1 /* 2 FUSE: Filesystem in Userspace 3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu> 4 5 This program can be distributed under the terms of the GNU GPL. 6 See the file COPYING. 7 */ 8 9 #include "fuse_i.h" 10 11 #include <linux/pagemap.h> 12 #include <linux/slab.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/sched/signal.h> 16 #include <linux/module.h> 17 #include <linux/compat.h> 18 #include <linux/swap.h> 19 #include <linux/falloc.h> 20 #include <linux/uio.h> 21 22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags, 23 struct fuse_page_desc **desc) 24 { 25 struct page **pages; 26 27 pages = kzalloc(npages * (sizeof(struct page *) + 28 sizeof(struct fuse_page_desc)), flags); 29 *desc = (void *) (pages + npages); 30 31 return pages; 32 } 33 34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 35 int opcode, struct fuse_open_out *outargp) 36 { 37 struct fuse_open_in inarg; 38 FUSE_ARGS(args); 39 40 memset(&inarg, 0, sizeof(inarg)); 41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY); 42 if (!fc->atomic_o_trunc) 43 inarg.flags &= ~O_TRUNC; 44 args.opcode = opcode; 45 args.nodeid = nodeid; 46 args.in_numargs = 1; 47 args.in_args[0].size = sizeof(inarg); 48 args.in_args[0].value = &inarg; 49 args.out_numargs = 1; 50 args.out_args[0].size = sizeof(*outargp); 51 args.out_args[0].value = outargp; 52 53 return fuse_simple_request(fc, &args); 54 } 55 56 struct fuse_release_args { 57 struct fuse_args args; 58 struct fuse_release_in inarg; 59 struct inode *inode; 60 }; 61 62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc) 63 { 64 struct fuse_file *ff; 65 66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT); 67 if (unlikely(!ff)) 68 return NULL; 69 70 ff->fc = fc; 71 ff->release_args = kzalloc(sizeof(*ff->release_args), 72 GFP_KERNEL_ACCOUNT); 73 if (!ff->release_args) { 74 kfree(ff); 75 return NULL; 76 } 77 78 INIT_LIST_HEAD(&ff->write_entry); 79 mutex_init(&ff->readdir.lock); 80 refcount_set(&ff->count, 1); 81 RB_CLEAR_NODE(&ff->polled_node); 82 init_waitqueue_head(&ff->poll_wait); 83 84 ff->kh = atomic64_inc_return(&fc->khctr); 85 86 return ff; 87 } 88 89 void fuse_file_free(struct fuse_file *ff) 90 { 91 kfree(ff->release_args); 92 mutex_destroy(&ff->readdir.lock); 93 kfree(ff); 94 } 95 96 static struct fuse_file *fuse_file_get(struct fuse_file *ff) 97 { 98 refcount_inc(&ff->count); 99 return ff; 100 } 101 102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args, 103 int error) 104 { 105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args); 106 107 iput(ra->inode); 108 kfree(ra); 109 } 110 111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir) 112 { 113 if (refcount_dec_and_test(&ff->count)) { 114 struct fuse_args *args = &ff->release_args->args; 115 116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) { 117 /* Do nothing when client does not implement 'open' */ 118 fuse_release_end(ff->fc, args, 0); 119 } else if (sync) { 120 fuse_simple_request(ff->fc, args); 121 fuse_release_end(ff->fc, args, 0); 122 } else { 123 args->end = fuse_release_end; 124 if (fuse_simple_background(ff->fc, args, 125 GFP_KERNEL | __GFP_NOFAIL)) 126 fuse_release_end(ff->fc, args, -ENOTCONN); 127 } 128 kfree(ff); 129 } 130 } 131 132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file, 133 bool isdir) 134 { 135 struct fuse_file *ff; 136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN; 137 138 ff = fuse_file_alloc(fc); 139 if (!ff) 140 return -ENOMEM; 141 142 ff->fh = 0; 143 /* Default for no-open */ 144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0); 145 if (isdir ? !fc->no_opendir : !fc->no_open) { 146 struct fuse_open_out outarg; 147 int err; 148 149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg); 150 if (!err) { 151 ff->fh = outarg.fh; 152 ff->open_flags = outarg.open_flags; 153 154 } else if (err != -ENOSYS) { 155 fuse_file_free(ff); 156 return err; 157 } else { 158 if (isdir) 159 fc->no_opendir = 1; 160 else 161 fc->no_open = 1; 162 } 163 } 164 165 if (isdir) 166 ff->open_flags &= ~FOPEN_DIRECT_IO; 167 168 ff->nodeid = nodeid; 169 file->private_data = ff; 170 171 return 0; 172 } 173 EXPORT_SYMBOL_GPL(fuse_do_open); 174 175 static void fuse_link_write_file(struct file *file) 176 { 177 struct inode *inode = file_inode(file); 178 struct fuse_inode *fi = get_fuse_inode(inode); 179 struct fuse_file *ff = file->private_data; 180 /* 181 * file may be written through mmap, so chain it onto the 182 * inodes's write_file list 183 */ 184 spin_lock(&fi->lock); 185 if (list_empty(&ff->write_entry)) 186 list_add(&ff->write_entry, &fi->write_files); 187 spin_unlock(&fi->lock); 188 } 189 190 void fuse_finish_open(struct inode *inode, struct file *file) 191 { 192 struct fuse_file *ff = file->private_data; 193 struct fuse_conn *fc = get_fuse_conn(inode); 194 195 if (!(ff->open_flags & FOPEN_KEEP_CACHE)) 196 invalidate_inode_pages2(inode->i_mapping); 197 if (ff->open_flags & FOPEN_STREAM) 198 stream_open(inode, file); 199 else if (ff->open_flags & FOPEN_NONSEEKABLE) 200 nonseekable_open(inode, file); 201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) { 202 struct fuse_inode *fi = get_fuse_inode(inode); 203 204 spin_lock(&fi->lock); 205 fi->attr_version = atomic64_inc_return(&fc->attr_version); 206 i_size_write(inode, 0); 207 spin_unlock(&fi->lock); 208 fuse_invalidate_attr(inode); 209 if (fc->writeback_cache) 210 file_update_time(file); 211 } 212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache) 213 fuse_link_write_file(file); 214 } 215 216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir) 217 { 218 struct fuse_conn *fc = get_fuse_conn(inode); 219 int err; 220 bool is_wb_truncate = (file->f_flags & O_TRUNC) && 221 fc->atomic_o_trunc && 222 fc->writeback_cache; 223 224 err = generic_file_open(inode, file); 225 if (err) 226 return err; 227 228 if (is_wb_truncate) { 229 inode_lock(inode); 230 fuse_set_nowrite(inode); 231 } 232 233 err = fuse_do_open(fc, get_node_id(inode), file, isdir); 234 235 if (!err) 236 fuse_finish_open(inode, file); 237 238 if (is_wb_truncate) { 239 fuse_release_nowrite(inode); 240 inode_unlock(inode); 241 } 242 243 return err; 244 } 245 246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff, 247 int flags, int opcode) 248 { 249 struct fuse_conn *fc = ff->fc; 250 struct fuse_release_args *ra = ff->release_args; 251 252 /* Inode is NULL on error path of fuse_create_open() */ 253 if (likely(fi)) { 254 spin_lock(&fi->lock); 255 list_del(&ff->write_entry); 256 spin_unlock(&fi->lock); 257 } 258 spin_lock(&fc->lock); 259 if (!RB_EMPTY_NODE(&ff->polled_node)) 260 rb_erase(&ff->polled_node, &fc->polled_files); 261 spin_unlock(&fc->lock); 262 263 wake_up_interruptible_all(&ff->poll_wait); 264 265 ra->inarg.fh = ff->fh; 266 ra->inarg.flags = flags; 267 ra->args.in_numargs = 1; 268 ra->args.in_args[0].size = sizeof(struct fuse_release_in); 269 ra->args.in_args[0].value = &ra->inarg; 270 ra->args.opcode = opcode; 271 ra->args.nodeid = ff->nodeid; 272 ra->args.force = true; 273 ra->args.nocreds = true; 274 } 275 276 void fuse_release_common(struct file *file, bool isdir) 277 { 278 struct fuse_inode *fi = get_fuse_inode(file_inode(file)); 279 struct fuse_file *ff = file->private_data; 280 struct fuse_release_args *ra = ff->release_args; 281 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE; 282 283 fuse_prepare_release(fi, ff, file->f_flags, opcode); 284 285 if (ff->flock) { 286 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK; 287 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc, 288 (fl_owner_t) file); 289 } 290 /* Hold inode until release is finished */ 291 ra->inode = igrab(file_inode(file)); 292 293 /* 294 * Normally this will send the RELEASE request, however if 295 * some asynchronous READ or WRITE requests are outstanding, 296 * the sending will be delayed. 297 * 298 * Make the release synchronous if this is a fuseblk mount, 299 * synchronous RELEASE is allowed (and desirable) in this case 300 * because the server can be trusted not to screw up. 301 */ 302 fuse_file_put(ff, ff->fc->destroy, isdir); 303 } 304 305 static int fuse_open(struct inode *inode, struct file *file) 306 { 307 return fuse_open_common(inode, file, false); 308 } 309 310 static int fuse_release(struct inode *inode, struct file *file) 311 { 312 struct fuse_conn *fc = get_fuse_conn(inode); 313 314 /* see fuse_vma_close() for !writeback_cache case */ 315 if (fc->writeback_cache) 316 write_inode_now(inode, 1); 317 318 fuse_release_common(file, false); 319 320 /* return value is ignored by VFS */ 321 return 0; 322 } 323 324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags) 325 { 326 WARN_ON(refcount_read(&ff->count) > 1); 327 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE); 328 /* 329 * iput(NULL) is a no-op and since the refcount is 1 and everything's 330 * synchronous, we are fine with not doing igrab() here" 331 */ 332 fuse_file_put(ff, true, false); 333 } 334 EXPORT_SYMBOL_GPL(fuse_sync_release); 335 336 /* 337 * Scramble the ID space with XTEA, so that the value of the files_struct 338 * pointer is not exposed to userspace. 339 */ 340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id) 341 { 342 u32 *k = fc->scramble_key; 343 u64 v = (unsigned long) id; 344 u32 v0 = v; 345 u32 v1 = v >> 32; 346 u32 sum = 0; 347 int i; 348 349 for (i = 0; i < 32; i++) { 350 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]); 351 sum += 0x9E3779B9; 352 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]); 353 } 354 355 return (u64) v0 + ((u64) v1 << 32); 356 } 357 358 struct fuse_writepage_args { 359 struct fuse_io_args ia; 360 struct list_head writepages_entry; 361 struct list_head queue_entry; 362 struct fuse_writepage_args *next; 363 struct inode *inode; 364 }; 365 366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi, 367 pgoff_t idx_from, pgoff_t idx_to) 368 { 369 struct fuse_writepage_args *wpa; 370 371 list_for_each_entry(wpa, &fi->writepages, writepages_entry) { 372 pgoff_t curr_index; 373 374 WARN_ON(get_fuse_inode(wpa->inode) != fi); 375 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT; 376 if (idx_from < curr_index + wpa->ia.ap.num_pages && 377 curr_index <= idx_to) { 378 return wpa; 379 } 380 } 381 return NULL; 382 } 383 384 /* 385 * Check if any page in a range is under writeback 386 * 387 * This is currently done by walking the list of writepage requests 388 * for the inode, which can be pretty inefficient. 389 */ 390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from, 391 pgoff_t idx_to) 392 { 393 struct fuse_inode *fi = get_fuse_inode(inode); 394 bool found; 395 396 spin_lock(&fi->lock); 397 found = fuse_find_writeback(fi, idx_from, idx_to); 398 spin_unlock(&fi->lock); 399 400 return found; 401 } 402 403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index) 404 { 405 return fuse_range_is_writeback(inode, index, index); 406 } 407 408 /* 409 * Wait for page writeback to be completed. 410 * 411 * Since fuse doesn't rely on the VM writeback tracking, this has to 412 * use some other means. 413 */ 414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index) 415 { 416 struct fuse_inode *fi = get_fuse_inode(inode); 417 418 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index)); 419 } 420 421 /* 422 * Wait for all pending writepages on the inode to finish. 423 * 424 * This is currently done by blocking further writes with FUSE_NOWRITE 425 * and waiting for all sent writes to complete. 426 * 427 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage 428 * could conflict with truncation. 429 */ 430 static void fuse_sync_writes(struct inode *inode) 431 { 432 fuse_set_nowrite(inode); 433 fuse_release_nowrite(inode); 434 } 435 436 static int fuse_flush(struct file *file, fl_owner_t id) 437 { 438 struct inode *inode = file_inode(file); 439 struct fuse_conn *fc = get_fuse_conn(inode); 440 struct fuse_file *ff = file->private_data; 441 struct fuse_flush_in inarg; 442 FUSE_ARGS(args); 443 int err; 444 445 if (is_bad_inode(inode)) 446 return -EIO; 447 448 if (fc->no_flush) 449 return 0; 450 451 err = write_inode_now(inode, 1); 452 if (err) 453 return err; 454 455 inode_lock(inode); 456 fuse_sync_writes(inode); 457 inode_unlock(inode); 458 459 err = filemap_check_errors(file->f_mapping); 460 if (err) 461 return err; 462 463 memset(&inarg, 0, sizeof(inarg)); 464 inarg.fh = ff->fh; 465 inarg.lock_owner = fuse_lock_owner_id(fc, id); 466 args.opcode = FUSE_FLUSH; 467 args.nodeid = get_node_id(inode); 468 args.in_numargs = 1; 469 args.in_args[0].size = sizeof(inarg); 470 args.in_args[0].value = &inarg; 471 args.force = true; 472 473 err = fuse_simple_request(fc, &args); 474 if (err == -ENOSYS) { 475 fc->no_flush = 1; 476 err = 0; 477 } 478 return err; 479 } 480 481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end, 482 int datasync, int opcode) 483 { 484 struct inode *inode = file->f_mapping->host; 485 struct fuse_conn *fc = get_fuse_conn(inode); 486 struct fuse_file *ff = file->private_data; 487 FUSE_ARGS(args); 488 struct fuse_fsync_in inarg; 489 490 memset(&inarg, 0, sizeof(inarg)); 491 inarg.fh = ff->fh; 492 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0; 493 args.opcode = opcode; 494 args.nodeid = get_node_id(inode); 495 args.in_numargs = 1; 496 args.in_args[0].size = sizeof(inarg); 497 args.in_args[0].value = &inarg; 498 return fuse_simple_request(fc, &args); 499 } 500 501 static int fuse_fsync(struct file *file, loff_t start, loff_t end, 502 int datasync) 503 { 504 struct inode *inode = file->f_mapping->host; 505 struct fuse_conn *fc = get_fuse_conn(inode); 506 int err; 507 508 if (is_bad_inode(inode)) 509 return -EIO; 510 511 inode_lock(inode); 512 513 /* 514 * Start writeback against all dirty pages of the inode, then 515 * wait for all outstanding writes, before sending the FSYNC 516 * request. 517 */ 518 err = file_write_and_wait_range(file, start, end); 519 if (err) 520 goto out; 521 522 fuse_sync_writes(inode); 523 524 /* 525 * Due to implementation of fuse writeback 526 * file_write_and_wait_range() does not catch errors. 527 * We have to do this directly after fuse_sync_writes() 528 */ 529 err = file_check_and_advance_wb_err(file); 530 if (err) 531 goto out; 532 533 err = sync_inode_metadata(inode, 1); 534 if (err) 535 goto out; 536 537 if (fc->no_fsync) 538 goto out; 539 540 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC); 541 if (err == -ENOSYS) { 542 fc->no_fsync = 1; 543 err = 0; 544 } 545 out: 546 inode_unlock(inode); 547 548 return err; 549 } 550 551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos, 552 size_t count, int opcode) 553 { 554 struct fuse_file *ff = file->private_data; 555 struct fuse_args *args = &ia->ap.args; 556 557 ia->read.in.fh = ff->fh; 558 ia->read.in.offset = pos; 559 ia->read.in.size = count; 560 ia->read.in.flags = file->f_flags; 561 args->opcode = opcode; 562 args->nodeid = ff->nodeid; 563 args->in_numargs = 1; 564 args->in_args[0].size = sizeof(ia->read.in); 565 args->in_args[0].value = &ia->read.in; 566 args->out_argvar = true; 567 args->out_numargs = 1; 568 args->out_args[0].size = count; 569 } 570 571 static void fuse_release_user_pages(struct fuse_args_pages *ap, 572 bool should_dirty) 573 { 574 unsigned int i; 575 576 for (i = 0; i < ap->num_pages; i++) { 577 if (should_dirty) 578 set_page_dirty_lock(ap->pages[i]); 579 put_page(ap->pages[i]); 580 } 581 } 582 583 static void fuse_io_release(struct kref *kref) 584 { 585 kfree(container_of(kref, struct fuse_io_priv, refcnt)); 586 } 587 588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io) 589 { 590 if (io->err) 591 return io->err; 592 593 if (io->bytes >= 0 && io->write) 594 return -EIO; 595 596 return io->bytes < 0 ? io->size : io->bytes; 597 } 598 599 /** 600 * In case of short read, the caller sets 'pos' to the position of 601 * actual end of fuse request in IO request. Otherwise, if bytes_requested 602 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1. 603 * 604 * An example: 605 * User requested DIO read of 64K. It was splitted into two 32K fuse requests, 606 * both submitted asynchronously. The first of them was ACKed by userspace as 607 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The 608 * second request was ACKed as short, e.g. only 1K was read, resulting in 609 * pos == 33K. 610 * 611 * Thus, when all fuse requests are completed, the minimal non-negative 'pos' 612 * will be equal to the length of the longest contiguous fragment of 613 * transferred data starting from the beginning of IO request. 614 */ 615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos) 616 { 617 int left; 618 619 spin_lock(&io->lock); 620 if (err) 621 io->err = io->err ? : err; 622 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes)) 623 io->bytes = pos; 624 625 left = --io->reqs; 626 if (!left && io->blocking) 627 complete(io->done); 628 spin_unlock(&io->lock); 629 630 if (!left && !io->blocking) { 631 ssize_t res = fuse_get_res_by_io(io); 632 633 if (res >= 0) { 634 struct inode *inode = file_inode(io->iocb->ki_filp); 635 struct fuse_conn *fc = get_fuse_conn(inode); 636 struct fuse_inode *fi = get_fuse_inode(inode); 637 638 spin_lock(&fi->lock); 639 fi->attr_version = atomic64_inc_return(&fc->attr_version); 640 spin_unlock(&fi->lock); 641 } 642 643 io->iocb->ki_complete(io->iocb, res, 0); 644 } 645 646 kref_put(&io->refcnt, fuse_io_release); 647 } 648 649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io, 650 unsigned int npages) 651 { 652 struct fuse_io_args *ia; 653 654 ia = kzalloc(sizeof(*ia), GFP_KERNEL); 655 if (ia) { 656 ia->io = io; 657 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL, 658 &ia->ap.descs); 659 if (!ia->ap.pages) { 660 kfree(ia); 661 ia = NULL; 662 } 663 } 664 return ia; 665 } 666 667 static void fuse_io_free(struct fuse_io_args *ia) 668 { 669 kfree(ia->ap.pages); 670 kfree(ia); 671 } 672 673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args, 674 int err) 675 { 676 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 677 struct fuse_io_priv *io = ia->io; 678 ssize_t pos = -1; 679 680 fuse_release_user_pages(&ia->ap, io->should_dirty); 681 682 if (err) { 683 /* Nothing */ 684 } else if (io->write) { 685 if (ia->write.out.size > ia->write.in.size) { 686 err = -EIO; 687 } else if (ia->write.in.size != ia->write.out.size) { 688 pos = ia->write.in.offset - io->offset + 689 ia->write.out.size; 690 } 691 } else { 692 u32 outsize = args->out_args[0].size; 693 694 if (ia->read.in.size != outsize) 695 pos = ia->read.in.offset - io->offset + outsize; 696 } 697 698 fuse_aio_complete(io, err, pos); 699 fuse_io_free(ia); 700 } 701 702 static ssize_t fuse_async_req_send(struct fuse_conn *fc, 703 struct fuse_io_args *ia, size_t num_bytes) 704 { 705 ssize_t err; 706 struct fuse_io_priv *io = ia->io; 707 708 spin_lock(&io->lock); 709 kref_get(&io->refcnt); 710 io->size += num_bytes; 711 io->reqs++; 712 spin_unlock(&io->lock); 713 714 ia->ap.args.end = fuse_aio_complete_req; 715 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL); 716 717 return err ?: num_bytes; 718 } 719 720 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count, 721 fl_owner_t owner) 722 { 723 struct file *file = ia->io->iocb->ki_filp; 724 struct fuse_file *ff = file->private_data; 725 struct fuse_conn *fc = ff->fc; 726 727 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 728 if (owner != NULL) { 729 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER; 730 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner); 731 } 732 733 if (ia->io->async) 734 return fuse_async_req_send(fc, ia, count); 735 736 return fuse_simple_request(fc, &ia->ap.args); 737 } 738 739 static void fuse_read_update_size(struct inode *inode, loff_t size, 740 u64 attr_ver) 741 { 742 struct fuse_conn *fc = get_fuse_conn(inode); 743 struct fuse_inode *fi = get_fuse_inode(inode); 744 745 spin_lock(&fi->lock); 746 if (attr_ver == fi->attr_version && size < inode->i_size && 747 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) { 748 fi->attr_version = atomic64_inc_return(&fc->attr_version); 749 i_size_write(inode, size); 750 } 751 spin_unlock(&fi->lock); 752 } 753 754 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read, 755 struct fuse_args_pages *ap) 756 { 757 struct fuse_conn *fc = get_fuse_conn(inode); 758 759 if (fc->writeback_cache) { 760 /* 761 * A hole in a file. Some data after the hole are in page cache, 762 * but have not reached the client fs yet. So, the hole is not 763 * present there. 764 */ 765 int i; 766 int start_idx = num_read >> PAGE_SHIFT; 767 size_t off = num_read & (PAGE_SIZE - 1); 768 769 for (i = start_idx; i < ap->num_pages; i++) { 770 zero_user_segment(ap->pages[i], off, PAGE_SIZE); 771 off = 0; 772 } 773 } else { 774 loff_t pos = page_offset(ap->pages[0]) + num_read; 775 fuse_read_update_size(inode, pos, attr_ver); 776 } 777 } 778 779 static int fuse_do_readpage(struct file *file, struct page *page) 780 { 781 struct inode *inode = page->mapping->host; 782 struct fuse_conn *fc = get_fuse_conn(inode); 783 loff_t pos = page_offset(page); 784 struct fuse_page_desc desc = { .length = PAGE_SIZE }; 785 struct fuse_io_args ia = { 786 .ap.args.page_zeroing = true, 787 .ap.args.out_pages = true, 788 .ap.num_pages = 1, 789 .ap.pages = &page, 790 .ap.descs = &desc, 791 }; 792 ssize_t res; 793 u64 attr_ver; 794 795 /* 796 * Page writeback can extend beyond the lifetime of the 797 * page-cache page, so make sure we read a properly synced 798 * page. 799 */ 800 fuse_wait_on_page_writeback(inode, page->index); 801 802 attr_ver = fuse_get_attr_version(fc); 803 804 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ); 805 res = fuse_simple_request(fc, &ia.ap.args); 806 if (res < 0) 807 return res; 808 /* 809 * Short read means EOF. If file size is larger, truncate it 810 */ 811 if (res < desc.length) 812 fuse_short_read(inode, attr_ver, res, &ia.ap); 813 814 SetPageUptodate(page); 815 816 return 0; 817 } 818 819 static int fuse_readpage(struct file *file, struct page *page) 820 { 821 struct inode *inode = page->mapping->host; 822 int err; 823 824 err = -EIO; 825 if (is_bad_inode(inode)) 826 goto out; 827 828 err = fuse_do_readpage(file, page); 829 fuse_invalidate_atime(inode); 830 out: 831 unlock_page(page); 832 return err; 833 } 834 835 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args, 836 int err) 837 { 838 int i; 839 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args); 840 struct fuse_args_pages *ap = &ia->ap; 841 size_t count = ia->read.in.size; 842 size_t num_read = args->out_args[0].size; 843 struct address_space *mapping = NULL; 844 845 for (i = 0; mapping == NULL && i < ap->num_pages; i++) 846 mapping = ap->pages[i]->mapping; 847 848 if (mapping) { 849 struct inode *inode = mapping->host; 850 851 /* 852 * Short read means EOF. If file size is larger, truncate it 853 */ 854 if (!err && num_read < count) 855 fuse_short_read(inode, ia->read.attr_ver, num_read, ap); 856 857 fuse_invalidate_atime(inode); 858 } 859 860 for (i = 0; i < ap->num_pages; i++) { 861 struct page *page = ap->pages[i]; 862 863 if (!err) 864 SetPageUptodate(page); 865 else 866 SetPageError(page); 867 unlock_page(page); 868 put_page(page); 869 } 870 if (ia->ff) 871 fuse_file_put(ia->ff, false, false); 872 873 fuse_io_free(ia); 874 } 875 876 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file) 877 { 878 struct fuse_file *ff = file->private_data; 879 struct fuse_conn *fc = ff->fc; 880 struct fuse_args_pages *ap = &ia->ap; 881 loff_t pos = page_offset(ap->pages[0]); 882 size_t count = ap->num_pages << PAGE_SHIFT; 883 int err; 884 885 ap->args.out_pages = true; 886 ap->args.page_zeroing = true; 887 ap->args.page_replace = true; 888 fuse_read_args_fill(ia, file, pos, count, FUSE_READ); 889 ia->read.attr_ver = fuse_get_attr_version(fc); 890 if (fc->async_read) { 891 ia->ff = fuse_file_get(ff); 892 ap->args.end = fuse_readpages_end; 893 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL); 894 if (!err) 895 return; 896 } else { 897 err = fuse_simple_request(fc, &ap->args); 898 } 899 fuse_readpages_end(fc, &ap->args, err); 900 } 901 902 struct fuse_fill_data { 903 struct fuse_io_args *ia; 904 struct file *file; 905 struct inode *inode; 906 unsigned int nr_pages; 907 unsigned int max_pages; 908 }; 909 910 static int fuse_readpages_fill(void *_data, struct page *page) 911 { 912 struct fuse_fill_data *data = _data; 913 struct fuse_io_args *ia = data->ia; 914 struct fuse_args_pages *ap = &ia->ap; 915 struct inode *inode = data->inode; 916 struct fuse_conn *fc = get_fuse_conn(inode); 917 918 fuse_wait_on_page_writeback(inode, page->index); 919 920 if (ap->num_pages && 921 (ap->num_pages == fc->max_pages || 922 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read || 923 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) { 924 data->max_pages = min_t(unsigned int, data->nr_pages, 925 fc->max_pages); 926 fuse_send_readpages(ia, data->file); 927 data->ia = ia = fuse_io_alloc(NULL, data->max_pages); 928 if (!ia) { 929 unlock_page(page); 930 return -ENOMEM; 931 } 932 ap = &ia->ap; 933 } 934 935 if (WARN_ON(ap->num_pages >= data->max_pages)) { 936 unlock_page(page); 937 fuse_io_free(ia); 938 return -EIO; 939 } 940 941 get_page(page); 942 ap->pages[ap->num_pages] = page; 943 ap->descs[ap->num_pages].length = PAGE_SIZE; 944 ap->num_pages++; 945 data->nr_pages--; 946 return 0; 947 } 948 949 static int fuse_readpages(struct file *file, struct address_space *mapping, 950 struct list_head *pages, unsigned nr_pages) 951 { 952 struct inode *inode = mapping->host; 953 struct fuse_conn *fc = get_fuse_conn(inode); 954 struct fuse_fill_data data; 955 int err; 956 957 err = -EIO; 958 if (is_bad_inode(inode)) 959 goto out; 960 961 data.file = file; 962 data.inode = inode; 963 data.nr_pages = nr_pages; 964 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages); 965 ; 966 data.ia = fuse_io_alloc(NULL, data.max_pages); 967 err = -ENOMEM; 968 if (!data.ia) 969 goto out; 970 971 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data); 972 if (!err) { 973 if (data.ia->ap.num_pages) 974 fuse_send_readpages(data.ia, file); 975 else 976 fuse_io_free(data.ia); 977 } 978 out: 979 return err; 980 } 981 982 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to) 983 { 984 struct inode *inode = iocb->ki_filp->f_mapping->host; 985 struct fuse_conn *fc = get_fuse_conn(inode); 986 987 /* 988 * In auto invalidate mode, always update attributes on read. 989 * Otherwise, only update if we attempt to read past EOF (to ensure 990 * i_size is up to date). 991 */ 992 if (fc->auto_inval_data || 993 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) { 994 int err; 995 err = fuse_update_attributes(inode, iocb->ki_filp); 996 if (err) 997 return err; 998 } 999 1000 return generic_file_read_iter(iocb, to); 1001 } 1002 1003 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff, 1004 loff_t pos, size_t count) 1005 { 1006 struct fuse_args *args = &ia->ap.args; 1007 1008 ia->write.in.fh = ff->fh; 1009 ia->write.in.offset = pos; 1010 ia->write.in.size = count; 1011 args->opcode = FUSE_WRITE; 1012 args->nodeid = ff->nodeid; 1013 args->in_numargs = 2; 1014 if (ff->fc->minor < 9) 1015 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE; 1016 else 1017 args->in_args[0].size = sizeof(ia->write.in); 1018 args->in_args[0].value = &ia->write.in; 1019 args->in_args[1].size = count; 1020 args->out_numargs = 1; 1021 args->out_args[0].size = sizeof(ia->write.out); 1022 args->out_args[0].value = &ia->write.out; 1023 } 1024 1025 static unsigned int fuse_write_flags(struct kiocb *iocb) 1026 { 1027 unsigned int flags = iocb->ki_filp->f_flags; 1028 1029 if (iocb->ki_flags & IOCB_DSYNC) 1030 flags |= O_DSYNC; 1031 if (iocb->ki_flags & IOCB_SYNC) 1032 flags |= O_SYNC; 1033 1034 return flags; 1035 } 1036 1037 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos, 1038 size_t count, fl_owner_t owner) 1039 { 1040 struct kiocb *iocb = ia->io->iocb; 1041 struct file *file = iocb->ki_filp; 1042 struct fuse_file *ff = file->private_data; 1043 struct fuse_conn *fc = ff->fc; 1044 struct fuse_write_in *inarg = &ia->write.in; 1045 ssize_t err; 1046 1047 fuse_write_args_fill(ia, ff, pos, count); 1048 inarg->flags = fuse_write_flags(iocb); 1049 if (owner != NULL) { 1050 inarg->write_flags |= FUSE_WRITE_LOCKOWNER; 1051 inarg->lock_owner = fuse_lock_owner_id(fc, owner); 1052 } 1053 1054 if (ia->io->async) 1055 return fuse_async_req_send(fc, ia, count); 1056 1057 err = fuse_simple_request(fc, &ia->ap.args); 1058 if (!err && ia->write.out.size > count) 1059 err = -EIO; 1060 1061 return err ?: ia->write.out.size; 1062 } 1063 1064 bool fuse_write_update_size(struct inode *inode, loff_t pos) 1065 { 1066 struct fuse_conn *fc = get_fuse_conn(inode); 1067 struct fuse_inode *fi = get_fuse_inode(inode); 1068 bool ret = false; 1069 1070 spin_lock(&fi->lock); 1071 fi->attr_version = atomic64_inc_return(&fc->attr_version); 1072 if (pos > inode->i_size) { 1073 i_size_write(inode, pos); 1074 ret = true; 1075 } 1076 spin_unlock(&fi->lock); 1077 1078 return ret; 1079 } 1080 1081 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia, 1082 struct kiocb *iocb, struct inode *inode, 1083 loff_t pos, size_t count) 1084 { 1085 struct fuse_args_pages *ap = &ia->ap; 1086 struct file *file = iocb->ki_filp; 1087 struct fuse_file *ff = file->private_data; 1088 struct fuse_conn *fc = ff->fc; 1089 unsigned int offset, i; 1090 int err; 1091 1092 for (i = 0; i < ap->num_pages; i++) 1093 fuse_wait_on_page_writeback(inode, ap->pages[i]->index); 1094 1095 fuse_write_args_fill(ia, ff, pos, count); 1096 ia->write.in.flags = fuse_write_flags(iocb); 1097 1098 err = fuse_simple_request(fc, &ap->args); 1099 1100 offset = ap->descs[0].offset; 1101 count = ia->write.out.size; 1102 for (i = 0; i < ap->num_pages; i++) { 1103 struct page *page = ap->pages[i]; 1104 1105 if (!err && !offset && count >= PAGE_SIZE) 1106 SetPageUptodate(page); 1107 1108 if (count > PAGE_SIZE - offset) 1109 count -= PAGE_SIZE - offset; 1110 else 1111 count = 0; 1112 offset = 0; 1113 1114 unlock_page(page); 1115 put_page(page); 1116 } 1117 1118 return err; 1119 } 1120 1121 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap, 1122 struct address_space *mapping, 1123 struct iov_iter *ii, loff_t pos, 1124 unsigned int max_pages) 1125 { 1126 struct fuse_conn *fc = get_fuse_conn(mapping->host); 1127 unsigned offset = pos & (PAGE_SIZE - 1); 1128 size_t count = 0; 1129 int err; 1130 1131 ap->args.in_pages = true; 1132 ap->descs[0].offset = offset; 1133 1134 do { 1135 size_t tmp; 1136 struct page *page; 1137 pgoff_t index = pos >> PAGE_SHIFT; 1138 size_t bytes = min_t(size_t, PAGE_SIZE - offset, 1139 iov_iter_count(ii)); 1140 1141 bytes = min_t(size_t, bytes, fc->max_write - count); 1142 1143 again: 1144 err = -EFAULT; 1145 if (iov_iter_fault_in_readable(ii, bytes)) 1146 break; 1147 1148 err = -ENOMEM; 1149 page = grab_cache_page_write_begin(mapping, index, 0); 1150 if (!page) 1151 break; 1152 1153 if (mapping_writably_mapped(mapping)) 1154 flush_dcache_page(page); 1155 1156 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes); 1157 flush_dcache_page(page); 1158 1159 iov_iter_advance(ii, tmp); 1160 if (!tmp) { 1161 unlock_page(page); 1162 put_page(page); 1163 bytes = min(bytes, iov_iter_single_seg_count(ii)); 1164 goto again; 1165 } 1166 1167 err = 0; 1168 ap->pages[ap->num_pages] = page; 1169 ap->descs[ap->num_pages].length = tmp; 1170 ap->num_pages++; 1171 1172 count += tmp; 1173 pos += tmp; 1174 offset += tmp; 1175 if (offset == PAGE_SIZE) 1176 offset = 0; 1177 1178 if (!fc->big_writes) 1179 break; 1180 } while (iov_iter_count(ii) && count < fc->max_write && 1181 ap->num_pages < max_pages && offset == 0); 1182 1183 return count > 0 ? count : err; 1184 } 1185 1186 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len, 1187 unsigned int max_pages) 1188 { 1189 return min_t(unsigned int, 1190 ((pos + len - 1) >> PAGE_SHIFT) - 1191 (pos >> PAGE_SHIFT) + 1, 1192 max_pages); 1193 } 1194 1195 static ssize_t fuse_perform_write(struct kiocb *iocb, 1196 struct address_space *mapping, 1197 struct iov_iter *ii, loff_t pos) 1198 { 1199 struct inode *inode = mapping->host; 1200 struct fuse_conn *fc = get_fuse_conn(inode); 1201 struct fuse_inode *fi = get_fuse_inode(inode); 1202 int err = 0; 1203 ssize_t res = 0; 1204 1205 if (inode->i_size < pos + iov_iter_count(ii)) 1206 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1207 1208 do { 1209 ssize_t count; 1210 struct fuse_io_args ia = {}; 1211 struct fuse_args_pages *ap = &ia.ap; 1212 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii), 1213 fc->max_pages); 1214 1215 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs); 1216 if (!ap->pages) { 1217 err = -ENOMEM; 1218 break; 1219 } 1220 1221 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages); 1222 if (count <= 0) { 1223 err = count; 1224 } else { 1225 err = fuse_send_write_pages(&ia, iocb, inode, 1226 pos, count); 1227 if (!err) { 1228 size_t num_written = ia.write.out.size; 1229 1230 res += num_written; 1231 pos += num_written; 1232 1233 /* break out of the loop on short write */ 1234 if (num_written != count) 1235 err = -EIO; 1236 } 1237 } 1238 kfree(ap->pages); 1239 } while (!err && iov_iter_count(ii)); 1240 1241 if (res > 0) 1242 fuse_write_update_size(inode, pos); 1243 1244 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 1245 fuse_invalidate_attr(inode); 1246 1247 return res > 0 ? res : err; 1248 } 1249 1250 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from) 1251 { 1252 struct file *file = iocb->ki_filp; 1253 struct address_space *mapping = file->f_mapping; 1254 ssize_t written = 0; 1255 ssize_t written_buffered = 0; 1256 struct inode *inode = mapping->host; 1257 ssize_t err; 1258 loff_t endbyte = 0; 1259 1260 if (get_fuse_conn(inode)->writeback_cache) { 1261 /* Update size (EOF optimization) and mode (SUID clearing) */ 1262 err = fuse_update_attributes(mapping->host, file); 1263 if (err) 1264 return err; 1265 1266 return generic_file_write_iter(iocb, from); 1267 } 1268 1269 inode_lock(inode); 1270 1271 /* We can write back this queue in page reclaim */ 1272 current->backing_dev_info = inode_to_bdi(inode); 1273 1274 err = generic_write_checks(iocb, from); 1275 if (err <= 0) 1276 goto out; 1277 1278 err = file_remove_privs(file); 1279 if (err) 1280 goto out; 1281 1282 err = file_update_time(file); 1283 if (err) 1284 goto out; 1285 1286 if (iocb->ki_flags & IOCB_DIRECT) { 1287 loff_t pos = iocb->ki_pos; 1288 written = generic_file_direct_write(iocb, from); 1289 if (written < 0 || !iov_iter_count(from)) 1290 goto out; 1291 1292 pos += written; 1293 1294 written_buffered = fuse_perform_write(iocb, mapping, from, pos); 1295 if (written_buffered < 0) { 1296 err = written_buffered; 1297 goto out; 1298 } 1299 endbyte = pos + written_buffered - 1; 1300 1301 err = filemap_write_and_wait_range(file->f_mapping, pos, 1302 endbyte); 1303 if (err) 1304 goto out; 1305 1306 invalidate_mapping_pages(file->f_mapping, 1307 pos >> PAGE_SHIFT, 1308 endbyte >> PAGE_SHIFT); 1309 1310 written += written_buffered; 1311 iocb->ki_pos = pos + written_buffered; 1312 } else { 1313 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos); 1314 if (written >= 0) 1315 iocb->ki_pos += written; 1316 } 1317 out: 1318 current->backing_dev_info = NULL; 1319 inode_unlock(inode); 1320 if (written > 0) 1321 written = generic_write_sync(iocb, written); 1322 1323 return written ? written : err; 1324 } 1325 1326 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs, 1327 unsigned int index, 1328 unsigned int nr_pages) 1329 { 1330 int i; 1331 1332 for (i = index; i < index + nr_pages; i++) 1333 descs[i].length = PAGE_SIZE - descs[i].offset; 1334 } 1335 1336 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii) 1337 { 1338 return (unsigned long)ii->iov->iov_base + ii->iov_offset; 1339 } 1340 1341 static inline size_t fuse_get_frag_size(const struct iov_iter *ii, 1342 size_t max_size) 1343 { 1344 return min(iov_iter_single_seg_count(ii), max_size); 1345 } 1346 1347 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii, 1348 size_t *nbytesp, int write, 1349 unsigned int max_pages) 1350 { 1351 size_t nbytes = 0; /* # bytes already packed in req */ 1352 ssize_t ret = 0; 1353 1354 /* Special case for kernel I/O: can copy directly into the buffer */ 1355 if (iov_iter_is_kvec(ii)) { 1356 unsigned long user_addr = fuse_get_user_addr(ii); 1357 size_t frag_size = fuse_get_frag_size(ii, *nbytesp); 1358 1359 if (write) 1360 ap->args.in_args[1].value = (void *) user_addr; 1361 else 1362 ap->args.out_args[0].value = (void *) user_addr; 1363 1364 iov_iter_advance(ii, frag_size); 1365 *nbytesp = frag_size; 1366 return 0; 1367 } 1368 1369 while (nbytes < *nbytesp && ap->num_pages < max_pages) { 1370 unsigned npages; 1371 size_t start; 1372 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages], 1373 *nbytesp - nbytes, 1374 max_pages - ap->num_pages, 1375 &start); 1376 if (ret < 0) 1377 break; 1378 1379 iov_iter_advance(ii, ret); 1380 nbytes += ret; 1381 1382 ret += start; 1383 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE; 1384 1385 ap->descs[ap->num_pages].offset = start; 1386 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages); 1387 1388 ap->num_pages += npages; 1389 ap->descs[ap->num_pages - 1].length -= 1390 (PAGE_SIZE - ret) & (PAGE_SIZE - 1); 1391 } 1392 1393 if (write) 1394 ap->args.in_pages = 1; 1395 else 1396 ap->args.out_pages = 1; 1397 1398 *nbytesp = nbytes; 1399 1400 return ret < 0 ? ret : 0; 1401 } 1402 1403 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter, 1404 loff_t *ppos, int flags) 1405 { 1406 int write = flags & FUSE_DIO_WRITE; 1407 int cuse = flags & FUSE_DIO_CUSE; 1408 struct file *file = io->iocb->ki_filp; 1409 struct inode *inode = file->f_mapping->host; 1410 struct fuse_file *ff = file->private_data; 1411 struct fuse_conn *fc = ff->fc; 1412 size_t nmax = write ? fc->max_write : fc->max_read; 1413 loff_t pos = *ppos; 1414 size_t count = iov_iter_count(iter); 1415 pgoff_t idx_from = pos >> PAGE_SHIFT; 1416 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT; 1417 ssize_t res = 0; 1418 int err = 0; 1419 struct fuse_io_args *ia; 1420 unsigned int max_pages; 1421 1422 max_pages = iov_iter_npages(iter, fc->max_pages); 1423 ia = fuse_io_alloc(io, max_pages); 1424 if (!ia) 1425 return -ENOMEM; 1426 1427 ia->io = io; 1428 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) { 1429 if (!write) 1430 inode_lock(inode); 1431 fuse_sync_writes(inode); 1432 if (!write) 1433 inode_unlock(inode); 1434 } 1435 1436 io->should_dirty = !write && iter_is_iovec(iter); 1437 while (count) { 1438 ssize_t nres; 1439 fl_owner_t owner = current->files; 1440 size_t nbytes = min(count, nmax); 1441 1442 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write, 1443 max_pages); 1444 if (err && !nbytes) 1445 break; 1446 1447 if (write) { 1448 if (!capable(CAP_FSETID)) 1449 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV; 1450 1451 nres = fuse_send_write(ia, pos, nbytes, owner); 1452 } else { 1453 nres = fuse_send_read(ia, pos, nbytes, owner); 1454 } 1455 1456 if (!io->async || nres < 0) { 1457 fuse_release_user_pages(&ia->ap, io->should_dirty); 1458 fuse_io_free(ia); 1459 } 1460 ia = NULL; 1461 if (nres < 0) { 1462 err = nres; 1463 break; 1464 } 1465 WARN_ON(nres > nbytes); 1466 1467 count -= nres; 1468 res += nres; 1469 pos += nres; 1470 if (nres != nbytes) 1471 break; 1472 if (count) { 1473 max_pages = iov_iter_npages(iter, fc->max_pages); 1474 ia = fuse_io_alloc(io, max_pages); 1475 if (!ia) 1476 break; 1477 } 1478 } 1479 if (ia) 1480 fuse_io_free(ia); 1481 if (res > 0) 1482 *ppos = pos; 1483 1484 return res > 0 ? res : err; 1485 } 1486 EXPORT_SYMBOL_GPL(fuse_direct_io); 1487 1488 static ssize_t __fuse_direct_read(struct fuse_io_priv *io, 1489 struct iov_iter *iter, 1490 loff_t *ppos) 1491 { 1492 ssize_t res; 1493 struct inode *inode = file_inode(io->iocb->ki_filp); 1494 1495 res = fuse_direct_io(io, iter, ppos, 0); 1496 1497 fuse_invalidate_atime(inode); 1498 1499 return res; 1500 } 1501 1502 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter); 1503 1504 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to) 1505 { 1506 ssize_t res; 1507 1508 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1509 res = fuse_direct_IO(iocb, to); 1510 } else { 1511 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1512 1513 res = __fuse_direct_read(&io, to, &iocb->ki_pos); 1514 } 1515 1516 return res; 1517 } 1518 1519 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from) 1520 { 1521 struct inode *inode = file_inode(iocb->ki_filp); 1522 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb); 1523 ssize_t res; 1524 1525 /* Don't allow parallel writes to the same file */ 1526 inode_lock(inode); 1527 res = generic_write_checks(iocb, from); 1528 if (res > 0) { 1529 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) { 1530 res = fuse_direct_IO(iocb, from); 1531 } else { 1532 res = fuse_direct_io(&io, from, &iocb->ki_pos, 1533 FUSE_DIO_WRITE); 1534 } 1535 } 1536 fuse_invalidate_attr(inode); 1537 if (res > 0) 1538 fuse_write_update_size(inode, iocb->ki_pos); 1539 inode_unlock(inode); 1540 1541 return res; 1542 } 1543 1544 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to) 1545 { 1546 struct file *file = iocb->ki_filp; 1547 struct fuse_file *ff = file->private_data; 1548 1549 if (is_bad_inode(file_inode(file))) 1550 return -EIO; 1551 1552 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1553 return fuse_cache_read_iter(iocb, to); 1554 else 1555 return fuse_direct_read_iter(iocb, to); 1556 } 1557 1558 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 1559 { 1560 struct file *file = iocb->ki_filp; 1561 struct fuse_file *ff = file->private_data; 1562 1563 if (is_bad_inode(file_inode(file))) 1564 return -EIO; 1565 1566 if (!(ff->open_flags & FOPEN_DIRECT_IO)) 1567 return fuse_cache_write_iter(iocb, from); 1568 else 1569 return fuse_direct_write_iter(iocb, from); 1570 } 1571 1572 static void fuse_writepage_free(struct fuse_writepage_args *wpa) 1573 { 1574 struct fuse_args_pages *ap = &wpa->ia.ap; 1575 int i; 1576 1577 for (i = 0; i < ap->num_pages; i++) 1578 __free_page(ap->pages[i]); 1579 1580 if (wpa->ia.ff) 1581 fuse_file_put(wpa->ia.ff, false, false); 1582 1583 kfree(ap->pages); 1584 kfree(wpa); 1585 } 1586 1587 static void fuse_writepage_finish(struct fuse_conn *fc, 1588 struct fuse_writepage_args *wpa) 1589 { 1590 struct fuse_args_pages *ap = &wpa->ia.ap; 1591 struct inode *inode = wpa->inode; 1592 struct fuse_inode *fi = get_fuse_inode(inode); 1593 struct backing_dev_info *bdi = inode_to_bdi(inode); 1594 int i; 1595 1596 list_del(&wpa->writepages_entry); 1597 for (i = 0; i < ap->num_pages; i++) { 1598 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1599 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP); 1600 wb_writeout_inc(&bdi->wb); 1601 } 1602 wake_up(&fi->page_waitq); 1603 } 1604 1605 /* Called under fi->lock, may release and reacquire it */ 1606 static void fuse_send_writepage(struct fuse_conn *fc, 1607 struct fuse_writepage_args *wpa, loff_t size) 1608 __releases(fi->lock) 1609 __acquires(fi->lock) 1610 { 1611 struct fuse_writepage_args *aux, *next; 1612 struct fuse_inode *fi = get_fuse_inode(wpa->inode); 1613 struct fuse_write_in *inarg = &wpa->ia.write.in; 1614 struct fuse_args *args = &wpa->ia.ap.args; 1615 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE; 1616 int err; 1617 1618 fi->writectr++; 1619 if (inarg->offset + data_size <= size) { 1620 inarg->size = data_size; 1621 } else if (inarg->offset < size) { 1622 inarg->size = size - inarg->offset; 1623 } else { 1624 /* Got truncated off completely */ 1625 goto out_free; 1626 } 1627 1628 args->in_args[1].size = inarg->size; 1629 args->force = true; 1630 args->nocreds = true; 1631 1632 err = fuse_simple_background(fc, args, GFP_ATOMIC); 1633 if (err == -ENOMEM) { 1634 spin_unlock(&fi->lock); 1635 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL); 1636 spin_lock(&fi->lock); 1637 } 1638 1639 /* Fails on broken connection only */ 1640 if (unlikely(err)) 1641 goto out_free; 1642 1643 return; 1644 1645 out_free: 1646 fi->writectr--; 1647 fuse_writepage_finish(fc, wpa); 1648 spin_unlock(&fi->lock); 1649 1650 /* After fuse_writepage_finish() aux request list is private */ 1651 for (aux = wpa->next; aux; aux = next) { 1652 next = aux->next; 1653 aux->next = NULL; 1654 fuse_writepage_free(aux); 1655 } 1656 1657 fuse_writepage_free(wpa); 1658 spin_lock(&fi->lock); 1659 } 1660 1661 /* 1662 * If fi->writectr is positive (no truncate or fsync going on) send 1663 * all queued writepage requests. 1664 * 1665 * Called with fi->lock 1666 */ 1667 void fuse_flush_writepages(struct inode *inode) 1668 __releases(fi->lock) 1669 __acquires(fi->lock) 1670 { 1671 struct fuse_conn *fc = get_fuse_conn(inode); 1672 struct fuse_inode *fi = get_fuse_inode(inode); 1673 loff_t crop = i_size_read(inode); 1674 struct fuse_writepage_args *wpa; 1675 1676 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) { 1677 wpa = list_entry(fi->queued_writes.next, 1678 struct fuse_writepage_args, queue_entry); 1679 list_del_init(&wpa->queue_entry); 1680 fuse_send_writepage(fc, wpa, crop); 1681 } 1682 } 1683 1684 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args, 1685 int error) 1686 { 1687 struct fuse_writepage_args *wpa = 1688 container_of(args, typeof(*wpa), ia.ap.args); 1689 struct inode *inode = wpa->inode; 1690 struct fuse_inode *fi = get_fuse_inode(inode); 1691 1692 mapping_set_error(inode->i_mapping, error); 1693 spin_lock(&fi->lock); 1694 while (wpa->next) { 1695 struct fuse_conn *fc = get_fuse_conn(inode); 1696 struct fuse_write_in *inarg = &wpa->ia.write.in; 1697 struct fuse_writepage_args *next = wpa->next; 1698 1699 wpa->next = next->next; 1700 next->next = NULL; 1701 next->ia.ff = fuse_file_get(wpa->ia.ff); 1702 list_add(&next->writepages_entry, &fi->writepages); 1703 1704 /* 1705 * Skip fuse_flush_writepages() to make it easy to crop requests 1706 * based on primary request size. 1707 * 1708 * 1st case (trivial): there are no concurrent activities using 1709 * fuse_set/release_nowrite. Then we're on safe side because 1710 * fuse_flush_writepages() would call fuse_send_writepage() 1711 * anyway. 1712 * 1713 * 2nd case: someone called fuse_set_nowrite and it is waiting 1714 * now for completion of all in-flight requests. This happens 1715 * rarely and no more than once per page, so this should be 1716 * okay. 1717 * 1718 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle 1719 * of fuse_set_nowrite..fuse_release_nowrite section. The fact 1720 * that fuse_set_nowrite returned implies that all in-flight 1721 * requests were completed along with all of their secondary 1722 * requests. Further primary requests are blocked by negative 1723 * writectr. Hence there cannot be any in-flight requests and 1724 * no invocations of fuse_writepage_end() while we're in 1725 * fuse_set_nowrite..fuse_release_nowrite section. 1726 */ 1727 fuse_send_writepage(fc, next, inarg->offset + inarg->size); 1728 } 1729 fi->writectr--; 1730 fuse_writepage_finish(fc, wpa); 1731 spin_unlock(&fi->lock); 1732 fuse_writepage_free(wpa); 1733 } 1734 1735 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc, 1736 struct fuse_inode *fi) 1737 { 1738 struct fuse_file *ff = NULL; 1739 1740 spin_lock(&fi->lock); 1741 if (!list_empty(&fi->write_files)) { 1742 ff = list_entry(fi->write_files.next, struct fuse_file, 1743 write_entry); 1744 fuse_file_get(ff); 1745 } 1746 spin_unlock(&fi->lock); 1747 1748 return ff; 1749 } 1750 1751 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc, 1752 struct fuse_inode *fi) 1753 { 1754 struct fuse_file *ff = __fuse_write_file_get(fc, fi); 1755 WARN_ON(!ff); 1756 return ff; 1757 } 1758 1759 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc) 1760 { 1761 struct fuse_conn *fc = get_fuse_conn(inode); 1762 struct fuse_inode *fi = get_fuse_inode(inode); 1763 struct fuse_file *ff; 1764 int err; 1765 1766 ff = __fuse_write_file_get(fc, fi); 1767 err = fuse_flush_times(inode, ff); 1768 if (ff) 1769 fuse_file_put(ff, false, false); 1770 1771 return err; 1772 } 1773 1774 static struct fuse_writepage_args *fuse_writepage_args_alloc(void) 1775 { 1776 struct fuse_writepage_args *wpa; 1777 struct fuse_args_pages *ap; 1778 1779 wpa = kzalloc(sizeof(*wpa), GFP_NOFS); 1780 if (wpa) { 1781 ap = &wpa->ia.ap; 1782 ap->num_pages = 0; 1783 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs); 1784 if (!ap->pages) { 1785 kfree(wpa); 1786 wpa = NULL; 1787 } 1788 } 1789 return wpa; 1790 1791 } 1792 1793 static int fuse_writepage_locked(struct page *page) 1794 { 1795 struct address_space *mapping = page->mapping; 1796 struct inode *inode = mapping->host; 1797 struct fuse_conn *fc = get_fuse_conn(inode); 1798 struct fuse_inode *fi = get_fuse_inode(inode); 1799 struct fuse_writepage_args *wpa; 1800 struct fuse_args_pages *ap; 1801 struct page *tmp_page; 1802 int error = -ENOMEM; 1803 1804 set_page_writeback(page); 1805 1806 wpa = fuse_writepage_args_alloc(); 1807 if (!wpa) 1808 goto err; 1809 ap = &wpa->ia.ap; 1810 1811 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 1812 if (!tmp_page) 1813 goto err_free; 1814 1815 error = -EIO; 1816 wpa->ia.ff = fuse_write_file_get(fc, fi); 1817 if (!wpa->ia.ff) 1818 goto err_nofile; 1819 1820 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0); 1821 1822 copy_highpage(tmp_page, page); 1823 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 1824 wpa->next = NULL; 1825 ap->args.in_pages = true; 1826 ap->num_pages = 1; 1827 ap->pages[0] = tmp_page; 1828 ap->descs[0].offset = 0; 1829 ap->descs[0].length = PAGE_SIZE; 1830 ap->args.end = fuse_writepage_end; 1831 wpa->inode = inode; 1832 1833 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 1834 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 1835 1836 spin_lock(&fi->lock); 1837 list_add(&wpa->writepages_entry, &fi->writepages); 1838 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1839 fuse_flush_writepages(inode); 1840 spin_unlock(&fi->lock); 1841 1842 end_page_writeback(page); 1843 1844 return 0; 1845 1846 err_nofile: 1847 __free_page(tmp_page); 1848 err_free: 1849 kfree(wpa); 1850 err: 1851 mapping_set_error(page->mapping, error); 1852 end_page_writeback(page); 1853 return error; 1854 } 1855 1856 static int fuse_writepage(struct page *page, struct writeback_control *wbc) 1857 { 1858 int err; 1859 1860 if (fuse_page_is_writeback(page->mapping->host, page->index)) { 1861 /* 1862 * ->writepages() should be called for sync() and friends. We 1863 * should only get here on direct reclaim and then we are 1864 * allowed to skip a page which is already in flight 1865 */ 1866 WARN_ON(wbc->sync_mode == WB_SYNC_ALL); 1867 1868 redirty_page_for_writepage(wbc, page); 1869 unlock_page(page); 1870 return 0; 1871 } 1872 1873 err = fuse_writepage_locked(page); 1874 unlock_page(page); 1875 1876 return err; 1877 } 1878 1879 struct fuse_fill_wb_data { 1880 struct fuse_writepage_args *wpa; 1881 struct fuse_file *ff; 1882 struct inode *inode; 1883 struct page **orig_pages; 1884 unsigned int max_pages; 1885 }; 1886 1887 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data) 1888 { 1889 struct fuse_args_pages *ap = &data->wpa->ia.ap; 1890 struct fuse_conn *fc = get_fuse_conn(data->inode); 1891 struct page **pages; 1892 struct fuse_page_desc *descs; 1893 unsigned int npages = min_t(unsigned int, 1894 max_t(unsigned int, data->max_pages * 2, 1895 FUSE_DEFAULT_MAX_PAGES_PER_REQ), 1896 fc->max_pages); 1897 WARN_ON(npages <= data->max_pages); 1898 1899 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs); 1900 if (!pages) 1901 return false; 1902 1903 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages); 1904 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages); 1905 kfree(ap->pages); 1906 ap->pages = pages; 1907 ap->descs = descs; 1908 data->max_pages = npages; 1909 1910 return true; 1911 } 1912 1913 static void fuse_writepages_send(struct fuse_fill_wb_data *data) 1914 { 1915 struct fuse_writepage_args *wpa = data->wpa; 1916 struct inode *inode = data->inode; 1917 struct fuse_inode *fi = get_fuse_inode(inode); 1918 int num_pages = wpa->ia.ap.num_pages; 1919 int i; 1920 1921 wpa->ia.ff = fuse_file_get(data->ff); 1922 spin_lock(&fi->lock); 1923 list_add_tail(&wpa->queue_entry, &fi->queued_writes); 1924 fuse_flush_writepages(inode); 1925 spin_unlock(&fi->lock); 1926 1927 for (i = 0; i < num_pages; i++) 1928 end_page_writeback(data->orig_pages[i]); 1929 } 1930 1931 /* 1932 * First recheck under fi->lock if the offending offset is still under 1933 * writeback. If yes, then iterate auxiliary write requests, to see if there's 1934 * one already added for a page at this offset. If there's none, then insert 1935 * this new request onto the auxiliary list, otherwise reuse the existing one by 1936 * copying the new page contents over to the old temporary page. 1937 */ 1938 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa, 1939 struct page *page) 1940 { 1941 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode); 1942 struct fuse_writepage_args *tmp; 1943 struct fuse_writepage_args *old_wpa; 1944 struct fuse_args_pages *new_ap = &new_wpa->ia.ap; 1945 1946 WARN_ON(new_ap->num_pages != 0); 1947 1948 spin_lock(&fi->lock); 1949 list_del(&new_wpa->writepages_entry); 1950 old_wpa = fuse_find_writeback(fi, page->index, page->index); 1951 if (!old_wpa) { 1952 list_add(&new_wpa->writepages_entry, &fi->writepages); 1953 spin_unlock(&fi->lock); 1954 return false; 1955 } 1956 1957 new_ap->num_pages = 1; 1958 for (tmp = old_wpa->next; tmp; tmp = tmp->next) { 1959 pgoff_t curr_index; 1960 1961 WARN_ON(tmp->inode != new_wpa->inode); 1962 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT; 1963 if (curr_index == page->index) { 1964 WARN_ON(tmp->ia.ap.num_pages != 1); 1965 swap(tmp->ia.ap.pages[0], new_ap->pages[0]); 1966 break; 1967 } 1968 } 1969 1970 if (!tmp) { 1971 new_wpa->next = old_wpa->next; 1972 old_wpa->next = new_wpa; 1973 } 1974 1975 spin_unlock(&fi->lock); 1976 1977 if (tmp) { 1978 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode); 1979 1980 dec_wb_stat(&bdi->wb, WB_WRITEBACK); 1981 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP); 1982 wb_writeout_inc(&bdi->wb); 1983 fuse_writepage_free(new_wpa); 1984 } 1985 1986 return true; 1987 } 1988 1989 static int fuse_writepages_fill(struct page *page, 1990 struct writeback_control *wbc, void *_data) 1991 { 1992 struct fuse_fill_wb_data *data = _data; 1993 struct fuse_writepage_args *wpa = data->wpa; 1994 struct fuse_args_pages *ap = &wpa->ia.ap; 1995 struct inode *inode = data->inode; 1996 struct fuse_inode *fi = get_fuse_inode(inode); 1997 struct fuse_conn *fc = get_fuse_conn(inode); 1998 struct page *tmp_page; 1999 bool is_writeback; 2000 int err; 2001 2002 if (!data->ff) { 2003 err = -EIO; 2004 data->ff = fuse_write_file_get(fc, fi); 2005 if (!data->ff) 2006 goto out_unlock; 2007 } 2008 2009 /* 2010 * Being under writeback is unlikely but possible. For example direct 2011 * read to an mmaped fuse file will set the page dirty twice; once when 2012 * the pages are faulted with get_user_pages(), and then after the read 2013 * completed. 2014 */ 2015 is_writeback = fuse_page_is_writeback(inode, page->index); 2016 2017 if (wpa && ap->num_pages && 2018 (is_writeback || ap->num_pages == fc->max_pages || 2019 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write || 2020 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) { 2021 fuse_writepages_send(data); 2022 data->wpa = NULL; 2023 } else if (wpa && ap->num_pages == data->max_pages) { 2024 if (!fuse_pages_realloc(data)) { 2025 fuse_writepages_send(data); 2026 data->wpa = NULL; 2027 } 2028 } 2029 2030 err = -ENOMEM; 2031 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); 2032 if (!tmp_page) 2033 goto out_unlock; 2034 2035 /* 2036 * The page must not be redirtied until the writeout is completed 2037 * (i.e. userspace has sent a reply to the write request). Otherwise 2038 * there could be more than one temporary page instance for each real 2039 * page. 2040 * 2041 * This is ensured by holding the page lock in page_mkwrite() while 2042 * checking fuse_page_is_writeback(). We already hold the page lock 2043 * since clear_page_dirty_for_io() and keep it held until we add the 2044 * request to the fi->writepages list and increment ap->num_pages. 2045 * After this fuse_page_is_writeback() will indicate that the page is 2046 * under writeback, so we can release the page lock. 2047 */ 2048 if (data->wpa == NULL) { 2049 err = -ENOMEM; 2050 wpa = fuse_writepage_args_alloc(); 2051 if (!wpa) { 2052 __free_page(tmp_page); 2053 goto out_unlock; 2054 } 2055 data->max_pages = 1; 2056 2057 ap = &wpa->ia.ap; 2058 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0); 2059 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE; 2060 wpa->next = NULL; 2061 ap->args.in_pages = true; 2062 ap->args.end = fuse_writepage_end; 2063 ap->num_pages = 0; 2064 wpa->inode = inode; 2065 2066 spin_lock(&fi->lock); 2067 list_add(&wpa->writepages_entry, &fi->writepages); 2068 spin_unlock(&fi->lock); 2069 2070 data->wpa = wpa; 2071 } 2072 set_page_writeback(page); 2073 2074 copy_highpage(tmp_page, page); 2075 ap->pages[ap->num_pages] = tmp_page; 2076 ap->descs[ap->num_pages].offset = 0; 2077 ap->descs[ap->num_pages].length = PAGE_SIZE; 2078 2079 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK); 2080 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP); 2081 2082 err = 0; 2083 if (is_writeback && fuse_writepage_in_flight(wpa, page)) { 2084 end_page_writeback(page); 2085 data->wpa = NULL; 2086 goto out_unlock; 2087 } 2088 data->orig_pages[ap->num_pages] = page; 2089 2090 /* 2091 * Protected by fi->lock against concurrent access by 2092 * fuse_page_is_writeback(). 2093 */ 2094 spin_lock(&fi->lock); 2095 ap->num_pages++; 2096 spin_unlock(&fi->lock); 2097 2098 out_unlock: 2099 unlock_page(page); 2100 2101 return err; 2102 } 2103 2104 static int fuse_writepages(struct address_space *mapping, 2105 struct writeback_control *wbc) 2106 { 2107 struct inode *inode = mapping->host; 2108 struct fuse_conn *fc = get_fuse_conn(inode); 2109 struct fuse_fill_wb_data data; 2110 int err; 2111 2112 err = -EIO; 2113 if (is_bad_inode(inode)) 2114 goto out; 2115 2116 data.inode = inode; 2117 data.wpa = NULL; 2118 data.ff = NULL; 2119 2120 err = -ENOMEM; 2121 data.orig_pages = kcalloc(fc->max_pages, 2122 sizeof(struct page *), 2123 GFP_NOFS); 2124 if (!data.orig_pages) 2125 goto out; 2126 2127 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data); 2128 if (data.wpa) { 2129 /* Ignore errors if we can write at least one page */ 2130 WARN_ON(!data.wpa->ia.ap.num_pages); 2131 fuse_writepages_send(&data); 2132 err = 0; 2133 } 2134 if (data.ff) 2135 fuse_file_put(data.ff, false, false); 2136 2137 kfree(data.orig_pages); 2138 out: 2139 return err; 2140 } 2141 2142 /* 2143 * It's worthy to make sure that space is reserved on disk for the write, 2144 * but how to implement it without killing performance need more thinking. 2145 */ 2146 static int fuse_write_begin(struct file *file, struct address_space *mapping, 2147 loff_t pos, unsigned len, unsigned flags, 2148 struct page **pagep, void **fsdata) 2149 { 2150 pgoff_t index = pos >> PAGE_SHIFT; 2151 struct fuse_conn *fc = get_fuse_conn(file_inode(file)); 2152 struct page *page; 2153 loff_t fsize; 2154 int err = -ENOMEM; 2155 2156 WARN_ON(!fc->writeback_cache); 2157 2158 page = grab_cache_page_write_begin(mapping, index, flags); 2159 if (!page) 2160 goto error; 2161 2162 fuse_wait_on_page_writeback(mapping->host, page->index); 2163 2164 if (PageUptodate(page) || len == PAGE_SIZE) 2165 goto success; 2166 /* 2167 * Check if the start this page comes after the end of file, in which 2168 * case the readpage can be optimized away. 2169 */ 2170 fsize = i_size_read(mapping->host); 2171 if (fsize <= (pos & PAGE_MASK)) { 2172 size_t off = pos & ~PAGE_MASK; 2173 if (off) 2174 zero_user_segment(page, 0, off); 2175 goto success; 2176 } 2177 err = fuse_do_readpage(file, page); 2178 if (err) 2179 goto cleanup; 2180 success: 2181 *pagep = page; 2182 return 0; 2183 2184 cleanup: 2185 unlock_page(page); 2186 put_page(page); 2187 error: 2188 return err; 2189 } 2190 2191 static int fuse_write_end(struct file *file, struct address_space *mapping, 2192 loff_t pos, unsigned len, unsigned copied, 2193 struct page *page, void *fsdata) 2194 { 2195 struct inode *inode = page->mapping->host; 2196 2197 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */ 2198 if (!copied) 2199 goto unlock; 2200 2201 if (!PageUptodate(page)) { 2202 /* Zero any unwritten bytes at the end of the page */ 2203 size_t endoff = (pos + copied) & ~PAGE_MASK; 2204 if (endoff) 2205 zero_user_segment(page, endoff, PAGE_SIZE); 2206 SetPageUptodate(page); 2207 } 2208 2209 fuse_write_update_size(inode, pos + copied); 2210 set_page_dirty(page); 2211 2212 unlock: 2213 unlock_page(page); 2214 put_page(page); 2215 2216 return copied; 2217 } 2218 2219 static int fuse_launder_page(struct page *page) 2220 { 2221 int err = 0; 2222 if (clear_page_dirty_for_io(page)) { 2223 struct inode *inode = page->mapping->host; 2224 err = fuse_writepage_locked(page); 2225 if (!err) 2226 fuse_wait_on_page_writeback(inode, page->index); 2227 } 2228 return err; 2229 } 2230 2231 /* 2232 * Write back dirty pages now, because there may not be any suitable 2233 * open files later 2234 */ 2235 static void fuse_vma_close(struct vm_area_struct *vma) 2236 { 2237 filemap_write_and_wait(vma->vm_file->f_mapping); 2238 } 2239 2240 /* 2241 * Wait for writeback against this page to complete before allowing it 2242 * to be marked dirty again, and hence written back again, possibly 2243 * before the previous writepage completed. 2244 * 2245 * Block here, instead of in ->writepage(), so that the userspace fs 2246 * can only block processes actually operating on the filesystem. 2247 * 2248 * Otherwise unprivileged userspace fs would be able to block 2249 * unrelated: 2250 * 2251 * - page migration 2252 * - sync(2) 2253 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER 2254 */ 2255 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf) 2256 { 2257 struct page *page = vmf->page; 2258 struct inode *inode = file_inode(vmf->vma->vm_file); 2259 2260 file_update_time(vmf->vma->vm_file); 2261 lock_page(page); 2262 if (page->mapping != inode->i_mapping) { 2263 unlock_page(page); 2264 return VM_FAULT_NOPAGE; 2265 } 2266 2267 fuse_wait_on_page_writeback(inode, page->index); 2268 return VM_FAULT_LOCKED; 2269 } 2270 2271 static const struct vm_operations_struct fuse_file_vm_ops = { 2272 .close = fuse_vma_close, 2273 .fault = filemap_fault, 2274 .map_pages = filemap_map_pages, 2275 .page_mkwrite = fuse_page_mkwrite, 2276 }; 2277 2278 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma) 2279 { 2280 struct fuse_file *ff = file->private_data; 2281 2282 if (ff->open_flags & FOPEN_DIRECT_IO) { 2283 /* Can't provide the coherency needed for MAP_SHARED */ 2284 if (vma->vm_flags & VM_MAYSHARE) 2285 return -ENODEV; 2286 2287 invalidate_inode_pages2(file->f_mapping); 2288 2289 return generic_file_mmap(file, vma); 2290 } 2291 2292 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2293 fuse_link_write_file(file); 2294 2295 file_accessed(file); 2296 vma->vm_ops = &fuse_file_vm_ops; 2297 return 0; 2298 } 2299 2300 static int convert_fuse_file_lock(struct fuse_conn *fc, 2301 const struct fuse_file_lock *ffl, 2302 struct file_lock *fl) 2303 { 2304 switch (ffl->type) { 2305 case F_UNLCK: 2306 break; 2307 2308 case F_RDLCK: 2309 case F_WRLCK: 2310 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX || 2311 ffl->end < ffl->start) 2312 return -EIO; 2313 2314 fl->fl_start = ffl->start; 2315 fl->fl_end = ffl->end; 2316 2317 /* 2318 * Convert pid into init's pid namespace. The locks API will 2319 * translate it into the caller's pid namespace. 2320 */ 2321 rcu_read_lock(); 2322 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns); 2323 rcu_read_unlock(); 2324 break; 2325 2326 default: 2327 return -EIO; 2328 } 2329 fl->fl_type = ffl->type; 2330 return 0; 2331 } 2332 2333 static void fuse_lk_fill(struct fuse_args *args, struct file *file, 2334 const struct file_lock *fl, int opcode, pid_t pid, 2335 int flock, struct fuse_lk_in *inarg) 2336 { 2337 struct inode *inode = file_inode(file); 2338 struct fuse_conn *fc = get_fuse_conn(inode); 2339 struct fuse_file *ff = file->private_data; 2340 2341 memset(inarg, 0, sizeof(*inarg)); 2342 inarg->fh = ff->fh; 2343 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner); 2344 inarg->lk.start = fl->fl_start; 2345 inarg->lk.end = fl->fl_end; 2346 inarg->lk.type = fl->fl_type; 2347 inarg->lk.pid = pid; 2348 if (flock) 2349 inarg->lk_flags |= FUSE_LK_FLOCK; 2350 args->opcode = opcode; 2351 args->nodeid = get_node_id(inode); 2352 args->in_numargs = 1; 2353 args->in_args[0].size = sizeof(*inarg); 2354 args->in_args[0].value = inarg; 2355 } 2356 2357 static int fuse_getlk(struct file *file, struct file_lock *fl) 2358 { 2359 struct inode *inode = file_inode(file); 2360 struct fuse_conn *fc = get_fuse_conn(inode); 2361 FUSE_ARGS(args); 2362 struct fuse_lk_in inarg; 2363 struct fuse_lk_out outarg; 2364 int err; 2365 2366 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg); 2367 args.out_numargs = 1; 2368 args.out_args[0].size = sizeof(outarg); 2369 args.out_args[0].value = &outarg; 2370 err = fuse_simple_request(fc, &args); 2371 if (!err) 2372 err = convert_fuse_file_lock(fc, &outarg.lk, fl); 2373 2374 return err; 2375 } 2376 2377 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock) 2378 { 2379 struct inode *inode = file_inode(file); 2380 struct fuse_conn *fc = get_fuse_conn(inode); 2381 FUSE_ARGS(args); 2382 struct fuse_lk_in inarg; 2383 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK; 2384 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL; 2385 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns); 2386 int err; 2387 2388 if (fl->fl_lmops && fl->fl_lmops->lm_grant) { 2389 /* NLM needs asynchronous locks, which we don't support yet */ 2390 return -ENOLCK; 2391 } 2392 2393 /* Unlock on close is handled by the flush method */ 2394 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX) 2395 return 0; 2396 2397 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg); 2398 err = fuse_simple_request(fc, &args); 2399 2400 /* locking is restartable */ 2401 if (err == -EINTR) 2402 err = -ERESTARTSYS; 2403 2404 return err; 2405 } 2406 2407 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl) 2408 { 2409 struct inode *inode = file_inode(file); 2410 struct fuse_conn *fc = get_fuse_conn(inode); 2411 int err; 2412 2413 if (cmd == F_CANCELLK) { 2414 err = 0; 2415 } else if (cmd == F_GETLK) { 2416 if (fc->no_lock) { 2417 posix_test_lock(file, fl); 2418 err = 0; 2419 } else 2420 err = fuse_getlk(file, fl); 2421 } else { 2422 if (fc->no_lock) 2423 err = posix_lock_file(file, fl, NULL); 2424 else 2425 err = fuse_setlk(file, fl, 0); 2426 } 2427 return err; 2428 } 2429 2430 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl) 2431 { 2432 struct inode *inode = file_inode(file); 2433 struct fuse_conn *fc = get_fuse_conn(inode); 2434 int err; 2435 2436 if (fc->no_flock) { 2437 err = locks_lock_file_wait(file, fl); 2438 } else { 2439 struct fuse_file *ff = file->private_data; 2440 2441 /* emulate flock with POSIX locks */ 2442 ff->flock = true; 2443 err = fuse_setlk(file, fl, 1); 2444 } 2445 2446 return err; 2447 } 2448 2449 static sector_t fuse_bmap(struct address_space *mapping, sector_t block) 2450 { 2451 struct inode *inode = mapping->host; 2452 struct fuse_conn *fc = get_fuse_conn(inode); 2453 FUSE_ARGS(args); 2454 struct fuse_bmap_in inarg; 2455 struct fuse_bmap_out outarg; 2456 int err; 2457 2458 if (!inode->i_sb->s_bdev || fc->no_bmap) 2459 return 0; 2460 2461 memset(&inarg, 0, sizeof(inarg)); 2462 inarg.block = block; 2463 inarg.blocksize = inode->i_sb->s_blocksize; 2464 args.opcode = FUSE_BMAP; 2465 args.nodeid = get_node_id(inode); 2466 args.in_numargs = 1; 2467 args.in_args[0].size = sizeof(inarg); 2468 args.in_args[0].value = &inarg; 2469 args.out_numargs = 1; 2470 args.out_args[0].size = sizeof(outarg); 2471 args.out_args[0].value = &outarg; 2472 err = fuse_simple_request(fc, &args); 2473 if (err == -ENOSYS) 2474 fc->no_bmap = 1; 2475 2476 return err ? 0 : outarg.block; 2477 } 2478 2479 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence) 2480 { 2481 struct inode *inode = file->f_mapping->host; 2482 struct fuse_conn *fc = get_fuse_conn(inode); 2483 struct fuse_file *ff = file->private_data; 2484 FUSE_ARGS(args); 2485 struct fuse_lseek_in inarg = { 2486 .fh = ff->fh, 2487 .offset = offset, 2488 .whence = whence 2489 }; 2490 struct fuse_lseek_out outarg; 2491 int err; 2492 2493 if (fc->no_lseek) 2494 goto fallback; 2495 2496 args.opcode = FUSE_LSEEK; 2497 args.nodeid = ff->nodeid; 2498 args.in_numargs = 1; 2499 args.in_args[0].size = sizeof(inarg); 2500 args.in_args[0].value = &inarg; 2501 args.out_numargs = 1; 2502 args.out_args[0].size = sizeof(outarg); 2503 args.out_args[0].value = &outarg; 2504 err = fuse_simple_request(fc, &args); 2505 if (err) { 2506 if (err == -ENOSYS) { 2507 fc->no_lseek = 1; 2508 goto fallback; 2509 } 2510 return err; 2511 } 2512 2513 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes); 2514 2515 fallback: 2516 err = fuse_update_attributes(inode, file); 2517 if (!err) 2518 return generic_file_llseek(file, offset, whence); 2519 else 2520 return err; 2521 } 2522 2523 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence) 2524 { 2525 loff_t retval; 2526 struct inode *inode = file_inode(file); 2527 2528 switch (whence) { 2529 case SEEK_SET: 2530 case SEEK_CUR: 2531 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */ 2532 retval = generic_file_llseek(file, offset, whence); 2533 break; 2534 case SEEK_END: 2535 inode_lock(inode); 2536 retval = fuse_update_attributes(inode, file); 2537 if (!retval) 2538 retval = generic_file_llseek(file, offset, whence); 2539 inode_unlock(inode); 2540 break; 2541 case SEEK_HOLE: 2542 case SEEK_DATA: 2543 inode_lock(inode); 2544 retval = fuse_lseek(file, offset, whence); 2545 inode_unlock(inode); 2546 break; 2547 default: 2548 retval = -EINVAL; 2549 } 2550 2551 return retval; 2552 } 2553 2554 /* 2555 * CUSE servers compiled on 32bit broke on 64bit kernels because the 2556 * ABI was defined to be 'struct iovec' which is different on 32bit 2557 * and 64bit. Fortunately we can determine which structure the server 2558 * used from the size of the reply. 2559 */ 2560 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src, 2561 size_t transferred, unsigned count, 2562 bool is_compat) 2563 { 2564 #ifdef CONFIG_COMPAT 2565 if (count * sizeof(struct compat_iovec) == transferred) { 2566 struct compat_iovec *ciov = src; 2567 unsigned i; 2568 2569 /* 2570 * With this interface a 32bit server cannot support 2571 * non-compat (i.e. ones coming from 64bit apps) ioctl 2572 * requests 2573 */ 2574 if (!is_compat) 2575 return -EINVAL; 2576 2577 for (i = 0; i < count; i++) { 2578 dst[i].iov_base = compat_ptr(ciov[i].iov_base); 2579 dst[i].iov_len = ciov[i].iov_len; 2580 } 2581 return 0; 2582 } 2583 #endif 2584 2585 if (count * sizeof(struct iovec) != transferred) 2586 return -EIO; 2587 2588 memcpy(dst, src, transferred); 2589 return 0; 2590 } 2591 2592 /* Make sure iov_length() won't overflow */ 2593 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov, 2594 size_t count) 2595 { 2596 size_t n; 2597 u32 max = fc->max_pages << PAGE_SHIFT; 2598 2599 for (n = 0; n < count; n++, iov++) { 2600 if (iov->iov_len > (size_t) max) 2601 return -ENOMEM; 2602 max -= iov->iov_len; 2603 } 2604 return 0; 2605 } 2606 2607 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst, 2608 void *src, size_t transferred, unsigned count, 2609 bool is_compat) 2610 { 2611 unsigned i; 2612 struct fuse_ioctl_iovec *fiov = src; 2613 2614 if (fc->minor < 16) { 2615 return fuse_copy_ioctl_iovec_old(dst, src, transferred, 2616 count, is_compat); 2617 } 2618 2619 if (count * sizeof(struct fuse_ioctl_iovec) != transferred) 2620 return -EIO; 2621 2622 for (i = 0; i < count; i++) { 2623 /* Did the server supply an inappropriate value? */ 2624 if (fiov[i].base != (unsigned long) fiov[i].base || 2625 fiov[i].len != (unsigned long) fiov[i].len) 2626 return -EIO; 2627 2628 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base; 2629 dst[i].iov_len = (size_t) fiov[i].len; 2630 2631 #ifdef CONFIG_COMPAT 2632 if (is_compat && 2633 (ptr_to_compat(dst[i].iov_base) != fiov[i].base || 2634 (compat_size_t) dst[i].iov_len != fiov[i].len)) 2635 return -EIO; 2636 #endif 2637 } 2638 2639 return 0; 2640 } 2641 2642 2643 /* 2644 * For ioctls, there is no generic way to determine how much memory 2645 * needs to be read and/or written. Furthermore, ioctls are allowed 2646 * to dereference the passed pointer, so the parameter requires deep 2647 * copying but FUSE has no idea whatsoever about what to copy in or 2648 * out. 2649 * 2650 * This is solved by allowing FUSE server to retry ioctl with 2651 * necessary in/out iovecs. Let's assume the ioctl implementation 2652 * needs to read in the following structure. 2653 * 2654 * struct a { 2655 * char *buf; 2656 * size_t buflen; 2657 * } 2658 * 2659 * On the first callout to FUSE server, inarg->in_size and 2660 * inarg->out_size will be NULL; then, the server completes the ioctl 2661 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and 2662 * the actual iov array to 2663 * 2664 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } } 2665 * 2666 * which tells FUSE to copy in the requested area and retry the ioctl. 2667 * On the second round, the server has access to the structure and 2668 * from that it can tell what to look for next, so on the invocation, 2669 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to 2670 * 2671 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) }, 2672 * { .iov_base = a.buf, .iov_len = a.buflen } } 2673 * 2674 * FUSE will copy both struct a and the pointed buffer from the 2675 * process doing the ioctl and retry ioctl with both struct a and the 2676 * buffer. 2677 * 2678 * This time, FUSE server has everything it needs and completes ioctl 2679 * without FUSE_IOCTL_RETRY which finishes the ioctl call. 2680 * 2681 * Copying data out works the same way. 2682 * 2683 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel 2684 * automatically initializes in and out iovs by decoding @cmd with 2685 * _IOC_* macros and the server is not allowed to request RETRY. This 2686 * limits ioctl data transfers to well-formed ioctls and is the forced 2687 * behavior for all FUSE servers. 2688 */ 2689 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg, 2690 unsigned int flags) 2691 { 2692 struct fuse_file *ff = file->private_data; 2693 struct fuse_conn *fc = ff->fc; 2694 struct fuse_ioctl_in inarg = { 2695 .fh = ff->fh, 2696 .cmd = cmd, 2697 .arg = arg, 2698 .flags = flags 2699 }; 2700 struct fuse_ioctl_out outarg; 2701 struct iovec *iov_page = NULL; 2702 struct iovec *in_iov = NULL, *out_iov = NULL; 2703 unsigned int in_iovs = 0, out_iovs = 0, max_pages; 2704 size_t in_size, out_size, c; 2705 ssize_t transferred; 2706 int err, i; 2707 struct iov_iter ii; 2708 struct fuse_args_pages ap = {}; 2709 2710 #if BITS_PER_LONG == 32 2711 inarg.flags |= FUSE_IOCTL_32BIT; 2712 #else 2713 if (flags & FUSE_IOCTL_COMPAT) { 2714 inarg.flags |= FUSE_IOCTL_32BIT; 2715 #ifdef CONFIG_X86_X32 2716 if (in_x32_syscall()) 2717 inarg.flags |= FUSE_IOCTL_COMPAT_X32; 2718 #endif 2719 } 2720 #endif 2721 2722 /* assume all the iovs returned by client always fits in a page */ 2723 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE); 2724 2725 err = -ENOMEM; 2726 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs); 2727 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL); 2728 if (!ap.pages || !iov_page) 2729 goto out; 2730 2731 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages); 2732 2733 /* 2734 * If restricted, initialize IO parameters as encoded in @cmd. 2735 * RETRY from server is not allowed. 2736 */ 2737 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) { 2738 struct iovec *iov = iov_page; 2739 2740 iov->iov_base = (void __user *)arg; 2741 iov->iov_len = _IOC_SIZE(cmd); 2742 2743 if (_IOC_DIR(cmd) & _IOC_WRITE) { 2744 in_iov = iov; 2745 in_iovs = 1; 2746 } 2747 2748 if (_IOC_DIR(cmd) & _IOC_READ) { 2749 out_iov = iov; 2750 out_iovs = 1; 2751 } 2752 } 2753 2754 retry: 2755 inarg.in_size = in_size = iov_length(in_iov, in_iovs); 2756 inarg.out_size = out_size = iov_length(out_iov, out_iovs); 2757 2758 /* 2759 * Out data can be used either for actual out data or iovs, 2760 * make sure there always is at least one page. 2761 */ 2762 out_size = max_t(size_t, out_size, PAGE_SIZE); 2763 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE); 2764 2765 /* make sure there are enough buffer pages and init request with them */ 2766 err = -ENOMEM; 2767 if (max_pages > fc->max_pages) 2768 goto out; 2769 while (ap.num_pages < max_pages) { 2770 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM); 2771 if (!ap.pages[ap.num_pages]) 2772 goto out; 2773 ap.num_pages++; 2774 } 2775 2776 2777 /* okay, let's send it to the client */ 2778 ap.args.opcode = FUSE_IOCTL; 2779 ap.args.nodeid = ff->nodeid; 2780 ap.args.in_numargs = 1; 2781 ap.args.in_args[0].size = sizeof(inarg); 2782 ap.args.in_args[0].value = &inarg; 2783 if (in_size) { 2784 ap.args.in_numargs++; 2785 ap.args.in_args[1].size = in_size; 2786 ap.args.in_pages = true; 2787 2788 err = -EFAULT; 2789 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size); 2790 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2791 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2792 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2793 goto out; 2794 } 2795 } 2796 2797 ap.args.out_numargs = 2; 2798 ap.args.out_args[0].size = sizeof(outarg); 2799 ap.args.out_args[0].value = &outarg; 2800 ap.args.out_args[1].size = out_size; 2801 ap.args.out_pages = true; 2802 ap.args.out_argvar = true; 2803 2804 transferred = fuse_simple_request(fc, &ap.args); 2805 err = transferred; 2806 if (transferred < 0) 2807 goto out; 2808 2809 /* did it ask for retry? */ 2810 if (outarg.flags & FUSE_IOCTL_RETRY) { 2811 void *vaddr; 2812 2813 /* no retry if in restricted mode */ 2814 err = -EIO; 2815 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) 2816 goto out; 2817 2818 in_iovs = outarg.in_iovs; 2819 out_iovs = outarg.out_iovs; 2820 2821 /* 2822 * Make sure things are in boundary, separate checks 2823 * are to protect against overflow. 2824 */ 2825 err = -ENOMEM; 2826 if (in_iovs > FUSE_IOCTL_MAX_IOV || 2827 out_iovs > FUSE_IOCTL_MAX_IOV || 2828 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV) 2829 goto out; 2830 2831 vaddr = kmap_atomic(ap.pages[0]); 2832 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr, 2833 transferred, in_iovs + out_iovs, 2834 (flags & FUSE_IOCTL_COMPAT) != 0); 2835 kunmap_atomic(vaddr); 2836 if (err) 2837 goto out; 2838 2839 in_iov = iov_page; 2840 out_iov = in_iov + in_iovs; 2841 2842 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs); 2843 if (err) 2844 goto out; 2845 2846 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs); 2847 if (err) 2848 goto out; 2849 2850 goto retry; 2851 } 2852 2853 err = -EIO; 2854 if (transferred > inarg.out_size) 2855 goto out; 2856 2857 err = -EFAULT; 2858 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred); 2859 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) { 2860 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii); 2861 if (c != PAGE_SIZE && iov_iter_count(&ii)) 2862 goto out; 2863 } 2864 err = 0; 2865 out: 2866 free_page((unsigned long) iov_page); 2867 while (ap.num_pages) 2868 __free_page(ap.pages[--ap.num_pages]); 2869 kfree(ap.pages); 2870 2871 return err ? err : outarg.result; 2872 } 2873 EXPORT_SYMBOL_GPL(fuse_do_ioctl); 2874 2875 long fuse_ioctl_common(struct file *file, unsigned int cmd, 2876 unsigned long arg, unsigned int flags) 2877 { 2878 struct inode *inode = file_inode(file); 2879 struct fuse_conn *fc = get_fuse_conn(inode); 2880 2881 if (!fuse_allow_current_process(fc)) 2882 return -EACCES; 2883 2884 if (is_bad_inode(inode)) 2885 return -EIO; 2886 2887 return fuse_do_ioctl(file, cmd, arg, flags); 2888 } 2889 2890 static long fuse_file_ioctl(struct file *file, unsigned int cmd, 2891 unsigned long arg) 2892 { 2893 return fuse_ioctl_common(file, cmd, arg, 0); 2894 } 2895 2896 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd, 2897 unsigned long arg) 2898 { 2899 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT); 2900 } 2901 2902 /* 2903 * All files which have been polled are linked to RB tree 2904 * fuse_conn->polled_files which is indexed by kh. Walk the tree and 2905 * find the matching one. 2906 */ 2907 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh, 2908 struct rb_node **parent_out) 2909 { 2910 struct rb_node **link = &fc->polled_files.rb_node; 2911 struct rb_node *last = NULL; 2912 2913 while (*link) { 2914 struct fuse_file *ff; 2915 2916 last = *link; 2917 ff = rb_entry(last, struct fuse_file, polled_node); 2918 2919 if (kh < ff->kh) 2920 link = &last->rb_left; 2921 else if (kh > ff->kh) 2922 link = &last->rb_right; 2923 else 2924 return link; 2925 } 2926 2927 if (parent_out) 2928 *parent_out = last; 2929 return link; 2930 } 2931 2932 /* 2933 * The file is about to be polled. Make sure it's on the polled_files 2934 * RB tree. Note that files once added to the polled_files tree are 2935 * not removed before the file is released. This is because a file 2936 * polled once is likely to be polled again. 2937 */ 2938 static void fuse_register_polled_file(struct fuse_conn *fc, 2939 struct fuse_file *ff) 2940 { 2941 spin_lock(&fc->lock); 2942 if (RB_EMPTY_NODE(&ff->polled_node)) { 2943 struct rb_node **link, *uninitialized_var(parent); 2944 2945 link = fuse_find_polled_node(fc, ff->kh, &parent); 2946 BUG_ON(*link); 2947 rb_link_node(&ff->polled_node, parent, link); 2948 rb_insert_color(&ff->polled_node, &fc->polled_files); 2949 } 2950 spin_unlock(&fc->lock); 2951 } 2952 2953 __poll_t fuse_file_poll(struct file *file, poll_table *wait) 2954 { 2955 struct fuse_file *ff = file->private_data; 2956 struct fuse_conn *fc = ff->fc; 2957 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh }; 2958 struct fuse_poll_out outarg; 2959 FUSE_ARGS(args); 2960 int err; 2961 2962 if (fc->no_poll) 2963 return DEFAULT_POLLMASK; 2964 2965 poll_wait(file, &ff->poll_wait, wait); 2966 inarg.events = mangle_poll(poll_requested_events(wait)); 2967 2968 /* 2969 * Ask for notification iff there's someone waiting for it. 2970 * The client may ignore the flag and always notify. 2971 */ 2972 if (waitqueue_active(&ff->poll_wait)) { 2973 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY; 2974 fuse_register_polled_file(fc, ff); 2975 } 2976 2977 args.opcode = FUSE_POLL; 2978 args.nodeid = ff->nodeid; 2979 args.in_numargs = 1; 2980 args.in_args[0].size = sizeof(inarg); 2981 args.in_args[0].value = &inarg; 2982 args.out_numargs = 1; 2983 args.out_args[0].size = sizeof(outarg); 2984 args.out_args[0].value = &outarg; 2985 err = fuse_simple_request(fc, &args); 2986 2987 if (!err) 2988 return demangle_poll(outarg.revents); 2989 if (err == -ENOSYS) { 2990 fc->no_poll = 1; 2991 return DEFAULT_POLLMASK; 2992 } 2993 return EPOLLERR; 2994 } 2995 EXPORT_SYMBOL_GPL(fuse_file_poll); 2996 2997 /* 2998 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and 2999 * wakes up the poll waiters. 3000 */ 3001 int fuse_notify_poll_wakeup(struct fuse_conn *fc, 3002 struct fuse_notify_poll_wakeup_out *outarg) 3003 { 3004 u64 kh = outarg->kh; 3005 struct rb_node **link; 3006 3007 spin_lock(&fc->lock); 3008 3009 link = fuse_find_polled_node(fc, kh, NULL); 3010 if (*link) { 3011 struct fuse_file *ff; 3012 3013 ff = rb_entry(*link, struct fuse_file, polled_node); 3014 wake_up_interruptible_sync(&ff->poll_wait); 3015 } 3016 3017 spin_unlock(&fc->lock); 3018 return 0; 3019 } 3020 3021 static void fuse_do_truncate(struct file *file) 3022 { 3023 struct inode *inode = file->f_mapping->host; 3024 struct iattr attr; 3025 3026 attr.ia_valid = ATTR_SIZE; 3027 attr.ia_size = i_size_read(inode); 3028 3029 attr.ia_file = file; 3030 attr.ia_valid |= ATTR_FILE; 3031 3032 fuse_do_setattr(file_dentry(file), &attr, file); 3033 } 3034 3035 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off) 3036 { 3037 return round_up(off, fc->max_pages << PAGE_SHIFT); 3038 } 3039 3040 static ssize_t 3041 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 3042 { 3043 DECLARE_COMPLETION_ONSTACK(wait); 3044 ssize_t ret = 0; 3045 struct file *file = iocb->ki_filp; 3046 struct fuse_file *ff = file->private_data; 3047 bool async_dio = ff->fc->async_dio; 3048 loff_t pos = 0; 3049 struct inode *inode; 3050 loff_t i_size; 3051 size_t count = iov_iter_count(iter); 3052 loff_t offset = iocb->ki_pos; 3053 struct fuse_io_priv *io; 3054 3055 pos = offset; 3056 inode = file->f_mapping->host; 3057 i_size = i_size_read(inode); 3058 3059 if ((iov_iter_rw(iter) == READ) && (offset > i_size)) 3060 return 0; 3061 3062 /* optimization for short read */ 3063 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) { 3064 if (offset >= i_size) 3065 return 0; 3066 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset)); 3067 count = iov_iter_count(iter); 3068 } 3069 3070 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL); 3071 if (!io) 3072 return -ENOMEM; 3073 spin_lock_init(&io->lock); 3074 kref_init(&io->refcnt); 3075 io->reqs = 1; 3076 io->bytes = -1; 3077 io->size = 0; 3078 io->offset = offset; 3079 io->write = (iov_iter_rw(iter) == WRITE); 3080 io->err = 0; 3081 /* 3082 * By default, we want to optimize all I/Os with async request 3083 * submission to the client filesystem if supported. 3084 */ 3085 io->async = async_dio; 3086 io->iocb = iocb; 3087 io->blocking = is_sync_kiocb(iocb); 3088 3089 /* 3090 * We cannot asynchronously extend the size of a file. 3091 * In such case the aio will behave exactly like sync io. 3092 */ 3093 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE) 3094 io->blocking = true; 3095 3096 if (io->async && io->blocking) { 3097 /* 3098 * Additional reference to keep io around after 3099 * calling fuse_aio_complete() 3100 */ 3101 kref_get(&io->refcnt); 3102 io->done = &wait; 3103 } 3104 3105 if (iov_iter_rw(iter) == WRITE) { 3106 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE); 3107 fuse_invalidate_attr(inode); 3108 } else { 3109 ret = __fuse_direct_read(io, iter, &pos); 3110 } 3111 3112 if (io->async) { 3113 bool blocking = io->blocking; 3114 3115 fuse_aio_complete(io, ret < 0 ? ret : 0, -1); 3116 3117 /* we have a non-extending, async request, so return */ 3118 if (!blocking) 3119 return -EIOCBQUEUED; 3120 3121 wait_for_completion(&wait); 3122 ret = fuse_get_res_by_io(io); 3123 } 3124 3125 kref_put(&io->refcnt, fuse_io_release); 3126 3127 if (iov_iter_rw(iter) == WRITE) { 3128 if (ret > 0) 3129 fuse_write_update_size(inode, pos); 3130 else if (ret < 0 && offset + count > i_size) 3131 fuse_do_truncate(file); 3132 } 3133 3134 return ret; 3135 } 3136 3137 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end) 3138 { 3139 int err = filemap_write_and_wait_range(inode->i_mapping, start, end); 3140 3141 if (!err) 3142 fuse_sync_writes(inode); 3143 3144 return err; 3145 } 3146 3147 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset, 3148 loff_t length) 3149 { 3150 struct fuse_file *ff = file->private_data; 3151 struct inode *inode = file_inode(file); 3152 struct fuse_inode *fi = get_fuse_inode(inode); 3153 struct fuse_conn *fc = ff->fc; 3154 FUSE_ARGS(args); 3155 struct fuse_fallocate_in inarg = { 3156 .fh = ff->fh, 3157 .offset = offset, 3158 .length = length, 3159 .mode = mode 3160 }; 3161 int err; 3162 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) || 3163 (mode & FALLOC_FL_PUNCH_HOLE); 3164 3165 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 3166 return -EOPNOTSUPP; 3167 3168 if (fc->no_fallocate) 3169 return -EOPNOTSUPP; 3170 3171 if (lock_inode) { 3172 inode_lock(inode); 3173 if (mode & FALLOC_FL_PUNCH_HOLE) { 3174 loff_t endbyte = offset + length - 1; 3175 3176 err = fuse_writeback_range(inode, offset, endbyte); 3177 if (err) 3178 goto out; 3179 } 3180 } 3181 3182 if (!(mode & FALLOC_FL_KEEP_SIZE) && 3183 offset + length > i_size_read(inode)) { 3184 err = inode_newsize_ok(inode, offset + length); 3185 if (err) 3186 goto out; 3187 } 3188 3189 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3190 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3191 3192 args.opcode = FUSE_FALLOCATE; 3193 args.nodeid = ff->nodeid; 3194 args.in_numargs = 1; 3195 args.in_args[0].size = sizeof(inarg); 3196 args.in_args[0].value = &inarg; 3197 err = fuse_simple_request(fc, &args); 3198 if (err == -ENOSYS) { 3199 fc->no_fallocate = 1; 3200 err = -EOPNOTSUPP; 3201 } 3202 if (err) 3203 goto out; 3204 3205 /* we could have extended the file */ 3206 if (!(mode & FALLOC_FL_KEEP_SIZE)) { 3207 bool changed = fuse_write_update_size(inode, offset + length); 3208 3209 if (changed && fc->writeback_cache) 3210 file_update_time(file); 3211 } 3212 3213 if (mode & FALLOC_FL_PUNCH_HOLE) 3214 truncate_pagecache_range(inode, offset, offset + length - 1); 3215 3216 fuse_invalidate_attr(inode); 3217 3218 out: 3219 if (!(mode & FALLOC_FL_KEEP_SIZE)) 3220 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state); 3221 3222 if (lock_inode) 3223 inode_unlock(inode); 3224 3225 return err; 3226 } 3227 3228 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in, 3229 struct file *file_out, loff_t pos_out, 3230 size_t len, unsigned int flags) 3231 { 3232 struct fuse_file *ff_in = file_in->private_data; 3233 struct fuse_file *ff_out = file_out->private_data; 3234 struct inode *inode_in = file_inode(file_in); 3235 struct inode *inode_out = file_inode(file_out); 3236 struct fuse_inode *fi_out = get_fuse_inode(inode_out); 3237 struct fuse_conn *fc = ff_in->fc; 3238 FUSE_ARGS(args); 3239 struct fuse_copy_file_range_in inarg = { 3240 .fh_in = ff_in->fh, 3241 .off_in = pos_in, 3242 .nodeid_out = ff_out->nodeid, 3243 .fh_out = ff_out->fh, 3244 .off_out = pos_out, 3245 .len = len, 3246 .flags = flags 3247 }; 3248 struct fuse_write_out outarg; 3249 ssize_t err; 3250 /* mark unstable when write-back is not used, and file_out gets 3251 * extended */ 3252 bool is_unstable = (!fc->writeback_cache) && 3253 ((pos_out + len) > inode_out->i_size); 3254 3255 if (fc->no_copy_file_range) 3256 return -EOPNOTSUPP; 3257 3258 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb) 3259 return -EXDEV; 3260 3261 if (fc->writeback_cache) { 3262 inode_lock(inode_in); 3263 err = fuse_writeback_range(inode_in, pos_in, pos_in + len); 3264 inode_unlock(inode_in); 3265 if (err) 3266 return err; 3267 } 3268 3269 inode_lock(inode_out); 3270 3271 err = file_modified(file_out); 3272 if (err) 3273 goto out; 3274 3275 if (fc->writeback_cache) { 3276 err = fuse_writeback_range(inode_out, pos_out, pos_out + len); 3277 if (err) 3278 goto out; 3279 } 3280 3281 if (is_unstable) 3282 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3283 3284 args.opcode = FUSE_COPY_FILE_RANGE; 3285 args.nodeid = ff_in->nodeid; 3286 args.in_numargs = 1; 3287 args.in_args[0].size = sizeof(inarg); 3288 args.in_args[0].value = &inarg; 3289 args.out_numargs = 1; 3290 args.out_args[0].size = sizeof(outarg); 3291 args.out_args[0].value = &outarg; 3292 err = fuse_simple_request(fc, &args); 3293 if (err == -ENOSYS) { 3294 fc->no_copy_file_range = 1; 3295 err = -EOPNOTSUPP; 3296 } 3297 if (err) 3298 goto out; 3299 3300 if (fc->writeback_cache) { 3301 fuse_write_update_size(inode_out, pos_out + outarg.size); 3302 file_update_time(file_out); 3303 } 3304 3305 fuse_invalidate_attr(inode_out); 3306 3307 err = outarg.size; 3308 out: 3309 if (is_unstable) 3310 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state); 3311 3312 inode_unlock(inode_out); 3313 file_accessed(file_in); 3314 3315 return err; 3316 } 3317 3318 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off, 3319 struct file *dst_file, loff_t dst_off, 3320 size_t len, unsigned int flags) 3321 { 3322 ssize_t ret; 3323 3324 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off, 3325 len, flags); 3326 3327 if (ret == -EOPNOTSUPP || ret == -EXDEV) 3328 ret = generic_copy_file_range(src_file, src_off, dst_file, 3329 dst_off, len, flags); 3330 return ret; 3331 } 3332 3333 static const struct file_operations fuse_file_operations = { 3334 .llseek = fuse_file_llseek, 3335 .read_iter = fuse_file_read_iter, 3336 .write_iter = fuse_file_write_iter, 3337 .mmap = fuse_file_mmap, 3338 .open = fuse_open, 3339 .flush = fuse_flush, 3340 .release = fuse_release, 3341 .fsync = fuse_fsync, 3342 .lock = fuse_file_lock, 3343 .flock = fuse_file_flock, 3344 .splice_read = generic_file_splice_read, 3345 .splice_write = iter_file_splice_write, 3346 .unlocked_ioctl = fuse_file_ioctl, 3347 .compat_ioctl = fuse_file_compat_ioctl, 3348 .poll = fuse_file_poll, 3349 .fallocate = fuse_file_fallocate, 3350 .copy_file_range = fuse_copy_file_range, 3351 }; 3352 3353 static const struct address_space_operations fuse_file_aops = { 3354 .readpage = fuse_readpage, 3355 .writepage = fuse_writepage, 3356 .writepages = fuse_writepages, 3357 .launder_page = fuse_launder_page, 3358 .readpages = fuse_readpages, 3359 .set_page_dirty = __set_page_dirty_nobuffers, 3360 .bmap = fuse_bmap, 3361 .direct_IO = fuse_direct_IO, 3362 .write_begin = fuse_write_begin, 3363 .write_end = fuse_write_end, 3364 }; 3365 3366 void fuse_init_file_inode(struct inode *inode) 3367 { 3368 struct fuse_inode *fi = get_fuse_inode(inode); 3369 3370 inode->i_fop = &fuse_file_operations; 3371 inode->i_data.a_ops = &fuse_file_aops; 3372 3373 INIT_LIST_HEAD(&fi->write_files); 3374 INIT_LIST_HEAD(&fi->queued_writes); 3375 fi->writectr = 0; 3376 init_waitqueue_head(&fi->page_waitq); 3377 INIT_LIST_HEAD(&fi->writepages); 3378 } 3379