1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/compat.h> 18 #include <linux/swap.h> 19 #include <linux/falloc.h> 20 #include <linux/uio.h> 21 22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags, 23 struct fuse_page_desc **desc) 24 { 25 struct page **pages; 26 27 pages = kzalloc(npages * (sizeof(struct page *) + 28 sizeof(struct fuse_page_desc)), flags); 29 *desc = (void *) (pages + npages); 30 31 return pages; 32 } 33 34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 35 int opcode, struct fuse_open_out *outargp) 36 { 37 struct fuse_open_in inarg; 38 FUSE_ARGS(args); 39 40 memset(&inarg, 0, sizeof(inarg)); 41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 42 if (!fc->atomic_o_trunc) 43 inarg.flags &= ~O_TRUNC; 44 args.opcode = opcode; 45 args.nodeid = nodeid; 46 args.in_numargs = 1; 47 args.in_args[0].size = sizeof(inarg); 48 args.in_args[0].value = &inarg; 49 args.out_numargs = 1; 50 args.out_args[0].size = sizeof(*outargp); 51 args.out_args[0].value = outargp; 52 53 return fuse_simple_request(fc, &args); 54 } 55 56 struct fuse_release_args { 57 struct fuse_args args; 58 struct fuse_release_in inarg; 59 struct inode *inode; 60 }; 61 62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 63 { 64 struct fuse_file *ff; 65 66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 67 if (unlikely(!ff)) 68 return NULL; 69 70 ff->fc = fc; 71 ff->release_args = kzalloc(sizeof(*ff->release_args), 72 GFP_KERNEL_ACCOUNT); 73 if (!ff->release_args) { 74 kfree(ff); 75 return NULL; 76 } 77 78 INIT_LIST_HEAD(&ff->write_entry); 79 mutex_init(&ff->readdir.lock); 80 refcount_set(&ff->count, 1); 81 RB_CLEAR_NODE(&ff->polled_node); 82 init_waitqueue_head(&ff->poll_wait); 83 84 ff->kh = atomic64_inc_return(&fc->khctr); 85 86 return ff; 87 } 88 89 void fuse_file_free(struct fuse_file *ff) 90 { 91 kfree(ff->release_args); 92 mutex_destroy(&ff->readdir.lock); 93 kfree(ff); 94 } 95 96 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 97 { 98 refcount_inc(&ff->count); 99 return ff; 100 } 101 102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args, 103 int error) 104 { 105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 106 107 iput(ra->inode); 108 kfree(ra); 109 } 110 111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 112 { 113 if (refcount_dec_and_test(&ff->count)) { 114 struct fuse_args *args = &ff->release_args->args; 115 116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) { 117 /* Do nothing when client does not implement 'open' */ 118 fuse_release_end(ff->fc, args, 0); 119 } else if (sync) { 120 fuse_simple_request(ff->fc, args); 121 fuse_release_end(ff->fc, args, 0); 122 } else { 123 args->end = fuse_release_end; 124 if (fuse_simple_background(ff->fc, args, 125 GFP_KERNEL | __GFP_NOFAIL)) 126 fuse_release_end(ff->fc, args, -ENOTCONN); 127 } 128 kfree(ff); 129 } 130 } 131 132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 133 bool isdir) 134 { 135 struct fuse_file *ff; 136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 137 138 ff = fuse_file_alloc(fc); 139 if (!ff) 140 return -ENOMEM; 141 142 ff->fh = 0; 143 /* Default for no-open */ 144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 145 if (isdir ? !fc->no_opendir : !fc->no_open) { 146 struct fuse_open_out outarg; 147 int err; 148 149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 150 if (!err) { 151 ff->fh = outarg.fh; 152 ff->open_flags = outarg.open_flags; 153 154 } else if (err != -ENOSYS) { 155 fuse_file_free(ff); 156 return err; 157 } else { 158 if (isdir) 159 fc->no_opendir = 1; 160 else 161 fc->no_open = 1; 162 } 163 } 164 165 if (isdir) 166 ff->open_flags &= ~FOPEN_DIRECT_IO; 167 168 ff->nodeid = nodeid; 169 file->private_data = ff; 170 171 return 0; 172 } 173 EXPORT_SYMBOL_GPL(fuse_do_open); 174 175 static void fuse_link_write_file(struct file *file) 176 { 177 struct inode *inode = file_inode(file); 178 struct fuse_inode *fi = get_fuse_inode(inode); 179 struct fuse_file *ff = file->private_data; 180 /* 181 * file may be written through mmap, so chain it onto the 182 * inodes's write_file list 183 */ 184 spin_lock(&fi->lock); 185 if (list_empty(&ff->write_entry)) 186 list_add(&ff->write_entry, &fi->write_files); 187 spin_unlock(&fi->lock); 188 } 189 190 void fuse_finish_open(struct inode *inode, struct file *file) 191 { 192 struct fuse_file *ff = file->private_data; 193 struct fuse_conn *fc = get_fuse_conn(inode); 194 195 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 196 invalidate_inode_pages2(inode->i_mapping); 197 if (ff->open_flags & FOPEN_STREAM) 198 stream_open(inode, file); 199 else if (ff->open_flags & FOPEN_NONSEEKABLE) 200 nonseekable_open(inode, file); 201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 202 struct fuse_inode *fi = get_fuse_inode(inode); 203 204 spin_lock(&fi->lock); 205 fi->attr_version = atomic64_inc_return(&fc->attr_version); 206 i_size_write(inode, 0); 207 spin_unlock(&fi->lock); 208 fuse_invalidate_attr(inode); 209 if (fc->writeback_cache) 210 file_update_time(file); 211 } 212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 213 fuse_link_write_file(file); 214 } 215 216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 217 { 218 struct fuse_conn *fc = get_fuse_conn(inode); 219 int err; 220 bool lock_inode = (file->f_flags & O_TRUNC) && 221 fc->atomic_o_trunc && 222 fc->writeback_cache; 223 224 err = generic_file_open(inode, file); 225 if (err) 226 return err; 227 228 if (lock_inode) 229 inode_lock(inode); 230 231 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 232 233 if (!err) 234 fuse_finish_open(inode, file); 235 236 if (lock_inode) 237 inode_unlock(inode); 238 239 return err; 240 } 241 242 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 243 int flags, int opcode) 244 { 245 struct fuse_conn *fc = ff->fc; 246 struct fuse_release_args *ra = ff->release_args; 247 248 /* Inode is NULL on error path of fuse_create_open() */ 249 if (likely(fi)) { 250 spin_lock(&fi->lock); 251 list_del(&ff->write_entry); 252 spin_unlock(&fi->lock); 253 } 254 spin_lock(&fc->lock); 255 if (!RB_EMPTY_NODE(&ff->polled_node)) 256 rb_erase(&ff->polled_node, &fc->polled_files); 257 spin_unlock(&fc->lock); 258 259 wake_up_interruptible_all(&ff->poll_wait); 260 261 ra->inarg.fh = ff->fh; 262 ra->inarg.flags = flags; 263 ra->args.in_numargs = 1; 264 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 265 ra->args.in_args[0].value = &ra->inarg; 266 ra->args.opcode = opcode; 267 ra->args.nodeid = ff->nodeid; 268 ra->args.force = true; 269 ra->args.nocreds = true; 270 } 271 272 void fuse_release_common(struct file *file, bool isdir) 273 { 274 struct fuse_inode *fi = get_fuse_inode(file_inode(file)); 275 struct fuse_file *ff = file->private_data; 276 struct fuse_release_args *ra = ff->release_args; 277 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 278 279 fuse_prepare_release(fi, ff, file->f_flags, opcode); 280 281 if (ff->flock) { 282 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 283 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc, 284 (fl_owner_t) file); 285 } 286 /* Hold inode until release is finished */ 287 ra->inode = igrab(file_inode(file)); 288 289 /* 290 * Normally this will send the RELEASE request, however if 291 * some asynchronous READ or WRITE requests are outstanding, 292 * the sending will be delayed. 293 * 294 * Make the release synchronous if this is a fuseblk mount, 295 * synchronous RELEASE is allowed (and desirable) in this case 296 * because the server can be trusted not to screw up. 297 */ 298 fuse_file_put(ff, ff->fc->destroy, isdir); 299 } 300 301 static int fuse_open(struct inode *inode, struct file *file) 302 { 303 return fuse_open_common(inode, file, false); 304 } 305 306 static int fuse_release(struct inode *inode, struct file *file) 307 { 308 struct fuse_conn *fc = get_fuse_conn(inode); 309 310 /* see fuse_vma_close() for !writeback_cache case */ 311 if (fc->writeback_cache) 312 write_inode_now(inode, 1); 313 314 fuse_release_common(file, false); 315 316 /* return value is ignored by VFS */ 317 return 0; 318 } 319 320 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags) 321 { 322 WARN_ON(refcount_read(&ff->count) > 1); 323 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 324 /* 325 * iput(NULL) is a no-op and since the refcount is 1 and everything's 326 * synchronous, we are fine with not doing igrab() here" 327 */ 328 fuse_file_put(ff, true, false); 329 } 330 EXPORT_SYMBOL_GPL(fuse_sync_release); 331 332 /* 333 * Scramble the ID space with XTEA, so that the value of the files_struct 334 * pointer is not exposed to userspace. 335 */ 336 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 337 { 338 u32 *k = fc->scramble_key; 339 u64 v = (unsigned long) id; 340 u32 v0 = v; 341 u32 v1 = v >> 32; 342 u32 sum = 0; 343 int i; 344 345 for (i = 0; i < 32; i++) { 346 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 347 sum += 0x9E3779B9; 348 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 349 } 350 351 return (u64) v0 + ((u64) v1 << 32); 352 } 353 354 struct fuse_writepage_args { 355 struct fuse_io_args ia; 356 struct list_head writepages_entry; 357 struct list_head queue_entry; 358 struct fuse_writepage_args *next; 359 struct inode *inode; 360 }; 361 362 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 363 pgoff_t idx_from, pgoff_t idx_to) 364 { 365 struct fuse_writepage_args *wpa; 366 367 list_for_each_entry(wpa, &fi->writepages, writepages_entry) { 368 pgoff_t curr_index; 369 370 WARN_ON(get_fuse_inode(wpa->inode) != fi); 371 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 372 if (idx_from < curr_index + wpa->ia.ap.num_pages && 373 curr_index <= idx_to) { 374 return wpa; 375 } 376 } 377 return NULL; 378 } 379 380 /* 381 * Check if any page in a range is under writeback 382 * 383 * This is currently done by walking the list of writepage requests 384 * for the inode, which can be pretty inefficient. 385 */ 386 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 387 pgoff_t idx_to) 388 { 389 struct fuse_inode *fi = get_fuse_inode(inode); 390 bool found; 391 392 spin_lock(&fi->lock); 393 found = fuse_find_writeback(fi, idx_from, idx_to); 394 spin_unlock(&fi->lock); 395 396 return found; 397 } 398 399 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 400 { 401 return fuse_range_is_writeback(inode, index, index); 402 } 403 404 /* 405 * Wait for page writeback to be completed. 406 * 407 * Since fuse doesn't rely on the VM writeback tracking, this has to 408 * use some other means. 409 */ 410 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 411 { 412 struct fuse_inode *fi = get_fuse_inode(inode); 413 414 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 415 } 416 417 /* 418 * Wait for all pending writepages on the inode to finish. 419 * 420 * This is currently done by blocking further writes with FUSE_NOWRITE 421 * and waiting for all sent writes to complete. 422 * 423 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 424 * could conflict with truncation. 425 */ 426 static void fuse_sync_writes(struct inode *inode) 427 { 428 fuse_set_nowrite(inode); 429 fuse_release_nowrite(inode); 430 } 431 432 static int fuse_flush(struct file *file, fl_owner_t id) 433 { 434 struct inode *inode = file_inode(file); 435 struct fuse_conn *fc = get_fuse_conn(inode); 436 struct fuse_file *ff = file->private_data; 437 struct fuse_flush_in inarg; 438 FUSE_ARGS(args); 439 int err; 440 441 if (is_bad_inode(inode)) 442 return -EIO; 443 444 if (fc->no_flush) 445 return 0; 446 447 err = write_inode_now(inode, 1); 448 if (err) 449 return err; 450 451 inode_lock(inode); 452 fuse_sync_writes(inode); 453 inode_unlock(inode); 454 455 err = filemap_check_errors(file->f_mapping); 456 if (err) 457 return err; 458 459 memset(&inarg, 0, sizeof(inarg)); 460 inarg.fh = ff->fh; 461 inarg.lock_owner = fuse_lock_owner_id(fc, id); 462 args.opcode = FUSE_FLUSH; 463 args.nodeid = get_node_id(inode); 464 args.in_numargs = 1; 465 args.in_args[0].size = sizeof(inarg); 466 args.in_args[0].value = &inarg; 467 args.force = true; 468 469 err = fuse_simple_request(fc, &args); 470 if (err == -ENOSYS) { 471 fc->no_flush = 1; 472 err = 0; 473 } 474 return err; 475 } 476 477 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 478 int datasync, int opcode) 479 { 480 struct inode *inode = file->f_mapping->host; 481 struct fuse_conn *fc = get_fuse_conn(inode); 482 struct fuse_file *ff = file->private_data; 483 FUSE_ARGS(args); 484 struct fuse_fsync_in inarg; 485 486 memset(&inarg, 0, sizeof(inarg)); 487 inarg.fh = ff->fh; 488 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 489 args.opcode = opcode; 490 args.nodeid = get_node_id(inode); 491 args.in_numargs = 1; 492 args.in_args[0].size = sizeof(inarg); 493 args.in_args[0].value = &inarg; 494 return fuse_simple_request(fc, &args); 495 } 496 497 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 498 int datasync) 499 { 500 struct inode *inode = file->f_mapping->host; 501 struct fuse_conn *fc = get_fuse_conn(inode); 502 int err; 503 504 if (is_bad_inode(inode)) 505 return -EIO; 506 507 inode_lock(inode); 508 509 /* 510 * Start writeback against all dirty pages of the inode, then 511 * wait for all outstanding writes, before sending the FSYNC 512 * request. 513 */ 514 err = file_write_and_wait_range(file, start, end); 515 if (err) 516 goto out; 517 518 fuse_sync_writes(inode); 519 520 /* 521 * Due to implementation of fuse writeback 522 * file_write_and_wait_range() does not catch errors. 523 * We have to do this directly after fuse_sync_writes() 524 */ 525 err = file_check_and_advance_wb_err(file); 526 if (err) 527 goto out; 528 529 err = sync_inode_metadata(inode, 1); 530 if (err) 531 goto out; 532 533 if (fc->no_fsync) 534 goto out; 535 536 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 537 if (err == -ENOSYS) { 538 fc->no_fsync = 1; 539 err = 0; 540 } 541 out: 542 inode_unlock(inode); 543 544 return err; 545 } 546 547 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 548 size_t count, int opcode) 549 { 550 struct fuse_file *ff = file->private_data; 551 struct fuse_args *args = &ia->ap.args; 552 553 ia->read.in.fh = ff->fh; 554 ia->read.in.offset = pos; 555 ia->read.in.size = count; 556 ia->read.in.flags = file->f_flags; 557 args->opcode = opcode; 558 args->nodeid = ff->nodeid; 559 args->in_numargs = 1; 560 args->in_args[0].size = sizeof(ia->read.in); 561 args->in_args[0].value = &ia->read.in; 562 args->out_argvar = true; 563 args->out_numargs = 1; 564 args->out_args[0].size = count; 565 } 566 567 static void fuse_release_user_pages(struct fuse_args_pages *ap, 568 bool should_dirty) 569 { 570 unsigned int i; 571 572 for (i = 0; i < ap->num_pages; i++) { 573 if (should_dirty) 574 set_page_dirty_lock(ap->pages[i]); 575 put_page(ap->pages[i]); 576 } 577 } 578 579 static void fuse_io_release(struct kref *kref) 580 { 581 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 582 } 583 584 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 585 { 586 if (io->err) 587 return io->err; 588 589 if (io->bytes >= 0 && io->write) 590 return -EIO; 591 592 return io->bytes < 0 ? io->size : io->bytes; 593 } 594 595 /** 596 * In case of short read, the caller sets 'pos' to the position of 597 * actual end of fuse request in IO request. Otherwise, if bytes_requested 598 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 599 * 600 * An example: 601 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 602 * both submitted asynchronously. The first of them was ACKed by userspace as 603 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 604 * second request was ACKed as short, e.g. only 1K was read, resulting in 605 * pos == 33K. 606 * 607 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 608 * will be equal to the length of the longest contiguous fragment of 609 * transferred data starting from the beginning of IO request. 610 */ 611 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 612 { 613 int left; 614 615 spin_lock(&io->lock); 616 if (err) 617 io->err = io->err ? : err; 618 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 619 io->bytes = pos; 620 621 left = --io->reqs; 622 if (!left && io->blocking) 623 complete(io->done); 624 spin_unlock(&io->lock); 625 626 if (!left && !io->blocking) { 627 ssize_t res = fuse_get_res_by_io(io); 628 629 if (res >= 0) { 630 struct inode *inode = file_inode(io->iocb->ki_filp); 631 struct fuse_conn *fc = get_fuse_conn(inode); 632 struct fuse_inode *fi = get_fuse_inode(inode); 633 634 spin_lock(&fi->lock); 635 fi->attr_version = atomic64_inc_return(&fc->attr_version); 636 spin_unlock(&fi->lock); 637 } 638 639 io->iocb->ki_complete(io->iocb, res, 0); 640 } 641 642 kref_put(&io->refcnt, fuse_io_release); 643 } 644 645 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 646 unsigned int npages) 647 { 648 struct fuse_io_args *ia; 649 650 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 651 if (ia) { 652 ia->io = io; 653 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 654 &ia->ap.descs); 655 if (!ia->ap.pages) { 656 kfree(ia); 657 ia = NULL; 658 } 659 } 660 return ia; 661 } 662 663 static void fuse_io_free(struct fuse_io_args *ia) 664 { 665 kfree(ia->ap.pages); 666 kfree(ia); 667 } 668 669 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args, 670 int err) 671 { 672 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 673 struct fuse_io_priv *io = ia->io; 674 ssize_t pos = -1; 675 676 fuse_release_user_pages(&ia->ap, io->should_dirty); 677 678 if (err) { 679 /* Nothing */ 680 } else if (io->write) { 681 if (ia->write.out.size > ia->write.in.size) { 682 err = -EIO; 683 } else if (ia->write.in.size != ia->write.out.size) { 684 pos = ia->write.in.offset - io->offset + 685 ia->write.out.size; 686 } 687 } else { 688 u32 outsize = args->out_args[0].size; 689 690 if (ia->read.in.size != outsize) 691 pos = ia->read.in.offset - io->offset + outsize; 692 } 693 694 fuse_aio_complete(io, err, pos); 695 fuse_io_free(ia); 696 } 697 698 static ssize_t fuse_async_req_send(struct fuse_conn *fc, 699 struct fuse_io_args *ia, size_t num_bytes) 700 { 701 ssize_t err; 702 struct fuse_io_priv *io = ia->io; 703 704 spin_lock(&io->lock); 705 kref_get(&io->refcnt); 706 io->size += num_bytes; 707 io->reqs++; 708 spin_unlock(&io->lock); 709 710 ia->ap.args.end = fuse_aio_complete_req; 711 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL); 712 713 return err ?: num_bytes; 714 } 715 716 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 717 fl_owner_t owner) 718 { 719 struct file *file = ia->io->iocb->ki_filp; 720 struct fuse_file *ff = file->private_data; 721 struct fuse_conn *fc = ff->fc; 722 723 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 724 if (owner != NULL) { 725 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 726 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner); 727 } 728 729 if (ia->io->async) 730 return fuse_async_req_send(fc, ia, count); 731 732 return fuse_simple_request(fc, &ia->ap.args); 733 } 734 735 static void fuse_read_update_size(struct inode *inode, loff_t size, 736 u64 attr_ver) 737 { 738 struct fuse_conn *fc = get_fuse_conn(inode); 739 struct fuse_inode *fi = get_fuse_inode(inode); 740 741 spin_lock(&fi->lock); 742 if (attr_ver == fi->attr_version && size < inode->i_size && 743 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 744 fi->attr_version = atomic64_inc_return(&fc->attr_version); 745 i_size_write(inode, size); 746 } 747 spin_unlock(&fi->lock); 748 } 749 750 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 751 struct fuse_args_pages *ap) 752 { 753 struct fuse_conn *fc = get_fuse_conn(inode); 754 755 if (fc->writeback_cache) { 756 /* 757 * A hole in a file. Some data after the hole are in page cache, 758 * but have not reached the client fs yet. So, the hole is not 759 * present there. 760 */ 761 int i; 762 int start_idx = num_read >> PAGE_SHIFT; 763 size_t off = num_read & (PAGE_SIZE - 1); 764 765 for (i = start_idx; i < ap->num_pages; i++) { 766 zero_user_segment(ap->pages[i], off, PAGE_SIZE); 767 off = 0; 768 } 769 } else { 770 loff_t pos = page_offset(ap->pages[0]) + num_read; 771 fuse_read_update_size(inode, pos, attr_ver); 772 } 773 } 774 775 static int fuse_do_readpage(struct file *file, struct page *page) 776 { 777 struct inode *inode = page->mapping->host; 778 struct fuse_conn *fc = get_fuse_conn(inode); 779 loff_t pos = page_offset(page); 780 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 781 struct fuse_io_args ia = { 782 .ap.args.page_zeroing = true, 783 .ap.args.out_pages = true, 784 .ap.num_pages = 1, 785 .ap.pages = &page, 786 .ap.descs = &desc, 787 }; 788 ssize_t res; 789 u64 attr_ver; 790 791 /* 792 * Page writeback can extend beyond the lifetime of the 793 * page-cache page, so make sure we read a properly synced 794 * page. 795 */ 796 fuse_wait_on_page_writeback(inode, page->index); 797 798 attr_ver = fuse_get_attr_version(fc); 799 800 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 801 res = fuse_simple_request(fc, &ia.ap.args); 802 if (res < 0) 803 return res; 804 /* 805 * Short read means EOF. If file size is larger, truncate it 806 */ 807 if (res < desc.length) 808 fuse_short_read(inode, attr_ver, res, &ia.ap); 809 810 SetPageUptodate(page); 811 812 return 0; 813 } 814 815 static int fuse_readpage(struct file *file, struct page *page) 816 { 817 struct inode *inode = page->mapping->host; 818 int err; 819 820 err = -EIO; 821 if (is_bad_inode(inode)) 822 goto out; 823 824 err = fuse_do_readpage(file, page); 825 fuse_invalidate_atime(inode); 826 out: 827 unlock_page(page); 828 return err; 829 } 830 831 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args, 832 int err) 833 { 834 int i; 835 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 836 struct fuse_args_pages *ap = &ia->ap; 837 size_t count = ia->read.in.size; 838 size_t num_read = args->out_args[0].size; 839 struct address_space *mapping = NULL; 840 841 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 842 mapping = ap->pages[i]->mapping; 843 844 if (mapping) { 845 struct inode *inode = mapping->host; 846 847 /* 848 * Short read means EOF. If file size is larger, truncate it 849 */ 850 if (!err && num_read < count) 851 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 852 853 fuse_invalidate_atime(inode); 854 } 855 856 for (i = 0; i < ap->num_pages; i++) { 857 struct page *page = ap->pages[i]; 858 859 if (!err) 860 SetPageUptodate(page); 861 else 862 SetPageError(page); 863 unlock_page(page); 864 put_page(page); 865 } 866 if (ia->ff) 867 fuse_file_put(ia->ff, false, false); 868 869 fuse_io_free(ia); 870 } 871 872 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 873 { 874 struct fuse_file *ff = file->private_data; 875 struct fuse_conn *fc = ff->fc; 876 struct fuse_args_pages *ap = &ia->ap; 877 loff_t pos = page_offset(ap->pages[0]); 878 size_t count = ap->num_pages << PAGE_SHIFT; 879 int err; 880 881 ap->args.out_pages = true; 882 ap->args.page_zeroing = true; 883 ap->args.page_replace = true; 884 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 885 ia->read.attr_ver = fuse_get_attr_version(fc); 886 if (fc->async_read) { 887 ia->ff = fuse_file_get(ff); 888 ap->args.end = fuse_readpages_end; 889 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL); 890 if (!err) 891 return; 892 } else { 893 err = fuse_simple_request(fc, &ap->args); 894 } 895 fuse_readpages_end(fc, &ap->args, err); 896 } 897 898 struct fuse_fill_data { 899 struct fuse_io_args *ia; 900 struct file *file; 901 struct inode *inode; 902 unsigned int nr_pages; 903 unsigned int max_pages; 904 }; 905 906 static int fuse_readpages_fill(void *_data, struct page *page) 907 { 908 struct fuse_fill_data *data = _data; 909 struct fuse_io_args *ia = data->ia; 910 struct fuse_args_pages *ap = &ia->ap; 911 struct inode *inode = data->inode; 912 struct fuse_conn *fc = get_fuse_conn(inode); 913 914 fuse_wait_on_page_writeback(inode, page->index); 915 916 if (ap->num_pages && 917 (ap->num_pages == fc->max_pages || 918 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read || 919 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) { 920 data->max_pages = min_t(unsigned int, data->nr_pages, 921 fc->max_pages); 922 fuse_send_readpages(ia, data->file); 923 data->ia = ia = fuse_io_alloc(NULL, data->max_pages); 924 if (!ia) { 925 unlock_page(page); 926 return -ENOMEM; 927 } 928 ap = &ia->ap; 929 } 930 931 if (WARN_ON(ap->num_pages >= data->max_pages)) { 932 unlock_page(page); 933 fuse_io_free(ia); 934 return -EIO; 935 } 936 937 get_page(page); 938 ap->pages[ap->num_pages] = page; 939 ap->descs[ap->num_pages].length = PAGE_SIZE; 940 ap->num_pages++; 941 data->nr_pages--; 942 return 0; 943 } 944 945 static int fuse_readpages(struct file *file, struct address_space *mapping, 946 struct list_head *pages, unsigned nr_pages) 947 { 948 struct inode *inode = mapping->host; 949 struct fuse_conn *fc = get_fuse_conn(inode); 950 struct fuse_fill_data data; 951 int err; 952 953 err = -EIO; 954 if (is_bad_inode(inode)) 955 goto out; 956 957 data.file = file; 958 data.inode = inode; 959 data.nr_pages = nr_pages; 960 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages); 961 ; 962 data.ia = fuse_io_alloc(NULL, data.max_pages); 963 err = -ENOMEM; 964 if (!data.ia) 965 goto out; 966 967 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 968 if (!err) { 969 if (data.ia->ap.num_pages) 970 fuse_send_readpages(data.ia, file); 971 else 972 fuse_io_free(data.ia); 973 } 974 out: 975 return err; 976 } 977 978 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 979 { 980 struct inode *inode = iocb->ki_filp->f_mapping->host; 981 struct fuse_conn *fc = get_fuse_conn(inode); 982 983 /* 984 * In auto invalidate mode, always update attributes on read. 985 * Otherwise, only update if we attempt to read past EOF (to ensure 986 * i_size is up to date). 987 */ 988 if (fc->auto_inval_data || 989 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 990 int err; 991 err = fuse_update_attributes(inode, iocb->ki_filp); 992 if (err) 993 return err; 994 } 995 996 return generic_file_read_iter(iocb, to); 997 } 998 999 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1000 loff_t pos, size_t count) 1001 { 1002 struct fuse_args *args = &ia->ap.args; 1003 1004 ia->write.in.fh = ff->fh; 1005 ia->write.in.offset = pos; 1006 ia->write.in.size = count; 1007 args->opcode = FUSE_WRITE; 1008 args->nodeid = ff->nodeid; 1009 args->in_numargs = 2; 1010 if (ff->fc->minor < 9) 1011 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1012 else 1013 args->in_args[0].size = sizeof(ia->write.in); 1014 args->in_args[0].value = &ia->write.in; 1015 args->in_args[1].size = count; 1016 args->out_numargs = 1; 1017 args->out_args[0].size = sizeof(ia->write.out); 1018 args->out_args[0].value = &ia->write.out; 1019 } 1020 1021 static unsigned int fuse_write_flags(struct kiocb *iocb) 1022 { 1023 unsigned int flags = iocb->ki_filp->f_flags; 1024 1025 if (iocb->ki_flags & IOCB_DSYNC) 1026 flags |= O_DSYNC; 1027 if (iocb->ki_flags & IOCB_SYNC) 1028 flags |= O_SYNC; 1029 1030 return flags; 1031 } 1032 1033 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1034 size_t count, fl_owner_t owner) 1035 { 1036 struct kiocb *iocb = ia->io->iocb; 1037 struct file *file = iocb->ki_filp; 1038 struct fuse_file *ff = file->private_data; 1039 struct fuse_conn *fc = ff->fc; 1040 struct fuse_write_in *inarg = &ia->write.in; 1041 ssize_t err; 1042 1043 fuse_write_args_fill(ia, ff, pos, count); 1044 inarg->flags = fuse_write_flags(iocb); 1045 if (owner != NULL) { 1046 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1047 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 1048 } 1049 1050 if (ia->io->async) 1051 return fuse_async_req_send(fc, ia, count); 1052 1053 err = fuse_simple_request(fc, &ia->ap.args); 1054 if (!err && ia->write.out.size > count) 1055 err = -EIO; 1056 1057 return err ?: ia->write.out.size; 1058 } 1059 1060 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1061 { 1062 struct fuse_conn *fc = get_fuse_conn(inode); 1063 struct fuse_inode *fi = get_fuse_inode(inode); 1064 bool ret = false; 1065 1066 spin_lock(&fi->lock); 1067 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1068 if (pos > inode->i_size) { 1069 i_size_write(inode, pos); 1070 ret = true; 1071 } 1072 spin_unlock(&fi->lock); 1073 1074 return ret; 1075 } 1076 1077 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1078 struct kiocb *iocb, struct inode *inode, 1079 loff_t pos, size_t count) 1080 { 1081 struct fuse_args_pages *ap = &ia->ap; 1082 struct file *file = iocb->ki_filp; 1083 struct fuse_file *ff = file->private_data; 1084 struct fuse_conn *fc = ff->fc; 1085 unsigned int offset, i; 1086 int err; 1087 1088 for (i = 0; i < ap->num_pages; i++) 1089 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1090 1091 fuse_write_args_fill(ia, ff, pos, count); 1092 ia->write.in.flags = fuse_write_flags(iocb); 1093 1094 err = fuse_simple_request(fc, &ap->args); 1095 1096 offset = ap->descs[0].offset; 1097 count = ia->write.out.size; 1098 for (i = 0; i < ap->num_pages; i++) { 1099 struct page *page = ap->pages[i]; 1100 1101 if (!err && !offset && count >= PAGE_SIZE) 1102 SetPageUptodate(page); 1103 1104 if (count > PAGE_SIZE - offset) 1105 count -= PAGE_SIZE - offset; 1106 else 1107 count = 0; 1108 offset = 0; 1109 1110 unlock_page(page); 1111 put_page(page); 1112 } 1113 1114 return err; 1115 } 1116 1117 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap, 1118 struct address_space *mapping, 1119 struct iov_iter *ii, loff_t pos, 1120 unsigned int max_pages) 1121 { 1122 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1123 unsigned offset = pos & (PAGE_SIZE - 1); 1124 size_t count = 0; 1125 int err; 1126 1127 ap->args.in_pages = true; 1128 ap->descs[0].offset = offset; 1129 1130 do { 1131 size_t tmp; 1132 struct page *page; 1133 pgoff_t index = pos >> PAGE_SHIFT; 1134 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1135 iov_iter_count(ii)); 1136 1137 bytes = min_t(size_t, bytes, fc->max_write - count); 1138 1139 again: 1140 err = -EFAULT; 1141 if (iov_iter_fault_in_readable(ii, bytes)) 1142 break; 1143 1144 err = -ENOMEM; 1145 page = grab_cache_page_write_begin(mapping, index, 0); 1146 if (!page) 1147 break; 1148 1149 if (mapping_writably_mapped(mapping)) 1150 flush_dcache_page(page); 1151 1152 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1153 flush_dcache_page(page); 1154 1155 iov_iter_advance(ii, tmp); 1156 if (!tmp) { 1157 unlock_page(page); 1158 put_page(page); 1159 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1160 goto again; 1161 } 1162 1163 err = 0; 1164 ap->pages[ap->num_pages] = page; 1165 ap->descs[ap->num_pages].length = tmp; 1166 ap->num_pages++; 1167 1168 count += tmp; 1169 pos += tmp; 1170 offset += tmp; 1171 if (offset == PAGE_SIZE) 1172 offset = 0; 1173 1174 if (!fc->big_writes) 1175 break; 1176 } while (iov_iter_count(ii) && count < fc->max_write && 1177 ap->num_pages < max_pages && offset == 0); 1178 1179 return count > 0 ? count : err; 1180 } 1181 1182 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1183 unsigned int max_pages) 1184 { 1185 return min_t(unsigned int, 1186 ((pos + len - 1) >> PAGE_SHIFT) - 1187 (pos >> PAGE_SHIFT) + 1, 1188 max_pages); 1189 } 1190 1191 static ssize_t fuse_perform_write(struct kiocb *iocb, 1192 struct address_space *mapping, 1193 struct iov_iter *ii, loff_t pos) 1194 { 1195 struct inode *inode = mapping->host; 1196 struct fuse_conn *fc = get_fuse_conn(inode); 1197 struct fuse_inode *fi = get_fuse_inode(inode); 1198 int err = 0; 1199 ssize_t res = 0; 1200 1201 if (inode->i_size < pos + iov_iter_count(ii)) 1202 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1203 1204 do { 1205 ssize_t count; 1206 struct fuse_io_args ia = {}; 1207 struct fuse_args_pages *ap = &ia.ap; 1208 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1209 fc->max_pages); 1210 1211 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1212 if (!ap->pages) { 1213 err = -ENOMEM; 1214 break; 1215 } 1216 1217 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages); 1218 if (count <= 0) { 1219 err = count; 1220 } else { 1221 err = fuse_send_write_pages(&ia, iocb, inode, 1222 pos, count); 1223 if (!err) { 1224 size_t num_written = ia.write.out.size; 1225 1226 res += num_written; 1227 pos += num_written; 1228 1229 /* break out of the loop on short write */ 1230 if (num_written != count) 1231 err = -EIO; 1232 } 1233 } 1234 kfree(ap->pages); 1235 } while (!err && iov_iter_count(ii)); 1236 1237 if (res > 0) 1238 fuse_write_update_size(inode, pos); 1239 1240 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1241 fuse_invalidate_attr(inode); 1242 1243 return res > 0 ? res : err; 1244 } 1245 1246 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1247 { 1248 struct file *file = iocb->ki_filp; 1249 struct address_space *mapping = file->f_mapping; 1250 ssize_t written = 0; 1251 ssize_t written_buffered = 0; 1252 struct inode *inode = mapping->host; 1253 ssize_t err; 1254 loff_t endbyte = 0; 1255 1256 if (get_fuse_conn(inode)->writeback_cache) { 1257 /* Update size (EOF optimization) and mode (SUID clearing) */ 1258 err = fuse_update_attributes(mapping->host, file); 1259 if (err) 1260 return err; 1261 1262 return generic_file_write_iter(iocb, from); 1263 } 1264 1265 inode_lock(inode); 1266 1267 /* We can write back this queue in page reclaim */ 1268 current->backing_dev_info = inode_to_bdi(inode); 1269 1270 err = generic_write_checks(iocb, from); 1271 if (err <= 0) 1272 goto out; 1273 1274 err = file_remove_privs(file); 1275 if (err) 1276 goto out; 1277 1278 err = file_update_time(file); 1279 if (err) 1280 goto out; 1281 1282 if (iocb->ki_flags & IOCB_DIRECT) { 1283 loff_t pos = iocb->ki_pos; 1284 written = generic_file_direct_write(iocb, from); 1285 if (written < 0 || !iov_iter_count(from)) 1286 goto out; 1287 1288 pos += written; 1289 1290 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1291 if (written_buffered < 0) { 1292 err = written_buffered; 1293 goto out; 1294 } 1295 endbyte = pos + written_buffered - 1; 1296 1297 err = filemap_write_and_wait_range(file->f_mapping, pos, 1298 endbyte); 1299 if (err) 1300 goto out; 1301 1302 invalidate_mapping_pages(file->f_mapping, 1303 pos >> PAGE_SHIFT, 1304 endbyte >> PAGE_SHIFT); 1305 1306 written += written_buffered; 1307 iocb->ki_pos = pos + written_buffered; 1308 } else { 1309 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1310 if (written >= 0) 1311 iocb->ki_pos += written; 1312 } 1313 out: 1314 current->backing_dev_info = NULL; 1315 inode_unlock(inode); 1316 if (written > 0) 1317 written = generic_write_sync(iocb, written); 1318 1319 return written ? written : err; 1320 } 1321 1322 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs, 1323 unsigned int index, 1324 unsigned int nr_pages) 1325 { 1326 int i; 1327 1328 for (i = index; i < index + nr_pages; i++) 1329 descs[i].length = PAGE_SIZE - descs[i].offset; 1330 } 1331 1332 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1333 { 1334 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1335 } 1336 1337 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1338 size_t max_size) 1339 { 1340 return min(iov_iter_single_seg_count(ii), max_size); 1341 } 1342 1343 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1344 size_t *nbytesp, int write, 1345 unsigned int max_pages) 1346 { 1347 size_t nbytes = 0; /* # bytes already packed in req */ 1348 ssize_t ret = 0; 1349 1350 /* Special case for kernel I/O: can copy directly into the buffer */ 1351 if (iov_iter_is_kvec(ii)) { 1352 unsigned long user_addr = fuse_get_user_addr(ii); 1353 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1354 1355 if (write) 1356 ap->args.in_args[1].value = (void *) user_addr; 1357 else 1358 ap->args.out_args[0].value = (void *) user_addr; 1359 1360 iov_iter_advance(ii, frag_size); 1361 *nbytesp = frag_size; 1362 return 0; 1363 } 1364 1365 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1366 unsigned npages; 1367 size_t start; 1368 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1369 *nbytesp - nbytes, 1370 max_pages - ap->num_pages, 1371 &start); 1372 if (ret < 0) 1373 break; 1374 1375 iov_iter_advance(ii, ret); 1376 nbytes += ret; 1377 1378 ret += start; 1379 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1380 1381 ap->descs[ap->num_pages].offset = start; 1382 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1383 1384 ap->num_pages += npages; 1385 ap->descs[ap->num_pages - 1].length -= 1386 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1387 } 1388 1389 if (write) 1390 ap->args.in_pages = 1; 1391 else 1392 ap->args.out_pages = 1; 1393 1394 *nbytesp = nbytes; 1395 1396 return ret < 0 ? ret : 0; 1397 } 1398 1399 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1400 loff_t *ppos, int flags) 1401 { 1402 int write = flags & FUSE_DIO_WRITE; 1403 int cuse = flags & FUSE_DIO_CUSE; 1404 struct file *file = io->iocb->ki_filp; 1405 struct inode *inode = file->f_mapping->host; 1406 struct fuse_file *ff = file->private_data; 1407 struct fuse_conn *fc = ff->fc; 1408 size_t nmax = write ? fc->max_write : fc->max_read; 1409 loff_t pos = *ppos; 1410 size_t count = iov_iter_count(iter); 1411 pgoff_t idx_from = pos >> PAGE_SHIFT; 1412 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1413 ssize_t res = 0; 1414 int err = 0; 1415 struct fuse_io_args *ia; 1416 unsigned int max_pages; 1417 1418 max_pages = iov_iter_npages(iter, fc->max_pages); 1419 ia = fuse_io_alloc(io, max_pages); 1420 if (!ia) 1421 return -ENOMEM; 1422 1423 ia->io = io; 1424 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1425 if (!write) 1426 inode_lock(inode); 1427 fuse_sync_writes(inode); 1428 if (!write) 1429 inode_unlock(inode); 1430 } 1431 1432 io->should_dirty = !write && iter_is_iovec(iter); 1433 while (count) { 1434 ssize_t nres; 1435 fl_owner_t owner = current->files; 1436 size_t nbytes = min(count, nmax); 1437 1438 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1439 max_pages); 1440 if (err && !nbytes) 1441 break; 1442 1443 if (write) { 1444 if (!capable(CAP_FSETID)) 1445 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV; 1446 1447 nres = fuse_send_write(ia, pos, nbytes, owner); 1448 } else { 1449 nres = fuse_send_read(ia, pos, nbytes, owner); 1450 } 1451 1452 if (!io->async || nres < 0) { 1453 fuse_release_user_pages(&ia->ap, io->should_dirty); 1454 fuse_io_free(ia); 1455 } 1456 ia = NULL; 1457 if (nres < 0) { 1458 err = nres; 1459 break; 1460 } 1461 WARN_ON(nres > nbytes); 1462 1463 count -= nres; 1464 res += nres; 1465 pos += nres; 1466 if (nres != nbytes) 1467 break; 1468 if (count) { 1469 max_pages = iov_iter_npages(iter, fc->max_pages); 1470 ia = fuse_io_alloc(io, max_pages); 1471 if (!ia) 1472 break; 1473 } 1474 } 1475 if (ia) 1476 fuse_io_free(ia); 1477 if (res > 0) 1478 *ppos = pos; 1479 1480 return res > 0 ? res : err; 1481 } 1482 EXPORT_SYMBOL_GPL(fuse_direct_io); 1483 1484 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1485 struct iov_iter *iter, 1486 loff_t *ppos) 1487 { 1488 ssize_t res; 1489 struct inode *inode = file_inode(io->iocb->ki_filp); 1490 1491 res = fuse_direct_io(io, iter, ppos, 0); 1492 1493 fuse_invalidate_atime(inode); 1494 1495 return res; 1496 } 1497 1498 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1499 1500 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1501 { 1502 ssize_t res; 1503 1504 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1505 res = fuse_direct_IO(iocb, to); 1506 } else { 1507 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1508 1509 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1510 } 1511 1512 return res; 1513 } 1514 1515 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1516 { 1517 struct inode *inode = file_inode(iocb->ki_filp); 1518 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1519 ssize_t res; 1520 1521 /* Don't allow parallel writes to the same file */ 1522 inode_lock(inode); 1523 res = generic_write_checks(iocb, from); 1524 if (res > 0) { 1525 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1526 res = fuse_direct_IO(iocb, from); 1527 } else { 1528 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1529 FUSE_DIO_WRITE); 1530 } 1531 } 1532 fuse_invalidate_attr(inode); 1533 if (res > 0) 1534 fuse_write_update_size(inode, iocb->ki_pos); 1535 inode_unlock(inode); 1536 1537 return res; 1538 } 1539 1540 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1541 { 1542 struct file *file = iocb->ki_filp; 1543 struct fuse_file *ff = file->private_data; 1544 1545 if (is_bad_inode(file_inode(file))) 1546 return -EIO; 1547 1548 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1549 return fuse_cache_read_iter(iocb, to); 1550 else 1551 return fuse_direct_read_iter(iocb, to); 1552 } 1553 1554 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1555 { 1556 struct file *file = iocb->ki_filp; 1557 struct fuse_file *ff = file->private_data; 1558 1559 if (is_bad_inode(file_inode(file))) 1560 return -EIO; 1561 1562 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1563 return fuse_cache_write_iter(iocb, from); 1564 else 1565 return fuse_direct_write_iter(iocb, from); 1566 } 1567 1568 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1569 { 1570 struct fuse_args_pages *ap = &wpa->ia.ap; 1571 int i; 1572 1573 for (i = 0; i < ap->num_pages; i++) 1574 __free_page(ap->pages[i]); 1575 1576 if (wpa->ia.ff) 1577 fuse_file_put(wpa->ia.ff, false, false); 1578 1579 kfree(ap->pages); 1580 kfree(wpa); 1581 } 1582 1583 static void fuse_writepage_finish(struct fuse_conn *fc, 1584 struct fuse_writepage_args *wpa) 1585 { 1586 struct fuse_args_pages *ap = &wpa->ia.ap; 1587 struct inode *inode = wpa->inode; 1588 struct fuse_inode *fi = get_fuse_inode(inode); 1589 struct backing_dev_info *bdi = inode_to_bdi(inode); 1590 int i; 1591 1592 list_del(&wpa->writepages_entry); 1593 for (i = 0; i < ap->num_pages; i++) { 1594 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1595 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1596 wb_writeout_inc(&bdi->wb); 1597 } 1598 wake_up(&fi->page_waitq); 1599 } 1600 1601 /* Called under fi->lock, may release and reacquire it */ 1602 static void fuse_send_writepage(struct fuse_conn *fc, 1603 struct fuse_writepage_args *wpa, loff_t size) 1604 __releases(fi->lock) 1605 __acquires(fi->lock) 1606 { 1607 struct fuse_writepage_args *aux, *next; 1608 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1609 struct fuse_write_in *inarg = &wpa->ia.write.in; 1610 struct fuse_args *args = &wpa->ia.ap.args; 1611 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1612 int err; 1613 1614 fi->writectr++; 1615 if (inarg->offset + data_size <= size) { 1616 inarg->size = data_size; 1617 } else if (inarg->offset < size) { 1618 inarg->size = size - inarg->offset; 1619 } else { 1620 /* Got truncated off completely */ 1621 goto out_free; 1622 } 1623 1624 args->in_args[1].size = inarg->size; 1625 args->force = true; 1626 args->nocreds = true; 1627 1628 err = fuse_simple_background(fc, args, GFP_ATOMIC); 1629 if (err == -ENOMEM) { 1630 spin_unlock(&fi->lock); 1631 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL); 1632 spin_lock(&fi->lock); 1633 } 1634 1635 /* Fails on broken connection only */ 1636 if (unlikely(err)) 1637 goto out_free; 1638 1639 return; 1640 1641 out_free: 1642 fi->writectr--; 1643 fuse_writepage_finish(fc, wpa); 1644 spin_unlock(&fi->lock); 1645 1646 /* After fuse_writepage_finish() aux request list is private */ 1647 for (aux = wpa->next; aux; aux = next) { 1648 next = aux->next; 1649 aux->next = NULL; 1650 fuse_writepage_free(aux); 1651 } 1652 1653 fuse_writepage_free(wpa); 1654 spin_lock(&fi->lock); 1655 } 1656 1657 /* 1658 * If fi->writectr is positive (no truncate or fsync going on) send 1659 * all queued writepage requests. 1660 * 1661 * Called with fi->lock 1662 */ 1663 void fuse_flush_writepages(struct inode *inode) 1664 __releases(fi->lock) 1665 __acquires(fi->lock) 1666 { 1667 struct fuse_conn *fc = get_fuse_conn(inode); 1668 struct fuse_inode *fi = get_fuse_inode(inode); 1669 loff_t crop = i_size_read(inode); 1670 struct fuse_writepage_args *wpa; 1671 1672 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1673 wpa = list_entry(fi->queued_writes.next, 1674 struct fuse_writepage_args, queue_entry); 1675 list_del_init(&wpa->queue_entry); 1676 fuse_send_writepage(fc, wpa, crop); 1677 } 1678 } 1679 1680 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args, 1681 int error) 1682 { 1683 struct fuse_writepage_args *wpa = 1684 container_of(args, typeof(*wpa), ia.ap.args); 1685 struct inode *inode = wpa->inode; 1686 struct fuse_inode *fi = get_fuse_inode(inode); 1687 1688 mapping_set_error(inode->i_mapping, error); 1689 spin_lock(&fi->lock); 1690 while (wpa->next) { 1691 struct fuse_conn *fc = get_fuse_conn(inode); 1692 struct fuse_write_in *inarg = &wpa->ia.write.in; 1693 struct fuse_writepage_args *next = wpa->next; 1694 1695 wpa->next = next->next; 1696 next->next = NULL; 1697 next->ia.ff = fuse_file_get(wpa->ia.ff); 1698 list_add(&next->writepages_entry, &fi->writepages); 1699 1700 /* 1701 * Skip fuse_flush_writepages() to make it easy to crop requests 1702 * based on primary request size. 1703 * 1704 * 1st case (trivial): there are no concurrent activities using 1705 * fuse_set/release_nowrite. Then we're on safe side because 1706 * fuse_flush_writepages() would call fuse_send_writepage() 1707 * anyway. 1708 * 1709 * 2nd case: someone called fuse_set_nowrite and it is waiting 1710 * now for completion of all in-flight requests. This happens 1711 * rarely and no more than once per page, so this should be 1712 * okay. 1713 * 1714 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1715 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1716 * that fuse_set_nowrite returned implies that all in-flight 1717 * requests were completed along with all of their secondary 1718 * requests. Further primary requests are blocked by negative 1719 * writectr. Hence there cannot be any in-flight requests and 1720 * no invocations of fuse_writepage_end() while we're in 1721 * fuse_set_nowrite..fuse_release_nowrite section. 1722 */ 1723 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1724 } 1725 fi->writectr--; 1726 fuse_writepage_finish(fc, wpa); 1727 spin_unlock(&fi->lock); 1728 fuse_writepage_free(wpa); 1729 } 1730 1731 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1732 struct fuse_inode *fi) 1733 { 1734 struct fuse_file *ff = NULL; 1735 1736 spin_lock(&fi->lock); 1737 if (!list_empty(&fi->write_files)) { 1738 ff = list_entry(fi->write_files.next, struct fuse_file, 1739 write_entry); 1740 fuse_file_get(ff); 1741 } 1742 spin_unlock(&fi->lock); 1743 1744 return ff; 1745 } 1746 1747 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1748 struct fuse_inode *fi) 1749 { 1750 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1751 WARN_ON(!ff); 1752 return ff; 1753 } 1754 1755 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1756 { 1757 struct fuse_conn *fc = get_fuse_conn(inode); 1758 struct fuse_inode *fi = get_fuse_inode(inode); 1759 struct fuse_file *ff; 1760 int err; 1761 1762 ff = __fuse_write_file_get(fc, fi); 1763 err = fuse_flush_times(inode, ff); 1764 if (ff) 1765 fuse_file_put(ff, false, false); 1766 1767 return err; 1768 } 1769 1770 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1771 { 1772 struct fuse_writepage_args *wpa; 1773 struct fuse_args_pages *ap; 1774 1775 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1776 if (wpa) { 1777 ap = &wpa->ia.ap; 1778 ap->num_pages = 0; 1779 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1780 if (!ap->pages) { 1781 kfree(wpa); 1782 wpa = NULL; 1783 } 1784 } 1785 return wpa; 1786 1787 } 1788 1789 static int fuse_writepage_locked(struct page *page) 1790 { 1791 struct address_space *mapping = page->mapping; 1792 struct inode *inode = mapping->host; 1793 struct fuse_conn *fc = get_fuse_conn(inode); 1794 struct fuse_inode *fi = get_fuse_inode(inode); 1795 struct fuse_writepage_args *wpa; 1796 struct fuse_args_pages *ap; 1797 struct page *tmp_page; 1798 int error = -ENOMEM; 1799 1800 set_page_writeback(page); 1801 1802 wpa = fuse_writepage_args_alloc(); 1803 if (!wpa) 1804 goto err; 1805 ap = &wpa->ia.ap; 1806 1807 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1808 if (!tmp_page) 1809 goto err_free; 1810 1811 error = -EIO; 1812 wpa->ia.ff = fuse_write_file_get(fc, fi); 1813 if (!wpa->ia.ff) 1814 goto err_nofile; 1815 1816 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1817 1818 copy_highpage(tmp_page, page); 1819 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1820 wpa->next = NULL; 1821 ap->args.in_pages = true; 1822 ap->num_pages = 1; 1823 ap->pages[0] = tmp_page; 1824 ap->descs[0].offset = 0; 1825 ap->descs[0].length = PAGE_SIZE; 1826 ap->args.end = fuse_writepage_end; 1827 wpa->inode = inode; 1828 1829 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1830 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1831 1832 spin_lock(&fi->lock); 1833 list_add(&wpa->writepages_entry, &fi->writepages); 1834 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1835 fuse_flush_writepages(inode); 1836 spin_unlock(&fi->lock); 1837 1838 end_page_writeback(page); 1839 1840 return 0; 1841 1842 err_nofile: 1843 __free_page(tmp_page); 1844 err_free: 1845 kfree(wpa); 1846 err: 1847 mapping_set_error(page->mapping, error); 1848 end_page_writeback(page); 1849 return error; 1850 } 1851 1852 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1853 { 1854 int err; 1855 1856 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1857 /* 1858 * ->writepages() should be called for sync() and friends. We 1859 * should only get here on direct reclaim and then we are 1860 * allowed to skip a page which is already in flight 1861 */ 1862 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1863 1864 redirty_page_for_writepage(wbc, page); 1865 unlock_page(page); 1866 return 0; 1867 } 1868 1869 err = fuse_writepage_locked(page); 1870 unlock_page(page); 1871 1872 return err; 1873 } 1874 1875 struct fuse_fill_wb_data { 1876 struct fuse_writepage_args *wpa; 1877 struct fuse_file *ff; 1878 struct inode *inode; 1879 struct page **orig_pages; 1880 unsigned int max_pages; 1881 }; 1882 1883 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1884 { 1885 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1886 struct fuse_conn *fc = get_fuse_conn(data->inode); 1887 struct page **pages; 1888 struct fuse_page_desc *descs; 1889 unsigned int npages = min_t(unsigned int, 1890 max_t(unsigned int, data->max_pages * 2, 1891 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 1892 fc->max_pages); 1893 WARN_ON(npages <= data->max_pages); 1894 1895 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 1896 if (!pages) 1897 return false; 1898 1899 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 1900 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 1901 kfree(ap->pages); 1902 ap->pages = pages; 1903 ap->descs = descs; 1904 data->max_pages = npages; 1905 1906 return true; 1907 } 1908 1909 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1910 { 1911 struct fuse_writepage_args *wpa = data->wpa; 1912 struct inode *inode = data->inode; 1913 struct fuse_inode *fi = get_fuse_inode(inode); 1914 int num_pages = wpa->ia.ap.num_pages; 1915 int i; 1916 1917 wpa->ia.ff = fuse_file_get(data->ff); 1918 spin_lock(&fi->lock); 1919 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1920 fuse_flush_writepages(inode); 1921 spin_unlock(&fi->lock); 1922 1923 for (i = 0; i < num_pages; i++) 1924 end_page_writeback(data->orig_pages[i]); 1925 } 1926 1927 /* 1928 * First recheck under fi->lock if the offending offset is still under 1929 * writeback. If yes, then iterate auxiliary write requests, to see if there's 1930 * one already added for a page at this offset. If there's none, then insert 1931 * this new request onto the auxiliary list, otherwise reuse the existing one by 1932 * copying the new page contents over to the old temporary page. 1933 */ 1934 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa, 1935 struct page *page) 1936 { 1937 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 1938 struct fuse_writepage_args *tmp; 1939 struct fuse_writepage_args *old_wpa; 1940 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 1941 1942 WARN_ON(new_ap->num_pages != 0); 1943 1944 spin_lock(&fi->lock); 1945 list_del(&new_wpa->writepages_entry); 1946 old_wpa = fuse_find_writeback(fi, page->index, page->index); 1947 if (!old_wpa) { 1948 list_add(&new_wpa->writepages_entry, &fi->writepages); 1949 spin_unlock(&fi->lock); 1950 return false; 1951 } 1952 1953 new_ap->num_pages = 1; 1954 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 1955 pgoff_t curr_index; 1956 1957 WARN_ON(tmp->inode != new_wpa->inode); 1958 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 1959 if (curr_index == page->index) { 1960 WARN_ON(tmp->ia.ap.num_pages != 1); 1961 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 1962 break; 1963 } 1964 } 1965 1966 if (!tmp) { 1967 new_wpa->next = old_wpa->next; 1968 old_wpa->next = new_wpa; 1969 } 1970 1971 spin_unlock(&fi->lock); 1972 1973 if (tmp) { 1974 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 1975 1976 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1977 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 1978 wb_writeout_inc(&bdi->wb); 1979 fuse_writepage_free(new_wpa); 1980 } 1981 1982 return true; 1983 } 1984 1985 static int fuse_writepages_fill(struct page *page, 1986 struct writeback_control *wbc, void *_data) 1987 { 1988 struct fuse_fill_wb_data *data = _data; 1989 struct fuse_writepage_args *wpa = data->wpa; 1990 struct fuse_args_pages *ap = &wpa->ia.ap; 1991 struct inode *inode = data->inode; 1992 struct fuse_inode *fi = get_fuse_inode(inode); 1993 struct fuse_conn *fc = get_fuse_conn(inode); 1994 struct page *tmp_page; 1995 bool is_writeback; 1996 int err; 1997 1998 if (!data->ff) { 1999 err = -EIO; 2000 data->ff = fuse_write_file_get(fc, get_fuse_inode(inode)); 2001 if (!data->ff) 2002 goto out_unlock; 2003 } 2004 2005 /* 2006 * Being under writeback is unlikely but possible. For example direct 2007 * read to an mmaped fuse file will set the page dirty twice; once when 2008 * the pages are faulted with get_user_pages(), and then after the read 2009 * completed. 2010 */ 2011 is_writeback = fuse_page_is_writeback(inode, page->index); 2012 2013 if (wpa && ap->num_pages && 2014 (is_writeback || ap->num_pages == fc->max_pages || 2015 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write || 2016 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) { 2017 fuse_writepages_send(data); 2018 data->wpa = NULL; 2019 } else if (wpa && ap->num_pages == data->max_pages) { 2020 if (!fuse_pages_realloc(data)) { 2021 fuse_writepages_send(data); 2022 data->wpa = NULL; 2023 } 2024 } 2025 2026 err = -ENOMEM; 2027 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2028 if (!tmp_page) 2029 goto out_unlock; 2030 2031 /* 2032 * The page must not be redirtied until the writeout is completed 2033 * (i.e. userspace has sent a reply to the write request). Otherwise 2034 * there could be more than one temporary page instance for each real 2035 * page. 2036 * 2037 * This is ensured by holding the page lock in page_mkwrite() while 2038 * checking fuse_page_is_writeback(). We already hold the page lock 2039 * since clear_page_dirty_for_io() and keep it held until we add the 2040 * request to the fi->writepages list and increment ap->num_pages. 2041 * After this fuse_page_is_writeback() will indicate that the page is 2042 * under writeback, so we can release the page lock. 2043 */ 2044 if (data->wpa == NULL) { 2045 struct fuse_inode *fi = get_fuse_inode(inode); 2046 2047 err = -ENOMEM; 2048 wpa = fuse_writepage_args_alloc(); 2049 if (!wpa) { 2050 __free_page(tmp_page); 2051 goto out_unlock; 2052 } 2053 data->max_pages = 1; 2054 2055 ap = &wpa->ia.ap; 2056 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2057 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2058 wpa->next = NULL; 2059 ap->args.in_pages = true; 2060 ap->args.end = fuse_writepage_end; 2061 ap->num_pages = 0; 2062 wpa->inode = inode; 2063 2064 spin_lock(&fi->lock); 2065 list_add(&wpa->writepages_entry, &fi->writepages); 2066 spin_unlock(&fi->lock); 2067 2068 data->wpa = wpa; 2069 } 2070 set_page_writeback(page); 2071 2072 copy_highpage(tmp_page, page); 2073 ap->pages[ap->num_pages] = tmp_page; 2074 ap->descs[ap->num_pages].offset = 0; 2075 ap->descs[ap->num_pages].length = PAGE_SIZE; 2076 2077 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2078 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2079 2080 err = 0; 2081 if (is_writeback && fuse_writepage_in_flight(wpa, page)) { 2082 end_page_writeback(page); 2083 data->wpa = NULL; 2084 goto out_unlock; 2085 } 2086 data->orig_pages[ap->num_pages] = page; 2087 2088 /* 2089 * Protected by fi->lock against concurrent access by 2090 * fuse_page_is_writeback(). 2091 */ 2092 spin_lock(&fi->lock); 2093 ap->num_pages++; 2094 spin_unlock(&fi->lock); 2095 2096 out_unlock: 2097 unlock_page(page); 2098 2099 return err; 2100 } 2101 2102 static int fuse_writepages(struct address_space *mapping, 2103 struct writeback_control *wbc) 2104 { 2105 struct inode *inode = mapping->host; 2106 struct fuse_conn *fc = get_fuse_conn(inode); 2107 struct fuse_fill_wb_data data; 2108 int err; 2109 2110 err = -EIO; 2111 if (is_bad_inode(inode)) 2112 goto out; 2113 2114 data.inode = inode; 2115 data.wpa = NULL; 2116 data.ff = NULL; 2117 2118 err = -ENOMEM; 2119 data.orig_pages = kcalloc(fc->max_pages, 2120 sizeof(struct page *), 2121 GFP_NOFS); 2122 if (!data.orig_pages) 2123 goto out; 2124 2125 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2126 if (data.wpa) { 2127 /* Ignore errors if we can write at least one page */ 2128 WARN_ON(!data.wpa->ia.ap.num_pages); 2129 fuse_writepages_send(&data); 2130 err = 0; 2131 } 2132 if (data.ff) 2133 fuse_file_put(data.ff, false, false); 2134 2135 kfree(data.orig_pages); 2136 out: 2137 return err; 2138 } 2139 2140 /* 2141 * It's worthy to make sure that space is reserved on disk for the write, 2142 * but how to implement it without killing performance need more thinking. 2143 */ 2144 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2145 loff_t pos, unsigned len, unsigned flags, 2146 struct page **pagep, void **fsdata) 2147 { 2148 pgoff_t index = pos >> PAGE_SHIFT; 2149 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2150 struct page *page; 2151 loff_t fsize; 2152 int err = -ENOMEM; 2153 2154 WARN_ON(!fc->writeback_cache); 2155 2156 page = grab_cache_page_write_begin(mapping, index, flags); 2157 if (!page) 2158 goto error; 2159 2160 fuse_wait_on_page_writeback(mapping->host, page->index); 2161 2162 if (PageUptodate(page) || len == PAGE_SIZE) 2163 goto success; 2164 /* 2165 * Check if the start this page comes after the end of file, in which 2166 * case the readpage can be optimized away. 2167 */ 2168 fsize = i_size_read(mapping->host); 2169 if (fsize <= (pos & PAGE_MASK)) { 2170 size_t off = pos & ~PAGE_MASK; 2171 if (off) 2172 zero_user_segment(page, 0, off); 2173 goto success; 2174 } 2175 err = fuse_do_readpage(file, page); 2176 if (err) 2177 goto cleanup; 2178 success: 2179 *pagep = page; 2180 return 0; 2181 2182 cleanup: 2183 unlock_page(page); 2184 put_page(page); 2185 error: 2186 return err; 2187 } 2188 2189 static int fuse_write_end(struct file *file, struct address_space *mapping, 2190 loff_t pos, unsigned len, unsigned copied, 2191 struct page *page, void *fsdata) 2192 { 2193 struct inode *inode = page->mapping->host; 2194 2195 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2196 if (!copied) 2197 goto unlock; 2198 2199 if (!PageUptodate(page)) { 2200 /* Zero any unwritten bytes at the end of the page */ 2201 size_t endoff = (pos + copied) & ~PAGE_MASK; 2202 if (endoff) 2203 zero_user_segment(page, endoff, PAGE_SIZE); 2204 SetPageUptodate(page); 2205 } 2206 2207 fuse_write_update_size(inode, pos + copied); 2208 set_page_dirty(page); 2209 2210 unlock: 2211 unlock_page(page); 2212 put_page(page); 2213 2214 return copied; 2215 } 2216 2217 static int fuse_launder_page(struct page *page) 2218 { 2219 int err = 0; 2220 if (clear_page_dirty_for_io(page)) { 2221 struct inode *inode = page->mapping->host; 2222 err = fuse_writepage_locked(page); 2223 if (!err) 2224 fuse_wait_on_page_writeback(inode, page->index); 2225 } 2226 return err; 2227 } 2228 2229 /* 2230 * Write back dirty pages now, because there may not be any suitable 2231 * open files later 2232 */ 2233 static void fuse_vma_close(struct vm_area_struct *vma) 2234 { 2235 filemap_write_and_wait(vma->vm_file->f_mapping); 2236 } 2237 2238 /* 2239 * Wait for writeback against this page to complete before allowing it 2240 * to be marked dirty again, and hence written back again, possibly 2241 * before the previous writepage completed. 2242 * 2243 * Block here, instead of in ->writepage(), so that the userspace fs 2244 * can only block processes actually operating on the filesystem. 2245 * 2246 * Otherwise unprivileged userspace fs would be able to block 2247 * unrelated: 2248 * 2249 * - page migration 2250 * - sync(2) 2251 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2252 */ 2253 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2254 { 2255 struct page *page = vmf->page; 2256 struct inode *inode = file_inode(vmf->vma->vm_file); 2257 2258 file_update_time(vmf->vma->vm_file); 2259 lock_page(page); 2260 if (page->mapping != inode->i_mapping) { 2261 unlock_page(page); 2262 return VM_FAULT_NOPAGE; 2263 } 2264 2265 fuse_wait_on_page_writeback(inode, page->index); 2266 return VM_FAULT_LOCKED; 2267 } 2268 2269 static const struct vm_operations_struct fuse_file_vm_ops = { 2270 .close = fuse_vma_close, 2271 .fault = filemap_fault, 2272 .map_pages = filemap_map_pages, 2273 .page_mkwrite = fuse_page_mkwrite, 2274 }; 2275 2276 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2277 { 2278 struct fuse_file *ff = file->private_data; 2279 2280 if (ff->open_flags & FOPEN_DIRECT_IO) { 2281 /* Can't provide the coherency needed for MAP_SHARED */ 2282 if (vma->vm_flags & VM_MAYSHARE) 2283 return -ENODEV; 2284 2285 invalidate_inode_pages2(file->f_mapping); 2286 2287 return generic_file_mmap(file, vma); 2288 } 2289 2290 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2291 fuse_link_write_file(file); 2292 2293 file_accessed(file); 2294 vma->vm_ops = &fuse_file_vm_ops; 2295 return 0; 2296 } 2297 2298 static int convert_fuse_file_lock(struct fuse_conn *fc, 2299 const struct fuse_file_lock *ffl, 2300 struct file_lock *fl) 2301 { 2302 switch (ffl->type) { 2303 case F_UNLCK: 2304 break; 2305 2306 case F_RDLCK: 2307 case F_WRLCK: 2308 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2309 ffl->end < ffl->start) 2310 return -EIO; 2311 2312 fl->fl_start = ffl->start; 2313 fl->fl_end = ffl->end; 2314 2315 /* 2316 * Convert pid into init's pid namespace. The locks API will 2317 * translate it into the caller's pid namespace. 2318 */ 2319 rcu_read_lock(); 2320 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2321 rcu_read_unlock(); 2322 break; 2323 2324 default: 2325 return -EIO; 2326 } 2327 fl->fl_type = ffl->type; 2328 return 0; 2329 } 2330 2331 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2332 const struct file_lock *fl, int opcode, pid_t pid, 2333 int flock, struct fuse_lk_in *inarg) 2334 { 2335 struct inode *inode = file_inode(file); 2336 struct fuse_conn *fc = get_fuse_conn(inode); 2337 struct fuse_file *ff = file->private_data; 2338 2339 memset(inarg, 0, sizeof(*inarg)); 2340 inarg->fh = ff->fh; 2341 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2342 inarg->lk.start = fl->fl_start; 2343 inarg->lk.end = fl->fl_end; 2344 inarg->lk.type = fl->fl_type; 2345 inarg->lk.pid = pid; 2346 if (flock) 2347 inarg->lk_flags |= FUSE_LK_FLOCK; 2348 args->opcode = opcode; 2349 args->nodeid = get_node_id(inode); 2350 args->in_numargs = 1; 2351 args->in_args[0].size = sizeof(*inarg); 2352 args->in_args[0].value = inarg; 2353 } 2354 2355 static int fuse_getlk(struct file *file, struct file_lock *fl) 2356 { 2357 struct inode *inode = file_inode(file); 2358 struct fuse_conn *fc = get_fuse_conn(inode); 2359 FUSE_ARGS(args); 2360 struct fuse_lk_in inarg; 2361 struct fuse_lk_out outarg; 2362 int err; 2363 2364 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2365 args.out_numargs = 1; 2366 args.out_args[0].size = sizeof(outarg); 2367 args.out_args[0].value = &outarg; 2368 err = fuse_simple_request(fc, &args); 2369 if (!err) 2370 err = convert_fuse_file_lock(fc, &outarg.lk, fl); 2371 2372 return err; 2373 } 2374 2375 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2376 { 2377 struct inode *inode = file_inode(file); 2378 struct fuse_conn *fc = get_fuse_conn(inode); 2379 FUSE_ARGS(args); 2380 struct fuse_lk_in inarg; 2381 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2382 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2383 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns); 2384 int err; 2385 2386 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2387 /* NLM needs asynchronous locks, which we don't support yet */ 2388 return -ENOLCK; 2389 } 2390 2391 /* Unlock on close is handled by the flush method */ 2392 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2393 return 0; 2394 2395 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2396 err = fuse_simple_request(fc, &args); 2397 2398 /* locking is restartable */ 2399 if (err == -EINTR) 2400 err = -ERESTARTSYS; 2401 2402 return err; 2403 } 2404 2405 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2406 { 2407 struct inode *inode = file_inode(file); 2408 struct fuse_conn *fc = get_fuse_conn(inode); 2409 int err; 2410 2411 if (cmd == F_CANCELLK) { 2412 err = 0; 2413 } else if (cmd == F_GETLK) { 2414 if (fc->no_lock) { 2415 posix_test_lock(file, fl); 2416 err = 0; 2417 } else 2418 err = fuse_getlk(file, fl); 2419 } else { 2420 if (fc->no_lock) 2421 err = posix_lock_file(file, fl, NULL); 2422 else 2423 err = fuse_setlk(file, fl, 0); 2424 } 2425 return err; 2426 } 2427 2428 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2429 { 2430 struct inode *inode = file_inode(file); 2431 struct fuse_conn *fc = get_fuse_conn(inode); 2432 int err; 2433 2434 if (fc->no_flock) { 2435 err = locks_lock_file_wait(file, fl); 2436 } else { 2437 struct fuse_file *ff = file->private_data; 2438 2439 /* emulate flock with POSIX locks */ 2440 ff->flock = true; 2441 err = fuse_setlk(file, fl, 1); 2442 } 2443 2444 return err; 2445 } 2446 2447 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2448 { 2449 struct inode *inode = mapping->host; 2450 struct fuse_conn *fc = get_fuse_conn(inode); 2451 FUSE_ARGS(args); 2452 struct fuse_bmap_in inarg; 2453 struct fuse_bmap_out outarg; 2454 int err; 2455 2456 if (!inode->i_sb->s_bdev || fc->no_bmap) 2457 return 0; 2458 2459 memset(&inarg, 0, sizeof(inarg)); 2460 inarg.block = block; 2461 inarg.blocksize = inode->i_sb->s_blocksize; 2462 args.opcode = FUSE_BMAP; 2463 args.nodeid = get_node_id(inode); 2464 args.in_numargs = 1; 2465 args.in_args[0].size = sizeof(inarg); 2466 args.in_args[0].value = &inarg; 2467 args.out_numargs = 1; 2468 args.out_args[0].size = sizeof(outarg); 2469 args.out_args[0].value = &outarg; 2470 err = fuse_simple_request(fc, &args); 2471 if (err == -ENOSYS) 2472 fc->no_bmap = 1; 2473 2474 return err ? 0 : outarg.block; 2475 } 2476 2477 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2478 { 2479 struct inode *inode = file->f_mapping->host; 2480 struct fuse_conn *fc = get_fuse_conn(inode); 2481 struct fuse_file *ff = file->private_data; 2482 FUSE_ARGS(args); 2483 struct fuse_lseek_in inarg = { 2484 .fh = ff->fh, 2485 .offset = offset, 2486 .whence = whence 2487 }; 2488 struct fuse_lseek_out outarg; 2489 int err; 2490 2491 if (fc->no_lseek) 2492 goto fallback; 2493 2494 args.opcode = FUSE_LSEEK; 2495 args.nodeid = ff->nodeid; 2496 args.in_numargs = 1; 2497 args.in_args[0].size = sizeof(inarg); 2498 args.in_args[0].value = &inarg; 2499 args.out_numargs = 1; 2500 args.out_args[0].size = sizeof(outarg); 2501 args.out_args[0].value = &outarg; 2502 err = fuse_simple_request(fc, &args); 2503 if (err) { 2504 if (err == -ENOSYS) { 2505 fc->no_lseek = 1; 2506 goto fallback; 2507 } 2508 return err; 2509 } 2510 2511 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2512 2513 fallback: 2514 err = fuse_update_attributes(inode, file); 2515 if (!err) 2516 return generic_file_llseek(file, offset, whence); 2517 else 2518 return err; 2519 } 2520 2521 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2522 { 2523 loff_t retval; 2524 struct inode *inode = file_inode(file); 2525 2526 switch (whence) { 2527 case SEEK_SET: 2528 case SEEK_CUR: 2529 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2530 retval = generic_file_llseek(file, offset, whence); 2531 break; 2532 case SEEK_END: 2533 inode_lock(inode); 2534 retval = fuse_update_attributes(inode, file); 2535 if (!retval) 2536 retval = generic_file_llseek(file, offset, whence); 2537 inode_unlock(inode); 2538 break; 2539 case SEEK_HOLE: 2540 case SEEK_DATA: 2541 inode_lock(inode); 2542 retval = fuse_lseek(file, offset, whence); 2543 inode_unlock(inode); 2544 break; 2545 default: 2546 retval = -EINVAL; 2547 } 2548 2549 return retval; 2550 } 2551 2552 /* 2553 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2554 * ABI was defined to be 'struct iovec' which is different on 32bit 2555 * and 64bit. Fortunately we can determine which structure the server 2556 * used from the size of the reply. 2557 */ 2558 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2559 size_t transferred, unsigned count, 2560 bool is_compat) 2561 { 2562 #ifdef CONFIG_COMPAT 2563 if (count * sizeof(struct compat_iovec) == transferred) { 2564 struct compat_iovec *ciov = src; 2565 unsigned i; 2566 2567 /* 2568 * With this interface a 32bit server cannot support 2569 * non-compat (i.e. ones coming from 64bit apps) ioctl 2570 * requests 2571 */ 2572 if (!is_compat) 2573 return -EINVAL; 2574 2575 for (i = 0; i < count; i++) { 2576 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2577 dst[i].iov_len = ciov[i].iov_len; 2578 } 2579 return 0; 2580 } 2581 #endif 2582 2583 if (count * sizeof(struct iovec) != transferred) 2584 return -EIO; 2585 2586 memcpy(dst, src, transferred); 2587 return 0; 2588 } 2589 2590 /* Make sure iov_length() won't overflow */ 2591 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov, 2592 size_t count) 2593 { 2594 size_t n; 2595 u32 max = fc->max_pages << PAGE_SHIFT; 2596 2597 for (n = 0; n < count; n++, iov++) { 2598 if (iov->iov_len > (size_t) max) 2599 return -ENOMEM; 2600 max -= iov->iov_len; 2601 } 2602 return 0; 2603 } 2604 2605 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2606 void *src, size_t transferred, unsigned count, 2607 bool is_compat) 2608 { 2609 unsigned i; 2610 struct fuse_ioctl_iovec *fiov = src; 2611 2612 if (fc->minor < 16) { 2613 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2614 count, is_compat); 2615 } 2616 2617 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2618 return -EIO; 2619 2620 for (i = 0; i < count; i++) { 2621 /* Did the server supply an inappropriate value? */ 2622 if (fiov[i].base != (unsigned long) fiov[i].base || 2623 fiov[i].len != (unsigned long) fiov[i].len) 2624 return -EIO; 2625 2626 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2627 dst[i].iov_len = (size_t) fiov[i].len; 2628 2629 #ifdef CONFIG_COMPAT 2630 if (is_compat && 2631 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2632 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2633 return -EIO; 2634 #endif 2635 } 2636 2637 return 0; 2638 } 2639 2640 2641 /* 2642 * For ioctls, there is no generic way to determine how much memory 2643 * needs to be read and/or written. Furthermore, ioctls are allowed 2644 * to dereference the passed pointer, so the parameter requires deep 2645 * copying but FUSE has no idea whatsoever about what to copy in or 2646 * out. 2647 * 2648 * This is solved by allowing FUSE server to retry ioctl with 2649 * necessary in/out iovecs. Let's assume the ioctl implementation 2650 * needs to read in the following structure. 2651 * 2652 * struct a { 2653 * char *buf; 2654 * size_t buflen; 2655 * } 2656 * 2657 * On the first callout to FUSE server, inarg->in_size and 2658 * inarg->out_size will be NULL; then, the server completes the ioctl 2659 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2660 * the actual iov array to 2661 * 2662 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2663 * 2664 * which tells FUSE to copy in the requested area and retry the ioctl. 2665 * On the second round, the server has access to the structure and 2666 * from that it can tell what to look for next, so on the invocation, 2667 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2668 * 2669 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2670 * { .iov_base = a.buf, .iov_len = a.buflen } } 2671 * 2672 * FUSE will copy both struct a and the pointed buffer from the 2673 * process doing the ioctl and retry ioctl with both struct a and the 2674 * buffer. 2675 * 2676 * This time, FUSE server has everything it needs and completes ioctl 2677 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2678 * 2679 * Copying data out works the same way. 2680 * 2681 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2682 * automatically initializes in and out iovs by decoding @cmd with 2683 * _IOC_* macros and the server is not allowed to request RETRY. This 2684 * limits ioctl data transfers to well-formed ioctls and is the forced 2685 * behavior for all FUSE servers. 2686 */ 2687 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2688 unsigned int flags) 2689 { 2690 struct fuse_file *ff = file->private_data; 2691 struct fuse_conn *fc = ff->fc; 2692 struct fuse_ioctl_in inarg = { 2693 .fh = ff->fh, 2694 .cmd = cmd, 2695 .arg = arg, 2696 .flags = flags 2697 }; 2698 struct fuse_ioctl_out outarg; 2699 struct iovec *iov_page = NULL; 2700 struct iovec *in_iov = NULL, *out_iov = NULL; 2701 unsigned int in_iovs = 0, out_iovs = 0, max_pages; 2702 size_t in_size, out_size, c; 2703 ssize_t transferred; 2704 int err, i; 2705 struct iov_iter ii; 2706 struct fuse_args_pages ap = {}; 2707 2708 #if BITS_PER_LONG == 32 2709 inarg.flags |= FUSE_IOCTL_32BIT; 2710 #else 2711 if (flags & FUSE_IOCTL_COMPAT) { 2712 inarg.flags |= FUSE_IOCTL_32BIT; 2713 #ifdef CONFIG_X86_X32 2714 if (in_x32_syscall()) 2715 inarg.flags |= FUSE_IOCTL_COMPAT_X32; 2716 #endif 2717 } 2718 #endif 2719 2720 /* assume all the iovs returned by client always fits in a page */ 2721 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2722 2723 err = -ENOMEM; 2724 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs); 2725 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2726 if (!ap.pages || !iov_page) 2727 goto out; 2728 2729 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages); 2730 2731 /* 2732 * If restricted, initialize IO parameters as encoded in @cmd. 2733 * RETRY from server is not allowed. 2734 */ 2735 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2736 struct iovec *iov = iov_page; 2737 2738 iov->iov_base = (void __user *)arg; 2739 iov->iov_len = _IOC_SIZE(cmd); 2740 2741 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2742 in_iov = iov; 2743 in_iovs = 1; 2744 } 2745 2746 if (_IOC_DIR(cmd) & _IOC_READ) { 2747 out_iov = iov; 2748 out_iovs = 1; 2749 } 2750 } 2751 2752 retry: 2753 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2754 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2755 2756 /* 2757 * Out data can be used either for actual out data or iovs, 2758 * make sure there always is at least one page. 2759 */ 2760 out_size = max_t(size_t, out_size, PAGE_SIZE); 2761 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2762 2763 /* make sure there are enough buffer pages and init request with them */ 2764 err = -ENOMEM; 2765 if (max_pages > fc->max_pages) 2766 goto out; 2767 while (ap.num_pages < max_pages) { 2768 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2769 if (!ap.pages[ap.num_pages]) 2770 goto out; 2771 ap.num_pages++; 2772 } 2773 2774 2775 /* okay, let's send it to the client */ 2776 ap.args.opcode = FUSE_IOCTL; 2777 ap.args.nodeid = ff->nodeid; 2778 ap.args.in_numargs = 1; 2779 ap.args.in_args[0].size = sizeof(inarg); 2780 ap.args.in_args[0].value = &inarg; 2781 if (in_size) { 2782 ap.args.in_numargs++; 2783 ap.args.in_args[1].size = in_size; 2784 ap.args.in_pages = true; 2785 2786 err = -EFAULT; 2787 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size); 2788 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2789 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2790 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2791 goto out; 2792 } 2793 } 2794 2795 ap.args.out_numargs = 2; 2796 ap.args.out_args[0].size = sizeof(outarg); 2797 ap.args.out_args[0].value = &outarg; 2798 ap.args.out_args[1].size = out_size; 2799 ap.args.out_pages = true; 2800 ap.args.out_argvar = true; 2801 2802 transferred = fuse_simple_request(fc, &ap.args); 2803 err = transferred; 2804 if (transferred < 0) 2805 goto out; 2806 2807 /* did it ask for retry? */ 2808 if (outarg.flags & FUSE_IOCTL_RETRY) { 2809 void *vaddr; 2810 2811 /* no retry if in restricted mode */ 2812 err = -EIO; 2813 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2814 goto out; 2815 2816 in_iovs = outarg.in_iovs; 2817 out_iovs = outarg.out_iovs; 2818 2819 /* 2820 * Make sure things are in boundary, separate checks 2821 * are to protect against overflow. 2822 */ 2823 err = -ENOMEM; 2824 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2825 out_iovs > FUSE_IOCTL_MAX_IOV || 2826 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2827 goto out; 2828 2829 vaddr = kmap_atomic(ap.pages[0]); 2830 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2831 transferred, in_iovs + out_iovs, 2832 (flags & FUSE_IOCTL_COMPAT) != 0); 2833 kunmap_atomic(vaddr); 2834 if (err) 2835 goto out; 2836 2837 in_iov = iov_page; 2838 out_iov = in_iov + in_iovs; 2839 2840 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs); 2841 if (err) 2842 goto out; 2843 2844 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs); 2845 if (err) 2846 goto out; 2847 2848 goto retry; 2849 } 2850 2851 err = -EIO; 2852 if (transferred > inarg.out_size) 2853 goto out; 2854 2855 err = -EFAULT; 2856 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred); 2857 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2858 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2859 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2860 goto out; 2861 } 2862 err = 0; 2863 out: 2864 free_page((unsigned long) iov_page); 2865 while (ap.num_pages) 2866 __free_page(ap.pages[--ap.num_pages]); 2867 kfree(ap.pages); 2868 2869 return err ? err : outarg.result; 2870 } 2871 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2872 2873 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2874 unsigned long arg, unsigned int flags) 2875 { 2876 struct inode *inode = file_inode(file); 2877 struct fuse_conn *fc = get_fuse_conn(inode); 2878 2879 if (!fuse_allow_current_process(fc)) 2880 return -EACCES; 2881 2882 if (is_bad_inode(inode)) 2883 return -EIO; 2884 2885 return fuse_do_ioctl(file, cmd, arg, flags); 2886 } 2887 2888 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2889 unsigned long arg) 2890 { 2891 return fuse_ioctl_common(file, cmd, arg, 0); 2892 } 2893 2894 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2895 unsigned long arg) 2896 { 2897 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2898 } 2899 2900 /* 2901 * All files which have been polled are linked to RB tree 2902 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2903 * find the matching one. 2904 */ 2905 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2906 struct rb_node **parent_out) 2907 { 2908 struct rb_node **link = &fc->polled_files.rb_node; 2909 struct rb_node *last = NULL; 2910 2911 while (*link) { 2912 struct fuse_file *ff; 2913 2914 last = *link; 2915 ff = rb_entry(last, struct fuse_file, polled_node); 2916 2917 if (kh < ff->kh) 2918 link = &last->rb_left; 2919 else if (kh > ff->kh) 2920 link = &last->rb_right; 2921 else 2922 return link; 2923 } 2924 2925 if (parent_out) 2926 *parent_out = last; 2927 return link; 2928 } 2929 2930 /* 2931 * The file is about to be polled. Make sure it's on the polled_files 2932 * RB tree. Note that files once added to the polled_files tree are 2933 * not removed before the file is released. This is because a file 2934 * polled once is likely to be polled again. 2935 */ 2936 static void fuse_register_polled_file(struct fuse_conn *fc, 2937 struct fuse_file *ff) 2938 { 2939 spin_lock(&fc->lock); 2940 if (RB_EMPTY_NODE(&ff->polled_node)) { 2941 struct rb_node **link, *uninitialized_var(parent); 2942 2943 link = fuse_find_polled_node(fc, ff->kh, &parent); 2944 BUG_ON(*link); 2945 rb_link_node(&ff->polled_node, parent, link); 2946 rb_insert_color(&ff->polled_node, &fc->polled_files); 2947 } 2948 spin_unlock(&fc->lock); 2949 } 2950 2951 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2952 { 2953 struct fuse_file *ff = file->private_data; 2954 struct fuse_conn *fc = ff->fc; 2955 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2956 struct fuse_poll_out outarg; 2957 FUSE_ARGS(args); 2958 int err; 2959 2960 if (fc->no_poll) 2961 return DEFAULT_POLLMASK; 2962 2963 poll_wait(file, &ff->poll_wait, wait); 2964 inarg.events = mangle_poll(poll_requested_events(wait)); 2965 2966 /* 2967 * Ask for notification iff there's someone waiting for it. 2968 * The client may ignore the flag and always notify. 2969 */ 2970 if (waitqueue_active(&ff->poll_wait)) { 2971 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2972 fuse_register_polled_file(fc, ff); 2973 } 2974 2975 args.opcode = FUSE_POLL; 2976 args.nodeid = ff->nodeid; 2977 args.in_numargs = 1; 2978 args.in_args[0].size = sizeof(inarg); 2979 args.in_args[0].value = &inarg; 2980 args.out_numargs = 1; 2981 args.out_args[0].size = sizeof(outarg); 2982 args.out_args[0].value = &outarg; 2983 err = fuse_simple_request(fc, &args); 2984 2985 if (!err) 2986 return demangle_poll(outarg.revents); 2987 if (err == -ENOSYS) { 2988 fc->no_poll = 1; 2989 return DEFAULT_POLLMASK; 2990 } 2991 return EPOLLERR; 2992 } 2993 EXPORT_SYMBOL_GPL(fuse_file_poll); 2994 2995 /* 2996 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2997 * wakes up the poll waiters. 2998 */ 2999 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 3000 struct fuse_notify_poll_wakeup_out *outarg) 3001 { 3002 u64 kh = outarg->kh; 3003 struct rb_node **link; 3004 3005 spin_lock(&fc->lock); 3006 3007 link = fuse_find_polled_node(fc, kh, NULL); 3008 if (*link) { 3009 struct fuse_file *ff; 3010 3011 ff = rb_entry(*link, struct fuse_file, polled_node); 3012 wake_up_interruptible_sync(&ff->poll_wait); 3013 } 3014 3015 spin_unlock(&fc->lock); 3016 return 0; 3017 } 3018 3019 static void fuse_do_truncate(struct file *file) 3020 { 3021 struct inode *inode = file->f_mapping->host; 3022 struct iattr attr; 3023 3024 attr.ia_valid = ATTR_SIZE; 3025 attr.ia_size = i_size_read(inode); 3026 3027 attr.ia_file = file; 3028 attr.ia_valid |= ATTR_FILE; 3029 3030 fuse_do_setattr(file_dentry(file), &attr, file); 3031 } 3032 3033 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 3034 { 3035 return round_up(off, fc->max_pages << PAGE_SHIFT); 3036 } 3037 3038 static ssize_t 3039 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3040 { 3041 DECLARE_COMPLETION_ONSTACK(wait); 3042 ssize_t ret = 0; 3043 struct file *file = iocb->ki_filp; 3044 struct fuse_file *ff = file->private_data; 3045 bool async_dio = ff->fc->async_dio; 3046 loff_t pos = 0; 3047 struct inode *inode; 3048 loff_t i_size; 3049 size_t count = iov_iter_count(iter); 3050 loff_t offset = iocb->ki_pos; 3051 struct fuse_io_priv *io; 3052 3053 pos = offset; 3054 inode = file->f_mapping->host; 3055 i_size = i_size_read(inode); 3056 3057 if ((iov_iter_rw(iter) == READ) && (offset > i_size)) 3058 return 0; 3059 3060 /* optimization for short read */ 3061 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) { 3062 if (offset >= i_size) 3063 return 0; 3064 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset)); 3065 count = iov_iter_count(iter); 3066 } 3067 3068 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3069 if (!io) 3070 return -ENOMEM; 3071 spin_lock_init(&io->lock); 3072 kref_init(&io->refcnt); 3073 io->reqs = 1; 3074 io->bytes = -1; 3075 io->size = 0; 3076 io->offset = offset; 3077 io->write = (iov_iter_rw(iter) == WRITE); 3078 io->err = 0; 3079 /* 3080 * By default, we want to optimize all I/Os with async request 3081 * submission to the client filesystem if supported. 3082 */ 3083 io->async = async_dio; 3084 io->iocb = iocb; 3085 io->blocking = is_sync_kiocb(iocb); 3086 3087 /* 3088 * We cannot asynchronously extend the size of a file. 3089 * In such case the aio will behave exactly like sync io. 3090 */ 3091 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE) 3092 io->blocking = true; 3093 3094 if (io->async && io->blocking) { 3095 /* 3096 * Additional reference to keep io around after 3097 * calling fuse_aio_complete() 3098 */ 3099 kref_get(&io->refcnt); 3100 io->done = &wait; 3101 } 3102 3103 if (iov_iter_rw(iter) == WRITE) { 3104 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3105 fuse_invalidate_attr(inode); 3106 } else { 3107 ret = __fuse_direct_read(io, iter, &pos); 3108 } 3109 3110 if (io->async) { 3111 bool blocking = io->blocking; 3112 3113 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3114 3115 /* we have a non-extending, async request, so return */ 3116 if (!blocking) 3117 return -EIOCBQUEUED; 3118 3119 wait_for_completion(&wait); 3120 ret = fuse_get_res_by_io(io); 3121 } 3122 3123 kref_put(&io->refcnt, fuse_io_release); 3124 3125 if (iov_iter_rw(iter) == WRITE) { 3126 if (ret > 0) 3127 fuse_write_update_size(inode, pos); 3128 else if (ret < 0 && offset + count > i_size) 3129 fuse_do_truncate(file); 3130 } 3131 3132 return ret; 3133 } 3134 3135 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3136 { 3137 int err = filemap_write_and_wait_range(inode->i_mapping, start, end); 3138 3139 if (!err) 3140 fuse_sync_writes(inode); 3141 3142 return err; 3143 } 3144 3145 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3146 loff_t length) 3147 { 3148 struct fuse_file *ff = file->private_data; 3149 struct inode *inode = file_inode(file); 3150 struct fuse_inode *fi = get_fuse_inode(inode); 3151 struct fuse_conn *fc = ff->fc; 3152 FUSE_ARGS(args); 3153 struct fuse_fallocate_in inarg = { 3154 .fh = ff->fh, 3155 .offset = offset, 3156 .length = length, 3157 .mode = mode 3158 }; 3159 int err; 3160 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 3161 (mode & FALLOC_FL_PUNCH_HOLE); 3162 3163 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3164 return -EOPNOTSUPP; 3165 3166 if (fc->no_fallocate) 3167 return -EOPNOTSUPP; 3168 3169 if (lock_inode) { 3170 inode_lock(inode); 3171 if (mode & FALLOC_FL_PUNCH_HOLE) { 3172 loff_t endbyte = offset + length - 1; 3173 3174 err = fuse_writeback_range(inode, offset, endbyte); 3175 if (err) 3176 goto out; 3177 } 3178 } 3179 3180 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3181 offset + length > i_size_read(inode)) { 3182 err = inode_newsize_ok(inode, offset + length); 3183 if (err) 3184 goto out; 3185 } 3186 3187 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3188 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3189 3190 args.opcode = FUSE_FALLOCATE; 3191 args.nodeid = ff->nodeid; 3192 args.in_numargs = 1; 3193 args.in_args[0].size = sizeof(inarg); 3194 args.in_args[0].value = &inarg; 3195 err = fuse_simple_request(fc, &args); 3196 if (err == -ENOSYS) { 3197 fc->no_fallocate = 1; 3198 err = -EOPNOTSUPP; 3199 } 3200 if (err) 3201 goto out; 3202 3203 /* we could have extended the file */ 3204 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3205 bool changed = fuse_write_update_size(inode, offset + length); 3206 3207 if (changed && fc->writeback_cache) 3208 file_update_time(file); 3209 } 3210 3211 if (mode & FALLOC_FL_PUNCH_HOLE) 3212 truncate_pagecache_range(inode, offset, offset + length - 1); 3213 3214 fuse_invalidate_attr(inode); 3215 3216 out: 3217 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3218 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3219 3220 if (lock_inode) 3221 inode_unlock(inode); 3222 3223 return err; 3224 } 3225 3226 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3227 struct file *file_out, loff_t pos_out, 3228 size_t len, unsigned int flags) 3229 { 3230 struct fuse_file *ff_in = file_in->private_data; 3231 struct fuse_file *ff_out = file_out->private_data; 3232 struct inode *inode_in = file_inode(file_in); 3233 struct inode *inode_out = file_inode(file_out); 3234 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3235 struct fuse_conn *fc = ff_in->fc; 3236 FUSE_ARGS(args); 3237 struct fuse_copy_file_range_in inarg = { 3238 .fh_in = ff_in->fh, 3239 .off_in = pos_in, 3240 .nodeid_out = ff_out->nodeid, 3241 .fh_out = ff_out->fh, 3242 .off_out = pos_out, 3243 .len = len, 3244 .flags = flags 3245 }; 3246 struct fuse_write_out outarg; 3247 ssize_t err; 3248 /* mark unstable when write-back is not used, and file_out gets 3249 * extended */ 3250 bool is_unstable = (!fc->writeback_cache) && 3251 ((pos_out + len) > inode_out->i_size); 3252 3253 if (fc->no_copy_file_range) 3254 return -EOPNOTSUPP; 3255 3256 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3257 return -EXDEV; 3258 3259 if (fc->writeback_cache) { 3260 inode_lock(inode_in); 3261 err = fuse_writeback_range(inode_in, pos_in, pos_in + len); 3262 inode_unlock(inode_in); 3263 if (err) 3264 return err; 3265 } 3266 3267 inode_lock(inode_out); 3268 3269 err = file_modified(file_out); 3270 if (err) 3271 goto out; 3272 3273 if (fc->writeback_cache) { 3274 err = fuse_writeback_range(inode_out, pos_out, pos_out + len); 3275 if (err) 3276 goto out; 3277 } 3278 3279 if (is_unstable) 3280 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3281 3282 args.opcode = FUSE_COPY_FILE_RANGE; 3283 args.nodeid = ff_in->nodeid; 3284 args.in_numargs = 1; 3285 args.in_args[0].size = sizeof(inarg); 3286 args.in_args[0].value = &inarg; 3287 args.out_numargs = 1; 3288 args.out_args[0].size = sizeof(outarg); 3289 args.out_args[0].value = &outarg; 3290 err = fuse_simple_request(fc, &args); 3291 if (err == -ENOSYS) { 3292 fc->no_copy_file_range = 1; 3293 err = -EOPNOTSUPP; 3294 } 3295 if (err) 3296 goto out; 3297 3298 if (fc->writeback_cache) { 3299 fuse_write_update_size(inode_out, pos_out + outarg.size); 3300 file_update_time(file_out); 3301 } 3302 3303 fuse_invalidate_attr(inode_out); 3304 3305 err = outarg.size; 3306 out: 3307 if (is_unstable) 3308 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3309 3310 inode_unlock(inode_out); 3311 file_accessed(file_in); 3312 3313 return err; 3314 } 3315 3316 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3317 struct file *dst_file, loff_t dst_off, 3318 size_t len, unsigned int flags) 3319 { 3320 ssize_t ret; 3321 3322 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3323 len, flags); 3324 3325 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3326 ret = generic_copy_file_range(src_file, src_off, dst_file, 3327 dst_off, len, flags); 3328 return ret; 3329 } 3330 3331 static const struct file_operations fuse_file_operations = { 3332 .llseek = fuse_file_llseek, 3333 .read_iter = fuse_file_read_iter, 3334 .write_iter = fuse_file_write_iter, 3335 .mmap = fuse_file_mmap, 3336 .open = fuse_open, 3337 .flush = fuse_flush, 3338 .release = fuse_release, 3339 .fsync = fuse_fsync, 3340 .lock = fuse_file_lock, 3341 .flock = fuse_file_flock, 3342 .splice_read = generic_file_splice_read, 3343 .splice_write = iter_file_splice_write, 3344 .unlocked_ioctl = fuse_file_ioctl, 3345 .compat_ioctl = fuse_file_compat_ioctl, 3346 .poll = fuse_file_poll, 3347 .fallocate = fuse_file_fallocate, 3348 .copy_file_range = fuse_copy_file_range, 3349 }; 3350 3351 static const struct address_space_operations fuse_file_aops = { 3352 .readpage = fuse_readpage, 3353 .writepage = fuse_writepage, 3354 .writepages = fuse_writepages, 3355 .launder_page = fuse_launder_page, 3356 .readpages = fuse_readpages, 3357 .set_page_dirty = __set_page_dirty_nobuffers, 3358 .bmap = fuse_bmap, 3359 .direct_IO = fuse_direct_IO, 3360 .write_begin = fuse_write_begin, 3361 .write_end = fuse_write_end, 3362 }; 3363 3364 void fuse_init_file_inode(struct inode *inode) 3365 { 3366 struct fuse_inode *fi = get_fuse_inode(inode); 3367 3368 inode->i_fop = &fuse_file_operations; 3369 inode->i_data.a_ops = &fuse_file_aops; 3370 3371 INIT_LIST_HEAD(&fi->write_files); 3372 INIT_LIST_HEAD(&fi->queued_writes); 3373 fi->writectr = 0; 3374 init_waitqueue_head(&fi->page_waitq); 3375 INIT_LIST_HEAD(&fi->writepages); 3376 } 3377