xref: /openbmc/linux/fs/fuse/file.c (revision 08283d30)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 				      struct fuse_page_desc **desc)
24 {
25 	struct page **pages;
26 
27 	pages = kzalloc(npages * (sizeof(struct page *) +
28 				  sizeof(struct fuse_page_desc)), flags);
29 	*desc = (void *) (pages + npages);
30 
31 	return pages;
32 }
33 
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 			  int opcode, struct fuse_open_out *outargp)
36 {
37 	struct fuse_open_in inarg;
38 	FUSE_ARGS(args);
39 
40 	memset(&inarg, 0, sizeof(inarg));
41 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 	if (!fc->atomic_o_trunc)
43 		inarg.flags &= ~O_TRUNC;
44 	args.opcode = opcode;
45 	args.nodeid = nodeid;
46 	args.in_numargs = 1;
47 	args.in_args[0].size = sizeof(inarg);
48 	args.in_args[0].value = &inarg;
49 	args.out_numargs = 1;
50 	args.out_args[0].size = sizeof(*outargp);
51 	args.out_args[0].value = outargp;
52 
53 	return fuse_simple_request(fc, &args);
54 }
55 
56 struct fuse_release_args {
57 	struct fuse_args args;
58 	struct fuse_release_in inarg;
59 	struct inode *inode;
60 };
61 
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
63 {
64 	struct fuse_file *ff;
65 
66 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
67 	if (unlikely(!ff))
68 		return NULL;
69 
70 	ff->fc = fc;
71 	ff->release_args = kzalloc(sizeof(*ff->release_args),
72 				   GFP_KERNEL_ACCOUNT);
73 	if (!ff->release_args) {
74 		kfree(ff);
75 		return NULL;
76 	}
77 
78 	INIT_LIST_HEAD(&ff->write_entry);
79 	mutex_init(&ff->readdir.lock);
80 	refcount_set(&ff->count, 1);
81 	RB_CLEAR_NODE(&ff->polled_node);
82 	init_waitqueue_head(&ff->poll_wait);
83 
84 	ff->kh = atomic64_inc_return(&fc->khctr);
85 
86 	return ff;
87 }
88 
89 void fuse_file_free(struct fuse_file *ff)
90 {
91 	kfree(ff->release_args);
92 	mutex_destroy(&ff->readdir.lock);
93 	kfree(ff);
94 }
95 
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
97 {
98 	refcount_inc(&ff->count);
99 	return ff;
100 }
101 
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
103 			     int error)
104 {
105 	struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
106 
107 	iput(ra->inode);
108 	kfree(ra);
109 }
110 
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
112 {
113 	if (refcount_dec_and_test(&ff->count)) {
114 		struct fuse_args *args = &ff->release_args->args;
115 
116 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 			/* Do nothing when client does not implement 'open' */
118 			fuse_release_end(ff->fc, args, 0);
119 		} else if (sync) {
120 			fuse_simple_request(ff->fc, args);
121 			fuse_release_end(ff->fc, args, 0);
122 		} else {
123 			args->end = fuse_release_end;
124 			if (fuse_simple_background(ff->fc, args,
125 						   GFP_KERNEL | __GFP_NOFAIL))
126 				fuse_release_end(ff->fc, args, -ENOTCONN);
127 		}
128 		kfree(ff);
129 	}
130 }
131 
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
133 		 bool isdir)
134 {
135 	struct fuse_file *ff;
136 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
137 
138 	ff = fuse_file_alloc(fc);
139 	if (!ff)
140 		return -ENOMEM;
141 
142 	ff->fh = 0;
143 	/* Default for no-open */
144 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 	if (isdir ? !fc->no_opendir : !fc->no_open) {
146 		struct fuse_open_out outarg;
147 		int err;
148 
149 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
150 		if (!err) {
151 			ff->fh = outarg.fh;
152 			ff->open_flags = outarg.open_flags;
153 
154 		} else if (err != -ENOSYS) {
155 			fuse_file_free(ff);
156 			return err;
157 		} else {
158 			if (isdir)
159 				fc->no_opendir = 1;
160 			else
161 				fc->no_open = 1;
162 		}
163 	}
164 
165 	if (isdir)
166 		ff->open_flags &= ~FOPEN_DIRECT_IO;
167 
168 	ff->nodeid = nodeid;
169 	file->private_data = ff;
170 
171 	return 0;
172 }
173 EXPORT_SYMBOL_GPL(fuse_do_open);
174 
175 static void fuse_link_write_file(struct file *file)
176 {
177 	struct inode *inode = file_inode(file);
178 	struct fuse_inode *fi = get_fuse_inode(inode);
179 	struct fuse_file *ff = file->private_data;
180 	/*
181 	 * file may be written through mmap, so chain it onto the
182 	 * inodes's write_file list
183 	 */
184 	spin_lock(&fi->lock);
185 	if (list_empty(&ff->write_entry))
186 		list_add(&ff->write_entry, &fi->write_files);
187 	spin_unlock(&fi->lock);
188 }
189 
190 void fuse_finish_open(struct inode *inode, struct file *file)
191 {
192 	struct fuse_file *ff = file->private_data;
193 	struct fuse_conn *fc = get_fuse_conn(inode);
194 
195 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 		invalidate_inode_pages2(inode->i_mapping);
197 	if (ff->open_flags & FOPEN_STREAM)
198 		stream_open(inode, file);
199 	else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 		nonseekable_open(inode, file);
201 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 		struct fuse_inode *fi = get_fuse_inode(inode);
203 
204 		spin_lock(&fi->lock);
205 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 		i_size_write(inode, 0);
207 		spin_unlock(&fi->lock);
208 		fuse_invalidate_attr(inode);
209 		if (fc->writeback_cache)
210 			file_update_time(file);
211 	}
212 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 		fuse_link_write_file(file);
214 }
215 
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
217 {
218 	struct fuse_conn *fc = get_fuse_conn(inode);
219 	int err;
220 	bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 			  fc->atomic_o_trunc &&
222 			  fc->writeback_cache;
223 
224 	err = generic_file_open(inode, file);
225 	if (err)
226 		return err;
227 
228 	if (is_wb_truncate) {
229 		inode_lock(inode);
230 		fuse_set_nowrite(inode);
231 	}
232 
233 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
234 
235 	if (!err)
236 		fuse_finish_open(inode, file);
237 
238 	if (is_wb_truncate) {
239 		fuse_release_nowrite(inode);
240 		inode_unlock(inode);
241 	}
242 
243 	return err;
244 }
245 
246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 				 int flags, int opcode)
248 {
249 	struct fuse_conn *fc = ff->fc;
250 	struct fuse_release_args *ra = ff->release_args;
251 
252 	/* Inode is NULL on error path of fuse_create_open() */
253 	if (likely(fi)) {
254 		spin_lock(&fi->lock);
255 		list_del(&ff->write_entry);
256 		spin_unlock(&fi->lock);
257 	}
258 	spin_lock(&fc->lock);
259 	if (!RB_EMPTY_NODE(&ff->polled_node))
260 		rb_erase(&ff->polled_node, &fc->polled_files);
261 	spin_unlock(&fc->lock);
262 
263 	wake_up_interruptible_all(&ff->poll_wait);
264 
265 	ra->inarg.fh = ff->fh;
266 	ra->inarg.flags = flags;
267 	ra->args.in_numargs = 1;
268 	ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 	ra->args.in_args[0].value = &ra->inarg;
270 	ra->args.opcode = opcode;
271 	ra->args.nodeid = ff->nodeid;
272 	ra->args.force = true;
273 	ra->args.nocreds = true;
274 }
275 
276 void fuse_release_common(struct file *file, bool isdir)
277 {
278 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 	struct fuse_file *ff = file->private_data;
280 	struct fuse_release_args *ra = ff->release_args;
281 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
282 
283 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
284 
285 	if (ff->flock) {
286 		ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 		ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
288 							  (fl_owner_t) file);
289 	}
290 	/* Hold inode until release is finished */
291 	ra->inode = igrab(file_inode(file));
292 
293 	/*
294 	 * Normally this will send the RELEASE request, however if
295 	 * some asynchronous READ or WRITE requests are outstanding,
296 	 * the sending will be delayed.
297 	 *
298 	 * Make the release synchronous if this is a fuseblk mount,
299 	 * synchronous RELEASE is allowed (and desirable) in this case
300 	 * because the server can be trusted not to screw up.
301 	 */
302 	fuse_file_put(ff, ff->fc->destroy, isdir);
303 }
304 
305 static int fuse_open(struct inode *inode, struct file *file)
306 {
307 	return fuse_open_common(inode, file, false);
308 }
309 
310 static int fuse_release(struct inode *inode, struct file *file)
311 {
312 	struct fuse_conn *fc = get_fuse_conn(inode);
313 
314 	/* see fuse_vma_close() for !writeback_cache case */
315 	if (fc->writeback_cache)
316 		write_inode_now(inode, 1);
317 
318 	fuse_release_common(file, false);
319 
320 	/* return value is ignored by VFS */
321 	return 0;
322 }
323 
324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
325 {
326 	WARN_ON(refcount_read(&ff->count) > 1);
327 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
328 	/*
329 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 	 * synchronous, we are fine with not doing igrab() here"
331 	 */
332 	fuse_file_put(ff, true, false);
333 }
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
335 
336 /*
337  * Scramble the ID space with XTEA, so that the value of the files_struct
338  * pointer is not exposed to userspace.
339  */
340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
341 {
342 	u32 *k = fc->scramble_key;
343 	u64 v = (unsigned long) id;
344 	u32 v0 = v;
345 	u32 v1 = v >> 32;
346 	u32 sum = 0;
347 	int i;
348 
349 	for (i = 0; i < 32; i++) {
350 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
351 		sum += 0x9E3779B9;
352 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
353 	}
354 
355 	return (u64) v0 + ((u64) v1 << 32);
356 }
357 
358 struct fuse_writepage_args {
359 	struct fuse_io_args ia;
360 	struct list_head writepages_entry;
361 	struct list_head queue_entry;
362 	struct fuse_writepage_args *next;
363 	struct inode *inode;
364 };
365 
366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 					    pgoff_t idx_from, pgoff_t idx_to)
368 {
369 	struct fuse_writepage_args *wpa;
370 
371 	list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
372 		pgoff_t curr_index;
373 
374 		WARN_ON(get_fuse_inode(wpa->inode) != fi);
375 		curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
376 		if (idx_from < curr_index + wpa->ia.ap.num_pages &&
377 		    curr_index <= idx_to) {
378 			return wpa;
379 		}
380 	}
381 	return NULL;
382 }
383 
384 /*
385  * Check if any page in a range is under writeback
386  *
387  * This is currently done by walking the list of writepage requests
388  * for the inode, which can be pretty inefficient.
389  */
390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
391 				   pgoff_t idx_to)
392 {
393 	struct fuse_inode *fi = get_fuse_inode(inode);
394 	bool found;
395 
396 	spin_lock(&fi->lock);
397 	found = fuse_find_writeback(fi, idx_from, idx_to);
398 	spin_unlock(&fi->lock);
399 
400 	return found;
401 }
402 
403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
404 {
405 	return fuse_range_is_writeback(inode, index, index);
406 }
407 
408 /*
409  * Wait for page writeback to be completed.
410  *
411  * Since fuse doesn't rely on the VM writeback tracking, this has to
412  * use some other means.
413  */
414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
415 {
416 	struct fuse_inode *fi = get_fuse_inode(inode);
417 
418 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
419 }
420 
421 /*
422  * Wait for all pending writepages on the inode to finish.
423  *
424  * This is currently done by blocking further writes with FUSE_NOWRITE
425  * and waiting for all sent writes to complete.
426  *
427  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
428  * could conflict with truncation.
429  */
430 static void fuse_sync_writes(struct inode *inode)
431 {
432 	fuse_set_nowrite(inode);
433 	fuse_release_nowrite(inode);
434 }
435 
436 static int fuse_flush(struct file *file, fl_owner_t id)
437 {
438 	struct inode *inode = file_inode(file);
439 	struct fuse_conn *fc = get_fuse_conn(inode);
440 	struct fuse_file *ff = file->private_data;
441 	struct fuse_flush_in inarg;
442 	FUSE_ARGS(args);
443 	int err;
444 
445 	if (is_bad_inode(inode))
446 		return -EIO;
447 
448 	if (fc->no_flush)
449 		return 0;
450 
451 	err = write_inode_now(inode, 1);
452 	if (err)
453 		return err;
454 
455 	inode_lock(inode);
456 	fuse_sync_writes(inode);
457 	inode_unlock(inode);
458 
459 	err = filemap_check_errors(file->f_mapping);
460 	if (err)
461 		return err;
462 
463 	memset(&inarg, 0, sizeof(inarg));
464 	inarg.fh = ff->fh;
465 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
466 	args.opcode = FUSE_FLUSH;
467 	args.nodeid = get_node_id(inode);
468 	args.in_numargs = 1;
469 	args.in_args[0].size = sizeof(inarg);
470 	args.in_args[0].value = &inarg;
471 	args.force = true;
472 
473 	err = fuse_simple_request(fc, &args);
474 	if (err == -ENOSYS) {
475 		fc->no_flush = 1;
476 		err = 0;
477 	}
478 	return err;
479 }
480 
481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
482 		      int datasync, int opcode)
483 {
484 	struct inode *inode = file->f_mapping->host;
485 	struct fuse_conn *fc = get_fuse_conn(inode);
486 	struct fuse_file *ff = file->private_data;
487 	FUSE_ARGS(args);
488 	struct fuse_fsync_in inarg;
489 
490 	memset(&inarg, 0, sizeof(inarg));
491 	inarg.fh = ff->fh;
492 	inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
493 	args.opcode = opcode;
494 	args.nodeid = get_node_id(inode);
495 	args.in_numargs = 1;
496 	args.in_args[0].size = sizeof(inarg);
497 	args.in_args[0].value = &inarg;
498 	return fuse_simple_request(fc, &args);
499 }
500 
501 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
502 		      int datasync)
503 {
504 	struct inode *inode = file->f_mapping->host;
505 	struct fuse_conn *fc = get_fuse_conn(inode);
506 	int err;
507 
508 	if (is_bad_inode(inode))
509 		return -EIO;
510 
511 	inode_lock(inode);
512 
513 	/*
514 	 * Start writeback against all dirty pages of the inode, then
515 	 * wait for all outstanding writes, before sending the FSYNC
516 	 * request.
517 	 */
518 	err = file_write_and_wait_range(file, start, end);
519 	if (err)
520 		goto out;
521 
522 	fuse_sync_writes(inode);
523 
524 	/*
525 	 * Due to implementation of fuse writeback
526 	 * file_write_and_wait_range() does not catch errors.
527 	 * We have to do this directly after fuse_sync_writes()
528 	 */
529 	err = file_check_and_advance_wb_err(file);
530 	if (err)
531 		goto out;
532 
533 	err = sync_inode_metadata(inode, 1);
534 	if (err)
535 		goto out;
536 
537 	if (fc->no_fsync)
538 		goto out;
539 
540 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
541 	if (err == -ENOSYS) {
542 		fc->no_fsync = 1;
543 		err = 0;
544 	}
545 out:
546 	inode_unlock(inode);
547 
548 	return err;
549 }
550 
551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
552 			 size_t count, int opcode)
553 {
554 	struct fuse_file *ff = file->private_data;
555 	struct fuse_args *args = &ia->ap.args;
556 
557 	ia->read.in.fh = ff->fh;
558 	ia->read.in.offset = pos;
559 	ia->read.in.size = count;
560 	ia->read.in.flags = file->f_flags;
561 	args->opcode = opcode;
562 	args->nodeid = ff->nodeid;
563 	args->in_numargs = 1;
564 	args->in_args[0].size = sizeof(ia->read.in);
565 	args->in_args[0].value = &ia->read.in;
566 	args->out_argvar = true;
567 	args->out_numargs = 1;
568 	args->out_args[0].size = count;
569 }
570 
571 static void fuse_release_user_pages(struct fuse_args_pages *ap,
572 				    bool should_dirty)
573 {
574 	unsigned int i;
575 
576 	for (i = 0; i < ap->num_pages; i++) {
577 		if (should_dirty)
578 			set_page_dirty_lock(ap->pages[i]);
579 		put_page(ap->pages[i]);
580 	}
581 }
582 
583 static void fuse_io_release(struct kref *kref)
584 {
585 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
586 }
587 
588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
589 {
590 	if (io->err)
591 		return io->err;
592 
593 	if (io->bytes >= 0 && io->write)
594 		return -EIO;
595 
596 	return io->bytes < 0 ? io->size : io->bytes;
597 }
598 
599 /**
600  * In case of short read, the caller sets 'pos' to the position of
601  * actual end of fuse request in IO request. Otherwise, if bytes_requested
602  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
603  *
604  * An example:
605  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
606  * both submitted asynchronously. The first of them was ACKed by userspace as
607  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
608  * second request was ACKed as short, e.g. only 1K was read, resulting in
609  * pos == 33K.
610  *
611  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
612  * will be equal to the length of the longest contiguous fragment of
613  * transferred data starting from the beginning of IO request.
614  */
615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
616 {
617 	int left;
618 
619 	spin_lock(&io->lock);
620 	if (err)
621 		io->err = io->err ? : err;
622 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
623 		io->bytes = pos;
624 
625 	left = --io->reqs;
626 	if (!left && io->blocking)
627 		complete(io->done);
628 	spin_unlock(&io->lock);
629 
630 	if (!left && !io->blocking) {
631 		ssize_t res = fuse_get_res_by_io(io);
632 
633 		if (res >= 0) {
634 			struct inode *inode = file_inode(io->iocb->ki_filp);
635 			struct fuse_conn *fc = get_fuse_conn(inode);
636 			struct fuse_inode *fi = get_fuse_inode(inode);
637 
638 			spin_lock(&fi->lock);
639 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
640 			spin_unlock(&fi->lock);
641 		}
642 
643 		io->iocb->ki_complete(io->iocb, res, 0);
644 	}
645 
646 	kref_put(&io->refcnt, fuse_io_release);
647 }
648 
649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
650 					  unsigned int npages)
651 {
652 	struct fuse_io_args *ia;
653 
654 	ia = kzalloc(sizeof(*ia), GFP_KERNEL);
655 	if (ia) {
656 		ia->io = io;
657 		ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
658 						&ia->ap.descs);
659 		if (!ia->ap.pages) {
660 			kfree(ia);
661 			ia = NULL;
662 		}
663 	}
664 	return ia;
665 }
666 
667 static void fuse_io_free(struct fuse_io_args *ia)
668 {
669 	kfree(ia->ap.pages);
670 	kfree(ia);
671 }
672 
673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
674 				  int err)
675 {
676 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
677 	struct fuse_io_priv *io = ia->io;
678 	ssize_t pos = -1;
679 
680 	fuse_release_user_pages(&ia->ap, io->should_dirty);
681 
682 	if (err) {
683 		/* Nothing */
684 	} else if (io->write) {
685 		if (ia->write.out.size > ia->write.in.size) {
686 			err = -EIO;
687 		} else if (ia->write.in.size != ia->write.out.size) {
688 			pos = ia->write.in.offset - io->offset +
689 				ia->write.out.size;
690 		}
691 	} else {
692 		u32 outsize = args->out_args[0].size;
693 
694 		if (ia->read.in.size != outsize)
695 			pos = ia->read.in.offset - io->offset + outsize;
696 	}
697 
698 	fuse_aio_complete(io, err, pos);
699 	fuse_io_free(ia);
700 }
701 
702 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
703 				   struct fuse_io_args *ia, size_t num_bytes)
704 {
705 	ssize_t err;
706 	struct fuse_io_priv *io = ia->io;
707 
708 	spin_lock(&io->lock);
709 	kref_get(&io->refcnt);
710 	io->size += num_bytes;
711 	io->reqs++;
712 	spin_unlock(&io->lock);
713 
714 	ia->ap.args.end = fuse_aio_complete_req;
715 	err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
716 
717 	return err ?: num_bytes;
718 }
719 
720 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
721 			      fl_owner_t owner)
722 {
723 	struct file *file = ia->io->iocb->ki_filp;
724 	struct fuse_file *ff = file->private_data;
725 	struct fuse_conn *fc = ff->fc;
726 
727 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
728 	if (owner != NULL) {
729 		ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
730 		ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
731 	}
732 
733 	if (ia->io->async)
734 		return fuse_async_req_send(fc, ia, count);
735 
736 	return fuse_simple_request(fc, &ia->ap.args);
737 }
738 
739 static void fuse_read_update_size(struct inode *inode, loff_t size,
740 				  u64 attr_ver)
741 {
742 	struct fuse_conn *fc = get_fuse_conn(inode);
743 	struct fuse_inode *fi = get_fuse_inode(inode);
744 
745 	spin_lock(&fi->lock);
746 	if (attr_ver == fi->attr_version && size < inode->i_size &&
747 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
748 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
749 		i_size_write(inode, size);
750 	}
751 	spin_unlock(&fi->lock);
752 }
753 
754 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
755 			    struct fuse_args_pages *ap)
756 {
757 	struct fuse_conn *fc = get_fuse_conn(inode);
758 
759 	if (fc->writeback_cache) {
760 		/*
761 		 * A hole in a file. Some data after the hole are in page cache,
762 		 * but have not reached the client fs yet. So, the hole is not
763 		 * present there.
764 		 */
765 		int i;
766 		int start_idx = num_read >> PAGE_SHIFT;
767 		size_t off = num_read & (PAGE_SIZE - 1);
768 
769 		for (i = start_idx; i < ap->num_pages; i++) {
770 			zero_user_segment(ap->pages[i], off, PAGE_SIZE);
771 			off = 0;
772 		}
773 	} else {
774 		loff_t pos = page_offset(ap->pages[0]) + num_read;
775 		fuse_read_update_size(inode, pos, attr_ver);
776 	}
777 }
778 
779 static int fuse_do_readpage(struct file *file, struct page *page)
780 {
781 	struct inode *inode = page->mapping->host;
782 	struct fuse_conn *fc = get_fuse_conn(inode);
783 	loff_t pos = page_offset(page);
784 	struct fuse_page_desc desc = { .length = PAGE_SIZE };
785 	struct fuse_io_args ia = {
786 		.ap.args.page_zeroing = true,
787 		.ap.args.out_pages = true,
788 		.ap.num_pages = 1,
789 		.ap.pages = &page,
790 		.ap.descs = &desc,
791 	};
792 	ssize_t res;
793 	u64 attr_ver;
794 
795 	/*
796 	 * Page writeback can extend beyond the lifetime of the
797 	 * page-cache page, so make sure we read a properly synced
798 	 * page.
799 	 */
800 	fuse_wait_on_page_writeback(inode, page->index);
801 
802 	attr_ver = fuse_get_attr_version(fc);
803 
804 	fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
805 	res = fuse_simple_request(fc, &ia.ap.args);
806 	if (res < 0)
807 		return res;
808 	/*
809 	 * Short read means EOF.  If file size is larger, truncate it
810 	 */
811 	if (res < desc.length)
812 		fuse_short_read(inode, attr_ver, res, &ia.ap);
813 
814 	SetPageUptodate(page);
815 
816 	return 0;
817 }
818 
819 static int fuse_readpage(struct file *file, struct page *page)
820 {
821 	struct inode *inode = page->mapping->host;
822 	int err;
823 
824 	err = -EIO;
825 	if (is_bad_inode(inode))
826 		goto out;
827 
828 	err = fuse_do_readpage(file, page);
829 	fuse_invalidate_atime(inode);
830  out:
831 	unlock_page(page);
832 	return err;
833 }
834 
835 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
836 			       int err)
837 {
838 	int i;
839 	struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
840 	struct fuse_args_pages *ap = &ia->ap;
841 	size_t count = ia->read.in.size;
842 	size_t num_read = args->out_args[0].size;
843 	struct address_space *mapping = NULL;
844 
845 	for (i = 0; mapping == NULL && i < ap->num_pages; i++)
846 		mapping = ap->pages[i]->mapping;
847 
848 	if (mapping) {
849 		struct inode *inode = mapping->host;
850 
851 		/*
852 		 * Short read means EOF. If file size is larger, truncate it
853 		 */
854 		if (!err && num_read < count)
855 			fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
856 
857 		fuse_invalidate_atime(inode);
858 	}
859 
860 	for (i = 0; i < ap->num_pages; i++) {
861 		struct page *page = ap->pages[i];
862 
863 		if (!err)
864 			SetPageUptodate(page);
865 		else
866 			SetPageError(page);
867 		unlock_page(page);
868 		put_page(page);
869 	}
870 	if (ia->ff)
871 		fuse_file_put(ia->ff, false, false);
872 
873 	fuse_io_free(ia);
874 }
875 
876 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
877 {
878 	struct fuse_file *ff = file->private_data;
879 	struct fuse_conn *fc = ff->fc;
880 	struct fuse_args_pages *ap = &ia->ap;
881 	loff_t pos = page_offset(ap->pages[0]);
882 	size_t count = ap->num_pages << PAGE_SHIFT;
883 	int err;
884 
885 	ap->args.out_pages = true;
886 	ap->args.page_zeroing = true;
887 	ap->args.page_replace = true;
888 	fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
889 	ia->read.attr_ver = fuse_get_attr_version(fc);
890 	if (fc->async_read) {
891 		ia->ff = fuse_file_get(ff);
892 		ap->args.end = fuse_readpages_end;
893 		err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
894 		if (!err)
895 			return;
896 	} else {
897 		err = fuse_simple_request(fc, &ap->args);
898 	}
899 	fuse_readpages_end(fc, &ap->args, err);
900 }
901 
902 struct fuse_fill_data {
903 	struct fuse_io_args *ia;
904 	struct file *file;
905 	struct inode *inode;
906 	unsigned int nr_pages;
907 	unsigned int max_pages;
908 };
909 
910 static int fuse_readpages_fill(void *_data, struct page *page)
911 {
912 	struct fuse_fill_data *data = _data;
913 	struct fuse_io_args *ia = data->ia;
914 	struct fuse_args_pages *ap = &ia->ap;
915 	struct inode *inode = data->inode;
916 	struct fuse_conn *fc = get_fuse_conn(inode);
917 
918 	fuse_wait_on_page_writeback(inode, page->index);
919 
920 	if (ap->num_pages &&
921 	    (ap->num_pages == fc->max_pages ||
922 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
923 	     ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
924 		data->max_pages = min_t(unsigned int, data->nr_pages,
925 					fc->max_pages);
926 		fuse_send_readpages(ia, data->file);
927 		data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
928 		if (!ia) {
929 			unlock_page(page);
930 			return -ENOMEM;
931 		}
932 		ap = &ia->ap;
933 	}
934 
935 	if (WARN_ON(ap->num_pages >= data->max_pages)) {
936 		unlock_page(page);
937 		fuse_io_free(ia);
938 		return -EIO;
939 	}
940 
941 	get_page(page);
942 	ap->pages[ap->num_pages] = page;
943 	ap->descs[ap->num_pages].length = PAGE_SIZE;
944 	ap->num_pages++;
945 	data->nr_pages--;
946 	return 0;
947 }
948 
949 static int fuse_readpages(struct file *file, struct address_space *mapping,
950 			  struct list_head *pages, unsigned nr_pages)
951 {
952 	struct inode *inode = mapping->host;
953 	struct fuse_conn *fc = get_fuse_conn(inode);
954 	struct fuse_fill_data data;
955 	int err;
956 
957 	err = -EIO;
958 	if (is_bad_inode(inode))
959 		goto out;
960 
961 	data.file = file;
962 	data.inode = inode;
963 	data.nr_pages = nr_pages;
964 	data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
965 ;
966 	data.ia = fuse_io_alloc(NULL, data.max_pages);
967 	err = -ENOMEM;
968 	if (!data.ia)
969 		goto out;
970 
971 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
972 	if (!err) {
973 		if (data.ia->ap.num_pages)
974 			fuse_send_readpages(data.ia, file);
975 		else
976 			fuse_io_free(data.ia);
977 	}
978 out:
979 	return err;
980 }
981 
982 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
983 {
984 	struct inode *inode = iocb->ki_filp->f_mapping->host;
985 	struct fuse_conn *fc = get_fuse_conn(inode);
986 
987 	/*
988 	 * In auto invalidate mode, always update attributes on read.
989 	 * Otherwise, only update if we attempt to read past EOF (to ensure
990 	 * i_size is up to date).
991 	 */
992 	if (fc->auto_inval_data ||
993 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
994 		int err;
995 		err = fuse_update_attributes(inode, iocb->ki_filp);
996 		if (err)
997 			return err;
998 	}
999 
1000 	return generic_file_read_iter(iocb, to);
1001 }
1002 
1003 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1004 				 loff_t pos, size_t count)
1005 {
1006 	struct fuse_args *args = &ia->ap.args;
1007 
1008 	ia->write.in.fh = ff->fh;
1009 	ia->write.in.offset = pos;
1010 	ia->write.in.size = count;
1011 	args->opcode = FUSE_WRITE;
1012 	args->nodeid = ff->nodeid;
1013 	args->in_numargs = 2;
1014 	if (ff->fc->minor < 9)
1015 		args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1016 	else
1017 		args->in_args[0].size = sizeof(ia->write.in);
1018 	args->in_args[0].value = &ia->write.in;
1019 	args->in_args[1].size = count;
1020 	args->out_numargs = 1;
1021 	args->out_args[0].size = sizeof(ia->write.out);
1022 	args->out_args[0].value = &ia->write.out;
1023 }
1024 
1025 static unsigned int fuse_write_flags(struct kiocb *iocb)
1026 {
1027 	unsigned int flags = iocb->ki_filp->f_flags;
1028 
1029 	if (iocb->ki_flags & IOCB_DSYNC)
1030 		flags |= O_DSYNC;
1031 	if (iocb->ki_flags & IOCB_SYNC)
1032 		flags |= O_SYNC;
1033 
1034 	return flags;
1035 }
1036 
1037 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1038 			       size_t count, fl_owner_t owner)
1039 {
1040 	struct kiocb *iocb = ia->io->iocb;
1041 	struct file *file = iocb->ki_filp;
1042 	struct fuse_file *ff = file->private_data;
1043 	struct fuse_conn *fc = ff->fc;
1044 	struct fuse_write_in *inarg = &ia->write.in;
1045 	ssize_t err;
1046 
1047 	fuse_write_args_fill(ia, ff, pos, count);
1048 	inarg->flags = fuse_write_flags(iocb);
1049 	if (owner != NULL) {
1050 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1051 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1052 	}
1053 
1054 	if (ia->io->async)
1055 		return fuse_async_req_send(fc, ia, count);
1056 
1057 	err = fuse_simple_request(fc, &ia->ap.args);
1058 	if (!err && ia->write.out.size > count)
1059 		err = -EIO;
1060 
1061 	return err ?: ia->write.out.size;
1062 }
1063 
1064 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1065 {
1066 	struct fuse_conn *fc = get_fuse_conn(inode);
1067 	struct fuse_inode *fi = get_fuse_inode(inode);
1068 	bool ret = false;
1069 
1070 	spin_lock(&fi->lock);
1071 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1072 	if (pos > inode->i_size) {
1073 		i_size_write(inode, pos);
1074 		ret = true;
1075 	}
1076 	spin_unlock(&fi->lock);
1077 
1078 	return ret;
1079 }
1080 
1081 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1082 				     struct kiocb *iocb, struct inode *inode,
1083 				     loff_t pos, size_t count)
1084 {
1085 	struct fuse_args_pages *ap = &ia->ap;
1086 	struct file *file = iocb->ki_filp;
1087 	struct fuse_file *ff = file->private_data;
1088 	struct fuse_conn *fc = ff->fc;
1089 	unsigned int offset, i;
1090 	int err;
1091 
1092 	for (i = 0; i < ap->num_pages; i++)
1093 		fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1094 
1095 	fuse_write_args_fill(ia, ff, pos, count);
1096 	ia->write.in.flags = fuse_write_flags(iocb);
1097 
1098 	err = fuse_simple_request(fc, &ap->args);
1099 
1100 	offset = ap->descs[0].offset;
1101 	count = ia->write.out.size;
1102 	for (i = 0; i < ap->num_pages; i++) {
1103 		struct page *page = ap->pages[i];
1104 
1105 		if (!err && !offset && count >= PAGE_SIZE)
1106 			SetPageUptodate(page);
1107 
1108 		if (count > PAGE_SIZE - offset)
1109 			count -= PAGE_SIZE - offset;
1110 		else
1111 			count = 0;
1112 		offset = 0;
1113 
1114 		unlock_page(page);
1115 		put_page(page);
1116 	}
1117 
1118 	return err;
1119 }
1120 
1121 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1122 				     struct address_space *mapping,
1123 				     struct iov_iter *ii, loff_t pos,
1124 				     unsigned int max_pages)
1125 {
1126 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1127 	unsigned offset = pos & (PAGE_SIZE - 1);
1128 	size_t count = 0;
1129 	int err;
1130 
1131 	ap->args.in_pages = true;
1132 	ap->descs[0].offset = offset;
1133 
1134 	do {
1135 		size_t tmp;
1136 		struct page *page;
1137 		pgoff_t index = pos >> PAGE_SHIFT;
1138 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1139 				     iov_iter_count(ii));
1140 
1141 		bytes = min_t(size_t, bytes, fc->max_write - count);
1142 
1143  again:
1144 		err = -EFAULT;
1145 		if (iov_iter_fault_in_readable(ii, bytes))
1146 			break;
1147 
1148 		err = -ENOMEM;
1149 		page = grab_cache_page_write_begin(mapping, index, 0);
1150 		if (!page)
1151 			break;
1152 
1153 		if (mapping_writably_mapped(mapping))
1154 			flush_dcache_page(page);
1155 
1156 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1157 		flush_dcache_page(page);
1158 
1159 		iov_iter_advance(ii, tmp);
1160 		if (!tmp) {
1161 			unlock_page(page);
1162 			put_page(page);
1163 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1164 			goto again;
1165 		}
1166 
1167 		err = 0;
1168 		ap->pages[ap->num_pages] = page;
1169 		ap->descs[ap->num_pages].length = tmp;
1170 		ap->num_pages++;
1171 
1172 		count += tmp;
1173 		pos += tmp;
1174 		offset += tmp;
1175 		if (offset == PAGE_SIZE)
1176 			offset = 0;
1177 
1178 		if (!fc->big_writes)
1179 			break;
1180 	} while (iov_iter_count(ii) && count < fc->max_write &&
1181 		 ap->num_pages < max_pages && offset == 0);
1182 
1183 	return count > 0 ? count : err;
1184 }
1185 
1186 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1187 				     unsigned int max_pages)
1188 {
1189 	return min_t(unsigned int,
1190 		     ((pos + len - 1) >> PAGE_SHIFT) -
1191 		     (pos >> PAGE_SHIFT) + 1,
1192 		     max_pages);
1193 }
1194 
1195 static ssize_t fuse_perform_write(struct kiocb *iocb,
1196 				  struct address_space *mapping,
1197 				  struct iov_iter *ii, loff_t pos)
1198 {
1199 	struct inode *inode = mapping->host;
1200 	struct fuse_conn *fc = get_fuse_conn(inode);
1201 	struct fuse_inode *fi = get_fuse_inode(inode);
1202 	int err = 0;
1203 	ssize_t res = 0;
1204 
1205 	if (inode->i_size < pos + iov_iter_count(ii))
1206 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1207 
1208 	do {
1209 		ssize_t count;
1210 		struct fuse_io_args ia = {};
1211 		struct fuse_args_pages *ap = &ia.ap;
1212 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1213 						      fc->max_pages);
1214 
1215 		ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1216 		if (!ap->pages) {
1217 			err = -ENOMEM;
1218 			break;
1219 		}
1220 
1221 		count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1222 		if (count <= 0) {
1223 			err = count;
1224 		} else {
1225 			err = fuse_send_write_pages(&ia, iocb, inode,
1226 						    pos, count);
1227 			if (!err) {
1228 				size_t num_written = ia.write.out.size;
1229 
1230 				res += num_written;
1231 				pos += num_written;
1232 
1233 				/* break out of the loop on short write */
1234 				if (num_written != count)
1235 					err = -EIO;
1236 			}
1237 		}
1238 		kfree(ap->pages);
1239 	} while (!err && iov_iter_count(ii));
1240 
1241 	if (res > 0)
1242 		fuse_write_update_size(inode, pos);
1243 
1244 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1245 	fuse_invalidate_attr(inode);
1246 
1247 	return res > 0 ? res : err;
1248 }
1249 
1250 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1251 {
1252 	struct file *file = iocb->ki_filp;
1253 	struct address_space *mapping = file->f_mapping;
1254 	ssize_t written = 0;
1255 	ssize_t written_buffered = 0;
1256 	struct inode *inode = mapping->host;
1257 	ssize_t err;
1258 	loff_t endbyte = 0;
1259 
1260 	if (get_fuse_conn(inode)->writeback_cache) {
1261 		/* Update size (EOF optimization) and mode (SUID clearing) */
1262 		err = fuse_update_attributes(mapping->host, file);
1263 		if (err)
1264 			return err;
1265 
1266 		return generic_file_write_iter(iocb, from);
1267 	}
1268 
1269 	inode_lock(inode);
1270 
1271 	/* We can write back this queue in page reclaim */
1272 	current->backing_dev_info = inode_to_bdi(inode);
1273 
1274 	err = generic_write_checks(iocb, from);
1275 	if (err <= 0)
1276 		goto out;
1277 
1278 	err = file_remove_privs(file);
1279 	if (err)
1280 		goto out;
1281 
1282 	err = file_update_time(file);
1283 	if (err)
1284 		goto out;
1285 
1286 	if (iocb->ki_flags & IOCB_DIRECT) {
1287 		loff_t pos = iocb->ki_pos;
1288 		written = generic_file_direct_write(iocb, from);
1289 		if (written < 0 || !iov_iter_count(from))
1290 			goto out;
1291 
1292 		pos += written;
1293 
1294 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1295 		if (written_buffered < 0) {
1296 			err = written_buffered;
1297 			goto out;
1298 		}
1299 		endbyte = pos + written_buffered - 1;
1300 
1301 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1302 						   endbyte);
1303 		if (err)
1304 			goto out;
1305 
1306 		invalidate_mapping_pages(file->f_mapping,
1307 					 pos >> PAGE_SHIFT,
1308 					 endbyte >> PAGE_SHIFT);
1309 
1310 		written += written_buffered;
1311 		iocb->ki_pos = pos + written_buffered;
1312 	} else {
1313 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1314 		if (written >= 0)
1315 			iocb->ki_pos += written;
1316 	}
1317 out:
1318 	current->backing_dev_info = NULL;
1319 	inode_unlock(inode);
1320 	if (written > 0)
1321 		written = generic_write_sync(iocb, written);
1322 
1323 	return written ? written : err;
1324 }
1325 
1326 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1327 					       unsigned int index,
1328 					       unsigned int nr_pages)
1329 {
1330 	int i;
1331 
1332 	for (i = index; i < index + nr_pages; i++)
1333 		descs[i].length = PAGE_SIZE - descs[i].offset;
1334 }
1335 
1336 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1337 {
1338 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1339 }
1340 
1341 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1342 					size_t max_size)
1343 {
1344 	return min(iov_iter_single_seg_count(ii), max_size);
1345 }
1346 
1347 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1348 			       size_t *nbytesp, int write,
1349 			       unsigned int max_pages)
1350 {
1351 	size_t nbytes = 0;  /* # bytes already packed in req */
1352 	ssize_t ret = 0;
1353 
1354 	/* Special case for kernel I/O: can copy directly into the buffer */
1355 	if (iov_iter_is_kvec(ii)) {
1356 		unsigned long user_addr = fuse_get_user_addr(ii);
1357 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1358 
1359 		if (write)
1360 			ap->args.in_args[1].value = (void *) user_addr;
1361 		else
1362 			ap->args.out_args[0].value = (void *) user_addr;
1363 
1364 		iov_iter_advance(ii, frag_size);
1365 		*nbytesp = frag_size;
1366 		return 0;
1367 	}
1368 
1369 	while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1370 		unsigned npages;
1371 		size_t start;
1372 		ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1373 					*nbytesp - nbytes,
1374 					max_pages - ap->num_pages,
1375 					&start);
1376 		if (ret < 0)
1377 			break;
1378 
1379 		iov_iter_advance(ii, ret);
1380 		nbytes += ret;
1381 
1382 		ret += start;
1383 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1384 
1385 		ap->descs[ap->num_pages].offset = start;
1386 		fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1387 
1388 		ap->num_pages += npages;
1389 		ap->descs[ap->num_pages - 1].length -=
1390 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1391 	}
1392 
1393 	if (write)
1394 		ap->args.in_pages = 1;
1395 	else
1396 		ap->args.out_pages = 1;
1397 
1398 	*nbytesp = nbytes;
1399 
1400 	return ret < 0 ? ret : 0;
1401 }
1402 
1403 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1404 		       loff_t *ppos, int flags)
1405 {
1406 	int write = flags & FUSE_DIO_WRITE;
1407 	int cuse = flags & FUSE_DIO_CUSE;
1408 	struct file *file = io->iocb->ki_filp;
1409 	struct inode *inode = file->f_mapping->host;
1410 	struct fuse_file *ff = file->private_data;
1411 	struct fuse_conn *fc = ff->fc;
1412 	size_t nmax = write ? fc->max_write : fc->max_read;
1413 	loff_t pos = *ppos;
1414 	size_t count = iov_iter_count(iter);
1415 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1416 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1417 	ssize_t res = 0;
1418 	int err = 0;
1419 	struct fuse_io_args *ia;
1420 	unsigned int max_pages;
1421 
1422 	max_pages = iov_iter_npages(iter, fc->max_pages);
1423 	ia = fuse_io_alloc(io, max_pages);
1424 	if (!ia)
1425 		return -ENOMEM;
1426 
1427 	ia->io = io;
1428 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1429 		if (!write)
1430 			inode_lock(inode);
1431 		fuse_sync_writes(inode);
1432 		if (!write)
1433 			inode_unlock(inode);
1434 	}
1435 
1436 	io->should_dirty = !write && iter_is_iovec(iter);
1437 	while (count) {
1438 		ssize_t nres;
1439 		fl_owner_t owner = current->files;
1440 		size_t nbytes = min(count, nmax);
1441 
1442 		err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1443 					  max_pages);
1444 		if (err && !nbytes)
1445 			break;
1446 
1447 		if (write) {
1448 			if (!capable(CAP_FSETID))
1449 				ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1450 
1451 			nres = fuse_send_write(ia, pos, nbytes, owner);
1452 		} else {
1453 			nres = fuse_send_read(ia, pos, nbytes, owner);
1454 		}
1455 
1456 		if (!io->async || nres < 0) {
1457 			fuse_release_user_pages(&ia->ap, io->should_dirty);
1458 			fuse_io_free(ia);
1459 		}
1460 		ia = NULL;
1461 		if (nres < 0) {
1462 			err = nres;
1463 			break;
1464 		}
1465 		WARN_ON(nres > nbytes);
1466 
1467 		count -= nres;
1468 		res += nres;
1469 		pos += nres;
1470 		if (nres != nbytes)
1471 			break;
1472 		if (count) {
1473 			max_pages = iov_iter_npages(iter, fc->max_pages);
1474 			ia = fuse_io_alloc(io, max_pages);
1475 			if (!ia)
1476 				break;
1477 		}
1478 	}
1479 	if (ia)
1480 		fuse_io_free(ia);
1481 	if (res > 0)
1482 		*ppos = pos;
1483 
1484 	return res > 0 ? res : err;
1485 }
1486 EXPORT_SYMBOL_GPL(fuse_direct_io);
1487 
1488 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1489 				  struct iov_iter *iter,
1490 				  loff_t *ppos)
1491 {
1492 	ssize_t res;
1493 	struct inode *inode = file_inode(io->iocb->ki_filp);
1494 
1495 	res = fuse_direct_io(io, iter, ppos, 0);
1496 
1497 	fuse_invalidate_atime(inode);
1498 
1499 	return res;
1500 }
1501 
1502 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1503 
1504 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1505 {
1506 	ssize_t res;
1507 
1508 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1509 		res = fuse_direct_IO(iocb, to);
1510 	} else {
1511 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1512 
1513 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1514 	}
1515 
1516 	return res;
1517 }
1518 
1519 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1520 {
1521 	struct inode *inode = file_inode(iocb->ki_filp);
1522 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1523 	ssize_t res;
1524 
1525 	/* Don't allow parallel writes to the same file */
1526 	inode_lock(inode);
1527 	res = generic_write_checks(iocb, from);
1528 	if (res > 0) {
1529 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1530 			res = fuse_direct_IO(iocb, from);
1531 		} else {
1532 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1533 					     FUSE_DIO_WRITE);
1534 		}
1535 	}
1536 	fuse_invalidate_attr(inode);
1537 	if (res > 0)
1538 		fuse_write_update_size(inode, iocb->ki_pos);
1539 	inode_unlock(inode);
1540 
1541 	return res;
1542 }
1543 
1544 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1545 {
1546 	struct file *file = iocb->ki_filp;
1547 	struct fuse_file *ff = file->private_data;
1548 
1549 	if (is_bad_inode(file_inode(file)))
1550 		return -EIO;
1551 
1552 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1553 		return fuse_cache_read_iter(iocb, to);
1554 	else
1555 		return fuse_direct_read_iter(iocb, to);
1556 }
1557 
1558 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1559 {
1560 	struct file *file = iocb->ki_filp;
1561 	struct fuse_file *ff = file->private_data;
1562 
1563 	if (is_bad_inode(file_inode(file)))
1564 		return -EIO;
1565 
1566 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1567 		return fuse_cache_write_iter(iocb, from);
1568 	else
1569 		return fuse_direct_write_iter(iocb, from);
1570 }
1571 
1572 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1573 {
1574 	struct fuse_args_pages *ap = &wpa->ia.ap;
1575 	int i;
1576 
1577 	for (i = 0; i < ap->num_pages; i++)
1578 		__free_page(ap->pages[i]);
1579 
1580 	if (wpa->ia.ff)
1581 		fuse_file_put(wpa->ia.ff, false, false);
1582 
1583 	kfree(ap->pages);
1584 	kfree(wpa);
1585 }
1586 
1587 static void fuse_writepage_finish(struct fuse_conn *fc,
1588 				  struct fuse_writepage_args *wpa)
1589 {
1590 	struct fuse_args_pages *ap = &wpa->ia.ap;
1591 	struct inode *inode = wpa->inode;
1592 	struct fuse_inode *fi = get_fuse_inode(inode);
1593 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1594 	int i;
1595 
1596 	list_del(&wpa->writepages_entry);
1597 	for (i = 0; i < ap->num_pages; i++) {
1598 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1599 		dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1600 		wb_writeout_inc(&bdi->wb);
1601 	}
1602 	wake_up(&fi->page_waitq);
1603 }
1604 
1605 /* Called under fi->lock, may release and reacquire it */
1606 static void fuse_send_writepage(struct fuse_conn *fc,
1607 				struct fuse_writepage_args *wpa, loff_t size)
1608 __releases(fi->lock)
1609 __acquires(fi->lock)
1610 {
1611 	struct fuse_writepage_args *aux, *next;
1612 	struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1613 	struct fuse_write_in *inarg = &wpa->ia.write.in;
1614 	struct fuse_args *args = &wpa->ia.ap.args;
1615 	__u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1616 	int err;
1617 
1618 	fi->writectr++;
1619 	if (inarg->offset + data_size <= size) {
1620 		inarg->size = data_size;
1621 	} else if (inarg->offset < size) {
1622 		inarg->size = size - inarg->offset;
1623 	} else {
1624 		/* Got truncated off completely */
1625 		goto out_free;
1626 	}
1627 
1628 	args->in_args[1].size = inarg->size;
1629 	args->force = true;
1630 	args->nocreds = true;
1631 
1632 	err = fuse_simple_background(fc, args, GFP_ATOMIC);
1633 	if (err == -ENOMEM) {
1634 		spin_unlock(&fi->lock);
1635 		err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1636 		spin_lock(&fi->lock);
1637 	}
1638 
1639 	/* Fails on broken connection only */
1640 	if (unlikely(err))
1641 		goto out_free;
1642 
1643 	return;
1644 
1645  out_free:
1646 	fi->writectr--;
1647 	fuse_writepage_finish(fc, wpa);
1648 	spin_unlock(&fi->lock);
1649 
1650 	/* After fuse_writepage_finish() aux request list is private */
1651 	for (aux = wpa->next; aux; aux = next) {
1652 		next = aux->next;
1653 		aux->next = NULL;
1654 		fuse_writepage_free(aux);
1655 	}
1656 
1657 	fuse_writepage_free(wpa);
1658 	spin_lock(&fi->lock);
1659 }
1660 
1661 /*
1662  * If fi->writectr is positive (no truncate or fsync going on) send
1663  * all queued writepage requests.
1664  *
1665  * Called with fi->lock
1666  */
1667 void fuse_flush_writepages(struct inode *inode)
1668 __releases(fi->lock)
1669 __acquires(fi->lock)
1670 {
1671 	struct fuse_conn *fc = get_fuse_conn(inode);
1672 	struct fuse_inode *fi = get_fuse_inode(inode);
1673 	loff_t crop = i_size_read(inode);
1674 	struct fuse_writepage_args *wpa;
1675 
1676 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1677 		wpa = list_entry(fi->queued_writes.next,
1678 				 struct fuse_writepage_args, queue_entry);
1679 		list_del_init(&wpa->queue_entry);
1680 		fuse_send_writepage(fc, wpa, crop);
1681 	}
1682 }
1683 
1684 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1685 			       int error)
1686 {
1687 	struct fuse_writepage_args *wpa =
1688 		container_of(args, typeof(*wpa), ia.ap.args);
1689 	struct inode *inode = wpa->inode;
1690 	struct fuse_inode *fi = get_fuse_inode(inode);
1691 
1692 	mapping_set_error(inode->i_mapping, error);
1693 	spin_lock(&fi->lock);
1694 	while (wpa->next) {
1695 		struct fuse_conn *fc = get_fuse_conn(inode);
1696 		struct fuse_write_in *inarg = &wpa->ia.write.in;
1697 		struct fuse_writepage_args *next = wpa->next;
1698 
1699 		wpa->next = next->next;
1700 		next->next = NULL;
1701 		next->ia.ff = fuse_file_get(wpa->ia.ff);
1702 		list_add(&next->writepages_entry, &fi->writepages);
1703 
1704 		/*
1705 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1706 		 * based on primary request size.
1707 		 *
1708 		 * 1st case (trivial): there are no concurrent activities using
1709 		 * fuse_set/release_nowrite.  Then we're on safe side because
1710 		 * fuse_flush_writepages() would call fuse_send_writepage()
1711 		 * anyway.
1712 		 *
1713 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1714 		 * now for completion of all in-flight requests.  This happens
1715 		 * rarely and no more than once per page, so this should be
1716 		 * okay.
1717 		 *
1718 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1719 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1720 		 * that fuse_set_nowrite returned implies that all in-flight
1721 		 * requests were completed along with all of their secondary
1722 		 * requests.  Further primary requests are blocked by negative
1723 		 * writectr.  Hence there cannot be any in-flight requests and
1724 		 * no invocations of fuse_writepage_end() while we're in
1725 		 * fuse_set_nowrite..fuse_release_nowrite section.
1726 		 */
1727 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1728 	}
1729 	fi->writectr--;
1730 	fuse_writepage_finish(fc, wpa);
1731 	spin_unlock(&fi->lock);
1732 	fuse_writepage_free(wpa);
1733 }
1734 
1735 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1736 					       struct fuse_inode *fi)
1737 {
1738 	struct fuse_file *ff = NULL;
1739 
1740 	spin_lock(&fi->lock);
1741 	if (!list_empty(&fi->write_files)) {
1742 		ff = list_entry(fi->write_files.next, struct fuse_file,
1743 				write_entry);
1744 		fuse_file_get(ff);
1745 	}
1746 	spin_unlock(&fi->lock);
1747 
1748 	return ff;
1749 }
1750 
1751 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1752 					     struct fuse_inode *fi)
1753 {
1754 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1755 	WARN_ON(!ff);
1756 	return ff;
1757 }
1758 
1759 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1760 {
1761 	struct fuse_conn *fc = get_fuse_conn(inode);
1762 	struct fuse_inode *fi = get_fuse_inode(inode);
1763 	struct fuse_file *ff;
1764 	int err;
1765 
1766 	ff = __fuse_write_file_get(fc, fi);
1767 	err = fuse_flush_times(inode, ff);
1768 	if (ff)
1769 		fuse_file_put(ff, false, false);
1770 
1771 	return err;
1772 }
1773 
1774 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1775 {
1776 	struct fuse_writepage_args *wpa;
1777 	struct fuse_args_pages *ap;
1778 
1779 	wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1780 	if (wpa) {
1781 		ap = &wpa->ia.ap;
1782 		ap->num_pages = 0;
1783 		ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1784 		if (!ap->pages) {
1785 			kfree(wpa);
1786 			wpa = NULL;
1787 		}
1788 	}
1789 	return wpa;
1790 
1791 }
1792 
1793 static int fuse_writepage_locked(struct page *page)
1794 {
1795 	struct address_space *mapping = page->mapping;
1796 	struct inode *inode = mapping->host;
1797 	struct fuse_conn *fc = get_fuse_conn(inode);
1798 	struct fuse_inode *fi = get_fuse_inode(inode);
1799 	struct fuse_writepage_args *wpa;
1800 	struct fuse_args_pages *ap;
1801 	struct page *tmp_page;
1802 	int error = -ENOMEM;
1803 
1804 	set_page_writeback(page);
1805 
1806 	wpa = fuse_writepage_args_alloc();
1807 	if (!wpa)
1808 		goto err;
1809 	ap = &wpa->ia.ap;
1810 
1811 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1812 	if (!tmp_page)
1813 		goto err_free;
1814 
1815 	error = -EIO;
1816 	wpa->ia.ff = fuse_write_file_get(fc, fi);
1817 	if (!wpa->ia.ff)
1818 		goto err_nofile;
1819 
1820 	fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1821 
1822 	copy_highpage(tmp_page, page);
1823 	wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1824 	wpa->next = NULL;
1825 	ap->args.in_pages = true;
1826 	ap->num_pages = 1;
1827 	ap->pages[0] = tmp_page;
1828 	ap->descs[0].offset = 0;
1829 	ap->descs[0].length = PAGE_SIZE;
1830 	ap->args.end = fuse_writepage_end;
1831 	wpa->inode = inode;
1832 
1833 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1834 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1835 
1836 	spin_lock(&fi->lock);
1837 	list_add(&wpa->writepages_entry, &fi->writepages);
1838 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1839 	fuse_flush_writepages(inode);
1840 	spin_unlock(&fi->lock);
1841 
1842 	end_page_writeback(page);
1843 
1844 	return 0;
1845 
1846 err_nofile:
1847 	__free_page(tmp_page);
1848 err_free:
1849 	kfree(wpa);
1850 err:
1851 	mapping_set_error(page->mapping, error);
1852 	end_page_writeback(page);
1853 	return error;
1854 }
1855 
1856 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1857 {
1858 	int err;
1859 
1860 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1861 		/*
1862 		 * ->writepages() should be called for sync() and friends.  We
1863 		 * should only get here on direct reclaim and then we are
1864 		 * allowed to skip a page which is already in flight
1865 		 */
1866 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1867 
1868 		redirty_page_for_writepage(wbc, page);
1869 		unlock_page(page);
1870 		return 0;
1871 	}
1872 
1873 	err = fuse_writepage_locked(page);
1874 	unlock_page(page);
1875 
1876 	return err;
1877 }
1878 
1879 struct fuse_fill_wb_data {
1880 	struct fuse_writepage_args *wpa;
1881 	struct fuse_file *ff;
1882 	struct inode *inode;
1883 	struct page **orig_pages;
1884 	unsigned int max_pages;
1885 };
1886 
1887 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1888 {
1889 	struct fuse_args_pages *ap = &data->wpa->ia.ap;
1890 	struct fuse_conn *fc = get_fuse_conn(data->inode);
1891 	struct page **pages;
1892 	struct fuse_page_desc *descs;
1893 	unsigned int npages = min_t(unsigned int,
1894 				    max_t(unsigned int, data->max_pages * 2,
1895 					  FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1896 				    fc->max_pages);
1897 	WARN_ON(npages <= data->max_pages);
1898 
1899 	pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1900 	if (!pages)
1901 		return false;
1902 
1903 	memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1904 	memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1905 	kfree(ap->pages);
1906 	ap->pages = pages;
1907 	ap->descs = descs;
1908 	data->max_pages = npages;
1909 
1910 	return true;
1911 }
1912 
1913 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1914 {
1915 	struct fuse_writepage_args *wpa = data->wpa;
1916 	struct inode *inode = data->inode;
1917 	struct fuse_inode *fi = get_fuse_inode(inode);
1918 	int num_pages = wpa->ia.ap.num_pages;
1919 	int i;
1920 
1921 	wpa->ia.ff = fuse_file_get(data->ff);
1922 	spin_lock(&fi->lock);
1923 	list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1924 	fuse_flush_writepages(inode);
1925 	spin_unlock(&fi->lock);
1926 
1927 	for (i = 0; i < num_pages; i++)
1928 		end_page_writeback(data->orig_pages[i]);
1929 }
1930 
1931 /*
1932  * First recheck under fi->lock if the offending offset is still under
1933  * writeback.  If yes, then iterate auxiliary write requests, to see if there's
1934  * one already added for a page at this offset.  If there's none, then insert
1935  * this new request onto the auxiliary list, otherwise reuse the existing one by
1936  * copying the new page contents over to the old temporary page.
1937  */
1938 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1939 				     struct page *page)
1940 {
1941 	struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1942 	struct fuse_writepage_args *tmp;
1943 	struct fuse_writepage_args *old_wpa;
1944 	struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1945 
1946 	WARN_ON(new_ap->num_pages != 0);
1947 
1948 	spin_lock(&fi->lock);
1949 	list_del(&new_wpa->writepages_entry);
1950 	old_wpa = fuse_find_writeback(fi, page->index, page->index);
1951 	if (!old_wpa) {
1952 		list_add(&new_wpa->writepages_entry, &fi->writepages);
1953 		spin_unlock(&fi->lock);
1954 		return false;
1955 	}
1956 
1957 	new_ap->num_pages = 1;
1958 	for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1959 		pgoff_t curr_index;
1960 
1961 		WARN_ON(tmp->inode != new_wpa->inode);
1962 		curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1963 		if (curr_index == page->index) {
1964 			WARN_ON(tmp->ia.ap.num_pages != 1);
1965 			swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1966 			break;
1967 		}
1968 	}
1969 
1970 	if (!tmp) {
1971 		new_wpa->next = old_wpa->next;
1972 		old_wpa->next = new_wpa;
1973 	}
1974 
1975 	spin_unlock(&fi->lock);
1976 
1977 	if (tmp) {
1978 		struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
1979 
1980 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1981 		dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
1982 		wb_writeout_inc(&bdi->wb);
1983 		fuse_writepage_free(new_wpa);
1984 	}
1985 
1986 	return true;
1987 }
1988 
1989 static int fuse_writepages_fill(struct page *page,
1990 		struct writeback_control *wbc, void *_data)
1991 {
1992 	struct fuse_fill_wb_data *data = _data;
1993 	struct fuse_writepage_args *wpa = data->wpa;
1994 	struct fuse_args_pages *ap = &wpa->ia.ap;
1995 	struct inode *inode = data->inode;
1996 	struct fuse_inode *fi = get_fuse_inode(inode);
1997 	struct fuse_conn *fc = get_fuse_conn(inode);
1998 	struct page *tmp_page;
1999 	bool is_writeback;
2000 	int err;
2001 
2002 	if (!data->ff) {
2003 		err = -EIO;
2004 		data->ff = fuse_write_file_get(fc, fi);
2005 		if (!data->ff)
2006 			goto out_unlock;
2007 	}
2008 
2009 	/*
2010 	 * Being under writeback is unlikely but possible.  For example direct
2011 	 * read to an mmaped fuse file will set the page dirty twice; once when
2012 	 * the pages are faulted with get_user_pages(), and then after the read
2013 	 * completed.
2014 	 */
2015 	is_writeback = fuse_page_is_writeback(inode, page->index);
2016 
2017 	if (wpa && ap->num_pages &&
2018 	    (is_writeback || ap->num_pages == fc->max_pages ||
2019 	     (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2020 	     data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2021 		fuse_writepages_send(data);
2022 		data->wpa = NULL;
2023 	} else if (wpa && ap->num_pages == data->max_pages) {
2024 		if (!fuse_pages_realloc(data)) {
2025 			fuse_writepages_send(data);
2026 			data->wpa = NULL;
2027 		}
2028 	}
2029 
2030 	err = -ENOMEM;
2031 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2032 	if (!tmp_page)
2033 		goto out_unlock;
2034 
2035 	/*
2036 	 * The page must not be redirtied until the writeout is completed
2037 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
2038 	 * there could be more than one temporary page instance for each real
2039 	 * page.
2040 	 *
2041 	 * This is ensured by holding the page lock in page_mkwrite() while
2042 	 * checking fuse_page_is_writeback().  We already hold the page lock
2043 	 * since clear_page_dirty_for_io() and keep it held until we add the
2044 	 * request to the fi->writepages list and increment ap->num_pages.
2045 	 * After this fuse_page_is_writeback() will indicate that the page is
2046 	 * under writeback, so we can release the page lock.
2047 	 */
2048 	if (data->wpa == NULL) {
2049 		err = -ENOMEM;
2050 		wpa = fuse_writepage_args_alloc();
2051 		if (!wpa) {
2052 			__free_page(tmp_page);
2053 			goto out_unlock;
2054 		}
2055 		data->max_pages = 1;
2056 
2057 		ap = &wpa->ia.ap;
2058 		fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2059 		wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2060 		wpa->next = NULL;
2061 		ap->args.in_pages = true;
2062 		ap->args.end = fuse_writepage_end;
2063 		ap->num_pages = 0;
2064 		wpa->inode = inode;
2065 
2066 		spin_lock(&fi->lock);
2067 		list_add(&wpa->writepages_entry, &fi->writepages);
2068 		spin_unlock(&fi->lock);
2069 
2070 		data->wpa = wpa;
2071 	}
2072 	set_page_writeback(page);
2073 
2074 	copy_highpage(tmp_page, page);
2075 	ap->pages[ap->num_pages] = tmp_page;
2076 	ap->descs[ap->num_pages].offset = 0;
2077 	ap->descs[ap->num_pages].length = PAGE_SIZE;
2078 
2079 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2080 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2081 
2082 	err = 0;
2083 	if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2084 		end_page_writeback(page);
2085 		data->wpa = NULL;
2086 		goto out_unlock;
2087 	}
2088 	data->orig_pages[ap->num_pages] = page;
2089 
2090 	/*
2091 	 * Protected by fi->lock against concurrent access by
2092 	 * fuse_page_is_writeback().
2093 	 */
2094 	spin_lock(&fi->lock);
2095 	ap->num_pages++;
2096 	spin_unlock(&fi->lock);
2097 
2098 out_unlock:
2099 	unlock_page(page);
2100 
2101 	return err;
2102 }
2103 
2104 static int fuse_writepages(struct address_space *mapping,
2105 			   struct writeback_control *wbc)
2106 {
2107 	struct inode *inode = mapping->host;
2108 	struct fuse_conn *fc = get_fuse_conn(inode);
2109 	struct fuse_fill_wb_data data;
2110 	int err;
2111 
2112 	err = -EIO;
2113 	if (is_bad_inode(inode))
2114 		goto out;
2115 
2116 	data.inode = inode;
2117 	data.wpa = NULL;
2118 	data.ff = NULL;
2119 
2120 	err = -ENOMEM;
2121 	data.orig_pages = kcalloc(fc->max_pages,
2122 				  sizeof(struct page *),
2123 				  GFP_NOFS);
2124 	if (!data.orig_pages)
2125 		goto out;
2126 
2127 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2128 	if (data.wpa) {
2129 		/* Ignore errors if we can write at least one page */
2130 		WARN_ON(!data.wpa->ia.ap.num_pages);
2131 		fuse_writepages_send(&data);
2132 		err = 0;
2133 	}
2134 	if (data.ff)
2135 		fuse_file_put(data.ff, false, false);
2136 
2137 	kfree(data.orig_pages);
2138 out:
2139 	return err;
2140 }
2141 
2142 /*
2143  * It's worthy to make sure that space is reserved on disk for the write,
2144  * but how to implement it without killing performance need more thinking.
2145  */
2146 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2147 		loff_t pos, unsigned len, unsigned flags,
2148 		struct page **pagep, void **fsdata)
2149 {
2150 	pgoff_t index = pos >> PAGE_SHIFT;
2151 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2152 	struct page *page;
2153 	loff_t fsize;
2154 	int err = -ENOMEM;
2155 
2156 	WARN_ON(!fc->writeback_cache);
2157 
2158 	page = grab_cache_page_write_begin(mapping, index, flags);
2159 	if (!page)
2160 		goto error;
2161 
2162 	fuse_wait_on_page_writeback(mapping->host, page->index);
2163 
2164 	if (PageUptodate(page) || len == PAGE_SIZE)
2165 		goto success;
2166 	/*
2167 	 * Check if the start this page comes after the end of file, in which
2168 	 * case the readpage can be optimized away.
2169 	 */
2170 	fsize = i_size_read(mapping->host);
2171 	if (fsize <= (pos & PAGE_MASK)) {
2172 		size_t off = pos & ~PAGE_MASK;
2173 		if (off)
2174 			zero_user_segment(page, 0, off);
2175 		goto success;
2176 	}
2177 	err = fuse_do_readpage(file, page);
2178 	if (err)
2179 		goto cleanup;
2180 success:
2181 	*pagep = page;
2182 	return 0;
2183 
2184 cleanup:
2185 	unlock_page(page);
2186 	put_page(page);
2187 error:
2188 	return err;
2189 }
2190 
2191 static int fuse_write_end(struct file *file, struct address_space *mapping,
2192 		loff_t pos, unsigned len, unsigned copied,
2193 		struct page *page, void *fsdata)
2194 {
2195 	struct inode *inode = page->mapping->host;
2196 
2197 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2198 	if (!copied)
2199 		goto unlock;
2200 
2201 	if (!PageUptodate(page)) {
2202 		/* Zero any unwritten bytes at the end of the page */
2203 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2204 		if (endoff)
2205 			zero_user_segment(page, endoff, PAGE_SIZE);
2206 		SetPageUptodate(page);
2207 	}
2208 
2209 	fuse_write_update_size(inode, pos + copied);
2210 	set_page_dirty(page);
2211 
2212 unlock:
2213 	unlock_page(page);
2214 	put_page(page);
2215 
2216 	return copied;
2217 }
2218 
2219 static int fuse_launder_page(struct page *page)
2220 {
2221 	int err = 0;
2222 	if (clear_page_dirty_for_io(page)) {
2223 		struct inode *inode = page->mapping->host;
2224 		err = fuse_writepage_locked(page);
2225 		if (!err)
2226 			fuse_wait_on_page_writeback(inode, page->index);
2227 	}
2228 	return err;
2229 }
2230 
2231 /*
2232  * Write back dirty pages now, because there may not be any suitable
2233  * open files later
2234  */
2235 static void fuse_vma_close(struct vm_area_struct *vma)
2236 {
2237 	filemap_write_and_wait(vma->vm_file->f_mapping);
2238 }
2239 
2240 /*
2241  * Wait for writeback against this page to complete before allowing it
2242  * to be marked dirty again, and hence written back again, possibly
2243  * before the previous writepage completed.
2244  *
2245  * Block here, instead of in ->writepage(), so that the userspace fs
2246  * can only block processes actually operating on the filesystem.
2247  *
2248  * Otherwise unprivileged userspace fs would be able to block
2249  * unrelated:
2250  *
2251  * - page migration
2252  * - sync(2)
2253  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2254  */
2255 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2256 {
2257 	struct page *page = vmf->page;
2258 	struct inode *inode = file_inode(vmf->vma->vm_file);
2259 
2260 	file_update_time(vmf->vma->vm_file);
2261 	lock_page(page);
2262 	if (page->mapping != inode->i_mapping) {
2263 		unlock_page(page);
2264 		return VM_FAULT_NOPAGE;
2265 	}
2266 
2267 	fuse_wait_on_page_writeback(inode, page->index);
2268 	return VM_FAULT_LOCKED;
2269 }
2270 
2271 static const struct vm_operations_struct fuse_file_vm_ops = {
2272 	.close		= fuse_vma_close,
2273 	.fault		= filemap_fault,
2274 	.map_pages	= filemap_map_pages,
2275 	.page_mkwrite	= fuse_page_mkwrite,
2276 };
2277 
2278 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2279 {
2280 	struct fuse_file *ff = file->private_data;
2281 
2282 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2283 		/* Can't provide the coherency needed for MAP_SHARED */
2284 		if (vma->vm_flags & VM_MAYSHARE)
2285 			return -ENODEV;
2286 
2287 		invalidate_inode_pages2(file->f_mapping);
2288 
2289 		return generic_file_mmap(file, vma);
2290 	}
2291 
2292 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2293 		fuse_link_write_file(file);
2294 
2295 	file_accessed(file);
2296 	vma->vm_ops = &fuse_file_vm_ops;
2297 	return 0;
2298 }
2299 
2300 static int convert_fuse_file_lock(struct fuse_conn *fc,
2301 				  const struct fuse_file_lock *ffl,
2302 				  struct file_lock *fl)
2303 {
2304 	switch (ffl->type) {
2305 	case F_UNLCK:
2306 		break;
2307 
2308 	case F_RDLCK:
2309 	case F_WRLCK:
2310 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2311 		    ffl->end < ffl->start)
2312 			return -EIO;
2313 
2314 		fl->fl_start = ffl->start;
2315 		fl->fl_end = ffl->end;
2316 
2317 		/*
2318 		 * Convert pid into init's pid namespace.  The locks API will
2319 		 * translate it into the caller's pid namespace.
2320 		 */
2321 		rcu_read_lock();
2322 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2323 		rcu_read_unlock();
2324 		break;
2325 
2326 	default:
2327 		return -EIO;
2328 	}
2329 	fl->fl_type = ffl->type;
2330 	return 0;
2331 }
2332 
2333 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2334 			 const struct file_lock *fl, int opcode, pid_t pid,
2335 			 int flock, struct fuse_lk_in *inarg)
2336 {
2337 	struct inode *inode = file_inode(file);
2338 	struct fuse_conn *fc = get_fuse_conn(inode);
2339 	struct fuse_file *ff = file->private_data;
2340 
2341 	memset(inarg, 0, sizeof(*inarg));
2342 	inarg->fh = ff->fh;
2343 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2344 	inarg->lk.start = fl->fl_start;
2345 	inarg->lk.end = fl->fl_end;
2346 	inarg->lk.type = fl->fl_type;
2347 	inarg->lk.pid = pid;
2348 	if (flock)
2349 		inarg->lk_flags |= FUSE_LK_FLOCK;
2350 	args->opcode = opcode;
2351 	args->nodeid = get_node_id(inode);
2352 	args->in_numargs = 1;
2353 	args->in_args[0].size = sizeof(*inarg);
2354 	args->in_args[0].value = inarg;
2355 }
2356 
2357 static int fuse_getlk(struct file *file, struct file_lock *fl)
2358 {
2359 	struct inode *inode = file_inode(file);
2360 	struct fuse_conn *fc = get_fuse_conn(inode);
2361 	FUSE_ARGS(args);
2362 	struct fuse_lk_in inarg;
2363 	struct fuse_lk_out outarg;
2364 	int err;
2365 
2366 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2367 	args.out_numargs = 1;
2368 	args.out_args[0].size = sizeof(outarg);
2369 	args.out_args[0].value = &outarg;
2370 	err = fuse_simple_request(fc, &args);
2371 	if (!err)
2372 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2373 
2374 	return err;
2375 }
2376 
2377 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2378 {
2379 	struct inode *inode = file_inode(file);
2380 	struct fuse_conn *fc = get_fuse_conn(inode);
2381 	FUSE_ARGS(args);
2382 	struct fuse_lk_in inarg;
2383 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2384 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2385 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2386 	int err;
2387 
2388 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2389 		/* NLM needs asynchronous locks, which we don't support yet */
2390 		return -ENOLCK;
2391 	}
2392 
2393 	/* Unlock on close is handled by the flush method */
2394 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2395 		return 0;
2396 
2397 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2398 	err = fuse_simple_request(fc, &args);
2399 
2400 	/* locking is restartable */
2401 	if (err == -EINTR)
2402 		err = -ERESTARTSYS;
2403 
2404 	return err;
2405 }
2406 
2407 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2408 {
2409 	struct inode *inode = file_inode(file);
2410 	struct fuse_conn *fc = get_fuse_conn(inode);
2411 	int err;
2412 
2413 	if (cmd == F_CANCELLK) {
2414 		err = 0;
2415 	} else if (cmd == F_GETLK) {
2416 		if (fc->no_lock) {
2417 			posix_test_lock(file, fl);
2418 			err = 0;
2419 		} else
2420 			err = fuse_getlk(file, fl);
2421 	} else {
2422 		if (fc->no_lock)
2423 			err = posix_lock_file(file, fl, NULL);
2424 		else
2425 			err = fuse_setlk(file, fl, 0);
2426 	}
2427 	return err;
2428 }
2429 
2430 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2431 {
2432 	struct inode *inode = file_inode(file);
2433 	struct fuse_conn *fc = get_fuse_conn(inode);
2434 	int err;
2435 
2436 	if (fc->no_flock) {
2437 		err = locks_lock_file_wait(file, fl);
2438 	} else {
2439 		struct fuse_file *ff = file->private_data;
2440 
2441 		/* emulate flock with POSIX locks */
2442 		ff->flock = true;
2443 		err = fuse_setlk(file, fl, 1);
2444 	}
2445 
2446 	return err;
2447 }
2448 
2449 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2450 {
2451 	struct inode *inode = mapping->host;
2452 	struct fuse_conn *fc = get_fuse_conn(inode);
2453 	FUSE_ARGS(args);
2454 	struct fuse_bmap_in inarg;
2455 	struct fuse_bmap_out outarg;
2456 	int err;
2457 
2458 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2459 		return 0;
2460 
2461 	memset(&inarg, 0, sizeof(inarg));
2462 	inarg.block = block;
2463 	inarg.blocksize = inode->i_sb->s_blocksize;
2464 	args.opcode = FUSE_BMAP;
2465 	args.nodeid = get_node_id(inode);
2466 	args.in_numargs = 1;
2467 	args.in_args[0].size = sizeof(inarg);
2468 	args.in_args[0].value = &inarg;
2469 	args.out_numargs = 1;
2470 	args.out_args[0].size = sizeof(outarg);
2471 	args.out_args[0].value = &outarg;
2472 	err = fuse_simple_request(fc, &args);
2473 	if (err == -ENOSYS)
2474 		fc->no_bmap = 1;
2475 
2476 	return err ? 0 : outarg.block;
2477 }
2478 
2479 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2480 {
2481 	struct inode *inode = file->f_mapping->host;
2482 	struct fuse_conn *fc = get_fuse_conn(inode);
2483 	struct fuse_file *ff = file->private_data;
2484 	FUSE_ARGS(args);
2485 	struct fuse_lseek_in inarg = {
2486 		.fh = ff->fh,
2487 		.offset = offset,
2488 		.whence = whence
2489 	};
2490 	struct fuse_lseek_out outarg;
2491 	int err;
2492 
2493 	if (fc->no_lseek)
2494 		goto fallback;
2495 
2496 	args.opcode = FUSE_LSEEK;
2497 	args.nodeid = ff->nodeid;
2498 	args.in_numargs = 1;
2499 	args.in_args[0].size = sizeof(inarg);
2500 	args.in_args[0].value = &inarg;
2501 	args.out_numargs = 1;
2502 	args.out_args[0].size = sizeof(outarg);
2503 	args.out_args[0].value = &outarg;
2504 	err = fuse_simple_request(fc, &args);
2505 	if (err) {
2506 		if (err == -ENOSYS) {
2507 			fc->no_lseek = 1;
2508 			goto fallback;
2509 		}
2510 		return err;
2511 	}
2512 
2513 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2514 
2515 fallback:
2516 	err = fuse_update_attributes(inode, file);
2517 	if (!err)
2518 		return generic_file_llseek(file, offset, whence);
2519 	else
2520 		return err;
2521 }
2522 
2523 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2524 {
2525 	loff_t retval;
2526 	struct inode *inode = file_inode(file);
2527 
2528 	switch (whence) {
2529 	case SEEK_SET:
2530 	case SEEK_CUR:
2531 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2532 		retval = generic_file_llseek(file, offset, whence);
2533 		break;
2534 	case SEEK_END:
2535 		inode_lock(inode);
2536 		retval = fuse_update_attributes(inode, file);
2537 		if (!retval)
2538 			retval = generic_file_llseek(file, offset, whence);
2539 		inode_unlock(inode);
2540 		break;
2541 	case SEEK_HOLE:
2542 	case SEEK_DATA:
2543 		inode_lock(inode);
2544 		retval = fuse_lseek(file, offset, whence);
2545 		inode_unlock(inode);
2546 		break;
2547 	default:
2548 		retval = -EINVAL;
2549 	}
2550 
2551 	return retval;
2552 }
2553 
2554 /*
2555  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2556  * ABI was defined to be 'struct iovec' which is different on 32bit
2557  * and 64bit.  Fortunately we can determine which structure the server
2558  * used from the size of the reply.
2559  */
2560 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2561 				     size_t transferred, unsigned count,
2562 				     bool is_compat)
2563 {
2564 #ifdef CONFIG_COMPAT
2565 	if (count * sizeof(struct compat_iovec) == transferred) {
2566 		struct compat_iovec *ciov = src;
2567 		unsigned i;
2568 
2569 		/*
2570 		 * With this interface a 32bit server cannot support
2571 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2572 		 * requests
2573 		 */
2574 		if (!is_compat)
2575 			return -EINVAL;
2576 
2577 		for (i = 0; i < count; i++) {
2578 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2579 			dst[i].iov_len = ciov[i].iov_len;
2580 		}
2581 		return 0;
2582 	}
2583 #endif
2584 
2585 	if (count * sizeof(struct iovec) != transferred)
2586 		return -EIO;
2587 
2588 	memcpy(dst, src, transferred);
2589 	return 0;
2590 }
2591 
2592 /* Make sure iov_length() won't overflow */
2593 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2594 				 size_t count)
2595 {
2596 	size_t n;
2597 	u32 max = fc->max_pages << PAGE_SHIFT;
2598 
2599 	for (n = 0; n < count; n++, iov++) {
2600 		if (iov->iov_len > (size_t) max)
2601 			return -ENOMEM;
2602 		max -= iov->iov_len;
2603 	}
2604 	return 0;
2605 }
2606 
2607 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2608 				 void *src, size_t transferred, unsigned count,
2609 				 bool is_compat)
2610 {
2611 	unsigned i;
2612 	struct fuse_ioctl_iovec *fiov = src;
2613 
2614 	if (fc->minor < 16) {
2615 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2616 						 count, is_compat);
2617 	}
2618 
2619 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2620 		return -EIO;
2621 
2622 	for (i = 0; i < count; i++) {
2623 		/* Did the server supply an inappropriate value? */
2624 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2625 		    fiov[i].len != (unsigned long) fiov[i].len)
2626 			return -EIO;
2627 
2628 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2629 		dst[i].iov_len = (size_t) fiov[i].len;
2630 
2631 #ifdef CONFIG_COMPAT
2632 		if (is_compat &&
2633 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2634 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2635 			return -EIO;
2636 #endif
2637 	}
2638 
2639 	return 0;
2640 }
2641 
2642 
2643 /*
2644  * For ioctls, there is no generic way to determine how much memory
2645  * needs to be read and/or written.  Furthermore, ioctls are allowed
2646  * to dereference the passed pointer, so the parameter requires deep
2647  * copying but FUSE has no idea whatsoever about what to copy in or
2648  * out.
2649  *
2650  * This is solved by allowing FUSE server to retry ioctl with
2651  * necessary in/out iovecs.  Let's assume the ioctl implementation
2652  * needs to read in the following structure.
2653  *
2654  * struct a {
2655  *	char	*buf;
2656  *	size_t	buflen;
2657  * }
2658  *
2659  * On the first callout to FUSE server, inarg->in_size and
2660  * inarg->out_size will be NULL; then, the server completes the ioctl
2661  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2662  * the actual iov array to
2663  *
2664  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2665  *
2666  * which tells FUSE to copy in the requested area and retry the ioctl.
2667  * On the second round, the server has access to the structure and
2668  * from that it can tell what to look for next, so on the invocation,
2669  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2670  *
2671  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2672  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2673  *
2674  * FUSE will copy both struct a and the pointed buffer from the
2675  * process doing the ioctl and retry ioctl with both struct a and the
2676  * buffer.
2677  *
2678  * This time, FUSE server has everything it needs and completes ioctl
2679  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2680  *
2681  * Copying data out works the same way.
2682  *
2683  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2684  * automatically initializes in and out iovs by decoding @cmd with
2685  * _IOC_* macros and the server is not allowed to request RETRY.  This
2686  * limits ioctl data transfers to well-formed ioctls and is the forced
2687  * behavior for all FUSE servers.
2688  */
2689 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2690 		   unsigned int flags)
2691 {
2692 	struct fuse_file *ff = file->private_data;
2693 	struct fuse_conn *fc = ff->fc;
2694 	struct fuse_ioctl_in inarg = {
2695 		.fh = ff->fh,
2696 		.cmd = cmd,
2697 		.arg = arg,
2698 		.flags = flags
2699 	};
2700 	struct fuse_ioctl_out outarg;
2701 	struct iovec *iov_page = NULL;
2702 	struct iovec *in_iov = NULL, *out_iov = NULL;
2703 	unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2704 	size_t in_size, out_size, c;
2705 	ssize_t transferred;
2706 	int err, i;
2707 	struct iov_iter ii;
2708 	struct fuse_args_pages ap = {};
2709 
2710 #if BITS_PER_LONG == 32
2711 	inarg.flags |= FUSE_IOCTL_32BIT;
2712 #else
2713 	if (flags & FUSE_IOCTL_COMPAT) {
2714 		inarg.flags |= FUSE_IOCTL_32BIT;
2715 #ifdef CONFIG_X86_X32
2716 		if (in_x32_syscall())
2717 			inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2718 #endif
2719 	}
2720 #endif
2721 
2722 	/* assume all the iovs returned by client always fits in a page */
2723 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2724 
2725 	err = -ENOMEM;
2726 	ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2727 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2728 	if (!ap.pages || !iov_page)
2729 		goto out;
2730 
2731 	fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2732 
2733 	/*
2734 	 * If restricted, initialize IO parameters as encoded in @cmd.
2735 	 * RETRY from server is not allowed.
2736 	 */
2737 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2738 		struct iovec *iov = iov_page;
2739 
2740 		iov->iov_base = (void __user *)arg;
2741 		iov->iov_len = _IOC_SIZE(cmd);
2742 
2743 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2744 			in_iov = iov;
2745 			in_iovs = 1;
2746 		}
2747 
2748 		if (_IOC_DIR(cmd) & _IOC_READ) {
2749 			out_iov = iov;
2750 			out_iovs = 1;
2751 		}
2752 	}
2753 
2754  retry:
2755 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2756 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2757 
2758 	/*
2759 	 * Out data can be used either for actual out data or iovs,
2760 	 * make sure there always is at least one page.
2761 	 */
2762 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2763 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2764 
2765 	/* make sure there are enough buffer pages and init request with them */
2766 	err = -ENOMEM;
2767 	if (max_pages > fc->max_pages)
2768 		goto out;
2769 	while (ap.num_pages < max_pages) {
2770 		ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2771 		if (!ap.pages[ap.num_pages])
2772 			goto out;
2773 		ap.num_pages++;
2774 	}
2775 
2776 
2777 	/* okay, let's send it to the client */
2778 	ap.args.opcode = FUSE_IOCTL;
2779 	ap.args.nodeid = ff->nodeid;
2780 	ap.args.in_numargs = 1;
2781 	ap.args.in_args[0].size = sizeof(inarg);
2782 	ap.args.in_args[0].value = &inarg;
2783 	if (in_size) {
2784 		ap.args.in_numargs++;
2785 		ap.args.in_args[1].size = in_size;
2786 		ap.args.in_pages = true;
2787 
2788 		err = -EFAULT;
2789 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2790 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2791 			c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2792 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2793 				goto out;
2794 		}
2795 	}
2796 
2797 	ap.args.out_numargs = 2;
2798 	ap.args.out_args[0].size = sizeof(outarg);
2799 	ap.args.out_args[0].value = &outarg;
2800 	ap.args.out_args[1].size = out_size;
2801 	ap.args.out_pages = true;
2802 	ap.args.out_argvar = true;
2803 
2804 	transferred = fuse_simple_request(fc, &ap.args);
2805 	err = transferred;
2806 	if (transferred < 0)
2807 		goto out;
2808 
2809 	/* did it ask for retry? */
2810 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2811 		void *vaddr;
2812 
2813 		/* no retry if in restricted mode */
2814 		err = -EIO;
2815 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2816 			goto out;
2817 
2818 		in_iovs = outarg.in_iovs;
2819 		out_iovs = outarg.out_iovs;
2820 
2821 		/*
2822 		 * Make sure things are in boundary, separate checks
2823 		 * are to protect against overflow.
2824 		 */
2825 		err = -ENOMEM;
2826 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2827 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2828 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2829 			goto out;
2830 
2831 		vaddr = kmap_atomic(ap.pages[0]);
2832 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2833 					    transferred, in_iovs + out_iovs,
2834 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2835 		kunmap_atomic(vaddr);
2836 		if (err)
2837 			goto out;
2838 
2839 		in_iov = iov_page;
2840 		out_iov = in_iov + in_iovs;
2841 
2842 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2843 		if (err)
2844 			goto out;
2845 
2846 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2847 		if (err)
2848 			goto out;
2849 
2850 		goto retry;
2851 	}
2852 
2853 	err = -EIO;
2854 	if (transferred > inarg.out_size)
2855 		goto out;
2856 
2857 	err = -EFAULT;
2858 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2859 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2860 		c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2861 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2862 			goto out;
2863 	}
2864 	err = 0;
2865  out:
2866 	free_page((unsigned long) iov_page);
2867 	while (ap.num_pages)
2868 		__free_page(ap.pages[--ap.num_pages]);
2869 	kfree(ap.pages);
2870 
2871 	return err ? err : outarg.result;
2872 }
2873 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2874 
2875 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2876 		       unsigned long arg, unsigned int flags)
2877 {
2878 	struct inode *inode = file_inode(file);
2879 	struct fuse_conn *fc = get_fuse_conn(inode);
2880 
2881 	if (!fuse_allow_current_process(fc))
2882 		return -EACCES;
2883 
2884 	if (is_bad_inode(inode))
2885 		return -EIO;
2886 
2887 	return fuse_do_ioctl(file, cmd, arg, flags);
2888 }
2889 
2890 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2891 			    unsigned long arg)
2892 {
2893 	return fuse_ioctl_common(file, cmd, arg, 0);
2894 }
2895 
2896 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2897 				   unsigned long arg)
2898 {
2899 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2900 }
2901 
2902 /*
2903  * All files which have been polled are linked to RB tree
2904  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2905  * find the matching one.
2906  */
2907 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2908 					      struct rb_node **parent_out)
2909 {
2910 	struct rb_node **link = &fc->polled_files.rb_node;
2911 	struct rb_node *last = NULL;
2912 
2913 	while (*link) {
2914 		struct fuse_file *ff;
2915 
2916 		last = *link;
2917 		ff = rb_entry(last, struct fuse_file, polled_node);
2918 
2919 		if (kh < ff->kh)
2920 			link = &last->rb_left;
2921 		else if (kh > ff->kh)
2922 			link = &last->rb_right;
2923 		else
2924 			return link;
2925 	}
2926 
2927 	if (parent_out)
2928 		*parent_out = last;
2929 	return link;
2930 }
2931 
2932 /*
2933  * The file is about to be polled.  Make sure it's on the polled_files
2934  * RB tree.  Note that files once added to the polled_files tree are
2935  * not removed before the file is released.  This is because a file
2936  * polled once is likely to be polled again.
2937  */
2938 static void fuse_register_polled_file(struct fuse_conn *fc,
2939 				      struct fuse_file *ff)
2940 {
2941 	spin_lock(&fc->lock);
2942 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2943 		struct rb_node **link, *uninitialized_var(parent);
2944 
2945 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2946 		BUG_ON(*link);
2947 		rb_link_node(&ff->polled_node, parent, link);
2948 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2949 	}
2950 	spin_unlock(&fc->lock);
2951 }
2952 
2953 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2954 {
2955 	struct fuse_file *ff = file->private_data;
2956 	struct fuse_conn *fc = ff->fc;
2957 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2958 	struct fuse_poll_out outarg;
2959 	FUSE_ARGS(args);
2960 	int err;
2961 
2962 	if (fc->no_poll)
2963 		return DEFAULT_POLLMASK;
2964 
2965 	poll_wait(file, &ff->poll_wait, wait);
2966 	inarg.events = mangle_poll(poll_requested_events(wait));
2967 
2968 	/*
2969 	 * Ask for notification iff there's someone waiting for it.
2970 	 * The client may ignore the flag and always notify.
2971 	 */
2972 	if (waitqueue_active(&ff->poll_wait)) {
2973 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2974 		fuse_register_polled_file(fc, ff);
2975 	}
2976 
2977 	args.opcode = FUSE_POLL;
2978 	args.nodeid = ff->nodeid;
2979 	args.in_numargs = 1;
2980 	args.in_args[0].size = sizeof(inarg);
2981 	args.in_args[0].value = &inarg;
2982 	args.out_numargs = 1;
2983 	args.out_args[0].size = sizeof(outarg);
2984 	args.out_args[0].value = &outarg;
2985 	err = fuse_simple_request(fc, &args);
2986 
2987 	if (!err)
2988 		return demangle_poll(outarg.revents);
2989 	if (err == -ENOSYS) {
2990 		fc->no_poll = 1;
2991 		return DEFAULT_POLLMASK;
2992 	}
2993 	return EPOLLERR;
2994 }
2995 EXPORT_SYMBOL_GPL(fuse_file_poll);
2996 
2997 /*
2998  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2999  * wakes up the poll waiters.
3000  */
3001 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3002 			    struct fuse_notify_poll_wakeup_out *outarg)
3003 {
3004 	u64 kh = outarg->kh;
3005 	struct rb_node **link;
3006 
3007 	spin_lock(&fc->lock);
3008 
3009 	link = fuse_find_polled_node(fc, kh, NULL);
3010 	if (*link) {
3011 		struct fuse_file *ff;
3012 
3013 		ff = rb_entry(*link, struct fuse_file, polled_node);
3014 		wake_up_interruptible_sync(&ff->poll_wait);
3015 	}
3016 
3017 	spin_unlock(&fc->lock);
3018 	return 0;
3019 }
3020 
3021 static void fuse_do_truncate(struct file *file)
3022 {
3023 	struct inode *inode = file->f_mapping->host;
3024 	struct iattr attr;
3025 
3026 	attr.ia_valid = ATTR_SIZE;
3027 	attr.ia_size = i_size_read(inode);
3028 
3029 	attr.ia_file = file;
3030 	attr.ia_valid |= ATTR_FILE;
3031 
3032 	fuse_do_setattr(file_dentry(file), &attr, file);
3033 }
3034 
3035 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3036 {
3037 	return round_up(off, fc->max_pages << PAGE_SHIFT);
3038 }
3039 
3040 static ssize_t
3041 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3042 {
3043 	DECLARE_COMPLETION_ONSTACK(wait);
3044 	ssize_t ret = 0;
3045 	struct file *file = iocb->ki_filp;
3046 	struct fuse_file *ff = file->private_data;
3047 	bool async_dio = ff->fc->async_dio;
3048 	loff_t pos = 0;
3049 	struct inode *inode;
3050 	loff_t i_size;
3051 	size_t count = iov_iter_count(iter);
3052 	loff_t offset = iocb->ki_pos;
3053 	struct fuse_io_priv *io;
3054 
3055 	pos = offset;
3056 	inode = file->f_mapping->host;
3057 	i_size = i_size_read(inode);
3058 
3059 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3060 		return 0;
3061 
3062 	/* optimization for short read */
3063 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3064 		if (offset >= i_size)
3065 			return 0;
3066 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3067 		count = iov_iter_count(iter);
3068 	}
3069 
3070 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3071 	if (!io)
3072 		return -ENOMEM;
3073 	spin_lock_init(&io->lock);
3074 	kref_init(&io->refcnt);
3075 	io->reqs = 1;
3076 	io->bytes = -1;
3077 	io->size = 0;
3078 	io->offset = offset;
3079 	io->write = (iov_iter_rw(iter) == WRITE);
3080 	io->err = 0;
3081 	/*
3082 	 * By default, we want to optimize all I/Os with async request
3083 	 * submission to the client filesystem if supported.
3084 	 */
3085 	io->async = async_dio;
3086 	io->iocb = iocb;
3087 	io->blocking = is_sync_kiocb(iocb);
3088 
3089 	/*
3090 	 * We cannot asynchronously extend the size of a file.
3091 	 * In such case the aio will behave exactly like sync io.
3092 	 */
3093 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3094 		io->blocking = true;
3095 
3096 	if (io->async && io->blocking) {
3097 		/*
3098 		 * Additional reference to keep io around after
3099 		 * calling fuse_aio_complete()
3100 		 */
3101 		kref_get(&io->refcnt);
3102 		io->done = &wait;
3103 	}
3104 
3105 	if (iov_iter_rw(iter) == WRITE) {
3106 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3107 		fuse_invalidate_attr(inode);
3108 	} else {
3109 		ret = __fuse_direct_read(io, iter, &pos);
3110 	}
3111 
3112 	if (io->async) {
3113 		bool blocking = io->blocking;
3114 
3115 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3116 
3117 		/* we have a non-extending, async request, so return */
3118 		if (!blocking)
3119 			return -EIOCBQUEUED;
3120 
3121 		wait_for_completion(&wait);
3122 		ret = fuse_get_res_by_io(io);
3123 	}
3124 
3125 	kref_put(&io->refcnt, fuse_io_release);
3126 
3127 	if (iov_iter_rw(iter) == WRITE) {
3128 		if (ret > 0)
3129 			fuse_write_update_size(inode, pos);
3130 		else if (ret < 0 && offset + count > i_size)
3131 			fuse_do_truncate(file);
3132 	}
3133 
3134 	return ret;
3135 }
3136 
3137 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3138 {
3139 	int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3140 
3141 	if (!err)
3142 		fuse_sync_writes(inode);
3143 
3144 	return err;
3145 }
3146 
3147 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3148 				loff_t length)
3149 {
3150 	struct fuse_file *ff = file->private_data;
3151 	struct inode *inode = file_inode(file);
3152 	struct fuse_inode *fi = get_fuse_inode(inode);
3153 	struct fuse_conn *fc = ff->fc;
3154 	FUSE_ARGS(args);
3155 	struct fuse_fallocate_in inarg = {
3156 		.fh = ff->fh,
3157 		.offset = offset,
3158 		.length = length,
3159 		.mode = mode
3160 	};
3161 	int err;
3162 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3163 			   (mode & FALLOC_FL_PUNCH_HOLE);
3164 
3165 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3166 		return -EOPNOTSUPP;
3167 
3168 	if (fc->no_fallocate)
3169 		return -EOPNOTSUPP;
3170 
3171 	if (lock_inode) {
3172 		inode_lock(inode);
3173 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3174 			loff_t endbyte = offset + length - 1;
3175 
3176 			err = fuse_writeback_range(inode, offset, endbyte);
3177 			if (err)
3178 				goto out;
3179 		}
3180 	}
3181 
3182 	if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3183 	    offset + length > i_size_read(inode)) {
3184 		err = inode_newsize_ok(inode, offset + length);
3185 		if (err)
3186 			goto out;
3187 	}
3188 
3189 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3190 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3191 
3192 	args.opcode = FUSE_FALLOCATE;
3193 	args.nodeid = ff->nodeid;
3194 	args.in_numargs = 1;
3195 	args.in_args[0].size = sizeof(inarg);
3196 	args.in_args[0].value = &inarg;
3197 	err = fuse_simple_request(fc, &args);
3198 	if (err == -ENOSYS) {
3199 		fc->no_fallocate = 1;
3200 		err = -EOPNOTSUPP;
3201 	}
3202 	if (err)
3203 		goto out;
3204 
3205 	/* we could have extended the file */
3206 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3207 		bool changed = fuse_write_update_size(inode, offset + length);
3208 
3209 		if (changed && fc->writeback_cache)
3210 			file_update_time(file);
3211 	}
3212 
3213 	if (mode & FALLOC_FL_PUNCH_HOLE)
3214 		truncate_pagecache_range(inode, offset, offset + length - 1);
3215 
3216 	fuse_invalidate_attr(inode);
3217 
3218 out:
3219 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3220 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3221 
3222 	if (lock_inode)
3223 		inode_unlock(inode);
3224 
3225 	return err;
3226 }
3227 
3228 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3229 				      struct file *file_out, loff_t pos_out,
3230 				      size_t len, unsigned int flags)
3231 {
3232 	struct fuse_file *ff_in = file_in->private_data;
3233 	struct fuse_file *ff_out = file_out->private_data;
3234 	struct inode *inode_in = file_inode(file_in);
3235 	struct inode *inode_out = file_inode(file_out);
3236 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3237 	struct fuse_conn *fc = ff_in->fc;
3238 	FUSE_ARGS(args);
3239 	struct fuse_copy_file_range_in inarg = {
3240 		.fh_in = ff_in->fh,
3241 		.off_in = pos_in,
3242 		.nodeid_out = ff_out->nodeid,
3243 		.fh_out = ff_out->fh,
3244 		.off_out = pos_out,
3245 		.len = len,
3246 		.flags = flags
3247 	};
3248 	struct fuse_write_out outarg;
3249 	ssize_t err;
3250 	/* mark unstable when write-back is not used, and file_out gets
3251 	 * extended */
3252 	bool is_unstable = (!fc->writeback_cache) &&
3253 			   ((pos_out + len) > inode_out->i_size);
3254 
3255 	if (fc->no_copy_file_range)
3256 		return -EOPNOTSUPP;
3257 
3258 	if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3259 		return -EXDEV;
3260 
3261 	if (fc->writeback_cache) {
3262 		inode_lock(inode_in);
3263 		err = fuse_writeback_range(inode_in, pos_in, pos_in + len);
3264 		inode_unlock(inode_in);
3265 		if (err)
3266 			return err;
3267 	}
3268 
3269 	inode_lock(inode_out);
3270 
3271 	err = file_modified(file_out);
3272 	if (err)
3273 		goto out;
3274 
3275 	if (fc->writeback_cache) {
3276 		err = fuse_writeback_range(inode_out, pos_out, pos_out + len);
3277 		if (err)
3278 			goto out;
3279 	}
3280 
3281 	if (is_unstable)
3282 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3283 
3284 	args.opcode = FUSE_COPY_FILE_RANGE;
3285 	args.nodeid = ff_in->nodeid;
3286 	args.in_numargs = 1;
3287 	args.in_args[0].size = sizeof(inarg);
3288 	args.in_args[0].value = &inarg;
3289 	args.out_numargs = 1;
3290 	args.out_args[0].size = sizeof(outarg);
3291 	args.out_args[0].value = &outarg;
3292 	err = fuse_simple_request(fc, &args);
3293 	if (err == -ENOSYS) {
3294 		fc->no_copy_file_range = 1;
3295 		err = -EOPNOTSUPP;
3296 	}
3297 	if (err)
3298 		goto out;
3299 
3300 	if (fc->writeback_cache) {
3301 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3302 		file_update_time(file_out);
3303 	}
3304 
3305 	fuse_invalidate_attr(inode_out);
3306 
3307 	err = outarg.size;
3308 out:
3309 	if (is_unstable)
3310 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3311 
3312 	inode_unlock(inode_out);
3313 	file_accessed(file_in);
3314 
3315 	return err;
3316 }
3317 
3318 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3319 				    struct file *dst_file, loff_t dst_off,
3320 				    size_t len, unsigned int flags)
3321 {
3322 	ssize_t ret;
3323 
3324 	ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3325 				     len, flags);
3326 
3327 	if (ret == -EOPNOTSUPP || ret == -EXDEV)
3328 		ret = generic_copy_file_range(src_file, src_off, dst_file,
3329 					      dst_off, len, flags);
3330 	return ret;
3331 }
3332 
3333 static const struct file_operations fuse_file_operations = {
3334 	.llseek		= fuse_file_llseek,
3335 	.read_iter	= fuse_file_read_iter,
3336 	.write_iter	= fuse_file_write_iter,
3337 	.mmap		= fuse_file_mmap,
3338 	.open		= fuse_open,
3339 	.flush		= fuse_flush,
3340 	.release	= fuse_release,
3341 	.fsync		= fuse_fsync,
3342 	.lock		= fuse_file_lock,
3343 	.flock		= fuse_file_flock,
3344 	.splice_read	= generic_file_splice_read,
3345 	.splice_write	= iter_file_splice_write,
3346 	.unlocked_ioctl	= fuse_file_ioctl,
3347 	.compat_ioctl	= fuse_file_compat_ioctl,
3348 	.poll		= fuse_file_poll,
3349 	.fallocate	= fuse_file_fallocate,
3350 	.copy_file_range = fuse_copy_file_range,
3351 };
3352 
3353 static const struct address_space_operations fuse_file_aops  = {
3354 	.readpage	= fuse_readpage,
3355 	.writepage	= fuse_writepage,
3356 	.writepages	= fuse_writepages,
3357 	.launder_page	= fuse_launder_page,
3358 	.readpages	= fuse_readpages,
3359 	.set_page_dirty	= __set_page_dirty_nobuffers,
3360 	.bmap		= fuse_bmap,
3361 	.direct_IO	= fuse_direct_IO,
3362 	.write_begin	= fuse_write_begin,
3363 	.write_end	= fuse_write_end,
3364 };
3365 
3366 void fuse_init_file_inode(struct inode *inode)
3367 {
3368 	struct fuse_inode *fi = get_fuse_inode(inode);
3369 
3370 	inode->i_fop = &fuse_file_operations;
3371 	inode->i_data.a_ops = &fuse_file_aops;
3372 
3373 	INIT_LIST_HEAD(&fi->write_files);
3374 	INIT_LIST_HEAD(&fi->queued_writes);
3375 	fi->writectr = 0;
3376 	init_waitqueue_head(&fi->page_waitq);
3377 	INIT_LIST_HEAD(&fi->writepages);
3378 }
3379