xref: /openbmc/linux/fs/fuse/dax.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * dax: direct host memory access
4  * Copyright (C) 2020 Red Hat, Inc.
5  */
6 
7 #include "fuse_i.h"
8 
9 #include <linux/delay.h>
10 #include <linux/dax.h>
11 #include <linux/uio.h>
12 #include <linux/pagemap.h>
13 #include <linux/pfn_t.h>
14 #include <linux/iomap.h>
15 #include <linux/interval_tree.h>
16 
17 /*
18  * Default memory range size.  A power of 2 so it agrees with common FUSE_INIT
19  * map_alignment values 4KB and 64KB.
20  */
21 #define FUSE_DAX_SHIFT	21
22 #define FUSE_DAX_SZ	(1 << FUSE_DAX_SHIFT)
23 #define FUSE_DAX_PAGES	(FUSE_DAX_SZ / PAGE_SIZE)
24 
25 /* Number of ranges reclaimer will try to free in one invocation */
26 #define FUSE_DAX_RECLAIM_CHUNK		(10)
27 
28 /*
29  * Dax memory reclaim threshold in percetage of total ranges. When free
30  * number of free ranges drops below this threshold, reclaim can trigger
31  * Default is 20%
32  */
33 #define FUSE_DAX_RECLAIM_THRESHOLD	(20)
34 
35 /** Translation information for file offsets to DAX window offsets */
36 struct fuse_dax_mapping {
37 	/* Pointer to inode where this memory range is mapped */
38 	struct inode *inode;
39 
40 	/* Will connect in fcd->free_ranges to keep track of free memory */
41 	struct list_head list;
42 
43 	/* For interval tree in file/inode */
44 	struct interval_tree_node itn;
45 
46 	/* Will connect in fc->busy_ranges to keep track busy memory */
47 	struct list_head busy_list;
48 
49 	/** Position in DAX window */
50 	u64 window_offset;
51 
52 	/** Length of mapping, in bytes */
53 	loff_t length;
54 
55 	/* Is this mapping read-only or read-write */
56 	bool writable;
57 
58 	/* reference count when the mapping is used by dax iomap. */
59 	refcount_t refcnt;
60 };
61 
62 /* Per-inode dax map */
63 struct fuse_inode_dax {
64 	/* Semaphore to protect modifications to the dmap tree */
65 	struct rw_semaphore sem;
66 
67 	/* Sorted rb tree of struct fuse_dax_mapping elements */
68 	struct rb_root_cached tree;
69 	unsigned long nr;
70 };
71 
72 struct fuse_conn_dax {
73 	/* DAX device */
74 	struct dax_device *dev;
75 
76 	/* Lock protecting accessess to  members of this structure */
77 	spinlock_t lock;
78 
79 	/* List of memory ranges which are busy */
80 	unsigned long nr_busy_ranges;
81 	struct list_head busy_ranges;
82 
83 	/* Worker to free up memory ranges */
84 	struct delayed_work free_work;
85 
86 	/* Wait queue for a dax range to become free */
87 	wait_queue_head_t range_waitq;
88 
89 	/* DAX Window Free Ranges */
90 	long nr_free_ranges;
91 	struct list_head free_ranges;
92 
93 	unsigned long nr_ranges;
94 };
95 
96 static inline struct fuse_dax_mapping *
97 node_to_dmap(struct interval_tree_node *node)
98 {
99 	if (!node)
100 		return NULL;
101 
102 	return container_of(node, struct fuse_dax_mapping, itn);
103 }
104 
105 static struct fuse_dax_mapping *
106 alloc_dax_mapping_reclaim(struct fuse_conn_dax *fcd, struct inode *inode);
107 
108 static void
109 __kick_dmap_free_worker(struct fuse_conn_dax *fcd, unsigned long delay_ms)
110 {
111 	unsigned long free_threshold;
112 
113 	/* If number of free ranges are below threshold, start reclaim */
114 	free_threshold = max_t(unsigned long, fcd->nr_ranges * FUSE_DAX_RECLAIM_THRESHOLD / 100,
115 			     1);
116 	if (fcd->nr_free_ranges < free_threshold)
117 		queue_delayed_work(system_long_wq, &fcd->free_work,
118 				   msecs_to_jiffies(delay_ms));
119 }
120 
121 static void kick_dmap_free_worker(struct fuse_conn_dax *fcd,
122 				  unsigned long delay_ms)
123 {
124 	spin_lock(&fcd->lock);
125 	__kick_dmap_free_worker(fcd, delay_ms);
126 	spin_unlock(&fcd->lock);
127 }
128 
129 static struct fuse_dax_mapping *alloc_dax_mapping(struct fuse_conn_dax *fcd)
130 {
131 	struct fuse_dax_mapping *dmap;
132 
133 	spin_lock(&fcd->lock);
134 	dmap = list_first_entry_or_null(&fcd->free_ranges,
135 					struct fuse_dax_mapping, list);
136 	if (dmap) {
137 		list_del_init(&dmap->list);
138 		WARN_ON(fcd->nr_free_ranges <= 0);
139 		fcd->nr_free_ranges--;
140 	}
141 	__kick_dmap_free_worker(fcd, 0);
142 	spin_unlock(&fcd->lock);
143 
144 	return dmap;
145 }
146 
147 /* This assumes fcd->lock is held */
148 static void __dmap_remove_busy_list(struct fuse_conn_dax *fcd,
149 				    struct fuse_dax_mapping *dmap)
150 {
151 	list_del_init(&dmap->busy_list);
152 	WARN_ON(fcd->nr_busy_ranges == 0);
153 	fcd->nr_busy_ranges--;
154 }
155 
156 static void dmap_remove_busy_list(struct fuse_conn_dax *fcd,
157 				  struct fuse_dax_mapping *dmap)
158 {
159 	spin_lock(&fcd->lock);
160 	__dmap_remove_busy_list(fcd, dmap);
161 	spin_unlock(&fcd->lock);
162 }
163 
164 /* This assumes fcd->lock is held */
165 static void __dmap_add_to_free_pool(struct fuse_conn_dax *fcd,
166 				struct fuse_dax_mapping *dmap)
167 {
168 	list_add_tail(&dmap->list, &fcd->free_ranges);
169 	fcd->nr_free_ranges++;
170 	wake_up(&fcd->range_waitq);
171 }
172 
173 static void dmap_add_to_free_pool(struct fuse_conn_dax *fcd,
174 				struct fuse_dax_mapping *dmap)
175 {
176 	/* Return fuse_dax_mapping to free list */
177 	spin_lock(&fcd->lock);
178 	__dmap_add_to_free_pool(fcd, dmap);
179 	spin_unlock(&fcd->lock);
180 }
181 
182 static int fuse_setup_one_mapping(struct inode *inode, unsigned long start_idx,
183 				  struct fuse_dax_mapping *dmap, bool writable,
184 				  bool upgrade)
185 {
186 	struct fuse_mount *fm = get_fuse_mount(inode);
187 	struct fuse_conn_dax *fcd = fm->fc->dax;
188 	struct fuse_inode *fi = get_fuse_inode(inode);
189 	struct fuse_setupmapping_in inarg;
190 	loff_t offset = start_idx << FUSE_DAX_SHIFT;
191 	FUSE_ARGS(args);
192 	ssize_t err;
193 
194 	WARN_ON(fcd->nr_free_ranges < 0);
195 
196 	/* Ask fuse daemon to setup mapping */
197 	memset(&inarg, 0, sizeof(inarg));
198 	inarg.foffset = offset;
199 	inarg.fh = -1;
200 	inarg.moffset = dmap->window_offset;
201 	inarg.len = FUSE_DAX_SZ;
202 	inarg.flags |= FUSE_SETUPMAPPING_FLAG_READ;
203 	if (writable)
204 		inarg.flags |= FUSE_SETUPMAPPING_FLAG_WRITE;
205 	args.opcode = FUSE_SETUPMAPPING;
206 	args.nodeid = fi->nodeid;
207 	args.in_numargs = 1;
208 	args.in_args[0].size = sizeof(inarg);
209 	args.in_args[0].value = &inarg;
210 	err = fuse_simple_request(fm, &args);
211 	if (err < 0)
212 		return err;
213 	dmap->writable = writable;
214 	if (!upgrade) {
215 		/*
216 		 * We don't take a reference on inode. inode is valid right now
217 		 * and when inode is going away, cleanup logic should first
218 		 * cleanup dmap entries.
219 		 */
220 		dmap->inode = inode;
221 		dmap->itn.start = dmap->itn.last = start_idx;
222 		/* Protected by fi->dax->sem */
223 		interval_tree_insert(&dmap->itn, &fi->dax->tree);
224 		fi->dax->nr++;
225 		spin_lock(&fcd->lock);
226 		list_add_tail(&dmap->busy_list, &fcd->busy_ranges);
227 		fcd->nr_busy_ranges++;
228 		spin_unlock(&fcd->lock);
229 	}
230 	return 0;
231 }
232 
233 static int fuse_send_removemapping(struct inode *inode,
234 				   struct fuse_removemapping_in *inargp,
235 				   struct fuse_removemapping_one *remove_one)
236 {
237 	struct fuse_inode *fi = get_fuse_inode(inode);
238 	struct fuse_mount *fm = get_fuse_mount(inode);
239 	FUSE_ARGS(args);
240 
241 	args.opcode = FUSE_REMOVEMAPPING;
242 	args.nodeid = fi->nodeid;
243 	args.in_numargs = 2;
244 	args.in_args[0].size = sizeof(*inargp);
245 	args.in_args[0].value = inargp;
246 	args.in_args[1].size = inargp->count * sizeof(*remove_one);
247 	args.in_args[1].value = remove_one;
248 	return fuse_simple_request(fm, &args);
249 }
250 
251 static int dmap_removemapping_list(struct inode *inode, unsigned int num,
252 				   struct list_head *to_remove)
253 {
254 	struct fuse_removemapping_one *remove_one, *ptr;
255 	struct fuse_removemapping_in inarg;
256 	struct fuse_dax_mapping *dmap;
257 	int ret, i = 0, nr_alloc;
258 
259 	nr_alloc = min_t(unsigned int, num, FUSE_REMOVEMAPPING_MAX_ENTRY);
260 	remove_one = kmalloc_array(nr_alloc, sizeof(*remove_one), GFP_NOFS);
261 	if (!remove_one)
262 		return -ENOMEM;
263 
264 	ptr = remove_one;
265 	list_for_each_entry(dmap, to_remove, list) {
266 		ptr->moffset = dmap->window_offset;
267 		ptr->len = dmap->length;
268 		ptr++;
269 		i++;
270 		num--;
271 		if (i >= nr_alloc || num == 0) {
272 			memset(&inarg, 0, sizeof(inarg));
273 			inarg.count = i;
274 			ret = fuse_send_removemapping(inode, &inarg,
275 						      remove_one);
276 			if (ret)
277 				goto out;
278 			ptr = remove_one;
279 			i = 0;
280 		}
281 	}
282 out:
283 	kfree(remove_one);
284 	return ret;
285 }
286 
287 /*
288  * Cleanup dmap entry and add back to free list. This should be called with
289  * fcd->lock held.
290  */
291 static void dmap_reinit_add_to_free_pool(struct fuse_conn_dax *fcd,
292 					    struct fuse_dax_mapping *dmap)
293 {
294 	pr_debug("fuse: freeing memory range start_idx=0x%lx end_idx=0x%lx window_offset=0x%llx length=0x%llx\n",
295 		 dmap->itn.start, dmap->itn.last, dmap->window_offset,
296 		 dmap->length);
297 	__dmap_remove_busy_list(fcd, dmap);
298 	dmap->inode = NULL;
299 	dmap->itn.start = dmap->itn.last = 0;
300 	__dmap_add_to_free_pool(fcd, dmap);
301 }
302 
303 /*
304  * Free inode dmap entries whose range falls inside [start, end].
305  * Does not take any locks. At this point of time it should only be
306  * called from evict_inode() path where we know all dmap entries can be
307  * reclaimed.
308  */
309 static void inode_reclaim_dmap_range(struct fuse_conn_dax *fcd,
310 				     struct inode *inode,
311 				     loff_t start, loff_t end)
312 {
313 	struct fuse_inode *fi = get_fuse_inode(inode);
314 	struct fuse_dax_mapping *dmap, *n;
315 	int err, num = 0;
316 	LIST_HEAD(to_remove);
317 	unsigned long start_idx = start >> FUSE_DAX_SHIFT;
318 	unsigned long end_idx = end >> FUSE_DAX_SHIFT;
319 	struct interval_tree_node *node;
320 
321 	while (1) {
322 		node = interval_tree_iter_first(&fi->dax->tree, start_idx,
323 						end_idx);
324 		if (!node)
325 			break;
326 		dmap = node_to_dmap(node);
327 		/* inode is going away. There should not be any users of dmap */
328 		WARN_ON(refcount_read(&dmap->refcnt) > 1);
329 		interval_tree_remove(&dmap->itn, &fi->dax->tree);
330 		num++;
331 		list_add(&dmap->list, &to_remove);
332 	}
333 
334 	/* Nothing to remove */
335 	if (list_empty(&to_remove))
336 		return;
337 
338 	WARN_ON(fi->dax->nr < num);
339 	fi->dax->nr -= num;
340 	err = dmap_removemapping_list(inode, num, &to_remove);
341 	if (err && err != -ENOTCONN) {
342 		pr_warn("Failed to removemappings. start=0x%llx end=0x%llx\n",
343 			start, end);
344 	}
345 	spin_lock(&fcd->lock);
346 	list_for_each_entry_safe(dmap, n, &to_remove, list) {
347 		list_del_init(&dmap->list);
348 		dmap_reinit_add_to_free_pool(fcd, dmap);
349 	}
350 	spin_unlock(&fcd->lock);
351 }
352 
353 static int dmap_removemapping_one(struct inode *inode,
354 				  struct fuse_dax_mapping *dmap)
355 {
356 	struct fuse_removemapping_one forget_one;
357 	struct fuse_removemapping_in inarg;
358 
359 	memset(&inarg, 0, sizeof(inarg));
360 	inarg.count = 1;
361 	memset(&forget_one, 0, sizeof(forget_one));
362 	forget_one.moffset = dmap->window_offset;
363 	forget_one.len = dmap->length;
364 
365 	return fuse_send_removemapping(inode, &inarg, &forget_one);
366 }
367 
368 /*
369  * It is called from evict_inode() and by that time inode is going away. So
370  * this function does not take any locks like fi->dax->sem for traversing
371  * that fuse inode interval tree. If that lock is taken then lock validator
372  * complains of deadlock situation w.r.t fs_reclaim lock.
373  */
374 void fuse_dax_inode_cleanup(struct inode *inode)
375 {
376 	struct fuse_conn *fc = get_fuse_conn(inode);
377 	struct fuse_inode *fi = get_fuse_inode(inode);
378 
379 	/*
380 	 * fuse_evict_inode() has already called truncate_inode_pages_final()
381 	 * before we arrive here. So we should not have to worry about any
382 	 * pages/exception entries still associated with inode.
383 	 */
384 	inode_reclaim_dmap_range(fc->dax, inode, 0, -1);
385 	WARN_ON(fi->dax->nr);
386 }
387 
388 static void fuse_fill_iomap_hole(struct iomap *iomap, loff_t length)
389 {
390 	iomap->addr = IOMAP_NULL_ADDR;
391 	iomap->length = length;
392 	iomap->type = IOMAP_HOLE;
393 }
394 
395 static void fuse_fill_iomap(struct inode *inode, loff_t pos, loff_t length,
396 			    struct iomap *iomap, struct fuse_dax_mapping *dmap,
397 			    unsigned int flags)
398 {
399 	loff_t offset, len;
400 	loff_t i_size = i_size_read(inode);
401 
402 	offset = pos - (dmap->itn.start << FUSE_DAX_SHIFT);
403 	len = min(length, dmap->length - offset);
404 
405 	/* If length is beyond end of file, truncate further */
406 	if (pos + len > i_size)
407 		len = i_size - pos;
408 
409 	if (len > 0) {
410 		iomap->addr = dmap->window_offset + offset;
411 		iomap->length = len;
412 		if (flags & IOMAP_FAULT)
413 			iomap->length = ALIGN(len, PAGE_SIZE);
414 		iomap->type = IOMAP_MAPPED;
415 		/*
416 		 * increace refcnt so that reclaim code knows this dmap is in
417 		 * use. This assumes fi->dax->sem mutex is held either
418 		 * shared/exclusive.
419 		 */
420 		refcount_inc(&dmap->refcnt);
421 
422 		/* iomap->private should be NULL */
423 		WARN_ON_ONCE(iomap->private);
424 		iomap->private = dmap;
425 	} else {
426 		/* Mapping beyond end of file is hole */
427 		fuse_fill_iomap_hole(iomap, length);
428 	}
429 }
430 
431 static int fuse_setup_new_dax_mapping(struct inode *inode, loff_t pos,
432 				      loff_t length, unsigned int flags,
433 				      struct iomap *iomap)
434 {
435 	struct fuse_inode *fi = get_fuse_inode(inode);
436 	struct fuse_conn *fc = get_fuse_conn(inode);
437 	struct fuse_conn_dax *fcd = fc->dax;
438 	struct fuse_dax_mapping *dmap, *alloc_dmap = NULL;
439 	int ret;
440 	bool writable = flags & IOMAP_WRITE;
441 	unsigned long start_idx = pos >> FUSE_DAX_SHIFT;
442 	struct interval_tree_node *node;
443 
444 	/*
445 	 * Can't do inline reclaim in fault path. We call
446 	 * dax_layout_busy_page() before we free a range. And
447 	 * fuse_wait_dax_page() drops mapping->invalidate_lock and requires it.
448 	 * In fault path we enter with mapping->invalidate_lock held and can't
449 	 * drop it. Also in fault path we hold mapping->invalidate_lock shared
450 	 * and not exclusive, so that creates further issues with
451 	 * fuse_wait_dax_page().  Hence return -EAGAIN and fuse_dax_fault()
452 	 * will wait for a memory range to become free and retry.
453 	 */
454 	if (flags & IOMAP_FAULT) {
455 		alloc_dmap = alloc_dax_mapping(fcd);
456 		if (!alloc_dmap)
457 			return -EAGAIN;
458 	} else {
459 		alloc_dmap = alloc_dax_mapping_reclaim(fcd, inode);
460 		if (IS_ERR(alloc_dmap))
461 			return PTR_ERR(alloc_dmap);
462 	}
463 
464 	/* If we are here, we should have memory allocated */
465 	if (WARN_ON(!alloc_dmap))
466 		return -EIO;
467 
468 	/*
469 	 * Take write lock so that only one caller can try to setup mapping
470 	 * and other waits.
471 	 */
472 	down_write(&fi->dax->sem);
473 	/*
474 	 * We dropped lock. Check again if somebody else setup
475 	 * mapping already.
476 	 */
477 	node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx);
478 	if (node) {
479 		dmap = node_to_dmap(node);
480 		fuse_fill_iomap(inode, pos, length, iomap, dmap, flags);
481 		dmap_add_to_free_pool(fcd, alloc_dmap);
482 		up_write(&fi->dax->sem);
483 		return 0;
484 	}
485 
486 	/* Setup one mapping */
487 	ret = fuse_setup_one_mapping(inode, pos >> FUSE_DAX_SHIFT, alloc_dmap,
488 				     writable, false);
489 	if (ret < 0) {
490 		dmap_add_to_free_pool(fcd, alloc_dmap);
491 		up_write(&fi->dax->sem);
492 		return ret;
493 	}
494 	fuse_fill_iomap(inode, pos, length, iomap, alloc_dmap, flags);
495 	up_write(&fi->dax->sem);
496 	return 0;
497 }
498 
499 static int fuse_upgrade_dax_mapping(struct inode *inode, loff_t pos,
500 				    loff_t length, unsigned int flags,
501 				    struct iomap *iomap)
502 {
503 	struct fuse_inode *fi = get_fuse_inode(inode);
504 	struct fuse_dax_mapping *dmap;
505 	int ret;
506 	unsigned long idx = pos >> FUSE_DAX_SHIFT;
507 	struct interval_tree_node *node;
508 
509 	/*
510 	 * Take exclusive lock so that only one caller can try to setup
511 	 * mapping and others wait.
512 	 */
513 	down_write(&fi->dax->sem);
514 	node = interval_tree_iter_first(&fi->dax->tree, idx, idx);
515 
516 	/* We are holding either inode lock or invalidate_lock, and that should
517 	 * ensure that dmap can't be truncated. We are holding a reference
518 	 * on dmap and that should make sure it can't be reclaimed. So dmap
519 	 * should still be there in tree despite the fact we dropped and
520 	 * re-acquired the fi->dax->sem lock.
521 	 */
522 	ret = -EIO;
523 	if (WARN_ON(!node))
524 		goto out_err;
525 
526 	dmap = node_to_dmap(node);
527 
528 	/* We took an extra reference on dmap to make sure its not reclaimd.
529 	 * Now we hold fi->dax->sem lock and that reference is not needed
530 	 * anymore. Drop it.
531 	 */
532 	if (refcount_dec_and_test(&dmap->refcnt)) {
533 		/* refcount should not hit 0. This object only goes
534 		 * away when fuse connection goes away
535 		 */
536 		WARN_ON_ONCE(1);
537 	}
538 
539 	/* Maybe another thread already upgraded mapping while we were not
540 	 * holding lock.
541 	 */
542 	if (dmap->writable) {
543 		ret = 0;
544 		goto out_fill_iomap;
545 	}
546 
547 	ret = fuse_setup_one_mapping(inode, pos >> FUSE_DAX_SHIFT, dmap, true,
548 				     true);
549 	if (ret < 0)
550 		goto out_err;
551 out_fill_iomap:
552 	fuse_fill_iomap(inode, pos, length, iomap, dmap, flags);
553 out_err:
554 	up_write(&fi->dax->sem);
555 	return ret;
556 }
557 
558 /* This is just for DAX and the mapping is ephemeral, do not use it for other
559  * purposes since there is no block device with a permanent mapping.
560  */
561 static int fuse_iomap_begin(struct inode *inode, loff_t pos, loff_t length,
562 			    unsigned int flags, struct iomap *iomap,
563 			    struct iomap *srcmap)
564 {
565 	struct fuse_inode *fi = get_fuse_inode(inode);
566 	struct fuse_conn *fc = get_fuse_conn(inode);
567 	struct fuse_dax_mapping *dmap;
568 	bool writable = flags & IOMAP_WRITE;
569 	unsigned long start_idx = pos >> FUSE_DAX_SHIFT;
570 	struct interval_tree_node *node;
571 
572 	/* We don't support FIEMAP */
573 	if (WARN_ON(flags & IOMAP_REPORT))
574 		return -EIO;
575 
576 	iomap->offset = pos;
577 	iomap->flags = 0;
578 	iomap->bdev = NULL;
579 	iomap->dax_dev = fc->dax->dev;
580 
581 	/*
582 	 * Both read/write and mmap path can race here. So we need something
583 	 * to make sure if we are setting up mapping, then other path waits
584 	 *
585 	 * For now, use a semaphore for this. It probably needs to be
586 	 * optimized later.
587 	 */
588 	down_read(&fi->dax->sem);
589 	node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx);
590 	if (node) {
591 		dmap = node_to_dmap(node);
592 		if (writable && !dmap->writable) {
593 			/* Upgrade read-only mapping to read-write. This will
594 			 * require exclusive fi->dax->sem lock as we don't want
595 			 * two threads to be trying to this simultaneously
596 			 * for same dmap. So drop shared lock and acquire
597 			 * exclusive lock.
598 			 *
599 			 * Before dropping fi->dax->sem lock, take reference
600 			 * on dmap so that its not freed by range reclaim.
601 			 */
602 			refcount_inc(&dmap->refcnt);
603 			up_read(&fi->dax->sem);
604 			pr_debug("%s: Upgrading mapping at offset 0x%llx length 0x%llx\n",
605 				 __func__, pos, length);
606 			return fuse_upgrade_dax_mapping(inode, pos, length,
607 							flags, iomap);
608 		} else {
609 			fuse_fill_iomap(inode, pos, length, iomap, dmap, flags);
610 			up_read(&fi->dax->sem);
611 			return 0;
612 		}
613 	} else {
614 		up_read(&fi->dax->sem);
615 		pr_debug("%s: no mapping at offset 0x%llx length 0x%llx\n",
616 				__func__, pos, length);
617 		if (pos >= i_size_read(inode))
618 			goto iomap_hole;
619 
620 		return fuse_setup_new_dax_mapping(inode, pos, length, flags,
621 						  iomap);
622 	}
623 
624 	/*
625 	 * If read beyond end of file happens, fs code seems to return
626 	 * it as hole
627 	 */
628 iomap_hole:
629 	fuse_fill_iomap_hole(iomap, length);
630 	pr_debug("%s returning hole mapping. pos=0x%llx length_asked=0x%llx length_returned=0x%llx\n",
631 		 __func__, pos, length, iomap->length);
632 	return 0;
633 }
634 
635 static int fuse_iomap_end(struct inode *inode, loff_t pos, loff_t length,
636 			  ssize_t written, unsigned int flags,
637 			  struct iomap *iomap)
638 {
639 	struct fuse_dax_mapping *dmap = iomap->private;
640 
641 	if (dmap) {
642 		if (refcount_dec_and_test(&dmap->refcnt)) {
643 			/* refcount should not hit 0. This object only goes
644 			 * away when fuse connection goes away
645 			 */
646 			WARN_ON_ONCE(1);
647 		}
648 	}
649 
650 	/* DAX writes beyond end-of-file aren't handled using iomap, so the
651 	 * file size is unchanged and there is nothing to do here.
652 	 */
653 	return 0;
654 }
655 
656 static const struct iomap_ops fuse_iomap_ops = {
657 	.iomap_begin = fuse_iomap_begin,
658 	.iomap_end = fuse_iomap_end,
659 };
660 
661 static void fuse_wait_dax_page(struct inode *inode)
662 {
663 	filemap_invalidate_unlock(inode->i_mapping);
664 	schedule();
665 	filemap_invalidate_lock(inode->i_mapping);
666 }
667 
668 /* Should be called with mapping->invalidate_lock held exclusively */
669 static int __fuse_dax_break_layouts(struct inode *inode, bool *retry,
670 				    loff_t start, loff_t end)
671 {
672 	struct page *page;
673 
674 	page = dax_layout_busy_page_range(inode->i_mapping, start, end);
675 	if (!page)
676 		return 0;
677 
678 	*retry = true;
679 	return ___wait_var_event(&page->_refcount,
680 			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
681 			0, 0, fuse_wait_dax_page(inode));
682 }
683 
684 /* dmap_end == 0 leads to unmapping of whole file */
685 int fuse_dax_break_layouts(struct inode *inode, u64 dmap_start,
686 				  u64 dmap_end)
687 {
688 	bool	retry;
689 	int	ret;
690 
691 	do {
692 		retry = false;
693 		ret = __fuse_dax_break_layouts(inode, &retry, dmap_start,
694 					       dmap_end);
695 	} while (ret == 0 && retry);
696 
697 	return ret;
698 }
699 
700 ssize_t fuse_dax_read_iter(struct kiocb *iocb, struct iov_iter *to)
701 {
702 	struct inode *inode = file_inode(iocb->ki_filp);
703 	ssize_t ret;
704 
705 	if (iocb->ki_flags & IOCB_NOWAIT) {
706 		if (!inode_trylock_shared(inode))
707 			return -EAGAIN;
708 	} else {
709 		inode_lock_shared(inode);
710 	}
711 
712 	ret = dax_iomap_rw(iocb, to, &fuse_iomap_ops);
713 	inode_unlock_shared(inode);
714 
715 	/* TODO file_accessed(iocb->f_filp) */
716 	return ret;
717 }
718 
719 static bool file_extending_write(struct kiocb *iocb, struct iov_iter *from)
720 {
721 	struct inode *inode = file_inode(iocb->ki_filp);
722 
723 	return (iov_iter_rw(from) == WRITE &&
724 		((iocb->ki_pos) >= i_size_read(inode) ||
725 		  (iocb->ki_pos + iov_iter_count(from) > i_size_read(inode))));
726 }
727 
728 static ssize_t fuse_dax_direct_write(struct kiocb *iocb, struct iov_iter *from)
729 {
730 	struct inode *inode = file_inode(iocb->ki_filp);
731 	struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
732 	ssize_t ret;
733 
734 	ret = fuse_direct_io(&io, from, &iocb->ki_pos, FUSE_DIO_WRITE);
735 
736 	fuse_write_update_attr(inode, iocb->ki_pos, ret);
737 	return ret;
738 }
739 
740 ssize_t fuse_dax_write_iter(struct kiocb *iocb, struct iov_iter *from)
741 {
742 	struct inode *inode = file_inode(iocb->ki_filp);
743 	ssize_t ret;
744 
745 	if (iocb->ki_flags & IOCB_NOWAIT) {
746 		if (!inode_trylock(inode))
747 			return -EAGAIN;
748 	} else {
749 		inode_lock(inode);
750 	}
751 
752 	ret = generic_write_checks(iocb, from);
753 	if (ret <= 0)
754 		goto out;
755 
756 	ret = file_remove_privs(iocb->ki_filp);
757 	if (ret)
758 		goto out;
759 	/* TODO file_update_time() but we don't want metadata I/O */
760 
761 	/* Do not use dax for file extending writes as write and on
762 	 * disk i_size increase are not atomic otherwise.
763 	 */
764 	if (file_extending_write(iocb, from))
765 		ret = fuse_dax_direct_write(iocb, from);
766 	else
767 		ret = dax_iomap_rw(iocb, from, &fuse_iomap_ops);
768 
769 out:
770 	inode_unlock(inode);
771 
772 	if (ret > 0)
773 		ret = generic_write_sync(iocb, ret);
774 	return ret;
775 }
776 
777 static int fuse_dax_writepages(struct address_space *mapping,
778 			       struct writeback_control *wbc)
779 {
780 
781 	struct inode *inode = mapping->host;
782 	struct fuse_conn *fc = get_fuse_conn(inode);
783 
784 	return dax_writeback_mapping_range(mapping, fc->dax->dev, wbc);
785 }
786 
787 static vm_fault_t __fuse_dax_fault(struct vm_fault *vmf, unsigned int order,
788 		bool write)
789 {
790 	vm_fault_t ret;
791 	struct inode *inode = file_inode(vmf->vma->vm_file);
792 	struct super_block *sb = inode->i_sb;
793 	pfn_t pfn;
794 	int error = 0;
795 	struct fuse_conn *fc = get_fuse_conn(inode);
796 	struct fuse_conn_dax *fcd = fc->dax;
797 	bool retry = false;
798 
799 	if (write)
800 		sb_start_pagefault(sb);
801 retry:
802 	if (retry && !(fcd->nr_free_ranges > 0))
803 		wait_event(fcd->range_waitq, (fcd->nr_free_ranges > 0));
804 
805 	/*
806 	 * We need to serialize against not only truncate but also against
807 	 * fuse dax memory range reclaim. While a range is being reclaimed,
808 	 * we do not want any read/write/mmap to make progress and try
809 	 * to populate page cache or access memory we are trying to free.
810 	 */
811 	filemap_invalidate_lock_shared(inode->i_mapping);
812 	ret = dax_iomap_fault(vmf, order, &pfn, &error, &fuse_iomap_ops);
813 	if ((ret & VM_FAULT_ERROR) && error == -EAGAIN) {
814 		error = 0;
815 		retry = true;
816 		filemap_invalidate_unlock_shared(inode->i_mapping);
817 		goto retry;
818 	}
819 
820 	if (ret & VM_FAULT_NEEDDSYNC)
821 		ret = dax_finish_sync_fault(vmf, order, pfn);
822 	filemap_invalidate_unlock_shared(inode->i_mapping);
823 
824 	if (write)
825 		sb_end_pagefault(sb);
826 
827 	return ret;
828 }
829 
830 static vm_fault_t fuse_dax_fault(struct vm_fault *vmf)
831 {
832 	return __fuse_dax_fault(vmf, 0, vmf->flags & FAULT_FLAG_WRITE);
833 }
834 
835 static vm_fault_t fuse_dax_huge_fault(struct vm_fault *vmf, unsigned int order)
836 {
837 	return __fuse_dax_fault(vmf, order, vmf->flags & FAULT_FLAG_WRITE);
838 }
839 
840 static vm_fault_t fuse_dax_page_mkwrite(struct vm_fault *vmf)
841 {
842 	return __fuse_dax_fault(vmf, 0, true);
843 }
844 
845 static vm_fault_t fuse_dax_pfn_mkwrite(struct vm_fault *vmf)
846 {
847 	return __fuse_dax_fault(vmf, 0, true);
848 }
849 
850 static const struct vm_operations_struct fuse_dax_vm_ops = {
851 	.fault		= fuse_dax_fault,
852 	.huge_fault	= fuse_dax_huge_fault,
853 	.page_mkwrite	= fuse_dax_page_mkwrite,
854 	.pfn_mkwrite	= fuse_dax_pfn_mkwrite,
855 };
856 
857 int fuse_dax_mmap(struct file *file, struct vm_area_struct *vma)
858 {
859 	file_accessed(file);
860 	vma->vm_ops = &fuse_dax_vm_ops;
861 	vm_flags_set(vma, VM_MIXEDMAP | VM_HUGEPAGE);
862 	return 0;
863 }
864 
865 static int dmap_writeback_invalidate(struct inode *inode,
866 				     struct fuse_dax_mapping *dmap)
867 {
868 	int ret;
869 	loff_t start_pos = dmap->itn.start << FUSE_DAX_SHIFT;
870 	loff_t end_pos = (start_pos + FUSE_DAX_SZ - 1);
871 
872 	ret = filemap_fdatawrite_range(inode->i_mapping, start_pos, end_pos);
873 	if (ret) {
874 		pr_debug("fuse: filemap_fdatawrite_range() failed. err=%d start_pos=0x%llx, end_pos=0x%llx\n",
875 			 ret, start_pos, end_pos);
876 		return ret;
877 	}
878 
879 	ret = invalidate_inode_pages2_range(inode->i_mapping,
880 					    start_pos >> PAGE_SHIFT,
881 					    end_pos >> PAGE_SHIFT);
882 	if (ret)
883 		pr_debug("fuse: invalidate_inode_pages2_range() failed err=%d\n",
884 			 ret);
885 
886 	return ret;
887 }
888 
889 static int reclaim_one_dmap_locked(struct inode *inode,
890 				   struct fuse_dax_mapping *dmap)
891 {
892 	int ret;
893 	struct fuse_inode *fi = get_fuse_inode(inode);
894 
895 	/*
896 	 * igrab() was done to make sure inode won't go under us, and this
897 	 * further avoids the race with evict().
898 	 */
899 	ret = dmap_writeback_invalidate(inode, dmap);
900 	if (ret)
901 		return ret;
902 
903 	/* Remove dax mapping from inode interval tree now */
904 	interval_tree_remove(&dmap->itn, &fi->dax->tree);
905 	fi->dax->nr--;
906 
907 	/* It is possible that umount/shutdown has killed the fuse connection
908 	 * and worker thread is trying to reclaim memory in parallel.  Don't
909 	 * warn in that case.
910 	 */
911 	ret = dmap_removemapping_one(inode, dmap);
912 	if (ret && ret != -ENOTCONN) {
913 		pr_warn("Failed to remove mapping. offset=0x%llx len=0x%llx ret=%d\n",
914 			dmap->window_offset, dmap->length, ret);
915 	}
916 	return 0;
917 }
918 
919 /* Find first mapped dmap for an inode and return file offset. Caller needs
920  * to hold fi->dax->sem lock either shared or exclusive.
921  */
922 static struct fuse_dax_mapping *inode_lookup_first_dmap(struct inode *inode)
923 {
924 	struct fuse_inode *fi = get_fuse_inode(inode);
925 	struct fuse_dax_mapping *dmap;
926 	struct interval_tree_node *node;
927 
928 	for (node = interval_tree_iter_first(&fi->dax->tree, 0, -1); node;
929 	     node = interval_tree_iter_next(node, 0, -1)) {
930 		dmap = node_to_dmap(node);
931 		/* still in use. */
932 		if (refcount_read(&dmap->refcnt) > 1)
933 			continue;
934 
935 		return dmap;
936 	}
937 
938 	return NULL;
939 }
940 
941 /*
942  * Find first mapping in the tree and free it and return it. Do not add
943  * it back to free pool.
944  */
945 static struct fuse_dax_mapping *
946 inode_inline_reclaim_one_dmap(struct fuse_conn_dax *fcd, struct inode *inode,
947 			      bool *retry)
948 {
949 	struct fuse_inode *fi = get_fuse_inode(inode);
950 	struct fuse_dax_mapping *dmap;
951 	u64 dmap_start, dmap_end;
952 	unsigned long start_idx;
953 	int ret;
954 	struct interval_tree_node *node;
955 
956 	filemap_invalidate_lock(inode->i_mapping);
957 
958 	/* Lookup a dmap and corresponding file offset to reclaim. */
959 	down_read(&fi->dax->sem);
960 	dmap = inode_lookup_first_dmap(inode);
961 	if (dmap) {
962 		start_idx = dmap->itn.start;
963 		dmap_start = start_idx << FUSE_DAX_SHIFT;
964 		dmap_end = dmap_start + FUSE_DAX_SZ - 1;
965 	}
966 	up_read(&fi->dax->sem);
967 
968 	if (!dmap)
969 		goto out_mmap_sem;
970 	/*
971 	 * Make sure there are no references to inode pages using
972 	 * get_user_pages()
973 	 */
974 	ret = fuse_dax_break_layouts(inode, dmap_start, dmap_end);
975 	if (ret) {
976 		pr_debug("fuse: fuse_dax_break_layouts() failed. err=%d\n",
977 			 ret);
978 		dmap = ERR_PTR(ret);
979 		goto out_mmap_sem;
980 	}
981 
982 	down_write(&fi->dax->sem);
983 	node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx);
984 	/* Range already got reclaimed by somebody else */
985 	if (!node) {
986 		if (retry)
987 			*retry = true;
988 		goto out_write_dmap_sem;
989 	}
990 
991 	dmap = node_to_dmap(node);
992 	/* still in use. */
993 	if (refcount_read(&dmap->refcnt) > 1) {
994 		dmap = NULL;
995 		if (retry)
996 			*retry = true;
997 		goto out_write_dmap_sem;
998 	}
999 
1000 	ret = reclaim_one_dmap_locked(inode, dmap);
1001 	if (ret < 0) {
1002 		dmap = ERR_PTR(ret);
1003 		goto out_write_dmap_sem;
1004 	}
1005 
1006 	/* Clean up dmap. Do not add back to free list */
1007 	dmap_remove_busy_list(fcd, dmap);
1008 	dmap->inode = NULL;
1009 	dmap->itn.start = dmap->itn.last = 0;
1010 
1011 	pr_debug("fuse: %s: inline reclaimed memory range. inode=%p, window_offset=0x%llx, length=0x%llx\n",
1012 		 __func__, inode, dmap->window_offset, dmap->length);
1013 
1014 out_write_dmap_sem:
1015 	up_write(&fi->dax->sem);
1016 out_mmap_sem:
1017 	filemap_invalidate_unlock(inode->i_mapping);
1018 	return dmap;
1019 }
1020 
1021 static struct fuse_dax_mapping *
1022 alloc_dax_mapping_reclaim(struct fuse_conn_dax *fcd, struct inode *inode)
1023 {
1024 	struct fuse_dax_mapping *dmap;
1025 	struct fuse_inode *fi = get_fuse_inode(inode);
1026 
1027 	while (1) {
1028 		bool retry = false;
1029 
1030 		dmap = alloc_dax_mapping(fcd);
1031 		if (dmap)
1032 			return dmap;
1033 
1034 		dmap = inode_inline_reclaim_one_dmap(fcd, inode, &retry);
1035 		/*
1036 		 * Either we got a mapping or it is an error, return in both
1037 		 * the cases.
1038 		 */
1039 		if (dmap)
1040 			return dmap;
1041 
1042 		/* If we could not reclaim a mapping because it
1043 		 * had a reference or some other temporary failure,
1044 		 * Try again. We want to give up inline reclaim only
1045 		 * if there is no range assigned to this node. Otherwise
1046 		 * if a deadlock is possible if we sleep with
1047 		 * mapping->invalidate_lock held and worker to free memory
1048 		 * can't make progress due to unavailability of
1049 		 * mapping->invalidate_lock.  So sleep only if fi->dax->nr=0
1050 		 */
1051 		if (retry)
1052 			continue;
1053 		/*
1054 		 * There are no mappings which can be reclaimed. Wait for one.
1055 		 * We are not holding fi->dax->sem. So it is possible
1056 		 * that range gets added now. But as we are not holding
1057 		 * mapping->invalidate_lock, worker should still be able to
1058 		 * free up a range and wake us up.
1059 		 */
1060 		if (!fi->dax->nr && !(fcd->nr_free_ranges > 0)) {
1061 			if (wait_event_killable_exclusive(fcd->range_waitq,
1062 					(fcd->nr_free_ranges > 0))) {
1063 				return ERR_PTR(-EINTR);
1064 			}
1065 		}
1066 	}
1067 }
1068 
1069 static int lookup_and_reclaim_dmap_locked(struct fuse_conn_dax *fcd,
1070 					  struct inode *inode,
1071 					  unsigned long start_idx)
1072 {
1073 	int ret;
1074 	struct fuse_inode *fi = get_fuse_inode(inode);
1075 	struct fuse_dax_mapping *dmap;
1076 	struct interval_tree_node *node;
1077 
1078 	/* Find fuse dax mapping at file offset inode. */
1079 	node = interval_tree_iter_first(&fi->dax->tree, start_idx, start_idx);
1080 
1081 	/* Range already got cleaned up by somebody else */
1082 	if (!node)
1083 		return 0;
1084 	dmap = node_to_dmap(node);
1085 
1086 	/* still in use. */
1087 	if (refcount_read(&dmap->refcnt) > 1)
1088 		return 0;
1089 
1090 	ret = reclaim_one_dmap_locked(inode, dmap);
1091 	if (ret < 0)
1092 		return ret;
1093 
1094 	/* Cleanup dmap entry and add back to free list */
1095 	spin_lock(&fcd->lock);
1096 	dmap_reinit_add_to_free_pool(fcd, dmap);
1097 	spin_unlock(&fcd->lock);
1098 	return ret;
1099 }
1100 
1101 /*
1102  * Free a range of memory.
1103  * Locking:
1104  * 1. Take mapping->invalidate_lock to block dax faults.
1105  * 2. Take fi->dax->sem to protect interval tree and also to make sure
1106  *    read/write can not reuse a dmap which we might be freeing.
1107  */
1108 static int lookup_and_reclaim_dmap(struct fuse_conn_dax *fcd,
1109 				   struct inode *inode,
1110 				   unsigned long start_idx,
1111 				   unsigned long end_idx)
1112 {
1113 	int ret;
1114 	struct fuse_inode *fi = get_fuse_inode(inode);
1115 	loff_t dmap_start = start_idx << FUSE_DAX_SHIFT;
1116 	loff_t dmap_end = (dmap_start + FUSE_DAX_SZ) - 1;
1117 
1118 	filemap_invalidate_lock(inode->i_mapping);
1119 	ret = fuse_dax_break_layouts(inode, dmap_start, dmap_end);
1120 	if (ret) {
1121 		pr_debug("virtio_fs: fuse_dax_break_layouts() failed. err=%d\n",
1122 			 ret);
1123 		goto out_mmap_sem;
1124 	}
1125 
1126 	down_write(&fi->dax->sem);
1127 	ret = lookup_and_reclaim_dmap_locked(fcd, inode, start_idx);
1128 	up_write(&fi->dax->sem);
1129 out_mmap_sem:
1130 	filemap_invalidate_unlock(inode->i_mapping);
1131 	return ret;
1132 }
1133 
1134 static int try_to_free_dmap_chunks(struct fuse_conn_dax *fcd,
1135 				   unsigned long nr_to_free)
1136 {
1137 	struct fuse_dax_mapping *dmap, *pos, *temp;
1138 	int ret, nr_freed = 0;
1139 	unsigned long start_idx = 0, end_idx = 0;
1140 	struct inode *inode = NULL;
1141 
1142 	/* Pick first busy range and free it for now*/
1143 	while (1) {
1144 		if (nr_freed >= nr_to_free)
1145 			break;
1146 
1147 		dmap = NULL;
1148 		spin_lock(&fcd->lock);
1149 
1150 		if (!fcd->nr_busy_ranges) {
1151 			spin_unlock(&fcd->lock);
1152 			return 0;
1153 		}
1154 
1155 		list_for_each_entry_safe(pos, temp, &fcd->busy_ranges,
1156 						busy_list) {
1157 			/* skip this range if it's in use. */
1158 			if (refcount_read(&pos->refcnt) > 1)
1159 				continue;
1160 
1161 			inode = igrab(pos->inode);
1162 			/*
1163 			 * This inode is going away. That will free
1164 			 * up all the ranges anyway, continue to
1165 			 * next range.
1166 			 */
1167 			if (!inode)
1168 				continue;
1169 			/*
1170 			 * Take this element off list and add it tail. If
1171 			 * this element can't be freed, it will help with
1172 			 * selecting new element in next iteration of loop.
1173 			 */
1174 			dmap = pos;
1175 			list_move_tail(&dmap->busy_list, &fcd->busy_ranges);
1176 			start_idx = end_idx = dmap->itn.start;
1177 			break;
1178 		}
1179 		spin_unlock(&fcd->lock);
1180 		if (!dmap)
1181 			return 0;
1182 
1183 		ret = lookup_and_reclaim_dmap(fcd, inode, start_idx, end_idx);
1184 		iput(inode);
1185 		if (ret)
1186 			return ret;
1187 		nr_freed++;
1188 	}
1189 	return 0;
1190 }
1191 
1192 static void fuse_dax_free_mem_worker(struct work_struct *work)
1193 {
1194 	int ret;
1195 	struct fuse_conn_dax *fcd = container_of(work, struct fuse_conn_dax,
1196 						 free_work.work);
1197 	ret = try_to_free_dmap_chunks(fcd, FUSE_DAX_RECLAIM_CHUNK);
1198 	if (ret) {
1199 		pr_debug("fuse: try_to_free_dmap_chunks() failed with err=%d\n",
1200 			 ret);
1201 	}
1202 
1203 	/* If number of free ranges are still below threshold, requeue */
1204 	kick_dmap_free_worker(fcd, 1);
1205 }
1206 
1207 static void fuse_free_dax_mem_ranges(struct list_head *mem_list)
1208 {
1209 	struct fuse_dax_mapping *range, *temp;
1210 
1211 	/* Free All allocated elements */
1212 	list_for_each_entry_safe(range, temp, mem_list, list) {
1213 		list_del(&range->list);
1214 		if (!list_empty(&range->busy_list))
1215 			list_del(&range->busy_list);
1216 		kfree(range);
1217 	}
1218 }
1219 
1220 void fuse_dax_conn_free(struct fuse_conn *fc)
1221 {
1222 	if (fc->dax) {
1223 		fuse_free_dax_mem_ranges(&fc->dax->free_ranges);
1224 		kfree(fc->dax);
1225 		fc->dax = NULL;
1226 	}
1227 }
1228 
1229 static int fuse_dax_mem_range_init(struct fuse_conn_dax *fcd)
1230 {
1231 	long nr_pages, nr_ranges;
1232 	struct fuse_dax_mapping *range;
1233 	int ret, id;
1234 	size_t dax_size = -1;
1235 	unsigned long i;
1236 
1237 	init_waitqueue_head(&fcd->range_waitq);
1238 	INIT_LIST_HEAD(&fcd->free_ranges);
1239 	INIT_LIST_HEAD(&fcd->busy_ranges);
1240 	INIT_DELAYED_WORK(&fcd->free_work, fuse_dax_free_mem_worker);
1241 
1242 	id = dax_read_lock();
1243 	nr_pages = dax_direct_access(fcd->dev, 0, PHYS_PFN(dax_size),
1244 			DAX_ACCESS, NULL, NULL);
1245 	dax_read_unlock(id);
1246 	if (nr_pages < 0) {
1247 		pr_debug("dax_direct_access() returned %ld\n", nr_pages);
1248 		return nr_pages;
1249 	}
1250 
1251 	nr_ranges = nr_pages/FUSE_DAX_PAGES;
1252 	pr_debug("%s: dax mapped %ld pages. nr_ranges=%ld\n",
1253 		__func__, nr_pages, nr_ranges);
1254 
1255 	for (i = 0; i < nr_ranges; i++) {
1256 		range = kzalloc(sizeof(struct fuse_dax_mapping), GFP_KERNEL);
1257 		ret = -ENOMEM;
1258 		if (!range)
1259 			goto out_err;
1260 
1261 		/* TODO: This offset only works if virtio-fs driver is not
1262 		 * having some memory hidden at the beginning. This needs
1263 		 * better handling
1264 		 */
1265 		range->window_offset = i * FUSE_DAX_SZ;
1266 		range->length = FUSE_DAX_SZ;
1267 		INIT_LIST_HEAD(&range->busy_list);
1268 		refcount_set(&range->refcnt, 1);
1269 		list_add_tail(&range->list, &fcd->free_ranges);
1270 	}
1271 
1272 	fcd->nr_free_ranges = nr_ranges;
1273 	fcd->nr_ranges = nr_ranges;
1274 	return 0;
1275 out_err:
1276 	/* Free All allocated elements */
1277 	fuse_free_dax_mem_ranges(&fcd->free_ranges);
1278 	return ret;
1279 }
1280 
1281 int fuse_dax_conn_alloc(struct fuse_conn *fc, enum fuse_dax_mode dax_mode,
1282 			struct dax_device *dax_dev)
1283 {
1284 	struct fuse_conn_dax *fcd;
1285 	int err;
1286 
1287 	fc->dax_mode = dax_mode;
1288 
1289 	if (!dax_dev)
1290 		return 0;
1291 
1292 	fcd = kzalloc(sizeof(*fcd), GFP_KERNEL);
1293 	if (!fcd)
1294 		return -ENOMEM;
1295 
1296 	spin_lock_init(&fcd->lock);
1297 	fcd->dev = dax_dev;
1298 	err = fuse_dax_mem_range_init(fcd);
1299 	if (err) {
1300 		kfree(fcd);
1301 		return err;
1302 	}
1303 
1304 	fc->dax = fcd;
1305 	return 0;
1306 }
1307 
1308 bool fuse_dax_inode_alloc(struct super_block *sb, struct fuse_inode *fi)
1309 {
1310 	struct fuse_conn *fc = get_fuse_conn_super(sb);
1311 
1312 	fi->dax = NULL;
1313 	if (fc->dax) {
1314 		fi->dax = kzalloc(sizeof(*fi->dax), GFP_KERNEL_ACCOUNT);
1315 		if (!fi->dax)
1316 			return false;
1317 
1318 		init_rwsem(&fi->dax->sem);
1319 		fi->dax->tree = RB_ROOT_CACHED;
1320 	}
1321 
1322 	return true;
1323 }
1324 
1325 static const struct address_space_operations fuse_dax_file_aops  = {
1326 	.writepages	= fuse_dax_writepages,
1327 	.direct_IO	= noop_direct_IO,
1328 	.dirty_folio	= noop_dirty_folio,
1329 };
1330 
1331 static bool fuse_should_enable_dax(struct inode *inode, unsigned int flags)
1332 {
1333 	struct fuse_conn *fc = get_fuse_conn(inode);
1334 	enum fuse_dax_mode dax_mode = fc->dax_mode;
1335 
1336 	if (dax_mode == FUSE_DAX_NEVER)
1337 		return false;
1338 
1339 	/*
1340 	 * fc->dax may be NULL in 'inode' mode when filesystem device doesn't
1341 	 * support DAX, in which case it will silently fallback to 'never' mode.
1342 	 */
1343 	if (!fc->dax)
1344 		return false;
1345 
1346 	if (dax_mode == FUSE_DAX_ALWAYS)
1347 		return true;
1348 
1349 	/* dax_mode is FUSE_DAX_INODE* */
1350 	return fc->inode_dax && (flags & FUSE_ATTR_DAX);
1351 }
1352 
1353 void fuse_dax_inode_init(struct inode *inode, unsigned int flags)
1354 {
1355 	if (!fuse_should_enable_dax(inode, flags))
1356 		return;
1357 
1358 	inode->i_flags |= S_DAX;
1359 	inode->i_data.a_ops = &fuse_dax_file_aops;
1360 }
1361 
1362 void fuse_dax_dontcache(struct inode *inode, unsigned int flags)
1363 {
1364 	struct fuse_conn *fc = get_fuse_conn(inode);
1365 
1366 	if (fuse_is_inode_dax_mode(fc->dax_mode) &&
1367 	    ((bool) IS_DAX(inode) != (bool) (flags & FUSE_ATTR_DAX)))
1368 		d_mark_dontcache(inode);
1369 }
1370 
1371 bool fuse_dax_check_alignment(struct fuse_conn *fc, unsigned int map_alignment)
1372 {
1373 	if (fc->dax && (map_alignment > FUSE_DAX_SHIFT)) {
1374 		pr_warn("FUSE: map_alignment %u incompatible with dax mem range size %u\n",
1375 			map_alignment, FUSE_DAX_SZ);
1376 		return false;
1377 	}
1378 	return true;
1379 }
1380 
1381 void fuse_dax_cancel_work(struct fuse_conn *fc)
1382 {
1383 	struct fuse_conn_dax *fcd = fc->dax;
1384 
1385 	if (fcd)
1386 		cancel_delayed_work_sync(&fcd->free_work);
1387 
1388 }
1389 EXPORT_SYMBOL_GPL(fuse_dax_cancel_work);
1390