xref: /openbmc/linux/fs/fuse/file.c (revision 34facb04)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 				      struct fuse_page_desc **desc)
24 {
25 	struct page **pages;
26 
27 	pages = kzalloc(npages * (sizeof(struct page *) +
28 				  sizeof(struct fuse_page_desc)), flags);
29 	*desc = (void *) (pages + npages);
30 
31 	return pages;
32 }
33 
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 			  int opcode, struct fuse_open_out *outargp)
36 {
37 	struct fuse_open_in inarg;
38 	FUSE_ARGS(args);
39 
40 	memset(&inarg, 0, sizeof(inarg));
41 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 	if (!fc->atomic_o_trunc)
43 		inarg.flags &= ~O_TRUNC;
44 	args.opcode = opcode;
45 	args.nodeid = nodeid;
46 	args.in_numargs = 1;
47 	args.in_args[0].size = sizeof(inarg);
48 	args.in_args[0].value = &inarg;
49 	args.out_numargs = 1;
50 	args.out_args[0].size = sizeof(*outargp);
51 	args.out_args[0].value = outargp;
52 
53 	return fuse_simple_request(fc, &args);
54 }
55 
56 struct fuse_release_args {
57 	struct fuse_args args;
58 	struct fuse_release_in inarg;
59 	struct inode *inode;
60 };
61 
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
63 {
64 	struct fuse_file *ff;
65 
66 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
67 	if (unlikely(!ff))
68 		return NULL;
69 
70 	ff->fc = fc;
71 	ff->release_args = kzalloc(sizeof(*ff->release_args),
72 				   GFP_KERNEL_ACCOUNT);
73 	if (!ff->release_args) {
74 		kfree(ff);
75 		return NULL;
76 	}
77 
78 	INIT_LIST_HEAD(&ff->write_entry);
79 	mutex_init(&ff->readdir.lock);
80 	refcount_set(&ff->count, 1);
81 	RB_CLEAR_NODE(&ff->polled_node);
82 	init_waitqueue_head(&ff->poll_wait);
83 
84 	ff->kh = atomic64_inc_return(&fc->khctr);
85 
86 	return ff;
87 }
88 
89 void fuse_file_free(struct fuse_file *ff)
90 {
91 	kfree(ff->release_args);
92 	mutex_destroy(&ff->readdir.lock);
93 	kfree(ff);
94 }
95 
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
97 {
98 	refcount_inc(&ff->count);
99 	return ff;
100 }
101 
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
103 			     int error)
104 {
105 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
106 
107 	iput(ra->inode);
108 	kfree(ra);
109 }
110 
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
112 {
113 	if (refcount_dec_and_test(&ff->count)) {
114 		struct fuse_args *args = &ff->release_args->args;
115 
116 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 			/* Do nothing when client does not implement 'open' */
118 			fuse_release_end(ff->fc, args, 0);
119 		} else if (sync) {
120 			fuse_simple_request(ff->fc, args);
121 			fuse_release_end(ff->fc, args, 0);
122 		} else {
123 			args->end = fuse_release_end;
124 			if (fuse_simple_background(ff->fc, args,
125 						   GFP_KERNEL | __GFP_NOFAIL))
126 				fuse_release_end(ff->fc, args, -ENOTCONN);
127 		}
128 		kfree(ff);
129 	}
130 }
131 
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
133 		 bool isdir)
134 {
135 	struct fuse_file *ff;
136 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
137 
138 	ff = fuse_file_alloc(fc);
139 	if (!ff)
140 		return -ENOMEM;
141 
142 	ff->fh = 0;
143 	/* Default for no-open */
144 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 	if (isdir ? !fc->no_opendir : !fc->no_open) {
146 		struct fuse_open_out outarg;
147 		int err;
148 
149 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
150 		if (!err) {
151 			ff->fh = outarg.fh;
152 			ff->open_flags = outarg.open_flags;
153 
154 		} else if (err != -ENOSYS) {
155 			fuse_file_free(ff);
156 			return err;
157 		} else {
158 			if (isdir)
159 				fc->no_opendir = 1;
160 			else
161 				fc->no_open = 1;
162 		}
163 	}
164 
165 	if (isdir)
166 		ff->open_flags &= ~FOPEN_DIRECT_IO;
167 
168 	ff->nodeid = nodeid;
169 	file->private_data = ff;
170 
171 	return 0;
172 }
173 EXPORT_SYMBOL_GPL(fuse_do_open);
174 
175 static void fuse_link_write_file(struct file *file)
176 {
177 	struct inode *inode = file_inode(file);
178 	struct fuse_inode *fi = get_fuse_inode(inode);
179 	struct fuse_file *ff = file->private_data;
180 	/*
181 	 * file may be written through mmap, so chain it onto the
182 	 * inodes's write_file list
183 	 */
184 	spin_lock(&fi->lock);
185 	if (list_empty(&ff->write_entry))
186 		list_add(&ff->write_entry, &fi->write_files);
187 	spin_unlock(&fi->lock);
188 }
189 
190 void fuse_finish_open(struct inode *inode, struct file *file)
191 {
192 	struct fuse_file *ff = file->private_data;
193 	struct fuse_conn *fc = get_fuse_conn(inode);
194 
195 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 		invalidate_inode_pages2(inode->i_mapping);
197 	if (ff->open_flags & FOPEN_STREAM)
198 		stream_open(inode, file);
199 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 		nonseekable_open(inode, file);
201 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 		struct fuse_inode *fi = get_fuse_inode(inode);
203 
204 		spin_lock(&fi->lock);
205 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 		i_size_write(inode, 0);
207 		spin_unlock(&fi->lock);
208 		fuse_invalidate_attr(inode);
209 		if (fc->writeback_cache)
210 			file_update_time(file);
211 	}
212 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 		fuse_link_write_file(file);
214 }
215 
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
217 {
218 	struct fuse_conn *fc = get_fuse_conn(inode);
219 	int err;
220 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 			  fc->atomic_o_trunc &&
222 			  fc->writeback_cache;
223 
224 	err = generic_file_open(inode, file);
225 	if (err)
226 		return err;
227 
228 	if (is_wb_truncate) {
229 		inode_lock(inode);
230 		fuse_set_nowrite(inode);
231 	}
232 
233 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
234 
235 	if (!err)
236 		fuse_finish_open(inode, file);
237 
238 	if (is_wb_truncate) {
239 		fuse_release_nowrite(inode);
240 		inode_unlock(inode);
241 	}
242 
243 	return err;
244 }
245 
246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 				 int flags, int opcode)
248 {
249 	struct fuse_conn *fc = ff->fc;
250 	struct fuse_release_args *ra = ff->release_args;
251 
252 	/* Inode is NULL on error path of fuse_create_open() */
253 	if (likely(fi)) {
254 		spin_lock(&fi->lock);
255 		list_del(&ff->write_entry);
256 		spin_unlock(&fi->lock);
257 	}
258 	spin_lock(&fc->lock);
259 	if (!RB_EMPTY_NODE(&ff->polled_node))
260 		rb_erase(&ff->polled_node, &fc->polled_files);
261 	spin_unlock(&fc->lock);
262 
263 	wake_up_interruptible_all(&ff->poll_wait);
264 
265 	ra->inarg.fh = ff->fh;
266 	ra->inarg.flags = flags;
267 	ra->args.in_numargs = 1;
268 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 	ra->args.in_args[0].value = &ra->inarg;
270 	ra->args.opcode = opcode;
271 	ra->args.nodeid = ff->nodeid;
272 	ra->args.force = true;
273 	ra->args.nocreds = true;
274 }
275 
276 void fuse_release_common(struct file *file, bool isdir)
277 {
278 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 	struct fuse_file *ff = file->private_data;
280 	struct fuse_release_args *ra = ff->release_args;
281 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
282 
283 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
284 
285 	if (ff->flock) {
286 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
288 							  (fl_owner_t) file);
289 	}
290 	/* Hold inode until release is finished */
291 	ra->inode = igrab(file_inode(file));
292 
293 	/*
294 	 * Normally this will send the RELEASE request, however if
295 	 * some asynchronous READ or WRITE requests are outstanding,
296 	 * the sending will be delayed.
297 	 *
298 	 * Make the release synchronous if this is a fuseblk mount,
299 	 * synchronous RELEASE is allowed (and desirable) in this case
300 	 * because the server can be trusted not to screw up.
301 	 */
302 	fuse_file_put(ff, ff->fc->destroy, isdir);
303 }
304 
305 static int fuse_open(struct inode *inode, struct file *file)
306 {
307 	return fuse_open_common(inode, file, false);
308 }
309 
310 static int fuse_release(struct inode *inode, struct file *file)
311 {
312 	struct fuse_conn *fc = get_fuse_conn(inode);
313 
314 	/* see fuse_vma_close() for !writeback_cache case */
315 	if (fc->writeback_cache)
316 		write_inode_now(inode, 1);
317 
318 	fuse_release_common(file, false);
319 
320 	/* return value is ignored by VFS */
321 	return 0;
322 }
323 
324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
325 {
326 	WARN_ON(refcount_read(&ff->count) > 1);
327 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
328 	/*
329 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 	 * synchronous, we are fine with not doing igrab() here"
331 	 */
332 	fuse_file_put(ff, true, false);
333 }
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
335 
336 /*
337  * Scramble the ID space with XTEA, so that the value of the files_struct
338  * pointer is not exposed to userspace.
339  */
340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
341 {
342 	u32 *k = fc->scramble_key;
343 	u64 v = (unsigned long) id;
344 	u32 v0 = v;
345 	u32 v1 = v >> 32;
346 	u32 sum = 0;
347 	int i;
348 
349 	for (i = 0; i < 32; i++) {
350 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
351 		sum += 0x9E3779B9;
352 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
353 	}
354 
355 	return (u64) v0 + ((u64) v1 << 32);
356 }
357 
358 struct fuse_writepage_args {
359 	struct fuse_io_args ia;
360 	struct rb_node writepages_entry;
361 	struct list_head queue_entry;
362 	struct fuse_writepage_args *next;
363 	struct inode *inode;
364 };
365 
366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 					    pgoff_t idx_from, pgoff_t idx_to)
368 {
369 	struct rb_node *n;
370 
371 	n = fi->writepages.rb_node;
372 
373 	while (n) {
374 		struct fuse_writepage_args *wpa;
375 		pgoff_t curr_index;
376 
377 		wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry);
378 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
379 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
380 		if (idx_from >= curr_index + wpa->ia.ap.num_pages)
381 			n = n->rb_right;
382 		else if (idx_to < curr_index)
383 			n = n->rb_left;
384 		else
385 			return wpa;
386 	}
387 	return NULL;
388 }
389 
390 /*
391  * Check if any page in a range is under writeback
392  *
393  * This is currently done by walking the list of writepage requests
394  * for the inode, which can be pretty inefficient.
395  */
396 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
397 				   pgoff_t idx_to)
398 {
399 	struct fuse_inode *fi = get_fuse_inode(inode);
400 	bool found;
401 
402 	spin_lock(&fi->lock);
403 	found = fuse_find_writeback(fi, idx_from, idx_to);
404 	spin_unlock(&fi->lock);
405 
406 	return found;
407 }
408 
409 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
410 {
411 	return fuse_range_is_writeback(inode, index, index);
412 }
413 
414 /*
415  * Wait for page writeback to be completed.
416  *
417  * Since fuse doesn't rely on the VM writeback tracking, this has to
418  * use some other means.
419  */
420 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
421 {
422 	struct fuse_inode *fi = get_fuse_inode(inode);
423 
424 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
425 }
426 
427 /*
428  * Wait for all pending writepages on the inode to finish.
429  *
430  * This is currently done by blocking further writes with FUSE_NOWRITE
431  * and waiting for all sent writes to complete.
432  *
433  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
434  * could conflict with truncation.
435  */
436 static void fuse_sync_writes(struct inode *inode)
437 {
438 	fuse_set_nowrite(inode);
439 	fuse_release_nowrite(inode);
440 }
441 
442 static int fuse_flush(struct file *file, fl_owner_t id)
443 {
444 	struct inode *inode = file_inode(file);
445 	struct fuse_conn *fc = get_fuse_conn(inode);
446 	struct fuse_file *ff = file->private_data;
447 	struct fuse_flush_in inarg;
448 	FUSE_ARGS(args);
449 	int err;
450 
451 	if (is_bad_inode(inode))
452 		return -EIO;
453 
454 	err = write_inode_now(inode, 1);
455 	if (err)
456 		return err;
457 
458 	inode_lock(inode);
459 	fuse_sync_writes(inode);
460 	inode_unlock(inode);
461 
462 	err = filemap_check_errors(file->f_mapping);
463 	if (err)
464 		return err;
465 
466 	err = 0;
467 	if (fc->no_flush)
468 		goto inval_attr_out;
469 
470 	memset(&inarg, 0, sizeof(inarg));
471 	inarg.fh = ff->fh;
472 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
473 	args.opcode = FUSE_FLUSH;
474 	args.nodeid = get_node_id(inode);
475 	args.in_numargs = 1;
476 	args.in_args[0].size = sizeof(inarg);
477 	args.in_args[0].value = &inarg;
478 	args.force = true;
479 
480 	err = fuse_simple_request(fc, &args);
481 	if (err == -ENOSYS) {
482 		fc->no_flush = 1;
483 		err = 0;
484 	}
485 
486 inval_attr_out:
487 	/*
488 	 * In memory i_blocks is not maintained by fuse, if writeback cache is
489 	 * enabled, i_blocks from cached attr may not be accurate.
490 	 */
491 	if (!err && fc->writeback_cache)
492 		fuse_invalidate_attr(inode);
493 	return err;
494 }
495 
496 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
497 		      int datasync, int opcode)
498 {
499 	struct inode *inode = file->f_mapping->host;
500 	struct fuse_conn *fc = get_fuse_conn(inode);
501 	struct fuse_file *ff = file->private_data;
502 	FUSE_ARGS(args);
503 	struct fuse_fsync_in inarg;
504 
505 	memset(&inarg, 0, sizeof(inarg));
506 	inarg.fh = ff->fh;
507 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
508 	args.opcode = opcode;
509 	args.nodeid = get_node_id(inode);
510 	args.in_numargs = 1;
511 	args.in_args[0].size = sizeof(inarg);
512 	args.in_args[0].value = &inarg;
513 	return fuse_simple_request(fc, &args);
514 }
515 
516 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
517 		      int datasync)
518 {
519 	struct inode *inode = file->f_mapping->host;
520 	struct fuse_conn *fc = get_fuse_conn(inode);
521 	int err;
522 
523 	if (is_bad_inode(inode))
524 		return -EIO;
525 
526 	inode_lock(inode);
527 
528 	/*
529 	 * Start writeback against all dirty pages of the inode, then
530 	 * wait for all outstanding writes, before sending the FSYNC
531 	 * request.
532 	 */
533 	err = file_write_and_wait_range(file, start, end);
534 	if (err)
535 		goto out;
536 
537 	fuse_sync_writes(inode);
538 
539 	/*
540 	 * Due to implementation of fuse writeback
541 	 * file_write_and_wait_range() does not catch errors.
542 	 * We have to do this directly after fuse_sync_writes()
543 	 */
544 	err = file_check_and_advance_wb_err(file);
545 	if (err)
546 		goto out;
547 
548 	err = sync_inode_metadata(inode, 1);
549 	if (err)
550 		goto out;
551 
552 	if (fc->no_fsync)
553 		goto out;
554 
555 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
556 	if (err == -ENOSYS) {
557 		fc->no_fsync = 1;
558 		err = 0;
559 	}
560 out:
561 	inode_unlock(inode);
562 
563 	return err;
564 }
565 
566 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
567 			 size_t count, int opcode)
568 {
569 	struct fuse_file *ff = file->private_data;
570 	struct fuse_args *args = &ia->ap.args;
571 
572 	ia->read.in.fh = ff->fh;
573 	ia->read.in.offset = pos;
574 	ia->read.in.size = count;
575 	ia->read.in.flags = file->f_flags;
576 	args->opcode = opcode;
577 	args->nodeid = ff->nodeid;
578 	args->in_numargs = 1;
579 	args->in_args[0].size = sizeof(ia->read.in);
580 	args->in_args[0].value = &ia->read.in;
581 	args->out_argvar = true;
582 	args->out_numargs = 1;
583 	args->out_args[0].size = count;
584 }
585 
586 static void fuse_release_user_pages(struct fuse_args_pages *ap,
587 				    bool should_dirty)
588 {
589 	unsigned int i;
590 
591 	for (i = 0; i < ap->num_pages; i++) {
592 		if (should_dirty)
593 			set_page_dirty_lock(ap->pages[i]);
594 		put_page(ap->pages[i]);
595 	}
596 }
597 
598 static void fuse_io_release(struct kref *kref)
599 {
600 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
601 }
602 
603 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
604 {
605 	if (io->err)
606 		return io->err;
607 
608 	if (io->bytes >= 0 && io->write)
609 		return -EIO;
610 
611 	return io->bytes < 0 ? io->size : io->bytes;
612 }
613 
614 /**
615  * In case of short read, the caller sets 'pos' to the position of
616  * actual end of fuse request in IO request. Otherwise, if bytes_requested
617  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
618  *
619  * An example:
620  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
621  * both submitted asynchronously. The first of them was ACKed by userspace as
622  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
623  * second request was ACKed as short, e.g. only 1K was read, resulting in
624  * pos == 33K.
625  *
626  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
627  * will be equal to the length of the longest contiguous fragment of
628  * transferred data starting from the beginning of IO request.
629  */
630 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
631 {
632 	int left;
633 
634 	spin_lock(&io->lock);
635 	if (err)
636 		io->err = io->err ? : err;
637 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
638 		io->bytes = pos;
639 
640 	left = --io->reqs;
641 	if (!left && io->blocking)
642 		complete(io->done);
643 	spin_unlock(&io->lock);
644 
645 	if (!left && !io->blocking) {
646 		ssize_t res = fuse_get_res_by_io(io);
647 
648 		if (res >= 0) {
649 			struct inode *inode = file_inode(io->iocb->ki_filp);
650 			struct fuse_conn *fc = get_fuse_conn(inode);
651 			struct fuse_inode *fi = get_fuse_inode(inode);
652 
653 			spin_lock(&fi->lock);
654 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
655 			spin_unlock(&fi->lock);
656 		}
657 
658 		io->iocb->ki_complete(io->iocb, res, 0);
659 	}
660 
661 	kref_put(&io->refcnt, fuse_io_release);
662 }
663 
664 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
665 					  unsigned int npages)
666 {
667 	struct fuse_io_args *ia;
668 
669 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
670 	if (ia) {
671 		ia->io = io;
672 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
673 						&ia->ap.descs);
674 		if (!ia->ap.pages) {
675 			kfree(ia);
676 			ia = NULL;
677 		}
678 	}
679 	return ia;
680 }
681 
682 static void fuse_io_free(struct fuse_io_args *ia)
683 {
684 	kfree(ia->ap.pages);
685 	kfree(ia);
686 }
687 
688 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
689 				  int err)
690 {
691 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
692 	struct fuse_io_priv *io = ia->io;
693 	ssize_t pos = -1;
694 
695 	fuse_release_user_pages(&ia->ap, io->should_dirty);
696 
697 	if (err) {
698 		/* Nothing */
699 	} else if (io->write) {
700 		if (ia->write.out.size > ia->write.in.size) {
701 			err = -EIO;
702 		} else if (ia->write.in.size != ia->write.out.size) {
703 			pos = ia->write.in.offset - io->offset +
704 				ia->write.out.size;
705 		}
706 	} else {
707 		u32 outsize = args->out_args[0].size;
708 
709 		if (ia->read.in.size != outsize)
710 			pos = ia->read.in.offset - io->offset + outsize;
711 	}
712 
713 	fuse_aio_complete(io, err, pos);
714 	fuse_io_free(ia);
715 }
716 
717 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
718 				   struct fuse_io_args *ia, size_t num_bytes)
719 {
720 	ssize_t err;
721 	struct fuse_io_priv *io = ia->io;
722 
723 	spin_lock(&io->lock);
724 	kref_get(&io->refcnt);
725 	io->size += num_bytes;
726 	io->reqs++;
727 	spin_unlock(&io->lock);
728 
729 	ia->ap.args.end = fuse_aio_complete_req;
730 	ia->ap.args.may_block = io->should_dirty;
731 	err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
732 	if (err)
733 		fuse_aio_complete_req(fc, &ia->ap.args, err);
734 
735 	return num_bytes;
736 }
737 
738 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
739 			      fl_owner_t owner)
740 {
741 	struct file *file = ia->io->iocb->ki_filp;
742 	struct fuse_file *ff = file->private_data;
743 	struct fuse_conn *fc = ff->fc;
744 
745 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
746 	if (owner != NULL) {
747 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
748 		ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
749 	}
750 
751 	if (ia->io->async)
752 		return fuse_async_req_send(fc, ia, count);
753 
754 	return fuse_simple_request(fc, &ia->ap.args);
755 }
756 
757 static void fuse_read_update_size(struct inode *inode, loff_t size,
758 				  u64 attr_ver)
759 {
760 	struct fuse_conn *fc = get_fuse_conn(inode);
761 	struct fuse_inode *fi = get_fuse_inode(inode);
762 
763 	spin_lock(&fi->lock);
764 	if (attr_ver == fi->attr_version && size < inode->i_size &&
765 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
766 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
767 		i_size_write(inode, size);
768 	}
769 	spin_unlock(&fi->lock);
770 }
771 
772 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
773 			    struct fuse_args_pages *ap)
774 {
775 	struct fuse_conn *fc = get_fuse_conn(inode);
776 
777 	if (fc->writeback_cache) {
778 		/*
779 		 * A hole in a file. Some data after the hole are in page cache,
780 		 * but have not reached the client fs yet. So, the hole is not
781 		 * present there.
782 		 */
783 		int i;
784 		int start_idx = num_read >> PAGE_SHIFT;
785 		size_t off = num_read & (PAGE_SIZE - 1);
786 
787 		for (i = start_idx; i < ap->num_pages; i++) {
788 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
789 			off = 0;
790 		}
791 	} else {
792 		loff_t pos = page_offset(ap->pages[0]) + num_read;
793 		fuse_read_update_size(inode, pos, attr_ver);
794 	}
795 }
796 
797 static int fuse_do_readpage(struct file *file, struct page *page)
798 {
799 	struct inode *inode = page->mapping->host;
800 	struct fuse_conn *fc = get_fuse_conn(inode);
801 	loff_t pos = page_offset(page);
802 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
803 	struct fuse_io_args ia = {
804 		.ap.args.page_zeroing = true,
805 		.ap.args.out_pages = true,
806 		.ap.num_pages = 1,
807 		.ap.pages = &page,
808 		.ap.descs = &desc,
809 	};
810 	ssize_t res;
811 	u64 attr_ver;
812 
813 	/*
814 	 * Page writeback can extend beyond the lifetime of the
815 	 * page-cache page, so make sure we read a properly synced
816 	 * page.
817 	 */
818 	fuse_wait_on_page_writeback(inode, page->index);
819 
820 	attr_ver = fuse_get_attr_version(fc);
821 
822 	/* Don't overflow end offset */
823 	if (pos + (desc.length - 1) == LLONG_MAX)
824 		desc.length--;
825 
826 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
827 	res = fuse_simple_request(fc, &ia.ap.args);
828 	if (res < 0)
829 		return res;
830 	/*
831 	 * Short read means EOF.  If file size is larger, truncate it
832 	 */
833 	if (res < desc.length)
834 		fuse_short_read(inode, attr_ver, res, &ia.ap);
835 
836 	SetPageUptodate(page);
837 
838 	return 0;
839 }
840 
841 static int fuse_readpage(struct file *file, struct page *page)
842 {
843 	struct inode *inode = page->mapping->host;
844 	int err;
845 
846 	err = -EIO;
847 	if (is_bad_inode(inode))
848 		goto out;
849 
850 	err = fuse_do_readpage(file, page);
851 	fuse_invalidate_atime(inode);
852  out:
853 	unlock_page(page);
854 	return err;
855 }
856 
857 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
858 			       int err)
859 {
860 	int i;
861 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
862 	struct fuse_args_pages *ap = &ia->ap;
863 	size_t count = ia->read.in.size;
864 	size_t num_read = args->out_args[0].size;
865 	struct address_space *mapping = NULL;
866 
867 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
868 		mapping = ap->pages[i]->mapping;
869 
870 	if (mapping) {
871 		struct inode *inode = mapping->host;
872 
873 		/*
874 		 * Short read means EOF. If file size is larger, truncate it
875 		 */
876 		if (!err && num_read < count)
877 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
878 
879 		fuse_invalidate_atime(inode);
880 	}
881 
882 	for (i = 0; i < ap->num_pages; i++) {
883 		struct page *page = ap->pages[i];
884 
885 		if (!err)
886 			SetPageUptodate(page);
887 		else
888 			SetPageError(page);
889 		unlock_page(page);
890 		put_page(page);
891 	}
892 	if (ia->ff)
893 		fuse_file_put(ia->ff, false, false);
894 
895 	fuse_io_free(ia);
896 }
897 
898 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
899 {
900 	struct fuse_file *ff = file->private_data;
901 	struct fuse_conn *fc = ff->fc;
902 	struct fuse_args_pages *ap = &ia->ap;
903 	loff_t pos = page_offset(ap->pages[0]);
904 	size_t count = ap->num_pages << PAGE_SHIFT;
905 	ssize_t res;
906 	int err;
907 
908 	ap->args.out_pages = true;
909 	ap->args.page_zeroing = true;
910 	ap->args.page_replace = true;
911 
912 	/* Don't overflow end offset */
913 	if (pos + (count - 1) == LLONG_MAX) {
914 		count--;
915 		ap->descs[ap->num_pages - 1].length--;
916 	}
917 	WARN_ON((loff_t) (pos + count) < 0);
918 
919 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
920 	ia->read.attr_ver = fuse_get_attr_version(fc);
921 	if (fc->async_read) {
922 		ia->ff = fuse_file_get(ff);
923 		ap->args.end = fuse_readpages_end;
924 		err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
925 		if (!err)
926 			return;
927 	} else {
928 		res = fuse_simple_request(fc, &ap->args);
929 		err = res < 0 ? res : 0;
930 	}
931 	fuse_readpages_end(fc, &ap->args, err);
932 }
933 
934 static void fuse_readahead(struct readahead_control *rac)
935 {
936 	struct inode *inode = rac->mapping->host;
937 	struct fuse_conn *fc = get_fuse_conn(inode);
938 	unsigned int i, max_pages, nr_pages = 0;
939 
940 	if (is_bad_inode(inode))
941 		return;
942 
943 	max_pages = min_t(unsigned int, fc->max_pages,
944 			fc->max_read / PAGE_SIZE);
945 
946 	for (;;) {
947 		struct fuse_io_args *ia;
948 		struct fuse_args_pages *ap;
949 
950 		nr_pages = readahead_count(rac) - nr_pages;
951 		if (nr_pages > max_pages)
952 			nr_pages = max_pages;
953 		if (nr_pages == 0)
954 			break;
955 		ia = fuse_io_alloc(NULL, nr_pages);
956 		if (!ia)
957 			return;
958 		ap = &ia->ap;
959 		nr_pages = __readahead_batch(rac, ap->pages, nr_pages);
960 		for (i = 0; i < nr_pages; i++) {
961 			fuse_wait_on_page_writeback(inode,
962 						    readahead_index(rac) + i);
963 			ap->descs[i].length = PAGE_SIZE;
964 		}
965 		ap->num_pages = nr_pages;
966 		fuse_send_readpages(ia, rac->file);
967 	}
968 }
969 
970 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
971 {
972 	struct inode *inode = iocb->ki_filp->f_mapping->host;
973 	struct fuse_conn *fc = get_fuse_conn(inode);
974 
975 	/*
976 	 * In auto invalidate mode, always update attributes on read.
977 	 * Otherwise, only update if we attempt to read past EOF (to ensure
978 	 * i_size is up to date).
979 	 */
980 	if (fc->auto_inval_data ||
981 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
982 		int err;
983 		err = fuse_update_attributes(inode, iocb->ki_filp);
984 		if (err)
985 			return err;
986 	}
987 
988 	return generic_file_read_iter(iocb, to);
989 }
990 
991 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
992 				 loff_t pos, size_t count)
993 {
994 	struct fuse_args *args = &ia->ap.args;
995 
996 	ia->write.in.fh = ff->fh;
997 	ia->write.in.offset = pos;
998 	ia->write.in.size = count;
999 	args->opcode = FUSE_WRITE;
1000 	args->nodeid = ff->nodeid;
1001 	args->in_numargs = 2;
1002 	if (ff->fc->minor < 9)
1003 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1004 	else
1005 		args->in_args[0].size = sizeof(ia->write.in);
1006 	args->in_args[0].value = &ia->write.in;
1007 	args->in_args[1].size = count;
1008 	args->out_numargs = 1;
1009 	args->out_args[0].size = sizeof(ia->write.out);
1010 	args->out_args[0].value = &ia->write.out;
1011 }
1012 
1013 static unsigned int fuse_write_flags(struct kiocb *iocb)
1014 {
1015 	unsigned int flags = iocb->ki_filp->f_flags;
1016 
1017 	if (iocb->ki_flags & IOCB_DSYNC)
1018 		flags |= O_DSYNC;
1019 	if (iocb->ki_flags & IOCB_SYNC)
1020 		flags |= O_SYNC;
1021 
1022 	return flags;
1023 }
1024 
1025 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1026 			       size_t count, fl_owner_t owner)
1027 {
1028 	struct kiocb *iocb = ia->io->iocb;
1029 	struct file *file = iocb->ki_filp;
1030 	struct fuse_file *ff = file->private_data;
1031 	struct fuse_conn *fc = ff->fc;
1032 	struct fuse_write_in *inarg = &ia->write.in;
1033 	ssize_t err;
1034 
1035 	fuse_write_args_fill(ia, ff, pos, count);
1036 	inarg->flags = fuse_write_flags(iocb);
1037 	if (owner != NULL) {
1038 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1039 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1040 	}
1041 
1042 	if (ia->io->async)
1043 		return fuse_async_req_send(fc, ia, count);
1044 
1045 	err = fuse_simple_request(fc, &ia->ap.args);
1046 	if (!err && ia->write.out.size > count)
1047 		err = -EIO;
1048 
1049 	return err ?: ia->write.out.size;
1050 }
1051 
1052 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1053 {
1054 	struct fuse_conn *fc = get_fuse_conn(inode);
1055 	struct fuse_inode *fi = get_fuse_inode(inode);
1056 	bool ret = false;
1057 
1058 	spin_lock(&fi->lock);
1059 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1060 	if (pos > inode->i_size) {
1061 		i_size_write(inode, pos);
1062 		ret = true;
1063 	}
1064 	spin_unlock(&fi->lock);
1065 
1066 	return ret;
1067 }
1068 
1069 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1070 				     struct kiocb *iocb, struct inode *inode,
1071 				     loff_t pos, size_t count)
1072 {
1073 	struct fuse_args_pages *ap = &ia->ap;
1074 	struct file *file = iocb->ki_filp;
1075 	struct fuse_file *ff = file->private_data;
1076 	struct fuse_conn *fc = ff->fc;
1077 	unsigned int offset, i;
1078 	int err;
1079 
1080 	for (i = 0; i < ap->num_pages; i++)
1081 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1082 
1083 	fuse_write_args_fill(ia, ff, pos, count);
1084 	ia->write.in.flags = fuse_write_flags(iocb);
1085 
1086 	err = fuse_simple_request(fc, &ap->args);
1087 	if (!err && ia->write.out.size > count)
1088 		err = -EIO;
1089 
1090 	offset = ap->descs[0].offset;
1091 	count = ia->write.out.size;
1092 	for (i = 0; i < ap->num_pages; i++) {
1093 		struct page *page = ap->pages[i];
1094 
1095 		if (!err && !offset && count >= PAGE_SIZE)
1096 			SetPageUptodate(page);
1097 
1098 		if (count > PAGE_SIZE - offset)
1099 			count -= PAGE_SIZE - offset;
1100 		else
1101 			count = 0;
1102 		offset = 0;
1103 
1104 		unlock_page(page);
1105 		put_page(page);
1106 	}
1107 
1108 	return err;
1109 }
1110 
1111 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1112 				     struct address_space *mapping,
1113 				     struct iov_iter *ii, loff_t pos,
1114 				     unsigned int max_pages)
1115 {
1116 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1117 	unsigned offset = pos & (PAGE_SIZE - 1);
1118 	size_t count = 0;
1119 	int err;
1120 
1121 	ap->args.in_pages = true;
1122 	ap->descs[0].offset = offset;
1123 
1124 	do {
1125 		size_t tmp;
1126 		struct page *page;
1127 		pgoff_t index = pos >> PAGE_SHIFT;
1128 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1129 				     iov_iter_count(ii));
1130 
1131 		bytes = min_t(size_t, bytes, fc->max_write - count);
1132 
1133  again:
1134 		err = -EFAULT;
1135 		if (iov_iter_fault_in_readable(ii, bytes))
1136 			break;
1137 
1138 		err = -ENOMEM;
1139 		page = grab_cache_page_write_begin(mapping, index, 0);
1140 		if (!page)
1141 			break;
1142 
1143 		if (mapping_writably_mapped(mapping))
1144 			flush_dcache_page(page);
1145 
1146 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1147 		flush_dcache_page(page);
1148 
1149 		iov_iter_advance(ii, tmp);
1150 		if (!tmp) {
1151 			unlock_page(page);
1152 			put_page(page);
1153 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1154 			goto again;
1155 		}
1156 
1157 		err = 0;
1158 		ap->pages[ap->num_pages] = page;
1159 		ap->descs[ap->num_pages].length = tmp;
1160 		ap->num_pages++;
1161 
1162 		count += tmp;
1163 		pos += tmp;
1164 		offset += tmp;
1165 		if (offset == PAGE_SIZE)
1166 			offset = 0;
1167 
1168 		if (!fc->big_writes)
1169 			break;
1170 	} while (iov_iter_count(ii) && count < fc->max_write &&
1171 		 ap->num_pages < max_pages && offset == 0);
1172 
1173 	return count > 0 ? count : err;
1174 }
1175 
1176 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1177 				     unsigned int max_pages)
1178 {
1179 	return min_t(unsigned int,
1180 		     ((pos + len - 1) >> PAGE_SHIFT) -
1181 		     (pos >> PAGE_SHIFT) + 1,
1182 		     max_pages);
1183 }
1184 
1185 static ssize_t fuse_perform_write(struct kiocb *iocb,
1186 				  struct address_space *mapping,
1187 				  struct iov_iter *ii, loff_t pos)
1188 {
1189 	struct inode *inode = mapping->host;
1190 	struct fuse_conn *fc = get_fuse_conn(inode);
1191 	struct fuse_inode *fi = get_fuse_inode(inode);
1192 	int err = 0;
1193 	ssize_t res = 0;
1194 
1195 	if (inode->i_size < pos + iov_iter_count(ii))
1196 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1197 
1198 	do {
1199 		ssize_t count;
1200 		struct fuse_io_args ia = {};
1201 		struct fuse_args_pages *ap = &ia.ap;
1202 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1203 						      fc->max_pages);
1204 
1205 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1206 		if (!ap->pages) {
1207 			err = -ENOMEM;
1208 			break;
1209 		}
1210 
1211 		count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1212 		if (count <= 0) {
1213 			err = count;
1214 		} else {
1215 			err = fuse_send_write_pages(&ia, iocb, inode,
1216 						    pos, count);
1217 			if (!err) {
1218 				size_t num_written = ia.write.out.size;
1219 
1220 				res += num_written;
1221 				pos += num_written;
1222 
1223 				/* break out of the loop on short write */
1224 				if (num_written != count)
1225 					err = -EIO;
1226 			}
1227 		}
1228 		kfree(ap->pages);
1229 	} while (!err && iov_iter_count(ii));
1230 
1231 	if (res > 0)
1232 		fuse_write_update_size(inode, pos);
1233 
1234 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1235 	fuse_invalidate_attr(inode);
1236 
1237 	return res > 0 ? res : err;
1238 }
1239 
1240 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1241 {
1242 	struct file *file = iocb->ki_filp;
1243 	struct address_space *mapping = file->f_mapping;
1244 	ssize_t written = 0;
1245 	ssize_t written_buffered = 0;
1246 	struct inode *inode = mapping->host;
1247 	ssize_t err;
1248 	loff_t endbyte = 0;
1249 
1250 	if (get_fuse_conn(inode)->writeback_cache) {
1251 		/* Update size (EOF optimization) and mode (SUID clearing) */
1252 		err = fuse_update_attributes(mapping->host, file);
1253 		if (err)
1254 			return err;
1255 
1256 		return generic_file_write_iter(iocb, from);
1257 	}
1258 
1259 	inode_lock(inode);
1260 
1261 	/* We can write back this queue in page reclaim */
1262 	current->backing_dev_info = inode_to_bdi(inode);
1263 
1264 	err = generic_write_checks(iocb, from);
1265 	if (err <= 0)
1266 		goto out;
1267 
1268 	err = file_remove_privs(file);
1269 	if (err)
1270 		goto out;
1271 
1272 	err = file_update_time(file);
1273 	if (err)
1274 		goto out;
1275 
1276 	if (iocb->ki_flags & IOCB_DIRECT) {
1277 		loff_t pos = iocb->ki_pos;
1278 		written = generic_file_direct_write(iocb, from);
1279 		if (written < 0 || !iov_iter_count(from))
1280 			goto out;
1281 
1282 		pos += written;
1283 
1284 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1285 		if (written_buffered < 0) {
1286 			err = written_buffered;
1287 			goto out;
1288 		}
1289 		endbyte = pos + written_buffered - 1;
1290 
1291 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1292 						   endbyte);
1293 		if (err)
1294 			goto out;
1295 
1296 		invalidate_mapping_pages(file->f_mapping,
1297 					 pos >> PAGE_SHIFT,
1298 					 endbyte >> PAGE_SHIFT);
1299 
1300 		written += written_buffered;
1301 		iocb->ki_pos = pos + written_buffered;
1302 	} else {
1303 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1304 		if (written >= 0)
1305 			iocb->ki_pos += written;
1306 	}
1307 out:
1308 	current->backing_dev_info = NULL;
1309 	inode_unlock(inode);
1310 	if (written > 0)
1311 		written = generic_write_sync(iocb, written);
1312 
1313 	return written ? written : err;
1314 }
1315 
1316 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1317 					       unsigned int index,
1318 					       unsigned int nr_pages)
1319 {
1320 	int i;
1321 
1322 	for (i = index; i < index + nr_pages; i++)
1323 		descs[i].length = PAGE_SIZE - descs[i].offset;
1324 }
1325 
1326 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1327 {
1328 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1329 }
1330 
1331 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1332 					size_t max_size)
1333 {
1334 	return min(iov_iter_single_seg_count(ii), max_size);
1335 }
1336 
1337 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1338 			       size_t *nbytesp, int write,
1339 			       unsigned int max_pages)
1340 {
1341 	size_t nbytes = 0;  /* # bytes already packed in req */
1342 	ssize_t ret = 0;
1343 
1344 	/* Special case for kernel I/O: can copy directly into the buffer */
1345 	if (iov_iter_is_kvec(ii)) {
1346 		unsigned long user_addr = fuse_get_user_addr(ii);
1347 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1348 
1349 		if (write)
1350 			ap->args.in_args[1].value = (void *) user_addr;
1351 		else
1352 			ap->args.out_args[0].value = (void *) user_addr;
1353 
1354 		iov_iter_advance(ii, frag_size);
1355 		*nbytesp = frag_size;
1356 		return 0;
1357 	}
1358 
1359 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1360 		unsigned npages;
1361 		size_t start;
1362 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1363 					*nbytesp - nbytes,
1364 					max_pages - ap->num_pages,
1365 					&start);
1366 		if (ret < 0)
1367 			break;
1368 
1369 		iov_iter_advance(ii, ret);
1370 		nbytes += ret;
1371 
1372 		ret += start;
1373 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1374 
1375 		ap->descs[ap->num_pages].offset = start;
1376 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1377 
1378 		ap->num_pages += npages;
1379 		ap->descs[ap->num_pages - 1].length -=
1380 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1381 	}
1382 
1383 	if (write)
1384 		ap->args.in_pages = true;
1385 	else
1386 		ap->args.out_pages = true;
1387 
1388 	*nbytesp = nbytes;
1389 
1390 	return ret < 0 ? ret : 0;
1391 }
1392 
1393 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1394 		       loff_t *ppos, int flags)
1395 {
1396 	int write = flags & FUSE_DIO_WRITE;
1397 	int cuse = flags & FUSE_DIO_CUSE;
1398 	struct file *file = io->iocb->ki_filp;
1399 	struct inode *inode = file->f_mapping->host;
1400 	struct fuse_file *ff = file->private_data;
1401 	struct fuse_conn *fc = ff->fc;
1402 	size_t nmax = write ? fc->max_write : fc->max_read;
1403 	loff_t pos = *ppos;
1404 	size_t count = iov_iter_count(iter);
1405 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1406 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1407 	ssize_t res = 0;
1408 	int err = 0;
1409 	struct fuse_io_args *ia;
1410 	unsigned int max_pages;
1411 
1412 	max_pages = iov_iter_npages(iter, fc->max_pages);
1413 	ia = fuse_io_alloc(io, max_pages);
1414 	if (!ia)
1415 		return -ENOMEM;
1416 
1417 	ia->io = io;
1418 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1419 		if (!write)
1420 			inode_lock(inode);
1421 		fuse_sync_writes(inode);
1422 		if (!write)
1423 			inode_unlock(inode);
1424 	}
1425 
1426 	io->should_dirty = !write && iter_is_iovec(iter);
1427 	while (count) {
1428 		ssize_t nres;
1429 		fl_owner_t owner = current->files;
1430 		size_t nbytes = min(count, nmax);
1431 
1432 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1433 					  max_pages);
1434 		if (err && !nbytes)
1435 			break;
1436 
1437 		if (write) {
1438 			if (!capable(CAP_FSETID))
1439 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1440 
1441 			nres = fuse_send_write(ia, pos, nbytes, owner);
1442 		} else {
1443 			nres = fuse_send_read(ia, pos, nbytes, owner);
1444 		}
1445 
1446 		if (!io->async || nres < 0) {
1447 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1448 			fuse_io_free(ia);
1449 		}
1450 		ia = NULL;
1451 		if (nres < 0) {
1452 			iov_iter_revert(iter, nbytes);
1453 			err = nres;
1454 			break;
1455 		}
1456 		WARN_ON(nres > nbytes);
1457 
1458 		count -= nres;
1459 		res += nres;
1460 		pos += nres;
1461 		if (nres != nbytes) {
1462 			iov_iter_revert(iter, nbytes - nres);
1463 			break;
1464 		}
1465 		if (count) {
1466 			max_pages = iov_iter_npages(iter, fc->max_pages);
1467 			ia = fuse_io_alloc(io, max_pages);
1468 			if (!ia)
1469 				break;
1470 		}
1471 	}
1472 	if (ia)
1473 		fuse_io_free(ia);
1474 	if (res > 0)
1475 		*ppos = pos;
1476 
1477 	return res > 0 ? res : err;
1478 }
1479 EXPORT_SYMBOL_GPL(fuse_direct_io);
1480 
1481 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1482 				  struct iov_iter *iter,
1483 				  loff_t *ppos)
1484 {
1485 	ssize_t res;
1486 	struct inode *inode = file_inode(io->iocb->ki_filp);
1487 
1488 	res = fuse_direct_io(io, iter, ppos, 0);
1489 
1490 	fuse_invalidate_atime(inode);
1491 
1492 	return res;
1493 }
1494 
1495 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1496 
1497 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1498 {
1499 	ssize_t res;
1500 
1501 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1502 		res = fuse_direct_IO(iocb, to);
1503 	} else {
1504 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1505 
1506 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1507 	}
1508 
1509 	return res;
1510 }
1511 
1512 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1513 {
1514 	struct inode *inode = file_inode(iocb->ki_filp);
1515 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1516 	ssize_t res;
1517 
1518 	/* Don't allow parallel writes to the same file */
1519 	inode_lock(inode);
1520 	res = generic_write_checks(iocb, from);
1521 	if (res > 0) {
1522 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1523 			res = fuse_direct_IO(iocb, from);
1524 		} else {
1525 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1526 					     FUSE_DIO_WRITE);
1527 		}
1528 	}
1529 	fuse_invalidate_attr(inode);
1530 	if (res > 0)
1531 		fuse_write_update_size(inode, iocb->ki_pos);
1532 	inode_unlock(inode);
1533 
1534 	return res;
1535 }
1536 
1537 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1538 {
1539 	struct file *file = iocb->ki_filp;
1540 	struct fuse_file *ff = file->private_data;
1541 
1542 	if (is_bad_inode(file_inode(file)))
1543 		return -EIO;
1544 
1545 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1546 		return fuse_cache_read_iter(iocb, to);
1547 	else
1548 		return fuse_direct_read_iter(iocb, to);
1549 }
1550 
1551 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1552 {
1553 	struct file *file = iocb->ki_filp;
1554 	struct fuse_file *ff = file->private_data;
1555 
1556 	if (is_bad_inode(file_inode(file)))
1557 		return -EIO;
1558 
1559 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1560 		return fuse_cache_write_iter(iocb, from);
1561 	else
1562 		return fuse_direct_write_iter(iocb, from);
1563 }
1564 
1565 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1566 {
1567 	struct fuse_args_pages *ap = &wpa->ia.ap;
1568 	int i;
1569 
1570 	for (i = 0; i < ap->num_pages; i++)
1571 		__free_page(ap->pages[i]);
1572 
1573 	if (wpa->ia.ff)
1574 		fuse_file_put(wpa->ia.ff, false, false);
1575 
1576 	kfree(ap->pages);
1577 	kfree(wpa);
1578 }
1579 
1580 static void fuse_writepage_finish(struct fuse_conn *fc,
1581 				  struct fuse_writepage_args *wpa)
1582 {
1583 	struct fuse_args_pages *ap = &wpa->ia.ap;
1584 	struct inode *inode = wpa->inode;
1585 	struct fuse_inode *fi = get_fuse_inode(inode);
1586 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1587 	int i;
1588 
1589 	rb_erase(&wpa->writepages_entry, &fi->writepages);
1590 	for (i = 0; i < ap->num_pages; i++) {
1591 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1592 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1593 		wb_writeout_inc(&bdi->wb);
1594 	}
1595 	wake_up(&fi->page_waitq);
1596 }
1597 
1598 /* Called under fi->lock, may release and reacquire it */
1599 static void fuse_send_writepage(struct fuse_conn *fc,
1600 				struct fuse_writepage_args *wpa, loff_t size)
1601 __releases(fi->lock)
1602 __acquires(fi->lock)
1603 {
1604 	struct fuse_writepage_args *aux, *next;
1605 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1606 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1607 	struct fuse_args *args = &wpa->ia.ap.args;
1608 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1609 	int err;
1610 
1611 	fi->writectr++;
1612 	if (inarg->offset + data_size <= size) {
1613 		inarg->size = data_size;
1614 	} else if (inarg->offset < size) {
1615 		inarg->size = size - inarg->offset;
1616 	} else {
1617 		/* Got truncated off completely */
1618 		goto out_free;
1619 	}
1620 
1621 	args->in_args[1].size = inarg->size;
1622 	args->force = true;
1623 	args->nocreds = true;
1624 
1625 	err = fuse_simple_background(fc, args, GFP_ATOMIC);
1626 	if (err == -ENOMEM) {
1627 		spin_unlock(&fi->lock);
1628 		err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1629 		spin_lock(&fi->lock);
1630 	}
1631 
1632 	/* Fails on broken connection only */
1633 	if (unlikely(err))
1634 		goto out_free;
1635 
1636 	return;
1637 
1638  out_free:
1639 	fi->writectr--;
1640 	fuse_writepage_finish(fc, wpa);
1641 	spin_unlock(&fi->lock);
1642 
1643 	/* After fuse_writepage_finish() aux request list is private */
1644 	for (aux = wpa->next; aux; aux = next) {
1645 		next = aux->next;
1646 		aux->next = NULL;
1647 		fuse_writepage_free(aux);
1648 	}
1649 
1650 	fuse_writepage_free(wpa);
1651 	spin_lock(&fi->lock);
1652 }
1653 
1654 /*
1655  * If fi->writectr is positive (no truncate or fsync going on) send
1656  * all queued writepage requests.
1657  *
1658  * Called with fi->lock
1659  */
1660 void fuse_flush_writepages(struct inode *inode)
1661 __releases(fi->lock)
1662 __acquires(fi->lock)
1663 {
1664 	struct fuse_conn *fc = get_fuse_conn(inode);
1665 	struct fuse_inode *fi = get_fuse_inode(inode);
1666 	loff_t crop = i_size_read(inode);
1667 	struct fuse_writepage_args *wpa;
1668 
1669 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1670 		wpa = list_entry(fi->queued_writes.next,
1671 				 struct fuse_writepage_args, queue_entry);
1672 		list_del_init(&wpa->queue_entry);
1673 		fuse_send_writepage(fc, wpa, crop);
1674 	}
1675 }
1676 
1677 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa)
1678 {
1679 	pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT;
1680 	pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1;
1681 	struct rb_node **p = &root->rb_node;
1682 	struct rb_node  *parent = NULL;
1683 
1684 	WARN_ON(!wpa->ia.ap.num_pages);
1685 	while (*p) {
1686 		struct fuse_writepage_args *curr;
1687 		pgoff_t curr_index;
1688 
1689 		parent = *p;
1690 		curr = rb_entry(parent, struct fuse_writepage_args,
1691 				writepages_entry);
1692 		WARN_ON(curr->inode != wpa->inode);
1693 		curr_index = curr->ia.write.in.offset >> PAGE_SHIFT;
1694 
1695 		if (idx_from >= curr_index + curr->ia.ap.num_pages)
1696 			p = &(*p)->rb_right;
1697 		else if (idx_to < curr_index)
1698 			p = &(*p)->rb_left;
1699 		else
1700 			return (void) WARN_ON(true);
1701 	}
1702 
1703 	rb_link_node(&wpa->writepages_entry, parent, p);
1704 	rb_insert_color(&wpa->writepages_entry, root);
1705 }
1706 
1707 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1708 			       int error)
1709 {
1710 	struct fuse_writepage_args *wpa =
1711 		container_of(args, typeof(*wpa), ia.ap.args);
1712 	struct inode *inode = wpa->inode;
1713 	struct fuse_inode *fi = get_fuse_inode(inode);
1714 
1715 	mapping_set_error(inode->i_mapping, error);
1716 	spin_lock(&fi->lock);
1717 	while (wpa->next) {
1718 		struct fuse_conn *fc = get_fuse_conn(inode);
1719 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1720 		struct fuse_writepage_args *next = wpa->next;
1721 
1722 		wpa->next = next->next;
1723 		next->next = NULL;
1724 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1725 		tree_insert(&fi->writepages, next);
1726 
1727 		/*
1728 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1729 		 * based on primary request size.
1730 		 *
1731 		 * 1st case (trivial): there are no concurrent activities using
1732 		 * fuse_set/release_nowrite.  Then we're on safe side because
1733 		 * fuse_flush_writepages() would call fuse_send_writepage()
1734 		 * anyway.
1735 		 *
1736 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1737 		 * now for completion of all in-flight requests.  This happens
1738 		 * rarely and no more than once per page, so this should be
1739 		 * okay.
1740 		 *
1741 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1742 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1743 		 * that fuse_set_nowrite returned implies that all in-flight
1744 		 * requests were completed along with all of their secondary
1745 		 * requests.  Further primary requests are blocked by negative
1746 		 * writectr.  Hence there cannot be any in-flight requests and
1747 		 * no invocations of fuse_writepage_end() while we're in
1748 		 * fuse_set_nowrite..fuse_release_nowrite section.
1749 		 */
1750 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1751 	}
1752 	fi->writectr--;
1753 	fuse_writepage_finish(fc, wpa);
1754 	spin_unlock(&fi->lock);
1755 	fuse_writepage_free(wpa);
1756 }
1757 
1758 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1759 					       struct fuse_inode *fi)
1760 {
1761 	struct fuse_file *ff = NULL;
1762 
1763 	spin_lock(&fi->lock);
1764 	if (!list_empty(&fi->write_files)) {
1765 		ff = list_entry(fi->write_files.next, struct fuse_file,
1766 				write_entry);
1767 		fuse_file_get(ff);
1768 	}
1769 	spin_unlock(&fi->lock);
1770 
1771 	return ff;
1772 }
1773 
1774 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1775 					     struct fuse_inode *fi)
1776 {
1777 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1778 	WARN_ON(!ff);
1779 	return ff;
1780 }
1781 
1782 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1783 {
1784 	struct fuse_conn *fc = get_fuse_conn(inode);
1785 	struct fuse_inode *fi = get_fuse_inode(inode);
1786 	struct fuse_file *ff;
1787 	int err;
1788 
1789 	ff = __fuse_write_file_get(fc, fi);
1790 	err = fuse_flush_times(inode, ff);
1791 	if (ff)
1792 		fuse_file_put(ff, false, false);
1793 
1794 	return err;
1795 }
1796 
1797 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1798 {
1799 	struct fuse_writepage_args *wpa;
1800 	struct fuse_args_pages *ap;
1801 
1802 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1803 	if (wpa) {
1804 		ap = &wpa->ia.ap;
1805 		ap->num_pages = 0;
1806 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1807 		if (!ap->pages) {
1808 			kfree(wpa);
1809 			wpa = NULL;
1810 		}
1811 	}
1812 	return wpa;
1813 
1814 }
1815 
1816 static int fuse_writepage_locked(struct page *page)
1817 {
1818 	struct address_space *mapping = page->mapping;
1819 	struct inode *inode = mapping->host;
1820 	struct fuse_conn *fc = get_fuse_conn(inode);
1821 	struct fuse_inode *fi = get_fuse_inode(inode);
1822 	struct fuse_writepage_args *wpa;
1823 	struct fuse_args_pages *ap;
1824 	struct page *tmp_page;
1825 	int error = -ENOMEM;
1826 
1827 	set_page_writeback(page);
1828 
1829 	wpa = fuse_writepage_args_alloc();
1830 	if (!wpa)
1831 		goto err;
1832 	ap = &wpa->ia.ap;
1833 
1834 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1835 	if (!tmp_page)
1836 		goto err_free;
1837 
1838 	error = -EIO;
1839 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1840 	if (!wpa->ia.ff)
1841 		goto err_nofile;
1842 
1843 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1844 
1845 	copy_highpage(tmp_page, page);
1846 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1847 	wpa->next = NULL;
1848 	ap->args.in_pages = true;
1849 	ap->num_pages = 1;
1850 	ap->pages[0] = tmp_page;
1851 	ap->descs[0].offset = 0;
1852 	ap->descs[0].length = PAGE_SIZE;
1853 	ap->args.end = fuse_writepage_end;
1854 	wpa->inode = inode;
1855 
1856 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1857 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1858 
1859 	spin_lock(&fi->lock);
1860 	tree_insert(&fi->writepages, wpa);
1861 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1862 	fuse_flush_writepages(inode);
1863 	spin_unlock(&fi->lock);
1864 
1865 	end_page_writeback(page);
1866 
1867 	return 0;
1868 
1869 err_nofile:
1870 	__free_page(tmp_page);
1871 err_free:
1872 	kfree(wpa);
1873 err:
1874 	mapping_set_error(page->mapping, error);
1875 	end_page_writeback(page);
1876 	return error;
1877 }
1878 
1879 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1880 {
1881 	int err;
1882 
1883 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1884 		/*
1885 		 * ->writepages() should be called for sync() and friends.  We
1886 		 * should only get here on direct reclaim and then we are
1887 		 * allowed to skip a page which is already in flight
1888 		 */
1889 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1890 
1891 		redirty_page_for_writepage(wbc, page);
1892 		unlock_page(page);
1893 		return 0;
1894 	}
1895 
1896 	err = fuse_writepage_locked(page);
1897 	unlock_page(page);
1898 
1899 	return err;
1900 }
1901 
1902 struct fuse_fill_wb_data {
1903 	struct fuse_writepage_args *wpa;
1904 	struct fuse_file *ff;
1905 	struct inode *inode;
1906 	struct page **orig_pages;
1907 	unsigned int max_pages;
1908 };
1909 
1910 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1911 {
1912 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1913 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1914 	struct page **pages;
1915 	struct fuse_page_desc *descs;
1916 	unsigned int npages = min_t(unsigned int,
1917 				    max_t(unsigned int, data->max_pages * 2,
1918 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1919 				    fc->max_pages);
1920 	WARN_ON(npages <= data->max_pages);
1921 
1922 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1923 	if (!pages)
1924 		return false;
1925 
1926 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1927 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1928 	kfree(ap->pages);
1929 	ap->pages = pages;
1930 	ap->descs = descs;
1931 	data->max_pages = npages;
1932 
1933 	return true;
1934 }
1935 
1936 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1937 {
1938 	struct fuse_writepage_args *wpa = data->wpa;
1939 	struct inode *inode = data->inode;
1940 	struct fuse_inode *fi = get_fuse_inode(inode);
1941 	int num_pages = wpa->ia.ap.num_pages;
1942 	int i;
1943 
1944 	wpa->ia.ff = fuse_file_get(data->ff);
1945 	spin_lock(&fi->lock);
1946 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1947 	fuse_flush_writepages(inode);
1948 	spin_unlock(&fi->lock);
1949 
1950 	for (i = 0; i < num_pages; i++)
1951 		end_page_writeback(data->orig_pages[i]);
1952 }
1953 
1954 /*
1955  * First recheck under fi->lock if the offending offset is still under
1956  * writeback.  If yes, then iterate auxiliary write requests, to see if there's
1957  * one already added for a page at this offset.  If there's none, then insert
1958  * this new request onto the auxiliary list, otherwise reuse the existing one by
1959  * copying the new page contents over to the old temporary page.
1960  */
1961 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1962 				     struct page *page)
1963 {
1964 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1965 	struct fuse_writepage_args *tmp;
1966 	struct fuse_writepage_args *old_wpa;
1967 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1968 
1969 	WARN_ON(new_ap->num_pages != 0);
1970 
1971 	spin_lock(&fi->lock);
1972 	rb_erase(&new_wpa->writepages_entry, &fi->writepages);
1973 	old_wpa = fuse_find_writeback(fi, page->index, page->index);
1974 	if (!old_wpa) {
1975 		tree_insert(&fi->writepages, new_wpa);
1976 		spin_unlock(&fi->lock);
1977 		return false;
1978 	}
1979 
1980 	new_ap->num_pages = 1;
1981 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1982 		pgoff_t curr_index;
1983 
1984 		WARN_ON(tmp->inode != new_wpa->inode);
1985 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1986 		if (curr_index == page->index) {
1987 			WARN_ON(tmp->ia.ap.num_pages != 1);
1988 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1989 			break;
1990 		}
1991 	}
1992 
1993 	if (!tmp) {
1994 		new_wpa->next = old_wpa->next;
1995 		old_wpa->next = new_wpa;
1996 	}
1997 
1998 	spin_unlock(&fi->lock);
1999 
2000 	if (tmp) {
2001 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2002 
2003 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2004 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2005 		wb_writeout_inc(&bdi->wb);
2006 		fuse_writepage_free(new_wpa);
2007 	}
2008 
2009 	return true;
2010 }
2011 
2012 static int fuse_writepages_fill(struct page *page,
2013 		struct writeback_control *wbc, void *_data)
2014 {
2015 	struct fuse_fill_wb_data *data = _data;
2016 	struct fuse_writepage_args *wpa = data->wpa;
2017 	struct fuse_args_pages *ap = &wpa->ia.ap;
2018 	struct inode *inode = data->inode;
2019 	struct fuse_inode *fi = get_fuse_inode(inode);
2020 	struct fuse_conn *fc = get_fuse_conn(inode);
2021 	struct page *tmp_page;
2022 	bool is_writeback;
2023 	int err;
2024 
2025 	if (!data->ff) {
2026 		err = -EIO;
2027 		data->ff = fuse_write_file_get(fc, fi);
2028 		if (!data->ff)
2029 			goto out_unlock;
2030 	}
2031 
2032 	/*
2033 	 * Being under writeback is unlikely but possible.  For example direct
2034 	 * read to an mmaped fuse file will set the page dirty twice; once when
2035 	 * the pages are faulted with get_user_pages(), and then after the read
2036 	 * completed.
2037 	 */
2038 	is_writeback = fuse_page_is_writeback(inode, page->index);
2039 
2040 	if (wpa && ap->num_pages &&
2041 	    (is_writeback || ap->num_pages == fc->max_pages ||
2042 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2043 	     data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2044 		fuse_writepages_send(data);
2045 		data->wpa = NULL;
2046 	} else if (wpa && ap->num_pages == data->max_pages) {
2047 		if (!fuse_pages_realloc(data)) {
2048 			fuse_writepages_send(data);
2049 			data->wpa = NULL;
2050 		}
2051 	}
2052 
2053 	err = -ENOMEM;
2054 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2055 	if (!tmp_page)
2056 		goto out_unlock;
2057 
2058 	/*
2059 	 * The page must not be redirtied until the writeout is completed
2060 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2061 	 * there could be more than one temporary page instance for each real
2062 	 * page.
2063 	 *
2064 	 * This is ensured by holding the page lock in page_mkwrite() while
2065 	 * checking fuse_page_is_writeback().  We already hold the page lock
2066 	 * since clear_page_dirty_for_io() and keep it held until we add the
2067 	 * request to the fi->writepages list and increment ap->num_pages.
2068 	 * After this fuse_page_is_writeback() will indicate that the page is
2069 	 * under writeback, so we can release the page lock.
2070 	 */
2071 	if (data->wpa == NULL) {
2072 		err = -ENOMEM;
2073 		wpa = fuse_writepage_args_alloc();
2074 		if (!wpa) {
2075 			__free_page(tmp_page);
2076 			goto out_unlock;
2077 		}
2078 		data->max_pages = 1;
2079 
2080 		ap = &wpa->ia.ap;
2081 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2082 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2083 		wpa->next = NULL;
2084 		ap->args.in_pages = true;
2085 		ap->args.end = fuse_writepage_end;
2086 		ap->num_pages = 0;
2087 		wpa->inode = inode;
2088 
2089 		spin_lock(&fi->lock);
2090 		tree_insert(&fi->writepages, wpa);
2091 		spin_unlock(&fi->lock);
2092 
2093 		data->wpa = wpa;
2094 	}
2095 	set_page_writeback(page);
2096 
2097 	copy_highpage(tmp_page, page);
2098 	ap->pages[ap->num_pages] = tmp_page;
2099 	ap->descs[ap->num_pages].offset = 0;
2100 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2101 
2102 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2103 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2104 
2105 	err = 0;
2106 	if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2107 		end_page_writeback(page);
2108 		data->wpa = NULL;
2109 		goto out_unlock;
2110 	}
2111 	data->orig_pages[ap->num_pages] = page;
2112 
2113 	/*
2114 	 * Protected by fi->lock against concurrent access by
2115 	 * fuse_page_is_writeback().
2116 	 */
2117 	spin_lock(&fi->lock);
2118 	ap->num_pages++;
2119 	spin_unlock(&fi->lock);
2120 
2121 out_unlock:
2122 	unlock_page(page);
2123 
2124 	return err;
2125 }
2126 
2127 static int fuse_writepages(struct address_space *mapping,
2128 			   struct writeback_control *wbc)
2129 {
2130 	struct inode *inode = mapping->host;
2131 	struct fuse_conn *fc = get_fuse_conn(inode);
2132 	struct fuse_fill_wb_data data;
2133 	int err;
2134 
2135 	err = -EIO;
2136 	if (is_bad_inode(inode))
2137 		goto out;
2138 
2139 	data.inode = inode;
2140 	data.wpa = NULL;
2141 	data.ff = NULL;
2142 
2143 	err = -ENOMEM;
2144 	data.orig_pages = kcalloc(fc->max_pages,
2145 				  sizeof(struct page *),
2146 				  GFP_NOFS);
2147 	if (!data.orig_pages)
2148 		goto out;
2149 
2150 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2151 	if (data.wpa) {
2152 		/* Ignore errors if we can write at least one page */
2153 		WARN_ON(!data.wpa->ia.ap.num_pages);
2154 		fuse_writepages_send(&data);
2155 		err = 0;
2156 	}
2157 	if (data.ff)
2158 		fuse_file_put(data.ff, false, false);
2159 
2160 	kfree(data.orig_pages);
2161 out:
2162 	return err;
2163 }
2164 
2165 /*
2166  * It's worthy to make sure that space is reserved on disk for the write,
2167  * but how to implement it without killing performance need more thinking.
2168  */
2169 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2170 		loff_t pos, unsigned len, unsigned flags,
2171 		struct page **pagep, void **fsdata)
2172 {
2173 	pgoff_t index = pos >> PAGE_SHIFT;
2174 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2175 	struct page *page;
2176 	loff_t fsize;
2177 	int err = -ENOMEM;
2178 
2179 	WARN_ON(!fc->writeback_cache);
2180 
2181 	page = grab_cache_page_write_begin(mapping, index, flags);
2182 	if (!page)
2183 		goto error;
2184 
2185 	fuse_wait_on_page_writeback(mapping->host, page->index);
2186 
2187 	if (PageUptodate(page) || len == PAGE_SIZE)
2188 		goto success;
2189 	/*
2190 	 * Check if the start this page comes after the end of file, in which
2191 	 * case the readpage can be optimized away.
2192 	 */
2193 	fsize = i_size_read(mapping->host);
2194 	if (fsize <= (pos & PAGE_MASK)) {
2195 		size_t off = pos & ~PAGE_MASK;
2196 		if (off)
2197 			zero_user_segment(page, 0, off);
2198 		goto success;
2199 	}
2200 	err = fuse_do_readpage(file, page);
2201 	if (err)
2202 		goto cleanup;
2203 success:
2204 	*pagep = page;
2205 	return 0;
2206 
2207 cleanup:
2208 	unlock_page(page);
2209 	put_page(page);
2210 error:
2211 	return err;
2212 }
2213 
2214 static int fuse_write_end(struct file *file, struct address_space *mapping,
2215 		loff_t pos, unsigned len, unsigned copied,
2216 		struct page *page, void *fsdata)
2217 {
2218 	struct inode *inode = page->mapping->host;
2219 
2220 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2221 	if (!copied)
2222 		goto unlock;
2223 
2224 	if (!PageUptodate(page)) {
2225 		/* Zero any unwritten bytes at the end of the page */
2226 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2227 		if (endoff)
2228 			zero_user_segment(page, endoff, PAGE_SIZE);
2229 		SetPageUptodate(page);
2230 	}
2231 
2232 	fuse_write_update_size(inode, pos + copied);
2233 	set_page_dirty(page);
2234 
2235 unlock:
2236 	unlock_page(page);
2237 	put_page(page);
2238 
2239 	return copied;
2240 }
2241 
2242 static int fuse_launder_page(struct page *page)
2243 {
2244 	int err = 0;
2245 	if (clear_page_dirty_for_io(page)) {
2246 		struct inode *inode = page->mapping->host;
2247 		err = fuse_writepage_locked(page);
2248 		if (!err)
2249 			fuse_wait_on_page_writeback(inode, page->index);
2250 	}
2251 	return err;
2252 }
2253 
2254 /*
2255  * Write back dirty pages now, because there may not be any suitable
2256  * open files later
2257  */
2258 static void fuse_vma_close(struct vm_area_struct *vma)
2259 {
2260 	filemap_write_and_wait(vma->vm_file->f_mapping);
2261 }
2262 
2263 /*
2264  * Wait for writeback against this page to complete before allowing it
2265  * to be marked dirty again, and hence written back again, possibly
2266  * before the previous writepage completed.
2267  *
2268  * Block here, instead of in ->writepage(), so that the userspace fs
2269  * can only block processes actually operating on the filesystem.
2270  *
2271  * Otherwise unprivileged userspace fs would be able to block
2272  * unrelated:
2273  *
2274  * - page migration
2275  * - sync(2)
2276  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2277  */
2278 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2279 {
2280 	struct page *page = vmf->page;
2281 	struct inode *inode = file_inode(vmf->vma->vm_file);
2282 
2283 	file_update_time(vmf->vma->vm_file);
2284 	lock_page(page);
2285 	if (page->mapping != inode->i_mapping) {
2286 		unlock_page(page);
2287 		return VM_FAULT_NOPAGE;
2288 	}
2289 
2290 	fuse_wait_on_page_writeback(inode, page->index);
2291 	return VM_FAULT_LOCKED;
2292 }
2293 
2294 static const struct vm_operations_struct fuse_file_vm_ops = {
2295 	.close		= fuse_vma_close,
2296 	.fault		= filemap_fault,
2297 	.map_pages	= filemap_map_pages,
2298 	.page_mkwrite	= fuse_page_mkwrite,
2299 };
2300 
2301 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2302 {
2303 	struct fuse_file *ff = file->private_data;
2304 
2305 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2306 		/* Can't provide the coherency needed for MAP_SHARED */
2307 		if (vma->vm_flags & VM_MAYSHARE)
2308 			return -ENODEV;
2309 
2310 		invalidate_inode_pages2(file->f_mapping);
2311 
2312 		return generic_file_mmap(file, vma);
2313 	}
2314 
2315 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2316 		fuse_link_write_file(file);
2317 
2318 	file_accessed(file);
2319 	vma->vm_ops = &fuse_file_vm_ops;
2320 	return 0;
2321 }
2322 
2323 static int convert_fuse_file_lock(struct fuse_conn *fc,
2324 				  const struct fuse_file_lock *ffl,
2325 				  struct file_lock *fl)
2326 {
2327 	switch (ffl->type) {
2328 	case F_UNLCK:
2329 		break;
2330 
2331 	case F_RDLCK:
2332 	case F_WRLCK:
2333 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2334 		    ffl->end < ffl->start)
2335 			return -EIO;
2336 
2337 		fl->fl_start = ffl->start;
2338 		fl->fl_end = ffl->end;
2339 
2340 		/*
2341 		 * Convert pid into init's pid namespace.  The locks API will
2342 		 * translate it into the caller's pid namespace.
2343 		 */
2344 		rcu_read_lock();
2345 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2346 		rcu_read_unlock();
2347 		break;
2348 
2349 	default:
2350 		return -EIO;
2351 	}
2352 	fl->fl_type = ffl->type;
2353 	return 0;
2354 }
2355 
2356 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2357 			 const struct file_lock *fl, int opcode, pid_t pid,
2358 			 int flock, struct fuse_lk_in *inarg)
2359 {
2360 	struct inode *inode = file_inode(file);
2361 	struct fuse_conn *fc = get_fuse_conn(inode);
2362 	struct fuse_file *ff = file->private_data;
2363 
2364 	memset(inarg, 0, sizeof(*inarg));
2365 	inarg->fh = ff->fh;
2366 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2367 	inarg->lk.start = fl->fl_start;
2368 	inarg->lk.end = fl->fl_end;
2369 	inarg->lk.type = fl->fl_type;
2370 	inarg->lk.pid = pid;
2371 	if (flock)
2372 		inarg->lk_flags |= FUSE_LK_FLOCK;
2373 	args->opcode = opcode;
2374 	args->nodeid = get_node_id(inode);
2375 	args->in_numargs = 1;
2376 	args->in_args[0].size = sizeof(*inarg);
2377 	args->in_args[0].value = inarg;
2378 }
2379 
2380 static int fuse_getlk(struct file *file, struct file_lock *fl)
2381 {
2382 	struct inode *inode = file_inode(file);
2383 	struct fuse_conn *fc = get_fuse_conn(inode);
2384 	FUSE_ARGS(args);
2385 	struct fuse_lk_in inarg;
2386 	struct fuse_lk_out outarg;
2387 	int err;
2388 
2389 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2390 	args.out_numargs = 1;
2391 	args.out_args[0].size = sizeof(outarg);
2392 	args.out_args[0].value = &outarg;
2393 	err = fuse_simple_request(fc, &args);
2394 	if (!err)
2395 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2396 
2397 	return err;
2398 }
2399 
2400 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2401 {
2402 	struct inode *inode = file_inode(file);
2403 	struct fuse_conn *fc = get_fuse_conn(inode);
2404 	FUSE_ARGS(args);
2405 	struct fuse_lk_in inarg;
2406 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2407 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2408 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2409 	int err;
2410 
2411 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2412 		/* NLM needs asynchronous locks, which we don't support yet */
2413 		return -ENOLCK;
2414 	}
2415 
2416 	/* Unlock on close is handled by the flush method */
2417 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2418 		return 0;
2419 
2420 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2421 	err = fuse_simple_request(fc, &args);
2422 
2423 	/* locking is restartable */
2424 	if (err == -EINTR)
2425 		err = -ERESTARTSYS;
2426 
2427 	return err;
2428 }
2429 
2430 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2431 {
2432 	struct inode *inode = file_inode(file);
2433 	struct fuse_conn *fc = get_fuse_conn(inode);
2434 	int err;
2435 
2436 	if (cmd == F_CANCELLK) {
2437 		err = 0;
2438 	} else if (cmd == F_GETLK) {
2439 		if (fc->no_lock) {
2440 			posix_test_lock(file, fl);
2441 			err = 0;
2442 		} else
2443 			err = fuse_getlk(file, fl);
2444 	} else {
2445 		if (fc->no_lock)
2446 			err = posix_lock_file(file, fl, NULL);
2447 		else
2448 			err = fuse_setlk(file, fl, 0);
2449 	}
2450 	return err;
2451 }
2452 
2453 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2454 {
2455 	struct inode *inode = file_inode(file);
2456 	struct fuse_conn *fc = get_fuse_conn(inode);
2457 	int err;
2458 
2459 	if (fc->no_flock) {
2460 		err = locks_lock_file_wait(file, fl);
2461 	} else {
2462 		struct fuse_file *ff = file->private_data;
2463 
2464 		/* emulate flock with POSIX locks */
2465 		ff->flock = true;
2466 		err = fuse_setlk(file, fl, 1);
2467 	}
2468 
2469 	return err;
2470 }
2471 
2472 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2473 {
2474 	struct inode *inode = mapping->host;
2475 	struct fuse_conn *fc = get_fuse_conn(inode);
2476 	FUSE_ARGS(args);
2477 	struct fuse_bmap_in inarg;
2478 	struct fuse_bmap_out outarg;
2479 	int err;
2480 
2481 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2482 		return 0;
2483 
2484 	memset(&inarg, 0, sizeof(inarg));
2485 	inarg.block = block;
2486 	inarg.blocksize = inode->i_sb->s_blocksize;
2487 	args.opcode = FUSE_BMAP;
2488 	args.nodeid = get_node_id(inode);
2489 	args.in_numargs = 1;
2490 	args.in_args[0].size = sizeof(inarg);
2491 	args.in_args[0].value = &inarg;
2492 	args.out_numargs = 1;
2493 	args.out_args[0].size = sizeof(outarg);
2494 	args.out_args[0].value = &outarg;
2495 	err = fuse_simple_request(fc, &args);
2496 	if (err == -ENOSYS)
2497 		fc->no_bmap = 1;
2498 
2499 	return err ? 0 : outarg.block;
2500 }
2501 
2502 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2503 {
2504 	struct inode *inode = file->f_mapping->host;
2505 	struct fuse_conn *fc = get_fuse_conn(inode);
2506 	struct fuse_file *ff = file->private_data;
2507 	FUSE_ARGS(args);
2508 	struct fuse_lseek_in inarg = {
2509 		.fh = ff->fh,
2510 		.offset = offset,
2511 		.whence = whence
2512 	};
2513 	struct fuse_lseek_out outarg;
2514 	int err;
2515 
2516 	if (fc->no_lseek)
2517 		goto fallback;
2518 
2519 	args.opcode = FUSE_LSEEK;
2520 	args.nodeid = ff->nodeid;
2521 	args.in_numargs = 1;
2522 	args.in_args[0].size = sizeof(inarg);
2523 	args.in_args[0].value = &inarg;
2524 	args.out_numargs = 1;
2525 	args.out_args[0].size = sizeof(outarg);
2526 	args.out_args[0].value = &outarg;
2527 	err = fuse_simple_request(fc, &args);
2528 	if (err) {
2529 		if (err == -ENOSYS) {
2530 			fc->no_lseek = 1;
2531 			goto fallback;
2532 		}
2533 		return err;
2534 	}
2535 
2536 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2537 
2538 fallback:
2539 	err = fuse_update_attributes(inode, file);
2540 	if (!err)
2541 		return generic_file_llseek(file, offset, whence);
2542 	else
2543 		return err;
2544 }
2545 
2546 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2547 {
2548 	loff_t retval;
2549 	struct inode *inode = file_inode(file);
2550 
2551 	switch (whence) {
2552 	case SEEK_SET:
2553 	case SEEK_CUR:
2554 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2555 		retval = generic_file_llseek(file, offset, whence);
2556 		break;
2557 	case SEEK_END:
2558 		inode_lock(inode);
2559 		retval = fuse_update_attributes(inode, file);
2560 		if (!retval)
2561 			retval = generic_file_llseek(file, offset, whence);
2562 		inode_unlock(inode);
2563 		break;
2564 	case SEEK_HOLE:
2565 	case SEEK_DATA:
2566 		inode_lock(inode);
2567 		retval = fuse_lseek(file, offset, whence);
2568 		inode_unlock(inode);
2569 		break;
2570 	default:
2571 		retval = -EINVAL;
2572 	}
2573 
2574 	return retval;
2575 }
2576 
2577 /*
2578  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2579  * ABI was defined to be 'struct iovec' which is different on 32bit
2580  * and 64bit.  Fortunately we can determine which structure the server
2581  * used from the size of the reply.
2582  */
2583 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2584 				     size_t transferred, unsigned count,
2585 				     bool is_compat)
2586 {
2587 #ifdef CONFIG_COMPAT
2588 	if (count * sizeof(struct compat_iovec) == transferred) {
2589 		struct compat_iovec *ciov = src;
2590 		unsigned i;
2591 
2592 		/*
2593 		 * With this interface a 32bit server cannot support
2594 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2595 		 * requests
2596 		 */
2597 		if (!is_compat)
2598 			return -EINVAL;
2599 
2600 		for (i = 0; i < count; i++) {
2601 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2602 			dst[i].iov_len = ciov[i].iov_len;
2603 		}
2604 		return 0;
2605 	}
2606 #endif
2607 
2608 	if (count * sizeof(struct iovec) != transferred)
2609 		return -EIO;
2610 
2611 	memcpy(dst, src, transferred);
2612 	return 0;
2613 }
2614 
2615 /* Make sure iov_length() won't overflow */
2616 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2617 				 size_t count)
2618 {
2619 	size_t n;
2620 	u32 max = fc->max_pages << PAGE_SHIFT;
2621 
2622 	for (n = 0; n < count; n++, iov++) {
2623 		if (iov->iov_len > (size_t) max)
2624 			return -ENOMEM;
2625 		max -= iov->iov_len;
2626 	}
2627 	return 0;
2628 }
2629 
2630 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2631 				 void *src, size_t transferred, unsigned count,
2632 				 bool is_compat)
2633 {
2634 	unsigned i;
2635 	struct fuse_ioctl_iovec *fiov = src;
2636 
2637 	if (fc->minor < 16) {
2638 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2639 						 count, is_compat);
2640 	}
2641 
2642 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2643 		return -EIO;
2644 
2645 	for (i = 0; i < count; i++) {
2646 		/* Did the server supply an inappropriate value? */
2647 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2648 		    fiov[i].len != (unsigned long) fiov[i].len)
2649 			return -EIO;
2650 
2651 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2652 		dst[i].iov_len = (size_t) fiov[i].len;
2653 
2654 #ifdef CONFIG_COMPAT
2655 		if (is_compat &&
2656 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2657 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2658 			return -EIO;
2659 #endif
2660 	}
2661 
2662 	return 0;
2663 }
2664 
2665 
2666 /*
2667  * For ioctls, there is no generic way to determine how much memory
2668  * needs to be read and/or written.  Furthermore, ioctls are allowed
2669  * to dereference the passed pointer, so the parameter requires deep
2670  * copying but FUSE has no idea whatsoever about what to copy in or
2671  * out.
2672  *
2673  * This is solved by allowing FUSE server to retry ioctl with
2674  * necessary in/out iovecs.  Let's assume the ioctl implementation
2675  * needs to read in the following structure.
2676  *
2677  * struct a {
2678  *	char	*buf;
2679  *	size_t	buflen;
2680  * }
2681  *
2682  * On the first callout to FUSE server, inarg->in_size and
2683  * inarg->out_size will be NULL; then, the server completes the ioctl
2684  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2685  * the actual iov array to
2686  *
2687  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2688  *
2689  * which tells FUSE to copy in the requested area and retry the ioctl.
2690  * On the second round, the server has access to the structure and
2691  * from that it can tell what to look for next, so on the invocation,
2692  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2693  *
2694  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2695  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2696  *
2697  * FUSE will copy both struct a and the pointed buffer from the
2698  * process doing the ioctl and retry ioctl with both struct a and the
2699  * buffer.
2700  *
2701  * This time, FUSE server has everything it needs and completes ioctl
2702  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2703  *
2704  * Copying data out works the same way.
2705  *
2706  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2707  * automatically initializes in and out iovs by decoding @cmd with
2708  * _IOC_* macros and the server is not allowed to request RETRY.  This
2709  * limits ioctl data transfers to well-formed ioctls and is the forced
2710  * behavior for all FUSE servers.
2711  */
2712 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2713 		   unsigned int flags)
2714 {
2715 	struct fuse_file *ff = file->private_data;
2716 	struct fuse_conn *fc = ff->fc;
2717 	struct fuse_ioctl_in inarg = {
2718 		.fh = ff->fh,
2719 		.cmd = cmd,
2720 		.arg = arg,
2721 		.flags = flags
2722 	};
2723 	struct fuse_ioctl_out outarg;
2724 	struct iovec *iov_page = NULL;
2725 	struct iovec *in_iov = NULL, *out_iov = NULL;
2726 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2727 	size_t in_size, out_size, c;
2728 	ssize_t transferred;
2729 	int err, i;
2730 	struct iov_iter ii;
2731 	struct fuse_args_pages ap = {};
2732 
2733 #if BITS_PER_LONG == 32
2734 	inarg.flags |= FUSE_IOCTL_32BIT;
2735 #else
2736 	if (flags & FUSE_IOCTL_COMPAT) {
2737 		inarg.flags |= FUSE_IOCTL_32BIT;
2738 #ifdef CONFIG_X86_X32
2739 		if (in_x32_syscall())
2740 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2741 #endif
2742 	}
2743 #endif
2744 
2745 	/* assume all the iovs returned by client always fits in a page */
2746 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2747 
2748 	err = -ENOMEM;
2749 	ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2750 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2751 	if (!ap.pages || !iov_page)
2752 		goto out;
2753 
2754 	fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2755 
2756 	/*
2757 	 * If restricted, initialize IO parameters as encoded in @cmd.
2758 	 * RETRY from server is not allowed.
2759 	 */
2760 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2761 		struct iovec *iov = iov_page;
2762 
2763 		iov->iov_base = (void __user *)arg;
2764 		iov->iov_len = _IOC_SIZE(cmd);
2765 
2766 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2767 			in_iov = iov;
2768 			in_iovs = 1;
2769 		}
2770 
2771 		if (_IOC_DIR(cmd) & _IOC_READ) {
2772 			out_iov = iov;
2773 			out_iovs = 1;
2774 		}
2775 	}
2776 
2777  retry:
2778 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2779 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2780 
2781 	/*
2782 	 * Out data can be used either for actual out data or iovs,
2783 	 * make sure there always is at least one page.
2784 	 */
2785 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2786 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2787 
2788 	/* make sure there are enough buffer pages and init request with them */
2789 	err = -ENOMEM;
2790 	if (max_pages > fc->max_pages)
2791 		goto out;
2792 	while (ap.num_pages < max_pages) {
2793 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2794 		if (!ap.pages[ap.num_pages])
2795 			goto out;
2796 		ap.num_pages++;
2797 	}
2798 
2799 
2800 	/* okay, let's send it to the client */
2801 	ap.args.opcode = FUSE_IOCTL;
2802 	ap.args.nodeid = ff->nodeid;
2803 	ap.args.in_numargs = 1;
2804 	ap.args.in_args[0].size = sizeof(inarg);
2805 	ap.args.in_args[0].value = &inarg;
2806 	if (in_size) {
2807 		ap.args.in_numargs++;
2808 		ap.args.in_args[1].size = in_size;
2809 		ap.args.in_pages = true;
2810 
2811 		err = -EFAULT;
2812 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2813 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2814 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2815 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2816 				goto out;
2817 		}
2818 	}
2819 
2820 	ap.args.out_numargs = 2;
2821 	ap.args.out_args[0].size = sizeof(outarg);
2822 	ap.args.out_args[0].value = &outarg;
2823 	ap.args.out_args[1].size = out_size;
2824 	ap.args.out_pages = true;
2825 	ap.args.out_argvar = true;
2826 
2827 	transferred = fuse_simple_request(fc, &ap.args);
2828 	err = transferred;
2829 	if (transferred < 0)
2830 		goto out;
2831 
2832 	/* did it ask for retry? */
2833 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2834 		void *vaddr;
2835 
2836 		/* no retry if in restricted mode */
2837 		err = -EIO;
2838 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2839 			goto out;
2840 
2841 		in_iovs = outarg.in_iovs;
2842 		out_iovs = outarg.out_iovs;
2843 
2844 		/*
2845 		 * Make sure things are in boundary, separate checks
2846 		 * are to protect against overflow.
2847 		 */
2848 		err = -ENOMEM;
2849 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2850 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2851 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2852 			goto out;
2853 
2854 		vaddr = kmap_atomic(ap.pages[0]);
2855 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2856 					    transferred, in_iovs + out_iovs,
2857 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2858 		kunmap_atomic(vaddr);
2859 		if (err)
2860 			goto out;
2861 
2862 		in_iov = iov_page;
2863 		out_iov = in_iov + in_iovs;
2864 
2865 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2866 		if (err)
2867 			goto out;
2868 
2869 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2870 		if (err)
2871 			goto out;
2872 
2873 		goto retry;
2874 	}
2875 
2876 	err = -EIO;
2877 	if (transferred > inarg.out_size)
2878 		goto out;
2879 
2880 	err = -EFAULT;
2881 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2882 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2883 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2884 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2885 			goto out;
2886 	}
2887 	err = 0;
2888  out:
2889 	free_page((unsigned long) iov_page);
2890 	while (ap.num_pages)
2891 		__free_page(ap.pages[--ap.num_pages]);
2892 	kfree(ap.pages);
2893 
2894 	return err ? err : outarg.result;
2895 }
2896 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2897 
2898 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2899 		       unsigned long arg, unsigned int flags)
2900 {
2901 	struct inode *inode = file_inode(file);
2902 	struct fuse_conn *fc = get_fuse_conn(inode);
2903 
2904 	if (!fuse_allow_current_process(fc))
2905 		return -EACCES;
2906 
2907 	if (is_bad_inode(inode))
2908 		return -EIO;
2909 
2910 	return fuse_do_ioctl(file, cmd, arg, flags);
2911 }
2912 
2913 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2914 			    unsigned long arg)
2915 {
2916 	return fuse_ioctl_common(file, cmd, arg, 0);
2917 }
2918 
2919 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2920 				   unsigned long arg)
2921 {
2922 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2923 }
2924 
2925 /*
2926  * All files which have been polled are linked to RB tree
2927  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2928  * find the matching one.
2929  */
2930 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2931 					      struct rb_node **parent_out)
2932 {
2933 	struct rb_node **link = &fc->polled_files.rb_node;
2934 	struct rb_node *last = NULL;
2935 
2936 	while (*link) {
2937 		struct fuse_file *ff;
2938 
2939 		last = *link;
2940 		ff = rb_entry(last, struct fuse_file, polled_node);
2941 
2942 		if (kh < ff->kh)
2943 			link = &last->rb_left;
2944 		else if (kh > ff->kh)
2945 			link = &last->rb_right;
2946 		else
2947 			return link;
2948 	}
2949 
2950 	if (parent_out)
2951 		*parent_out = last;
2952 	return link;
2953 }
2954 
2955 /*
2956  * The file is about to be polled.  Make sure it's on the polled_files
2957  * RB tree.  Note that files once added to the polled_files tree are
2958  * not removed before the file is released.  This is because a file
2959  * polled once is likely to be polled again.
2960  */
2961 static void fuse_register_polled_file(struct fuse_conn *fc,
2962 				      struct fuse_file *ff)
2963 {
2964 	spin_lock(&fc->lock);
2965 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2966 		struct rb_node **link, *uninitialized_var(parent);
2967 
2968 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2969 		BUG_ON(*link);
2970 		rb_link_node(&ff->polled_node, parent, link);
2971 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2972 	}
2973 	spin_unlock(&fc->lock);
2974 }
2975 
2976 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2977 {
2978 	struct fuse_file *ff = file->private_data;
2979 	struct fuse_conn *fc = ff->fc;
2980 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2981 	struct fuse_poll_out outarg;
2982 	FUSE_ARGS(args);
2983 	int err;
2984 
2985 	if (fc->no_poll)
2986 		return DEFAULT_POLLMASK;
2987 
2988 	poll_wait(file, &ff->poll_wait, wait);
2989 	inarg.events = mangle_poll(poll_requested_events(wait));
2990 
2991 	/*
2992 	 * Ask for notification iff there's someone waiting for it.
2993 	 * The client may ignore the flag and always notify.
2994 	 */
2995 	if (waitqueue_active(&ff->poll_wait)) {
2996 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2997 		fuse_register_polled_file(fc, ff);
2998 	}
2999 
3000 	args.opcode = FUSE_POLL;
3001 	args.nodeid = ff->nodeid;
3002 	args.in_numargs = 1;
3003 	args.in_args[0].size = sizeof(inarg);
3004 	args.in_args[0].value = &inarg;
3005 	args.out_numargs = 1;
3006 	args.out_args[0].size = sizeof(outarg);
3007 	args.out_args[0].value = &outarg;
3008 	err = fuse_simple_request(fc, &args);
3009 
3010 	if (!err)
3011 		return demangle_poll(outarg.revents);
3012 	if (err == -ENOSYS) {
3013 		fc->no_poll = 1;
3014 		return DEFAULT_POLLMASK;
3015 	}
3016 	return EPOLLERR;
3017 }
3018 EXPORT_SYMBOL_GPL(fuse_file_poll);
3019 
3020 /*
3021  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3022  * wakes up the poll waiters.
3023  */
3024 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3025 			    struct fuse_notify_poll_wakeup_out *outarg)
3026 {
3027 	u64 kh = outarg->kh;
3028 	struct rb_node **link;
3029 
3030 	spin_lock(&fc->lock);
3031 
3032 	link = fuse_find_polled_node(fc, kh, NULL);
3033 	if (*link) {
3034 		struct fuse_file *ff;
3035 
3036 		ff = rb_entry(*link, struct fuse_file, polled_node);
3037 		wake_up_interruptible_sync(&ff->poll_wait);
3038 	}
3039 
3040 	spin_unlock(&fc->lock);
3041 	return 0;
3042 }
3043 
3044 static void fuse_do_truncate(struct file *file)
3045 {
3046 	struct inode *inode = file->f_mapping->host;
3047 	struct iattr attr;
3048 
3049 	attr.ia_valid = ATTR_SIZE;
3050 	attr.ia_size = i_size_read(inode);
3051 
3052 	attr.ia_file = file;
3053 	attr.ia_valid |= ATTR_FILE;
3054 
3055 	fuse_do_setattr(file_dentry(file), &attr, file);
3056 }
3057 
3058 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3059 {
3060 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3061 }
3062 
3063 static ssize_t
3064 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3065 {
3066 	DECLARE_COMPLETION_ONSTACK(wait);
3067 	ssize_t ret = 0;
3068 	struct file *file = iocb->ki_filp;
3069 	struct fuse_file *ff = file->private_data;
3070 	bool async_dio = ff->fc->async_dio;
3071 	loff_t pos = 0;
3072 	struct inode *inode;
3073 	loff_t i_size;
3074 	size_t count = iov_iter_count(iter);
3075 	loff_t offset = iocb->ki_pos;
3076 	struct fuse_io_priv *io;
3077 
3078 	pos = offset;
3079 	inode = file->f_mapping->host;
3080 	i_size = i_size_read(inode);
3081 
3082 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3083 		return 0;
3084 
3085 	/* optimization for short read */
3086 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3087 		if (offset >= i_size)
3088 			return 0;
3089 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3090 		count = iov_iter_count(iter);
3091 	}
3092 
3093 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3094 	if (!io)
3095 		return -ENOMEM;
3096 	spin_lock_init(&io->lock);
3097 	kref_init(&io->refcnt);
3098 	io->reqs = 1;
3099 	io->bytes = -1;
3100 	io->size = 0;
3101 	io->offset = offset;
3102 	io->write = (iov_iter_rw(iter) == WRITE);
3103 	io->err = 0;
3104 	/*
3105 	 * By default, we want to optimize all I/Os with async request
3106 	 * submission to the client filesystem if supported.
3107 	 */
3108 	io->async = async_dio;
3109 	io->iocb = iocb;
3110 	io->blocking = is_sync_kiocb(iocb);
3111 
3112 	/*
3113 	 * We cannot asynchronously extend the size of a file.
3114 	 * In such case the aio will behave exactly like sync io.
3115 	 */
3116 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3117 		io->blocking = true;
3118 
3119 	if (io->async && io->blocking) {
3120 		/*
3121 		 * Additional reference to keep io around after
3122 		 * calling fuse_aio_complete()
3123 		 */
3124 		kref_get(&io->refcnt);
3125 		io->done = &wait;
3126 	}
3127 
3128 	if (iov_iter_rw(iter) == WRITE) {
3129 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3130 		fuse_invalidate_attr(inode);
3131 	} else {
3132 		ret = __fuse_direct_read(io, iter, &pos);
3133 	}
3134 
3135 	if (io->async) {
3136 		bool blocking = io->blocking;
3137 
3138 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3139 
3140 		/* we have a non-extending, async request, so return */
3141 		if (!blocking)
3142 			return -EIOCBQUEUED;
3143 
3144 		wait_for_completion(&wait);
3145 		ret = fuse_get_res_by_io(io);
3146 	}
3147 
3148 	kref_put(&io->refcnt, fuse_io_release);
3149 
3150 	if (iov_iter_rw(iter) == WRITE) {
3151 		if (ret > 0)
3152 			fuse_write_update_size(inode, pos);
3153 		else if (ret < 0 && offset + count > i_size)
3154 			fuse_do_truncate(file);
3155 	}
3156 
3157 	return ret;
3158 }
3159 
3160 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3161 {
3162 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3163 
3164 	if (!err)
3165 		fuse_sync_writes(inode);
3166 
3167 	return err;
3168 }
3169 
3170 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3171 				loff_t length)
3172 {
3173 	struct fuse_file *ff = file->private_data;
3174 	struct inode *inode = file_inode(file);
3175 	struct fuse_inode *fi = get_fuse_inode(inode);
3176 	struct fuse_conn *fc = ff->fc;
3177 	FUSE_ARGS(args);
3178 	struct fuse_fallocate_in inarg = {
3179 		.fh = ff->fh,
3180 		.offset = offset,
3181 		.length = length,
3182 		.mode = mode
3183 	};
3184 	int err;
3185 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3186 			   (mode & FALLOC_FL_PUNCH_HOLE);
3187 
3188 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3189 		return -EOPNOTSUPP;
3190 
3191 	if (fc->no_fallocate)
3192 		return -EOPNOTSUPP;
3193 
3194 	if (lock_inode) {
3195 		inode_lock(inode);
3196 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3197 			loff_t endbyte = offset + length - 1;
3198 
3199 			err = fuse_writeback_range(inode, offset, endbyte);
3200 			if (err)
3201 				goto out;
3202 		}
3203 	}
3204 
3205 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3206 	    offset + length > i_size_read(inode)) {
3207 		err = inode_newsize_ok(inode, offset + length);
3208 		if (err)
3209 			goto out;
3210 	}
3211 
3212 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3213 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3214 
3215 	args.opcode = FUSE_FALLOCATE;
3216 	args.nodeid = ff->nodeid;
3217 	args.in_numargs = 1;
3218 	args.in_args[0].size = sizeof(inarg);
3219 	args.in_args[0].value = &inarg;
3220 	err = fuse_simple_request(fc, &args);
3221 	if (err == -ENOSYS) {
3222 		fc->no_fallocate = 1;
3223 		err = -EOPNOTSUPP;
3224 	}
3225 	if (err)
3226 		goto out;
3227 
3228 	/* we could have extended the file */
3229 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3230 		bool changed = fuse_write_update_size(inode, offset + length);
3231 
3232 		if (changed && fc->writeback_cache)
3233 			file_update_time(file);
3234 	}
3235 
3236 	if (mode & FALLOC_FL_PUNCH_HOLE)
3237 		truncate_pagecache_range(inode, offset, offset + length - 1);
3238 
3239 	fuse_invalidate_attr(inode);
3240 
3241 out:
3242 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3243 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3244 
3245 	if (lock_inode)
3246 		inode_unlock(inode);
3247 
3248 	return err;
3249 }
3250 
3251 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3252 				      struct file *file_out, loff_t pos_out,
3253 				      size_t len, unsigned int flags)
3254 {
3255 	struct fuse_file *ff_in = file_in->private_data;
3256 	struct fuse_file *ff_out = file_out->private_data;
3257 	struct inode *inode_in = file_inode(file_in);
3258 	struct inode *inode_out = file_inode(file_out);
3259 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3260 	struct fuse_conn *fc = ff_in->fc;
3261 	FUSE_ARGS(args);
3262 	struct fuse_copy_file_range_in inarg = {
3263 		.fh_in = ff_in->fh,
3264 		.off_in = pos_in,
3265 		.nodeid_out = ff_out->nodeid,
3266 		.fh_out = ff_out->fh,
3267 		.off_out = pos_out,
3268 		.len = len,
3269 		.flags = flags
3270 	};
3271 	struct fuse_write_out outarg;
3272 	ssize_t err;
3273 	/* mark unstable when write-back is not used, and file_out gets
3274 	 * extended */
3275 	bool is_unstable = (!fc->writeback_cache) &&
3276 			   ((pos_out + len) > inode_out->i_size);
3277 
3278 	if (fc->no_copy_file_range)
3279 		return -EOPNOTSUPP;
3280 
3281 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3282 		return -EXDEV;
3283 
3284 	inode_lock(inode_in);
3285 	err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1);
3286 	inode_unlock(inode_in);
3287 	if (err)
3288 		return err;
3289 
3290 	inode_lock(inode_out);
3291 
3292 	err = file_modified(file_out);
3293 	if (err)
3294 		goto out;
3295 
3296 	/*
3297 	 * Write out dirty pages in the destination file before sending the COPY
3298 	 * request to userspace.  After the request is completed, truncate off
3299 	 * pages (including partial ones) from the cache that have been copied,
3300 	 * since these contain stale data at that point.
3301 	 *
3302 	 * This should be mostly correct, but if the COPY writes to partial
3303 	 * pages (at the start or end) and the parts not covered by the COPY are
3304 	 * written through a memory map after calling fuse_writeback_range(),
3305 	 * then these partial page modifications will be lost on truncation.
3306 	 *
3307 	 * It is unlikely that someone would rely on such mixed style
3308 	 * modifications.  Yet this does give less guarantees than if the
3309 	 * copying was performed with write(2).
3310 	 *
3311 	 * To fix this a i_mmap_sem style lock could be used to prevent new
3312 	 * faults while the copy is ongoing.
3313 	 */
3314 	err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1);
3315 	if (err)
3316 		goto out;
3317 
3318 	if (is_unstable)
3319 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3320 
3321 	args.opcode = FUSE_COPY_FILE_RANGE;
3322 	args.nodeid = ff_in->nodeid;
3323 	args.in_numargs = 1;
3324 	args.in_args[0].size = sizeof(inarg);
3325 	args.in_args[0].value = &inarg;
3326 	args.out_numargs = 1;
3327 	args.out_args[0].size = sizeof(outarg);
3328 	args.out_args[0].value = &outarg;
3329 	err = fuse_simple_request(fc, &args);
3330 	if (err == -ENOSYS) {
3331 		fc->no_copy_file_range = 1;
3332 		err = -EOPNOTSUPP;
3333 	}
3334 	if (err)
3335 		goto out;
3336 
3337 	truncate_inode_pages_range(inode_out->i_mapping,
3338 				   ALIGN_DOWN(pos_out, PAGE_SIZE),
3339 				   ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1);
3340 
3341 	if (fc->writeback_cache) {
3342 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3343 		file_update_time(file_out);
3344 	}
3345 
3346 	fuse_invalidate_attr(inode_out);
3347 
3348 	err = outarg.size;
3349 out:
3350 	if (is_unstable)
3351 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3352 
3353 	inode_unlock(inode_out);
3354 	file_accessed(file_in);
3355 
3356 	return err;
3357 }
3358 
3359 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3360 				    struct file *dst_file, loff_t dst_off,
3361 				    size_t len, unsigned int flags)
3362 {
3363 	ssize_t ret;
3364 
3365 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3366 				     len, flags);
3367 
3368 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3369 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3370 					      dst_off, len, flags);
3371 	return ret;
3372 }
3373 
3374 static const struct file_operations fuse_file_operations = {
3375 	.llseek		= fuse_file_llseek,
3376 	.read_iter	= fuse_file_read_iter,
3377 	.write_iter	= fuse_file_write_iter,
3378 	.mmap		= fuse_file_mmap,
3379 	.open		= fuse_open,
3380 	.flush		= fuse_flush,
3381 	.release	= fuse_release,
3382 	.fsync		= fuse_fsync,
3383 	.lock		= fuse_file_lock,
3384 	.flock		= fuse_file_flock,
3385 	.splice_read	= generic_file_splice_read,
3386 	.splice_write	= iter_file_splice_write,
3387 	.unlocked_ioctl	= fuse_file_ioctl,
3388 	.compat_ioctl	= fuse_file_compat_ioctl,
3389 	.poll		= fuse_file_poll,
3390 	.fallocate	= fuse_file_fallocate,
3391 	.copy_file_range = fuse_copy_file_range,
3392 };
3393 
3394 static const struct address_space_operations fuse_file_aops  = {
3395 	.readpage	= fuse_readpage,
3396 	.readahead	= fuse_readahead,
3397 	.writepage	= fuse_writepage,
3398 	.writepages	= fuse_writepages,
3399 	.launder_page	= fuse_launder_page,
3400 	.set_page_dirty	= __set_page_dirty_nobuffers,
3401 	.bmap		= fuse_bmap,
3402 	.direct_IO	= fuse_direct_IO,
3403 	.write_begin	= fuse_write_begin,
3404 	.write_end	= fuse_write_end,
3405 };
3406 
3407 void fuse_init_file_inode(struct inode *inode)
3408 {
3409 	struct fuse_inode *fi = get_fuse_inode(inode);
3410 
3411 	inode->i_fop = &fuse_file_operations;
3412 	inode->i_data.a_ops = &fuse_file_aops;
3413 
3414 	INIT_LIST_HEAD(&fi->write_files);
3415 	INIT_LIST_HEAD(&fi->queued_writes);
3416 	fi->writectr = 0;
3417 	init_waitqueue_head(&fi->page_waitq);
3418 	fi->writepages = RB_ROOT;
3419 }
3420