1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/compat.h> 18 #include <linux/swap.h> 19 #include <linux/falloc.h> 20 #include <linux/uio.h> 21 #include <linux/fs.h> 22 23 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags, 24 struct fuse_page_desc **desc) 25 { 26 struct page **pages; 27 28 pages = kzalloc(npages * (sizeof(struct page *) + 29 sizeof(struct fuse_page_desc)), flags); 30 *desc = (void *) (pages + npages); 31 32 return pages; 33 } 34 35 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 36 int opcode, struct fuse_open_out *outargp) 37 { 38 struct fuse_open_in inarg; 39 FUSE_ARGS(args); 40 41 memset(&inarg, 0, sizeof(inarg)); 42 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 43 if (!fc->atomic_o_trunc) 44 inarg.flags &= ~O_TRUNC; 45 args.opcode = opcode; 46 args.nodeid = nodeid; 47 args.in_numargs = 1; 48 args.in_args[0].size = sizeof(inarg); 49 args.in_args[0].value = &inarg; 50 args.out_numargs = 1; 51 args.out_args[0].size = sizeof(*outargp); 52 args.out_args[0].value = outargp; 53 54 return fuse_simple_request(fc, &args); 55 } 56 57 struct fuse_release_args { 58 struct fuse_args args; 59 struct fuse_release_in inarg; 60 struct inode *inode; 61 }; 62 63 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 64 { 65 struct fuse_file *ff; 66 67 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 68 if (unlikely(!ff)) 69 return NULL; 70 71 ff->fc = fc; 72 ff->release_args = kzalloc(sizeof(*ff->release_args), 73 GFP_KERNEL_ACCOUNT); 74 if (!ff->release_args) { 75 kfree(ff); 76 return NULL; 77 } 78 79 INIT_LIST_HEAD(&ff->write_entry); 80 mutex_init(&ff->readdir.lock); 81 refcount_set(&ff->count, 1); 82 RB_CLEAR_NODE(&ff->polled_node); 83 init_waitqueue_head(&ff->poll_wait); 84 85 ff->kh = atomic64_inc_return(&fc->khctr); 86 87 return ff; 88 } 89 90 void fuse_file_free(struct fuse_file *ff) 91 { 92 kfree(ff->release_args); 93 mutex_destroy(&ff->readdir.lock); 94 kfree(ff); 95 } 96 97 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 98 { 99 refcount_inc(&ff->count); 100 return ff; 101 } 102 103 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args, 104 int error) 105 { 106 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 107 108 iput(ra->inode); 109 kfree(ra); 110 } 111 112 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 113 { 114 if (refcount_dec_and_test(&ff->count)) { 115 struct fuse_args *args = &ff->release_args->args; 116 117 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) { 118 /* Do nothing when client does not implement 'open' */ 119 fuse_release_end(ff->fc, args, 0); 120 } else if (sync) { 121 fuse_simple_request(ff->fc, args); 122 fuse_release_end(ff->fc, args, 0); 123 } else { 124 args->end = fuse_release_end; 125 if (fuse_simple_background(ff->fc, args, 126 GFP_KERNEL | __GFP_NOFAIL)) 127 fuse_release_end(ff->fc, args, -ENOTCONN); 128 } 129 kfree(ff); 130 } 131 } 132 133 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 134 bool isdir) 135 { 136 struct fuse_file *ff; 137 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 138 139 ff = fuse_file_alloc(fc); 140 if (!ff) 141 return -ENOMEM; 142 143 ff->fh = 0; 144 /* Default for no-open */ 145 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 146 if (isdir ? !fc->no_opendir : !fc->no_open) { 147 struct fuse_open_out outarg; 148 int err; 149 150 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 151 if (!err) { 152 ff->fh = outarg.fh; 153 ff->open_flags = outarg.open_flags; 154 155 } else if (err != -ENOSYS) { 156 fuse_file_free(ff); 157 return err; 158 } else { 159 if (isdir) 160 fc->no_opendir = 1; 161 else 162 fc->no_open = 1; 163 } 164 } 165 166 if (isdir) 167 ff->open_flags &= ~FOPEN_DIRECT_IO; 168 169 ff->nodeid = nodeid; 170 file->private_data = ff; 171 172 return 0; 173 } 174 EXPORT_SYMBOL_GPL(fuse_do_open); 175 176 static void fuse_link_write_file(struct file *file) 177 { 178 struct inode *inode = file_inode(file); 179 struct fuse_inode *fi = get_fuse_inode(inode); 180 struct fuse_file *ff = file->private_data; 181 /* 182 * file may be written through mmap, so chain it onto the 183 * inodes's write_file list 184 */ 185 spin_lock(&fi->lock); 186 if (list_empty(&ff->write_entry)) 187 list_add(&ff->write_entry, &fi->write_files); 188 spin_unlock(&fi->lock); 189 } 190 191 void fuse_finish_open(struct inode *inode, struct file *file) 192 { 193 struct fuse_file *ff = file->private_data; 194 struct fuse_conn *fc = get_fuse_conn(inode); 195 196 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 197 invalidate_inode_pages2(inode->i_mapping); 198 if (ff->open_flags & FOPEN_STREAM) 199 stream_open(inode, file); 200 else if (ff->open_flags & FOPEN_NONSEEKABLE) 201 nonseekable_open(inode, file); 202 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 203 struct fuse_inode *fi = get_fuse_inode(inode); 204 205 spin_lock(&fi->lock); 206 fi->attr_version = atomic64_inc_return(&fc->attr_version); 207 i_size_write(inode, 0); 208 spin_unlock(&fi->lock); 209 fuse_invalidate_attr(inode); 210 if (fc->writeback_cache) 211 file_update_time(file); 212 } 213 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 214 fuse_link_write_file(file); 215 } 216 217 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 218 { 219 struct fuse_conn *fc = get_fuse_conn(inode); 220 int err; 221 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 222 fc->atomic_o_trunc && 223 fc->writeback_cache; 224 225 err = generic_file_open(inode, file); 226 if (err) 227 return err; 228 229 if (is_wb_truncate) { 230 inode_lock(inode); 231 fuse_set_nowrite(inode); 232 } 233 234 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 235 236 if (!err) 237 fuse_finish_open(inode, file); 238 239 if (is_wb_truncate) { 240 fuse_release_nowrite(inode); 241 inode_unlock(inode); 242 } 243 244 return err; 245 } 246 247 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 248 int flags, int opcode) 249 { 250 struct fuse_conn *fc = ff->fc; 251 struct fuse_release_args *ra = ff->release_args; 252 253 /* Inode is NULL on error path of fuse_create_open() */ 254 if (likely(fi)) { 255 spin_lock(&fi->lock); 256 list_del(&ff->write_entry); 257 spin_unlock(&fi->lock); 258 } 259 spin_lock(&fc->lock); 260 if (!RB_EMPTY_NODE(&ff->polled_node)) 261 rb_erase(&ff->polled_node, &fc->polled_files); 262 spin_unlock(&fc->lock); 263 264 wake_up_interruptible_all(&ff->poll_wait); 265 266 ra->inarg.fh = ff->fh; 267 ra->inarg.flags = flags; 268 ra->args.in_numargs = 1; 269 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 270 ra->args.in_args[0].value = &ra->inarg; 271 ra->args.opcode = opcode; 272 ra->args.nodeid = ff->nodeid; 273 ra->args.force = true; 274 ra->args.nocreds = true; 275 } 276 277 void fuse_release_common(struct file *file, bool isdir) 278 { 279 struct fuse_inode *fi = get_fuse_inode(file_inode(file)); 280 struct fuse_file *ff = file->private_data; 281 struct fuse_release_args *ra = ff->release_args; 282 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 283 284 fuse_prepare_release(fi, ff, file->f_flags, opcode); 285 286 if (ff->flock) { 287 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 288 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc, 289 (fl_owner_t) file); 290 } 291 /* Hold inode until release is finished */ 292 ra->inode = igrab(file_inode(file)); 293 294 /* 295 * Normally this will send the RELEASE request, however if 296 * some asynchronous READ or WRITE requests are outstanding, 297 * the sending will be delayed. 298 * 299 * Make the release synchronous if this is a fuseblk mount, 300 * synchronous RELEASE is allowed (and desirable) in this case 301 * because the server can be trusted not to screw up. 302 */ 303 fuse_file_put(ff, ff->fc->destroy, isdir); 304 } 305 306 static int fuse_open(struct inode *inode, struct file *file) 307 { 308 return fuse_open_common(inode, file, false); 309 } 310 311 static int fuse_release(struct inode *inode, struct file *file) 312 { 313 struct fuse_conn *fc = get_fuse_conn(inode); 314 315 /* see fuse_vma_close() for !writeback_cache case */ 316 if (fc->writeback_cache) 317 write_inode_now(inode, 1); 318 319 fuse_release_common(file, false); 320 321 /* return value is ignored by VFS */ 322 return 0; 323 } 324 325 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags) 326 { 327 WARN_ON(refcount_read(&ff->count) > 1); 328 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 329 /* 330 * iput(NULL) is a no-op and since the refcount is 1 and everything's 331 * synchronous, we are fine with not doing igrab() here" 332 */ 333 fuse_file_put(ff, true, false); 334 } 335 EXPORT_SYMBOL_GPL(fuse_sync_release); 336 337 /* 338 * Scramble the ID space with XTEA, so that the value of the files_struct 339 * pointer is not exposed to userspace. 340 */ 341 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 342 { 343 u32 *k = fc->scramble_key; 344 u64 v = (unsigned long) id; 345 u32 v0 = v; 346 u32 v1 = v >> 32; 347 u32 sum = 0; 348 int i; 349 350 for (i = 0; i < 32; i++) { 351 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 352 sum += 0x9E3779B9; 353 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 354 } 355 356 return (u64) v0 + ((u64) v1 << 32); 357 } 358 359 struct fuse_writepage_args { 360 struct fuse_io_args ia; 361 struct rb_node writepages_entry; 362 struct list_head queue_entry; 363 struct fuse_writepage_args *next; 364 struct inode *inode; 365 }; 366 367 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 368 pgoff_t idx_from, pgoff_t idx_to) 369 { 370 struct rb_node *n; 371 372 n = fi->writepages.rb_node; 373 374 while (n) { 375 struct fuse_writepage_args *wpa; 376 pgoff_t curr_index; 377 378 wpa = rb_entry(n, struct fuse_writepage_args, writepages_entry); 379 WARN_ON(get_fuse_inode(wpa->inode) != fi); 380 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 381 if (idx_from >= curr_index + wpa->ia.ap.num_pages) 382 n = n->rb_right; 383 else if (idx_to < curr_index) 384 n = n->rb_left; 385 else 386 return wpa; 387 } 388 return NULL; 389 } 390 391 /* 392 * Check if any page in a range is under writeback 393 * 394 * This is currently done by walking the list of writepage requests 395 * for the inode, which can be pretty inefficient. 396 */ 397 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 398 pgoff_t idx_to) 399 { 400 struct fuse_inode *fi = get_fuse_inode(inode); 401 bool found; 402 403 spin_lock(&fi->lock); 404 found = fuse_find_writeback(fi, idx_from, idx_to); 405 spin_unlock(&fi->lock); 406 407 return found; 408 } 409 410 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 411 { 412 return fuse_range_is_writeback(inode, index, index); 413 } 414 415 /* 416 * Wait for page writeback to be completed. 417 * 418 * Since fuse doesn't rely on the VM writeback tracking, this has to 419 * use some other means. 420 */ 421 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 422 { 423 struct fuse_inode *fi = get_fuse_inode(inode); 424 425 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 426 } 427 428 /* 429 * Wait for all pending writepages on the inode to finish. 430 * 431 * This is currently done by blocking further writes with FUSE_NOWRITE 432 * and waiting for all sent writes to complete. 433 * 434 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 435 * could conflict with truncation. 436 */ 437 static void fuse_sync_writes(struct inode *inode) 438 { 439 fuse_set_nowrite(inode); 440 fuse_release_nowrite(inode); 441 } 442 443 static int fuse_flush(struct file *file, fl_owner_t id) 444 { 445 struct inode *inode = file_inode(file); 446 struct fuse_conn *fc = get_fuse_conn(inode); 447 struct fuse_file *ff = file->private_data; 448 struct fuse_flush_in inarg; 449 FUSE_ARGS(args); 450 int err; 451 452 if (is_bad_inode(inode)) 453 return -EIO; 454 455 err = write_inode_now(inode, 1); 456 if (err) 457 return err; 458 459 inode_lock(inode); 460 fuse_sync_writes(inode); 461 inode_unlock(inode); 462 463 err = filemap_check_errors(file->f_mapping); 464 if (err) 465 return err; 466 467 err = 0; 468 if (fc->no_flush) 469 goto inval_attr_out; 470 471 memset(&inarg, 0, sizeof(inarg)); 472 inarg.fh = ff->fh; 473 inarg.lock_owner = fuse_lock_owner_id(fc, id); 474 args.opcode = FUSE_FLUSH; 475 args.nodeid = get_node_id(inode); 476 args.in_numargs = 1; 477 args.in_args[0].size = sizeof(inarg); 478 args.in_args[0].value = &inarg; 479 args.force = true; 480 481 err = fuse_simple_request(fc, &args); 482 if (err == -ENOSYS) { 483 fc->no_flush = 1; 484 err = 0; 485 } 486 487 inval_attr_out: 488 /* 489 * In memory i_blocks is not maintained by fuse, if writeback cache is 490 * enabled, i_blocks from cached attr may not be accurate. 491 */ 492 if (!err && fc->writeback_cache) 493 fuse_invalidate_attr(inode); 494 return err; 495 } 496 497 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 498 int datasync, int opcode) 499 { 500 struct inode *inode = file->f_mapping->host; 501 struct fuse_conn *fc = get_fuse_conn(inode); 502 struct fuse_file *ff = file->private_data; 503 FUSE_ARGS(args); 504 struct fuse_fsync_in inarg; 505 506 memset(&inarg, 0, sizeof(inarg)); 507 inarg.fh = ff->fh; 508 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 509 args.opcode = opcode; 510 args.nodeid = get_node_id(inode); 511 args.in_numargs = 1; 512 args.in_args[0].size = sizeof(inarg); 513 args.in_args[0].value = &inarg; 514 return fuse_simple_request(fc, &args); 515 } 516 517 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 518 int datasync) 519 { 520 struct inode *inode = file->f_mapping->host; 521 struct fuse_conn *fc = get_fuse_conn(inode); 522 int err; 523 524 if (is_bad_inode(inode)) 525 return -EIO; 526 527 inode_lock(inode); 528 529 /* 530 * Start writeback against all dirty pages of the inode, then 531 * wait for all outstanding writes, before sending the FSYNC 532 * request. 533 */ 534 err = file_write_and_wait_range(file, start, end); 535 if (err) 536 goto out; 537 538 fuse_sync_writes(inode); 539 540 /* 541 * Due to implementation of fuse writeback 542 * file_write_and_wait_range() does not catch errors. 543 * We have to do this directly after fuse_sync_writes() 544 */ 545 err = file_check_and_advance_wb_err(file); 546 if (err) 547 goto out; 548 549 err = sync_inode_metadata(inode, 1); 550 if (err) 551 goto out; 552 553 if (fc->no_fsync) 554 goto out; 555 556 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 557 if (err == -ENOSYS) { 558 fc->no_fsync = 1; 559 err = 0; 560 } 561 out: 562 inode_unlock(inode); 563 564 return err; 565 } 566 567 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 568 size_t count, int opcode) 569 { 570 struct fuse_file *ff = file->private_data; 571 struct fuse_args *args = &ia->ap.args; 572 573 ia->read.in.fh = ff->fh; 574 ia->read.in.offset = pos; 575 ia->read.in.size = count; 576 ia->read.in.flags = file->f_flags; 577 args->opcode = opcode; 578 args->nodeid = ff->nodeid; 579 args->in_numargs = 1; 580 args->in_args[0].size = sizeof(ia->read.in); 581 args->in_args[0].value = &ia->read.in; 582 args->out_argvar = true; 583 args->out_numargs = 1; 584 args->out_args[0].size = count; 585 } 586 587 static void fuse_release_user_pages(struct fuse_args_pages *ap, 588 bool should_dirty) 589 { 590 unsigned int i; 591 592 for (i = 0; i < ap->num_pages; i++) { 593 if (should_dirty) 594 set_page_dirty_lock(ap->pages[i]); 595 put_page(ap->pages[i]); 596 } 597 } 598 599 static void fuse_io_release(struct kref *kref) 600 { 601 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 602 } 603 604 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 605 { 606 if (io->err) 607 return io->err; 608 609 if (io->bytes >= 0 && io->write) 610 return -EIO; 611 612 return io->bytes < 0 ? io->size : io->bytes; 613 } 614 615 /** 616 * In case of short read, the caller sets 'pos' to the position of 617 * actual end of fuse request in IO request. Otherwise, if bytes_requested 618 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 619 * 620 * An example: 621 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 622 * both submitted asynchronously. The first of them was ACKed by userspace as 623 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 624 * second request was ACKed as short, e.g. only 1K was read, resulting in 625 * pos == 33K. 626 * 627 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 628 * will be equal to the length of the longest contiguous fragment of 629 * transferred data starting from the beginning of IO request. 630 */ 631 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 632 { 633 int left; 634 635 spin_lock(&io->lock); 636 if (err) 637 io->err = io->err ? : err; 638 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 639 io->bytes = pos; 640 641 left = --io->reqs; 642 if (!left && io->blocking) 643 complete(io->done); 644 spin_unlock(&io->lock); 645 646 if (!left && !io->blocking) { 647 ssize_t res = fuse_get_res_by_io(io); 648 649 if (res >= 0) { 650 struct inode *inode = file_inode(io->iocb->ki_filp); 651 struct fuse_conn *fc = get_fuse_conn(inode); 652 struct fuse_inode *fi = get_fuse_inode(inode); 653 654 spin_lock(&fi->lock); 655 fi->attr_version = atomic64_inc_return(&fc->attr_version); 656 spin_unlock(&fi->lock); 657 } 658 659 io->iocb->ki_complete(io->iocb, res, 0); 660 } 661 662 kref_put(&io->refcnt, fuse_io_release); 663 } 664 665 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 666 unsigned int npages) 667 { 668 struct fuse_io_args *ia; 669 670 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 671 if (ia) { 672 ia->io = io; 673 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 674 &ia->ap.descs); 675 if (!ia->ap.pages) { 676 kfree(ia); 677 ia = NULL; 678 } 679 } 680 return ia; 681 } 682 683 static void fuse_io_free(struct fuse_io_args *ia) 684 { 685 kfree(ia->ap.pages); 686 kfree(ia); 687 } 688 689 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args, 690 int err) 691 { 692 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 693 struct fuse_io_priv *io = ia->io; 694 ssize_t pos = -1; 695 696 fuse_release_user_pages(&ia->ap, io->should_dirty); 697 698 if (err) { 699 /* Nothing */ 700 } else if (io->write) { 701 if (ia->write.out.size > ia->write.in.size) { 702 err = -EIO; 703 } else if (ia->write.in.size != ia->write.out.size) { 704 pos = ia->write.in.offset - io->offset + 705 ia->write.out.size; 706 } 707 } else { 708 u32 outsize = args->out_args[0].size; 709 710 if (ia->read.in.size != outsize) 711 pos = ia->read.in.offset - io->offset + outsize; 712 } 713 714 fuse_aio_complete(io, err, pos); 715 fuse_io_free(ia); 716 } 717 718 static ssize_t fuse_async_req_send(struct fuse_conn *fc, 719 struct fuse_io_args *ia, size_t num_bytes) 720 { 721 ssize_t err; 722 struct fuse_io_priv *io = ia->io; 723 724 spin_lock(&io->lock); 725 kref_get(&io->refcnt); 726 io->size += num_bytes; 727 io->reqs++; 728 spin_unlock(&io->lock); 729 730 ia->ap.args.end = fuse_aio_complete_req; 731 ia->ap.args.may_block = io->should_dirty; 732 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL); 733 if (err) 734 fuse_aio_complete_req(fc, &ia->ap.args, err); 735 736 return num_bytes; 737 } 738 739 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 740 fl_owner_t owner) 741 { 742 struct file *file = ia->io->iocb->ki_filp; 743 struct fuse_file *ff = file->private_data; 744 struct fuse_conn *fc = ff->fc; 745 746 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 747 if (owner != NULL) { 748 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 749 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner); 750 } 751 752 if (ia->io->async) 753 return fuse_async_req_send(fc, ia, count); 754 755 return fuse_simple_request(fc, &ia->ap.args); 756 } 757 758 static void fuse_read_update_size(struct inode *inode, loff_t size, 759 u64 attr_ver) 760 { 761 struct fuse_conn *fc = get_fuse_conn(inode); 762 struct fuse_inode *fi = get_fuse_inode(inode); 763 764 spin_lock(&fi->lock); 765 if (attr_ver == fi->attr_version && size < inode->i_size && 766 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 767 fi->attr_version = atomic64_inc_return(&fc->attr_version); 768 i_size_write(inode, size); 769 } 770 spin_unlock(&fi->lock); 771 } 772 773 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 774 struct fuse_args_pages *ap) 775 { 776 struct fuse_conn *fc = get_fuse_conn(inode); 777 778 if (fc->writeback_cache) { 779 /* 780 * A hole in a file. Some data after the hole are in page cache, 781 * but have not reached the client fs yet. So, the hole is not 782 * present there. 783 */ 784 int i; 785 int start_idx = num_read >> PAGE_SHIFT; 786 size_t off = num_read & (PAGE_SIZE - 1); 787 788 for (i = start_idx; i < ap->num_pages; i++) { 789 zero_user_segment(ap->pages[i], off, PAGE_SIZE); 790 off = 0; 791 } 792 } else { 793 loff_t pos = page_offset(ap->pages[0]) + num_read; 794 fuse_read_update_size(inode, pos, attr_ver); 795 } 796 } 797 798 static int fuse_do_readpage(struct file *file, struct page *page) 799 { 800 struct inode *inode = page->mapping->host; 801 struct fuse_conn *fc = get_fuse_conn(inode); 802 loff_t pos = page_offset(page); 803 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 804 struct fuse_io_args ia = { 805 .ap.args.page_zeroing = true, 806 .ap.args.out_pages = true, 807 .ap.num_pages = 1, 808 .ap.pages = &page, 809 .ap.descs = &desc, 810 }; 811 ssize_t res; 812 u64 attr_ver; 813 814 /* 815 * Page writeback can extend beyond the lifetime of the 816 * page-cache page, so make sure we read a properly synced 817 * page. 818 */ 819 fuse_wait_on_page_writeback(inode, page->index); 820 821 attr_ver = fuse_get_attr_version(fc); 822 823 /* Don't overflow end offset */ 824 if (pos + (desc.length - 1) == LLONG_MAX) 825 desc.length--; 826 827 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 828 res = fuse_simple_request(fc, &ia.ap.args); 829 if (res < 0) 830 return res; 831 /* 832 * Short read means EOF. If file size is larger, truncate it 833 */ 834 if (res < desc.length) 835 fuse_short_read(inode, attr_ver, res, &ia.ap); 836 837 SetPageUptodate(page); 838 839 return 0; 840 } 841 842 static int fuse_readpage(struct file *file, struct page *page) 843 { 844 struct inode *inode = page->mapping->host; 845 int err; 846 847 err = -EIO; 848 if (is_bad_inode(inode)) 849 goto out; 850 851 err = fuse_do_readpage(file, page); 852 fuse_invalidate_atime(inode); 853 out: 854 unlock_page(page); 855 return err; 856 } 857 858 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args, 859 int err) 860 { 861 int i; 862 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 863 struct fuse_args_pages *ap = &ia->ap; 864 size_t count = ia->read.in.size; 865 size_t num_read = args->out_args[0].size; 866 struct address_space *mapping = NULL; 867 868 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 869 mapping = ap->pages[i]->mapping; 870 871 if (mapping) { 872 struct inode *inode = mapping->host; 873 874 /* 875 * Short read means EOF. If file size is larger, truncate it 876 */ 877 if (!err && num_read < count) 878 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 879 880 fuse_invalidate_atime(inode); 881 } 882 883 for (i = 0; i < ap->num_pages; i++) { 884 struct page *page = ap->pages[i]; 885 886 if (!err) 887 SetPageUptodate(page); 888 else 889 SetPageError(page); 890 unlock_page(page); 891 put_page(page); 892 } 893 if (ia->ff) 894 fuse_file_put(ia->ff, false, false); 895 896 fuse_io_free(ia); 897 } 898 899 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 900 { 901 struct fuse_file *ff = file->private_data; 902 struct fuse_conn *fc = ff->fc; 903 struct fuse_args_pages *ap = &ia->ap; 904 loff_t pos = page_offset(ap->pages[0]); 905 size_t count = ap->num_pages << PAGE_SHIFT; 906 ssize_t res; 907 int err; 908 909 ap->args.out_pages = true; 910 ap->args.page_zeroing = true; 911 ap->args.page_replace = true; 912 913 /* Don't overflow end offset */ 914 if (pos + (count - 1) == LLONG_MAX) { 915 count--; 916 ap->descs[ap->num_pages - 1].length--; 917 } 918 WARN_ON((loff_t) (pos + count) < 0); 919 920 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 921 ia->read.attr_ver = fuse_get_attr_version(fc); 922 if (fc->async_read) { 923 ia->ff = fuse_file_get(ff); 924 ap->args.end = fuse_readpages_end; 925 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL); 926 if (!err) 927 return; 928 } else { 929 res = fuse_simple_request(fc, &ap->args); 930 err = res < 0 ? res : 0; 931 } 932 fuse_readpages_end(fc, &ap->args, err); 933 } 934 935 static void fuse_readahead(struct readahead_control *rac) 936 { 937 struct inode *inode = rac->mapping->host; 938 struct fuse_conn *fc = get_fuse_conn(inode); 939 unsigned int i, max_pages, nr_pages = 0; 940 941 if (is_bad_inode(inode)) 942 return; 943 944 max_pages = min_t(unsigned int, fc->max_pages, 945 fc->max_read / PAGE_SIZE); 946 947 for (;;) { 948 struct fuse_io_args *ia; 949 struct fuse_args_pages *ap; 950 951 nr_pages = readahead_count(rac) - nr_pages; 952 if (nr_pages > max_pages) 953 nr_pages = max_pages; 954 if (nr_pages == 0) 955 break; 956 ia = fuse_io_alloc(NULL, nr_pages); 957 if (!ia) 958 return; 959 ap = &ia->ap; 960 nr_pages = __readahead_batch(rac, ap->pages, nr_pages); 961 for (i = 0; i < nr_pages; i++) { 962 fuse_wait_on_page_writeback(inode, 963 readahead_index(rac) + i); 964 ap->descs[i].length = PAGE_SIZE; 965 } 966 ap->num_pages = nr_pages; 967 fuse_send_readpages(ia, rac->file); 968 } 969 } 970 971 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 972 { 973 struct inode *inode = iocb->ki_filp->f_mapping->host; 974 struct fuse_conn *fc = get_fuse_conn(inode); 975 976 /* 977 * In auto invalidate mode, always update attributes on read. 978 * Otherwise, only update if we attempt to read past EOF (to ensure 979 * i_size is up to date). 980 */ 981 if (fc->auto_inval_data || 982 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 983 int err; 984 err = fuse_update_attributes(inode, iocb->ki_filp); 985 if (err) 986 return err; 987 } 988 989 return generic_file_read_iter(iocb, to); 990 } 991 992 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 993 loff_t pos, size_t count) 994 { 995 struct fuse_args *args = &ia->ap.args; 996 997 ia->write.in.fh = ff->fh; 998 ia->write.in.offset = pos; 999 ia->write.in.size = count; 1000 args->opcode = FUSE_WRITE; 1001 args->nodeid = ff->nodeid; 1002 args->in_numargs = 2; 1003 if (ff->fc->minor < 9) 1004 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1005 else 1006 args->in_args[0].size = sizeof(ia->write.in); 1007 args->in_args[0].value = &ia->write.in; 1008 args->in_args[1].size = count; 1009 args->out_numargs = 1; 1010 args->out_args[0].size = sizeof(ia->write.out); 1011 args->out_args[0].value = &ia->write.out; 1012 } 1013 1014 static unsigned int fuse_write_flags(struct kiocb *iocb) 1015 { 1016 unsigned int flags = iocb->ki_filp->f_flags; 1017 1018 if (iocb->ki_flags & IOCB_DSYNC) 1019 flags |= O_DSYNC; 1020 if (iocb->ki_flags & IOCB_SYNC) 1021 flags |= O_SYNC; 1022 1023 return flags; 1024 } 1025 1026 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1027 size_t count, fl_owner_t owner) 1028 { 1029 struct kiocb *iocb = ia->io->iocb; 1030 struct file *file = iocb->ki_filp; 1031 struct fuse_file *ff = file->private_data; 1032 struct fuse_conn *fc = ff->fc; 1033 struct fuse_write_in *inarg = &ia->write.in; 1034 ssize_t err; 1035 1036 fuse_write_args_fill(ia, ff, pos, count); 1037 inarg->flags = fuse_write_flags(iocb); 1038 if (owner != NULL) { 1039 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1040 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 1041 } 1042 1043 if (ia->io->async) 1044 return fuse_async_req_send(fc, ia, count); 1045 1046 err = fuse_simple_request(fc, &ia->ap.args); 1047 if (!err && ia->write.out.size > count) 1048 err = -EIO; 1049 1050 return err ?: ia->write.out.size; 1051 } 1052 1053 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1054 { 1055 struct fuse_conn *fc = get_fuse_conn(inode); 1056 struct fuse_inode *fi = get_fuse_inode(inode); 1057 bool ret = false; 1058 1059 spin_lock(&fi->lock); 1060 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1061 if (pos > inode->i_size) { 1062 i_size_write(inode, pos); 1063 ret = true; 1064 } 1065 spin_unlock(&fi->lock); 1066 1067 return ret; 1068 } 1069 1070 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1071 struct kiocb *iocb, struct inode *inode, 1072 loff_t pos, size_t count) 1073 { 1074 struct fuse_args_pages *ap = &ia->ap; 1075 struct file *file = iocb->ki_filp; 1076 struct fuse_file *ff = file->private_data; 1077 struct fuse_conn *fc = ff->fc; 1078 unsigned int offset, i; 1079 int err; 1080 1081 for (i = 0; i < ap->num_pages; i++) 1082 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1083 1084 fuse_write_args_fill(ia, ff, pos, count); 1085 ia->write.in.flags = fuse_write_flags(iocb); 1086 1087 err = fuse_simple_request(fc, &ap->args); 1088 if (!err && ia->write.out.size > count) 1089 err = -EIO; 1090 1091 offset = ap->descs[0].offset; 1092 count = ia->write.out.size; 1093 for (i = 0; i < ap->num_pages; i++) { 1094 struct page *page = ap->pages[i]; 1095 1096 if (!err && !offset && count >= PAGE_SIZE) 1097 SetPageUptodate(page); 1098 1099 if (count > PAGE_SIZE - offset) 1100 count -= PAGE_SIZE - offset; 1101 else 1102 count = 0; 1103 offset = 0; 1104 1105 unlock_page(page); 1106 put_page(page); 1107 } 1108 1109 return err; 1110 } 1111 1112 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap, 1113 struct address_space *mapping, 1114 struct iov_iter *ii, loff_t pos, 1115 unsigned int max_pages) 1116 { 1117 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1118 unsigned offset = pos & (PAGE_SIZE - 1); 1119 size_t count = 0; 1120 int err; 1121 1122 ap->args.in_pages = true; 1123 ap->descs[0].offset = offset; 1124 1125 do { 1126 size_t tmp; 1127 struct page *page; 1128 pgoff_t index = pos >> PAGE_SHIFT; 1129 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1130 iov_iter_count(ii)); 1131 1132 bytes = min_t(size_t, bytes, fc->max_write - count); 1133 1134 again: 1135 err = -EFAULT; 1136 if (iov_iter_fault_in_readable(ii, bytes)) 1137 break; 1138 1139 err = -ENOMEM; 1140 page = grab_cache_page_write_begin(mapping, index, 0); 1141 if (!page) 1142 break; 1143 1144 if (mapping_writably_mapped(mapping)) 1145 flush_dcache_page(page); 1146 1147 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1148 flush_dcache_page(page); 1149 1150 iov_iter_advance(ii, tmp); 1151 if (!tmp) { 1152 unlock_page(page); 1153 put_page(page); 1154 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1155 goto again; 1156 } 1157 1158 err = 0; 1159 ap->pages[ap->num_pages] = page; 1160 ap->descs[ap->num_pages].length = tmp; 1161 ap->num_pages++; 1162 1163 count += tmp; 1164 pos += tmp; 1165 offset += tmp; 1166 if (offset == PAGE_SIZE) 1167 offset = 0; 1168 1169 if (!fc->big_writes) 1170 break; 1171 } while (iov_iter_count(ii) && count < fc->max_write && 1172 ap->num_pages < max_pages && offset == 0); 1173 1174 return count > 0 ? count : err; 1175 } 1176 1177 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1178 unsigned int max_pages) 1179 { 1180 return min_t(unsigned int, 1181 ((pos + len - 1) >> PAGE_SHIFT) - 1182 (pos >> PAGE_SHIFT) + 1, 1183 max_pages); 1184 } 1185 1186 static ssize_t fuse_perform_write(struct kiocb *iocb, 1187 struct address_space *mapping, 1188 struct iov_iter *ii, loff_t pos) 1189 { 1190 struct inode *inode = mapping->host; 1191 struct fuse_conn *fc = get_fuse_conn(inode); 1192 struct fuse_inode *fi = get_fuse_inode(inode); 1193 int err = 0; 1194 ssize_t res = 0; 1195 1196 if (inode->i_size < pos + iov_iter_count(ii)) 1197 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1198 1199 do { 1200 ssize_t count; 1201 struct fuse_io_args ia = {}; 1202 struct fuse_args_pages *ap = &ia.ap; 1203 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1204 fc->max_pages); 1205 1206 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1207 if (!ap->pages) { 1208 err = -ENOMEM; 1209 break; 1210 } 1211 1212 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages); 1213 if (count <= 0) { 1214 err = count; 1215 } else { 1216 err = fuse_send_write_pages(&ia, iocb, inode, 1217 pos, count); 1218 if (!err) { 1219 size_t num_written = ia.write.out.size; 1220 1221 res += num_written; 1222 pos += num_written; 1223 1224 /* break out of the loop on short write */ 1225 if (num_written != count) 1226 err = -EIO; 1227 } 1228 } 1229 kfree(ap->pages); 1230 } while (!err && iov_iter_count(ii)); 1231 1232 if (res > 0) 1233 fuse_write_update_size(inode, pos); 1234 1235 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1236 fuse_invalidate_attr(inode); 1237 1238 return res > 0 ? res : err; 1239 } 1240 1241 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1242 { 1243 struct file *file = iocb->ki_filp; 1244 struct address_space *mapping = file->f_mapping; 1245 ssize_t written = 0; 1246 ssize_t written_buffered = 0; 1247 struct inode *inode = mapping->host; 1248 ssize_t err; 1249 loff_t endbyte = 0; 1250 1251 if (get_fuse_conn(inode)->writeback_cache) { 1252 /* Update size (EOF optimization) and mode (SUID clearing) */ 1253 err = fuse_update_attributes(mapping->host, file); 1254 if (err) 1255 return err; 1256 1257 return generic_file_write_iter(iocb, from); 1258 } 1259 1260 inode_lock(inode); 1261 1262 /* We can write back this queue in page reclaim */ 1263 current->backing_dev_info = inode_to_bdi(inode); 1264 1265 err = generic_write_checks(iocb, from); 1266 if (err <= 0) 1267 goto out; 1268 1269 err = file_remove_privs(file); 1270 if (err) 1271 goto out; 1272 1273 err = file_update_time(file); 1274 if (err) 1275 goto out; 1276 1277 if (iocb->ki_flags & IOCB_DIRECT) { 1278 loff_t pos = iocb->ki_pos; 1279 written = generic_file_direct_write(iocb, from); 1280 if (written < 0 || !iov_iter_count(from)) 1281 goto out; 1282 1283 pos += written; 1284 1285 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1286 if (written_buffered < 0) { 1287 err = written_buffered; 1288 goto out; 1289 } 1290 endbyte = pos + written_buffered - 1; 1291 1292 err = filemap_write_and_wait_range(file->f_mapping, pos, 1293 endbyte); 1294 if (err) 1295 goto out; 1296 1297 invalidate_mapping_pages(file->f_mapping, 1298 pos >> PAGE_SHIFT, 1299 endbyte >> PAGE_SHIFT); 1300 1301 written += written_buffered; 1302 iocb->ki_pos = pos + written_buffered; 1303 } else { 1304 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1305 if (written >= 0) 1306 iocb->ki_pos += written; 1307 } 1308 out: 1309 current->backing_dev_info = NULL; 1310 inode_unlock(inode); 1311 if (written > 0) 1312 written = generic_write_sync(iocb, written); 1313 1314 return written ? written : err; 1315 } 1316 1317 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs, 1318 unsigned int index, 1319 unsigned int nr_pages) 1320 { 1321 int i; 1322 1323 for (i = index; i < index + nr_pages; i++) 1324 descs[i].length = PAGE_SIZE - descs[i].offset; 1325 } 1326 1327 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1328 { 1329 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1330 } 1331 1332 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1333 size_t max_size) 1334 { 1335 return min(iov_iter_single_seg_count(ii), max_size); 1336 } 1337 1338 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1339 size_t *nbytesp, int write, 1340 unsigned int max_pages) 1341 { 1342 size_t nbytes = 0; /* # bytes already packed in req */ 1343 ssize_t ret = 0; 1344 1345 /* Special case for kernel I/O: can copy directly into the buffer */ 1346 if (iov_iter_is_kvec(ii)) { 1347 unsigned long user_addr = fuse_get_user_addr(ii); 1348 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1349 1350 if (write) 1351 ap->args.in_args[1].value = (void *) user_addr; 1352 else 1353 ap->args.out_args[0].value = (void *) user_addr; 1354 1355 iov_iter_advance(ii, frag_size); 1356 *nbytesp = frag_size; 1357 return 0; 1358 } 1359 1360 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1361 unsigned npages; 1362 size_t start; 1363 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1364 *nbytesp - nbytes, 1365 max_pages - ap->num_pages, 1366 &start); 1367 if (ret < 0) 1368 break; 1369 1370 iov_iter_advance(ii, ret); 1371 nbytes += ret; 1372 1373 ret += start; 1374 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1375 1376 ap->descs[ap->num_pages].offset = start; 1377 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1378 1379 ap->num_pages += npages; 1380 ap->descs[ap->num_pages - 1].length -= 1381 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1382 } 1383 1384 if (write) 1385 ap->args.in_pages = true; 1386 else 1387 ap->args.out_pages = true; 1388 1389 *nbytesp = nbytes; 1390 1391 return ret < 0 ? ret : 0; 1392 } 1393 1394 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1395 loff_t *ppos, int flags) 1396 { 1397 int write = flags & FUSE_DIO_WRITE; 1398 int cuse = flags & FUSE_DIO_CUSE; 1399 struct file *file = io->iocb->ki_filp; 1400 struct inode *inode = file->f_mapping->host; 1401 struct fuse_file *ff = file->private_data; 1402 struct fuse_conn *fc = ff->fc; 1403 size_t nmax = write ? fc->max_write : fc->max_read; 1404 loff_t pos = *ppos; 1405 size_t count = iov_iter_count(iter); 1406 pgoff_t idx_from = pos >> PAGE_SHIFT; 1407 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1408 ssize_t res = 0; 1409 int err = 0; 1410 struct fuse_io_args *ia; 1411 unsigned int max_pages; 1412 1413 max_pages = iov_iter_npages(iter, fc->max_pages); 1414 ia = fuse_io_alloc(io, max_pages); 1415 if (!ia) 1416 return -ENOMEM; 1417 1418 ia->io = io; 1419 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1420 if (!write) 1421 inode_lock(inode); 1422 fuse_sync_writes(inode); 1423 if (!write) 1424 inode_unlock(inode); 1425 } 1426 1427 io->should_dirty = !write && iter_is_iovec(iter); 1428 while (count) { 1429 ssize_t nres; 1430 fl_owner_t owner = current->files; 1431 size_t nbytes = min(count, nmax); 1432 1433 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1434 max_pages); 1435 if (err && !nbytes) 1436 break; 1437 1438 if (write) { 1439 if (!capable(CAP_FSETID)) 1440 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV; 1441 1442 nres = fuse_send_write(ia, pos, nbytes, owner); 1443 } else { 1444 nres = fuse_send_read(ia, pos, nbytes, owner); 1445 } 1446 1447 if (!io->async || nres < 0) { 1448 fuse_release_user_pages(&ia->ap, io->should_dirty); 1449 fuse_io_free(ia); 1450 } 1451 ia = NULL; 1452 if (nres < 0) { 1453 iov_iter_revert(iter, nbytes); 1454 err = nres; 1455 break; 1456 } 1457 WARN_ON(nres > nbytes); 1458 1459 count -= nres; 1460 res += nres; 1461 pos += nres; 1462 if (nres != nbytes) { 1463 iov_iter_revert(iter, nbytes - nres); 1464 break; 1465 } 1466 if (count) { 1467 max_pages = iov_iter_npages(iter, fc->max_pages); 1468 ia = fuse_io_alloc(io, max_pages); 1469 if (!ia) 1470 break; 1471 } 1472 } 1473 if (ia) 1474 fuse_io_free(ia); 1475 if (res > 0) 1476 *ppos = pos; 1477 1478 return res > 0 ? res : err; 1479 } 1480 EXPORT_SYMBOL_GPL(fuse_direct_io); 1481 1482 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1483 struct iov_iter *iter, 1484 loff_t *ppos) 1485 { 1486 ssize_t res; 1487 struct inode *inode = file_inode(io->iocb->ki_filp); 1488 1489 res = fuse_direct_io(io, iter, ppos, 0); 1490 1491 fuse_invalidate_atime(inode); 1492 1493 return res; 1494 } 1495 1496 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1497 1498 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1499 { 1500 ssize_t res; 1501 1502 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1503 res = fuse_direct_IO(iocb, to); 1504 } else { 1505 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1506 1507 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1508 } 1509 1510 return res; 1511 } 1512 1513 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1514 { 1515 struct inode *inode = file_inode(iocb->ki_filp); 1516 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1517 ssize_t res; 1518 1519 /* Don't allow parallel writes to the same file */ 1520 inode_lock(inode); 1521 res = generic_write_checks(iocb, from); 1522 if (res > 0) { 1523 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1524 res = fuse_direct_IO(iocb, from); 1525 } else { 1526 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1527 FUSE_DIO_WRITE); 1528 } 1529 } 1530 fuse_invalidate_attr(inode); 1531 if (res > 0) 1532 fuse_write_update_size(inode, iocb->ki_pos); 1533 inode_unlock(inode); 1534 1535 return res; 1536 } 1537 1538 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1539 { 1540 struct file *file = iocb->ki_filp; 1541 struct fuse_file *ff = file->private_data; 1542 1543 if (is_bad_inode(file_inode(file))) 1544 return -EIO; 1545 1546 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1547 return fuse_cache_read_iter(iocb, to); 1548 else 1549 return fuse_direct_read_iter(iocb, to); 1550 } 1551 1552 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1553 { 1554 struct file *file = iocb->ki_filp; 1555 struct fuse_file *ff = file->private_data; 1556 1557 if (is_bad_inode(file_inode(file))) 1558 return -EIO; 1559 1560 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1561 return fuse_cache_write_iter(iocb, from); 1562 else 1563 return fuse_direct_write_iter(iocb, from); 1564 } 1565 1566 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1567 { 1568 struct fuse_args_pages *ap = &wpa->ia.ap; 1569 int i; 1570 1571 for (i = 0; i < ap->num_pages; i++) 1572 __free_page(ap->pages[i]); 1573 1574 if (wpa->ia.ff) 1575 fuse_file_put(wpa->ia.ff, false, false); 1576 1577 kfree(ap->pages); 1578 kfree(wpa); 1579 } 1580 1581 static void fuse_writepage_finish(struct fuse_conn *fc, 1582 struct fuse_writepage_args *wpa) 1583 { 1584 struct fuse_args_pages *ap = &wpa->ia.ap; 1585 struct inode *inode = wpa->inode; 1586 struct fuse_inode *fi = get_fuse_inode(inode); 1587 struct backing_dev_info *bdi = inode_to_bdi(inode); 1588 int i; 1589 1590 for (i = 0; i < ap->num_pages; i++) { 1591 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1592 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1593 wb_writeout_inc(&bdi->wb); 1594 } 1595 wake_up(&fi->page_waitq); 1596 } 1597 1598 /* Called under fi->lock, may release and reacquire it */ 1599 static void fuse_send_writepage(struct fuse_conn *fc, 1600 struct fuse_writepage_args *wpa, loff_t size) 1601 __releases(fi->lock) 1602 __acquires(fi->lock) 1603 { 1604 struct fuse_writepage_args *aux, *next; 1605 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1606 struct fuse_write_in *inarg = &wpa->ia.write.in; 1607 struct fuse_args *args = &wpa->ia.ap.args; 1608 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1609 int err; 1610 1611 fi->writectr++; 1612 if (inarg->offset + data_size <= size) { 1613 inarg->size = data_size; 1614 } else if (inarg->offset < size) { 1615 inarg->size = size - inarg->offset; 1616 } else { 1617 /* Got truncated off completely */ 1618 goto out_free; 1619 } 1620 1621 args->in_args[1].size = inarg->size; 1622 args->force = true; 1623 args->nocreds = true; 1624 1625 err = fuse_simple_background(fc, args, GFP_ATOMIC); 1626 if (err == -ENOMEM) { 1627 spin_unlock(&fi->lock); 1628 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL); 1629 spin_lock(&fi->lock); 1630 } 1631 1632 /* Fails on broken connection only */ 1633 if (unlikely(err)) 1634 goto out_free; 1635 1636 return; 1637 1638 out_free: 1639 fi->writectr--; 1640 rb_erase(&wpa->writepages_entry, &fi->writepages); 1641 fuse_writepage_finish(fc, wpa); 1642 spin_unlock(&fi->lock); 1643 1644 /* After fuse_writepage_finish() aux request list is private */ 1645 for (aux = wpa->next; aux; aux = next) { 1646 next = aux->next; 1647 aux->next = NULL; 1648 fuse_writepage_free(aux); 1649 } 1650 1651 fuse_writepage_free(wpa); 1652 spin_lock(&fi->lock); 1653 } 1654 1655 /* 1656 * If fi->writectr is positive (no truncate or fsync going on) send 1657 * all queued writepage requests. 1658 * 1659 * Called with fi->lock 1660 */ 1661 void fuse_flush_writepages(struct inode *inode) 1662 __releases(fi->lock) 1663 __acquires(fi->lock) 1664 { 1665 struct fuse_conn *fc = get_fuse_conn(inode); 1666 struct fuse_inode *fi = get_fuse_inode(inode); 1667 loff_t crop = i_size_read(inode); 1668 struct fuse_writepage_args *wpa; 1669 1670 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1671 wpa = list_entry(fi->queued_writes.next, 1672 struct fuse_writepage_args, queue_entry); 1673 list_del_init(&wpa->queue_entry); 1674 fuse_send_writepage(fc, wpa, crop); 1675 } 1676 } 1677 1678 static struct fuse_writepage_args *fuse_insert_writeback(struct rb_root *root, 1679 struct fuse_writepage_args *wpa) 1680 { 1681 pgoff_t idx_from = wpa->ia.write.in.offset >> PAGE_SHIFT; 1682 pgoff_t idx_to = idx_from + wpa->ia.ap.num_pages - 1; 1683 struct rb_node **p = &root->rb_node; 1684 struct rb_node *parent = NULL; 1685 1686 WARN_ON(!wpa->ia.ap.num_pages); 1687 while (*p) { 1688 struct fuse_writepage_args *curr; 1689 pgoff_t curr_index; 1690 1691 parent = *p; 1692 curr = rb_entry(parent, struct fuse_writepage_args, 1693 writepages_entry); 1694 WARN_ON(curr->inode != wpa->inode); 1695 curr_index = curr->ia.write.in.offset >> PAGE_SHIFT; 1696 1697 if (idx_from >= curr_index + curr->ia.ap.num_pages) 1698 p = &(*p)->rb_right; 1699 else if (idx_to < curr_index) 1700 p = &(*p)->rb_left; 1701 else 1702 return curr; 1703 } 1704 1705 rb_link_node(&wpa->writepages_entry, parent, p); 1706 rb_insert_color(&wpa->writepages_entry, root); 1707 return NULL; 1708 } 1709 1710 static void tree_insert(struct rb_root *root, struct fuse_writepage_args *wpa) 1711 { 1712 WARN_ON(fuse_insert_writeback(root, wpa)); 1713 } 1714 1715 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args, 1716 int error) 1717 { 1718 struct fuse_writepage_args *wpa = 1719 container_of(args, typeof(*wpa), ia.ap.args); 1720 struct inode *inode = wpa->inode; 1721 struct fuse_inode *fi = get_fuse_inode(inode); 1722 1723 mapping_set_error(inode->i_mapping, error); 1724 spin_lock(&fi->lock); 1725 rb_erase(&wpa->writepages_entry, &fi->writepages); 1726 while (wpa->next) { 1727 struct fuse_conn *fc = get_fuse_conn(inode); 1728 struct fuse_write_in *inarg = &wpa->ia.write.in; 1729 struct fuse_writepage_args *next = wpa->next; 1730 1731 wpa->next = next->next; 1732 next->next = NULL; 1733 next->ia.ff = fuse_file_get(wpa->ia.ff); 1734 tree_insert(&fi->writepages, next); 1735 1736 /* 1737 * Skip fuse_flush_writepages() to make it easy to crop requests 1738 * based on primary request size. 1739 * 1740 * 1st case (trivial): there are no concurrent activities using 1741 * fuse_set/release_nowrite. Then we're on safe side because 1742 * fuse_flush_writepages() would call fuse_send_writepage() 1743 * anyway. 1744 * 1745 * 2nd case: someone called fuse_set_nowrite and it is waiting 1746 * now for completion of all in-flight requests. This happens 1747 * rarely and no more than once per page, so this should be 1748 * okay. 1749 * 1750 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1751 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1752 * that fuse_set_nowrite returned implies that all in-flight 1753 * requests were completed along with all of their secondary 1754 * requests. Further primary requests are blocked by negative 1755 * writectr. Hence there cannot be any in-flight requests and 1756 * no invocations of fuse_writepage_end() while we're in 1757 * fuse_set_nowrite..fuse_release_nowrite section. 1758 */ 1759 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1760 } 1761 fi->writectr--; 1762 fuse_writepage_finish(fc, wpa); 1763 spin_unlock(&fi->lock); 1764 fuse_writepage_free(wpa); 1765 } 1766 1767 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1768 struct fuse_inode *fi) 1769 { 1770 struct fuse_file *ff = NULL; 1771 1772 spin_lock(&fi->lock); 1773 if (!list_empty(&fi->write_files)) { 1774 ff = list_entry(fi->write_files.next, struct fuse_file, 1775 write_entry); 1776 fuse_file_get(ff); 1777 } 1778 spin_unlock(&fi->lock); 1779 1780 return ff; 1781 } 1782 1783 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1784 struct fuse_inode *fi) 1785 { 1786 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1787 WARN_ON(!ff); 1788 return ff; 1789 } 1790 1791 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1792 { 1793 struct fuse_conn *fc = get_fuse_conn(inode); 1794 struct fuse_inode *fi = get_fuse_inode(inode); 1795 struct fuse_file *ff; 1796 int err; 1797 1798 ff = __fuse_write_file_get(fc, fi); 1799 err = fuse_flush_times(inode, ff); 1800 if (ff) 1801 fuse_file_put(ff, false, false); 1802 1803 return err; 1804 } 1805 1806 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1807 { 1808 struct fuse_writepage_args *wpa; 1809 struct fuse_args_pages *ap; 1810 1811 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1812 if (wpa) { 1813 ap = &wpa->ia.ap; 1814 ap->num_pages = 0; 1815 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1816 if (!ap->pages) { 1817 kfree(wpa); 1818 wpa = NULL; 1819 } 1820 } 1821 return wpa; 1822 1823 } 1824 1825 static int fuse_writepage_locked(struct page *page) 1826 { 1827 struct address_space *mapping = page->mapping; 1828 struct inode *inode = mapping->host; 1829 struct fuse_conn *fc = get_fuse_conn(inode); 1830 struct fuse_inode *fi = get_fuse_inode(inode); 1831 struct fuse_writepage_args *wpa; 1832 struct fuse_args_pages *ap; 1833 struct page *tmp_page; 1834 int error = -ENOMEM; 1835 1836 set_page_writeback(page); 1837 1838 wpa = fuse_writepage_args_alloc(); 1839 if (!wpa) 1840 goto err; 1841 ap = &wpa->ia.ap; 1842 1843 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1844 if (!tmp_page) 1845 goto err_free; 1846 1847 error = -EIO; 1848 wpa->ia.ff = fuse_write_file_get(fc, fi); 1849 if (!wpa->ia.ff) 1850 goto err_nofile; 1851 1852 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1853 1854 copy_highpage(tmp_page, page); 1855 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1856 wpa->next = NULL; 1857 ap->args.in_pages = true; 1858 ap->num_pages = 1; 1859 ap->pages[0] = tmp_page; 1860 ap->descs[0].offset = 0; 1861 ap->descs[0].length = PAGE_SIZE; 1862 ap->args.end = fuse_writepage_end; 1863 wpa->inode = inode; 1864 1865 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1866 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1867 1868 spin_lock(&fi->lock); 1869 tree_insert(&fi->writepages, wpa); 1870 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1871 fuse_flush_writepages(inode); 1872 spin_unlock(&fi->lock); 1873 1874 end_page_writeback(page); 1875 1876 return 0; 1877 1878 err_nofile: 1879 __free_page(tmp_page); 1880 err_free: 1881 kfree(wpa); 1882 err: 1883 mapping_set_error(page->mapping, error); 1884 end_page_writeback(page); 1885 return error; 1886 } 1887 1888 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1889 { 1890 int err; 1891 1892 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1893 /* 1894 * ->writepages() should be called for sync() and friends. We 1895 * should only get here on direct reclaim and then we are 1896 * allowed to skip a page which is already in flight 1897 */ 1898 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1899 1900 redirty_page_for_writepage(wbc, page); 1901 unlock_page(page); 1902 return 0; 1903 } 1904 1905 err = fuse_writepage_locked(page); 1906 unlock_page(page); 1907 1908 return err; 1909 } 1910 1911 struct fuse_fill_wb_data { 1912 struct fuse_writepage_args *wpa; 1913 struct fuse_file *ff; 1914 struct inode *inode; 1915 struct page **orig_pages; 1916 unsigned int max_pages; 1917 }; 1918 1919 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1920 { 1921 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1922 struct fuse_conn *fc = get_fuse_conn(data->inode); 1923 struct page **pages; 1924 struct fuse_page_desc *descs; 1925 unsigned int npages = min_t(unsigned int, 1926 max_t(unsigned int, data->max_pages * 2, 1927 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 1928 fc->max_pages); 1929 WARN_ON(npages <= data->max_pages); 1930 1931 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 1932 if (!pages) 1933 return false; 1934 1935 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 1936 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 1937 kfree(ap->pages); 1938 ap->pages = pages; 1939 ap->descs = descs; 1940 data->max_pages = npages; 1941 1942 return true; 1943 } 1944 1945 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1946 { 1947 struct fuse_writepage_args *wpa = data->wpa; 1948 struct inode *inode = data->inode; 1949 struct fuse_inode *fi = get_fuse_inode(inode); 1950 int num_pages = wpa->ia.ap.num_pages; 1951 int i; 1952 1953 wpa->ia.ff = fuse_file_get(data->ff); 1954 spin_lock(&fi->lock); 1955 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1956 fuse_flush_writepages(inode); 1957 spin_unlock(&fi->lock); 1958 1959 for (i = 0; i < num_pages; i++) 1960 end_page_writeback(data->orig_pages[i]); 1961 } 1962 1963 /* 1964 * Check under fi->lock if the page is under writeback, and insert it onto the 1965 * rb_tree if not. Otherwise iterate auxiliary write requests, to see if there's 1966 * one already added for a page at this offset. If there's none, then insert 1967 * this new request onto the auxiliary list, otherwise reuse the existing one by 1968 * swapping the new temp page with the old one. 1969 */ 1970 static bool fuse_writepage_add(struct fuse_writepage_args *new_wpa, 1971 struct page *page) 1972 { 1973 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 1974 struct fuse_writepage_args *tmp; 1975 struct fuse_writepage_args *old_wpa; 1976 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 1977 1978 WARN_ON(new_ap->num_pages != 0); 1979 new_ap->num_pages = 1; 1980 1981 spin_lock(&fi->lock); 1982 old_wpa = fuse_insert_writeback(&fi->writepages, new_wpa); 1983 if (!old_wpa) { 1984 spin_unlock(&fi->lock); 1985 return true; 1986 } 1987 1988 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 1989 pgoff_t curr_index; 1990 1991 WARN_ON(tmp->inode != new_wpa->inode); 1992 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 1993 if (curr_index == page->index) { 1994 WARN_ON(tmp->ia.ap.num_pages != 1); 1995 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 1996 break; 1997 } 1998 } 1999 2000 if (!tmp) { 2001 new_wpa->next = old_wpa->next; 2002 old_wpa->next = new_wpa; 2003 } 2004 2005 spin_unlock(&fi->lock); 2006 2007 if (tmp) { 2008 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 2009 2010 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 2011 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 2012 wb_writeout_inc(&bdi->wb); 2013 fuse_writepage_free(new_wpa); 2014 } 2015 2016 return false; 2017 } 2018 2019 static bool fuse_writepage_need_send(struct fuse_conn *fc, struct page *page, 2020 struct fuse_args_pages *ap, 2021 struct fuse_fill_wb_data *data) 2022 { 2023 WARN_ON(!ap->num_pages); 2024 2025 /* 2026 * Being under writeback is unlikely but possible. For example direct 2027 * read to an mmaped fuse file will set the page dirty twice; once when 2028 * the pages are faulted with get_user_pages(), and then after the read 2029 * completed. 2030 */ 2031 if (fuse_page_is_writeback(data->inode, page->index)) 2032 return true; 2033 2034 /* Reached max pages */ 2035 if (ap->num_pages == fc->max_pages) 2036 return true; 2037 2038 /* Reached max write bytes */ 2039 if ((ap->num_pages + 1) * PAGE_SIZE > fc->max_write) 2040 return true; 2041 2042 /* Discontinuity */ 2043 if (data->orig_pages[ap->num_pages - 1]->index + 1 != page->index) 2044 return true; 2045 2046 /* Need to grow the pages array? If so, did the expansion fail? */ 2047 if (ap->num_pages == data->max_pages && !fuse_pages_realloc(data)) 2048 return true; 2049 2050 return false; 2051 } 2052 2053 static int fuse_writepages_fill(struct page *page, 2054 struct writeback_control *wbc, void *_data) 2055 { 2056 struct fuse_fill_wb_data *data = _data; 2057 struct fuse_writepage_args *wpa = data->wpa; 2058 struct fuse_args_pages *ap = &wpa->ia.ap; 2059 struct inode *inode = data->inode; 2060 struct fuse_inode *fi = get_fuse_inode(inode); 2061 struct fuse_conn *fc = get_fuse_conn(inode); 2062 struct page *tmp_page; 2063 int err; 2064 2065 if (!data->ff) { 2066 err = -EIO; 2067 data->ff = fuse_write_file_get(fc, fi); 2068 if (!data->ff) 2069 goto out_unlock; 2070 } 2071 2072 if (wpa && fuse_writepage_need_send(fc, page, ap, data)) { 2073 fuse_writepages_send(data); 2074 data->wpa = NULL; 2075 } 2076 2077 err = -ENOMEM; 2078 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2079 if (!tmp_page) 2080 goto out_unlock; 2081 2082 /* 2083 * The page must not be redirtied until the writeout is completed 2084 * (i.e. userspace has sent a reply to the write request). Otherwise 2085 * there could be more than one temporary page instance for each real 2086 * page. 2087 * 2088 * This is ensured by holding the page lock in page_mkwrite() while 2089 * checking fuse_page_is_writeback(). We already hold the page lock 2090 * since clear_page_dirty_for_io() and keep it held until we add the 2091 * request to the fi->writepages list and increment ap->num_pages. 2092 * After this fuse_page_is_writeback() will indicate that the page is 2093 * under writeback, so we can release the page lock. 2094 */ 2095 if (data->wpa == NULL) { 2096 err = -ENOMEM; 2097 wpa = fuse_writepage_args_alloc(); 2098 if (!wpa) { 2099 __free_page(tmp_page); 2100 goto out_unlock; 2101 } 2102 data->max_pages = 1; 2103 2104 ap = &wpa->ia.ap; 2105 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2106 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2107 wpa->next = NULL; 2108 ap->args.in_pages = true; 2109 ap->args.end = fuse_writepage_end; 2110 ap->num_pages = 0; 2111 wpa->inode = inode; 2112 } 2113 set_page_writeback(page); 2114 2115 copy_highpage(tmp_page, page); 2116 ap->pages[ap->num_pages] = tmp_page; 2117 ap->descs[ap->num_pages].offset = 0; 2118 ap->descs[ap->num_pages].length = PAGE_SIZE; 2119 data->orig_pages[ap->num_pages] = page; 2120 2121 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2122 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2123 2124 err = 0; 2125 if (data->wpa) { 2126 /* 2127 * Protected by fi->lock against concurrent access by 2128 * fuse_page_is_writeback(). 2129 */ 2130 spin_lock(&fi->lock); 2131 ap->num_pages++; 2132 spin_unlock(&fi->lock); 2133 } else if (fuse_writepage_add(wpa, page)) { 2134 data->wpa = wpa; 2135 } else { 2136 end_page_writeback(page); 2137 } 2138 out_unlock: 2139 unlock_page(page); 2140 2141 return err; 2142 } 2143 2144 static int fuse_writepages(struct address_space *mapping, 2145 struct writeback_control *wbc) 2146 { 2147 struct inode *inode = mapping->host; 2148 struct fuse_conn *fc = get_fuse_conn(inode); 2149 struct fuse_fill_wb_data data; 2150 int err; 2151 2152 err = -EIO; 2153 if (is_bad_inode(inode)) 2154 goto out; 2155 2156 data.inode = inode; 2157 data.wpa = NULL; 2158 data.ff = NULL; 2159 2160 err = -ENOMEM; 2161 data.orig_pages = kcalloc(fc->max_pages, 2162 sizeof(struct page *), 2163 GFP_NOFS); 2164 if (!data.orig_pages) 2165 goto out; 2166 2167 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2168 if (data.wpa) { 2169 WARN_ON(!data.wpa->ia.ap.num_pages); 2170 fuse_writepages_send(&data); 2171 } 2172 if (data.ff) 2173 fuse_file_put(data.ff, false, false); 2174 2175 kfree(data.orig_pages); 2176 out: 2177 return err; 2178 } 2179 2180 /* 2181 * It's worthy to make sure that space is reserved on disk for the write, 2182 * but how to implement it without killing performance need more thinking. 2183 */ 2184 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2185 loff_t pos, unsigned len, unsigned flags, 2186 struct page **pagep, void **fsdata) 2187 { 2188 pgoff_t index = pos >> PAGE_SHIFT; 2189 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2190 struct page *page; 2191 loff_t fsize; 2192 int err = -ENOMEM; 2193 2194 WARN_ON(!fc->writeback_cache); 2195 2196 page = grab_cache_page_write_begin(mapping, index, flags); 2197 if (!page) 2198 goto error; 2199 2200 fuse_wait_on_page_writeback(mapping->host, page->index); 2201 2202 if (PageUptodate(page) || len == PAGE_SIZE) 2203 goto success; 2204 /* 2205 * Check if the start this page comes after the end of file, in which 2206 * case the readpage can be optimized away. 2207 */ 2208 fsize = i_size_read(mapping->host); 2209 if (fsize <= (pos & PAGE_MASK)) { 2210 size_t off = pos & ~PAGE_MASK; 2211 if (off) 2212 zero_user_segment(page, 0, off); 2213 goto success; 2214 } 2215 err = fuse_do_readpage(file, page); 2216 if (err) 2217 goto cleanup; 2218 success: 2219 *pagep = page; 2220 return 0; 2221 2222 cleanup: 2223 unlock_page(page); 2224 put_page(page); 2225 error: 2226 return err; 2227 } 2228 2229 static int fuse_write_end(struct file *file, struct address_space *mapping, 2230 loff_t pos, unsigned len, unsigned copied, 2231 struct page *page, void *fsdata) 2232 { 2233 struct inode *inode = page->mapping->host; 2234 2235 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2236 if (!copied) 2237 goto unlock; 2238 2239 if (!PageUptodate(page)) { 2240 /* Zero any unwritten bytes at the end of the page */ 2241 size_t endoff = (pos + copied) & ~PAGE_MASK; 2242 if (endoff) 2243 zero_user_segment(page, endoff, PAGE_SIZE); 2244 SetPageUptodate(page); 2245 } 2246 2247 fuse_write_update_size(inode, pos + copied); 2248 set_page_dirty(page); 2249 2250 unlock: 2251 unlock_page(page); 2252 put_page(page); 2253 2254 return copied; 2255 } 2256 2257 static int fuse_launder_page(struct page *page) 2258 { 2259 int err = 0; 2260 if (clear_page_dirty_for_io(page)) { 2261 struct inode *inode = page->mapping->host; 2262 err = fuse_writepage_locked(page); 2263 if (!err) 2264 fuse_wait_on_page_writeback(inode, page->index); 2265 } 2266 return err; 2267 } 2268 2269 /* 2270 * Write back dirty pages now, because there may not be any suitable 2271 * open files later 2272 */ 2273 static void fuse_vma_close(struct vm_area_struct *vma) 2274 { 2275 filemap_write_and_wait(vma->vm_file->f_mapping); 2276 } 2277 2278 /* 2279 * Wait for writeback against this page to complete before allowing it 2280 * to be marked dirty again, and hence written back again, possibly 2281 * before the previous writepage completed. 2282 * 2283 * Block here, instead of in ->writepage(), so that the userspace fs 2284 * can only block processes actually operating on the filesystem. 2285 * 2286 * Otherwise unprivileged userspace fs would be able to block 2287 * unrelated: 2288 * 2289 * - page migration 2290 * - sync(2) 2291 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2292 */ 2293 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2294 { 2295 struct page *page = vmf->page; 2296 struct inode *inode = file_inode(vmf->vma->vm_file); 2297 2298 file_update_time(vmf->vma->vm_file); 2299 lock_page(page); 2300 if (page->mapping != inode->i_mapping) { 2301 unlock_page(page); 2302 return VM_FAULT_NOPAGE; 2303 } 2304 2305 fuse_wait_on_page_writeback(inode, page->index); 2306 return VM_FAULT_LOCKED; 2307 } 2308 2309 static const struct vm_operations_struct fuse_file_vm_ops = { 2310 .close = fuse_vma_close, 2311 .fault = filemap_fault, 2312 .map_pages = filemap_map_pages, 2313 .page_mkwrite = fuse_page_mkwrite, 2314 }; 2315 2316 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2317 { 2318 struct fuse_file *ff = file->private_data; 2319 2320 if (ff->open_flags & FOPEN_DIRECT_IO) { 2321 /* Can't provide the coherency needed for MAP_SHARED */ 2322 if (vma->vm_flags & VM_MAYSHARE) 2323 return -ENODEV; 2324 2325 invalidate_inode_pages2(file->f_mapping); 2326 2327 return generic_file_mmap(file, vma); 2328 } 2329 2330 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2331 fuse_link_write_file(file); 2332 2333 file_accessed(file); 2334 vma->vm_ops = &fuse_file_vm_ops; 2335 return 0; 2336 } 2337 2338 static int convert_fuse_file_lock(struct fuse_conn *fc, 2339 const struct fuse_file_lock *ffl, 2340 struct file_lock *fl) 2341 { 2342 switch (ffl->type) { 2343 case F_UNLCK: 2344 break; 2345 2346 case F_RDLCK: 2347 case F_WRLCK: 2348 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2349 ffl->end < ffl->start) 2350 return -EIO; 2351 2352 fl->fl_start = ffl->start; 2353 fl->fl_end = ffl->end; 2354 2355 /* 2356 * Convert pid into init's pid namespace. The locks API will 2357 * translate it into the caller's pid namespace. 2358 */ 2359 rcu_read_lock(); 2360 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2361 rcu_read_unlock(); 2362 break; 2363 2364 default: 2365 return -EIO; 2366 } 2367 fl->fl_type = ffl->type; 2368 return 0; 2369 } 2370 2371 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2372 const struct file_lock *fl, int opcode, pid_t pid, 2373 int flock, struct fuse_lk_in *inarg) 2374 { 2375 struct inode *inode = file_inode(file); 2376 struct fuse_conn *fc = get_fuse_conn(inode); 2377 struct fuse_file *ff = file->private_data; 2378 2379 memset(inarg, 0, sizeof(*inarg)); 2380 inarg->fh = ff->fh; 2381 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2382 inarg->lk.start = fl->fl_start; 2383 inarg->lk.end = fl->fl_end; 2384 inarg->lk.type = fl->fl_type; 2385 inarg->lk.pid = pid; 2386 if (flock) 2387 inarg->lk_flags |= FUSE_LK_FLOCK; 2388 args->opcode = opcode; 2389 args->nodeid = get_node_id(inode); 2390 args->in_numargs = 1; 2391 args->in_args[0].size = sizeof(*inarg); 2392 args->in_args[0].value = inarg; 2393 } 2394 2395 static int fuse_getlk(struct file *file, struct file_lock *fl) 2396 { 2397 struct inode *inode = file_inode(file); 2398 struct fuse_conn *fc = get_fuse_conn(inode); 2399 FUSE_ARGS(args); 2400 struct fuse_lk_in inarg; 2401 struct fuse_lk_out outarg; 2402 int err; 2403 2404 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2405 args.out_numargs = 1; 2406 args.out_args[0].size = sizeof(outarg); 2407 args.out_args[0].value = &outarg; 2408 err = fuse_simple_request(fc, &args); 2409 if (!err) 2410 err = convert_fuse_file_lock(fc, &outarg.lk, fl); 2411 2412 return err; 2413 } 2414 2415 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2416 { 2417 struct inode *inode = file_inode(file); 2418 struct fuse_conn *fc = get_fuse_conn(inode); 2419 FUSE_ARGS(args); 2420 struct fuse_lk_in inarg; 2421 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2422 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2423 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns); 2424 int err; 2425 2426 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2427 /* NLM needs asynchronous locks, which we don't support yet */ 2428 return -ENOLCK; 2429 } 2430 2431 /* Unlock on close is handled by the flush method */ 2432 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2433 return 0; 2434 2435 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2436 err = fuse_simple_request(fc, &args); 2437 2438 /* locking is restartable */ 2439 if (err == -EINTR) 2440 err = -ERESTARTSYS; 2441 2442 return err; 2443 } 2444 2445 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2446 { 2447 struct inode *inode = file_inode(file); 2448 struct fuse_conn *fc = get_fuse_conn(inode); 2449 int err; 2450 2451 if (cmd == F_CANCELLK) { 2452 err = 0; 2453 } else if (cmd == F_GETLK) { 2454 if (fc->no_lock) { 2455 posix_test_lock(file, fl); 2456 err = 0; 2457 } else 2458 err = fuse_getlk(file, fl); 2459 } else { 2460 if (fc->no_lock) 2461 err = posix_lock_file(file, fl, NULL); 2462 else 2463 err = fuse_setlk(file, fl, 0); 2464 } 2465 return err; 2466 } 2467 2468 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2469 { 2470 struct inode *inode = file_inode(file); 2471 struct fuse_conn *fc = get_fuse_conn(inode); 2472 int err; 2473 2474 if (fc->no_flock) { 2475 err = locks_lock_file_wait(file, fl); 2476 } else { 2477 struct fuse_file *ff = file->private_data; 2478 2479 /* emulate flock with POSIX locks */ 2480 ff->flock = true; 2481 err = fuse_setlk(file, fl, 1); 2482 } 2483 2484 return err; 2485 } 2486 2487 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2488 { 2489 struct inode *inode = mapping->host; 2490 struct fuse_conn *fc = get_fuse_conn(inode); 2491 FUSE_ARGS(args); 2492 struct fuse_bmap_in inarg; 2493 struct fuse_bmap_out outarg; 2494 int err; 2495 2496 if (!inode->i_sb->s_bdev || fc->no_bmap) 2497 return 0; 2498 2499 memset(&inarg, 0, sizeof(inarg)); 2500 inarg.block = block; 2501 inarg.blocksize = inode->i_sb->s_blocksize; 2502 args.opcode = FUSE_BMAP; 2503 args.nodeid = get_node_id(inode); 2504 args.in_numargs = 1; 2505 args.in_args[0].size = sizeof(inarg); 2506 args.in_args[0].value = &inarg; 2507 args.out_numargs = 1; 2508 args.out_args[0].size = sizeof(outarg); 2509 args.out_args[0].value = &outarg; 2510 err = fuse_simple_request(fc, &args); 2511 if (err == -ENOSYS) 2512 fc->no_bmap = 1; 2513 2514 return err ? 0 : outarg.block; 2515 } 2516 2517 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2518 { 2519 struct inode *inode = file->f_mapping->host; 2520 struct fuse_conn *fc = get_fuse_conn(inode); 2521 struct fuse_file *ff = file->private_data; 2522 FUSE_ARGS(args); 2523 struct fuse_lseek_in inarg = { 2524 .fh = ff->fh, 2525 .offset = offset, 2526 .whence = whence 2527 }; 2528 struct fuse_lseek_out outarg; 2529 int err; 2530 2531 if (fc->no_lseek) 2532 goto fallback; 2533 2534 args.opcode = FUSE_LSEEK; 2535 args.nodeid = ff->nodeid; 2536 args.in_numargs = 1; 2537 args.in_args[0].size = sizeof(inarg); 2538 args.in_args[0].value = &inarg; 2539 args.out_numargs = 1; 2540 args.out_args[0].size = sizeof(outarg); 2541 args.out_args[0].value = &outarg; 2542 err = fuse_simple_request(fc, &args); 2543 if (err) { 2544 if (err == -ENOSYS) { 2545 fc->no_lseek = 1; 2546 goto fallback; 2547 } 2548 return err; 2549 } 2550 2551 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2552 2553 fallback: 2554 err = fuse_update_attributes(inode, file); 2555 if (!err) 2556 return generic_file_llseek(file, offset, whence); 2557 else 2558 return err; 2559 } 2560 2561 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2562 { 2563 loff_t retval; 2564 struct inode *inode = file_inode(file); 2565 2566 switch (whence) { 2567 case SEEK_SET: 2568 case SEEK_CUR: 2569 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2570 retval = generic_file_llseek(file, offset, whence); 2571 break; 2572 case SEEK_END: 2573 inode_lock(inode); 2574 retval = fuse_update_attributes(inode, file); 2575 if (!retval) 2576 retval = generic_file_llseek(file, offset, whence); 2577 inode_unlock(inode); 2578 break; 2579 case SEEK_HOLE: 2580 case SEEK_DATA: 2581 inode_lock(inode); 2582 retval = fuse_lseek(file, offset, whence); 2583 inode_unlock(inode); 2584 break; 2585 default: 2586 retval = -EINVAL; 2587 } 2588 2589 return retval; 2590 } 2591 2592 /* 2593 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2594 * ABI was defined to be 'struct iovec' which is different on 32bit 2595 * and 64bit. Fortunately we can determine which structure the server 2596 * used from the size of the reply. 2597 */ 2598 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2599 size_t transferred, unsigned count, 2600 bool is_compat) 2601 { 2602 #ifdef CONFIG_COMPAT 2603 if (count * sizeof(struct compat_iovec) == transferred) { 2604 struct compat_iovec *ciov = src; 2605 unsigned i; 2606 2607 /* 2608 * With this interface a 32bit server cannot support 2609 * non-compat (i.e. ones coming from 64bit apps) ioctl 2610 * requests 2611 */ 2612 if (!is_compat) 2613 return -EINVAL; 2614 2615 for (i = 0; i < count; i++) { 2616 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2617 dst[i].iov_len = ciov[i].iov_len; 2618 } 2619 return 0; 2620 } 2621 #endif 2622 2623 if (count * sizeof(struct iovec) != transferred) 2624 return -EIO; 2625 2626 memcpy(dst, src, transferred); 2627 return 0; 2628 } 2629 2630 /* Make sure iov_length() won't overflow */ 2631 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov, 2632 size_t count) 2633 { 2634 size_t n; 2635 u32 max = fc->max_pages << PAGE_SHIFT; 2636 2637 for (n = 0; n < count; n++, iov++) { 2638 if (iov->iov_len > (size_t) max) 2639 return -ENOMEM; 2640 max -= iov->iov_len; 2641 } 2642 return 0; 2643 } 2644 2645 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2646 void *src, size_t transferred, unsigned count, 2647 bool is_compat) 2648 { 2649 unsigned i; 2650 struct fuse_ioctl_iovec *fiov = src; 2651 2652 if (fc->minor < 16) { 2653 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2654 count, is_compat); 2655 } 2656 2657 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2658 return -EIO; 2659 2660 for (i = 0; i < count; i++) { 2661 /* Did the server supply an inappropriate value? */ 2662 if (fiov[i].base != (unsigned long) fiov[i].base || 2663 fiov[i].len != (unsigned long) fiov[i].len) 2664 return -EIO; 2665 2666 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2667 dst[i].iov_len = (size_t) fiov[i].len; 2668 2669 #ifdef CONFIG_COMPAT 2670 if (is_compat && 2671 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2672 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2673 return -EIO; 2674 #endif 2675 } 2676 2677 return 0; 2678 } 2679 2680 2681 /* 2682 * For ioctls, there is no generic way to determine how much memory 2683 * needs to be read and/or written. Furthermore, ioctls are allowed 2684 * to dereference the passed pointer, so the parameter requires deep 2685 * copying but FUSE has no idea whatsoever about what to copy in or 2686 * out. 2687 * 2688 * This is solved by allowing FUSE server to retry ioctl with 2689 * necessary in/out iovecs. Let's assume the ioctl implementation 2690 * needs to read in the following structure. 2691 * 2692 * struct a { 2693 * char *buf; 2694 * size_t buflen; 2695 * } 2696 * 2697 * On the first callout to FUSE server, inarg->in_size and 2698 * inarg->out_size will be NULL; then, the server completes the ioctl 2699 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2700 * the actual iov array to 2701 * 2702 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2703 * 2704 * which tells FUSE to copy in the requested area and retry the ioctl. 2705 * On the second round, the server has access to the structure and 2706 * from that it can tell what to look for next, so on the invocation, 2707 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2708 * 2709 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2710 * { .iov_base = a.buf, .iov_len = a.buflen } } 2711 * 2712 * FUSE will copy both struct a and the pointed buffer from the 2713 * process doing the ioctl and retry ioctl with both struct a and the 2714 * buffer. 2715 * 2716 * This time, FUSE server has everything it needs and completes ioctl 2717 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2718 * 2719 * Copying data out works the same way. 2720 * 2721 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2722 * automatically initializes in and out iovs by decoding @cmd with 2723 * _IOC_* macros and the server is not allowed to request RETRY. This 2724 * limits ioctl data transfers to well-formed ioctls and is the forced 2725 * behavior for all FUSE servers. 2726 */ 2727 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2728 unsigned int flags) 2729 { 2730 struct fuse_file *ff = file->private_data; 2731 struct fuse_conn *fc = ff->fc; 2732 struct fuse_ioctl_in inarg = { 2733 .fh = ff->fh, 2734 .cmd = cmd, 2735 .arg = arg, 2736 .flags = flags 2737 }; 2738 struct fuse_ioctl_out outarg; 2739 struct iovec *iov_page = NULL; 2740 struct iovec *in_iov = NULL, *out_iov = NULL; 2741 unsigned int in_iovs = 0, out_iovs = 0, max_pages; 2742 size_t in_size, out_size, c; 2743 ssize_t transferred; 2744 int err, i; 2745 struct iov_iter ii; 2746 struct fuse_args_pages ap = {}; 2747 2748 #if BITS_PER_LONG == 32 2749 inarg.flags |= FUSE_IOCTL_32BIT; 2750 #else 2751 if (flags & FUSE_IOCTL_COMPAT) { 2752 inarg.flags |= FUSE_IOCTL_32BIT; 2753 #ifdef CONFIG_X86_X32 2754 if (in_x32_syscall()) 2755 inarg.flags |= FUSE_IOCTL_COMPAT_X32; 2756 #endif 2757 } 2758 #endif 2759 2760 /* assume all the iovs returned by client always fits in a page */ 2761 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2762 2763 err = -ENOMEM; 2764 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs); 2765 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2766 if (!ap.pages || !iov_page) 2767 goto out; 2768 2769 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages); 2770 2771 /* 2772 * If restricted, initialize IO parameters as encoded in @cmd. 2773 * RETRY from server is not allowed. 2774 */ 2775 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2776 struct iovec *iov = iov_page; 2777 2778 iov->iov_base = (void __user *)arg; 2779 2780 switch (cmd) { 2781 case FS_IOC_GETFLAGS: 2782 case FS_IOC_SETFLAGS: 2783 iov->iov_len = sizeof(int); 2784 break; 2785 default: 2786 iov->iov_len = _IOC_SIZE(cmd); 2787 break; 2788 } 2789 2790 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2791 in_iov = iov; 2792 in_iovs = 1; 2793 } 2794 2795 if (_IOC_DIR(cmd) & _IOC_READ) { 2796 out_iov = iov; 2797 out_iovs = 1; 2798 } 2799 } 2800 2801 retry: 2802 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2803 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2804 2805 /* 2806 * Out data can be used either for actual out data or iovs, 2807 * make sure there always is at least one page. 2808 */ 2809 out_size = max_t(size_t, out_size, PAGE_SIZE); 2810 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2811 2812 /* make sure there are enough buffer pages and init request with them */ 2813 err = -ENOMEM; 2814 if (max_pages > fc->max_pages) 2815 goto out; 2816 while (ap.num_pages < max_pages) { 2817 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2818 if (!ap.pages[ap.num_pages]) 2819 goto out; 2820 ap.num_pages++; 2821 } 2822 2823 2824 /* okay, let's send it to the client */ 2825 ap.args.opcode = FUSE_IOCTL; 2826 ap.args.nodeid = ff->nodeid; 2827 ap.args.in_numargs = 1; 2828 ap.args.in_args[0].size = sizeof(inarg); 2829 ap.args.in_args[0].value = &inarg; 2830 if (in_size) { 2831 ap.args.in_numargs++; 2832 ap.args.in_args[1].size = in_size; 2833 ap.args.in_pages = true; 2834 2835 err = -EFAULT; 2836 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size); 2837 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2838 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2839 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2840 goto out; 2841 } 2842 } 2843 2844 ap.args.out_numargs = 2; 2845 ap.args.out_args[0].size = sizeof(outarg); 2846 ap.args.out_args[0].value = &outarg; 2847 ap.args.out_args[1].size = out_size; 2848 ap.args.out_pages = true; 2849 ap.args.out_argvar = true; 2850 2851 transferred = fuse_simple_request(fc, &ap.args); 2852 err = transferred; 2853 if (transferred < 0) 2854 goto out; 2855 2856 /* did it ask for retry? */ 2857 if (outarg.flags & FUSE_IOCTL_RETRY) { 2858 void *vaddr; 2859 2860 /* no retry if in restricted mode */ 2861 err = -EIO; 2862 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2863 goto out; 2864 2865 in_iovs = outarg.in_iovs; 2866 out_iovs = outarg.out_iovs; 2867 2868 /* 2869 * Make sure things are in boundary, separate checks 2870 * are to protect against overflow. 2871 */ 2872 err = -ENOMEM; 2873 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2874 out_iovs > FUSE_IOCTL_MAX_IOV || 2875 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2876 goto out; 2877 2878 vaddr = kmap_atomic(ap.pages[0]); 2879 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2880 transferred, in_iovs + out_iovs, 2881 (flags & FUSE_IOCTL_COMPAT) != 0); 2882 kunmap_atomic(vaddr); 2883 if (err) 2884 goto out; 2885 2886 in_iov = iov_page; 2887 out_iov = in_iov + in_iovs; 2888 2889 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs); 2890 if (err) 2891 goto out; 2892 2893 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs); 2894 if (err) 2895 goto out; 2896 2897 goto retry; 2898 } 2899 2900 err = -EIO; 2901 if (transferred > inarg.out_size) 2902 goto out; 2903 2904 err = -EFAULT; 2905 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred); 2906 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2907 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2908 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2909 goto out; 2910 } 2911 err = 0; 2912 out: 2913 free_page((unsigned long) iov_page); 2914 while (ap.num_pages) 2915 __free_page(ap.pages[--ap.num_pages]); 2916 kfree(ap.pages); 2917 2918 return err ? err : outarg.result; 2919 } 2920 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2921 2922 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2923 unsigned long arg, unsigned int flags) 2924 { 2925 struct inode *inode = file_inode(file); 2926 struct fuse_conn *fc = get_fuse_conn(inode); 2927 2928 if (!fuse_allow_current_process(fc)) 2929 return -EACCES; 2930 2931 if (is_bad_inode(inode)) 2932 return -EIO; 2933 2934 return fuse_do_ioctl(file, cmd, arg, flags); 2935 } 2936 2937 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2938 unsigned long arg) 2939 { 2940 return fuse_ioctl_common(file, cmd, arg, 0); 2941 } 2942 2943 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2944 unsigned long arg) 2945 { 2946 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2947 } 2948 2949 /* 2950 * All files which have been polled are linked to RB tree 2951 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2952 * find the matching one. 2953 */ 2954 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2955 struct rb_node **parent_out) 2956 { 2957 struct rb_node **link = &fc->polled_files.rb_node; 2958 struct rb_node *last = NULL; 2959 2960 while (*link) { 2961 struct fuse_file *ff; 2962 2963 last = *link; 2964 ff = rb_entry(last, struct fuse_file, polled_node); 2965 2966 if (kh < ff->kh) 2967 link = &last->rb_left; 2968 else if (kh > ff->kh) 2969 link = &last->rb_right; 2970 else 2971 return link; 2972 } 2973 2974 if (parent_out) 2975 *parent_out = last; 2976 return link; 2977 } 2978 2979 /* 2980 * The file is about to be polled. Make sure it's on the polled_files 2981 * RB tree. Note that files once added to the polled_files tree are 2982 * not removed before the file is released. This is because a file 2983 * polled once is likely to be polled again. 2984 */ 2985 static void fuse_register_polled_file(struct fuse_conn *fc, 2986 struct fuse_file *ff) 2987 { 2988 spin_lock(&fc->lock); 2989 if (RB_EMPTY_NODE(&ff->polled_node)) { 2990 struct rb_node **link, *parent; 2991 2992 link = fuse_find_polled_node(fc, ff->kh, &parent); 2993 BUG_ON(*link); 2994 rb_link_node(&ff->polled_node, parent, link); 2995 rb_insert_color(&ff->polled_node, &fc->polled_files); 2996 } 2997 spin_unlock(&fc->lock); 2998 } 2999 3000 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 3001 { 3002 struct fuse_file *ff = file->private_data; 3003 struct fuse_conn *fc = ff->fc; 3004 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 3005 struct fuse_poll_out outarg; 3006 FUSE_ARGS(args); 3007 int err; 3008 3009 if (fc->no_poll) 3010 return DEFAULT_POLLMASK; 3011 3012 poll_wait(file, &ff->poll_wait, wait); 3013 inarg.events = mangle_poll(poll_requested_events(wait)); 3014 3015 /* 3016 * Ask for notification iff there's someone waiting for it. 3017 * The client may ignore the flag and always notify. 3018 */ 3019 if (waitqueue_active(&ff->poll_wait)) { 3020 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 3021 fuse_register_polled_file(fc, ff); 3022 } 3023 3024 args.opcode = FUSE_POLL; 3025 args.nodeid = ff->nodeid; 3026 args.in_numargs = 1; 3027 args.in_args[0].size = sizeof(inarg); 3028 args.in_args[0].value = &inarg; 3029 args.out_numargs = 1; 3030 args.out_args[0].size = sizeof(outarg); 3031 args.out_args[0].value = &outarg; 3032 err = fuse_simple_request(fc, &args); 3033 3034 if (!err) 3035 return demangle_poll(outarg.revents); 3036 if (err == -ENOSYS) { 3037 fc->no_poll = 1; 3038 return DEFAULT_POLLMASK; 3039 } 3040 return EPOLLERR; 3041 } 3042 EXPORT_SYMBOL_GPL(fuse_file_poll); 3043 3044 /* 3045 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 3046 * wakes up the poll waiters. 3047 */ 3048 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 3049 struct fuse_notify_poll_wakeup_out *outarg) 3050 { 3051 u64 kh = outarg->kh; 3052 struct rb_node **link; 3053 3054 spin_lock(&fc->lock); 3055 3056 link = fuse_find_polled_node(fc, kh, NULL); 3057 if (*link) { 3058 struct fuse_file *ff; 3059 3060 ff = rb_entry(*link, struct fuse_file, polled_node); 3061 wake_up_interruptible_sync(&ff->poll_wait); 3062 } 3063 3064 spin_unlock(&fc->lock); 3065 return 0; 3066 } 3067 3068 static void fuse_do_truncate(struct file *file) 3069 { 3070 struct inode *inode = file->f_mapping->host; 3071 struct iattr attr; 3072 3073 attr.ia_valid = ATTR_SIZE; 3074 attr.ia_size = i_size_read(inode); 3075 3076 attr.ia_file = file; 3077 attr.ia_valid |= ATTR_FILE; 3078 3079 fuse_do_setattr(file_dentry(file), &attr, file); 3080 } 3081 3082 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 3083 { 3084 return round_up(off, fc->max_pages << PAGE_SHIFT); 3085 } 3086 3087 static ssize_t 3088 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3089 { 3090 DECLARE_COMPLETION_ONSTACK(wait); 3091 ssize_t ret = 0; 3092 struct file *file = iocb->ki_filp; 3093 struct fuse_file *ff = file->private_data; 3094 bool async_dio = ff->fc->async_dio; 3095 loff_t pos = 0; 3096 struct inode *inode; 3097 loff_t i_size; 3098 size_t count = iov_iter_count(iter); 3099 loff_t offset = iocb->ki_pos; 3100 struct fuse_io_priv *io; 3101 3102 pos = offset; 3103 inode = file->f_mapping->host; 3104 i_size = i_size_read(inode); 3105 3106 if ((iov_iter_rw(iter) == READ) && (offset > i_size)) 3107 return 0; 3108 3109 /* optimization for short read */ 3110 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) { 3111 if (offset >= i_size) 3112 return 0; 3113 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset)); 3114 count = iov_iter_count(iter); 3115 } 3116 3117 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3118 if (!io) 3119 return -ENOMEM; 3120 spin_lock_init(&io->lock); 3121 kref_init(&io->refcnt); 3122 io->reqs = 1; 3123 io->bytes = -1; 3124 io->size = 0; 3125 io->offset = offset; 3126 io->write = (iov_iter_rw(iter) == WRITE); 3127 io->err = 0; 3128 /* 3129 * By default, we want to optimize all I/Os with async request 3130 * submission to the client filesystem if supported. 3131 */ 3132 io->async = async_dio; 3133 io->iocb = iocb; 3134 io->blocking = is_sync_kiocb(iocb); 3135 3136 /* 3137 * We cannot asynchronously extend the size of a file. 3138 * In such case the aio will behave exactly like sync io. 3139 */ 3140 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE) 3141 io->blocking = true; 3142 3143 if (io->async && io->blocking) { 3144 /* 3145 * Additional reference to keep io around after 3146 * calling fuse_aio_complete() 3147 */ 3148 kref_get(&io->refcnt); 3149 io->done = &wait; 3150 } 3151 3152 if (iov_iter_rw(iter) == WRITE) { 3153 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3154 fuse_invalidate_attr(inode); 3155 } else { 3156 ret = __fuse_direct_read(io, iter, &pos); 3157 } 3158 3159 if (io->async) { 3160 bool blocking = io->blocking; 3161 3162 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3163 3164 /* we have a non-extending, async request, so return */ 3165 if (!blocking) 3166 return -EIOCBQUEUED; 3167 3168 wait_for_completion(&wait); 3169 ret = fuse_get_res_by_io(io); 3170 } 3171 3172 kref_put(&io->refcnt, fuse_io_release); 3173 3174 if (iov_iter_rw(iter) == WRITE) { 3175 if (ret > 0) 3176 fuse_write_update_size(inode, pos); 3177 else if (ret < 0 && offset + count > i_size) 3178 fuse_do_truncate(file); 3179 } 3180 3181 return ret; 3182 } 3183 3184 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3185 { 3186 int err = filemap_write_and_wait_range(inode->i_mapping, start, end); 3187 3188 if (!err) 3189 fuse_sync_writes(inode); 3190 3191 return err; 3192 } 3193 3194 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3195 loff_t length) 3196 { 3197 struct fuse_file *ff = file->private_data; 3198 struct inode *inode = file_inode(file); 3199 struct fuse_inode *fi = get_fuse_inode(inode); 3200 struct fuse_conn *fc = ff->fc; 3201 FUSE_ARGS(args); 3202 struct fuse_fallocate_in inarg = { 3203 .fh = ff->fh, 3204 .offset = offset, 3205 .length = length, 3206 .mode = mode 3207 }; 3208 int err; 3209 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 3210 (mode & FALLOC_FL_PUNCH_HOLE); 3211 3212 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3213 return -EOPNOTSUPP; 3214 3215 if (fc->no_fallocate) 3216 return -EOPNOTSUPP; 3217 3218 if (lock_inode) { 3219 inode_lock(inode); 3220 if (mode & FALLOC_FL_PUNCH_HOLE) { 3221 loff_t endbyte = offset + length - 1; 3222 3223 err = fuse_writeback_range(inode, offset, endbyte); 3224 if (err) 3225 goto out; 3226 } 3227 } 3228 3229 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3230 offset + length > i_size_read(inode)) { 3231 err = inode_newsize_ok(inode, offset + length); 3232 if (err) 3233 goto out; 3234 } 3235 3236 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3237 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3238 3239 args.opcode = FUSE_FALLOCATE; 3240 args.nodeid = ff->nodeid; 3241 args.in_numargs = 1; 3242 args.in_args[0].size = sizeof(inarg); 3243 args.in_args[0].value = &inarg; 3244 err = fuse_simple_request(fc, &args); 3245 if (err == -ENOSYS) { 3246 fc->no_fallocate = 1; 3247 err = -EOPNOTSUPP; 3248 } 3249 if (err) 3250 goto out; 3251 3252 /* we could have extended the file */ 3253 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3254 bool changed = fuse_write_update_size(inode, offset + length); 3255 3256 if (changed && fc->writeback_cache) 3257 file_update_time(file); 3258 } 3259 3260 if (mode & FALLOC_FL_PUNCH_HOLE) 3261 truncate_pagecache_range(inode, offset, offset + length - 1); 3262 3263 fuse_invalidate_attr(inode); 3264 3265 out: 3266 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3267 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3268 3269 if (lock_inode) 3270 inode_unlock(inode); 3271 3272 return err; 3273 } 3274 3275 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3276 struct file *file_out, loff_t pos_out, 3277 size_t len, unsigned int flags) 3278 { 3279 struct fuse_file *ff_in = file_in->private_data; 3280 struct fuse_file *ff_out = file_out->private_data; 3281 struct inode *inode_in = file_inode(file_in); 3282 struct inode *inode_out = file_inode(file_out); 3283 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3284 struct fuse_conn *fc = ff_in->fc; 3285 FUSE_ARGS(args); 3286 struct fuse_copy_file_range_in inarg = { 3287 .fh_in = ff_in->fh, 3288 .off_in = pos_in, 3289 .nodeid_out = ff_out->nodeid, 3290 .fh_out = ff_out->fh, 3291 .off_out = pos_out, 3292 .len = len, 3293 .flags = flags 3294 }; 3295 struct fuse_write_out outarg; 3296 ssize_t err; 3297 /* mark unstable when write-back is not used, and file_out gets 3298 * extended */ 3299 bool is_unstable = (!fc->writeback_cache) && 3300 ((pos_out + len) > inode_out->i_size); 3301 3302 if (fc->no_copy_file_range) 3303 return -EOPNOTSUPP; 3304 3305 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3306 return -EXDEV; 3307 3308 inode_lock(inode_in); 3309 err = fuse_writeback_range(inode_in, pos_in, pos_in + len - 1); 3310 inode_unlock(inode_in); 3311 if (err) 3312 return err; 3313 3314 inode_lock(inode_out); 3315 3316 err = file_modified(file_out); 3317 if (err) 3318 goto out; 3319 3320 /* 3321 * Write out dirty pages in the destination file before sending the COPY 3322 * request to userspace. After the request is completed, truncate off 3323 * pages (including partial ones) from the cache that have been copied, 3324 * since these contain stale data at that point. 3325 * 3326 * This should be mostly correct, but if the COPY writes to partial 3327 * pages (at the start or end) and the parts not covered by the COPY are 3328 * written through a memory map after calling fuse_writeback_range(), 3329 * then these partial page modifications will be lost on truncation. 3330 * 3331 * It is unlikely that someone would rely on such mixed style 3332 * modifications. Yet this does give less guarantees than if the 3333 * copying was performed with write(2). 3334 * 3335 * To fix this a i_mmap_sem style lock could be used to prevent new 3336 * faults while the copy is ongoing. 3337 */ 3338 err = fuse_writeback_range(inode_out, pos_out, pos_out + len - 1); 3339 if (err) 3340 goto out; 3341 3342 if (is_unstable) 3343 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3344 3345 args.opcode = FUSE_COPY_FILE_RANGE; 3346 args.nodeid = ff_in->nodeid; 3347 args.in_numargs = 1; 3348 args.in_args[0].size = sizeof(inarg); 3349 args.in_args[0].value = &inarg; 3350 args.out_numargs = 1; 3351 args.out_args[0].size = sizeof(outarg); 3352 args.out_args[0].value = &outarg; 3353 err = fuse_simple_request(fc, &args); 3354 if (err == -ENOSYS) { 3355 fc->no_copy_file_range = 1; 3356 err = -EOPNOTSUPP; 3357 } 3358 if (err) 3359 goto out; 3360 3361 truncate_inode_pages_range(inode_out->i_mapping, 3362 ALIGN_DOWN(pos_out, PAGE_SIZE), 3363 ALIGN(pos_out + outarg.size, PAGE_SIZE) - 1); 3364 3365 if (fc->writeback_cache) { 3366 fuse_write_update_size(inode_out, pos_out + outarg.size); 3367 file_update_time(file_out); 3368 } 3369 3370 fuse_invalidate_attr(inode_out); 3371 3372 err = outarg.size; 3373 out: 3374 if (is_unstable) 3375 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3376 3377 inode_unlock(inode_out); 3378 file_accessed(file_in); 3379 3380 return err; 3381 } 3382 3383 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3384 struct file *dst_file, loff_t dst_off, 3385 size_t len, unsigned int flags) 3386 { 3387 ssize_t ret; 3388 3389 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3390 len, flags); 3391 3392 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3393 ret = generic_copy_file_range(src_file, src_off, dst_file, 3394 dst_off, len, flags); 3395 return ret; 3396 } 3397 3398 static const struct file_operations fuse_file_operations = { 3399 .llseek = fuse_file_llseek, 3400 .read_iter = fuse_file_read_iter, 3401 .write_iter = fuse_file_write_iter, 3402 .mmap = fuse_file_mmap, 3403 .open = fuse_open, 3404 .flush = fuse_flush, 3405 .release = fuse_release, 3406 .fsync = fuse_fsync, 3407 .lock = fuse_file_lock, 3408 .flock = fuse_file_flock, 3409 .splice_read = generic_file_splice_read, 3410 .splice_write = iter_file_splice_write, 3411 .unlocked_ioctl = fuse_file_ioctl, 3412 .compat_ioctl = fuse_file_compat_ioctl, 3413 .poll = fuse_file_poll, 3414 .fallocate = fuse_file_fallocate, 3415 .copy_file_range = fuse_copy_file_range, 3416 }; 3417 3418 static const struct address_space_operations fuse_file_aops = { 3419 .readpage = fuse_readpage, 3420 .readahead = fuse_readahead, 3421 .writepage = fuse_writepage, 3422 .writepages = fuse_writepages, 3423 .launder_page = fuse_launder_page, 3424 .set_page_dirty = __set_page_dirty_nobuffers, 3425 .bmap = fuse_bmap, 3426 .direct_IO = fuse_direct_IO, 3427 .write_begin = fuse_write_begin, 3428 .write_end = fuse_write_end, 3429 }; 3430 3431 void fuse_init_file_inode(struct inode *inode) 3432 { 3433 struct fuse_inode *fi = get_fuse_inode(inode); 3434 3435 inode->i_fop = &fuse_file_operations; 3436 inode->i_data.a_ops = &fuse_file_aops; 3437 3438 INIT_LIST_HEAD(&fi->write_files); 3439 INIT_LIST_HEAD(&fi->queued_writes); 3440 fi->writectr = 0; 3441 init_waitqueue_head(&fi->page_waitq); 3442 fi->writepages = RB_ROOT; 3443 } 3444