1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/swap.h> 18 #include <linux/falloc.h> 19 #include <linux/uio.h> 20 #include <linux/fs.h> 21 22 static int fuse_send_open(struct fuse_mount *fm, u64 nodeid, 23 unsigned int open_flags, int opcode, 24 struct fuse_open_out *outargp) 25 { 26 struct fuse_open_in inarg; 27 FUSE_ARGS(args); 28 29 memset(&inarg, 0, sizeof(inarg)); 30 inarg.flags = open_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 31 if (!fm->fc->atomic_o_trunc) 32 inarg.flags &= ~O_TRUNC; 33 34 if (fm->fc->handle_killpriv_v2 && 35 (inarg.flags & O_TRUNC) && !capable(CAP_FSETID)) { 36 inarg.open_flags |= FUSE_OPEN_KILL_SUIDGID; 37 } 38 39 args.opcode = opcode; 40 args.nodeid = nodeid; 41 args.in_numargs = 1; 42 args.in_args[0].size = sizeof(inarg); 43 args.in_args[0].value = &inarg; 44 args.out_numargs = 1; 45 args.out_args[0].size = sizeof(*outargp); 46 args.out_args[0].value = outargp; 47 48 return fuse_simple_request(fm, &args); 49 } 50 51 struct fuse_release_args { 52 struct fuse_args args; 53 struct fuse_release_in inarg; 54 struct inode *inode; 55 }; 56 57 struct fuse_file *fuse_file_alloc(struct fuse_mount *fm) 58 { 59 struct fuse_file *ff; 60 61 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 62 if (unlikely(!ff)) 63 return NULL; 64 65 ff->fm = fm; 66 ff->release_args = kzalloc(sizeof(*ff->release_args), 67 GFP_KERNEL_ACCOUNT); 68 if (!ff->release_args) { 69 kfree(ff); 70 return NULL; 71 } 72 73 INIT_LIST_HEAD(&ff->write_entry); 74 mutex_init(&ff->readdir.lock); 75 refcount_set(&ff->count, 1); 76 RB_CLEAR_NODE(&ff->polled_node); 77 init_waitqueue_head(&ff->poll_wait); 78 79 ff->kh = atomic64_inc_return(&fm->fc->khctr); 80 81 return ff; 82 } 83 84 void fuse_file_free(struct fuse_file *ff) 85 { 86 kfree(ff->release_args); 87 mutex_destroy(&ff->readdir.lock); 88 kfree(ff); 89 } 90 91 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 92 { 93 refcount_inc(&ff->count); 94 return ff; 95 } 96 97 static void fuse_release_end(struct fuse_mount *fm, struct fuse_args *args, 98 int error) 99 { 100 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 101 102 iput(ra->inode); 103 kfree(ra); 104 } 105 106 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 107 { 108 if (refcount_dec_and_test(&ff->count)) { 109 struct fuse_args *args = &ff->release_args->args; 110 111 if (isdir ? ff->fm->fc->no_opendir : ff->fm->fc->no_open) { 112 /* Do nothing when client does not implement 'open' */ 113 fuse_release_end(ff->fm, args, 0); 114 } else if (sync) { 115 fuse_simple_request(ff->fm, args); 116 fuse_release_end(ff->fm, args, 0); 117 } else { 118 args->end = fuse_release_end; 119 if (fuse_simple_background(ff->fm, args, 120 GFP_KERNEL | __GFP_NOFAIL)) 121 fuse_release_end(ff->fm, args, -ENOTCONN); 122 } 123 kfree(ff); 124 } 125 } 126 127 struct fuse_file *fuse_file_open(struct fuse_mount *fm, u64 nodeid, 128 unsigned int open_flags, bool isdir) 129 { 130 struct fuse_conn *fc = fm->fc; 131 struct fuse_file *ff; 132 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 133 134 ff = fuse_file_alloc(fm); 135 if (!ff) 136 return ERR_PTR(-ENOMEM); 137 138 ff->fh = 0; 139 /* Default for no-open */ 140 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 141 if (isdir ? !fc->no_opendir : !fc->no_open) { 142 struct fuse_open_out outarg; 143 int err; 144 145 err = fuse_send_open(fm, nodeid, open_flags, opcode, &outarg); 146 if (!err) { 147 ff->fh = outarg.fh; 148 ff->open_flags = outarg.open_flags; 149 150 } else if (err != -ENOSYS) { 151 fuse_file_free(ff); 152 return ERR_PTR(err); 153 } else { 154 if (isdir) 155 fc->no_opendir = 1; 156 else 157 fc->no_open = 1; 158 } 159 } 160 161 if (isdir) 162 ff->open_flags &= ~FOPEN_DIRECT_IO; 163 164 ff->nodeid = nodeid; 165 166 return ff; 167 } 168 169 int fuse_do_open(struct fuse_mount *fm, u64 nodeid, struct file *file, 170 bool isdir) 171 { 172 struct fuse_file *ff = fuse_file_open(fm, nodeid, file->f_flags, isdir); 173 174 if (!IS_ERR(ff)) 175 file->private_data = ff; 176 177 return PTR_ERR_OR_ZERO(ff); 178 } 179 EXPORT_SYMBOL_GPL(fuse_do_open); 180 181 static void fuse_link_write_file(struct file *file) 182 { 183 struct inode *inode = file_inode(file); 184 struct fuse_inode *fi = get_fuse_inode(inode); 185 struct fuse_file *ff = file->private_data; 186 /* 187 * file may be written through mmap, so chain it onto the 188 * inodes's write_file list 189 */ 190 spin_lock(&fi->lock); 191 if (list_empty(&ff->write_entry)) 192 list_add(&ff->write_entry, &fi->write_files); 193 spin_unlock(&fi->lock); 194 } 195 196 void fuse_finish_open(struct inode *inode, struct file *file) 197 { 198 struct fuse_file *ff = file->private_data; 199 struct fuse_conn *fc = get_fuse_conn(inode); 200 201 if (ff->open_flags & FOPEN_STREAM) 202 stream_open(inode, file); 203 else if (ff->open_flags & FOPEN_NONSEEKABLE) 204 nonseekable_open(inode, file); 205 206 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 207 struct fuse_inode *fi = get_fuse_inode(inode); 208 209 spin_lock(&fi->lock); 210 fi->attr_version = atomic64_inc_return(&fc->attr_version); 211 i_size_write(inode, 0); 212 spin_unlock(&fi->lock); 213 truncate_pagecache(inode, 0); 214 file_update_time(file); 215 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 216 } else if (!(ff->open_flags & FOPEN_KEEP_CACHE)) { 217 invalidate_inode_pages2(inode->i_mapping); 218 } 219 220 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 221 fuse_link_write_file(file); 222 } 223 224 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 225 { 226 struct fuse_mount *fm = get_fuse_mount(inode); 227 struct fuse_conn *fc = fm->fc; 228 int err; 229 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 230 fc->atomic_o_trunc && 231 fc->writeback_cache; 232 bool dax_truncate = (file->f_flags & O_TRUNC) && 233 fc->atomic_o_trunc && FUSE_IS_DAX(inode); 234 235 if (fuse_is_bad(inode)) 236 return -EIO; 237 238 err = generic_file_open(inode, file); 239 if (err) 240 return err; 241 242 if (is_wb_truncate || dax_truncate) { 243 inode_lock(inode); 244 fuse_set_nowrite(inode); 245 } 246 247 if (dax_truncate) { 248 filemap_invalidate_lock(inode->i_mapping); 249 err = fuse_dax_break_layouts(inode, 0, 0); 250 if (err) 251 goto out; 252 } 253 254 err = fuse_do_open(fm, get_node_id(inode), file, isdir); 255 if (!err) 256 fuse_finish_open(inode, file); 257 258 out: 259 if (dax_truncate) 260 filemap_invalidate_unlock(inode->i_mapping); 261 262 if (is_wb_truncate | dax_truncate) { 263 fuse_release_nowrite(inode); 264 inode_unlock(inode); 265 } 266 267 return err; 268 } 269 270 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 271 unsigned int flags, int opcode) 272 { 273 struct fuse_conn *fc = ff->fm->fc; 274 struct fuse_release_args *ra = ff->release_args; 275 276 /* Inode is NULL on error path of fuse_create_open() */ 277 if (likely(fi)) { 278 spin_lock(&fi->lock); 279 list_del(&ff->write_entry); 280 spin_unlock(&fi->lock); 281 } 282 spin_lock(&fc->lock); 283 if (!RB_EMPTY_NODE(&ff->polled_node)) 284 rb_erase(&ff->polled_node, &fc->polled_files); 285 spin_unlock(&fc->lock); 286 287 wake_up_interruptible_all(&ff->poll_wait); 288 289 ra->inarg.fh = ff->fh; 290 ra->inarg.flags = flags; 291 ra->args.in_numargs = 1; 292 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 293 ra->args.in_args[0].value = &ra->inarg; 294 ra->args.opcode = opcode; 295 ra->args.nodeid = ff->nodeid; 296 ra->args.force = true; 297 ra->args.nocreds = true; 298 } 299 300 void fuse_file_release(struct inode *inode, struct fuse_file *ff, 301 unsigned int open_flags, fl_owner_t id, bool isdir) 302 { 303 struct fuse_inode *fi = get_fuse_inode(inode); 304 struct fuse_release_args *ra = ff->release_args; 305 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 306 307 fuse_prepare_release(fi, ff, open_flags, opcode); 308 309 if (ff->flock) { 310 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 311 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fm->fc, id); 312 } 313 /* Hold inode until release is finished */ 314 ra->inode = igrab(inode); 315 316 /* 317 * Normally this will send the RELEASE request, however if 318 * some asynchronous READ or WRITE requests are outstanding, 319 * the sending will be delayed. 320 * 321 * Make the release synchronous if this is a fuseblk mount, 322 * synchronous RELEASE is allowed (and desirable) in this case 323 * because the server can be trusted not to screw up. 324 */ 325 fuse_file_put(ff, ff->fm->fc->destroy, isdir); 326 } 327 328 void fuse_release_common(struct file *file, bool isdir) 329 { 330 fuse_file_release(file_inode(file), file->private_data, file->f_flags, 331 (fl_owner_t) file, isdir); 332 } 333 334 static int fuse_open(struct inode *inode, struct file *file) 335 { 336 return fuse_open_common(inode, file, false); 337 } 338 339 static int fuse_release(struct inode *inode, struct file *file) 340 { 341 fuse_release_common(file, false); 342 343 /* return value is ignored by VFS */ 344 return 0; 345 } 346 347 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, 348 unsigned int flags) 349 { 350 WARN_ON(refcount_read(&ff->count) > 1); 351 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 352 /* 353 * iput(NULL) is a no-op and since the refcount is 1 and everything's 354 * synchronous, we are fine with not doing igrab() here" 355 */ 356 fuse_file_put(ff, true, false); 357 } 358 EXPORT_SYMBOL_GPL(fuse_sync_release); 359 360 /* 361 * Scramble the ID space with XTEA, so that the value of the files_struct 362 * pointer is not exposed to userspace. 363 */ 364 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 365 { 366 u32 *k = fc->scramble_key; 367 u64 v = (unsigned long) id; 368 u32 v0 = v; 369 u32 v1 = v >> 32; 370 u32 sum = 0; 371 int i; 372 373 for (i = 0; i < 32; i++) { 374 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 375 sum += 0x9E3779B9; 376 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 377 } 378 379 return (u64) v0 + ((u64) v1 << 32); 380 } 381 382 struct fuse_writepage_args { 383 struct fuse_io_args ia; 384 struct rb_node writepages_entry; 385 struct list_head queue_entry; 386 struct fuse_writepage_args *next; 387 struct inode *inode; 388 struct fuse_sync_bucket *bucket; 389 }; 390 391 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 392 pgoff_t idx_from, pgoff_t idx_to) 393 { 394 struct rb_node *n; 395 396 n = fi->writepages.rb_node; 397 398 while (n) { 399 struct fuse_writepage_args *wpa; 400 pgoff_t curr_index; 401 402 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 403 WARN_ON(get_fuse_inode(wpa->inode) != fi); 404 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 405 if (idx_from >= curr_index + wpa->ia.ap.num_pages) 406 n = n->rb_right; 407 else if (idx_to < curr_index) 408 n = n->rb_left; 409 else 410 return wpa; 411 } 412 return NULL; 413 } 414 415 /* 416 * Check if any page in a range is under writeback 417 * 418 * This is currently done by walking the list of writepage requests 419 * for the inode, which can be pretty inefficient. 420 */ 421 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 422 pgoff_t idx_to) 423 { 424 struct fuse_inode *fi = get_fuse_inode(inode); 425 bool found; 426 427 spin_lock(&fi->lock); 428 found = fuse_find_writeback(fi, idx_from, idx_to); 429 spin_unlock(&fi->lock); 430 431 return found; 432 } 433 434 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 435 { 436 return fuse_range_is_writeback(inode, index, index); 437 } 438 439 /* 440 * Wait for page writeback to be completed. 441 * 442 * Since fuse doesn't rely on the VM writeback tracking, this has to 443 * use some other means. 444 */ 445 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 446 { 447 struct fuse_inode *fi = get_fuse_inode(inode); 448 449 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 450 } 451 452 /* 453 * Wait for all pending writepages on the inode to finish. 454 * 455 * This is currently done by blocking further writes with FUSE_NOWRITE 456 * and waiting for all sent writes to complete. 457 * 458 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 459 * could conflict with truncation. 460 */ 461 static void fuse_sync_writes(struct inode *inode) 462 { 463 fuse_set_nowrite(inode); 464 fuse_release_nowrite(inode); 465 } 466 467 static int fuse_flush(struct file *file, fl_owner_t id) 468 { 469 struct inode *inode = file_inode(file); 470 struct fuse_mount *fm = get_fuse_mount(inode); 471 struct fuse_file *ff = file->private_data; 472 struct fuse_flush_in inarg; 473 FUSE_ARGS(args); 474 int err; 475 476 if (fuse_is_bad(inode)) 477 return -EIO; 478 479 if (ff->open_flags & FOPEN_NOFLUSH && !fm->fc->writeback_cache) 480 return 0; 481 482 err = write_inode_now(inode, 1); 483 if (err) 484 return err; 485 486 inode_lock(inode); 487 fuse_sync_writes(inode); 488 inode_unlock(inode); 489 490 err = filemap_check_errors(file->f_mapping); 491 if (err) 492 return err; 493 494 err = 0; 495 if (fm->fc->no_flush) 496 goto inval_attr_out; 497 498 memset(&inarg, 0, sizeof(inarg)); 499 inarg.fh = ff->fh; 500 inarg.lock_owner = fuse_lock_owner_id(fm->fc, id); 501 args.opcode = FUSE_FLUSH; 502 args.nodeid = get_node_id(inode); 503 args.in_numargs = 1; 504 args.in_args[0].size = sizeof(inarg); 505 args.in_args[0].value = &inarg; 506 args.force = true; 507 508 err = fuse_simple_request(fm, &args); 509 if (err == -ENOSYS) { 510 fm->fc->no_flush = 1; 511 err = 0; 512 } 513 514 inval_attr_out: 515 /* 516 * In memory i_blocks is not maintained by fuse, if writeback cache is 517 * enabled, i_blocks from cached attr may not be accurate. 518 */ 519 if (!err && fm->fc->writeback_cache) 520 fuse_invalidate_attr_mask(inode, STATX_BLOCKS); 521 return err; 522 } 523 524 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 525 int datasync, int opcode) 526 { 527 struct inode *inode = file->f_mapping->host; 528 struct fuse_mount *fm = get_fuse_mount(inode); 529 struct fuse_file *ff = file->private_data; 530 FUSE_ARGS(args); 531 struct fuse_fsync_in inarg; 532 533 memset(&inarg, 0, sizeof(inarg)); 534 inarg.fh = ff->fh; 535 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 536 args.opcode = opcode; 537 args.nodeid = get_node_id(inode); 538 args.in_numargs = 1; 539 args.in_args[0].size = sizeof(inarg); 540 args.in_args[0].value = &inarg; 541 return fuse_simple_request(fm, &args); 542 } 543 544 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 545 int datasync) 546 { 547 struct inode *inode = file->f_mapping->host; 548 struct fuse_conn *fc = get_fuse_conn(inode); 549 int err; 550 551 if (fuse_is_bad(inode)) 552 return -EIO; 553 554 inode_lock(inode); 555 556 /* 557 * Start writeback against all dirty pages of the inode, then 558 * wait for all outstanding writes, before sending the FSYNC 559 * request. 560 */ 561 err = file_write_and_wait_range(file, start, end); 562 if (err) 563 goto out; 564 565 fuse_sync_writes(inode); 566 567 /* 568 * Due to implementation of fuse writeback 569 * file_write_and_wait_range() does not catch errors. 570 * We have to do this directly after fuse_sync_writes() 571 */ 572 err = file_check_and_advance_wb_err(file); 573 if (err) 574 goto out; 575 576 err = sync_inode_metadata(inode, 1); 577 if (err) 578 goto out; 579 580 if (fc->no_fsync) 581 goto out; 582 583 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 584 if (err == -ENOSYS) { 585 fc->no_fsync = 1; 586 err = 0; 587 } 588 out: 589 inode_unlock(inode); 590 591 return err; 592 } 593 594 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 595 size_t count, int opcode) 596 { 597 struct fuse_file *ff = file->private_data; 598 struct fuse_args *args = &ia->ap.args; 599 600 ia->read.in.fh = ff->fh; 601 ia->read.in.offset = pos; 602 ia->read.in.size = count; 603 ia->read.in.flags = file->f_flags; 604 args->opcode = opcode; 605 args->nodeid = ff->nodeid; 606 args->in_numargs = 1; 607 args->in_args[0].size = sizeof(ia->read.in); 608 args->in_args[0].value = &ia->read.in; 609 args->out_argvar = true; 610 args->out_numargs = 1; 611 args->out_args[0].size = count; 612 } 613 614 static void fuse_release_user_pages(struct fuse_args_pages *ap, 615 bool should_dirty) 616 { 617 unsigned int i; 618 619 for (i = 0; i < ap->num_pages; i++) { 620 if (should_dirty) 621 set_page_dirty_lock(ap->pages[i]); 622 put_page(ap->pages[i]); 623 } 624 } 625 626 static void fuse_io_release(struct kref *kref) 627 { 628 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 629 } 630 631 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 632 { 633 if (io->err) 634 return io->err; 635 636 if (io->bytes >= 0 && io->write) 637 return -EIO; 638 639 return io->bytes < 0 ? io->size : io->bytes; 640 } 641 642 /** 643 * In case of short read, the caller sets 'pos' to the position of 644 * actual end of fuse request in IO request. Otherwise, if bytes_requested 645 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 646 * 647 * An example: 648 * User requested DIO read of 64K. It was split into two 32K fuse requests, 649 * both submitted asynchronously. The first of them was ACKed by userspace as 650 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 651 * second request was ACKed as short, e.g. only 1K was read, resulting in 652 * pos == 33K. 653 * 654 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 655 * will be equal to the length of the longest contiguous fragment of 656 * transferred data starting from the beginning of IO request. 657 */ 658 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 659 { 660 int left; 661 662 spin_lock(&io->lock); 663 if (err) 664 io->err = io->err ? : err; 665 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 666 io->bytes = pos; 667 668 left = --io->reqs; 669 if (!left && io->blocking) 670 complete(io->done); 671 spin_unlock(&io->lock); 672 673 if (!left && !io->blocking) { 674 ssize_t res = fuse_get_res_by_io(io); 675 676 if (res >= 0) { 677 struct inode *inode = file_inode(io->iocb->ki_filp); 678 struct fuse_conn *fc = get_fuse_conn(inode); 679 struct fuse_inode *fi = get_fuse_inode(inode); 680 681 spin_lock(&fi->lock); 682 fi->attr_version = atomic64_inc_return(&fc->attr_version); 683 spin_unlock(&fi->lock); 684 } 685 686 io->iocb->ki_complete(io->iocb, res); 687 } 688 689 kref_put(&io->refcnt, fuse_io_release); 690 } 691 692 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 693 unsigned int npages) 694 { 695 struct fuse_io_args *ia; 696 697 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 698 if (ia) { 699 ia->io = io; 700 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 701 &ia->ap.descs); 702 if (!ia->ap.pages) { 703 kfree(ia); 704 ia = NULL; 705 } 706 } 707 return ia; 708 } 709 710 static void fuse_io_free(struct fuse_io_args *ia) 711 { 712 kfree(ia->ap.pages); 713 kfree(ia); 714 } 715 716 static void fuse_aio_complete_req(struct fuse_mount *fm, struct fuse_args *args, 717 int err) 718 { 719 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 720 struct fuse_io_priv *io = ia->io; 721 ssize_t pos = -1; 722 723 fuse_release_user_pages(&ia->ap, io->should_dirty); 724 725 if (err) { 726 /* Nothing */ 727 } else if (io->write) { 728 if (ia->write.out.size > ia->write.in.size) { 729 err = -EIO; 730 } else if (ia->write.in.size != ia->write.out.size) { 731 pos = ia->write.in.offset - io->offset + 732 ia->write.out.size; 733 } 734 } else { 735 u32 outsize = args->out_args[0].size; 736 737 if (ia->read.in.size != outsize) 738 pos = ia->read.in.offset - io->offset + outsize; 739 } 740 741 fuse_aio_complete(io, err, pos); 742 fuse_io_free(ia); 743 } 744 745 static ssize_t fuse_async_req_send(struct fuse_mount *fm, 746 struct fuse_io_args *ia, size_t num_bytes) 747 { 748 ssize_t err; 749 struct fuse_io_priv *io = ia->io; 750 751 spin_lock(&io->lock); 752 kref_get(&io->refcnt); 753 io->size += num_bytes; 754 io->reqs++; 755 spin_unlock(&io->lock); 756 757 ia->ap.args.end = fuse_aio_complete_req; 758 ia->ap.args.may_block = io->should_dirty; 759 err = fuse_simple_background(fm, &ia->ap.args, GFP_KERNEL); 760 if (err) 761 fuse_aio_complete_req(fm, &ia->ap.args, err); 762 763 return num_bytes; 764 } 765 766 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 767 fl_owner_t owner) 768 { 769 struct file *file = ia->io->iocb->ki_filp; 770 struct fuse_file *ff = file->private_data; 771 struct fuse_mount *fm = ff->fm; 772 773 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 774 if (owner != NULL) { 775 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 776 ia->read.in.lock_owner = fuse_lock_owner_id(fm->fc, owner); 777 } 778 779 if (ia->io->async) 780 return fuse_async_req_send(fm, ia, count); 781 782 return fuse_simple_request(fm, &ia->ap.args); 783 } 784 785 static void fuse_read_update_size(struct inode *inode, loff_t size, 786 u64 attr_ver) 787 { 788 struct fuse_conn *fc = get_fuse_conn(inode); 789 struct fuse_inode *fi = get_fuse_inode(inode); 790 791 spin_lock(&fi->lock); 792 if (attr_ver >= fi->attr_version && size < inode->i_size && 793 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 794 fi->attr_version = atomic64_inc_return(&fc->attr_version); 795 i_size_write(inode, size); 796 } 797 spin_unlock(&fi->lock); 798 } 799 800 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 801 struct fuse_args_pages *ap) 802 { 803 struct fuse_conn *fc = get_fuse_conn(inode); 804 805 /* 806 * If writeback_cache is enabled, a short read means there's a hole in 807 * the file. Some data after the hole is in page cache, but has not 808 * reached the client fs yet. So the hole is not present there. 809 */ 810 if (!fc->writeback_cache) { 811 loff_t pos = page_offset(ap->pages[0]) + num_read; 812 fuse_read_update_size(inode, pos, attr_ver); 813 } 814 } 815 816 static int fuse_do_readpage(struct file *file, struct page *page) 817 { 818 struct inode *inode = page->mapping->host; 819 struct fuse_mount *fm = get_fuse_mount(inode); 820 loff_t pos = page_offset(page); 821 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 822 struct fuse_io_args ia = { 823 .ap.args.page_zeroing = true, 824 .ap.args.out_pages = true, 825 .ap.num_pages = 1, 826 .ap.pages = &page, 827 .ap.descs = &desc, 828 }; 829 ssize_t res; 830 u64 attr_ver; 831 832 /* 833 * Page writeback can extend beyond the lifetime of the 834 * page-cache page, so make sure we read a properly synced 835 * page. 836 */ 837 fuse_wait_on_page_writeback(inode, page->index); 838 839 attr_ver = fuse_get_attr_version(fm->fc); 840 841 /* Don't overflow end offset */ 842 if (pos + (desc.length - 1) == LLONG_MAX) 843 desc.length--; 844 845 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 846 res = fuse_simple_request(fm, &ia.ap.args); 847 if (res < 0) 848 return res; 849 /* 850 * Short read means EOF. If file size is larger, truncate it 851 */ 852 if (res < desc.length) 853 fuse_short_read(inode, attr_ver, res, &ia.ap); 854 855 SetPageUptodate(page); 856 857 return 0; 858 } 859 860 static int fuse_readpage(struct file *file, struct page *page) 861 { 862 struct inode *inode = page->mapping->host; 863 int err; 864 865 err = -EIO; 866 if (fuse_is_bad(inode)) 867 goto out; 868 869 err = fuse_do_readpage(file, page); 870 fuse_invalidate_atime(inode); 871 out: 872 unlock_page(page); 873 return err; 874 } 875 876 static void fuse_readpages_end(struct fuse_mount *fm, struct fuse_args *args, 877 int err) 878 { 879 int i; 880 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 881 struct fuse_args_pages *ap = &ia->ap; 882 size_t count = ia->read.in.size; 883 size_t num_read = args->out_args[0].size; 884 struct address_space *mapping = NULL; 885 886 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 887 mapping = ap->pages[i]->mapping; 888 889 if (mapping) { 890 struct inode *inode = mapping->host; 891 892 /* 893 * Short read means EOF. If file size is larger, truncate it 894 */ 895 if (!err && num_read < count) 896 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 897 898 fuse_invalidate_atime(inode); 899 } 900 901 for (i = 0; i < ap->num_pages; i++) { 902 struct page *page = ap->pages[i]; 903 904 if (!err) 905 SetPageUptodate(page); 906 else 907 SetPageError(page); 908 unlock_page(page); 909 put_page(page); 910 } 911 if (ia->ff) 912 fuse_file_put(ia->ff, false, false); 913 914 fuse_io_free(ia); 915 } 916 917 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 918 { 919 struct fuse_file *ff = file->private_data; 920 struct fuse_mount *fm = ff->fm; 921 struct fuse_args_pages *ap = &ia->ap; 922 loff_t pos = page_offset(ap->pages[0]); 923 size_t count = ap->num_pages << PAGE_SHIFT; 924 ssize_t res; 925 int err; 926 927 ap->args.out_pages = true; 928 ap->args.page_zeroing = true; 929 ap->args.page_replace = true; 930 931 /* Don't overflow end offset */ 932 if (pos + (count - 1) == LLONG_MAX) { 933 count--; 934 ap->descs[ap->num_pages - 1].length--; 935 } 936 WARN_ON((loff_t) (pos + count) < 0); 937 938 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 939 ia->read.attr_ver = fuse_get_attr_version(fm->fc); 940 if (fm->fc->async_read) { 941 ia->ff = fuse_file_get(ff); 942 ap->args.end = fuse_readpages_end; 943 err = fuse_simple_background(fm, &ap->args, GFP_KERNEL); 944 if (!err) 945 return; 946 } else { 947 res = fuse_simple_request(fm, &ap->args); 948 err = res < 0 ? res : 0; 949 } 950 fuse_readpages_end(fm, &ap->args, err); 951 } 952 953 static void fuse_readahead(struct readahead_control *rac) 954 { 955 struct inode *inode = rac->mapping->host; 956 struct fuse_conn *fc = get_fuse_conn(inode); 957 unsigned int i, max_pages, nr_pages = 0; 958 959 if (fuse_is_bad(inode)) 960 return; 961 962 max_pages = min_t(unsigned int, fc->max_pages, 963 fc->max_read / PAGE_SIZE); 964 965 for (;;) { 966 struct fuse_io_args *ia; 967 struct fuse_args_pages *ap; 968 969 nr_pages = readahead_count(rac) - nr_pages; 970 if (nr_pages > max_pages) 971 nr_pages = max_pages; 972 if (nr_pages == 0) 973 break; 974 ia = fuse_io_alloc(NULL, nr_pages); 975 if (!ia) 976 return; 977 ap = &ia->ap; 978 nr_pages = __readahead_batch(rac, ap->pages, nr_pages); 979 for (i = 0; i < nr_pages; i++) { 980 fuse_wait_on_page_writeback(inode, 981 readahead_index(rac) + i); 982 ap->descs[i].length = PAGE_SIZE; 983 } 984 ap->num_pages = nr_pages; 985 fuse_send_readpages(ia, rac->file); 986 } 987 } 988 989 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 990 { 991 struct inode *inode = iocb->ki_filp->f_mapping->host; 992 struct fuse_conn *fc = get_fuse_conn(inode); 993 994 /* 995 * In auto invalidate mode, always update attributes on read. 996 * Otherwise, only update if we attempt to read past EOF (to ensure 997 * i_size is up to date). 998 */ 999 if (fc->auto_inval_data || 1000 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 1001 int err; 1002 err = fuse_update_attributes(inode, iocb->ki_filp, STATX_SIZE); 1003 if (err) 1004 return err; 1005 } 1006 1007 return generic_file_read_iter(iocb, to); 1008 } 1009 1010 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1011 loff_t pos, size_t count) 1012 { 1013 struct fuse_args *args = &ia->ap.args; 1014 1015 ia->write.in.fh = ff->fh; 1016 ia->write.in.offset = pos; 1017 ia->write.in.size = count; 1018 args->opcode = FUSE_WRITE; 1019 args->nodeid = ff->nodeid; 1020 args->in_numargs = 2; 1021 if (ff->fm->fc->minor < 9) 1022 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1023 else 1024 args->in_args[0].size = sizeof(ia->write.in); 1025 args->in_args[0].value = &ia->write.in; 1026 args->in_args[1].size = count; 1027 args->out_numargs = 1; 1028 args->out_args[0].size = sizeof(ia->write.out); 1029 args->out_args[0].value = &ia->write.out; 1030 } 1031 1032 static unsigned int fuse_write_flags(struct kiocb *iocb) 1033 { 1034 unsigned int flags = iocb->ki_filp->f_flags; 1035 1036 if (iocb->ki_flags & IOCB_DSYNC) 1037 flags |= O_DSYNC; 1038 if (iocb->ki_flags & IOCB_SYNC) 1039 flags |= O_SYNC; 1040 1041 return flags; 1042 } 1043 1044 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1045 size_t count, fl_owner_t owner) 1046 { 1047 struct kiocb *iocb = ia->io->iocb; 1048 struct file *file = iocb->ki_filp; 1049 struct fuse_file *ff = file->private_data; 1050 struct fuse_mount *fm = ff->fm; 1051 struct fuse_write_in *inarg = &ia->write.in; 1052 ssize_t err; 1053 1054 fuse_write_args_fill(ia, ff, pos, count); 1055 inarg->flags = fuse_write_flags(iocb); 1056 if (owner != NULL) { 1057 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1058 inarg->lock_owner = fuse_lock_owner_id(fm->fc, owner); 1059 } 1060 1061 if (ia->io->async) 1062 return fuse_async_req_send(fm, ia, count); 1063 1064 err = fuse_simple_request(fm, &ia->ap.args); 1065 if (!err && ia->write.out.size > count) 1066 err = -EIO; 1067 1068 return err ?: ia->write.out.size; 1069 } 1070 1071 bool fuse_write_update_attr(struct inode *inode, loff_t pos, ssize_t written) 1072 { 1073 struct fuse_conn *fc = get_fuse_conn(inode); 1074 struct fuse_inode *fi = get_fuse_inode(inode); 1075 bool ret = false; 1076 1077 spin_lock(&fi->lock); 1078 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1079 if (written > 0 && pos > inode->i_size) { 1080 i_size_write(inode, pos); 1081 ret = true; 1082 } 1083 spin_unlock(&fi->lock); 1084 1085 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 1086 1087 return ret; 1088 } 1089 1090 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1091 struct kiocb *iocb, struct inode *inode, 1092 loff_t pos, size_t count) 1093 { 1094 struct fuse_args_pages *ap = &ia->ap; 1095 struct file *file = iocb->ki_filp; 1096 struct fuse_file *ff = file->private_data; 1097 struct fuse_mount *fm = ff->fm; 1098 unsigned int offset, i; 1099 bool short_write; 1100 int err; 1101 1102 for (i = 0; i < ap->num_pages; i++) 1103 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1104 1105 fuse_write_args_fill(ia, ff, pos, count); 1106 ia->write.in.flags = fuse_write_flags(iocb); 1107 if (fm->fc->handle_killpriv_v2 && !capable(CAP_FSETID)) 1108 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1109 1110 err = fuse_simple_request(fm, &ap->args); 1111 if (!err && ia->write.out.size > count) 1112 err = -EIO; 1113 1114 short_write = ia->write.out.size < count; 1115 offset = ap->descs[0].offset; 1116 count = ia->write.out.size; 1117 for (i = 0; i < ap->num_pages; i++) { 1118 struct page *page = ap->pages[i]; 1119 1120 if (err) { 1121 ClearPageUptodate(page); 1122 } else { 1123 if (count >= PAGE_SIZE - offset) 1124 count -= PAGE_SIZE - offset; 1125 else { 1126 if (short_write) 1127 ClearPageUptodate(page); 1128 count = 0; 1129 } 1130 offset = 0; 1131 } 1132 if (ia->write.page_locked && (i == ap->num_pages - 1)) 1133 unlock_page(page); 1134 put_page(page); 1135 } 1136 1137 return err; 1138 } 1139 1140 static ssize_t fuse_fill_write_pages(struct fuse_io_args *ia, 1141 struct address_space *mapping, 1142 struct iov_iter *ii, loff_t pos, 1143 unsigned int max_pages) 1144 { 1145 struct fuse_args_pages *ap = &ia->ap; 1146 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1147 unsigned offset = pos & (PAGE_SIZE - 1); 1148 size_t count = 0; 1149 int err; 1150 1151 ap->args.in_pages = true; 1152 ap->descs[0].offset = offset; 1153 1154 do { 1155 size_t tmp; 1156 struct page *page; 1157 pgoff_t index = pos >> PAGE_SHIFT; 1158 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1159 iov_iter_count(ii)); 1160 1161 bytes = min_t(size_t, bytes, fc->max_write - count); 1162 1163 again: 1164 err = -EFAULT; 1165 if (fault_in_iov_iter_readable(ii, bytes)) 1166 break; 1167 1168 err = -ENOMEM; 1169 page = grab_cache_page_write_begin(mapping, index, 0); 1170 if (!page) 1171 break; 1172 1173 if (mapping_writably_mapped(mapping)) 1174 flush_dcache_page(page); 1175 1176 tmp = copy_page_from_iter_atomic(page, offset, bytes, ii); 1177 flush_dcache_page(page); 1178 1179 if (!tmp) { 1180 unlock_page(page); 1181 put_page(page); 1182 goto again; 1183 } 1184 1185 err = 0; 1186 ap->pages[ap->num_pages] = page; 1187 ap->descs[ap->num_pages].length = tmp; 1188 ap->num_pages++; 1189 1190 count += tmp; 1191 pos += tmp; 1192 offset += tmp; 1193 if (offset == PAGE_SIZE) 1194 offset = 0; 1195 1196 /* If we copied full page, mark it uptodate */ 1197 if (tmp == PAGE_SIZE) 1198 SetPageUptodate(page); 1199 1200 if (PageUptodate(page)) { 1201 unlock_page(page); 1202 } else { 1203 ia->write.page_locked = true; 1204 break; 1205 } 1206 if (!fc->big_writes) 1207 break; 1208 } while (iov_iter_count(ii) && count < fc->max_write && 1209 ap->num_pages < max_pages && offset == 0); 1210 1211 return count > 0 ? count : err; 1212 } 1213 1214 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1215 unsigned int max_pages) 1216 { 1217 return min_t(unsigned int, 1218 ((pos + len - 1) >> PAGE_SHIFT) - 1219 (pos >> PAGE_SHIFT) + 1, 1220 max_pages); 1221 } 1222 1223 static ssize_t fuse_perform_write(struct kiocb *iocb, 1224 struct address_space *mapping, 1225 struct iov_iter *ii, loff_t pos) 1226 { 1227 struct inode *inode = mapping->host; 1228 struct fuse_conn *fc = get_fuse_conn(inode); 1229 struct fuse_inode *fi = get_fuse_inode(inode); 1230 int err = 0; 1231 ssize_t res = 0; 1232 1233 if (inode->i_size < pos + iov_iter_count(ii)) 1234 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1235 1236 do { 1237 ssize_t count; 1238 struct fuse_io_args ia = {}; 1239 struct fuse_args_pages *ap = &ia.ap; 1240 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1241 fc->max_pages); 1242 1243 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1244 if (!ap->pages) { 1245 err = -ENOMEM; 1246 break; 1247 } 1248 1249 count = fuse_fill_write_pages(&ia, mapping, ii, pos, nr_pages); 1250 if (count <= 0) { 1251 err = count; 1252 } else { 1253 err = fuse_send_write_pages(&ia, iocb, inode, 1254 pos, count); 1255 if (!err) { 1256 size_t num_written = ia.write.out.size; 1257 1258 res += num_written; 1259 pos += num_written; 1260 1261 /* break out of the loop on short write */ 1262 if (num_written != count) 1263 err = -EIO; 1264 } 1265 } 1266 kfree(ap->pages); 1267 } while (!err && iov_iter_count(ii)); 1268 1269 fuse_write_update_attr(inode, pos, res); 1270 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1271 1272 return res > 0 ? res : err; 1273 } 1274 1275 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1276 { 1277 struct file *file = iocb->ki_filp; 1278 struct address_space *mapping = file->f_mapping; 1279 ssize_t written = 0; 1280 ssize_t written_buffered = 0; 1281 struct inode *inode = mapping->host; 1282 ssize_t err; 1283 struct fuse_conn *fc = get_fuse_conn(inode); 1284 loff_t endbyte = 0; 1285 1286 if (fc->writeback_cache) { 1287 /* Update size (EOF optimization) and mode (SUID clearing) */ 1288 err = fuse_update_attributes(mapping->host, file, 1289 STATX_SIZE | STATX_MODE); 1290 if (err) 1291 return err; 1292 1293 if (fc->handle_killpriv_v2 && 1294 should_remove_suid(file_dentry(file))) { 1295 goto writethrough; 1296 } 1297 1298 return generic_file_write_iter(iocb, from); 1299 } 1300 1301 writethrough: 1302 inode_lock(inode); 1303 1304 /* We can write back this queue in page reclaim */ 1305 current->backing_dev_info = inode_to_bdi(inode); 1306 1307 err = generic_write_checks(iocb, from); 1308 if (err <= 0) 1309 goto out; 1310 1311 err = file_remove_privs(file); 1312 if (err) 1313 goto out; 1314 1315 err = file_update_time(file); 1316 if (err) 1317 goto out; 1318 1319 if (iocb->ki_flags & IOCB_DIRECT) { 1320 loff_t pos = iocb->ki_pos; 1321 written = generic_file_direct_write(iocb, from); 1322 if (written < 0 || !iov_iter_count(from)) 1323 goto out; 1324 1325 pos += written; 1326 1327 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1328 if (written_buffered < 0) { 1329 err = written_buffered; 1330 goto out; 1331 } 1332 endbyte = pos + written_buffered - 1; 1333 1334 err = filemap_write_and_wait_range(file->f_mapping, pos, 1335 endbyte); 1336 if (err) 1337 goto out; 1338 1339 invalidate_mapping_pages(file->f_mapping, 1340 pos >> PAGE_SHIFT, 1341 endbyte >> PAGE_SHIFT); 1342 1343 written += written_buffered; 1344 iocb->ki_pos = pos + written_buffered; 1345 } else { 1346 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1347 if (written >= 0) 1348 iocb->ki_pos += written; 1349 } 1350 out: 1351 current->backing_dev_info = NULL; 1352 inode_unlock(inode); 1353 if (written > 0) 1354 written = generic_write_sync(iocb, written); 1355 1356 return written ? written : err; 1357 } 1358 1359 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1360 { 1361 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1362 } 1363 1364 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1365 size_t max_size) 1366 { 1367 return min(iov_iter_single_seg_count(ii), max_size); 1368 } 1369 1370 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1371 size_t *nbytesp, int write, 1372 unsigned int max_pages) 1373 { 1374 size_t nbytes = 0; /* # bytes already packed in req */ 1375 ssize_t ret = 0; 1376 1377 /* Special case for kernel I/O: can copy directly into the buffer */ 1378 if (iov_iter_is_kvec(ii)) { 1379 unsigned long user_addr = fuse_get_user_addr(ii); 1380 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1381 1382 if (write) 1383 ap->args.in_args[1].value = (void *) user_addr; 1384 else 1385 ap->args.out_args[0].value = (void *) user_addr; 1386 1387 iov_iter_advance(ii, frag_size); 1388 *nbytesp = frag_size; 1389 return 0; 1390 } 1391 1392 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1393 unsigned npages; 1394 size_t start; 1395 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1396 *nbytesp - nbytes, 1397 max_pages - ap->num_pages, 1398 &start); 1399 if (ret < 0) 1400 break; 1401 1402 iov_iter_advance(ii, ret); 1403 nbytes += ret; 1404 1405 ret += start; 1406 npages = DIV_ROUND_UP(ret, PAGE_SIZE); 1407 1408 ap->descs[ap->num_pages].offset = start; 1409 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1410 1411 ap->num_pages += npages; 1412 ap->descs[ap->num_pages - 1].length -= 1413 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1414 } 1415 1416 if (write) 1417 ap->args.in_pages = true; 1418 else 1419 ap->args.out_pages = true; 1420 1421 *nbytesp = nbytes; 1422 1423 return ret < 0 ? ret : 0; 1424 } 1425 1426 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1427 loff_t *ppos, int flags) 1428 { 1429 int write = flags & FUSE_DIO_WRITE; 1430 int cuse = flags & FUSE_DIO_CUSE; 1431 struct file *file = io->iocb->ki_filp; 1432 struct inode *inode = file->f_mapping->host; 1433 struct fuse_file *ff = file->private_data; 1434 struct fuse_conn *fc = ff->fm->fc; 1435 size_t nmax = write ? fc->max_write : fc->max_read; 1436 loff_t pos = *ppos; 1437 size_t count = iov_iter_count(iter); 1438 pgoff_t idx_from = pos >> PAGE_SHIFT; 1439 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1440 ssize_t res = 0; 1441 int err = 0; 1442 struct fuse_io_args *ia; 1443 unsigned int max_pages; 1444 1445 max_pages = iov_iter_npages(iter, fc->max_pages); 1446 ia = fuse_io_alloc(io, max_pages); 1447 if (!ia) 1448 return -ENOMEM; 1449 1450 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1451 if (!write) 1452 inode_lock(inode); 1453 fuse_sync_writes(inode); 1454 if (!write) 1455 inode_unlock(inode); 1456 } 1457 1458 io->should_dirty = !write && iter_is_iovec(iter); 1459 while (count) { 1460 ssize_t nres; 1461 fl_owner_t owner = current->files; 1462 size_t nbytes = min(count, nmax); 1463 1464 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1465 max_pages); 1466 if (err && !nbytes) 1467 break; 1468 1469 if (write) { 1470 if (!capable(CAP_FSETID)) 1471 ia->write.in.write_flags |= FUSE_WRITE_KILL_SUIDGID; 1472 1473 nres = fuse_send_write(ia, pos, nbytes, owner); 1474 } else { 1475 nres = fuse_send_read(ia, pos, nbytes, owner); 1476 } 1477 1478 if (!io->async || nres < 0) { 1479 fuse_release_user_pages(&ia->ap, io->should_dirty); 1480 fuse_io_free(ia); 1481 } 1482 ia = NULL; 1483 if (nres < 0) { 1484 iov_iter_revert(iter, nbytes); 1485 err = nres; 1486 break; 1487 } 1488 WARN_ON(nres > nbytes); 1489 1490 count -= nres; 1491 res += nres; 1492 pos += nres; 1493 if (nres != nbytes) { 1494 iov_iter_revert(iter, nbytes - nres); 1495 break; 1496 } 1497 if (count) { 1498 max_pages = iov_iter_npages(iter, fc->max_pages); 1499 ia = fuse_io_alloc(io, max_pages); 1500 if (!ia) 1501 break; 1502 } 1503 } 1504 if (ia) 1505 fuse_io_free(ia); 1506 if (res > 0) 1507 *ppos = pos; 1508 1509 return res > 0 ? res : err; 1510 } 1511 EXPORT_SYMBOL_GPL(fuse_direct_io); 1512 1513 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1514 struct iov_iter *iter, 1515 loff_t *ppos) 1516 { 1517 ssize_t res; 1518 struct inode *inode = file_inode(io->iocb->ki_filp); 1519 1520 res = fuse_direct_io(io, iter, ppos, 0); 1521 1522 fuse_invalidate_atime(inode); 1523 1524 return res; 1525 } 1526 1527 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1528 1529 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1530 { 1531 ssize_t res; 1532 1533 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1534 res = fuse_direct_IO(iocb, to); 1535 } else { 1536 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1537 1538 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1539 } 1540 1541 return res; 1542 } 1543 1544 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1545 { 1546 struct inode *inode = file_inode(iocb->ki_filp); 1547 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1548 ssize_t res; 1549 1550 /* Don't allow parallel writes to the same file */ 1551 inode_lock(inode); 1552 res = generic_write_checks(iocb, from); 1553 if (res > 0) { 1554 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1555 res = fuse_direct_IO(iocb, from); 1556 } else { 1557 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1558 FUSE_DIO_WRITE); 1559 fuse_write_update_attr(inode, iocb->ki_pos, res); 1560 } 1561 } 1562 inode_unlock(inode); 1563 1564 return res; 1565 } 1566 1567 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1568 { 1569 struct file *file = iocb->ki_filp; 1570 struct fuse_file *ff = file->private_data; 1571 struct inode *inode = file_inode(file); 1572 1573 if (fuse_is_bad(inode)) 1574 return -EIO; 1575 1576 if (FUSE_IS_DAX(inode)) 1577 return fuse_dax_read_iter(iocb, to); 1578 1579 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1580 return fuse_cache_read_iter(iocb, to); 1581 else 1582 return fuse_direct_read_iter(iocb, to); 1583 } 1584 1585 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1586 { 1587 struct file *file = iocb->ki_filp; 1588 struct fuse_file *ff = file->private_data; 1589 struct inode *inode = file_inode(file); 1590 1591 if (fuse_is_bad(inode)) 1592 return -EIO; 1593 1594 if (FUSE_IS_DAX(inode)) 1595 return fuse_dax_write_iter(iocb, from); 1596 1597 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1598 return fuse_cache_write_iter(iocb, from); 1599 else 1600 return fuse_direct_write_iter(iocb, from); 1601 } 1602 1603 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1604 { 1605 struct fuse_args_pages *ap = &wpa->ia.ap; 1606 int i; 1607 1608 if (wpa->bucket) 1609 fuse_sync_bucket_dec(wpa->bucket); 1610 1611 for (i = 0; i < ap->num_pages; i++) 1612 __free_page(ap->pages[i]); 1613 1614 if (wpa->ia.ff) 1615 fuse_file_put(wpa->ia.ff, false, false); 1616 1617 kfree(ap->pages); 1618 kfree(wpa); 1619 } 1620 1621 static void fuse_writepage_finish(struct fuse_mount *fm, 1622 struct fuse_writepage_args *wpa) 1623 { 1624 struct fuse_args_pages *ap = &wpa->ia.ap; 1625 struct inode *inode = wpa->inode; 1626 struct fuse_inode *fi = get_fuse_inode(inode); 1627 struct backing_dev_info *bdi = inode_to_bdi(inode); 1628 int i; 1629 1630 for (i = 0; i < ap->num_pages; i++) { 1631 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1632 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1633 wb_writeout_inc(&bdi->wb); 1634 } 1635 wake_up(&fi->page_waitq); 1636 } 1637 1638 /* Called under fi->lock, may release and reacquire it */ 1639 static void fuse_send_writepage(struct fuse_mount *fm, 1640 struct fuse_writepage_args *wpa, loff_t size) 1641 __releases(fi->lock) 1642 __acquires(fi->lock) 1643 { 1644 struct fuse_writepage_args *aux, *next; 1645 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1646 struct fuse_write_in *inarg = &wpa->ia.write.in; 1647 struct fuse_args *args = &wpa->ia.ap.args; 1648 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1649 int err; 1650 1651 fi->writectr++; 1652 if (inarg->offset + data_size <= size) { 1653 inarg->size = data_size; 1654 } else if (inarg->offset < size) { 1655 inarg->size = size - inarg->offset; 1656 } else { 1657 /* Got truncated off completely */ 1658 goto out_free; 1659 } 1660 1661 args->in_args[1].size = inarg->size; 1662 args->force = true; 1663 args->nocreds = true; 1664 1665 err = fuse_simple_background(fm, args, GFP_ATOMIC); 1666 if (err == -ENOMEM) { 1667 spin_unlock(&fi->lock); 1668 err = fuse_simple_background(fm, args, GFP_NOFS | __GFP_NOFAIL); 1669 spin_lock(&fi->lock); 1670 } 1671 1672 /* Fails on broken connection only */ 1673 if (unlikely(err)) 1674 goto out_free; 1675 1676 return; 1677 1678 out_free: 1679 fi->writectr--; 1680 rb_erase(&wpa->writepages_entry, &fi->writepages); 1681 fuse_writepage_finish(fm, wpa); 1682 spin_unlock(&fi->lock); 1683 1684 /* After fuse_writepage_finish() aux request list is private */ 1685 for (aux = wpa->next; aux; aux = next) { 1686 next = aux->next; 1687 aux->next = NULL; 1688 fuse_writepage_free(aux); 1689 } 1690 1691 fuse_writepage_free(wpa); 1692 spin_lock(&fi->lock); 1693 } 1694 1695 /* 1696 * If fi->writectr is positive (no truncate or fsync going on) send 1697 * all queued writepage requests. 1698 * 1699 * Called with fi->lock 1700 */ 1701 void fuse_flush_writepages(struct inode *inode) 1702 __releases(fi->lock) 1703 __acquires(fi->lock) 1704 { 1705 struct fuse_mount *fm = get_fuse_mount(inode); 1706 struct fuse_inode *fi = get_fuse_inode(inode); 1707 loff_t crop = i_size_read(inode); 1708 struct fuse_writepage_args *wpa; 1709 1710 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1711 wpa = list_entry(fi->queued_writes.next, 1712 struct fuse_writepage_args, queue_entry); 1713 list_del_init(&wpa->queue_entry); 1714 fuse_send_writepage(fm, wpa, crop); 1715 } 1716 } 1717 1718 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1719 struct fuse_writepage_args *wpa) 1720 { 1721 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1722 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1; 1723 struct rb_node **p = &root->rb_node; 1724 struct rb_node *parent = NULL; 1725 1726 WARN_ON(!wpa->ia.ap.num_pages); 1727 while (*p) { 1728 struct fuse_writepage_args *curr; 1729 pgoff_t curr_index; 1730 1731 parent = *p; 1732 curr = rb_entry(parent, struct fuse_writepage_args, 1733 writepages_entry); 1734 WARN_ON(curr->inode != wpa->inode); 1735 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1736 1737 if (idx_from >= curr_index + curr->ia.ap.num_pages) 1738 p = &(*p)->rb_right; 1739 else if (idx_to < curr_index) 1740 p = &(*p)->rb_left; 1741 else 1742 return curr; 1743 } 1744 1745 rb_link_node(&wpa->writepages_entry, parent, p); 1746 rb_insert_color(&wpa->writepages_entry, root); 1747 return NULL; 1748 } 1749 1750 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1751 { 1752 WARN_ON(fuse_insert_writeback(root, wpa)); 1753 } 1754 1755 static void fuse_writepage_end(struct fuse_mount *fm, struct fuse_args *args, 1756 int error) 1757 { 1758 struct fuse_writepage_args *wpa = 1759 container_of(args, typeof(*wpa), ia.ap.args); 1760 struct inode *inode = wpa->inode; 1761 struct fuse_inode *fi = get_fuse_inode(inode); 1762 struct fuse_conn *fc = get_fuse_conn(inode); 1763 1764 mapping_set_error(inode->i_mapping, error); 1765 /* 1766 * A writeback finished and this might have updated mtime/ctime on 1767 * server making local mtime/ctime stale. Hence invalidate attrs. 1768 * Do this only if writeback_cache is not enabled. If writeback_cache 1769 * is enabled, we trust local ctime/mtime. 1770 */ 1771 if (!fc->writeback_cache) 1772 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODIFY); 1773 spin_lock(&fi->lock); 1774 rb_erase(&wpa->writepages_entry, &fi->writepages); 1775 while (wpa->next) { 1776 struct fuse_mount *fm = get_fuse_mount(inode); 1777 struct fuse_write_in *inarg = &wpa->ia.write.in; 1778 struct fuse_writepage_args *next = wpa->next; 1779 1780 wpa->next = next->next; 1781 next->next = NULL; 1782 next->ia.ff = fuse_file_get(wpa->ia.ff); 1783 tree_insert(&fi->writepages, next); 1784 1785 /* 1786 * Skip fuse_flush_writepages() to make it easy to crop requests 1787 * based on primary request size. 1788 * 1789 * 1st case (trivial): there are no concurrent activities using 1790 * fuse_set/release_nowrite. Then we're on safe side because 1791 * fuse_flush_writepages() would call fuse_send_writepage() 1792 * anyway. 1793 * 1794 * 2nd case: someone called fuse_set_nowrite and it is waiting 1795 * now for completion of all in-flight requests. This happens 1796 * rarely and no more than once per page, so this should be 1797 * okay. 1798 * 1799 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1800 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1801 * that fuse_set_nowrite returned implies that all in-flight 1802 * requests were completed along with all of their secondary 1803 * requests. Further primary requests are blocked by negative 1804 * writectr. Hence there cannot be any in-flight requests and 1805 * no invocations of fuse_writepage_end() while we're in 1806 * fuse_set_nowrite..fuse_release_nowrite section. 1807 */ 1808 fuse_send_writepage(fm, next, inarg->offset + inarg->size); 1809 } 1810 fi->writectr--; 1811 fuse_writepage_finish(fm, wpa); 1812 spin_unlock(&fi->lock); 1813 fuse_writepage_free(wpa); 1814 } 1815 1816 static struct fuse_file *__fuse_write_file_get(struct fuse_inode *fi) 1817 { 1818 struct fuse_file *ff; 1819 1820 spin_lock(&fi->lock); 1821 ff = list_first_entry_or_null(&fi->write_files, struct fuse_file, 1822 write_entry); 1823 if (ff) 1824 fuse_file_get(ff); 1825 spin_unlock(&fi->lock); 1826 1827 return ff; 1828 } 1829 1830 static struct fuse_file *fuse_write_file_get(struct fuse_inode *fi) 1831 { 1832 struct fuse_file *ff = __fuse_write_file_get(fi); 1833 WARN_ON(!ff); 1834 return ff; 1835 } 1836 1837 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1838 { 1839 struct fuse_inode *fi = get_fuse_inode(inode); 1840 struct fuse_file *ff; 1841 int err; 1842 1843 /* 1844 * Inode is always written before the last reference is dropped and 1845 * hence this should not be reached from reclaim. 1846 * 1847 * Writing back the inode from reclaim can deadlock if the request 1848 * processing itself needs an allocation. Allocations triggering 1849 * reclaim while serving a request can't be prevented, because it can 1850 * involve any number of unrelated userspace processes. 1851 */ 1852 WARN_ON(wbc->for_reclaim); 1853 1854 ff = __fuse_write_file_get(fi); 1855 err = fuse_flush_times(inode, ff); 1856 if (ff) 1857 fuse_file_put(ff, false, false); 1858 1859 return err; 1860 } 1861 1862 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1863 { 1864 struct fuse_writepage_args *wpa; 1865 struct fuse_args_pages *ap; 1866 1867 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1868 if (wpa) { 1869 ap = &wpa->ia.ap; 1870 ap->num_pages = 0; 1871 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1872 if (!ap->pages) { 1873 kfree(wpa); 1874 wpa = NULL; 1875 } 1876 } 1877 return wpa; 1878 1879 } 1880 1881 static void fuse_writepage_add_to_bucket(struct fuse_conn *fc, 1882 struct fuse_writepage_args *wpa) 1883 { 1884 if (!fc->sync_fs) 1885 return; 1886 1887 rcu_read_lock(); 1888 /* Prevent resurrection of dead bucket in unlikely race with syncfs */ 1889 do { 1890 wpa->bucket = rcu_dereference(fc->curr_bucket); 1891 } while (unlikely(!atomic_inc_not_zero(&wpa->bucket->count))); 1892 rcu_read_unlock(); 1893 } 1894 1895 static int fuse_writepage_locked(struct page *page) 1896 { 1897 struct address_space *mapping = page->mapping; 1898 struct inode *inode = mapping->host; 1899 struct fuse_conn *fc = get_fuse_conn(inode); 1900 struct fuse_inode *fi = get_fuse_inode(inode); 1901 struct fuse_writepage_args *wpa; 1902 struct fuse_args_pages *ap; 1903 struct page *tmp_page; 1904 int error = -ENOMEM; 1905 1906 set_page_writeback(page); 1907 1908 wpa = fuse_writepage_args_alloc(); 1909 if (!wpa) 1910 goto err; 1911 ap = &wpa->ia.ap; 1912 1913 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1914 if (!tmp_page) 1915 goto err_free; 1916 1917 error = -EIO; 1918 wpa->ia.ff = fuse_write_file_get(fi); 1919 if (!wpa->ia.ff) 1920 goto err_nofile; 1921 1922 fuse_writepage_add_to_bucket(fc, wpa); 1923 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1924 1925 copy_highpage(tmp_page, page); 1926 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1927 wpa->next = NULL; 1928 ap->args.in_pages = true; 1929 ap->num_pages = 1; 1930 ap->pages[0] = tmp_page; 1931 ap->descs[0].offset = 0; 1932 ap->descs[0].length = PAGE_SIZE; 1933 ap->args.end = fuse_writepage_end; 1934 wpa->inode = inode; 1935 1936 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1937 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1938 1939 spin_lock(&fi->lock); 1940 tree_insert(&fi->writepages, wpa); 1941 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1942 fuse_flush_writepages(inode); 1943 spin_unlock(&fi->lock); 1944 1945 end_page_writeback(page); 1946 1947 return 0; 1948 1949 err_nofile: 1950 __free_page(tmp_page); 1951 err_free: 1952 kfree(wpa); 1953 err: 1954 mapping_set_error(page->mapping, error); 1955 end_page_writeback(page); 1956 return error; 1957 } 1958 1959 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1960 { 1961 int err; 1962 1963 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1964 /* 1965 * ->writepages() should be called for sync() and friends. We 1966 * should only get here on direct reclaim and then we are 1967 * allowed to skip a page which is already in flight 1968 */ 1969 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1970 1971 redirty_page_for_writepage(wbc, page); 1972 unlock_page(page); 1973 return 0; 1974 } 1975 1976 err = fuse_writepage_locked(page); 1977 unlock_page(page); 1978 1979 return err; 1980 } 1981 1982 struct fuse_fill_wb_data { 1983 struct fuse_writepage_args *wpa; 1984 struct fuse_file *ff; 1985 struct inode *inode; 1986 struct page **orig_pages; 1987 unsigned int max_pages; 1988 }; 1989 1990 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1991 { 1992 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1993 struct fuse_conn *fc = get_fuse_conn(data->inode); 1994 struct page **pages; 1995 struct fuse_page_desc *descs; 1996 unsigned int npages = min_t(unsigned int, 1997 max_t(unsigned int, data->max_pages * 2, 1998 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 1999 fc->max_pages); 2000 WARN_ON(npages <= data->max_pages); 2001 2002 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 2003 if (!pages) 2004 return false; 2005 2006 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 2007 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 2008 kfree(ap->pages); 2009 ap->pages = pages; 2010 ap->descs = descs; 2011 data->max_pages = npages; 2012 2013 return true; 2014 } 2015 2016 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 2017 { 2018 struct fuse_writepage_args *wpa = data->wpa; 2019 struct inode *inode = data->inode; 2020 struct fuse_inode *fi = get_fuse_inode(inode); 2021 int num_pages = wpa->ia.ap.num_pages; 2022 int i; 2023 2024 wpa->ia.ff = fuse_file_get(data->ff); 2025 spin_lock(&fi->lock); 2026 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 2027 fuse_flush_writepages(inode); 2028 spin_unlock(&fi->lock); 2029 2030 for (i = 0; i < num_pages; i++) 2031 end_page_writeback(data->orig_pages[i]); 2032 } 2033 2034 /* 2035 * Check under fi->lock if the page is under writeback, and insert it onto the 2036 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 2037 * one already added for a page at this offset. If there's none, then insert 2038 * this new request onto the auxiliary list, otherwise reuse the existing one by 2039 * swapping the new temp page with the old one. 2040 */ 2041 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 2042 struct page *page) 2043 { 2044 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 2045 struct fuse_writepage_args *tmp; 2046 struct fuse_writepage_args *old_wpa; 2047 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 2048 2049 WARN_ON(new_ap->num_pages != 0); 2050 new_ap->num_pages = 1; 2051 2052 spin_lock(&fi->lock); 2053 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 2054 if (!old_wpa) { 2055 spin_unlock(&fi->lock); 2056 return true; 2057 } 2058 2059 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 2060 pgoff_t curr_index; 2061 2062 WARN_ON(tmp->inode != new_wpa->inode); 2063 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 2064 if (curr_index == page->index) { 2065 WARN_ON(tmp->ia.ap.num_pages != 1); 2066 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 2067 break; 2068 } 2069 } 2070 2071 if (!tmp) { 2072 new_wpa->next = old_wpa->next; 2073 old_wpa->next = new_wpa; 2074 } 2075 2076 spin_unlock(&fi->lock); 2077 2078 if (tmp) { 2079 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 2080 2081 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 2082 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 2083 wb_writeout_inc(&bdi->wb); 2084 fuse_writepage_free(new_wpa); 2085 } 2086 2087 return false; 2088 } 2089 2090 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page, 2091 struct fuse_args_pages *ap, 2092 struct fuse_fill_wb_data *data) 2093 { 2094 WARN_ON(!ap->num_pages); 2095 2096 /* 2097 * Being under writeback is unlikely but possible. For example direct 2098 * read to an mmaped fuse file will set the page dirty twice; once when 2099 * the pages are faulted with get_user_pages(), and then after the read 2100 * completed. 2101 */ 2102 if (fuse_page_is_writeback(data->inode, page->index)) 2103 return true; 2104 2105 /* Reached max pages */ 2106 if (ap->num_pages == fc->max_pages) 2107 return true; 2108 2109 /* Reached max write bytes */ 2110 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write) 2111 return true; 2112 2113 /* Discontinuity */ 2114 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index) 2115 return true; 2116 2117 /* Need to grow the pages array? If so, did the expansion fail? */ 2118 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data)) 2119 return true; 2120 2121 return false; 2122 } 2123 2124 static int fuse_writepages_fill(struct page *page, 2125 struct writeback_control *wbc, void *_data) 2126 { 2127 struct fuse_fill_wb_data *data = _data; 2128 struct fuse_writepage_args *wpa = data->wpa; 2129 struct fuse_args_pages *ap = &wpa->ia.ap; 2130 struct inode *inode = data->inode; 2131 struct fuse_inode *fi = get_fuse_inode(inode); 2132 struct fuse_conn *fc = get_fuse_conn(inode); 2133 struct page *tmp_page; 2134 int err; 2135 2136 if (!data->ff) { 2137 err = -EIO; 2138 data->ff = fuse_write_file_get(fi); 2139 if (!data->ff) 2140 goto out_unlock; 2141 } 2142 2143 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) { 2144 fuse_writepages_send(data); 2145 data->wpa = NULL; 2146 } 2147 2148 err = -ENOMEM; 2149 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2150 if (!tmp_page) 2151 goto out_unlock; 2152 2153 /* 2154 * The page must not be redirtied until the writeout is completed 2155 * (i.e. userspace has sent a reply to the write request). Otherwise 2156 * there could be more than one temporary page instance for each real 2157 * page. 2158 * 2159 * This is ensured by holding the page lock in page_mkwrite() while 2160 * checking fuse_page_is_writeback(). We already hold the page lock 2161 * since clear_page_dirty_for_io() and keep it held until we add the 2162 * request to the fi->writepages list and increment ap->num_pages. 2163 * After this fuse_page_is_writeback() will indicate that the page is 2164 * under writeback, so we can release the page lock. 2165 */ 2166 if (data->wpa == NULL) { 2167 err = -ENOMEM; 2168 wpa = fuse_writepage_args_alloc(); 2169 if (!wpa) { 2170 __free_page(tmp_page); 2171 goto out_unlock; 2172 } 2173 fuse_writepage_add_to_bucket(fc, wpa); 2174 2175 data->max_pages = 1; 2176 2177 ap = &wpa->ia.ap; 2178 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2179 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2180 wpa->next = NULL; 2181 ap->args.in_pages = true; 2182 ap->args.end = fuse_writepage_end; 2183 ap->num_pages = 0; 2184 wpa->inode = inode; 2185 } 2186 set_page_writeback(page); 2187 2188 copy_highpage(tmp_page, page); 2189 ap->pages[ap->num_pages] = tmp_page; 2190 ap->descs[ap->num_pages].offset = 0; 2191 ap->descs[ap->num_pages].length = PAGE_SIZE; 2192 data->orig_pages[ap->num_pages] = page; 2193 2194 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2195 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2196 2197 err = 0; 2198 if (data->wpa) { 2199 /* 2200 * Protected by fi->lock against concurrent access by 2201 * fuse_page_is_writeback(). 2202 */ 2203 spin_lock(&fi->lock); 2204 ap->num_pages++; 2205 spin_unlock(&fi->lock); 2206 } else if (fuse_writepage_add(wpa, page)) { 2207 data->wpa = wpa; 2208 } else { 2209 end_page_writeback(page); 2210 } 2211 out_unlock: 2212 unlock_page(page); 2213 2214 return err; 2215 } 2216 2217 static int fuse_writepages(struct address_space *mapping, 2218 struct writeback_control *wbc) 2219 { 2220 struct inode *inode = mapping->host; 2221 struct fuse_conn *fc = get_fuse_conn(inode); 2222 struct fuse_fill_wb_data data; 2223 int err; 2224 2225 err = -EIO; 2226 if (fuse_is_bad(inode)) 2227 goto out; 2228 2229 data.inode = inode; 2230 data.wpa = NULL; 2231 data.ff = NULL; 2232 2233 err = -ENOMEM; 2234 data.orig_pages = kcalloc(fc->max_pages, 2235 sizeof(struct page *), 2236 GFP_NOFS); 2237 if (!data.orig_pages) 2238 goto out; 2239 2240 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2241 if (data.wpa) { 2242 WARN_ON(!data.wpa->ia.ap.num_pages); 2243 fuse_writepages_send(&data); 2244 } 2245 if (data.ff) 2246 fuse_file_put(data.ff, false, false); 2247 2248 kfree(data.orig_pages); 2249 out: 2250 return err; 2251 } 2252 2253 /* 2254 * It's worthy to make sure that space is reserved on disk for the write, 2255 * but how to implement it without killing performance need more thinking. 2256 */ 2257 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2258 loff_t pos, unsigned len, unsigned flags, 2259 struct page **pagep, void **fsdata) 2260 { 2261 pgoff_t index = pos >> PAGE_SHIFT; 2262 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2263 struct page *page; 2264 loff_t fsize; 2265 int err = -ENOMEM; 2266 2267 WARN_ON(!fc->writeback_cache); 2268 2269 page = grab_cache_page_write_begin(mapping, index, flags); 2270 if (!page) 2271 goto error; 2272 2273 fuse_wait_on_page_writeback(mapping->host, page->index); 2274 2275 if (PageUptodate(page) || len == PAGE_SIZE) 2276 goto success; 2277 /* 2278 * Check if the start this page comes after the end of file, in which 2279 * case the readpage can be optimized away. 2280 */ 2281 fsize = i_size_read(mapping->host); 2282 if (fsize <= (pos & PAGE_MASK)) { 2283 size_t off = pos & ~PAGE_MASK; 2284 if (off) 2285 zero_user_segment(page, 0, off); 2286 goto success; 2287 } 2288 err = fuse_do_readpage(file, page); 2289 if (err) 2290 goto cleanup; 2291 success: 2292 *pagep = page; 2293 return 0; 2294 2295 cleanup: 2296 unlock_page(page); 2297 put_page(page); 2298 error: 2299 return err; 2300 } 2301 2302 static int fuse_write_end(struct file *file, struct address_space *mapping, 2303 loff_t pos, unsigned len, unsigned copied, 2304 struct page *page, void *fsdata) 2305 { 2306 struct inode *inode = page->mapping->host; 2307 2308 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2309 if (!copied) 2310 goto unlock; 2311 2312 pos += copied; 2313 if (!PageUptodate(page)) { 2314 /* Zero any unwritten bytes at the end of the page */ 2315 size_t endoff = pos & ~PAGE_MASK; 2316 if (endoff) 2317 zero_user_segment(page, endoff, PAGE_SIZE); 2318 SetPageUptodate(page); 2319 } 2320 2321 if (pos > inode->i_size) 2322 i_size_write(inode, pos); 2323 2324 set_page_dirty(page); 2325 2326 unlock: 2327 unlock_page(page); 2328 put_page(page); 2329 2330 return copied; 2331 } 2332 2333 static int fuse_launder_page(struct page *page) 2334 { 2335 int err = 0; 2336 if (clear_page_dirty_for_io(page)) { 2337 struct inode *inode = page->mapping->host; 2338 2339 /* Serialize with pending writeback for the same page */ 2340 fuse_wait_on_page_writeback(inode, page->index); 2341 err = fuse_writepage_locked(page); 2342 if (!err) 2343 fuse_wait_on_page_writeback(inode, page->index); 2344 } 2345 return err; 2346 } 2347 2348 /* 2349 * Write back dirty data/metadata now (there may not be any suitable 2350 * open files later for data) 2351 */ 2352 static void fuse_vma_close(struct vm_area_struct *vma) 2353 { 2354 int err; 2355 2356 err = write_inode_now(vma->vm_file->f_mapping->host, 1); 2357 mapping_set_error(vma->vm_file->f_mapping, err); 2358 } 2359 2360 /* 2361 * Wait for writeback against this page to complete before allowing it 2362 * to be marked dirty again, and hence written back again, possibly 2363 * before the previous writepage completed. 2364 * 2365 * Block here, instead of in ->writepage(), so that the userspace fs 2366 * can only block processes actually operating on the filesystem. 2367 * 2368 * Otherwise unprivileged userspace fs would be able to block 2369 * unrelated: 2370 * 2371 * - page migration 2372 * - sync(2) 2373 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2374 */ 2375 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2376 { 2377 struct page *page = vmf->page; 2378 struct inode *inode = file_inode(vmf->vma->vm_file); 2379 2380 file_update_time(vmf->vma->vm_file); 2381 lock_page(page); 2382 if (page->mapping != inode->i_mapping) { 2383 unlock_page(page); 2384 return VM_FAULT_NOPAGE; 2385 } 2386 2387 fuse_wait_on_page_writeback(inode, page->index); 2388 return VM_FAULT_LOCKED; 2389 } 2390 2391 static const struct vm_operations_struct fuse_file_vm_ops = { 2392 .close = fuse_vma_close, 2393 .fault = filemap_fault, 2394 .map_pages = filemap_map_pages, 2395 .page_mkwrite = fuse_page_mkwrite, 2396 }; 2397 2398 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2399 { 2400 struct fuse_file *ff = file->private_data; 2401 2402 /* DAX mmap is superior to direct_io mmap */ 2403 if (FUSE_IS_DAX(file_inode(file))) 2404 return fuse_dax_mmap(file, vma); 2405 2406 if (ff->open_flags & FOPEN_DIRECT_IO) { 2407 /* Can't provide the coherency needed for MAP_SHARED */ 2408 if (vma->vm_flags & VM_MAYSHARE) 2409 return -ENODEV; 2410 2411 invalidate_inode_pages2(file->f_mapping); 2412 2413 return generic_file_mmap(file, vma); 2414 } 2415 2416 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2417 fuse_link_write_file(file); 2418 2419 file_accessed(file); 2420 vma->vm_ops = &fuse_file_vm_ops; 2421 return 0; 2422 } 2423 2424 static int convert_fuse_file_lock(struct fuse_conn *fc, 2425 const struct fuse_file_lock *ffl, 2426 struct file_lock *fl) 2427 { 2428 switch (ffl->type) { 2429 case F_UNLCK: 2430 break; 2431 2432 case F_RDLCK: 2433 case F_WRLCK: 2434 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2435 ffl->end < ffl->start) 2436 return -EIO; 2437 2438 fl->fl_start = ffl->start; 2439 fl->fl_end = ffl->end; 2440 2441 /* 2442 * Convert pid into init's pid namespace. The locks API will 2443 * translate it into the caller's pid namespace. 2444 */ 2445 rcu_read_lock(); 2446 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2447 rcu_read_unlock(); 2448 break; 2449 2450 default: 2451 return -EIO; 2452 } 2453 fl->fl_type = ffl->type; 2454 return 0; 2455 } 2456 2457 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2458 const struct file_lock *fl, int opcode, pid_t pid, 2459 int flock, struct fuse_lk_in *inarg) 2460 { 2461 struct inode *inode = file_inode(file); 2462 struct fuse_conn *fc = get_fuse_conn(inode); 2463 struct fuse_file *ff = file->private_data; 2464 2465 memset(inarg, 0, sizeof(*inarg)); 2466 inarg->fh = ff->fh; 2467 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2468 inarg->lk.start = fl->fl_start; 2469 inarg->lk.end = fl->fl_end; 2470 inarg->lk.type = fl->fl_type; 2471 inarg->lk.pid = pid; 2472 if (flock) 2473 inarg->lk_flags |= FUSE_LK_FLOCK; 2474 args->opcode = opcode; 2475 args->nodeid = get_node_id(inode); 2476 args->in_numargs = 1; 2477 args->in_args[0].size = sizeof(*inarg); 2478 args->in_args[0].value = inarg; 2479 } 2480 2481 static int fuse_getlk(struct file *file, struct file_lock *fl) 2482 { 2483 struct inode *inode = file_inode(file); 2484 struct fuse_mount *fm = get_fuse_mount(inode); 2485 FUSE_ARGS(args); 2486 struct fuse_lk_in inarg; 2487 struct fuse_lk_out outarg; 2488 int err; 2489 2490 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2491 args.out_numargs = 1; 2492 args.out_args[0].size = sizeof(outarg); 2493 args.out_args[0].value = &outarg; 2494 err = fuse_simple_request(fm, &args); 2495 if (!err) 2496 err = convert_fuse_file_lock(fm->fc, &outarg.lk, fl); 2497 2498 return err; 2499 } 2500 2501 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2502 { 2503 struct inode *inode = file_inode(file); 2504 struct fuse_mount *fm = get_fuse_mount(inode); 2505 FUSE_ARGS(args); 2506 struct fuse_lk_in inarg; 2507 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2508 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2509 pid_t pid_nr = pid_nr_ns(pid, fm->fc->pid_ns); 2510 int err; 2511 2512 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2513 /* NLM needs asynchronous locks, which we don't support yet */ 2514 return -ENOLCK; 2515 } 2516 2517 /* Unlock on close is handled by the flush method */ 2518 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2519 return 0; 2520 2521 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2522 err = fuse_simple_request(fm, &args); 2523 2524 /* locking is restartable */ 2525 if (err == -EINTR) 2526 err = -ERESTARTSYS; 2527 2528 return err; 2529 } 2530 2531 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2532 { 2533 struct inode *inode = file_inode(file); 2534 struct fuse_conn *fc = get_fuse_conn(inode); 2535 int err; 2536 2537 if (cmd == F_CANCELLK) { 2538 err = 0; 2539 } else if (cmd == F_GETLK) { 2540 if (fc->no_lock) { 2541 posix_test_lock(file, fl); 2542 err = 0; 2543 } else 2544 err = fuse_getlk(file, fl); 2545 } else { 2546 if (fc->no_lock) 2547 err = posix_lock_file(file, fl, NULL); 2548 else 2549 err = fuse_setlk(file, fl, 0); 2550 } 2551 return err; 2552 } 2553 2554 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2555 { 2556 struct inode *inode = file_inode(file); 2557 struct fuse_conn *fc = get_fuse_conn(inode); 2558 int err; 2559 2560 if (fc->no_flock) { 2561 err = locks_lock_file_wait(file, fl); 2562 } else { 2563 struct fuse_file *ff = file->private_data; 2564 2565 /* emulate flock with POSIX locks */ 2566 ff->flock = true; 2567 err = fuse_setlk(file, fl, 1); 2568 } 2569 2570 return err; 2571 } 2572 2573 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2574 { 2575 struct inode *inode = mapping->host; 2576 struct fuse_mount *fm = get_fuse_mount(inode); 2577 FUSE_ARGS(args); 2578 struct fuse_bmap_in inarg; 2579 struct fuse_bmap_out outarg; 2580 int err; 2581 2582 if (!inode->i_sb->s_bdev || fm->fc->no_bmap) 2583 return 0; 2584 2585 memset(&inarg, 0, sizeof(inarg)); 2586 inarg.block = block; 2587 inarg.blocksize = inode->i_sb->s_blocksize; 2588 args.opcode = FUSE_BMAP; 2589 args.nodeid = get_node_id(inode); 2590 args.in_numargs = 1; 2591 args.in_args[0].size = sizeof(inarg); 2592 args.in_args[0].value = &inarg; 2593 args.out_numargs = 1; 2594 args.out_args[0].size = sizeof(outarg); 2595 args.out_args[0].value = &outarg; 2596 err = fuse_simple_request(fm, &args); 2597 if (err == -ENOSYS) 2598 fm->fc->no_bmap = 1; 2599 2600 return err ? 0 : outarg.block; 2601 } 2602 2603 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2604 { 2605 struct inode *inode = file->f_mapping->host; 2606 struct fuse_mount *fm = get_fuse_mount(inode); 2607 struct fuse_file *ff = file->private_data; 2608 FUSE_ARGS(args); 2609 struct fuse_lseek_in inarg = { 2610 .fh = ff->fh, 2611 .offset = offset, 2612 .whence = whence 2613 }; 2614 struct fuse_lseek_out outarg; 2615 int err; 2616 2617 if (fm->fc->no_lseek) 2618 goto fallback; 2619 2620 args.opcode = FUSE_LSEEK; 2621 args.nodeid = ff->nodeid; 2622 args.in_numargs = 1; 2623 args.in_args[0].size = sizeof(inarg); 2624 args.in_args[0].value = &inarg; 2625 args.out_numargs = 1; 2626 args.out_args[0].size = sizeof(outarg); 2627 args.out_args[0].value = &outarg; 2628 err = fuse_simple_request(fm, &args); 2629 if (err) { 2630 if (err == -ENOSYS) { 2631 fm->fc->no_lseek = 1; 2632 goto fallback; 2633 } 2634 return err; 2635 } 2636 2637 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2638 2639 fallback: 2640 err = fuse_update_attributes(inode, file, STATX_SIZE); 2641 if (!err) 2642 return generic_file_llseek(file, offset, whence); 2643 else 2644 return err; 2645 } 2646 2647 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2648 { 2649 loff_t retval; 2650 struct inode *inode = file_inode(file); 2651 2652 switch (whence) { 2653 case SEEK_SET: 2654 case SEEK_CUR: 2655 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2656 retval = generic_file_llseek(file, offset, whence); 2657 break; 2658 case SEEK_END: 2659 inode_lock(inode); 2660 retval = fuse_update_attributes(inode, file, STATX_SIZE); 2661 if (!retval) 2662 retval = generic_file_llseek(file, offset, whence); 2663 inode_unlock(inode); 2664 break; 2665 case SEEK_HOLE: 2666 case SEEK_DATA: 2667 inode_lock(inode); 2668 retval = fuse_lseek(file, offset, whence); 2669 inode_unlock(inode); 2670 break; 2671 default: 2672 retval = -EINVAL; 2673 } 2674 2675 return retval; 2676 } 2677 2678 /* 2679 * All files which have been polled are linked to RB tree 2680 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2681 * find the matching one. 2682 */ 2683 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2684 struct rb_node **parent_out) 2685 { 2686 struct rb_node **link = &fc->polled_files.rb_node; 2687 struct rb_node *last = NULL; 2688 2689 while (*link) { 2690 struct fuse_file *ff; 2691 2692 last = *link; 2693 ff = rb_entry(last, struct fuse_file, polled_node); 2694 2695 if (kh < ff->kh) 2696 link = &last->rb_left; 2697 else if (kh > ff->kh) 2698 link = &last->rb_right; 2699 else 2700 return link; 2701 } 2702 2703 if (parent_out) 2704 *parent_out = last; 2705 return link; 2706 } 2707 2708 /* 2709 * The file is about to be polled. Make sure it's on the polled_files 2710 * RB tree. Note that files once added to the polled_files tree are 2711 * not removed before the file is released. This is because a file 2712 * polled once is likely to be polled again. 2713 */ 2714 static void fuse_register_polled_file(struct fuse_conn *fc, 2715 struct fuse_file *ff) 2716 { 2717 spin_lock(&fc->lock); 2718 if (RB_EMPTY_NODE(&ff->polled_node)) { 2719 struct rb_node **link, *parent; 2720 2721 link = fuse_find_polled_node(fc, ff->kh, &parent); 2722 BUG_ON(*link); 2723 rb_link_node(&ff->polled_node, parent, link); 2724 rb_insert_color(&ff->polled_node, &fc->polled_files); 2725 } 2726 spin_unlock(&fc->lock); 2727 } 2728 2729 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2730 { 2731 struct fuse_file *ff = file->private_data; 2732 struct fuse_mount *fm = ff->fm; 2733 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2734 struct fuse_poll_out outarg; 2735 FUSE_ARGS(args); 2736 int err; 2737 2738 if (fm->fc->no_poll) 2739 return DEFAULT_POLLMASK; 2740 2741 poll_wait(file, &ff->poll_wait, wait); 2742 inarg.events = mangle_poll(poll_requested_events(wait)); 2743 2744 /* 2745 * Ask for notification iff there's someone waiting for it. 2746 * The client may ignore the flag and always notify. 2747 */ 2748 if (waitqueue_active(&ff->poll_wait)) { 2749 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2750 fuse_register_polled_file(fm->fc, ff); 2751 } 2752 2753 args.opcode = FUSE_POLL; 2754 args.nodeid = ff->nodeid; 2755 args.in_numargs = 1; 2756 args.in_args[0].size = sizeof(inarg); 2757 args.in_args[0].value = &inarg; 2758 args.out_numargs = 1; 2759 args.out_args[0].size = sizeof(outarg); 2760 args.out_args[0].value = &outarg; 2761 err = fuse_simple_request(fm, &args); 2762 2763 if (!err) 2764 return demangle_poll(outarg.revents); 2765 if (err == -ENOSYS) { 2766 fm->fc->no_poll = 1; 2767 return DEFAULT_POLLMASK; 2768 } 2769 return EPOLLERR; 2770 } 2771 EXPORT_SYMBOL_GPL(fuse_file_poll); 2772 2773 /* 2774 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2775 * wakes up the poll waiters. 2776 */ 2777 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 2778 struct fuse_notify_poll_wakeup_out *outarg) 2779 { 2780 u64 kh = outarg->kh; 2781 struct rb_node **link; 2782 2783 spin_lock(&fc->lock); 2784 2785 link = fuse_find_polled_node(fc, kh, NULL); 2786 if (*link) { 2787 struct fuse_file *ff; 2788 2789 ff = rb_entry(*link, struct fuse_file, polled_node); 2790 wake_up_interruptible_sync(&ff->poll_wait); 2791 } 2792 2793 spin_unlock(&fc->lock); 2794 return 0; 2795 } 2796 2797 static void fuse_do_truncate(struct file *file) 2798 { 2799 struct inode *inode = file->f_mapping->host; 2800 struct iattr attr; 2801 2802 attr.ia_valid = ATTR_SIZE; 2803 attr.ia_size = i_size_read(inode); 2804 2805 attr.ia_file = file; 2806 attr.ia_valid |= ATTR_FILE; 2807 2808 fuse_do_setattr(file_dentry(file), &attr, file); 2809 } 2810 2811 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 2812 { 2813 return round_up(off, fc->max_pages << PAGE_SHIFT); 2814 } 2815 2816 static ssize_t 2817 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 2818 { 2819 DECLARE_COMPLETION_ONSTACK(wait); 2820 ssize_t ret = 0; 2821 struct file *file = iocb->ki_filp; 2822 struct fuse_file *ff = file->private_data; 2823 loff_t pos = 0; 2824 struct inode *inode; 2825 loff_t i_size; 2826 size_t count = iov_iter_count(iter), shortened = 0; 2827 loff_t offset = iocb->ki_pos; 2828 struct fuse_io_priv *io; 2829 2830 pos = offset; 2831 inode = file->f_mapping->host; 2832 i_size = i_size_read(inode); 2833 2834 if ((iov_iter_rw(iter) == READ) && (offset >= i_size)) 2835 return 0; 2836 2837 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 2838 if (!io) 2839 return -ENOMEM; 2840 spin_lock_init(&io->lock); 2841 kref_init(&io->refcnt); 2842 io->reqs = 1; 2843 io->bytes = -1; 2844 io->size = 0; 2845 io->offset = offset; 2846 io->write = (iov_iter_rw(iter) == WRITE); 2847 io->err = 0; 2848 /* 2849 * By default, we want to optimize all I/Os with async request 2850 * submission to the client filesystem if supported. 2851 */ 2852 io->async = ff->fm->fc->async_dio; 2853 io->iocb = iocb; 2854 io->blocking = is_sync_kiocb(iocb); 2855 2856 /* optimization for short read */ 2857 if (io->async && !io->write && offset + count > i_size) { 2858 iov_iter_truncate(iter, fuse_round_up(ff->fm->fc, i_size - offset)); 2859 shortened = count - iov_iter_count(iter); 2860 count -= shortened; 2861 } 2862 2863 /* 2864 * We cannot asynchronously extend the size of a file. 2865 * In such case the aio will behave exactly like sync io. 2866 */ 2867 if ((offset + count > i_size) && io->write) 2868 io->blocking = true; 2869 2870 if (io->async && io->blocking) { 2871 /* 2872 * Additional reference to keep io around after 2873 * calling fuse_aio_complete() 2874 */ 2875 kref_get(&io->refcnt); 2876 io->done = &wait; 2877 } 2878 2879 if (iov_iter_rw(iter) == WRITE) { 2880 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 2881 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 2882 } else { 2883 ret = __fuse_direct_read(io, iter, &pos); 2884 } 2885 iov_iter_reexpand(iter, iov_iter_count(iter) + shortened); 2886 2887 if (io->async) { 2888 bool blocking = io->blocking; 2889 2890 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 2891 2892 /* we have a non-extending, async request, so return */ 2893 if (!blocking) 2894 return -EIOCBQUEUED; 2895 2896 wait_for_completion(&wait); 2897 ret = fuse_get_res_by_io(io); 2898 } 2899 2900 kref_put(&io->refcnt, fuse_io_release); 2901 2902 if (iov_iter_rw(iter) == WRITE) { 2903 fuse_write_update_attr(inode, pos, ret); 2904 if (ret < 0 && offset + count > i_size) 2905 fuse_do_truncate(file); 2906 } 2907 2908 return ret; 2909 } 2910 2911 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 2912 { 2913 int err = filemap_write_and_wait_range(inode->i_mapping, start, LLONG_MAX); 2914 2915 if (!err) 2916 fuse_sync_writes(inode); 2917 2918 return err; 2919 } 2920 2921 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 2922 loff_t length) 2923 { 2924 struct fuse_file *ff = file->private_data; 2925 struct inode *inode = file_inode(file); 2926 struct fuse_inode *fi = get_fuse_inode(inode); 2927 struct fuse_mount *fm = ff->fm; 2928 FUSE_ARGS(args); 2929 struct fuse_fallocate_in inarg = { 2930 .fh = ff->fh, 2931 .offset = offset, 2932 .length = length, 2933 .mode = mode 2934 }; 2935 int err; 2936 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 2937 (mode & (FALLOC_FL_PUNCH_HOLE | 2938 FALLOC_FL_ZERO_RANGE)); 2939 2940 bool block_faults = FUSE_IS_DAX(inode) && lock_inode; 2941 2942 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | 2943 FALLOC_FL_ZERO_RANGE)) 2944 return -EOPNOTSUPP; 2945 2946 if (fm->fc->no_fallocate) 2947 return -EOPNOTSUPP; 2948 2949 if (lock_inode) { 2950 inode_lock(inode); 2951 if (block_faults) { 2952 filemap_invalidate_lock(inode->i_mapping); 2953 err = fuse_dax_break_layouts(inode, 0, 0); 2954 if (err) 2955 goto out; 2956 } 2957 2958 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) { 2959 loff_t endbyte = offset + length - 1; 2960 2961 err = fuse_writeback_range(inode, offset, endbyte); 2962 if (err) 2963 goto out; 2964 } 2965 } 2966 2967 if (!(mode & FALLOC_FL_KEEP_SIZE) && 2968 offset + length > i_size_read(inode)) { 2969 err = inode_newsize_ok(inode, offset + length); 2970 if (err) 2971 goto out; 2972 } 2973 2974 if (!(mode & FALLOC_FL_KEEP_SIZE)) 2975 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 2976 2977 args.opcode = FUSE_FALLOCATE; 2978 args.nodeid = ff->nodeid; 2979 args.in_numargs = 1; 2980 args.in_args[0].size = sizeof(inarg); 2981 args.in_args[0].value = &inarg; 2982 err = fuse_simple_request(fm, &args); 2983 if (err == -ENOSYS) { 2984 fm->fc->no_fallocate = 1; 2985 err = -EOPNOTSUPP; 2986 } 2987 if (err) 2988 goto out; 2989 2990 /* we could have extended the file */ 2991 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 2992 if (fuse_write_update_attr(inode, offset + length, length)) 2993 file_update_time(file); 2994 } 2995 2996 if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE)) 2997 truncate_pagecache_range(inode, offset, offset + length - 1); 2998 2999 fuse_invalidate_attr_mask(inode, FUSE_STATX_MODSIZE); 3000 3001 out: 3002 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3003 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3004 3005 if (block_faults) 3006 filemap_invalidate_unlock(inode->i_mapping); 3007 3008 if (lock_inode) 3009 inode_unlock(inode); 3010 3011 fuse_flush_time_update(inode); 3012 3013 return err; 3014 } 3015 3016 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3017 struct file *file_out, loff_t pos_out, 3018 size_t len, unsigned int flags) 3019 { 3020 struct fuse_file *ff_in = file_in->private_data; 3021 struct fuse_file *ff_out = file_out->private_data; 3022 struct inode *inode_in = file_inode(file_in); 3023 struct inode *inode_out = file_inode(file_out); 3024 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3025 struct fuse_mount *fm = ff_in->fm; 3026 struct fuse_conn *fc = fm->fc; 3027 FUSE_ARGS(args); 3028 struct fuse_copy_file_range_in inarg = { 3029 .fh_in = ff_in->fh, 3030 .off_in = pos_in, 3031 .nodeid_out = ff_out->nodeid, 3032 .fh_out = ff_out->fh, 3033 .off_out = pos_out, 3034 .len = len, 3035 .flags = flags 3036 }; 3037 struct fuse_write_out outarg; 3038 ssize_t err; 3039 /* mark unstable when write-back is not used, and file_out gets 3040 * extended */ 3041 bool is_unstable = (!fc->writeback_cache) && 3042 ((pos_out + len) > inode_out->i_size); 3043 3044 if (fc->no_copy_file_range) 3045 return -EOPNOTSUPP; 3046 3047 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3048 return -EXDEV; 3049 3050 inode_lock(inode_in); 3051 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3052 inode_unlock(inode_in); 3053 if (err) 3054 return err; 3055 3056 inode_lock(inode_out); 3057 3058 err = file_modified(file_out); 3059 if (err) 3060 goto out; 3061 3062 /* 3063 * Write out dirty pages in the destination file before sending the COPY 3064 * request to userspace. After the request is completed, truncate off 3065 * pages (including partial ones) from the cache that have been copied, 3066 * since these contain stale data at that point. 3067 * 3068 * This should be mostly correct, but if the COPY writes to partial 3069 * pages (at the start or end) and the parts not covered by the COPY are 3070 * written through a memory map after calling fuse_writeback_range(), 3071 * then these partial page modifications will be lost on truncation. 3072 * 3073 * It is unlikely that someone would rely on such mixed style 3074 * modifications. Yet this does give less guarantees than if the 3075 * copying was performed with write(2). 3076 * 3077 * To fix this a mapping->invalidate_lock could be used to prevent new 3078 * faults while the copy is ongoing. 3079 */ 3080 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3081 if (err) 3082 goto out; 3083 3084 if (is_unstable) 3085 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3086 3087 args.opcode = FUSE_COPY_FILE_RANGE; 3088 args.nodeid = ff_in->nodeid; 3089 args.in_numargs = 1; 3090 args.in_args[0].size = sizeof(inarg); 3091 args.in_args[0].value = &inarg; 3092 args.out_numargs = 1; 3093 args.out_args[0].size = sizeof(outarg); 3094 args.out_args[0].value = &outarg; 3095 err = fuse_simple_request(fm, &args); 3096 if (err == -ENOSYS) { 3097 fc->no_copy_file_range = 1; 3098 err = -EOPNOTSUPP; 3099 } 3100 if (err) 3101 goto out; 3102 3103 truncate_inode_pages_range(inode_out->i_mapping, 3104 ALIGN_DOWN(pos_out, PAGE_SIZE), 3105 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3106 3107 file_update_time(file_out); 3108 fuse_write_update_attr(inode_out, pos_out + outarg.size, outarg.size); 3109 3110 err = outarg.size; 3111 out: 3112 if (is_unstable) 3113 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3114 3115 inode_unlock(inode_out); 3116 file_accessed(file_in); 3117 3118 fuse_flush_time_update(inode_out); 3119 3120 return err; 3121 } 3122 3123 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3124 struct file *dst_file, loff_t dst_off, 3125 size_t len, unsigned int flags) 3126 { 3127 ssize_t ret; 3128 3129 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3130 len, flags); 3131 3132 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3133 ret = generic_copy_file_range(src_file, src_off, dst_file, 3134 dst_off, len, flags); 3135 return ret; 3136 } 3137 3138 static const struct file_operations fuse_file_operations = { 3139 .llseek = fuse_file_llseek, 3140 .read_iter = fuse_file_read_iter, 3141 .write_iter = fuse_file_write_iter, 3142 .mmap = fuse_file_mmap, 3143 .open = fuse_open, 3144 .flush = fuse_flush, 3145 .release = fuse_release, 3146 .fsync = fuse_fsync, 3147 .lock = fuse_file_lock, 3148 .get_unmapped_area = thp_get_unmapped_area, 3149 .flock = fuse_file_flock, 3150 .splice_read = generic_file_splice_read, 3151 .splice_write = iter_file_splice_write, 3152 .unlocked_ioctl = fuse_file_ioctl, 3153 .compat_ioctl = fuse_file_compat_ioctl, 3154 .poll = fuse_file_poll, 3155 .fallocate = fuse_file_fallocate, 3156 .copy_file_range = fuse_copy_file_range, 3157 }; 3158 3159 static const struct address_space_operations fuse_file_aops = { 3160 .readpage = fuse_readpage, 3161 .readahead = fuse_readahead, 3162 .writepage = fuse_writepage, 3163 .writepages = fuse_writepages, 3164 .launder_page = fuse_launder_page, 3165 .set_page_dirty = __set_page_dirty_nobuffers, 3166 .bmap = fuse_bmap, 3167 .direct_IO = fuse_direct_IO, 3168 .write_begin = fuse_write_begin, 3169 .write_end = fuse_write_end, 3170 }; 3171 3172 void fuse_init_file_inode(struct inode *inode, unsigned int flags) 3173 { 3174 struct fuse_inode *fi = get_fuse_inode(inode); 3175 3176 inode->i_fop = &fuse_file_operations; 3177 inode->i_data.a_ops = &fuse_file_aops; 3178 3179 INIT_LIST_HEAD(&fi->write_files); 3180 INIT_LIST_HEAD(&fi->queued_writes); 3181 fi->writectr = 0; 3182 init_waitqueue_head(&fi->page_waitq); 3183 fi->writepages = RB_ROOT; 3184 3185 if (IS_ENABLED(CONFIG_FUSE_DAX)) 3186 fuse_dax_inode_init(inode, flags); 3187 } 3188