xref: /openbmc/linux/fs/fuse/file.c (revision 023e41632e065d49bcbe31b3c4b336217f96a271)
1 /*
2   FUSE: Filesystem in Userspace
3   Copyright (C) 2001-2008  Miklos Szeredi <miklos@szeredi.hu>
4 
5   This program can be distributed under the terms of the GNU GPL.
6   See the file COPYING.
7 */
8 
9 #include "fuse_i.h"
10 
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
21 
22 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
23 			  int opcode, struct fuse_open_out *outargp)
24 {
25 	struct fuse_open_in inarg;
26 	FUSE_ARGS(args);
27 
28 	memset(&inarg, 0, sizeof(inarg));
29 	inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
30 	if (!fc->atomic_o_trunc)
31 		inarg.flags &= ~O_TRUNC;
32 	args.in.h.opcode = opcode;
33 	args.in.h.nodeid = nodeid;
34 	args.in.numargs = 1;
35 	args.in.args[0].size = sizeof(inarg);
36 	args.in.args[0].value = &inarg;
37 	args.out.numargs = 1;
38 	args.out.args[0].size = sizeof(*outargp);
39 	args.out.args[0].value = outargp;
40 
41 	return fuse_simple_request(fc, &args);
42 }
43 
44 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
45 {
46 	struct fuse_file *ff;
47 
48 	ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL);
49 	if (unlikely(!ff))
50 		return NULL;
51 
52 	ff->fc = fc;
53 	ff->reserved_req = fuse_request_alloc(0);
54 	if (unlikely(!ff->reserved_req)) {
55 		kfree(ff);
56 		return NULL;
57 	}
58 
59 	INIT_LIST_HEAD(&ff->write_entry);
60 	mutex_init(&ff->readdir.lock);
61 	refcount_set(&ff->count, 1);
62 	RB_CLEAR_NODE(&ff->polled_node);
63 	init_waitqueue_head(&ff->poll_wait);
64 
65 	ff->kh = atomic64_inc_return(&fc->khctr);
66 
67 	return ff;
68 }
69 
70 void fuse_file_free(struct fuse_file *ff)
71 {
72 	fuse_request_free(ff->reserved_req);
73 	mutex_destroy(&ff->readdir.lock);
74 	kfree(ff);
75 }
76 
77 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
78 {
79 	refcount_inc(&ff->count);
80 	return ff;
81 }
82 
83 static void fuse_release_end(struct fuse_conn *fc, struct fuse_req *req)
84 {
85 	iput(req->misc.release.inode);
86 }
87 
88 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
89 {
90 	if (refcount_dec_and_test(&ff->count)) {
91 		struct fuse_req *req = ff->reserved_req;
92 
93 		if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
94 			/*
95 			 * Drop the release request when client does not
96 			 * implement 'open'
97 			 */
98 			__clear_bit(FR_BACKGROUND, &req->flags);
99 			iput(req->misc.release.inode);
100 			fuse_put_request(ff->fc, req);
101 		} else if (sync) {
102 			__set_bit(FR_FORCE, &req->flags);
103 			__clear_bit(FR_BACKGROUND, &req->flags);
104 			fuse_request_send(ff->fc, req);
105 			iput(req->misc.release.inode);
106 			fuse_put_request(ff->fc, req);
107 		} else {
108 			req->end = fuse_release_end;
109 			__set_bit(FR_BACKGROUND, &req->flags);
110 			fuse_request_send_background(ff->fc, req);
111 		}
112 		kfree(ff);
113 	}
114 }
115 
116 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
117 		 bool isdir)
118 {
119 	struct fuse_file *ff;
120 	int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
121 
122 	ff = fuse_file_alloc(fc);
123 	if (!ff)
124 		return -ENOMEM;
125 
126 	ff->fh = 0;
127 	/* Default for no-open */
128 	ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
129 	if (isdir ? !fc->no_opendir : !fc->no_open) {
130 		struct fuse_open_out outarg;
131 		int err;
132 
133 		err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
134 		if (!err) {
135 			ff->fh = outarg.fh;
136 			ff->open_flags = outarg.open_flags;
137 
138 		} else if (err != -ENOSYS) {
139 			fuse_file_free(ff);
140 			return err;
141 		} else {
142 			if (isdir)
143 				fc->no_opendir = 1;
144 			else
145 				fc->no_open = 1;
146 		}
147 	}
148 
149 	if (isdir)
150 		ff->open_flags &= ~FOPEN_DIRECT_IO;
151 
152 	ff->nodeid = nodeid;
153 	file->private_data = ff;
154 
155 	return 0;
156 }
157 EXPORT_SYMBOL_GPL(fuse_do_open);
158 
159 static void fuse_link_write_file(struct file *file)
160 {
161 	struct inode *inode = file_inode(file);
162 	struct fuse_inode *fi = get_fuse_inode(inode);
163 	struct fuse_file *ff = file->private_data;
164 	/*
165 	 * file may be written through mmap, so chain it onto the
166 	 * inodes's write_file list
167 	 */
168 	spin_lock(&fi->lock);
169 	if (list_empty(&ff->write_entry))
170 		list_add(&ff->write_entry, &fi->write_files);
171 	spin_unlock(&fi->lock);
172 }
173 
174 void fuse_finish_open(struct inode *inode, struct file *file)
175 {
176 	struct fuse_file *ff = file->private_data;
177 	struct fuse_conn *fc = get_fuse_conn(inode);
178 
179 	if (!(ff->open_flags & FOPEN_KEEP_CACHE))
180 		invalidate_inode_pages2(inode->i_mapping);
181 	if (ff->open_flags & FOPEN_NONSEEKABLE)
182 		nonseekable_open(inode, file);
183 	if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
184 		struct fuse_inode *fi = get_fuse_inode(inode);
185 
186 		spin_lock(&fi->lock);
187 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
188 		i_size_write(inode, 0);
189 		spin_unlock(&fi->lock);
190 		fuse_invalidate_attr(inode);
191 		if (fc->writeback_cache)
192 			file_update_time(file);
193 	}
194 	if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
195 		fuse_link_write_file(file);
196 }
197 
198 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
199 {
200 	struct fuse_conn *fc = get_fuse_conn(inode);
201 	int err;
202 	bool lock_inode = (file->f_flags & O_TRUNC) &&
203 			  fc->atomic_o_trunc &&
204 			  fc->writeback_cache;
205 
206 	err = generic_file_open(inode, file);
207 	if (err)
208 		return err;
209 
210 	if (lock_inode)
211 		inode_lock(inode);
212 
213 	err = fuse_do_open(fc, get_node_id(inode), file, isdir);
214 
215 	if (!err)
216 		fuse_finish_open(inode, file);
217 
218 	if (lock_inode)
219 		inode_unlock(inode);
220 
221 	return err;
222 }
223 
224 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
225 				 int flags, int opcode)
226 {
227 	struct fuse_conn *fc = ff->fc;
228 	struct fuse_req *req = ff->reserved_req;
229 	struct fuse_release_in *inarg = &req->misc.release.in;
230 
231 	/* Inode is NULL on error path of fuse_create_open() */
232 	if (likely(fi)) {
233 		spin_lock(&fi->lock);
234 		list_del(&ff->write_entry);
235 		spin_unlock(&fi->lock);
236 	}
237 	spin_lock(&fc->lock);
238 	if (!RB_EMPTY_NODE(&ff->polled_node))
239 		rb_erase(&ff->polled_node, &fc->polled_files);
240 	spin_unlock(&fc->lock);
241 
242 	wake_up_interruptible_all(&ff->poll_wait);
243 
244 	inarg->fh = ff->fh;
245 	inarg->flags = flags;
246 	req->in.h.opcode = opcode;
247 	req->in.h.nodeid = ff->nodeid;
248 	req->in.numargs = 1;
249 	req->in.args[0].size = sizeof(struct fuse_release_in);
250 	req->in.args[0].value = inarg;
251 }
252 
253 void fuse_release_common(struct file *file, bool isdir)
254 {
255 	struct fuse_inode *fi = get_fuse_inode(file_inode(file));
256 	struct fuse_file *ff = file->private_data;
257 	struct fuse_req *req = ff->reserved_req;
258 	int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
259 
260 	fuse_prepare_release(fi, ff, file->f_flags, opcode);
261 
262 	if (ff->flock) {
263 		struct fuse_release_in *inarg = &req->misc.release.in;
264 		inarg->release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
265 		inarg->lock_owner = fuse_lock_owner_id(ff->fc,
266 						       (fl_owner_t) file);
267 	}
268 	/* Hold inode until release is finished */
269 	req->misc.release.inode = igrab(file_inode(file));
270 
271 	/*
272 	 * Normally this will send the RELEASE request, however if
273 	 * some asynchronous READ or WRITE requests are outstanding,
274 	 * the sending will be delayed.
275 	 *
276 	 * Make the release synchronous if this is a fuseblk mount,
277 	 * synchronous RELEASE is allowed (and desirable) in this case
278 	 * because the server can be trusted not to screw up.
279 	 */
280 	fuse_file_put(ff, ff->fc->destroy_req != NULL, isdir);
281 }
282 
283 static int fuse_open(struct inode *inode, struct file *file)
284 {
285 	return fuse_open_common(inode, file, false);
286 }
287 
288 static int fuse_release(struct inode *inode, struct file *file)
289 {
290 	struct fuse_conn *fc = get_fuse_conn(inode);
291 
292 	/* see fuse_vma_close() for !writeback_cache case */
293 	if (fc->writeback_cache)
294 		write_inode_now(inode, 1);
295 
296 	fuse_release_common(file, false);
297 
298 	/* return value is ignored by VFS */
299 	return 0;
300 }
301 
302 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
303 {
304 	WARN_ON(refcount_read(&ff->count) > 1);
305 	fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
306 	/*
307 	 * iput(NULL) is a no-op and since the refcount is 1 and everything's
308 	 * synchronous, we are fine with not doing igrab() here"
309 	 */
310 	fuse_file_put(ff, true, false);
311 }
312 EXPORT_SYMBOL_GPL(fuse_sync_release);
313 
314 /*
315  * Scramble the ID space with XTEA, so that the value of the files_struct
316  * pointer is not exposed to userspace.
317  */
318 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
319 {
320 	u32 *k = fc->scramble_key;
321 	u64 v = (unsigned long) id;
322 	u32 v0 = v;
323 	u32 v1 = v >> 32;
324 	u32 sum = 0;
325 	int i;
326 
327 	for (i = 0; i < 32; i++) {
328 		v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
329 		sum += 0x9E3779B9;
330 		v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
331 	}
332 
333 	return (u64) v0 + ((u64) v1 << 32);
334 }
335 
336 static struct fuse_req *fuse_find_writeback(struct fuse_inode *fi,
337 					    pgoff_t idx_from, pgoff_t idx_to)
338 {
339 	struct fuse_req *req;
340 
341 	list_for_each_entry(req, &fi->writepages, writepages_entry) {
342 		pgoff_t curr_index;
343 
344 		WARN_ON(get_fuse_inode(req->inode) != fi);
345 		curr_index = req->misc.write.in.offset >> PAGE_SHIFT;
346 		if (idx_from < curr_index + req->num_pages &&
347 		    curr_index <= idx_to) {
348 			return req;
349 		}
350 	}
351 	return NULL;
352 }
353 
354 /*
355  * Check if any page in a range is under writeback
356  *
357  * This is currently done by walking the list of writepage requests
358  * for the inode, which can be pretty inefficient.
359  */
360 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
361 				   pgoff_t idx_to)
362 {
363 	struct fuse_inode *fi = get_fuse_inode(inode);
364 	bool found;
365 
366 	spin_lock(&fi->lock);
367 	found = fuse_find_writeback(fi, idx_from, idx_to);
368 	spin_unlock(&fi->lock);
369 
370 	return found;
371 }
372 
373 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
374 {
375 	return fuse_range_is_writeback(inode, index, index);
376 }
377 
378 /*
379  * Wait for page writeback to be completed.
380  *
381  * Since fuse doesn't rely on the VM writeback tracking, this has to
382  * use some other means.
383  */
384 static int fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
385 {
386 	struct fuse_inode *fi = get_fuse_inode(inode);
387 
388 	wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
389 	return 0;
390 }
391 
392 /*
393  * Wait for all pending writepages on the inode to finish.
394  *
395  * This is currently done by blocking further writes with FUSE_NOWRITE
396  * and waiting for all sent writes to complete.
397  *
398  * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
399  * could conflict with truncation.
400  */
401 static void fuse_sync_writes(struct inode *inode)
402 {
403 	fuse_set_nowrite(inode);
404 	fuse_release_nowrite(inode);
405 }
406 
407 static int fuse_flush(struct file *file, fl_owner_t id)
408 {
409 	struct inode *inode = file_inode(file);
410 	struct fuse_conn *fc = get_fuse_conn(inode);
411 	struct fuse_file *ff = file->private_data;
412 	struct fuse_req *req;
413 	struct fuse_flush_in inarg;
414 	int err;
415 
416 	if (is_bad_inode(inode))
417 		return -EIO;
418 
419 	if (fc->no_flush)
420 		return 0;
421 
422 	err = write_inode_now(inode, 1);
423 	if (err)
424 		return err;
425 
426 	inode_lock(inode);
427 	fuse_sync_writes(inode);
428 	inode_unlock(inode);
429 
430 	err = filemap_check_errors(file->f_mapping);
431 	if (err)
432 		return err;
433 
434 	req = fuse_get_req_nofail_nopages(fc, file);
435 	memset(&inarg, 0, sizeof(inarg));
436 	inarg.fh = ff->fh;
437 	inarg.lock_owner = fuse_lock_owner_id(fc, id);
438 	req->in.h.opcode = FUSE_FLUSH;
439 	req->in.h.nodeid = get_node_id(inode);
440 	req->in.numargs = 1;
441 	req->in.args[0].size = sizeof(inarg);
442 	req->in.args[0].value = &inarg;
443 	__set_bit(FR_FORCE, &req->flags);
444 	fuse_request_send(fc, req);
445 	err = req->out.h.error;
446 	fuse_put_request(fc, req);
447 	if (err == -ENOSYS) {
448 		fc->no_flush = 1;
449 		err = 0;
450 	}
451 	return err;
452 }
453 
454 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
455 		      int datasync, int opcode)
456 {
457 	struct inode *inode = file->f_mapping->host;
458 	struct fuse_conn *fc = get_fuse_conn(inode);
459 	struct fuse_file *ff = file->private_data;
460 	FUSE_ARGS(args);
461 	struct fuse_fsync_in inarg;
462 
463 	memset(&inarg, 0, sizeof(inarg));
464 	inarg.fh = ff->fh;
465 	inarg.fsync_flags = datasync ? 1 : 0;
466 	args.in.h.opcode = opcode;
467 	args.in.h.nodeid = get_node_id(inode);
468 	args.in.numargs = 1;
469 	args.in.args[0].size = sizeof(inarg);
470 	args.in.args[0].value = &inarg;
471 	return fuse_simple_request(fc, &args);
472 }
473 
474 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
475 		      int datasync)
476 {
477 	struct inode *inode = file->f_mapping->host;
478 	struct fuse_conn *fc = get_fuse_conn(inode);
479 	int err;
480 
481 	if (is_bad_inode(inode))
482 		return -EIO;
483 
484 	inode_lock(inode);
485 
486 	/*
487 	 * Start writeback against all dirty pages of the inode, then
488 	 * wait for all outstanding writes, before sending the FSYNC
489 	 * request.
490 	 */
491 	err = file_write_and_wait_range(file, start, end);
492 	if (err)
493 		goto out;
494 
495 	fuse_sync_writes(inode);
496 
497 	/*
498 	 * Due to implementation of fuse writeback
499 	 * file_write_and_wait_range() does not catch errors.
500 	 * We have to do this directly after fuse_sync_writes()
501 	 */
502 	err = file_check_and_advance_wb_err(file);
503 	if (err)
504 		goto out;
505 
506 	err = sync_inode_metadata(inode, 1);
507 	if (err)
508 		goto out;
509 
510 	if (fc->no_fsync)
511 		goto out;
512 
513 	err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
514 	if (err == -ENOSYS) {
515 		fc->no_fsync = 1;
516 		err = 0;
517 	}
518 out:
519 	inode_unlock(inode);
520 
521 	return err;
522 }
523 
524 void fuse_read_fill(struct fuse_req *req, struct file *file, loff_t pos,
525 		    size_t count, int opcode)
526 {
527 	struct fuse_read_in *inarg = &req->misc.read.in;
528 	struct fuse_file *ff = file->private_data;
529 
530 	inarg->fh = ff->fh;
531 	inarg->offset = pos;
532 	inarg->size = count;
533 	inarg->flags = file->f_flags;
534 	req->in.h.opcode = opcode;
535 	req->in.h.nodeid = ff->nodeid;
536 	req->in.numargs = 1;
537 	req->in.args[0].size = sizeof(struct fuse_read_in);
538 	req->in.args[0].value = inarg;
539 	req->out.argvar = 1;
540 	req->out.numargs = 1;
541 	req->out.args[0].size = count;
542 }
543 
544 static void fuse_release_user_pages(struct fuse_req *req, bool should_dirty)
545 {
546 	unsigned i;
547 
548 	for (i = 0; i < req->num_pages; i++) {
549 		struct page *page = req->pages[i];
550 		if (should_dirty)
551 			set_page_dirty_lock(page);
552 		put_page(page);
553 	}
554 }
555 
556 static void fuse_io_release(struct kref *kref)
557 {
558 	kfree(container_of(kref, struct fuse_io_priv, refcnt));
559 }
560 
561 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
562 {
563 	if (io->err)
564 		return io->err;
565 
566 	if (io->bytes >= 0 && io->write)
567 		return -EIO;
568 
569 	return io->bytes < 0 ? io->size : io->bytes;
570 }
571 
572 /**
573  * In case of short read, the caller sets 'pos' to the position of
574  * actual end of fuse request in IO request. Otherwise, if bytes_requested
575  * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
576  *
577  * An example:
578  * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
579  * both submitted asynchronously. The first of them was ACKed by userspace as
580  * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
581  * second request was ACKed as short, e.g. only 1K was read, resulting in
582  * pos == 33K.
583  *
584  * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
585  * will be equal to the length of the longest contiguous fragment of
586  * transferred data starting from the beginning of IO request.
587  */
588 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
589 {
590 	int left;
591 
592 	spin_lock(&io->lock);
593 	if (err)
594 		io->err = io->err ? : err;
595 	else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
596 		io->bytes = pos;
597 
598 	left = --io->reqs;
599 	if (!left && io->blocking)
600 		complete(io->done);
601 	spin_unlock(&io->lock);
602 
603 	if (!left && !io->blocking) {
604 		ssize_t res = fuse_get_res_by_io(io);
605 
606 		if (res >= 0) {
607 			struct inode *inode = file_inode(io->iocb->ki_filp);
608 			struct fuse_conn *fc = get_fuse_conn(inode);
609 			struct fuse_inode *fi = get_fuse_inode(inode);
610 
611 			spin_lock(&fi->lock);
612 			fi->attr_version = atomic64_inc_return(&fc->attr_version);
613 			spin_unlock(&fi->lock);
614 		}
615 
616 		io->iocb->ki_complete(io->iocb, res, 0);
617 	}
618 
619 	kref_put(&io->refcnt, fuse_io_release);
620 }
621 
622 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_req *req)
623 {
624 	struct fuse_io_priv *io = req->io;
625 	ssize_t pos = -1;
626 
627 	fuse_release_user_pages(req, io->should_dirty);
628 
629 	if (io->write) {
630 		if (req->misc.write.in.size != req->misc.write.out.size)
631 			pos = req->misc.write.in.offset - io->offset +
632 				req->misc.write.out.size;
633 	} else {
634 		if (req->misc.read.in.size != req->out.args[0].size)
635 			pos = req->misc.read.in.offset - io->offset +
636 				req->out.args[0].size;
637 	}
638 
639 	fuse_aio_complete(io, req->out.h.error, pos);
640 }
641 
642 static size_t fuse_async_req_send(struct fuse_conn *fc, struct fuse_req *req,
643 		size_t num_bytes, struct fuse_io_priv *io)
644 {
645 	spin_lock(&io->lock);
646 	kref_get(&io->refcnt);
647 	io->size += num_bytes;
648 	io->reqs++;
649 	spin_unlock(&io->lock);
650 
651 	req->io = io;
652 	req->end = fuse_aio_complete_req;
653 
654 	__fuse_get_request(req);
655 	fuse_request_send_background(fc, req);
656 
657 	return num_bytes;
658 }
659 
660 static size_t fuse_send_read(struct fuse_req *req, struct fuse_io_priv *io,
661 			     loff_t pos, size_t count, fl_owner_t owner)
662 {
663 	struct file *file = io->iocb->ki_filp;
664 	struct fuse_file *ff = file->private_data;
665 	struct fuse_conn *fc = ff->fc;
666 
667 	fuse_read_fill(req, file, pos, count, FUSE_READ);
668 	if (owner != NULL) {
669 		struct fuse_read_in *inarg = &req->misc.read.in;
670 
671 		inarg->read_flags |= FUSE_READ_LOCKOWNER;
672 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
673 	}
674 
675 	if (io->async)
676 		return fuse_async_req_send(fc, req, count, io);
677 
678 	fuse_request_send(fc, req);
679 	return req->out.args[0].size;
680 }
681 
682 static void fuse_read_update_size(struct inode *inode, loff_t size,
683 				  u64 attr_ver)
684 {
685 	struct fuse_conn *fc = get_fuse_conn(inode);
686 	struct fuse_inode *fi = get_fuse_inode(inode);
687 
688 	spin_lock(&fi->lock);
689 	if (attr_ver == fi->attr_version && size < inode->i_size &&
690 	    !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
691 		fi->attr_version = atomic64_inc_return(&fc->attr_version);
692 		i_size_write(inode, size);
693 	}
694 	spin_unlock(&fi->lock);
695 }
696 
697 static void fuse_short_read(struct fuse_req *req, struct inode *inode,
698 			    u64 attr_ver)
699 {
700 	size_t num_read = req->out.args[0].size;
701 	struct fuse_conn *fc = get_fuse_conn(inode);
702 
703 	if (fc->writeback_cache) {
704 		/*
705 		 * A hole in a file. Some data after the hole are in page cache,
706 		 * but have not reached the client fs yet. So, the hole is not
707 		 * present there.
708 		 */
709 		int i;
710 		int start_idx = num_read >> PAGE_SHIFT;
711 		size_t off = num_read & (PAGE_SIZE - 1);
712 
713 		for (i = start_idx; i < req->num_pages; i++) {
714 			zero_user_segment(req->pages[i], off, PAGE_SIZE);
715 			off = 0;
716 		}
717 	} else {
718 		loff_t pos = page_offset(req->pages[0]) + num_read;
719 		fuse_read_update_size(inode, pos, attr_ver);
720 	}
721 }
722 
723 static int fuse_do_readpage(struct file *file, struct page *page)
724 {
725 	struct kiocb iocb;
726 	struct fuse_io_priv io;
727 	struct inode *inode = page->mapping->host;
728 	struct fuse_conn *fc = get_fuse_conn(inode);
729 	struct fuse_req *req;
730 	size_t num_read;
731 	loff_t pos = page_offset(page);
732 	size_t count = PAGE_SIZE;
733 	u64 attr_ver;
734 	int err;
735 
736 	/*
737 	 * Page writeback can extend beyond the lifetime of the
738 	 * page-cache page, so make sure we read a properly synced
739 	 * page.
740 	 */
741 	fuse_wait_on_page_writeback(inode, page->index);
742 
743 	req = fuse_get_req(fc, 1);
744 	if (IS_ERR(req))
745 		return PTR_ERR(req);
746 
747 	attr_ver = fuse_get_attr_version(fc);
748 
749 	req->out.page_zeroing = 1;
750 	req->out.argpages = 1;
751 	req->num_pages = 1;
752 	req->pages[0] = page;
753 	req->page_descs[0].length = count;
754 	init_sync_kiocb(&iocb, file);
755 	io = (struct fuse_io_priv) FUSE_IO_PRIV_SYNC(&iocb);
756 	num_read = fuse_send_read(req, &io, pos, count, NULL);
757 	err = req->out.h.error;
758 
759 	if (!err) {
760 		/*
761 		 * Short read means EOF.  If file size is larger, truncate it
762 		 */
763 		if (num_read < count)
764 			fuse_short_read(req, inode, attr_ver);
765 
766 		SetPageUptodate(page);
767 	}
768 
769 	fuse_put_request(fc, req);
770 
771 	return err;
772 }
773 
774 static int fuse_readpage(struct file *file, struct page *page)
775 {
776 	struct inode *inode = page->mapping->host;
777 	int err;
778 
779 	err = -EIO;
780 	if (is_bad_inode(inode))
781 		goto out;
782 
783 	err = fuse_do_readpage(file, page);
784 	fuse_invalidate_atime(inode);
785  out:
786 	unlock_page(page);
787 	return err;
788 }
789 
790 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_req *req)
791 {
792 	int i;
793 	size_t count = req->misc.read.in.size;
794 	size_t num_read = req->out.args[0].size;
795 	struct address_space *mapping = NULL;
796 
797 	for (i = 0; mapping == NULL && i < req->num_pages; i++)
798 		mapping = req->pages[i]->mapping;
799 
800 	if (mapping) {
801 		struct inode *inode = mapping->host;
802 
803 		/*
804 		 * Short read means EOF. If file size is larger, truncate it
805 		 */
806 		if (!req->out.h.error && num_read < count)
807 			fuse_short_read(req, inode, req->misc.read.attr_ver);
808 
809 		fuse_invalidate_atime(inode);
810 	}
811 
812 	for (i = 0; i < req->num_pages; i++) {
813 		struct page *page = req->pages[i];
814 		if (!req->out.h.error)
815 			SetPageUptodate(page);
816 		else
817 			SetPageError(page);
818 		unlock_page(page);
819 		put_page(page);
820 	}
821 	if (req->ff)
822 		fuse_file_put(req->ff, false, false);
823 }
824 
825 static void fuse_send_readpages(struct fuse_req *req, struct file *file)
826 {
827 	struct fuse_file *ff = file->private_data;
828 	struct fuse_conn *fc = ff->fc;
829 	loff_t pos = page_offset(req->pages[0]);
830 	size_t count = req->num_pages << PAGE_SHIFT;
831 
832 	req->out.argpages = 1;
833 	req->out.page_zeroing = 1;
834 	req->out.page_replace = 1;
835 	fuse_read_fill(req, file, pos, count, FUSE_READ);
836 	req->misc.read.attr_ver = fuse_get_attr_version(fc);
837 	if (fc->async_read) {
838 		req->ff = fuse_file_get(ff);
839 		req->end = fuse_readpages_end;
840 		fuse_request_send_background(fc, req);
841 	} else {
842 		fuse_request_send(fc, req);
843 		fuse_readpages_end(fc, req);
844 		fuse_put_request(fc, req);
845 	}
846 }
847 
848 struct fuse_fill_data {
849 	struct fuse_req *req;
850 	struct file *file;
851 	struct inode *inode;
852 	unsigned nr_pages;
853 };
854 
855 static int fuse_readpages_fill(void *_data, struct page *page)
856 {
857 	struct fuse_fill_data *data = _data;
858 	struct fuse_req *req = data->req;
859 	struct inode *inode = data->inode;
860 	struct fuse_conn *fc = get_fuse_conn(inode);
861 
862 	fuse_wait_on_page_writeback(inode, page->index);
863 
864 	if (req->num_pages &&
865 	    (req->num_pages == fc->max_pages ||
866 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_read ||
867 	     req->pages[req->num_pages - 1]->index + 1 != page->index)) {
868 		unsigned int nr_alloc = min_t(unsigned int, data->nr_pages,
869 					      fc->max_pages);
870 		fuse_send_readpages(req, data->file);
871 		if (fc->async_read)
872 			req = fuse_get_req_for_background(fc, nr_alloc);
873 		else
874 			req = fuse_get_req(fc, nr_alloc);
875 
876 		data->req = req;
877 		if (IS_ERR(req)) {
878 			unlock_page(page);
879 			return PTR_ERR(req);
880 		}
881 	}
882 
883 	if (WARN_ON(req->num_pages >= req->max_pages)) {
884 		unlock_page(page);
885 		fuse_put_request(fc, req);
886 		return -EIO;
887 	}
888 
889 	get_page(page);
890 	req->pages[req->num_pages] = page;
891 	req->page_descs[req->num_pages].length = PAGE_SIZE;
892 	req->num_pages++;
893 	data->nr_pages--;
894 	return 0;
895 }
896 
897 static int fuse_readpages(struct file *file, struct address_space *mapping,
898 			  struct list_head *pages, unsigned nr_pages)
899 {
900 	struct inode *inode = mapping->host;
901 	struct fuse_conn *fc = get_fuse_conn(inode);
902 	struct fuse_fill_data data;
903 	int err;
904 	unsigned int nr_alloc = min_t(unsigned int, nr_pages, fc->max_pages);
905 
906 	err = -EIO;
907 	if (is_bad_inode(inode))
908 		goto out;
909 
910 	data.file = file;
911 	data.inode = inode;
912 	if (fc->async_read)
913 		data.req = fuse_get_req_for_background(fc, nr_alloc);
914 	else
915 		data.req = fuse_get_req(fc, nr_alloc);
916 	data.nr_pages = nr_pages;
917 	err = PTR_ERR(data.req);
918 	if (IS_ERR(data.req))
919 		goto out;
920 
921 	err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
922 	if (!err) {
923 		if (data.req->num_pages)
924 			fuse_send_readpages(data.req, file);
925 		else
926 			fuse_put_request(fc, data.req);
927 	}
928 out:
929 	return err;
930 }
931 
932 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
933 {
934 	struct inode *inode = iocb->ki_filp->f_mapping->host;
935 	struct fuse_conn *fc = get_fuse_conn(inode);
936 
937 	/*
938 	 * In auto invalidate mode, always update attributes on read.
939 	 * Otherwise, only update if we attempt to read past EOF (to ensure
940 	 * i_size is up to date).
941 	 */
942 	if (fc->auto_inval_data ||
943 	    (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
944 		int err;
945 		err = fuse_update_attributes(inode, iocb->ki_filp);
946 		if (err)
947 			return err;
948 	}
949 
950 	return generic_file_read_iter(iocb, to);
951 }
952 
953 static void fuse_write_fill(struct fuse_req *req, struct fuse_file *ff,
954 			    loff_t pos, size_t count)
955 {
956 	struct fuse_write_in *inarg = &req->misc.write.in;
957 	struct fuse_write_out *outarg = &req->misc.write.out;
958 
959 	inarg->fh = ff->fh;
960 	inarg->offset = pos;
961 	inarg->size = count;
962 	req->in.h.opcode = FUSE_WRITE;
963 	req->in.h.nodeid = ff->nodeid;
964 	req->in.numargs = 2;
965 	if (ff->fc->minor < 9)
966 		req->in.args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
967 	else
968 		req->in.args[0].size = sizeof(struct fuse_write_in);
969 	req->in.args[0].value = inarg;
970 	req->in.args[1].size = count;
971 	req->out.numargs = 1;
972 	req->out.args[0].size = sizeof(struct fuse_write_out);
973 	req->out.args[0].value = outarg;
974 }
975 
976 static size_t fuse_send_write(struct fuse_req *req, struct fuse_io_priv *io,
977 			      loff_t pos, size_t count, fl_owner_t owner)
978 {
979 	struct kiocb *iocb = io->iocb;
980 	struct file *file = iocb->ki_filp;
981 	struct fuse_file *ff = file->private_data;
982 	struct fuse_conn *fc = ff->fc;
983 	struct fuse_write_in *inarg = &req->misc.write.in;
984 
985 	fuse_write_fill(req, ff, pos, count);
986 	inarg->flags = file->f_flags;
987 	if (iocb->ki_flags & IOCB_DSYNC)
988 		inarg->flags |= O_DSYNC;
989 	if (iocb->ki_flags & IOCB_SYNC)
990 		inarg->flags |= O_SYNC;
991 	if (owner != NULL) {
992 		inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
993 		inarg->lock_owner = fuse_lock_owner_id(fc, owner);
994 	}
995 
996 	if (io->async)
997 		return fuse_async_req_send(fc, req, count, io);
998 
999 	fuse_request_send(fc, req);
1000 	return req->misc.write.out.size;
1001 }
1002 
1003 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1004 {
1005 	struct fuse_conn *fc = get_fuse_conn(inode);
1006 	struct fuse_inode *fi = get_fuse_inode(inode);
1007 	bool ret = false;
1008 
1009 	spin_lock(&fi->lock);
1010 	fi->attr_version = atomic64_inc_return(&fc->attr_version);
1011 	if (pos > inode->i_size) {
1012 		i_size_write(inode, pos);
1013 		ret = true;
1014 	}
1015 	spin_unlock(&fi->lock);
1016 
1017 	return ret;
1018 }
1019 
1020 static size_t fuse_send_write_pages(struct fuse_req *req, struct kiocb *iocb,
1021 				    struct inode *inode, loff_t pos,
1022 				    size_t count)
1023 {
1024 	size_t res;
1025 	unsigned offset;
1026 	unsigned i;
1027 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1028 
1029 	for (i = 0; i < req->num_pages; i++)
1030 		fuse_wait_on_page_writeback(inode, req->pages[i]->index);
1031 
1032 	res = fuse_send_write(req, &io, pos, count, NULL);
1033 
1034 	offset = req->page_descs[0].offset;
1035 	count = res;
1036 	for (i = 0; i < req->num_pages; i++) {
1037 		struct page *page = req->pages[i];
1038 
1039 		if (!req->out.h.error && !offset && count >= PAGE_SIZE)
1040 			SetPageUptodate(page);
1041 
1042 		if (count > PAGE_SIZE - offset)
1043 			count -= PAGE_SIZE - offset;
1044 		else
1045 			count = 0;
1046 		offset = 0;
1047 
1048 		unlock_page(page);
1049 		put_page(page);
1050 	}
1051 
1052 	return res;
1053 }
1054 
1055 static ssize_t fuse_fill_write_pages(struct fuse_req *req,
1056 			       struct address_space *mapping,
1057 			       struct iov_iter *ii, loff_t pos)
1058 {
1059 	struct fuse_conn *fc = get_fuse_conn(mapping->host);
1060 	unsigned offset = pos & (PAGE_SIZE - 1);
1061 	size_t count = 0;
1062 	int err;
1063 
1064 	req->in.argpages = 1;
1065 	req->page_descs[0].offset = offset;
1066 
1067 	do {
1068 		size_t tmp;
1069 		struct page *page;
1070 		pgoff_t index = pos >> PAGE_SHIFT;
1071 		size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1072 				     iov_iter_count(ii));
1073 
1074 		bytes = min_t(size_t, bytes, fc->max_write - count);
1075 
1076  again:
1077 		err = -EFAULT;
1078 		if (iov_iter_fault_in_readable(ii, bytes))
1079 			break;
1080 
1081 		err = -ENOMEM;
1082 		page = grab_cache_page_write_begin(mapping, index, 0);
1083 		if (!page)
1084 			break;
1085 
1086 		if (mapping_writably_mapped(mapping))
1087 			flush_dcache_page(page);
1088 
1089 		tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1090 		flush_dcache_page(page);
1091 
1092 		iov_iter_advance(ii, tmp);
1093 		if (!tmp) {
1094 			unlock_page(page);
1095 			put_page(page);
1096 			bytes = min(bytes, iov_iter_single_seg_count(ii));
1097 			goto again;
1098 		}
1099 
1100 		err = 0;
1101 		req->pages[req->num_pages] = page;
1102 		req->page_descs[req->num_pages].length = tmp;
1103 		req->num_pages++;
1104 
1105 		count += tmp;
1106 		pos += tmp;
1107 		offset += tmp;
1108 		if (offset == PAGE_SIZE)
1109 			offset = 0;
1110 
1111 		if (!fc->big_writes)
1112 			break;
1113 	} while (iov_iter_count(ii) && count < fc->max_write &&
1114 		 req->num_pages < req->max_pages && offset == 0);
1115 
1116 	return count > 0 ? count : err;
1117 }
1118 
1119 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1120 				     unsigned int max_pages)
1121 {
1122 	return min_t(unsigned int,
1123 		     ((pos + len - 1) >> PAGE_SHIFT) -
1124 		     (pos >> PAGE_SHIFT) + 1,
1125 		     max_pages);
1126 }
1127 
1128 static ssize_t fuse_perform_write(struct kiocb *iocb,
1129 				  struct address_space *mapping,
1130 				  struct iov_iter *ii, loff_t pos)
1131 {
1132 	struct inode *inode = mapping->host;
1133 	struct fuse_conn *fc = get_fuse_conn(inode);
1134 	struct fuse_inode *fi = get_fuse_inode(inode);
1135 	int err = 0;
1136 	ssize_t res = 0;
1137 
1138 	if (inode->i_size < pos + iov_iter_count(ii))
1139 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1140 
1141 	do {
1142 		struct fuse_req *req;
1143 		ssize_t count;
1144 		unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1145 						      fc->max_pages);
1146 
1147 		req = fuse_get_req(fc, nr_pages);
1148 		if (IS_ERR(req)) {
1149 			err = PTR_ERR(req);
1150 			break;
1151 		}
1152 
1153 		count = fuse_fill_write_pages(req, mapping, ii, pos);
1154 		if (count <= 0) {
1155 			err = count;
1156 		} else {
1157 			size_t num_written;
1158 
1159 			num_written = fuse_send_write_pages(req, iocb, inode,
1160 							    pos, count);
1161 			err = req->out.h.error;
1162 			if (!err) {
1163 				res += num_written;
1164 				pos += num_written;
1165 
1166 				/* break out of the loop on short write */
1167 				if (num_written != count)
1168 					err = -EIO;
1169 			}
1170 		}
1171 		fuse_put_request(fc, req);
1172 	} while (!err && iov_iter_count(ii));
1173 
1174 	if (res > 0)
1175 		fuse_write_update_size(inode, pos);
1176 
1177 	clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1178 	fuse_invalidate_attr(inode);
1179 
1180 	return res > 0 ? res : err;
1181 }
1182 
1183 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1184 {
1185 	struct file *file = iocb->ki_filp;
1186 	struct address_space *mapping = file->f_mapping;
1187 	ssize_t written = 0;
1188 	ssize_t written_buffered = 0;
1189 	struct inode *inode = mapping->host;
1190 	ssize_t err;
1191 	loff_t endbyte = 0;
1192 
1193 	if (get_fuse_conn(inode)->writeback_cache) {
1194 		/* Update size (EOF optimization) and mode (SUID clearing) */
1195 		err = fuse_update_attributes(mapping->host, file);
1196 		if (err)
1197 			return err;
1198 
1199 		return generic_file_write_iter(iocb, from);
1200 	}
1201 
1202 	inode_lock(inode);
1203 
1204 	/* We can write back this queue in page reclaim */
1205 	current->backing_dev_info = inode_to_bdi(inode);
1206 
1207 	err = generic_write_checks(iocb, from);
1208 	if (err <= 0)
1209 		goto out;
1210 
1211 	err = file_remove_privs(file);
1212 	if (err)
1213 		goto out;
1214 
1215 	err = file_update_time(file);
1216 	if (err)
1217 		goto out;
1218 
1219 	if (iocb->ki_flags & IOCB_DIRECT) {
1220 		loff_t pos = iocb->ki_pos;
1221 		written = generic_file_direct_write(iocb, from);
1222 		if (written < 0 || !iov_iter_count(from))
1223 			goto out;
1224 
1225 		pos += written;
1226 
1227 		written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1228 		if (written_buffered < 0) {
1229 			err = written_buffered;
1230 			goto out;
1231 		}
1232 		endbyte = pos + written_buffered - 1;
1233 
1234 		err = filemap_write_and_wait_range(file->f_mapping, pos,
1235 						   endbyte);
1236 		if (err)
1237 			goto out;
1238 
1239 		invalidate_mapping_pages(file->f_mapping,
1240 					 pos >> PAGE_SHIFT,
1241 					 endbyte >> PAGE_SHIFT);
1242 
1243 		written += written_buffered;
1244 		iocb->ki_pos = pos + written_buffered;
1245 	} else {
1246 		written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1247 		if (written >= 0)
1248 			iocb->ki_pos += written;
1249 	}
1250 out:
1251 	current->backing_dev_info = NULL;
1252 	inode_unlock(inode);
1253 	if (written > 0)
1254 		written = generic_write_sync(iocb, written);
1255 
1256 	return written ? written : err;
1257 }
1258 
1259 static inline void fuse_page_descs_length_init(struct fuse_req *req,
1260 		unsigned index, unsigned nr_pages)
1261 {
1262 	int i;
1263 
1264 	for (i = index; i < index + nr_pages; i++)
1265 		req->page_descs[i].length = PAGE_SIZE -
1266 			req->page_descs[i].offset;
1267 }
1268 
1269 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1270 {
1271 	return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1272 }
1273 
1274 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1275 					size_t max_size)
1276 {
1277 	return min(iov_iter_single_seg_count(ii), max_size);
1278 }
1279 
1280 static int fuse_get_user_pages(struct fuse_req *req, struct iov_iter *ii,
1281 			       size_t *nbytesp, int write)
1282 {
1283 	size_t nbytes = 0;  /* # bytes already packed in req */
1284 	ssize_t ret = 0;
1285 
1286 	/* Special case for kernel I/O: can copy directly into the buffer */
1287 	if (iov_iter_is_kvec(ii)) {
1288 		unsigned long user_addr = fuse_get_user_addr(ii);
1289 		size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1290 
1291 		if (write)
1292 			req->in.args[1].value = (void *) user_addr;
1293 		else
1294 			req->out.args[0].value = (void *) user_addr;
1295 
1296 		iov_iter_advance(ii, frag_size);
1297 		*nbytesp = frag_size;
1298 		return 0;
1299 	}
1300 
1301 	while (nbytes < *nbytesp && req->num_pages < req->max_pages) {
1302 		unsigned npages;
1303 		size_t start;
1304 		ret = iov_iter_get_pages(ii, &req->pages[req->num_pages],
1305 					*nbytesp - nbytes,
1306 					req->max_pages - req->num_pages,
1307 					&start);
1308 		if (ret < 0)
1309 			break;
1310 
1311 		iov_iter_advance(ii, ret);
1312 		nbytes += ret;
1313 
1314 		ret += start;
1315 		npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1316 
1317 		req->page_descs[req->num_pages].offset = start;
1318 		fuse_page_descs_length_init(req, req->num_pages, npages);
1319 
1320 		req->num_pages += npages;
1321 		req->page_descs[req->num_pages - 1].length -=
1322 			(PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1323 	}
1324 
1325 	if (write)
1326 		req->in.argpages = 1;
1327 	else
1328 		req->out.argpages = 1;
1329 
1330 	*nbytesp = nbytes;
1331 
1332 	return ret < 0 ? ret : 0;
1333 }
1334 
1335 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1336 		       loff_t *ppos, int flags)
1337 {
1338 	int write = flags & FUSE_DIO_WRITE;
1339 	int cuse = flags & FUSE_DIO_CUSE;
1340 	struct file *file = io->iocb->ki_filp;
1341 	struct inode *inode = file->f_mapping->host;
1342 	struct fuse_file *ff = file->private_data;
1343 	struct fuse_conn *fc = ff->fc;
1344 	size_t nmax = write ? fc->max_write : fc->max_read;
1345 	loff_t pos = *ppos;
1346 	size_t count = iov_iter_count(iter);
1347 	pgoff_t idx_from = pos >> PAGE_SHIFT;
1348 	pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1349 	ssize_t res = 0;
1350 	struct fuse_req *req;
1351 	int err = 0;
1352 
1353 	if (io->async)
1354 		req = fuse_get_req_for_background(fc, iov_iter_npages(iter,
1355 								fc->max_pages));
1356 	else
1357 		req = fuse_get_req(fc, iov_iter_npages(iter, fc->max_pages));
1358 	if (IS_ERR(req))
1359 		return PTR_ERR(req);
1360 
1361 	if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1362 		if (!write)
1363 			inode_lock(inode);
1364 		fuse_sync_writes(inode);
1365 		if (!write)
1366 			inode_unlock(inode);
1367 	}
1368 
1369 	io->should_dirty = !write && iter_is_iovec(iter);
1370 	while (count) {
1371 		size_t nres;
1372 		fl_owner_t owner = current->files;
1373 		size_t nbytes = min(count, nmax);
1374 		err = fuse_get_user_pages(req, iter, &nbytes, write);
1375 		if (err && !nbytes)
1376 			break;
1377 
1378 		if (write)
1379 			nres = fuse_send_write(req, io, pos, nbytes, owner);
1380 		else
1381 			nres = fuse_send_read(req, io, pos, nbytes, owner);
1382 
1383 		if (!io->async)
1384 			fuse_release_user_pages(req, io->should_dirty);
1385 		if (req->out.h.error) {
1386 			err = req->out.h.error;
1387 			break;
1388 		} else if (nres > nbytes) {
1389 			res = 0;
1390 			err = -EIO;
1391 			break;
1392 		}
1393 		count -= nres;
1394 		res += nres;
1395 		pos += nres;
1396 		if (nres != nbytes)
1397 			break;
1398 		if (count) {
1399 			fuse_put_request(fc, req);
1400 			if (io->async)
1401 				req = fuse_get_req_for_background(fc,
1402 					iov_iter_npages(iter, fc->max_pages));
1403 			else
1404 				req = fuse_get_req(fc, iov_iter_npages(iter,
1405 								fc->max_pages));
1406 			if (IS_ERR(req))
1407 				break;
1408 		}
1409 	}
1410 	if (!IS_ERR(req))
1411 		fuse_put_request(fc, req);
1412 	if (res > 0)
1413 		*ppos = pos;
1414 
1415 	return res > 0 ? res : err;
1416 }
1417 EXPORT_SYMBOL_GPL(fuse_direct_io);
1418 
1419 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1420 				  struct iov_iter *iter,
1421 				  loff_t *ppos)
1422 {
1423 	ssize_t res;
1424 	struct inode *inode = file_inode(io->iocb->ki_filp);
1425 
1426 	res = fuse_direct_io(io, iter, ppos, 0);
1427 
1428 	fuse_invalidate_atime(inode);
1429 
1430 	return res;
1431 }
1432 
1433 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1434 
1435 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1436 {
1437 	ssize_t res;
1438 
1439 	if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1440 		res = fuse_direct_IO(iocb, to);
1441 	} else {
1442 		struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1443 
1444 		res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1445 	}
1446 
1447 	return res;
1448 }
1449 
1450 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1451 {
1452 	struct inode *inode = file_inode(iocb->ki_filp);
1453 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1454 	ssize_t res;
1455 
1456 	/* Don't allow parallel writes to the same file */
1457 	inode_lock(inode);
1458 	res = generic_write_checks(iocb, from);
1459 	if (res > 0) {
1460 		if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1461 			res = fuse_direct_IO(iocb, from);
1462 		} else {
1463 			res = fuse_direct_io(&io, from, &iocb->ki_pos,
1464 					     FUSE_DIO_WRITE);
1465 		}
1466 	}
1467 	fuse_invalidate_attr(inode);
1468 	if (res > 0)
1469 		fuse_write_update_size(inode, iocb->ki_pos);
1470 	inode_unlock(inode);
1471 
1472 	return res;
1473 }
1474 
1475 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1476 {
1477 	struct file *file = iocb->ki_filp;
1478 	struct fuse_file *ff = file->private_data;
1479 
1480 	if (is_bad_inode(file_inode(file)))
1481 		return -EIO;
1482 
1483 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1484 		return fuse_cache_read_iter(iocb, to);
1485 	else
1486 		return fuse_direct_read_iter(iocb, to);
1487 }
1488 
1489 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1490 {
1491 	struct file *file = iocb->ki_filp;
1492 	struct fuse_file *ff = file->private_data;
1493 
1494 	if (is_bad_inode(file_inode(file)))
1495 		return -EIO;
1496 
1497 	if (!(ff->open_flags & FOPEN_DIRECT_IO))
1498 		return fuse_cache_write_iter(iocb, from);
1499 	else
1500 		return fuse_direct_write_iter(iocb, from);
1501 }
1502 
1503 static void fuse_writepage_free(struct fuse_conn *fc, struct fuse_req *req)
1504 {
1505 	int i;
1506 
1507 	for (i = 0; i < req->num_pages; i++)
1508 		__free_page(req->pages[i]);
1509 
1510 	if (req->ff)
1511 		fuse_file_put(req->ff, false, false);
1512 }
1513 
1514 static void fuse_writepage_finish(struct fuse_conn *fc, struct fuse_req *req)
1515 {
1516 	struct inode *inode = req->inode;
1517 	struct fuse_inode *fi = get_fuse_inode(inode);
1518 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1519 	int i;
1520 
1521 	list_del(&req->writepages_entry);
1522 	for (i = 0; i < req->num_pages; i++) {
1523 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1524 		dec_node_page_state(req->pages[i], NR_WRITEBACK_TEMP);
1525 		wb_writeout_inc(&bdi->wb);
1526 	}
1527 	wake_up(&fi->page_waitq);
1528 }
1529 
1530 /* Called under fi->lock, may release and reacquire it */
1531 static void fuse_send_writepage(struct fuse_conn *fc, struct fuse_req *req,
1532 				loff_t size)
1533 __releases(fi->lock)
1534 __acquires(fi->lock)
1535 {
1536 	struct fuse_req *aux, *next;
1537 	struct fuse_inode *fi = get_fuse_inode(req->inode);
1538 	struct fuse_write_in *inarg = &req->misc.write.in;
1539 	__u64 data_size = req->num_pages * PAGE_SIZE;
1540 	bool queued;
1541 
1542 	if (inarg->offset + data_size <= size) {
1543 		inarg->size = data_size;
1544 	} else if (inarg->offset < size) {
1545 		inarg->size = size - inarg->offset;
1546 	} else {
1547 		/* Got truncated off completely */
1548 		goto out_free;
1549 	}
1550 
1551 	req->in.args[1].size = inarg->size;
1552 	queued = fuse_request_queue_background(fc, req);
1553 	/* Fails on broken connection only */
1554 	if (unlikely(!queued))
1555 		goto out_free;
1556 
1557 	fi->writectr++;
1558 	return;
1559 
1560  out_free:
1561 	fuse_writepage_finish(fc, req);
1562 	spin_unlock(&fi->lock);
1563 
1564 	/* After fuse_writepage_finish() aux request list is private */
1565 	for (aux = req->misc.write.next; aux; aux = next) {
1566 		next = aux->misc.write.next;
1567 		aux->misc.write.next = NULL;
1568 		fuse_writepage_free(fc, aux);
1569 		fuse_put_request(fc, aux);
1570 	}
1571 
1572 	fuse_writepage_free(fc, req);
1573 	fuse_put_request(fc, req);
1574 	spin_lock(&fi->lock);
1575 }
1576 
1577 /*
1578  * If fi->writectr is positive (no truncate or fsync going on) send
1579  * all queued writepage requests.
1580  *
1581  * Called with fi->lock
1582  */
1583 void fuse_flush_writepages(struct inode *inode)
1584 __releases(fi->lock)
1585 __acquires(fi->lock)
1586 {
1587 	struct fuse_conn *fc = get_fuse_conn(inode);
1588 	struct fuse_inode *fi = get_fuse_inode(inode);
1589 	size_t crop = i_size_read(inode);
1590 	struct fuse_req *req;
1591 
1592 	while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1593 		req = list_entry(fi->queued_writes.next, struct fuse_req, list);
1594 		list_del_init(&req->list);
1595 		fuse_send_writepage(fc, req, crop);
1596 	}
1597 }
1598 
1599 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_req *req)
1600 {
1601 	struct inode *inode = req->inode;
1602 	struct fuse_inode *fi = get_fuse_inode(inode);
1603 
1604 	mapping_set_error(inode->i_mapping, req->out.h.error);
1605 	spin_lock(&fi->lock);
1606 	while (req->misc.write.next) {
1607 		struct fuse_conn *fc = get_fuse_conn(inode);
1608 		struct fuse_write_in *inarg = &req->misc.write.in;
1609 		struct fuse_req *next = req->misc.write.next;
1610 		req->misc.write.next = next->misc.write.next;
1611 		next->misc.write.next = NULL;
1612 		next->ff = fuse_file_get(req->ff);
1613 		list_add(&next->writepages_entry, &fi->writepages);
1614 
1615 		/*
1616 		 * Skip fuse_flush_writepages() to make it easy to crop requests
1617 		 * based on primary request size.
1618 		 *
1619 		 * 1st case (trivial): there are no concurrent activities using
1620 		 * fuse_set/release_nowrite.  Then we're on safe side because
1621 		 * fuse_flush_writepages() would call fuse_send_writepage()
1622 		 * anyway.
1623 		 *
1624 		 * 2nd case: someone called fuse_set_nowrite and it is waiting
1625 		 * now for completion of all in-flight requests.  This happens
1626 		 * rarely and no more than once per page, so this should be
1627 		 * okay.
1628 		 *
1629 		 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1630 		 * of fuse_set_nowrite..fuse_release_nowrite section.  The fact
1631 		 * that fuse_set_nowrite returned implies that all in-flight
1632 		 * requests were completed along with all of their secondary
1633 		 * requests.  Further primary requests are blocked by negative
1634 		 * writectr.  Hence there cannot be any in-flight requests and
1635 		 * no invocations of fuse_writepage_end() while we're in
1636 		 * fuse_set_nowrite..fuse_release_nowrite section.
1637 		 */
1638 		fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1639 	}
1640 	fi->writectr--;
1641 	fuse_writepage_finish(fc, req);
1642 	spin_unlock(&fi->lock);
1643 	fuse_writepage_free(fc, req);
1644 }
1645 
1646 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1647 					       struct fuse_inode *fi)
1648 {
1649 	struct fuse_file *ff = NULL;
1650 
1651 	spin_lock(&fi->lock);
1652 	if (!list_empty(&fi->write_files)) {
1653 		ff = list_entry(fi->write_files.next, struct fuse_file,
1654 				write_entry);
1655 		fuse_file_get(ff);
1656 	}
1657 	spin_unlock(&fi->lock);
1658 
1659 	return ff;
1660 }
1661 
1662 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1663 					     struct fuse_inode *fi)
1664 {
1665 	struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1666 	WARN_ON(!ff);
1667 	return ff;
1668 }
1669 
1670 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1671 {
1672 	struct fuse_conn *fc = get_fuse_conn(inode);
1673 	struct fuse_inode *fi = get_fuse_inode(inode);
1674 	struct fuse_file *ff;
1675 	int err;
1676 
1677 	ff = __fuse_write_file_get(fc, fi);
1678 	err = fuse_flush_times(inode, ff);
1679 	if (ff)
1680 		fuse_file_put(ff, false, false);
1681 
1682 	return err;
1683 }
1684 
1685 static int fuse_writepage_locked(struct page *page)
1686 {
1687 	struct address_space *mapping = page->mapping;
1688 	struct inode *inode = mapping->host;
1689 	struct fuse_conn *fc = get_fuse_conn(inode);
1690 	struct fuse_inode *fi = get_fuse_inode(inode);
1691 	struct fuse_req *req;
1692 	struct page *tmp_page;
1693 	int error = -ENOMEM;
1694 
1695 	set_page_writeback(page);
1696 
1697 	req = fuse_request_alloc_nofs(1);
1698 	if (!req)
1699 		goto err;
1700 
1701 	/* writeback always goes to bg_queue */
1702 	__set_bit(FR_BACKGROUND, &req->flags);
1703 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1704 	if (!tmp_page)
1705 		goto err_free;
1706 
1707 	error = -EIO;
1708 	req->ff = fuse_write_file_get(fc, fi);
1709 	if (!req->ff)
1710 		goto err_nofile;
1711 
1712 	fuse_write_fill(req, req->ff, page_offset(page), 0);
1713 
1714 	copy_highpage(tmp_page, page);
1715 	req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1716 	req->misc.write.next = NULL;
1717 	req->in.argpages = 1;
1718 	req->num_pages = 1;
1719 	req->pages[0] = tmp_page;
1720 	req->page_descs[0].offset = 0;
1721 	req->page_descs[0].length = PAGE_SIZE;
1722 	req->end = fuse_writepage_end;
1723 	req->inode = inode;
1724 
1725 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1726 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1727 
1728 	spin_lock(&fi->lock);
1729 	list_add(&req->writepages_entry, &fi->writepages);
1730 	list_add_tail(&req->list, &fi->queued_writes);
1731 	fuse_flush_writepages(inode);
1732 	spin_unlock(&fi->lock);
1733 
1734 	end_page_writeback(page);
1735 
1736 	return 0;
1737 
1738 err_nofile:
1739 	__free_page(tmp_page);
1740 err_free:
1741 	fuse_request_free(req);
1742 err:
1743 	mapping_set_error(page->mapping, error);
1744 	end_page_writeback(page);
1745 	return error;
1746 }
1747 
1748 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1749 {
1750 	int err;
1751 
1752 	if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1753 		/*
1754 		 * ->writepages() should be called for sync() and friends.  We
1755 		 * should only get here on direct reclaim and then we are
1756 		 * allowed to skip a page which is already in flight
1757 		 */
1758 		WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1759 
1760 		redirty_page_for_writepage(wbc, page);
1761 		return 0;
1762 	}
1763 
1764 	err = fuse_writepage_locked(page);
1765 	unlock_page(page);
1766 
1767 	return err;
1768 }
1769 
1770 struct fuse_fill_wb_data {
1771 	struct fuse_req *req;
1772 	struct fuse_file *ff;
1773 	struct inode *inode;
1774 	struct page **orig_pages;
1775 };
1776 
1777 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1778 {
1779 	struct fuse_req *req = data->req;
1780 	struct inode *inode = data->inode;
1781 	struct fuse_inode *fi = get_fuse_inode(inode);
1782 	int num_pages = req->num_pages;
1783 	int i;
1784 
1785 	req->ff = fuse_file_get(data->ff);
1786 	spin_lock(&fi->lock);
1787 	list_add_tail(&req->list, &fi->queued_writes);
1788 	fuse_flush_writepages(inode);
1789 	spin_unlock(&fi->lock);
1790 
1791 	for (i = 0; i < num_pages; i++)
1792 		end_page_writeback(data->orig_pages[i]);
1793 }
1794 
1795 /*
1796  * First recheck under fi->lock if the offending offset is still under
1797  * writeback.  If yes, then iterate auxiliary write requests, to see if there's
1798  * one already added for a page at this offset.  If there's none, then insert
1799  * this new request onto the auxiliary list, otherwise reuse the existing one by
1800  * copying the new page contents over to the old temporary page.
1801  */
1802 static bool fuse_writepage_in_flight(struct fuse_req *new_req,
1803 				     struct page *page)
1804 {
1805 	struct fuse_conn *fc = get_fuse_conn(new_req->inode);
1806 	struct fuse_inode *fi = get_fuse_inode(new_req->inode);
1807 	struct fuse_req *tmp;
1808 	struct fuse_req *old_req;
1809 
1810 	WARN_ON(new_req->num_pages != 0);
1811 
1812 	spin_lock(&fi->lock);
1813 	list_del(&new_req->writepages_entry);
1814 	old_req = fuse_find_writeback(fi, page->index, page->index);
1815 	if (!old_req) {
1816 		list_add(&new_req->writepages_entry, &fi->writepages);
1817 		spin_unlock(&fi->lock);
1818 		return false;
1819 	}
1820 
1821 	new_req->num_pages = 1;
1822 	for (tmp = old_req->misc.write.next; tmp; tmp = tmp->misc.write.next) {
1823 		pgoff_t curr_index;
1824 
1825 		WARN_ON(tmp->inode != new_req->inode);
1826 		curr_index = tmp->misc.write.in.offset >> PAGE_SHIFT;
1827 		if (curr_index == page->index) {
1828 			WARN_ON(tmp->num_pages != 1);
1829 			WARN_ON(!test_bit(FR_PENDING, &tmp->flags));
1830 			swap(tmp->pages[0], new_req->pages[0]);
1831 			break;
1832 		}
1833 	}
1834 
1835 	if (!tmp) {
1836 		new_req->misc.write.next = old_req->misc.write.next;
1837 		old_req->misc.write.next = new_req;
1838 	}
1839 
1840 	spin_unlock(&fi->lock);
1841 
1842 	if (tmp) {
1843 		struct backing_dev_info *bdi = inode_to_bdi(new_req->inode);
1844 
1845 		dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1846 		dec_node_page_state(new_req->pages[0], NR_WRITEBACK_TEMP);
1847 		wb_writeout_inc(&bdi->wb);
1848 		fuse_writepage_free(fc, new_req);
1849 		fuse_request_free(new_req);
1850 	}
1851 
1852 	return true;
1853 }
1854 
1855 static int fuse_writepages_fill(struct page *page,
1856 		struct writeback_control *wbc, void *_data)
1857 {
1858 	struct fuse_fill_wb_data *data = _data;
1859 	struct fuse_req *req = data->req;
1860 	struct inode *inode = data->inode;
1861 	struct fuse_inode *fi = get_fuse_inode(inode);
1862 	struct fuse_conn *fc = get_fuse_conn(inode);
1863 	struct page *tmp_page;
1864 	bool is_writeback;
1865 	int err;
1866 
1867 	if (!data->ff) {
1868 		err = -EIO;
1869 		data->ff = fuse_write_file_get(fc, get_fuse_inode(inode));
1870 		if (!data->ff)
1871 			goto out_unlock;
1872 	}
1873 
1874 	/*
1875 	 * Being under writeback is unlikely but possible.  For example direct
1876 	 * read to an mmaped fuse file will set the page dirty twice; once when
1877 	 * the pages are faulted with get_user_pages(), and then after the read
1878 	 * completed.
1879 	 */
1880 	is_writeback = fuse_page_is_writeback(inode, page->index);
1881 
1882 	if (req && req->num_pages &&
1883 	    (is_writeback || req->num_pages == fc->max_pages ||
1884 	     (req->num_pages + 1) * PAGE_SIZE > fc->max_write ||
1885 	     data->orig_pages[req->num_pages - 1]->index + 1 != page->index)) {
1886 		fuse_writepages_send(data);
1887 		data->req = NULL;
1888 	} else if (req && req->num_pages == req->max_pages) {
1889 		if (!fuse_req_realloc_pages(fc, req, GFP_NOFS)) {
1890 			fuse_writepages_send(data);
1891 			req = data->req = NULL;
1892 		}
1893 	}
1894 
1895 	err = -ENOMEM;
1896 	tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1897 	if (!tmp_page)
1898 		goto out_unlock;
1899 
1900 	/*
1901 	 * The page must not be redirtied until the writeout is completed
1902 	 * (i.e. userspace has sent a reply to the write request).  Otherwise
1903 	 * there could be more than one temporary page instance for each real
1904 	 * page.
1905 	 *
1906 	 * This is ensured by holding the page lock in page_mkwrite() while
1907 	 * checking fuse_page_is_writeback().  We already hold the page lock
1908 	 * since clear_page_dirty_for_io() and keep it held until we add the
1909 	 * request to the fi->writepages list and increment req->num_pages.
1910 	 * After this fuse_page_is_writeback() will indicate that the page is
1911 	 * under writeback, so we can release the page lock.
1912 	 */
1913 	if (data->req == NULL) {
1914 		struct fuse_inode *fi = get_fuse_inode(inode);
1915 
1916 		err = -ENOMEM;
1917 		req = fuse_request_alloc_nofs(FUSE_REQ_INLINE_PAGES);
1918 		if (!req) {
1919 			__free_page(tmp_page);
1920 			goto out_unlock;
1921 		}
1922 
1923 		fuse_write_fill(req, data->ff, page_offset(page), 0);
1924 		req->misc.write.in.write_flags |= FUSE_WRITE_CACHE;
1925 		req->misc.write.next = NULL;
1926 		req->in.argpages = 1;
1927 		__set_bit(FR_BACKGROUND, &req->flags);
1928 		req->num_pages = 0;
1929 		req->end = fuse_writepage_end;
1930 		req->inode = inode;
1931 
1932 		spin_lock(&fi->lock);
1933 		list_add(&req->writepages_entry, &fi->writepages);
1934 		spin_unlock(&fi->lock);
1935 
1936 		data->req = req;
1937 	}
1938 	set_page_writeback(page);
1939 
1940 	copy_highpage(tmp_page, page);
1941 	req->pages[req->num_pages] = tmp_page;
1942 	req->page_descs[req->num_pages].offset = 0;
1943 	req->page_descs[req->num_pages].length = PAGE_SIZE;
1944 
1945 	inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1946 	inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1947 
1948 	err = 0;
1949 	if (is_writeback && fuse_writepage_in_flight(req, page)) {
1950 		end_page_writeback(page);
1951 		data->req = NULL;
1952 		goto out_unlock;
1953 	}
1954 	data->orig_pages[req->num_pages] = page;
1955 
1956 	/*
1957 	 * Protected by fi->lock against concurrent access by
1958 	 * fuse_page_is_writeback().
1959 	 */
1960 	spin_lock(&fi->lock);
1961 	req->num_pages++;
1962 	spin_unlock(&fi->lock);
1963 
1964 out_unlock:
1965 	unlock_page(page);
1966 
1967 	return err;
1968 }
1969 
1970 static int fuse_writepages(struct address_space *mapping,
1971 			   struct writeback_control *wbc)
1972 {
1973 	struct inode *inode = mapping->host;
1974 	struct fuse_conn *fc = get_fuse_conn(inode);
1975 	struct fuse_fill_wb_data data;
1976 	int err;
1977 
1978 	err = -EIO;
1979 	if (is_bad_inode(inode))
1980 		goto out;
1981 
1982 	data.inode = inode;
1983 	data.req = NULL;
1984 	data.ff = NULL;
1985 
1986 	err = -ENOMEM;
1987 	data.orig_pages = kcalloc(fc->max_pages,
1988 				  sizeof(struct page *),
1989 				  GFP_NOFS);
1990 	if (!data.orig_pages)
1991 		goto out;
1992 
1993 	err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
1994 	if (data.req) {
1995 		/* Ignore errors if we can write at least one page */
1996 		BUG_ON(!data.req->num_pages);
1997 		fuse_writepages_send(&data);
1998 		err = 0;
1999 	}
2000 	if (data.ff)
2001 		fuse_file_put(data.ff, false, false);
2002 
2003 	kfree(data.orig_pages);
2004 out:
2005 	return err;
2006 }
2007 
2008 /*
2009  * It's worthy to make sure that space is reserved on disk for the write,
2010  * but how to implement it without killing performance need more thinking.
2011  */
2012 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2013 		loff_t pos, unsigned len, unsigned flags,
2014 		struct page **pagep, void **fsdata)
2015 {
2016 	pgoff_t index = pos >> PAGE_SHIFT;
2017 	struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2018 	struct page *page;
2019 	loff_t fsize;
2020 	int err = -ENOMEM;
2021 
2022 	WARN_ON(!fc->writeback_cache);
2023 
2024 	page = grab_cache_page_write_begin(mapping, index, flags);
2025 	if (!page)
2026 		goto error;
2027 
2028 	fuse_wait_on_page_writeback(mapping->host, page->index);
2029 
2030 	if (PageUptodate(page) || len == PAGE_SIZE)
2031 		goto success;
2032 	/*
2033 	 * Check if the start this page comes after the end of file, in which
2034 	 * case the readpage can be optimized away.
2035 	 */
2036 	fsize = i_size_read(mapping->host);
2037 	if (fsize <= (pos & PAGE_MASK)) {
2038 		size_t off = pos & ~PAGE_MASK;
2039 		if (off)
2040 			zero_user_segment(page, 0, off);
2041 		goto success;
2042 	}
2043 	err = fuse_do_readpage(file, page);
2044 	if (err)
2045 		goto cleanup;
2046 success:
2047 	*pagep = page;
2048 	return 0;
2049 
2050 cleanup:
2051 	unlock_page(page);
2052 	put_page(page);
2053 error:
2054 	return err;
2055 }
2056 
2057 static int fuse_write_end(struct file *file, struct address_space *mapping,
2058 		loff_t pos, unsigned len, unsigned copied,
2059 		struct page *page, void *fsdata)
2060 {
2061 	struct inode *inode = page->mapping->host;
2062 
2063 	/* Haven't copied anything?  Skip zeroing, size extending, dirtying. */
2064 	if (!copied)
2065 		goto unlock;
2066 
2067 	if (!PageUptodate(page)) {
2068 		/* Zero any unwritten bytes at the end of the page */
2069 		size_t endoff = (pos + copied) & ~PAGE_MASK;
2070 		if (endoff)
2071 			zero_user_segment(page, endoff, PAGE_SIZE);
2072 		SetPageUptodate(page);
2073 	}
2074 
2075 	fuse_write_update_size(inode, pos + copied);
2076 	set_page_dirty(page);
2077 
2078 unlock:
2079 	unlock_page(page);
2080 	put_page(page);
2081 
2082 	return copied;
2083 }
2084 
2085 static int fuse_launder_page(struct page *page)
2086 {
2087 	int err = 0;
2088 	if (clear_page_dirty_for_io(page)) {
2089 		struct inode *inode = page->mapping->host;
2090 		err = fuse_writepage_locked(page);
2091 		if (!err)
2092 			fuse_wait_on_page_writeback(inode, page->index);
2093 	}
2094 	return err;
2095 }
2096 
2097 /*
2098  * Write back dirty pages now, because there may not be any suitable
2099  * open files later
2100  */
2101 static void fuse_vma_close(struct vm_area_struct *vma)
2102 {
2103 	filemap_write_and_wait(vma->vm_file->f_mapping);
2104 }
2105 
2106 /*
2107  * Wait for writeback against this page to complete before allowing it
2108  * to be marked dirty again, and hence written back again, possibly
2109  * before the previous writepage completed.
2110  *
2111  * Block here, instead of in ->writepage(), so that the userspace fs
2112  * can only block processes actually operating on the filesystem.
2113  *
2114  * Otherwise unprivileged userspace fs would be able to block
2115  * unrelated:
2116  *
2117  * - page migration
2118  * - sync(2)
2119  * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2120  */
2121 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2122 {
2123 	struct page *page = vmf->page;
2124 	struct inode *inode = file_inode(vmf->vma->vm_file);
2125 
2126 	file_update_time(vmf->vma->vm_file);
2127 	lock_page(page);
2128 	if (page->mapping != inode->i_mapping) {
2129 		unlock_page(page);
2130 		return VM_FAULT_NOPAGE;
2131 	}
2132 
2133 	fuse_wait_on_page_writeback(inode, page->index);
2134 	return VM_FAULT_LOCKED;
2135 }
2136 
2137 static const struct vm_operations_struct fuse_file_vm_ops = {
2138 	.close		= fuse_vma_close,
2139 	.fault		= filemap_fault,
2140 	.map_pages	= filemap_map_pages,
2141 	.page_mkwrite	= fuse_page_mkwrite,
2142 };
2143 
2144 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2145 {
2146 	struct fuse_file *ff = file->private_data;
2147 
2148 	if (ff->open_flags & FOPEN_DIRECT_IO) {
2149 		/* Can't provide the coherency needed for MAP_SHARED */
2150 		if (vma->vm_flags & VM_MAYSHARE)
2151 			return -ENODEV;
2152 
2153 		invalidate_inode_pages2(file->f_mapping);
2154 
2155 		return generic_file_mmap(file, vma);
2156 	}
2157 
2158 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2159 		fuse_link_write_file(file);
2160 
2161 	file_accessed(file);
2162 	vma->vm_ops = &fuse_file_vm_ops;
2163 	return 0;
2164 }
2165 
2166 static int convert_fuse_file_lock(struct fuse_conn *fc,
2167 				  const struct fuse_file_lock *ffl,
2168 				  struct file_lock *fl)
2169 {
2170 	switch (ffl->type) {
2171 	case F_UNLCK:
2172 		break;
2173 
2174 	case F_RDLCK:
2175 	case F_WRLCK:
2176 		if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2177 		    ffl->end < ffl->start)
2178 			return -EIO;
2179 
2180 		fl->fl_start = ffl->start;
2181 		fl->fl_end = ffl->end;
2182 
2183 		/*
2184 		 * Convert pid into init's pid namespace.  The locks API will
2185 		 * translate it into the caller's pid namespace.
2186 		 */
2187 		rcu_read_lock();
2188 		fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2189 		rcu_read_unlock();
2190 		break;
2191 
2192 	default:
2193 		return -EIO;
2194 	}
2195 	fl->fl_type = ffl->type;
2196 	return 0;
2197 }
2198 
2199 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2200 			 const struct file_lock *fl, int opcode, pid_t pid,
2201 			 int flock, struct fuse_lk_in *inarg)
2202 {
2203 	struct inode *inode = file_inode(file);
2204 	struct fuse_conn *fc = get_fuse_conn(inode);
2205 	struct fuse_file *ff = file->private_data;
2206 
2207 	memset(inarg, 0, sizeof(*inarg));
2208 	inarg->fh = ff->fh;
2209 	inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2210 	inarg->lk.start = fl->fl_start;
2211 	inarg->lk.end = fl->fl_end;
2212 	inarg->lk.type = fl->fl_type;
2213 	inarg->lk.pid = pid;
2214 	if (flock)
2215 		inarg->lk_flags |= FUSE_LK_FLOCK;
2216 	args->in.h.opcode = opcode;
2217 	args->in.h.nodeid = get_node_id(inode);
2218 	args->in.numargs = 1;
2219 	args->in.args[0].size = sizeof(*inarg);
2220 	args->in.args[0].value = inarg;
2221 }
2222 
2223 static int fuse_getlk(struct file *file, struct file_lock *fl)
2224 {
2225 	struct inode *inode = file_inode(file);
2226 	struct fuse_conn *fc = get_fuse_conn(inode);
2227 	FUSE_ARGS(args);
2228 	struct fuse_lk_in inarg;
2229 	struct fuse_lk_out outarg;
2230 	int err;
2231 
2232 	fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2233 	args.out.numargs = 1;
2234 	args.out.args[0].size = sizeof(outarg);
2235 	args.out.args[0].value = &outarg;
2236 	err = fuse_simple_request(fc, &args);
2237 	if (!err)
2238 		err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2239 
2240 	return err;
2241 }
2242 
2243 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2244 {
2245 	struct inode *inode = file_inode(file);
2246 	struct fuse_conn *fc = get_fuse_conn(inode);
2247 	FUSE_ARGS(args);
2248 	struct fuse_lk_in inarg;
2249 	int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2250 	struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2251 	pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2252 	int err;
2253 
2254 	if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2255 		/* NLM needs asynchronous locks, which we don't support yet */
2256 		return -ENOLCK;
2257 	}
2258 
2259 	/* Unlock on close is handled by the flush method */
2260 	if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2261 		return 0;
2262 
2263 	fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2264 	err = fuse_simple_request(fc, &args);
2265 
2266 	/* locking is restartable */
2267 	if (err == -EINTR)
2268 		err = -ERESTARTSYS;
2269 
2270 	return err;
2271 }
2272 
2273 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2274 {
2275 	struct inode *inode = file_inode(file);
2276 	struct fuse_conn *fc = get_fuse_conn(inode);
2277 	int err;
2278 
2279 	if (cmd == F_CANCELLK) {
2280 		err = 0;
2281 	} else if (cmd == F_GETLK) {
2282 		if (fc->no_lock) {
2283 			posix_test_lock(file, fl);
2284 			err = 0;
2285 		} else
2286 			err = fuse_getlk(file, fl);
2287 	} else {
2288 		if (fc->no_lock)
2289 			err = posix_lock_file(file, fl, NULL);
2290 		else
2291 			err = fuse_setlk(file, fl, 0);
2292 	}
2293 	return err;
2294 }
2295 
2296 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2297 {
2298 	struct inode *inode = file_inode(file);
2299 	struct fuse_conn *fc = get_fuse_conn(inode);
2300 	int err;
2301 
2302 	if (fc->no_flock) {
2303 		err = locks_lock_file_wait(file, fl);
2304 	} else {
2305 		struct fuse_file *ff = file->private_data;
2306 
2307 		/* emulate flock with POSIX locks */
2308 		ff->flock = true;
2309 		err = fuse_setlk(file, fl, 1);
2310 	}
2311 
2312 	return err;
2313 }
2314 
2315 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2316 {
2317 	struct inode *inode = mapping->host;
2318 	struct fuse_conn *fc = get_fuse_conn(inode);
2319 	FUSE_ARGS(args);
2320 	struct fuse_bmap_in inarg;
2321 	struct fuse_bmap_out outarg;
2322 	int err;
2323 
2324 	if (!inode->i_sb->s_bdev || fc->no_bmap)
2325 		return 0;
2326 
2327 	memset(&inarg, 0, sizeof(inarg));
2328 	inarg.block = block;
2329 	inarg.blocksize = inode->i_sb->s_blocksize;
2330 	args.in.h.opcode = FUSE_BMAP;
2331 	args.in.h.nodeid = get_node_id(inode);
2332 	args.in.numargs = 1;
2333 	args.in.args[0].size = sizeof(inarg);
2334 	args.in.args[0].value = &inarg;
2335 	args.out.numargs = 1;
2336 	args.out.args[0].size = sizeof(outarg);
2337 	args.out.args[0].value = &outarg;
2338 	err = fuse_simple_request(fc, &args);
2339 	if (err == -ENOSYS)
2340 		fc->no_bmap = 1;
2341 
2342 	return err ? 0 : outarg.block;
2343 }
2344 
2345 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2346 {
2347 	struct inode *inode = file->f_mapping->host;
2348 	struct fuse_conn *fc = get_fuse_conn(inode);
2349 	struct fuse_file *ff = file->private_data;
2350 	FUSE_ARGS(args);
2351 	struct fuse_lseek_in inarg = {
2352 		.fh = ff->fh,
2353 		.offset = offset,
2354 		.whence = whence
2355 	};
2356 	struct fuse_lseek_out outarg;
2357 	int err;
2358 
2359 	if (fc->no_lseek)
2360 		goto fallback;
2361 
2362 	args.in.h.opcode = FUSE_LSEEK;
2363 	args.in.h.nodeid = ff->nodeid;
2364 	args.in.numargs = 1;
2365 	args.in.args[0].size = sizeof(inarg);
2366 	args.in.args[0].value = &inarg;
2367 	args.out.numargs = 1;
2368 	args.out.args[0].size = sizeof(outarg);
2369 	args.out.args[0].value = &outarg;
2370 	err = fuse_simple_request(fc, &args);
2371 	if (err) {
2372 		if (err == -ENOSYS) {
2373 			fc->no_lseek = 1;
2374 			goto fallback;
2375 		}
2376 		return err;
2377 	}
2378 
2379 	return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2380 
2381 fallback:
2382 	err = fuse_update_attributes(inode, file);
2383 	if (!err)
2384 		return generic_file_llseek(file, offset, whence);
2385 	else
2386 		return err;
2387 }
2388 
2389 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2390 {
2391 	loff_t retval;
2392 	struct inode *inode = file_inode(file);
2393 
2394 	switch (whence) {
2395 	case SEEK_SET:
2396 	case SEEK_CUR:
2397 		 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2398 		retval = generic_file_llseek(file, offset, whence);
2399 		break;
2400 	case SEEK_END:
2401 		inode_lock(inode);
2402 		retval = fuse_update_attributes(inode, file);
2403 		if (!retval)
2404 			retval = generic_file_llseek(file, offset, whence);
2405 		inode_unlock(inode);
2406 		break;
2407 	case SEEK_HOLE:
2408 	case SEEK_DATA:
2409 		inode_lock(inode);
2410 		retval = fuse_lseek(file, offset, whence);
2411 		inode_unlock(inode);
2412 		break;
2413 	default:
2414 		retval = -EINVAL;
2415 	}
2416 
2417 	return retval;
2418 }
2419 
2420 /*
2421  * CUSE servers compiled on 32bit broke on 64bit kernels because the
2422  * ABI was defined to be 'struct iovec' which is different on 32bit
2423  * and 64bit.  Fortunately we can determine which structure the server
2424  * used from the size of the reply.
2425  */
2426 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2427 				     size_t transferred, unsigned count,
2428 				     bool is_compat)
2429 {
2430 #ifdef CONFIG_COMPAT
2431 	if (count * sizeof(struct compat_iovec) == transferred) {
2432 		struct compat_iovec *ciov = src;
2433 		unsigned i;
2434 
2435 		/*
2436 		 * With this interface a 32bit server cannot support
2437 		 * non-compat (i.e. ones coming from 64bit apps) ioctl
2438 		 * requests
2439 		 */
2440 		if (!is_compat)
2441 			return -EINVAL;
2442 
2443 		for (i = 0; i < count; i++) {
2444 			dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2445 			dst[i].iov_len = ciov[i].iov_len;
2446 		}
2447 		return 0;
2448 	}
2449 #endif
2450 
2451 	if (count * sizeof(struct iovec) != transferred)
2452 		return -EIO;
2453 
2454 	memcpy(dst, src, transferred);
2455 	return 0;
2456 }
2457 
2458 /* Make sure iov_length() won't overflow */
2459 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2460 				 size_t count)
2461 {
2462 	size_t n;
2463 	u32 max = fc->max_pages << PAGE_SHIFT;
2464 
2465 	for (n = 0; n < count; n++, iov++) {
2466 		if (iov->iov_len > (size_t) max)
2467 			return -ENOMEM;
2468 		max -= iov->iov_len;
2469 	}
2470 	return 0;
2471 }
2472 
2473 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2474 				 void *src, size_t transferred, unsigned count,
2475 				 bool is_compat)
2476 {
2477 	unsigned i;
2478 	struct fuse_ioctl_iovec *fiov = src;
2479 
2480 	if (fc->minor < 16) {
2481 		return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2482 						 count, is_compat);
2483 	}
2484 
2485 	if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2486 		return -EIO;
2487 
2488 	for (i = 0; i < count; i++) {
2489 		/* Did the server supply an inappropriate value? */
2490 		if (fiov[i].base != (unsigned long) fiov[i].base ||
2491 		    fiov[i].len != (unsigned long) fiov[i].len)
2492 			return -EIO;
2493 
2494 		dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2495 		dst[i].iov_len = (size_t) fiov[i].len;
2496 
2497 #ifdef CONFIG_COMPAT
2498 		if (is_compat &&
2499 		    (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2500 		     (compat_size_t) dst[i].iov_len != fiov[i].len))
2501 			return -EIO;
2502 #endif
2503 	}
2504 
2505 	return 0;
2506 }
2507 
2508 
2509 /*
2510  * For ioctls, there is no generic way to determine how much memory
2511  * needs to be read and/or written.  Furthermore, ioctls are allowed
2512  * to dereference the passed pointer, so the parameter requires deep
2513  * copying but FUSE has no idea whatsoever about what to copy in or
2514  * out.
2515  *
2516  * This is solved by allowing FUSE server to retry ioctl with
2517  * necessary in/out iovecs.  Let's assume the ioctl implementation
2518  * needs to read in the following structure.
2519  *
2520  * struct a {
2521  *	char	*buf;
2522  *	size_t	buflen;
2523  * }
2524  *
2525  * On the first callout to FUSE server, inarg->in_size and
2526  * inarg->out_size will be NULL; then, the server completes the ioctl
2527  * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2528  * the actual iov array to
2529  *
2530  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a) } }
2531  *
2532  * which tells FUSE to copy in the requested area and retry the ioctl.
2533  * On the second round, the server has access to the structure and
2534  * from that it can tell what to look for next, so on the invocation,
2535  * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2536  *
2537  * { { .iov_base = inarg.arg,	.iov_len = sizeof(struct a)	},
2538  *   { .iov_base = a.buf,	.iov_len = a.buflen		} }
2539  *
2540  * FUSE will copy both struct a and the pointed buffer from the
2541  * process doing the ioctl and retry ioctl with both struct a and the
2542  * buffer.
2543  *
2544  * This time, FUSE server has everything it needs and completes ioctl
2545  * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2546  *
2547  * Copying data out works the same way.
2548  *
2549  * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2550  * automatically initializes in and out iovs by decoding @cmd with
2551  * _IOC_* macros and the server is not allowed to request RETRY.  This
2552  * limits ioctl data transfers to well-formed ioctls and is the forced
2553  * behavior for all FUSE servers.
2554  */
2555 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2556 		   unsigned int flags)
2557 {
2558 	struct fuse_file *ff = file->private_data;
2559 	struct fuse_conn *fc = ff->fc;
2560 	struct fuse_ioctl_in inarg = {
2561 		.fh = ff->fh,
2562 		.cmd = cmd,
2563 		.arg = arg,
2564 		.flags = flags
2565 	};
2566 	struct fuse_ioctl_out outarg;
2567 	struct fuse_req *req = NULL;
2568 	struct page **pages = NULL;
2569 	struct iovec *iov_page = NULL;
2570 	struct iovec *in_iov = NULL, *out_iov = NULL;
2571 	unsigned int in_iovs = 0, out_iovs = 0, num_pages = 0, max_pages;
2572 	size_t in_size, out_size, transferred, c;
2573 	int err, i;
2574 	struct iov_iter ii;
2575 
2576 #if BITS_PER_LONG == 32
2577 	inarg.flags |= FUSE_IOCTL_32BIT;
2578 #else
2579 	if (flags & FUSE_IOCTL_COMPAT)
2580 		inarg.flags |= FUSE_IOCTL_32BIT;
2581 #endif
2582 
2583 	/* assume all the iovs returned by client always fits in a page */
2584 	BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2585 
2586 	err = -ENOMEM;
2587 	pages = kcalloc(fc->max_pages, sizeof(pages[0]), GFP_KERNEL);
2588 	iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2589 	if (!pages || !iov_page)
2590 		goto out;
2591 
2592 	/*
2593 	 * If restricted, initialize IO parameters as encoded in @cmd.
2594 	 * RETRY from server is not allowed.
2595 	 */
2596 	if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2597 		struct iovec *iov = iov_page;
2598 
2599 		iov->iov_base = (void __user *)arg;
2600 		iov->iov_len = _IOC_SIZE(cmd);
2601 
2602 		if (_IOC_DIR(cmd) & _IOC_WRITE) {
2603 			in_iov = iov;
2604 			in_iovs = 1;
2605 		}
2606 
2607 		if (_IOC_DIR(cmd) & _IOC_READ) {
2608 			out_iov = iov;
2609 			out_iovs = 1;
2610 		}
2611 	}
2612 
2613  retry:
2614 	inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2615 	inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2616 
2617 	/*
2618 	 * Out data can be used either for actual out data or iovs,
2619 	 * make sure there always is at least one page.
2620 	 */
2621 	out_size = max_t(size_t, out_size, PAGE_SIZE);
2622 	max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2623 
2624 	/* make sure there are enough buffer pages and init request with them */
2625 	err = -ENOMEM;
2626 	if (max_pages > fc->max_pages)
2627 		goto out;
2628 	while (num_pages < max_pages) {
2629 		pages[num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2630 		if (!pages[num_pages])
2631 			goto out;
2632 		num_pages++;
2633 	}
2634 
2635 	req = fuse_get_req(fc, num_pages);
2636 	if (IS_ERR(req)) {
2637 		err = PTR_ERR(req);
2638 		req = NULL;
2639 		goto out;
2640 	}
2641 	memcpy(req->pages, pages, sizeof(req->pages[0]) * num_pages);
2642 	req->num_pages = num_pages;
2643 	fuse_page_descs_length_init(req, 0, req->num_pages);
2644 
2645 	/* okay, let's send it to the client */
2646 	req->in.h.opcode = FUSE_IOCTL;
2647 	req->in.h.nodeid = ff->nodeid;
2648 	req->in.numargs = 1;
2649 	req->in.args[0].size = sizeof(inarg);
2650 	req->in.args[0].value = &inarg;
2651 	if (in_size) {
2652 		req->in.numargs++;
2653 		req->in.args[1].size = in_size;
2654 		req->in.argpages = 1;
2655 
2656 		err = -EFAULT;
2657 		iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2658 		for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2659 			c = copy_page_from_iter(pages[i], 0, PAGE_SIZE, &ii);
2660 			if (c != PAGE_SIZE && iov_iter_count(&ii))
2661 				goto out;
2662 		}
2663 	}
2664 
2665 	req->out.numargs = 2;
2666 	req->out.args[0].size = sizeof(outarg);
2667 	req->out.args[0].value = &outarg;
2668 	req->out.args[1].size = out_size;
2669 	req->out.argpages = 1;
2670 	req->out.argvar = 1;
2671 
2672 	fuse_request_send(fc, req);
2673 	err = req->out.h.error;
2674 	transferred = req->out.args[1].size;
2675 	fuse_put_request(fc, req);
2676 	req = NULL;
2677 	if (err)
2678 		goto out;
2679 
2680 	/* did it ask for retry? */
2681 	if (outarg.flags & FUSE_IOCTL_RETRY) {
2682 		void *vaddr;
2683 
2684 		/* no retry if in restricted mode */
2685 		err = -EIO;
2686 		if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2687 			goto out;
2688 
2689 		in_iovs = outarg.in_iovs;
2690 		out_iovs = outarg.out_iovs;
2691 
2692 		/*
2693 		 * Make sure things are in boundary, separate checks
2694 		 * are to protect against overflow.
2695 		 */
2696 		err = -ENOMEM;
2697 		if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2698 		    out_iovs > FUSE_IOCTL_MAX_IOV ||
2699 		    in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2700 			goto out;
2701 
2702 		vaddr = kmap_atomic(pages[0]);
2703 		err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2704 					    transferred, in_iovs + out_iovs,
2705 					    (flags & FUSE_IOCTL_COMPAT) != 0);
2706 		kunmap_atomic(vaddr);
2707 		if (err)
2708 			goto out;
2709 
2710 		in_iov = iov_page;
2711 		out_iov = in_iov + in_iovs;
2712 
2713 		err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2714 		if (err)
2715 			goto out;
2716 
2717 		err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2718 		if (err)
2719 			goto out;
2720 
2721 		goto retry;
2722 	}
2723 
2724 	err = -EIO;
2725 	if (transferred > inarg.out_size)
2726 		goto out;
2727 
2728 	err = -EFAULT;
2729 	iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2730 	for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= num_pages); i++) {
2731 		c = copy_page_to_iter(pages[i], 0, PAGE_SIZE, &ii);
2732 		if (c != PAGE_SIZE && iov_iter_count(&ii))
2733 			goto out;
2734 	}
2735 	err = 0;
2736  out:
2737 	if (req)
2738 		fuse_put_request(fc, req);
2739 	free_page((unsigned long) iov_page);
2740 	while (num_pages)
2741 		__free_page(pages[--num_pages]);
2742 	kfree(pages);
2743 
2744 	return err ? err : outarg.result;
2745 }
2746 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2747 
2748 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2749 		       unsigned long arg, unsigned int flags)
2750 {
2751 	struct inode *inode = file_inode(file);
2752 	struct fuse_conn *fc = get_fuse_conn(inode);
2753 
2754 	if (!fuse_allow_current_process(fc))
2755 		return -EACCES;
2756 
2757 	if (is_bad_inode(inode))
2758 		return -EIO;
2759 
2760 	return fuse_do_ioctl(file, cmd, arg, flags);
2761 }
2762 
2763 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2764 			    unsigned long arg)
2765 {
2766 	return fuse_ioctl_common(file, cmd, arg, 0);
2767 }
2768 
2769 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2770 				   unsigned long arg)
2771 {
2772 	return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2773 }
2774 
2775 /*
2776  * All files which have been polled are linked to RB tree
2777  * fuse_conn->polled_files which is indexed by kh.  Walk the tree and
2778  * find the matching one.
2779  */
2780 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2781 					      struct rb_node **parent_out)
2782 {
2783 	struct rb_node **link = &fc->polled_files.rb_node;
2784 	struct rb_node *last = NULL;
2785 
2786 	while (*link) {
2787 		struct fuse_file *ff;
2788 
2789 		last = *link;
2790 		ff = rb_entry(last, struct fuse_file, polled_node);
2791 
2792 		if (kh < ff->kh)
2793 			link = &last->rb_left;
2794 		else if (kh > ff->kh)
2795 			link = &last->rb_right;
2796 		else
2797 			return link;
2798 	}
2799 
2800 	if (parent_out)
2801 		*parent_out = last;
2802 	return link;
2803 }
2804 
2805 /*
2806  * The file is about to be polled.  Make sure it's on the polled_files
2807  * RB tree.  Note that files once added to the polled_files tree are
2808  * not removed before the file is released.  This is because a file
2809  * polled once is likely to be polled again.
2810  */
2811 static void fuse_register_polled_file(struct fuse_conn *fc,
2812 				      struct fuse_file *ff)
2813 {
2814 	spin_lock(&fc->lock);
2815 	if (RB_EMPTY_NODE(&ff->polled_node)) {
2816 		struct rb_node **link, *uninitialized_var(parent);
2817 
2818 		link = fuse_find_polled_node(fc, ff->kh, &parent);
2819 		BUG_ON(*link);
2820 		rb_link_node(&ff->polled_node, parent, link);
2821 		rb_insert_color(&ff->polled_node, &fc->polled_files);
2822 	}
2823 	spin_unlock(&fc->lock);
2824 }
2825 
2826 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2827 {
2828 	struct fuse_file *ff = file->private_data;
2829 	struct fuse_conn *fc = ff->fc;
2830 	struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2831 	struct fuse_poll_out outarg;
2832 	FUSE_ARGS(args);
2833 	int err;
2834 
2835 	if (fc->no_poll)
2836 		return DEFAULT_POLLMASK;
2837 
2838 	poll_wait(file, &ff->poll_wait, wait);
2839 	inarg.events = mangle_poll(poll_requested_events(wait));
2840 
2841 	/*
2842 	 * Ask for notification iff there's someone waiting for it.
2843 	 * The client may ignore the flag and always notify.
2844 	 */
2845 	if (waitqueue_active(&ff->poll_wait)) {
2846 		inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2847 		fuse_register_polled_file(fc, ff);
2848 	}
2849 
2850 	args.in.h.opcode = FUSE_POLL;
2851 	args.in.h.nodeid = ff->nodeid;
2852 	args.in.numargs = 1;
2853 	args.in.args[0].size = sizeof(inarg);
2854 	args.in.args[0].value = &inarg;
2855 	args.out.numargs = 1;
2856 	args.out.args[0].size = sizeof(outarg);
2857 	args.out.args[0].value = &outarg;
2858 	err = fuse_simple_request(fc, &args);
2859 
2860 	if (!err)
2861 		return demangle_poll(outarg.revents);
2862 	if (err == -ENOSYS) {
2863 		fc->no_poll = 1;
2864 		return DEFAULT_POLLMASK;
2865 	}
2866 	return EPOLLERR;
2867 }
2868 EXPORT_SYMBOL_GPL(fuse_file_poll);
2869 
2870 /*
2871  * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
2872  * wakes up the poll waiters.
2873  */
2874 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
2875 			    struct fuse_notify_poll_wakeup_out *outarg)
2876 {
2877 	u64 kh = outarg->kh;
2878 	struct rb_node **link;
2879 
2880 	spin_lock(&fc->lock);
2881 
2882 	link = fuse_find_polled_node(fc, kh, NULL);
2883 	if (*link) {
2884 		struct fuse_file *ff;
2885 
2886 		ff = rb_entry(*link, struct fuse_file, polled_node);
2887 		wake_up_interruptible_sync(&ff->poll_wait);
2888 	}
2889 
2890 	spin_unlock(&fc->lock);
2891 	return 0;
2892 }
2893 
2894 static void fuse_do_truncate(struct file *file)
2895 {
2896 	struct inode *inode = file->f_mapping->host;
2897 	struct iattr attr;
2898 
2899 	attr.ia_valid = ATTR_SIZE;
2900 	attr.ia_size = i_size_read(inode);
2901 
2902 	attr.ia_file = file;
2903 	attr.ia_valid |= ATTR_FILE;
2904 
2905 	fuse_do_setattr(file_dentry(file), &attr, file);
2906 }
2907 
2908 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
2909 {
2910 	return round_up(off, fc->max_pages << PAGE_SHIFT);
2911 }
2912 
2913 static ssize_t
2914 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2915 {
2916 	DECLARE_COMPLETION_ONSTACK(wait);
2917 	ssize_t ret = 0;
2918 	struct file *file = iocb->ki_filp;
2919 	struct fuse_file *ff = file->private_data;
2920 	bool async_dio = ff->fc->async_dio;
2921 	loff_t pos = 0;
2922 	struct inode *inode;
2923 	loff_t i_size;
2924 	size_t count = iov_iter_count(iter);
2925 	loff_t offset = iocb->ki_pos;
2926 	struct fuse_io_priv *io;
2927 
2928 	pos = offset;
2929 	inode = file->f_mapping->host;
2930 	i_size = i_size_read(inode);
2931 
2932 	if ((iov_iter_rw(iter) == READ) && (offset > i_size))
2933 		return 0;
2934 
2935 	/* optimization for short read */
2936 	if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
2937 		if (offset >= i_size)
2938 			return 0;
2939 		iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
2940 		count = iov_iter_count(iter);
2941 	}
2942 
2943 	io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
2944 	if (!io)
2945 		return -ENOMEM;
2946 	spin_lock_init(&io->lock);
2947 	kref_init(&io->refcnt);
2948 	io->reqs = 1;
2949 	io->bytes = -1;
2950 	io->size = 0;
2951 	io->offset = offset;
2952 	io->write = (iov_iter_rw(iter) == WRITE);
2953 	io->err = 0;
2954 	/*
2955 	 * By default, we want to optimize all I/Os with async request
2956 	 * submission to the client filesystem if supported.
2957 	 */
2958 	io->async = async_dio;
2959 	io->iocb = iocb;
2960 	io->blocking = is_sync_kiocb(iocb);
2961 
2962 	/*
2963 	 * We cannot asynchronously extend the size of a file.
2964 	 * In such case the aio will behave exactly like sync io.
2965 	 */
2966 	if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
2967 		io->blocking = true;
2968 
2969 	if (io->async && io->blocking) {
2970 		/*
2971 		 * Additional reference to keep io around after
2972 		 * calling fuse_aio_complete()
2973 		 */
2974 		kref_get(&io->refcnt);
2975 		io->done = &wait;
2976 	}
2977 
2978 	if (iov_iter_rw(iter) == WRITE) {
2979 		ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
2980 		fuse_invalidate_attr(inode);
2981 	} else {
2982 		ret = __fuse_direct_read(io, iter, &pos);
2983 	}
2984 
2985 	if (io->async) {
2986 		bool blocking = io->blocking;
2987 
2988 		fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
2989 
2990 		/* we have a non-extending, async request, so return */
2991 		if (!blocking)
2992 			return -EIOCBQUEUED;
2993 
2994 		wait_for_completion(&wait);
2995 		ret = fuse_get_res_by_io(io);
2996 	}
2997 
2998 	kref_put(&io->refcnt, fuse_io_release);
2999 
3000 	if (iov_iter_rw(iter) == WRITE) {
3001 		if (ret > 0)
3002 			fuse_write_update_size(inode, pos);
3003 		else if (ret < 0 && offset + count > i_size)
3004 			fuse_do_truncate(file);
3005 	}
3006 
3007 	return ret;
3008 }
3009 
3010 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3011 				loff_t length)
3012 {
3013 	struct fuse_file *ff = file->private_data;
3014 	struct inode *inode = file_inode(file);
3015 	struct fuse_inode *fi = get_fuse_inode(inode);
3016 	struct fuse_conn *fc = ff->fc;
3017 	FUSE_ARGS(args);
3018 	struct fuse_fallocate_in inarg = {
3019 		.fh = ff->fh,
3020 		.offset = offset,
3021 		.length = length,
3022 		.mode = mode
3023 	};
3024 	int err;
3025 	bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3026 			   (mode & FALLOC_FL_PUNCH_HOLE);
3027 
3028 	if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3029 		return -EOPNOTSUPP;
3030 
3031 	if (fc->no_fallocate)
3032 		return -EOPNOTSUPP;
3033 
3034 	if (lock_inode) {
3035 		inode_lock(inode);
3036 		if (mode & FALLOC_FL_PUNCH_HOLE) {
3037 			loff_t endbyte = offset + length - 1;
3038 			err = filemap_write_and_wait_range(inode->i_mapping,
3039 							   offset, endbyte);
3040 			if (err)
3041 				goto out;
3042 
3043 			fuse_sync_writes(inode);
3044 		}
3045 	}
3046 
3047 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3048 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3049 
3050 	args.in.h.opcode = FUSE_FALLOCATE;
3051 	args.in.h.nodeid = ff->nodeid;
3052 	args.in.numargs = 1;
3053 	args.in.args[0].size = sizeof(inarg);
3054 	args.in.args[0].value = &inarg;
3055 	err = fuse_simple_request(fc, &args);
3056 	if (err == -ENOSYS) {
3057 		fc->no_fallocate = 1;
3058 		err = -EOPNOTSUPP;
3059 	}
3060 	if (err)
3061 		goto out;
3062 
3063 	/* we could have extended the file */
3064 	if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3065 		bool changed = fuse_write_update_size(inode, offset + length);
3066 
3067 		if (changed && fc->writeback_cache)
3068 			file_update_time(file);
3069 	}
3070 
3071 	if (mode & FALLOC_FL_PUNCH_HOLE)
3072 		truncate_pagecache_range(inode, offset, offset + length - 1);
3073 
3074 	fuse_invalidate_attr(inode);
3075 
3076 out:
3077 	if (!(mode & FALLOC_FL_KEEP_SIZE))
3078 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3079 
3080 	if (lock_inode)
3081 		inode_unlock(inode);
3082 
3083 	return err;
3084 }
3085 
3086 static ssize_t fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3087 				    struct file *file_out, loff_t pos_out,
3088 				    size_t len, unsigned int flags)
3089 {
3090 	struct fuse_file *ff_in = file_in->private_data;
3091 	struct fuse_file *ff_out = file_out->private_data;
3092 	struct inode *inode_out = file_inode(file_out);
3093 	struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3094 	struct fuse_conn *fc = ff_in->fc;
3095 	FUSE_ARGS(args);
3096 	struct fuse_copy_file_range_in inarg = {
3097 		.fh_in = ff_in->fh,
3098 		.off_in = pos_in,
3099 		.nodeid_out = ff_out->nodeid,
3100 		.fh_out = ff_out->fh,
3101 		.off_out = pos_out,
3102 		.len = len,
3103 		.flags = flags
3104 	};
3105 	struct fuse_write_out outarg;
3106 	ssize_t err;
3107 	/* mark unstable when write-back is not used, and file_out gets
3108 	 * extended */
3109 	bool is_unstable = (!fc->writeback_cache) &&
3110 			   ((pos_out + len) > inode_out->i_size);
3111 
3112 	if (fc->no_copy_file_range)
3113 		return -EOPNOTSUPP;
3114 
3115 	inode_lock(inode_out);
3116 
3117 	if (fc->writeback_cache) {
3118 		err = filemap_write_and_wait_range(inode_out->i_mapping,
3119 						   pos_out, pos_out + len);
3120 		if (err)
3121 			goto out;
3122 
3123 		fuse_sync_writes(inode_out);
3124 	}
3125 
3126 	if (is_unstable)
3127 		set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3128 
3129 	args.in.h.opcode = FUSE_COPY_FILE_RANGE;
3130 	args.in.h.nodeid = ff_in->nodeid;
3131 	args.in.numargs = 1;
3132 	args.in.args[0].size = sizeof(inarg);
3133 	args.in.args[0].value = &inarg;
3134 	args.out.numargs = 1;
3135 	args.out.args[0].size = sizeof(outarg);
3136 	args.out.args[0].value = &outarg;
3137 	err = fuse_simple_request(fc, &args);
3138 	if (err == -ENOSYS) {
3139 		fc->no_copy_file_range = 1;
3140 		err = -EOPNOTSUPP;
3141 	}
3142 	if (err)
3143 		goto out;
3144 
3145 	if (fc->writeback_cache) {
3146 		fuse_write_update_size(inode_out, pos_out + outarg.size);
3147 		file_update_time(file_out);
3148 	}
3149 
3150 	fuse_invalidate_attr(inode_out);
3151 
3152 	err = outarg.size;
3153 out:
3154 	if (is_unstable)
3155 		clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3156 
3157 	inode_unlock(inode_out);
3158 
3159 	return err;
3160 }
3161 
3162 static const struct file_operations fuse_file_operations = {
3163 	.llseek		= fuse_file_llseek,
3164 	.read_iter	= fuse_file_read_iter,
3165 	.write_iter	= fuse_file_write_iter,
3166 	.mmap		= fuse_file_mmap,
3167 	.open		= fuse_open,
3168 	.flush		= fuse_flush,
3169 	.release	= fuse_release,
3170 	.fsync		= fuse_fsync,
3171 	.lock		= fuse_file_lock,
3172 	.flock		= fuse_file_flock,
3173 	.splice_read	= generic_file_splice_read,
3174 	.splice_write	= iter_file_splice_write,
3175 	.unlocked_ioctl	= fuse_file_ioctl,
3176 	.compat_ioctl	= fuse_file_compat_ioctl,
3177 	.poll		= fuse_file_poll,
3178 	.fallocate	= fuse_file_fallocate,
3179 	.copy_file_range = fuse_copy_file_range,
3180 };
3181 
3182 static const struct address_space_operations fuse_file_aops  = {
3183 	.readpage	= fuse_readpage,
3184 	.writepage	= fuse_writepage,
3185 	.writepages	= fuse_writepages,
3186 	.launder_page	= fuse_launder_page,
3187 	.readpages	= fuse_readpages,
3188 	.set_page_dirty	= __set_page_dirty_nobuffers,
3189 	.bmap		= fuse_bmap,
3190 	.direct_IO	= fuse_direct_IO,
3191 	.write_begin	= fuse_write_begin,
3192 	.write_end	= fuse_write_end,
3193 };
3194 
3195 void fuse_init_file_inode(struct inode *inode)
3196 {
3197 	struct fuse_inode *fi = get_fuse_inode(inode);
3198 
3199 	inode->i_fop = &fuse_file_operations;
3200 	inode->i_data.a_ops = &fuse_file_aops;
3201 
3202 	INIT_LIST_HEAD(&fi->write_files);
3203 	INIT_LIST_HEAD(&fi->queued_writes);
3204 	fi->writectr = 0;
3205 	init_waitqueue_head(&fi->page_waitq);
3206 	INIT_LIST_HEAD(&fi->writepages);
3207 }
3208