 	.readahead	= fuse_readahead,
3333 	.writepage	= fuse_writepage,
3334 	.writepages	= fuse_writepages,
3335 	.launder_page	= fuse_launder_page,
3336 	.set_page_dirty	= __set_page_dirty_nobuffers,
3337 	.bmap		= fuse_bmap,
3338 	.direct_IO	= fuse_direct_IO,
3339 	.write_begin	= fuse_write_begin,
3340 	.write_end	= fuse_write_end,
3341 };
3342 
3343 void fuse_init_file_inode(struct inode *inode)
3344 {
3345 	struct fuse_inode *fi = get_fuse_inode(inode);
3346 
3347 	inode->i_fop = &fuse_file_operations;
3348 	inode->i_data.a_ops = &fuse_file_aops;
3349 
3350 	INIT_LIST_HEAD(&fi->write_files);
3351 	INIT_LIST_HEAD(&fi->queued_writes);
3352 	fi->writectr = 0;
3353 	init_waitqueue_head(&fi->page_waitq);
3354 	INIT_LIST_HEAD(&fi->writepages);
3355 }
3356