1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include <linux/memcontrol.h> 31 #include "internal.h" 32 33 /* 34 * 4MB minimal write chunk size 35 */ 36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 37 38 struct wb_completion { 39 atomic_t cnt; 40 }; 41 42 /* 43 * Passed into wb_writeback(), essentially a subset of writeback_control 44 */ 45 struct wb_writeback_work { 46 long nr_pages; 47 struct super_block *sb; 48 unsigned long *older_than_this; 49 enum writeback_sync_modes sync_mode; 50 unsigned int tagged_writepages:1; 51 unsigned int for_kupdate:1; 52 unsigned int range_cyclic:1; 53 unsigned int for_background:1; 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 55 unsigned int auto_free:1; /* free on completion */ 56 enum wb_reason reason; /* why was writeback initiated? */ 57 58 struct list_head list; /* pending work list */ 59 struct wb_completion *done; /* set if the caller waits */ 60 }; 61 62 /* 63 * If one wants to wait for one or more wb_writeback_works, each work's 64 * ->done should be set to a wb_completion defined using the following 65 * macro. Once all work items are issued with wb_queue_work(), the caller 66 * can wait for the completion of all using wb_wait_for_completion(). Work 67 * items which are waited upon aren't freed automatically on completion. 68 */ 69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 70 struct wb_completion cmpl = { \ 71 .cnt = ATOMIC_INIT(1), \ 72 } 73 74 75 /* 76 * If an inode is constantly having its pages dirtied, but then the 77 * updates stop dirtytime_expire_interval seconds in the past, it's 78 * possible for the worst case time between when an inode has its 79 * timestamps updated and when they finally get written out to be two 80 * dirtytime_expire_intervals. We set the default to 12 hours (in 81 * seconds), which means most of the time inodes will have their 82 * timestamps written to disk after 12 hours, but in the worst case a 83 * few inodes might not their timestamps updated for 24 hours. 84 */ 85 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 86 87 static inline struct inode *wb_inode(struct list_head *head) 88 { 89 return list_entry(head, struct inode, i_io_list); 90 } 91 92 /* 93 * Include the creation of the trace points after defining the 94 * wb_writeback_work structure and inline functions so that the definition 95 * remains local to this file. 96 */ 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/writeback.h> 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 101 102 static bool wb_io_lists_populated(struct bdi_writeback *wb) 103 { 104 if (wb_has_dirty_io(wb)) { 105 return false; 106 } else { 107 set_bit(WB_has_dirty_io, &wb->state); 108 WARN_ON_ONCE(!wb->avg_write_bandwidth); 109 atomic_long_add(wb->avg_write_bandwidth, 110 &wb->bdi->tot_write_bandwidth); 111 return true; 112 } 113 } 114 115 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 116 { 117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 119 clear_bit(WB_has_dirty_io, &wb->state); 120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 121 &wb->bdi->tot_write_bandwidth) < 0); 122 } 123 } 124 125 /** 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 127 * @inode: inode to be moved 128 * @wb: target bdi_writeback 129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 130 * 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 132 * Returns %true if @inode is the first occupant of the !dirty_time IO 133 * lists; otherwise, %false. 134 */ 135 static bool inode_io_list_move_locked(struct inode *inode, 136 struct bdi_writeback *wb, 137 struct list_head *head) 138 { 139 assert_spin_locked(&wb->list_lock); 140 141 list_move(&inode->i_io_list, head); 142 143 /* dirty_time doesn't count as dirty_io until expiration */ 144 if (head != &wb->b_dirty_time) 145 return wb_io_lists_populated(wb); 146 147 wb_io_lists_depopulated(wb); 148 return false; 149 } 150 151 /** 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 153 * @inode: inode to be removed 154 * @wb: bdi_writeback @inode is being removed from 155 * 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 157 * clear %WB_has_dirty_io if all are empty afterwards. 158 */ 159 static void inode_io_list_del_locked(struct inode *inode, 160 struct bdi_writeback *wb) 161 { 162 assert_spin_locked(&wb->list_lock); 163 164 list_del_init(&inode->i_io_list); 165 wb_io_lists_depopulated(wb); 166 } 167 168 static void wb_wakeup(struct bdi_writeback *wb) 169 { 170 spin_lock_bh(&wb->work_lock); 171 if (test_bit(WB_registered, &wb->state)) 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 spin_unlock_bh(&wb->work_lock); 174 } 175 176 static void finish_writeback_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 struct wb_completion *done = work->done; 180 181 if (work->auto_free) 182 kfree(work); 183 if (done && atomic_dec_and_test(&done->cnt)) 184 wake_up_all(&wb->bdi->wb_waitq); 185 } 186 187 static void wb_queue_work(struct bdi_writeback *wb, 188 struct wb_writeback_work *work) 189 { 190 trace_writeback_queue(wb, work); 191 192 if (work->done) 193 atomic_inc(&work->done->cnt); 194 195 spin_lock_bh(&wb->work_lock); 196 197 if (test_bit(WB_registered, &wb->state)) { 198 list_add_tail(&work->list, &wb->work_list); 199 mod_delayed_work(bdi_wq, &wb->dwork, 0); 200 } else 201 finish_writeback_work(wb, work); 202 203 spin_unlock_bh(&wb->work_lock); 204 } 205 206 /** 207 * wb_wait_for_completion - wait for completion of bdi_writeback_works 208 * @bdi: bdi work items were issued to 209 * @done: target wb_completion 210 * 211 * Wait for one or more work items issued to @bdi with their ->done field 212 * set to @done, which should have been defined with 213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 214 * work items are completed. Work items which are waited upon aren't freed 215 * automatically on completion. 216 */ 217 static void wb_wait_for_completion(struct backing_dev_info *bdi, 218 struct wb_completion *done) 219 { 220 atomic_dec(&done->cnt); /* put down the initial count */ 221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 222 } 223 224 #ifdef CONFIG_CGROUP_WRITEBACK 225 226 /* parameters for foreign inode detection, see wb_detach_inode() */ 227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 231 232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 234 /* each slot's duration is 2s / 16 */ 235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 236 /* if foreign slots >= 8, switch */ 237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 238 /* one round can affect upto 5 slots */ 239 240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 241 static struct workqueue_struct *isw_wq; 242 243 void __inode_attach_wb(struct inode *inode, struct page *page) 244 { 245 struct backing_dev_info *bdi = inode_to_bdi(inode); 246 struct bdi_writeback *wb = NULL; 247 248 if (inode_cgwb_enabled(inode)) { 249 struct cgroup_subsys_state *memcg_css; 250 251 if (page) { 252 memcg_css = mem_cgroup_css_from_page(page); 253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 254 } else { 255 /* must pin memcg_css, see wb_get_create() */ 256 memcg_css = task_get_css(current, memory_cgrp_id); 257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 258 css_put(memcg_css); 259 } 260 } 261 262 if (!wb) 263 wb = &bdi->wb; 264 265 /* 266 * There may be multiple instances of this function racing to 267 * update the same inode. Use cmpxchg() to tell the winner. 268 */ 269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 270 wb_put(wb); 271 } 272 273 /** 274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 275 * @inode: inode of interest with i_lock held 276 * 277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 278 * held on entry and is released on return. The returned wb is guaranteed 279 * to stay @inode's associated wb until its list_lock is released. 280 */ 281 static struct bdi_writeback * 282 locked_inode_to_wb_and_lock_list(struct inode *inode) 283 __releases(&inode->i_lock) 284 __acquires(&wb->list_lock) 285 { 286 while (true) { 287 struct bdi_writeback *wb = inode_to_wb(inode); 288 289 /* 290 * inode_to_wb() association is protected by both 291 * @inode->i_lock and @wb->list_lock but list_lock nests 292 * outside i_lock. Drop i_lock and verify that the 293 * association hasn't changed after acquiring list_lock. 294 */ 295 wb_get(wb); 296 spin_unlock(&inode->i_lock); 297 spin_lock(&wb->list_lock); 298 299 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 300 if (likely(wb == inode->i_wb)) { 301 wb_put(wb); /* @inode already has ref */ 302 return wb; 303 } 304 305 spin_unlock(&wb->list_lock); 306 wb_put(wb); 307 cpu_relax(); 308 spin_lock(&inode->i_lock); 309 } 310 } 311 312 /** 313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 314 * @inode: inode of interest 315 * 316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 317 * on entry. 318 */ 319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 320 __acquires(&wb->list_lock) 321 { 322 spin_lock(&inode->i_lock); 323 return locked_inode_to_wb_and_lock_list(inode); 324 } 325 326 struct inode_switch_wbs_context { 327 struct inode *inode; 328 struct bdi_writeback *new_wb; 329 330 struct rcu_head rcu_head; 331 struct work_struct work; 332 }; 333 334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 335 { 336 down_write(&bdi->wb_switch_rwsem); 337 } 338 339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 340 { 341 up_write(&bdi->wb_switch_rwsem); 342 } 343 344 static void inode_switch_wbs_work_fn(struct work_struct *work) 345 { 346 struct inode_switch_wbs_context *isw = 347 container_of(work, struct inode_switch_wbs_context, work); 348 struct inode *inode = isw->inode; 349 struct backing_dev_info *bdi = inode_to_bdi(inode); 350 struct address_space *mapping = inode->i_mapping; 351 struct bdi_writeback *old_wb = inode->i_wb; 352 struct bdi_writeback *new_wb = isw->new_wb; 353 XA_STATE(xas, &mapping->i_pages, 0); 354 struct page *page; 355 bool switched = false; 356 357 /* 358 * If @inode switches cgwb membership while sync_inodes_sb() is 359 * being issued, sync_inodes_sb() might miss it. Synchronize. 360 */ 361 down_read(&bdi->wb_switch_rwsem); 362 363 /* 364 * By the time control reaches here, RCU grace period has passed 365 * since I_WB_SWITCH assertion and all wb stat update transactions 366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 367 * synchronizing against the i_pages lock. 368 * 369 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 370 * gives us exclusion against all wb related operations on @inode 371 * including IO list manipulations and stat updates. 372 */ 373 if (old_wb < new_wb) { 374 spin_lock(&old_wb->list_lock); 375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 376 } else { 377 spin_lock(&new_wb->list_lock); 378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 379 } 380 spin_lock(&inode->i_lock); 381 xa_lock_irq(&mapping->i_pages); 382 383 /* 384 * Once I_FREEING is visible under i_lock, the eviction path owns 385 * the inode and we shouldn't modify ->i_io_list. 386 */ 387 if (unlikely(inode->i_state & I_FREEING)) 388 goto skip_switch; 389 390 /* 391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 393 * pages actually under writeback. 394 */ 395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 396 if (PageDirty(page)) { 397 dec_wb_stat(old_wb, WB_RECLAIMABLE); 398 inc_wb_stat(new_wb, WB_RECLAIMABLE); 399 } 400 } 401 402 xas_set(&xas, 0); 403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 404 WARN_ON_ONCE(!PageWriteback(page)); 405 dec_wb_stat(old_wb, WB_WRITEBACK); 406 inc_wb_stat(new_wb, WB_WRITEBACK); 407 } 408 409 wb_get(new_wb); 410 411 /* 412 * Transfer to @new_wb's IO list if necessary. The specific list 413 * @inode was on is ignored and the inode is put on ->b_dirty which 414 * is always correct including from ->b_dirty_time. The transfer 415 * preserves @inode->dirtied_when ordering. 416 */ 417 if (!list_empty(&inode->i_io_list)) { 418 struct inode *pos; 419 420 inode_io_list_del_locked(inode, old_wb); 421 inode->i_wb = new_wb; 422 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 423 if (time_after_eq(inode->dirtied_when, 424 pos->dirtied_when)) 425 break; 426 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 427 } else { 428 inode->i_wb = new_wb; 429 } 430 431 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 432 inode->i_wb_frn_winner = 0; 433 inode->i_wb_frn_avg_time = 0; 434 inode->i_wb_frn_history = 0; 435 switched = true; 436 skip_switch: 437 /* 438 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 439 * ensures that the new wb is visible if they see !I_WB_SWITCH. 440 */ 441 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 442 443 xa_unlock_irq(&mapping->i_pages); 444 spin_unlock(&inode->i_lock); 445 spin_unlock(&new_wb->list_lock); 446 spin_unlock(&old_wb->list_lock); 447 448 up_read(&bdi->wb_switch_rwsem); 449 450 if (switched) { 451 wb_wakeup(new_wb); 452 wb_put(old_wb); 453 } 454 wb_put(new_wb); 455 456 iput(inode); 457 kfree(isw); 458 459 atomic_dec(&isw_nr_in_flight); 460 } 461 462 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 463 { 464 struct inode_switch_wbs_context *isw = container_of(rcu_head, 465 struct inode_switch_wbs_context, rcu_head); 466 467 /* needs to grab bh-unsafe locks, bounce to work item */ 468 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 469 queue_work(isw_wq, &isw->work); 470 } 471 472 /** 473 * inode_switch_wbs - change the wb association of an inode 474 * @inode: target inode 475 * @new_wb_id: ID of the new wb 476 * 477 * Switch @inode's wb association to the wb identified by @new_wb_id. The 478 * switching is performed asynchronously and may fail silently. 479 */ 480 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 481 { 482 struct backing_dev_info *bdi = inode_to_bdi(inode); 483 struct cgroup_subsys_state *memcg_css; 484 struct inode_switch_wbs_context *isw; 485 486 /* noop if seems to be already in progress */ 487 if (inode->i_state & I_WB_SWITCH) 488 return; 489 490 /* 491 * Avoid starting new switches while sync_inodes_sb() is in 492 * progress. Otherwise, if the down_write protected issue path 493 * blocks heavily, we might end up starting a large number of 494 * switches which will block on the rwsem. 495 */ 496 if (!down_read_trylock(&bdi->wb_switch_rwsem)) 497 return; 498 499 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 500 if (!isw) 501 goto out_unlock; 502 503 /* find and pin the new wb */ 504 rcu_read_lock(); 505 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 506 if (memcg_css) 507 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 508 rcu_read_unlock(); 509 if (!isw->new_wb) 510 goto out_free; 511 512 /* while holding I_WB_SWITCH, no one else can update the association */ 513 spin_lock(&inode->i_lock); 514 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 515 inode->i_state & (I_WB_SWITCH | I_FREEING) || 516 inode_to_wb(inode) == isw->new_wb) { 517 spin_unlock(&inode->i_lock); 518 goto out_free; 519 } 520 inode->i_state |= I_WB_SWITCH; 521 __iget(inode); 522 spin_unlock(&inode->i_lock); 523 524 isw->inode = inode; 525 526 atomic_inc(&isw_nr_in_flight); 527 528 /* 529 * In addition to synchronizing among switchers, I_WB_SWITCH tells 530 * the RCU protected stat update paths to grab the i_page 531 * lock so that stat transfer can synchronize against them. 532 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 533 */ 534 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 535 goto out_unlock; 536 537 out_free: 538 if (isw->new_wb) 539 wb_put(isw->new_wb); 540 kfree(isw); 541 out_unlock: 542 up_read(&bdi->wb_switch_rwsem); 543 } 544 545 /** 546 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 547 * @wbc: writeback_control of interest 548 * @inode: target inode 549 * 550 * @inode is locked and about to be written back under the control of @wbc. 551 * Record @inode's writeback context into @wbc and unlock the i_lock. On 552 * writeback completion, wbc_detach_inode() should be called. This is used 553 * to track the cgroup writeback context. 554 */ 555 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 556 struct inode *inode) 557 { 558 if (!inode_cgwb_enabled(inode)) { 559 spin_unlock(&inode->i_lock); 560 return; 561 } 562 563 wbc->wb = inode_to_wb(inode); 564 wbc->inode = inode; 565 566 wbc->wb_id = wbc->wb->memcg_css->id; 567 wbc->wb_lcand_id = inode->i_wb_frn_winner; 568 wbc->wb_tcand_id = 0; 569 wbc->wb_bytes = 0; 570 wbc->wb_lcand_bytes = 0; 571 wbc->wb_tcand_bytes = 0; 572 573 wb_get(wbc->wb); 574 spin_unlock(&inode->i_lock); 575 576 /* 577 * A dying wb indicates that the memcg-blkcg mapping has changed 578 * and a new wb is already serving the memcg. Switch immediately. 579 */ 580 if (unlikely(wb_dying(wbc->wb))) 581 inode_switch_wbs(inode, wbc->wb_id); 582 } 583 584 /** 585 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 586 * @wbc: writeback_control of the just finished writeback 587 * 588 * To be called after a writeback attempt of an inode finishes and undoes 589 * wbc_attach_and_unlock_inode(). Can be called under any context. 590 * 591 * As concurrent write sharing of an inode is expected to be very rare and 592 * memcg only tracks page ownership on first-use basis severely confining 593 * the usefulness of such sharing, cgroup writeback tracks ownership 594 * per-inode. While the support for concurrent write sharing of an inode 595 * is deemed unnecessary, an inode being written to by different cgroups at 596 * different points in time is a lot more common, and, more importantly, 597 * charging only by first-use can too readily lead to grossly incorrect 598 * behaviors (single foreign page can lead to gigabytes of writeback to be 599 * incorrectly attributed). 600 * 601 * To resolve this issue, cgroup writeback detects the majority dirtier of 602 * an inode and transfers the ownership to it. To avoid unnnecessary 603 * oscillation, the detection mechanism keeps track of history and gives 604 * out the switch verdict only if the foreign usage pattern is stable over 605 * a certain amount of time and/or writeback attempts. 606 * 607 * On each writeback attempt, @wbc tries to detect the majority writer 608 * using Boyer-Moore majority vote algorithm. In addition to the byte 609 * count from the majority voting, it also counts the bytes written for the 610 * current wb and the last round's winner wb (max of last round's current 611 * wb, the winner from two rounds ago, and the last round's majority 612 * candidate). Keeping track of the historical winner helps the algorithm 613 * to semi-reliably detect the most active writer even when it's not the 614 * absolute majority. 615 * 616 * Once the winner of the round is determined, whether the winner is 617 * foreign or not and how much IO time the round consumed is recorded in 618 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 619 * over a certain threshold, the switch verdict is given. 620 */ 621 void wbc_detach_inode(struct writeback_control *wbc) 622 { 623 struct bdi_writeback *wb = wbc->wb; 624 struct inode *inode = wbc->inode; 625 unsigned long avg_time, max_bytes, max_time; 626 u16 history; 627 int max_id; 628 629 if (!wb) 630 return; 631 632 history = inode->i_wb_frn_history; 633 avg_time = inode->i_wb_frn_avg_time; 634 635 /* pick the winner of this round */ 636 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 637 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 638 max_id = wbc->wb_id; 639 max_bytes = wbc->wb_bytes; 640 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 641 max_id = wbc->wb_lcand_id; 642 max_bytes = wbc->wb_lcand_bytes; 643 } else { 644 max_id = wbc->wb_tcand_id; 645 max_bytes = wbc->wb_tcand_bytes; 646 } 647 648 /* 649 * Calculate the amount of IO time the winner consumed and fold it 650 * into the running average kept per inode. If the consumed IO 651 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 652 * deciding whether to switch or not. This is to prevent one-off 653 * small dirtiers from skewing the verdict. 654 */ 655 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 656 wb->avg_write_bandwidth); 657 if (avg_time) 658 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 659 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 660 else 661 avg_time = max_time; /* immediate catch up on first run */ 662 663 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 664 int slots; 665 666 /* 667 * The switch verdict is reached if foreign wb's consume 668 * more than a certain proportion of IO time in a 669 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 670 * history mask where each bit represents one sixteenth of 671 * the period. Determine the number of slots to shift into 672 * history from @max_time. 673 */ 674 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 675 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 676 history <<= slots; 677 if (wbc->wb_id != max_id) 678 history |= (1U << slots) - 1; 679 680 /* 681 * Switch if the current wb isn't the consistent winner. 682 * If there are multiple closely competing dirtiers, the 683 * inode may switch across them repeatedly over time, which 684 * is okay. The main goal is avoiding keeping an inode on 685 * the wrong wb for an extended period of time. 686 */ 687 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 688 inode_switch_wbs(inode, max_id); 689 } 690 691 /* 692 * Multiple instances of this function may race to update the 693 * following fields but we don't mind occassional inaccuracies. 694 */ 695 inode->i_wb_frn_winner = max_id; 696 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 697 inode->i_wb_frn_history = history; 698 699 wb_put(wbc->wb); 700 wbc->wb = NULL; 701 } 702 703 /** 704 * wbc_account_io - account IO issued during writeback 705 * @wbc: writeback_control of the writeback in progress 706 * @page: page being written out 707 * @bytes: number of bytes being written out 708 * 709 * @bytes from @page are about to written out during the writeback 710 * controlled by @wbc. Keep the book for foreign inode detection. See 711 * wbc_detach_inode(). 712 */ 713 void wbc_account_io(struct writeback_control *wbc, struct page *page, 714 size_t bytes) 715 { 716 int id; 717 718 /* 719 * pageout() path doesn't attach @wbc to the inode being written 720 * out. This is intentional as we don't want the function to block 721 * behind a slow cgroup. Ultimately, we want pageout() to kick off 722 * regular writeback instead of writing things out itself. 723 */ 724 if (!wbc->wb) 725 return; 726 727 id = mem_cgroup_css_from_page(page)->id; 728 729 if (id == wbc->wb_id) { 730 wbc->wb_bytes += bytes; 731 return; 732 } 733 734 if (id == wbc->wb_lcand_id) 735 wbc->wb_lcand_bytes += bytes; 736 737 /* Boyer-Moore majority vote algorithm */ 738 if (!wbc->wb_tcand_bytes) 739 wbc->wb_tcand_id = id; 740 if (id == wbc->wb_tcand_id) 741 wbc->wb_tcand_bytes += bytes; 742 else 743 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 744 } 745 EXPORT_SYMBOL_GPL(wbc_account_io); 746 747 /** 748 * inode_congested - test whether an inode is congested 749 * @inode: inode to test for congestion (may be NULL) 750 * @cong_bits: mask of WB_[a]sync_congested bits to test 751 * 752 * Tests whether @inode is congested. @cong_bits is the mask of congestion 753 * bits to test and the return value is the mask of set bits. 754 * 755 * If cgroup writeback is enabled for @inode, the congestion state is 756 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 757 * associated with @inode is congested; otherwise, the root wb's congestion 758 * state is used. 759 * 760 * @inode is allowed to be NULL as this function is often called on 761 * mapping->host which is NULL for the swapper space. 762 */ 763 int inode_congested(struct inode *inode, int cong_bits) 764 { 765 /* 766 * Once set, ->i_wb never becomes NULL while the inode is alive. 767 * Start transaction iff ->i_wb is visible. 768 */ 769 if (inode && inode_to_wb_is_valid(inode)) { 770 struct bdi_writeback *wb; 771 struct wb_lock_cookie lock_cookie = {}; 772 bool congested; 773 774 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 775 congested = wb_congested(wb, cong_bits); 776 unlocked_inode_to_wb_end(inode, &lock_cookie); 777 return congested; 778 } 779 780 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 781 } 782 EXPORT_SYMBOL_GPL(inode_congested); 783 784 /** 785 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 786 * @wb: target bdi_writeback to split @nr_pages to 787 * @nr_pages: number of pages to write for the whole bdi 788 * 789 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 790 * relation to the total write bandwidth of all wb's w/ dirty inodes on 791 * @wb->bdi. 792 */ 793 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 794 { 795 unsigned long this_bw = wb->avg_write_bandwidth; 796 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 797 798 if (nr_pages == LONG_MAX) 799 return LONG_MAX; 800 801 /* 802 * This may be called on clean wb's and proportional distribution 803 * may not make sense, just use the original @nr_pages in those 804 * cases. In general, we wanna err on the side of writing more. 805 */ 806 if (!tot_bw || this_bw >= tot_bw) 807 return nr_pages; 808 else 809 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 810 } 811 812 /** 813 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 814 * @bdi: target backing_dev_info 815 * @base_work: wb_writeback_work to issue 816 * @skip_if_busy: skip wb's which already have writeback in progress 817 * 818 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 819 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 820 * distributed to the busy wbs according to each wb's proportion in the 821 * total active write bandwidth of @bdi. 822 */ 823 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 824 struct wb_writeback_work *base_work, 825 bool skip_if_busy) 826 { 827 struct bdi_writeback *last_wb = NULL; 828 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 829 struct bdi_writeback, bdi_node); 830 831 might_sleep(); 832 restart: 833 rcu_read_lock(); 834 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 835 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 836 struct wb_writeback_work fallback_work; 837 struct wb_writeback_work *work; 838 long nr_pages; 839 840 if (last_wb) { 841 wb_put(last_wb); 842 last_wb = NULL; 843 } 844 845 /* SYNC_ALL writes out I_DIRTY_TIME too */ 846 if (!wb_has_dirty_io(wb) && 847 (base_work->sync_mode == WB_SYNC_NONE || 848 list_empty(&wb->b_dirty_time))) 849 continue; 850 if (skip_if_busy && writeback_in_progress(wb)) 851 continue; 852 853 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 854 855 work = kmalloc(sizeof(*work), GFP_ATOMIC); 856 if (work) { 857 *work = *base_work; 858 work->nr_pages = nr_pages; 859 work->auto_free = 1; 860 wb_queue_work(wb, work); 861 continue; 862 } 863 864 /* alloc failed, execute synchronously using on-stack fallback */ 865 work = &fallback_work; 866 *work = *base_work; 867 work->nr_pages = nr_pages; 868 work->auto_free = 0; 869 work->done = &fallback_work_done; 870 871 wb_queue_work(wb, work); 872 873 /* 874 * Pin @wb so that it stays on @bdi->wb_list. This allows 875 * continuing iteration from @wb after dropping and 876 * regrabbing rcu read lock. 877 */ 878 wb_get(wb); 879 last_wb = wb; 880 881 rcu_read_unlock(); 882 wb_wait_for_completion(bdi, &fallback_work_done); 883 goto restart; 884 } 885 rcu_read_unlock(); 886 887 if (last_wb) 888 wb_put(last_wb); 889 } 890 891 /** 892 * cgroup_writeback_umount - flush inode wb switches for umount 893 * 894 * This function is called when a super_block is about to be destroyed and 895 * flushes in-flight inode wb switches. An inode wb switch goes through 896 * RCU and then workqueue, so the two need to be flushed in order to ensure 897 * that all previously scheduled switches are finished. As wb switches are 898 * rare occurrences and synchronize_rcu() can take a while, perform 899 * flushing iff wb switches are in flight. 900 */ 901 void cgroup_writeback_umount(void) 902 { 903 if (atomic_read(&isw_nr_in_flight)) { 904 synchronize_rcu(); 905 flush_workqueue(isw_wq); 906 } 907 } 908 909 static int __init cgroup_writeback_init(void) 910 { 911 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 912 if (!isw_wq) 913 return -ENOMEM; 914 return 0; 915 } 916 fs_initcall(cgroup_writeback_init); 917 918 #else /* CONFIG_CGROUP_WRITEBACK */ 919 920 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 921 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 922 923 static struct bdi_writeback * 924 locked_inode_to_wb_and_lock_list(struct inode *inode) 925 __releases(&inode->i_lock) 926 __acquires(&wb->list_lock) 927 { 928 struct bdi_writeback *wb = inode_to_wb(inode); 929 930 spin_unlock(&inode->i_lock); 931 spin_lock(&wb->list_lock); 932 return wb; 933 } 934 935 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 936 __acquires(&wb->list_lock) 937 { 938 struct bdi_writeback *wb = inode_to_wb(inode); 939 940 spin_lock(&wb->list_lock); 941 return wb; 942 } 943 944 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 945 { 946 return nr_pages; 947 } 948 949 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 950 struct wb_writeback_work *base_work, 951 bool skip_if_busy) 952 { 953 might_sleep(); 954 955 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 956 base_work->auto_free = 0; 957 wb_queue_work(&bdi->wb, base_work); 958 } 959 } 960 961 #endif /* CONFIG_CGROUP_WRITEBACK */ 962 963 /* 964 * Add in the number of potentially dirty inodes, because each inode 965 * write can dirty pagecache in the underlying blockdev. 966 */ 967 static unsigned long get_nr_dirty_pages(void) 968 { 969 return global_node_page_state(NR_FILE_DIRTY) + 970 global_node_page_state(NR_UNSTABLE_NFS) + 971 get_nr_dirty_inodes(); 972 } 973 974 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 975 { 976 if (!wb_has_dirty_io(wb)) 977 return; 978 979 /* 980 * All callers of this function want to start writeback of all 981 * dirty pages. Places like vmscan can call this at a very 982 * high frequency, causing pointless allocations of tons of 983 * work items and keeping the flusher threads busy retrieving 984 * that work. Ensure that we only allow one of them pending and 985 * inflight at the time. 986 */ 987 if (test_bit(WB_start_all, &wb->state) || 988 test_and_set_bit(WB_start_all, &wb->state)) 989 return; 990 991 wb->start_all_reason = reason; 992 wb_wakeup(wb); 993 } 994 995 /** 996 * wb_start_background_writeback - start background writeback 997 * @wb: bdi_writback to write from 998 * 999 * Description: 1000 * This makes sure WB_SYNC_NONE background writeback happens. When 1001 * this function returns, it is only guaranteed that for given wb 1002 * some IO is happening if we are over background dirty threshold. 1003 * Caller need not hold sb s_umount semaphore. 1004 */ 1005 void wb_start_background_writeback(struct bdi_writeback *wb) 1006 { 1007 /* 1008 * We just wake up the flusher thread. It will perform background 1009 * writeback as soon as there is no other work to do. 1010 */ 1011 trace_writeback_wake_background(wb); 1012 wb_wakeup(wb); 1013 } 1014 1015 /* 1016 * Remove the inode from the writeback list it is on. 1017 */ 1018 void inode_io_list_del(struct inode *inode) 1019 { 1020 struct bdi_writeback *wb; 1021 1022 wb = inode_to_wb_and_lock_list(inode); 1023 inode_io_list_del_locked(inode, wb); 1024 spin_unlock(&wb->list_lock); 1025 } 1026 1027 /* 1028 * mark an inode as under writeback on the sb 1029 */ 1030 void sb_mark_inode_writeback(struct inode *inode) 1031 { 1032 struct super_block *sb = inode->i_sb; 1033 unsigned long flags; 1034 1035 if (list_empty(&inode->i_wb_list)) { 1036 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1037 if (list_empty(&inode->i_wb_list)) { 1038 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1039 trace_sb_mark_inode_writeback(inode); 1040 } 1041 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1042 } 1043 } 1044 1045 /* 1046 * clear an inode as under writeback on the sb 1047 */ 1048 void sb_clear_inode_writeback(struct inode *inode) 1049 { 1050 struct super_block *sb = inode->i_sb; 1051 unsigned long flags; 1052 1053 if (!list_empty(&inode->i_wb_list)) { 1054 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1055 if (!list_empty(&inode->i_wb_list)) { 1056 list_del_init(&inode->i_wb_list); 1057 trace_sb_clear_inode_writeback(inode); 1058 } 1059 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1060 } 1061 } 1062 1063 /* 1064 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1065 * furthest end of its superblock's dirty-inode list. 1066 * 1067 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1068 * already the most-recently-dirtied inode on the b_dirty list. If that is 1069 * the case then the inode must have been redirtied while it was being written 1070 * out and we don't reset its dirtied_when. 1071 */ 1072 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1073 { 1074 if (!list_empty(&wb->b_dirty)) { 1075 struct inode *tail; 1076 1077 tail = wb_inode(wb->b_dirty.next); 1078 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1079 inode->dirtied_when = jiffies; 1080 } 1081 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1082 } 1083 1084 /* 1085 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1086 */ 1087 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1088 { 1089 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1090 } 1091 1092 static void inode_sync_complete(struct inode *inode) 1093 { 1094 inode->i_state &= ~I_SYNC; 1095 /* If inode is clean an unused, put it into LRU now... */ 1096 inode_add_lru(inode); 1097 /* Waiters must see I_SYNC cleared before being woken up */ 1098 smp_mb(); 1099 wake_up_bit(&inode->i_state, __I_SYNC); 1100 } 1101 1102 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1103 { 1104 bool ret = time_after(inode->dirtied_when, t); 1105 #ifndef CONFIG_64BIT 1106 /* 1107 * For inodes being constantly redirtied, dirtied_when can get stuck. 1108 * It _appears_ to be in the future, but is actually in distant past. 1109 * This test is necessary to prevent such wrapped-around relative times 1110 * from permanently stopping the whole bdi writeback. 1111 */ 1112 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1113 #endif 1114 return ret; 1115 } 1116 1117 #define EXPIRE_DIRTY_ATIME 0x0001 1118 1119 /* 1120 * Move expired (dirtied before work->older_than_this) dirty inodes from 1121 * @delaying_queue to @dispatch_queue. 1122 */ 1123 static int move_expired_inodes(struct list_head *delaying_queue, 1124 struct list_head *dispatch_queue, 1125 int flags, 1126 struct wb_writeback_work *work) 1127 { 1128 unsigned long *older_than_this = NULL; 1129 unsigned long expire_time; 1130 LIST_HEAD(tmp); 1131 struct list_head *pos, *node; 1132 struct super_block *sb = NULL; 1133 struct inode *inode; 1134 int do_sb_sort = 0; 1135 int moved = 0; 1136 1137 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1138 older_than_this = work->older_than_this; 1139 else if (!work->for_sync) { 1140 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1141 older_than_this = &expire_time; 1142 } 1143 while (!list_empty(delaying_queue)) { 1144 inode = wb_inode(delaying_queue->prev); 1145 if (older_than_this && 1146 inode_dirtied_after(inode, *older_than_this)) 1147 break; 1148 list_move(&inode->i_io_list, &tmp); 1149 moved++; 1150 if (flags & EXPIRE_DIRTY_ATIME) 1151 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1152 if (sb_is_blkdev_sb(inode->i_sb)) 1153 continue; 1154 if (sb && sb != inode->i_sb) 1155 do_sb_sort = 1; 1156 sb = inode->i_sb; 1157 } 1158 1159 /* just one sb in list, splice to dispatch_queue and we're done */ 1160 if (!do_sb_sort) { 1161 list_splice(&tmp, dispatch_queue); 1162 goto out; 1163 } 1164 1165 /* Move inodes from one superblock together */ 1166 while (!list_empty(&tmp)) { 1167 sb = wb_inode(tmp.prev)->i_sb; 1168 list_for_each_prev_safe(pos, node, &tmp) { 1169 inode = wb_inode(pos); 1170 if (inode->i_sb == sb) 1171 list_move(&inode->i_io_list, dispatch_queue); 1172 } 1173 } 1174 out: 1175 return moved; 1176 } 1177 1178 /* 1179 * Queue all expired dirty inodes for io, eldest first. 1180 * Before 1181 * newly dirtied b_dirty b_io b_more_io 1182 * =============> gf edc BA 1183 * After 1184 * newly dirtied b_dirty b_io b_more_io 1185 * =============> g fBAedc 1186 * | 1187 * +--> dequeue for IO 1188 */ 1189 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1190 { 1191 int moved; 1192 1193 assert_spin_locked(&wb->list_lock); 1194 list_splice_init(&wb->b_more_io, &wb->b_io); 1195 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1196 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1197 EXPIRE_DIRTY_ATIME, work); 1198 if (moved) 1199 wb_io_lists_populated(wb); 1200 trace_writeback_queue_io(wb, work, moved); 1201 } 1202 1203 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1204 { 1205 int ret; 1206 1207 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1208 trace_writeback_write_inode_start(inode, wbc); 1209 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1210 trace_writeback_write_inode(inode, wbc); 1211 return ret; 1212 } 1213 return 0; 1214 } 1215 1216 /* 1217 * Wait for writeback on an inode to complete. Called with i_lock held. 1218 * Caller must make sure inode cannot go away when we drop i_lock. 1219 */ 1220 static void __inode_wait_for_writeback(struct inode *inode) 1221 __releases(inode->i_lock) 1222 __acquires(inode->i_lock) 1223 { 1224 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1225 wait_queue_head_t *wqh; 1226 1227 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1228 while (inode->i_state & I_SYNC) { 1229 spin_unlock(&inode->i_lock); 1230 __wait_on_bit(wqh, &wq, bit_wait, 1231 TASK_UNINTERRUPTIBLE); 1232 spin_lock(&inode->i_lock); 1233 } 1234 } 1235 1236 /* 1237 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1238 */ 1239 void inode_wait_for_writeback(struct inode *inode) 1240 { 1241 spin_lock(&inode->i_lock); 1242 __inode_wait_for_writeback(inode); 1243 spin_unlock(&inode->i_lock); 1244 } 1245 1246 /* 1247 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1248 * held and drops it. It is aimed for callers not holding any inode reference 1249 * so once i_lock is dropped, inode can go away. 1250 */ 1251 static void inode_sleep_on_writeback(struct inode *inode) 1252 __releases(inode->i_lock) 1253 { 1254 DEFINE_WAIT(wait); 1255 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1256 int sleep; 1257 1258 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1259 sleep = inode->i_state & I_SYNC; 1260 spin_unlock(&inode->i_lock); 1261 if (sleep) 1262 schedule(); 1263 finish_wait(wqh, &wait); 1264 } 1265 1266 /* 1267 * Find proper writeback list for the inode depending on its current state and 1268 * possibly also change of its state while we were doing writeback. Here we 1269 * handle things such as livelock prevention or fairness of writeback among 1270 * inodes. This function can be called only by flusher thread - noone else 1271 * processes all inodes in writeback lists and requeueing inodes behind flusher 1272 * thread's back can have unexpected consequences. 1273 */ 1274 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1275 struct writeback_control *wbc) 1276 { 1277 if (inode->i_state & I_FREEING) 1278 return; 1279 1280 /* 1281 * Sync livelock prevention. Each inode is tagged and synced in one 1282 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1283 * the dirty time to prevent enqueue and sync it again. 1284 */ 1285 if ((inode->i_state & I_DIRTY) && 1286 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1287 inode->dirtied_when = jiffies; 1288 1289 if (wbc->pages_skipped) { 1290 /* 1291 * writeback is not making progress due to locked 1292 * buffers. Skip this inode for now. 1293 */ 1294 redirty_tail(inode, wb); 1295 return; 1296 } 1297 1298 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1299 /* 1300 * We didn't write back all the pages. nfs_writepages() 1301 * sometimes bales out without doing anything. 1302 */ 1303 if (wbc->nr_to_write <= 0) { 1304 /* Slice used up. Queue for next turn. */ 1305 requeue_io(inode, wb); 1306 } else { 1307 /* 1308 * Writeback blocked by something other than 1309 * congestion. Delay the inode for some time to 1310 * avoid spinning on the CPU (100% iowait) 1311 * retrying writeback of the dirty page/inode 1312 * that cannot be performed immediately. 1313 */ 1314 redirty_tail(inode, wb); 1315 } 1316 } else if (inode->i_state & I_DIRTY) { 1317 /* 1318 * Filesystems can dirty the inode during writeback operations, 1319 * such as delayed allocation during submission or metadata 1320 * updates after data IO completion. 1321 */ 1322 redirty_tail(inode, wb); 1323 } else if (inode->i_state & I_DIRTY_TIME) { 1324 inode->dirtied_when = jiffies; 1325 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1326 } else { 1327 /* The inode is clean. Remove from writeback lists. */ 1328 inode_io_list_del_locked(inode, wb); 1329 } 1330 } 1331 1332 /* 1333 * Write out an inode and its dirty pages. Do not update the writeback list 1334 * linkage. That is left to the caller. The caller is also responsible for 1335 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1336 */ 1337 static int 1338 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1339 { 1340 struct address_space *mapping = inode->i_mapping; 1341 long nr_to_write = wbc->nr_to_write; 1342 unsigned dirty; 1343 int ret; 1344 1345 WARN_ON(!(inode->i_state & I_SYNC)); 1346 1347 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1348 1349 ret = do_writepages(mapping, wbc); 1350 1351 /* 1352 * Make sure to wait on the data before writing out the metadata. 1353 * This is important for filesystems that modify metadata on data 1354 * I/O completion. We don't do it for sync(2) writeback because it has a 1355 * separate, external IO completion path and ->sync_fs for guaranteeing 1356 * inode metadata is written back correctly. 1357 */ 1358 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1359 int err = filemap_fdatawait(mapping); 1360 if (ret == 0) 1361 ret = err; 1362 } 1363 1364 /* 1365 * Some filesystems may redirty the inode during the writeback 1366 * due to delalloc, clear dirty metadata flags right before 1367 * write_inode() 1368 */ 1369 spin_lock(&inode->i_lock); 1370 1371 dirty = inode->i_state & I_DIRTY; 1372 if (inode->i_state & I_DIRTY_TIME) { 1373 if ((dirty & I_DIRTY_INODE) || 1374 wbc->sync_mode == WB_SYNC_ALL || 1375 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1376 unlikely(time_after(jiffies, 1377 (inode->dirtied_time_when + 1378 dirtytime_expire_interval * HZ)))) { 1379 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1380 trace_writeback_lazytime(inode); 1381 } 1382 } else 1383 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1384 inode->i_state &= ~dirty; 1385 1386 /* 1387 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1388 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1389 * either they see the I_DIRTY bits cleared or we see the dirtied 1390 * inode. 1391 * 1392 * I_DIRTY_PAGES is always cleared together above even if @mapping 1393 * still has dirty pages. The flag is reinstated after smp_mb() if 1394 * necessary. This guarantees that either __mark_inode_dirty() 1395 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1396 */ 1397 smp_mb(); 1398 1399 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1400 inode->i_state |= I_DIRTY_PAGES; 1401 1402 spin_unlock(&inode->i_lock); 1403 1404 if (dirty & I_DIRTY_TIME) 1405 mark_inode_dirty_sync(inode); 1406 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1407 if (dirty & ~I_DIRTY_PAGES) { 1408 int err = write_inode(inode, wbc); 1409 if (ret == 0) 1410 ret = err; 1411 } 1412 trace_writeback_single_inode(inode, wbc, nr_to_write); 1413 return ret; 1414 } 1415 1416 /* 1417 * Write out an inode's dirty pages. Either the caller has an active reference 1418 * on the inode or the inode has I_WILL_FREE set. 1419 * 1420 * This function is designed to be called for writing back one inode which 1421 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1422 * and does more profound writeback list handling in writeback_sb_inodes(). 1423 */ 1424 static int writeback_single_inode(struct inode *inode, 1425 struct writeback_control *wbc) 1426 { 1427 struct bdi_writeback *wb; 1428 int ret = 0; 1429 1430 spin_lock(&inode->i_lock); 1431 if (!atomic_read(&inode->i_count)) 1432 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1433 else 1434 WARN_ON(inode->i_state & I_WILL_FREE); 1435 1436 if (inode->i_state & I_SYNC) { 1437 if (wbc->sync_mode != WB_SYNC_ALL) 1438 goto out; 1439 /* 1440 * It's a data-integrity sync. We must wait. Since callers hold 1441 * inode reference or inode has I_WILL_FREE set, it cannot go 1442 * away under us. 1443 */ 1444 __inode_wait_for_writeback(inode); 1445 } 1446 WARN_ON(inode->i_state & I_SYNC); 1447 /* 1448 * Skip inode if it is clean and we have no outstanding writeback in 1449 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1450 * function since flusher thread may be doing for example sync in 1451 * parallel and if we move the inode, it could get skipped. So here we 1452 * make sure inode is on some writeback list and leave it there unless 1453 * we have completely cleaned the inode. 1454 */ 1455 if (!(inode->i_state & I_DIRTY_ALL) && 1456 (wbc->sync_mode != WB_SYNC_ALL || 1457 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1458 goto out; 1459 inode->i_state |= I_SYNC; 1460 wbc_attach_and_unlock_inode(wbc, inode); 1461 1462 ret = __writeback_single_inode(inode, wbc); 1463 1464 wbc_detach_inode(wbc); 1465 1466 wb = inode_to_wb_and_lock_list(inode); 1467 spin_lock(&inode->i_lock); 1468 /* 1469 * If inode is clean, remove it from writeback lists. Otherwise don't 1470 * touch it. See comment above for explanation. 1471 */ 1472 if (!(inode->i_state & I_DIRTY_ALL)) 1473 inode_io_list_del_locked(inode, wb); 1474 spin_unlock(&wb->list_lock); 1475 inode_sync_complete(inode); 1476 out: 1477 spin_unlock(&inode->i_lock); 1478 return ret; 1479 } 1480 1481 static long writeback_chunk_size(struct bdi_writeback *wb, 1482 struct wb_writeback_work *work) 1483 { 1484 long pages; 1485 1486 /* 1487 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1488 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1489 * here avoids calling into writeback_inodes_wb() more than once. 1490 * 1491 * The intended call sequence for WB_SYNC_ALL writeback is: 1492 * 1493 * wb_writeback() 1494 * writeback_sb_inodes() <== called only once 1495 * write_cache_pages() <== called once for each inode 1496 * (quickly) tag currently dirty pages 1497 * (maybe slowly) sync all tagged pages 1498 */ 1499 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1500 pages = LONG_MAX; 1501 else { 1502 pages = min(wb->avg_write_bandwidth / 2, 1503 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1504 pages = min(pages, work->nr_pages); 1505 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1506 MIN_WRITEBACK_PAGES); 1507 } 1508 1509 return pages; 1510 } 1511 1512 /* 1513 * Write a portion of b_io inodes which belong to @sb. 1514 * 1515 * Return the number of pages and/or inodes written. 1516 * 1517 * NOTE! This is called with wb->list_lock held, and will 1518 * unlock and relock that for each inode it ends up doing 1519 * IO for. 1520 */ 1521 static long writeback_sb_inodes(struct super_block *sb, 1522 struct bdi_writeback *wb, 1523 struct wb_writeback_work *work) 1524 { 1525 struct writeback_control wbc = { 1526 .sync_mode = work->sync_mode, 1527 .tagged_writepages = work->tagged_writepages, 1528 .for_kupdate = work->for_kupdate, 1529 .for_background = work->for_background, 1530 .for_sync = work->for_sync, 1531 .range_cyclic = work->range_cyclic, 1532 .range_start = 0, 1533 .range_end = LLONG_MAX, 1534 }; 1535 unsigned long start_time = jiffies; 1536 long write_chunk; 1537 long wrote = 0; /* count both pages and inodes */ 1538 1539 while (!list_empty(&wb->b_io)) { 1540 struct inode *inode = wb_inode(wb->b_io.prev); 1541 struct bdi_writeback *tmp_wb; 1542 1543 if (inode->i_sb != sb) { 1544 if (work->sb) { 1545 /* 1546 * We only want to write back data for this 1547 * superblock, move all inodes not belonging 1548 * to it back onto the dirty list. 1549 */ 1550 redirty_tail(inode, wb); 1551 continue; 1552 } 1553 1554 /* 1555 * The inode belongs to a different superblock. 1556 * Bounce back to the caller to unpin this and 1557 * pin the next superblock. 1558 */ 1559 break; 1560 } 1561 1562 /* 1563 * Don't bother with new inodes or inodes being freed, first 1564 * kind does not need periodic writeout yet, and for the latter 1565 * kind writeout is handled by the freer. 1566 */ 1567 spin_lock(&inode->i_lock); 1568 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1569 spin_unlock(&inode->i_lock); 1570 redirty_tail(inode, wb); 1571 continue; 1572 } 1573 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1574 /* 1575 * If this inode is locked for writeback and we are not 1576 * doing writeback-for-data-integrity, move it to 1577 * b_more_io so that writeback can proceed with the 1578 * other inodes on s_io. 1579 * 1580 * We'll have another go at writing back this inode 1581 * when we completed a full scan of b_io. 1582 */ 1583 spin_unlock(&inode->i_lock); 1584 requeue_io(inode, wb); 1585 trace_writeback_sb_inodes_requeue(inode); 1586 continue; 1587 } 1588 spin_unlock(&wb->list_lock); 1589 1590 /* 1591 * We already requeued the inode if it had I_SYNC set and we 1592 * are doing WB_SYNC_NONE writeback. So this catches only the 1593 * WB_SYNC_ALL case. 1594 */ 1595 if (inode->i_state & I_SYNC) { 1596 /* Wait for I_SYNC. This function drops i_lock... */ 1597 inode_sleep_on_writeback(inode); 1598 /* Inode may be gone, start again */ 1599 spin_lock(&wb->list_lock); 1600 continue; 1601 } 1602 inode->i_state |= I_SYNC; 1603 wbc_attach_and_unlock_inode(&wbc, inode); 1604 1605 write_chunk = writeback_chunk_size(wb, work); 1606 wbc.nr_to_write = write_chunk; 1607 wbc.pages_skipped = 0; 1608 1609 /* 1610 * We use I_SYNC to pin the inode in memory. While it is set 1611 * evict_inode() will wait so the inode cannot be freed. 1612 */ 1613 __writeback_single_inode(inode, &wbc); 1614 1615 wbc_detach_inode(&wbc); 1616 work->nr_pages -= write_chunk - wbc.nr_to_write; 1617 wrote += write_chunk - wbc.nr_to_write; 1618 1619 if (need_resched()) { 1620 /* 1621 * We're trying to balance between building up a nice 1622 * long list of IOs to improve our merge rate, and 1623 * getting those IOs out quickly for anyone throttling 1624 * in balance_dirty_pages(). cond_resched() doesn't 1625 * unplug, so get our IOs out the door before we 1626 * give up the CPU. 1627 */ 1628 blk_flush_plug(current); 1629 cond_resched(); 1630 } 1631 1632 /* 1633 * Requeue @inode if still dirty. Be careful as @inode may 1634 * have been switched to another wb in the meantime. 1635 */ 1636 tmp_wb = inode_to_wb_and_lock_list(inode); 1637 spin_lock(&inode->i_lock); 1638 if (!(inode->i_state & I_DIRTY_ALL)) 1639 wrote++; 1640 requeue_inode(inode, tmp_wb, &wbc); 1641 inode_sync_complete(inode); 1642 spin_unlock(&inode->i_lock); 1643 1644 if (unlikely(tmp_wb != wb)) { 1645 spin_unlock(&tmp_wb->list_lock); 1646 spin_lock(&wb->list_lock); 1647 } 1648 1649 /* 1650 * bail out to wb_writeback() often enough to check 1651 * background threshold and other termination conditions. 1652 */ 1653 if (wrote) { 1654 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1655 break; 1656 if (work->nr_pages <= 0) 1657 break; 1658 } 1659 } 1660 return wrote; 1661 } 1662 1663 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1664 struct wb_writeback_work *work) 1665 { 1666 unsigned long start_time = jiffies; 1667 long wrote = 0; 1668 1669 while (!list_empty(&wb->b_io)) { 1670 struct inode *inode = wb_inode(wb->b_io.prev); 1671 struct super_block *sb = inode->i_sb; 1672 1673 if (!trylock_super(sb)) { 1674 /* 1675 * trylock_super() may fail consistently due to 1676 * s_umount being grabbed by someone else. Don't use 1677 * requeue_io() to avoid busy retrying the inode/sb. 1678 */ 1679 redirty_tail(inode, wb); 1680 continue; 1681 } 1682 wrote += writeback_sb_inodes(sb, wb, work); 1683 up_read(&sb->s_umount); 1684 1685 /* refer to the same tests at the end of writeback_sb_inodes */ 1686 if (wrote) { 1687 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1688 break; 1689 if (work->nr_pages <= 0) 1690 break; 1691 } 1692 } 1693 /* Leave any unwritten inodes on b_io */ 1694 return wrote; 1695 } 1696 1697 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1698 enum wb_reason reason) 1699 { 1700 struct wb_writeback_work work = { 1701 .nr_pages = nr_pages, 1702 .sync_mode = WB_SYNC_NONE, 1703 .range_cyclic = 1, 1704 .reason = reason, 1705 }; 1706 struct blk_plug plug; 1707 1708 blk_start_plug(&plug); 1709 spin_lock(&wb->list_lock); 1710 if (list_empty(&wb->b_io)) 1711 queue_io(wb, &work); 1712 __writeback_inodes_wb(wb, &work); 1713 spin_unlock(&wb->list_lock); 1714 blk_finish_plug(&plug); 1715 1716 return nr_pages - work.nr_pages; 1717 } 1718 1719 /* 1720 * Explicit flushing or periodic writeback of "old" data. 1721 * 1722 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1723 * dirtying-time in the inode's address_space. So this periodic writeback code 1724 * just walks the superblock inode list, writing back any inodes which are 1725 * older than a specific point in time. 1726 * 1727 * Try to run once per dirty_writeback_interval. But if a writeback event 1728 * takes longer than a dirty_writeback_interval interval, then leave a 1729 * one-second gap. 1730 * 1731 * older_than_this takes precedence over nr_to_write. So we'll only write back 1732 * all dirty pages if they are all attached to "old" mappings. 1733 */ 1734 static long wb_writeback(struct bdi_writeback *wb, 1735 struct wb_writeback_work *work) 1736 { 1737 unsigned long wb_start = jiffies; 1738 long nr_pages = work->nr_pages; 1739 unsigned long oldest_jif; 1740 struct inode *inode; 1741 long progress; 1742 struct blk_plug plug; 1743 1744 oldest_jif = jiffies; 1745 work->older_than_this = &oldest_jif; 1746 1747 blk_start_plug(&plug); 1748 spin_lock(&wb->list_lock); 1749 for (;;) { 1750 /* 1751 * Stop writeback when nr_pages has been consumed 1752 */ 1753 if (work->nr_pages <= 0) 1754 break; 1755 1756 /* 1757 * Background writeout and kupdate-style writeback may 1758 * run forever. Stop them if there is other work to do 1759 * so that e.g. sync can proceed. They'll be restarted 1760 * after the other works are all done. 1761 */ 1762 if ((work->for_background || work->for_kupdate) && 1763 !list_empty(&wb->work_list)) 1764 break; 1765 1766 /* 1767 * For background writeout, stop when we are below the 1768 * background dirty threshold 1769 */ 1770 if (work->for_background && !wb_over_bg_thresh(wb)) 1771 break; 1772 1773 /* 1774 * Kupdate and background works are special and we want to 1775 * include all inodes that need writing. Livelock avoidance is 1776 * handled by these works yielding to any other work so we are 1777 * safe. 1778 */ 1779 if (work->for_kupdate) { 1780 oldest_jif = jiffies - 1781 msecs_to_jiffies(dirty_expire_interval * 10); 1782 } else if (work->for_background) 1783 oldest_jif = jiffies; 1784 1785 trace_writeback_start(wb, work); 1786 if (list_empty(&wb->b_io)) 1787 queue_io(wb, work); 1788 if (work->sb) 1789 progress = writeback_sb_inodes(work->sb, wb, work); 1790 else 1791 progress = __writeback_inodes_wb(wb, work); 1792 trace_writeback_written(wb, work); 1793 1794 wb_update_bandwidth(wb, wb_start); 1795 1796 /* 1797 * Did we write something? Try for more 1798 * 1799 * Dirty inodes are moved to b_io for writeback in batches. 1800 * The completion of the current batch does not necessarily 1801 * mean the overall work is done. So we keep looping as long 1802 * as made some progress on cleaning pages or inodes. 1803 */ 1804 if (progress) 1805 continue; 1806 /* 1807 * No more inodes for IO, bail 1808 */ 1809 if (list_empty(&wb->b_more_io)) 1810 break; 1811 /* 1812 * Nothing written. Wait for some inode to 1813 * become available for writeback. Otherwise 1814 * we'll just busyloop. 1815 */ 1816 trace_writeback_wait(wb, work); 1817 inode = wb_inode(wb->b_more_io.prev); 1818 spin_lock(&inode->i_lock); 1819 spin_unlock(&wb->list_lock); 1820 /* This function drops i_lock... */ 1821 inode_sleep_on_writeback(inode); 1822 spin_lock(&wb->list_lock); 1823 } 1824 spin_unlock(&wb->list_lock); 1825 blk_finish_plug(&plug); 1826 1827 return nr_pages - work->nr_pages; 1828 } 1829 1830 /* 1831 * Return the next wb_writeback_work struct that hasn't been processed yet. 1832 */ 1833 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1834 { 1835 struct wb_writeback_work *work = NULL; 1836 1837 spin_lock_bh(&wb->work_lock); 1838 if (!list_empty(&wb->work_list)) { 1839 work = list_entry(wb->work_list.next, 1840 struct wb_writeback_work, list); 1841 list_del_init(&work->list); 1842 } 1843 spin_unlock_bh(&wb->work_lock); 1844 return work; 1845 } 1846 1847 static long wb_check_background_flush(struct bdi_writeback *wb) 1848 { 1849 if (wb_over_bg_thresh(wb)) { 1850 1851 struct wb_writeback_work work = { 1852 .nr_pages = LONG_MAX, 1853 .sync_mode = WB_SYNC_NONE, 1854 .for_background = 1, 1855 .range_cyclic = 1, 1856 .reason = WB_REASON_BACKGROUND, 1857 }; 1858 1859 return wb_writeback(wb, &work); 1860 } 1861 1862 return 0; 1863 } 1864 1865 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1866 { 1867 unsigned long expired; 1868 long nr_pages; 1869 1870 /* 1871 * When set to zero, disable periodic writeback 1872 */ 1873 if (!dirty_writeback_interval) 1874 return 0; 1875 1876 expired = wb->last_old_flush + 1877 msecs_to_jiffies(dirty_writeback_interval * 10); 1878 if (time_before(jiffies, expired)) 1879 return 0; 1880 1881 wb->last_old_flush = jiffies; 1882 nr_pages = get_nr_dirty_pages(); 1883 1884 if (nr_pages) { 1885 struct wb_writeback_work work = { 1886 .nr_pages = nr_pages, 1887 .sync_mode = WB_SYNC_NONE, 1888 .for_kupdate = 1, 1889 .range_cyclic = 1, 1890 .reason = WB_REASON_PERIODIC, 1891 }; 1892 1893 return wb_writeback(wb, &work); 1894 } 1895 1896 return 0; 1897 } 1898 1899 static long wb_check_start_all(struct bdi_writeback *wb) 1900 { 1901 long nr_pages; 1902 1903 if (!test_bit(WB_start_all, &wb->state)) 1904 return 0; 1905 1906 nr_pages = get_nr_dirty_pages(); 1907 if (nr_pages) { 1908 struct wb_writeback_work work = { 1909 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 1910 .sync_mode = WB_SYNC_NONE, 1911 .range_cyclic = 1, 1912 .reason = wb->start_all_reason, 1913 }; 1914 1915 nr_pages = wb_writeback(wb, &work); 1916 } 1917 1918 clear_bit(WB_start_all, &wb->state); 1919 return nr_pages; 1920 } 1921 1922 1923 /* 1924 * Retrieve work items and do the writeback they describe 1925 */ 1926 static long wb_do_writeback(struct bdi_writeback *wb) 1927 { 1928 struct wb_writeback_work *work; 1929 long wrote = 0; 1930 1931 set_bit(WB_writeback_running, &wb->state); 1932 while ((work = get_next_work_item(wb)) != NULL) { 1933 trace_writeback_exec(wb, work); 1934 wrote += wb_writeback(wb, work); 1935 finish_writeback_work(wb, work); 1936 } 1937 1938 /* 1939 * Check for a flush-everything request 1940 */ 1941 wrote += wb_check_start_all(wb); 1942 1943 /* 1944 * Check for periodic writeback, kupdated() style 1945 */ 1946 wrote += wb_check_old_data_flush(wb); 1947 wrote += wb_check_background_flush(wb); 1948 clear_bit(WB_writeback_running, &wb->state); 1949 1950 return wrote; 1951 } 1952 1953 /* 1954 * Handle writeback of dirty data for the device backed by this bdi. Also 1955 * reschedules periodically and does kupdated style flushing. 1956 */ 1957 void wb_workfn(struct work_struct *work) 1958 { 1959 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1960 struct bdi_writeback, dwork); 1961 long pages_written; 1962 1963 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1964 current->flags |= PF_SWAPWRITE; 1965 1966 if (likely(!current_is_workqueue_rescuer() || 1967 !test_bit(WB_registered, &wb->state))) { 1968 /* 1969 * The normal path. Keep writing back @wb until its 1970 * work_list is empty. Note that this path is also taken 1971 * if @wb is shutting down even when we're running off the 1972 * rescuer as work_list needs to be drained. 1973 */ 1974 do { 1975 pages_written = wb_do_writeback(wb); 1976 trace_writeback_pages_written(pages_written); 1977 } while (!list_empty(&wb->work_list)); 1978 } else { 1979 /* 1980 * bdi_wq can't get enough workers and we're running off 1981 * the emergency worker. Don't hog it. Hopefully, 1024 is 1982 * enough for efficient IO. 1983 */ 1984 pages_written = writeback_inodes_wb(wb, 1024, 1985 WB_REASON_FORKER_THREAD); 1986 trace_writeback_pages_written(pages_written); 1987 } 1988 1989 if (!list_empty(&wb->work_list)) 1990 wb_wakeup(wb); 1991 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1992 wb_wakeup_delayed(wb); 1993 1994 current->flags &= ~PF_SWAPWRITE; 1995 } 1996 1997 /* 1998 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 1999 * write back the whole world. 2000 */ 2001 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2002 enum wb_reason reason) 2003 { 2004 struct bdi_writeback *wb; 2005 2006 if (!bdi_has_dirty_io(bdi)) 2007 return; 2008 2009 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2010 wb_start_writeback(wb, reason); 2011 } 2012 2013 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2014 enum wb_reason reason) 2015 { 2016 rcu_read_lock(); 2017 __wakeup_flusher_threads_bdi(bdi, reason); 2018 rcu_read_unlock(); 2019 } 2020 2021 /* 2022 * Wakeup the flusher threads to start writeback of all currently dirty pages 2023 */ 2024 void wakeup_flusher_threads(enum wb_reason reason) 2025 { 2026 struct backing_dev_info *bdi; 2027 2028 /* 2029 * If we are expecting writeback progress we must submit plugged IO. 2030 */ 2031 if (blk_needs_flush_plug(current)) 2032 blk_schedule_flush_plug(current); 2033 2034 rcu_read_lock(); 2035 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2036 __wakeup_flusher_threads_bdi(bdi, reason); 2037 rcu_read_unlock(); 2038 } 2039 2040 /* 2041 * Wake up bdi's periodically to make sure dirtytime inodes gets 2042 * written back periodically. We deliberately do *not* check the 2043 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2044 * kernel to be constantly waking up once there are any dirtytime 2045 * inodes on the system. So instead we define a separate delayed work 2046 * function which gets called much more rarely. (By default, only 2047 * once every 12 hours.) 2048 * 2049 * If there is any other write activity going on in the file system, 2050 * this function won't be necessary. But if the only thing that has 2051 * happened on the file system is a dirtytime inode caused by an atime 2052 * update, we need this infrastructure below to make sure that inode 2053 * eventually gets pushed out to disk. 2054 */ 2055 static void wakeup_dirtytime_writeback(struct work_struct *w); 2056 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2057 2058 static void wakeup_dirtytime_writeback(struct work_struct *w) 2059 { 2060 struct backing_dev_info *bdi; 2061 2062 rcu_read_lock(); 2063 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2064 struct bdi_writeback *wb; 2065 2066 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2067 if (!list_empty(&wb->b_dirty_time)) 2068 wb_wakeup(wb); 2069 } 2070 rcu_read_unlock(); 2071 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2072 } 2073 2074 static int __init start_dirtytime_writeback(void) 2075 { 2076 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2077 return 0; 2078 } 2079 __initcall(start_dirtytime_writeback); 2080 2081 int dirtytime_interval_handler(struct ctl_table *table, int write, 2082 void __user *buffer, size_t *lenp, loff_t *ppos) 2083 { 2084 int ret; 2085 2086 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2087 if (ret == 0 && write) 2088 mod_delayed_work(system_wq, &dirtytime_work, 0); 2089 return ret; 2090 } 2091 2092 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2093 { 2094 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2095 struct dentry *dentry; 2096 const char *name = "?"; 2097 2098 dentry = d_find_alias(inode); 2099 if (dentry) { 2100 spin_lock(&dentry->d_lock); 2101 name = (const char *) dentry->d_name.name; 2102 } 2103 printk(KERN_DEBUG 2104 "%s(%d): dirtied inode %lu (%s) on %s\n", 2105 current->comm, task_pid_nr(current), inode->i_ino, 2106 name, inode->i_sb->s_id); 2107 if (dentry) { 2108 spin_unlock(&dentry->d_lock); 2109 dput(dentry); 2110 } 2111 } 2112 } 2113 2114 /** 2115 * __mark_inode_dirty - internal function 2116 * 2117 * @inode: inode to mark 2118 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2119 * 2120 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2121 * mark_inode_dirty_sync. 2122 * 2123 * Put the inode on the super block's dirty list. 2124 * 2125 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2126 * dirty list only if it is hashed or if it refers to a blockdev. 2127 * If it was not hashed, it will never be added to the dirty list 2128 * even if it is later hashed, as it will have been marked dirty already. 2129 * 2130 * In short, make sure you hash any inodes _before_ you start marking 2131 * them dirty. 2132 * 2133 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2134 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2135 * the kernel-internal blockdev inode represents the dirtying time of the 2136 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2137 * page->mapping->host, so the page-dirtying time is recorded in the internal 2138 * blockdev inode. 2139 */ 2140 void __mark_inode_dirty(struct inode *inode, int flags) 2141 { 2142 struct super_block *sb = inode->i_sb; 2143 int dirtytime; 2144 2145 trace_writeback_mark_inode_dirty(inode, flags); 2146 2147 /* 2148 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2149 * dirty the inode itself 2150 */ 2151 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2152 trace_writeback_dirty_inode_start(inode, flags); 2153 2154 if (sb->s_op->dirty_inode) 2155 sb->s_op->dirty_inode(inode, flags); 2156 2157 trace_writeback_dirty_inode(inode, flags); 2158 } 2159 if (flags & I_DIRTY_INODE) 2160 flags &= ~I_DIRTY_TIME; 2161 dirtytime = flags & I_DIRTY_TIME; 2162 2163 /* 2164 * Paired with smp_mb() in __writeback_single_inode() for the 2165 * following lockless i_state test. See there for details. 2166 */ 2167 smp_mb(); 2168 2169 if (((inode->i_state & flags) == flags) || 2170 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2171 return; 2172 2173 if (unlikely(block_dump)) 2174 block_dump___mark_inode_dirty(inode); 2175 2176 spin_lock(&inode->i_lock); 2177 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2178 goto out_unlock_inode; 2179 if ((inode->i_state & flags) != flags) { 2180 const int was_dirty = inode->i_state & I_DIRTY; 2181 2182 inode_attach_wb(inode, NULL); 2183 2184 if (flags & I_DIRTY_INODE) 2185 inode->i_state &= ~I_DIRTY_TIME; 2186 inode->i_state |= flags; 2187 2188 /* 2189 * If the inode is being synced, just update its dirty state. 2190 * The unlocker will place the inode on the appropriate 2191 * superblock list, based upon its state. 2192 */ 2193 if (inode->i_state & I_SYNC) 2194 goto out_unlock_inode; 2195 2196 /* 2197 * Only add valid (hashed) inodes to the superblock's 2198 * dirty list. Add blockdev inodes as well. 2199 */ 2200 if (!S_ISBLK(inode->i_mode)) { 2201 if (inode_unhashed(inode)) 2202 goto out_unlock_inode; 2203 } 2204 if (inode->i_state & I_FREEING) 2205 goto out_unlock_inode; 2206 2207 /* 2208 * If the inode was already on b_dirty/b_io/b_more_io, don't 2209 * reposition it (that would break b_dirty time-ordering). 2210 */ 2211 if (!was_dirty) { 2212 struct bdi_writeback *wb; 2213 struct list_head *dirty_list; 2214 bool wakeup_bdi = false; 2215 2216 wb = locked_inode_to_wb_and_lock_list(inode); 2217 2218 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2219 !test_bit(WB_registered, &wb->state), 2220 "bdi-%s not registered\n", wb->bdi->name); 2221 2222 inode->dirtied_when = jiffies; 2223 if (dirtytime) 2224 inode->dirtied_time_when = jiffies; 2225 2226 if (inode->i_state & I_DIRTY) 2227 dirty_list = &wb->b_dirty; 2228 else 2229 dirty_list = &wb->b_dirty_time; 2230 2231 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2232 dirty_list); 2233 2234 spin_unlock(&wb->list_lock); 2235 trace_writeback_dirty_inode_enqueue(inode); 2236 2237 /* 2238 * If this is the first dirty inode for this bdi, 2239 * we have to wake-up the corresponding bdi thread 2240 * to make sure background write-back happens 2241 * later. 2242 */ 2243 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2244 wb_wakeup_delayed(wb); 2245 return; 2246 } 2247 } 2248 out_unlock_inode: 2249 spin_unlock(&inode->i_lock); 2250 } 2251 EXPORT_SYMBOL(__mark_inode_dirty); 2252 2253 /* 2254 * The @s_sync_lock is used to serialise concurrent sync operations 2255 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2256 * Concurrent callers will block on the s_sync_lock rather than doing contending 2257 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2258 * has been issued up to the time this function is enter is guaranteed to be 2259 * completed by the time we have gained the lock and waited for all IO that is 2260 * in progress regardless of the order callers are granted the lock. 2261 */ 2262 static void wait_sb_inodes(struct super_block *sb) 2263 { 2264 LIST_HEAD(sync_list); 2265 2266 /* 2267 * We need to be protected against the filesystem going from 2268 * r/o to r/w or vice versa. 2269 */ 2270 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2271 2272 mutex_lock(&sb->s_sync_lock); 2273 2274 /* 2275 * Splice the writeback list onto a temporary list to avoid waiting on 2276 * inodes that have started writeback after this point. 2277 * 2278 * Use rcu_read_lock() to keep the inodes around until we have a 2279 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2280 * the local list because inodes can be dropped from either by writeback 2281 * completion. 2282 */ 2283 rcu_read_lock(); 2284 spin_lock_irq(&sb->s_inode_wblist_lock); 2285 list_splice_init(&sb->s_inodes_wb, &sync_list); 2286 2287 /* 2288 * Data integrity sync. Must wait for all pages under writeback, because 2289 * there may have been pages dirtied before our sync call, but which had 2290 * writeout started before we write it out. In which case, the inode 2291 * may not be on the dirty list, but we still have to wait for that 2292 * writeout. 2293 */ 2294 while (!list_empty(&sync_list)) { 2295 struct inode *inode = list_first_entry(&sync_list, struct inode, 2296 i_wb_list); 2297 struct address_space *mapping = inode->i_mapping; 2298 2299 /* 2300 * Move each inode back to the wb list before we drop the lock 2301 * to preserve consistency between i_wb_list and the mapping 2302 * writeback tag. Writeback completion is responsible to remove 2303 * the inode from either list once the writeback tag is cleared. 2304 */ 2305 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2306 2307 /* 2308 * The mapping can appear untagged while still on-list since we 2309 * do not have the mapping lock. Skip it here, wb completion 2310 * will remove it. 2311 */ 2312 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2313 continue; 2314 2315 spin_unlock_irq(&sb->s_inode_wblist_lock); 2316 2317 spin_lock(&inode->i_lock); 2318 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2319 spin_unlock(&inode->i_lock); 2320 2321 spin_lock_irq(&sb->s_inode_wblist_lock); 2322 continue; 2323 } 2324 __iget(inode); 2325 spin_unlock(&inode->i_lock); 2326 rcu_read_unlock(); 2327 2328 /* 2329 * We keep the error status of individual mapping so that 2330 * applications can catch the writeback error using fsync(2). 2331 * See filemap_fdatawait_keep_errors() for details. 2332 */ 2333 filemap_fdatawait_keep_errors(mapping); 2334 2335 cond_resched(); 2336 2337 iput(inode); 2338 2339 rcu_read_lock(); 2340 spin_lock_irq(&sb->s_inode_wblist_lock); 2341 } 2342 spin_unlock_irq(&sb->s_inode_wblist_lock); 2343 rcu_read_unlock(); 2344 mutex_unlock(&sb->s_sync_lock); 2345 } 2346 2347 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2348 enum wb_reason reason, bool skip_if_busy) 2349 { 2350 DEFINE_WB_COMPLETION_ONSTACK(done); 2351 struct wb_writeback_work work = { 2352 .sb = sb, 2353 .sync_mode = WB_SYNC_NONE, 2354 .tagged_writepages = 1, 2355 .done = &done, 2356 .nr_pages = nr, 2357 .reason = reason, 2358 }; 2359 struct backing_dev_info *bdi = sb->s_bdi; 2360 2361 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2362 return; 2363 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2364 2365 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2366 wb_wait_for_completion(bdi, &done); 2367 } 2368 2369 /** 2370 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2371 * @sb: the superblock 2372 * @nr: the number of pages to write 2373 * @reason: reason why some writeback work initiated 2374 * 2375 * Start writeback on some inodes on this super_block. No guarantees are made 2376 * on how many (if any) will be written, and this function does not wait 2377 * for IO completion of submitted IO. 2378 */ 2379 void writeback_inodes_sb_nr(struct super_block *sb, 2380 unsigned long nr, 2381 enum wb_reason reason) 2382 { 2383 __writeback_inodes_sb_nr(sb, nr, reason, false); 2384 } 2385 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2386 2387 /** 2388 * writeback_inodes_sb - writeback dirty inodes from given super_block 2389 * @sb: the superblock 2390 * @reason: reason why some writeback work was initiated 2391 * 2392 * Start writeback on some inodes on this super_block. No guarantees are made 2393 * on how many (if any) will be written, and this function does not wait 2394 * for IO completion of submitted IO. 2395 */ 2396 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2397 { 2398 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2399 } 2400 EXPORT_SYMBOL(writeback_inodes_sb); 2401 2402 /** 2403 * try_to_writeback_inodes_sb - try to start writeback if none underway 2404 * @sb: the superblock 2405 * @reason: reason why some writeback work was initiated 2406 * 2407 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2408 */ 2409 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2410 { 2411 if (!down_read_trylock(&sb->s_umount)) 2412 return; 2413 2414 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2415 up_read(&sb->s_umount); 2416 } 2417 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2418 2419 /** 2420 * sync_inodes_sb - sync sb inode pages 2421 * @sb: the superblock 2422 * 2423 * This function writes and waits on any dirty inode belonging to this 2424 * super_block. 2425 */ 2426 void sync_inodes_sb(struct super_block *sb) 2427 { 2428 DEFINE_WB_COMPLETION_ONSTACK(done); 2429 struct wb_writeback_work work = { 2430 .sb = sb, 2431 .sync_mode = WB_SYNC_ALL, 2432 .nr_pages = LONG_MAX, 2433 .range_cyclic = 0, 2434 .done = &done, 2435 .reason = WB_REASON_SYNC, 2436 .for_sync = 1, 2437 }; 2438 struct backing_dev_info *bdi = sb->s_bdi; 2439 2440 /* 2441 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2442 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2443 * bdi_has_dirty() need to be written out too. 2444 */ 2445 if (bdi == &noop_backing_dev_info) 2446 return; 2447 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2448 2449 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2450 bdi_down_write_wb_switch_rwsem(bdi); 2451 bdi_split_work_to_wbs(bdi, &work, false); 2452 wb_wait_for_completion(bdi, &done); 2453 bdi_up_write_wb_switch_rwsem(bdi); 2454 2455 wait_sb_inodes(sb); 2456 } 2457 EXPORT_SYMBOL(sync_inodes_sb); 2458 2459 /** 2460 * write_inode_now - write an inode to disk 2461 * @inode: inode to write to disk 2462 * @sync: whether the write should be synchronous or not 2463 * 2464 * This function commits an inode to disk immediately if it is dirty. This is 2465 * primarily needed by knfsd. 2466 * 2467 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2468 */ 2469 int write_inode_now(struct inode *inode, int sync) 2470 { 2471 struct writeback_control wbc = { 2472 .nr_to_write = LONG_MAX, 2473 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2474 .range_start = 0, 2475 .range_end = LLONG_MAX, 2476 }; 2477 2478 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2479 wbc.nr_to_write = 0; 2480 2481 might_sleep(); 2482 return writeback_single_inode(inode, &wbc); 2483 } 2484 EXPORT_SYMBOL(write_inode_now); 2485 2486 /** 2487 * sync_inode - write an inode and its pages to disk. 2488 * @inode: the inode to sync 2489 * @wbc: controls the writeback mode 2490 * 2491 * sync_inode() will write an inode and its pages to disk. It will also 2492 * correctly update the inode on its superblock's dirty inode lists and will 2493 * update inode->i_state. 2494 * 2495 * The caller must have a ref on the inode. 2496 */ 2497 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2498 { 2499 return writeback_single_inode(inode, wbc); 2500 } 2501 EXPORT_SYMBOL(sync_inode); 2502 2503 /** 2504 * sync_inode_metadata - write an inode to disk 2505 * @inode: the inode to sync 2506 * @wait: wait for I/O to complete. 2507 * 2508 * Write an inode to disk and adjust its dirty state after completion. 2509 * 2510 * Note: only writes the actual inode, no associated data or other metadata. 2511 */ 2512 int sync_inode_metadata(struct inode *inode, int wait) 2513 { 2514 struct writeback_control wbc = { 2515 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2516 .nr_to_write = 0, /* metadata-only */ 2517 }; 2518 2519 return sync_inode(inode, &wbc); 2520 } 2521 EXPORT_SYMBOL(sync_inode_metadata); 2522