1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 125 list_move(&inode->i_io_list, head); 126 127 /* dirty_time doesn't count as dirty_io until expiration */ 128 if (head != &wb->b_dirty_time) 129 return wb_io_lists_populated(wb); 130 131 wb_io_lists_depopulated(wb); 132 return false; 133 } 134 135 static void wb_wakeup(struct bdi_writeback *wb) 136 { 137 spin_lock_irq(&wb->work_lock); 138 if (test_bit(WB_registered, &wb->state)) 139 mod_delayed_work(bdi_wq, &wb->dwork, 0); 140 spin_unlock_irq(&wb->work_lock); 141 } 142 143 static void finish_writeback_work(struct bdi_writeback *wb, 144 struct wb_writeback_work *work) 145 { 146 struct wb_completion *done = work->done; 147 148 if (work->auto_free) 149 kfree(work); 150 if (done) { 151 wait_queue_head_t *waitq = done->waitq; 152 153 /* @done can't be accessed after the following dec */ 154 if (atomic_dec_and_test(&done->cnt)) 155 wake_up_all(waitq); 156 } 157 } 158 159 static void wb_queue_work(struct bdi_writeback *wb, 160 struct wb_writeback_work *work) 161 { 162 trace_writeback_queue(wb, work); 163 164 if (work->done) 165 atomic_inc(&work->done->cnt); 166 167 spin_lock_irq(&wb->work_lock); 168 169 if (test_bit(WB_registered, &wb->state)) { 170 list_add_tail(&work->list, &wb->work_list); 171 mod_delayed_work(bdi_wq, &wb->dwork, 0); 172 } else 173 finish_writeback_work(wb, work); 174 175 spin_unlock_irq(&wb->work_lock); 176 } 177 178 /** 179 * wb_wait_for_completion - wait for completion of bdi_writeback_works 180 * @done: target wb_completion 181 * 182 * Wait for one or more work items issued to @bdi with their ->done field 183 * set to @done, which should have been initialized with 184 * DEFINE_WB_COMPLETION(). This function returns after all such work items 185 * are completed. Work items which are waited upon aren't freed 186 * automatically on completion. 187 */ 188 void wb_wait_for_completion(struct wb_completion *done) 189 { 190 atomic_dec(&done->cnt); /* put down the initial count */ 191 wait_event(*done->waitq, !atomic_read(&done->cnt)); 192 } 193 194 #ifdef CONFIG_CGROUP_WRITEBACK 195 196 /* 197 * Parameters for foreign inode detection, see wbc_detach_inode() to see 198 * how they're used. 199 * 200 * These paramters are inherently heuristical as the detection target 201 * itself is fuzzy. All we want to do is detaching an inode from the 202 * current owner if it's being written to by some other cgroups too much. 203 * 204 * The current cgroup writeback is built on the assumption that multiple 205 * cgroups writing to the same inode concurrently is very rare and a mode 206 * of operation which isn't well supported. As such, the goal is not 207 * taking too long when a different cgroup takes over an inode while 208 * avoiding too aggressive flip-flops from occasional foreign writes. 209 * 210 * We record, very roughly, 2s worth of IO time history and if more than 211 * half of that is foreign, trigger the switch. The recording is quantized 212 * to 16 slots. To avoid tiny writes from swinging the decision too much, 213 * writes smaller than 1/8 of avg size are ignored. 214 */ 215 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 216 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 217 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 218 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 219 220 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 221 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 222 /* each slot's duration is 2s / 16 */ 223 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 224 /* if foreign slots >= 8, switch */ 225 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 226 /* one round can affect upto 5 slots */ 227 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 228 229 /* 230 * Maximum inodes per isw. A specific value has been chosen to make 231 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 232 */ 233 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 234 / sizeof(struct inode *)) 235 236 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 237 static struct workqueue_struct *isw_wq; 238 239 void __inode_attach_wb(struct inode *inode, struct page *page) 240 { 241 struct backing_dev_info *bdi = inode_to_bdi(inode); 242 struct bdi_writeback *wb = NULL; 243 244 if (inode_cgwb_enabled(inode)) { 245 struct cgroup_subsys_state *memcg_css; 246 247 if (page) { 248 memcg_css = mem_cgroup_css_from_page(page); 249 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 250 } else { 251 /* must pin memcg_css, see wb_get_create() */ 252 memcg_css = task_get_css(current, memory_cgrp_id); 253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 254 css_put(memcg_css); 255 } 256 } 257 258 if (!wb) 259 wb = &bdi->wb; 260 261 /* 262 * There may be multiple instances of this function racing to 263 * update the same inode. Use cmpxchg() to tell the winner. 264 */ 265 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 266 wb_put(wb); 267 } 268 EXPORT_SYMBOL_GPL(__inode_attach_wb); 269 270 /** 271 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 272 * @inode: inode of interest with i_lock held 273 * @wb: target bdi_writeback 274 * 275 * Remove the inode from wb's io lists and if necessarily put onto b_attached 276 * list. Only inodes attached to cgwb's are kept on this list. 277 */ 278 static void inode_cgwb_move_to_attached(struct inode *inode, 279 struct bdi_writeback *wb) 280 { 281 assert_spin_locked(&wb->list_lock); 282 assert_spin_locked(&inode->i_lock); 283 284 inode->i_state &= ~I_SYNC_QUEUED; 285 if (wb != &wb->bdi->wb) 286 list_move(&inode->i_io_list, &wb->b_attached); 287 else 288 list_del_init(&inode->i_io_list); 289 wb_io_lists_depopulated(wb); 290 } 291 292 /** 293 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 294 * @inode: inode of interest with i_lock held 295 * 296 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 297 * held on entry and is released on return. The returned wb is guaranteed 298 * to stay @inode's associated wb until its list_lock is released. 299 */ 300 static struct bdi_writeback * 301 locked_inode_to_wb_and_lock_list(struct inode *inode) 302 __releases(&inode->i_lock) 303 __acquires(&wb->list_lock) 304 { 305 while (true) { 306 struct bdi_writeback *wb = inode_to_wb(inode); 307 308 /* 309 * inode_to_wb() association is protected by both 310 * @inode->i_lock and @wb->list_lock but list_lock nests 311 * outside i_lock. Drop i_lock and verify that the 312 * association hasn't changed after acquiring list_lock. 313 */ 314 wb_get(wb); 315 spin_unlock(&inode->i_lock); 316 spin_lock(&wb->list_lock); 317 318 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 319 if (likely(wb == inode->i_wb)) { 320 wb_put(wb); /* @inode already has ref */ 321 return wb; 322 } 323 324 spin_unlock(&wb->list_lock); 325 wb_put(wb); 326 cpu_relax(); 327 spin_lock(&inode->i_lock); 328 } 329 } 330 331 /** 332 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 333 * @inode: inode of interest 334 * 335 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 336 * on entry. 337 */ 338 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 339 __acquires(&wb->list_lock) 340 { 341 spin_lock(&inode->i_lock); 342 return locked_inode_to_wb_and_lock_list(inode); 343 } 344 345 struct inode_switch_wbs_context { 346 struct rcu_work work; 347 348 /* 349 * Multiple inodes can be switched at once. The switching procedure 350 * consists of two parts, separated by a RCU grace period. To make 351 * sure that the second part is executed for each inode gone through 352 * the first part, all inode pointers are placed into a NULL-terminated 353 * array embedded into struct inode_switch_wbs_context. Otherwise 354 * an inode could be left in a non-consistent state. 355 */ 356 struct bdi_writeback *new_wb; 357 struct inode *inodes[]; 358 }; 359 360 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 361 { 362 down_write(&bdi->wb_switch_rwsem); 363 } 364 365 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 366 { 367 up_write(&bdi->wb_switch_rwsem); 368 } 369 370 static bool inode_do_switch_wbs(struct inode *inode, 371 struct bdi_writeback *old_wb, 372 struct bdi_writeback *new_wb) 373 { 374 struct address_space *mapping = inode->i_mapping; 375 XA_STATE(xas, &mapping->i_pages, 0); 376 struct folio *folio; 377 bool switched = false; 378 379 spin_lock(&inode->i_lock); 380 xa_lock_irq(&mapping->i_pages); 381 382 /* 383 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 384 * path owns the inode and we shouldn't modify ->i_io_list. 385 */ 386 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 387 goto skip_switch; 388 389 trace_inode_switch_wbs(inode, old_wb, new_wb); 390 391 /* 392 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 393 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 394 * folios actually under writeback. 395 */ 396 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 397 if (folio_test_dirty(folio)) { 398 long nr = folio_nr_pages(folio); 399 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 400 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 401 } 402 } 403 404 xas_set(&xas, 0); 405 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 406 long nr = folio_nr_pages(folio); 407 WARN_ON_ONCE(!folio_test_writeback(folio)); 408 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 409 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 410 } 411 412 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 413 atomic_dec(&old_wb->writeback_inodes); 414 atomic_inc(&new_wb->writeback_inodes); 415 } 416 417 wb_get(new_wb); 418 419 /* 420 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 421 * the specific list @inode was on is ignored and the @inode is put on 422 * ->b_dirty which is always correct including from ->b_dirty_time. 423 * The transfer preserves @inode->dirtied_when ordering. If the @inode 424 * was clean, it means it was on the b_attached list, so move it onto 425 * the b_attached list of @new_wb. 426 */ 427 if (!list_empty(&inode->i_io_list)) { 428 inode->i_wb = new_wb; 429 430 if (inode->i_state & I_DIRTY_ALL) { 431 struct inode *pos; 432 433 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 434 if (time_after_eq(inode->dirtied_when, 435 pos->dirtied_when)) 436 break; 437 inode_io_list_move_locked(inode, new_wb, 438 pos->i_io_list.prev); 439 } else { 440 inode_cgwb_move_to_attached(inode, new_wb); 441 } 442 } else { 443 inode->i_wb = new_wb; 444 } 445 446 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 447 inode->i_wb_frn_winner = 0; 448 inode->i_wb_frn_avg_time = 0; 449 inode->i_wb_frn_history = 0; 450 switched = true; 451 skip_switch: 452 /* 453 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 454 * ensures that the new wb is visible if they see !I_WB_SWITCH. 455 */ 456 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 457 458 xa_unlock_irq(&mapping->i_pages); 459 spin_unlock(&inode->i_lock); 460 461 return switched; 462 } 463 464 static void inode_switch_wbs_work_fn(struct work_struct *work) 465 { 466 struct inode_switch_wbs_context *isw = 467 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 468 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 469 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 470 struct bdi_writeback *new_wb = isw->new_wb; 471 unsigned long nr_switched = 0; 472 struct inode **inodep; 473 474 /* 475 * If @inode switches cgwb membership while sync_inodes_sb() is 476 * being issued, sync_inodes_sb() might miss it. Synchronize. 477 */ 478 down_read(&bdi->wb_switch_rwsem); 479 480 /* 481 * By the time control reaches here, RCU grace period has passed 482 * since I_WB_SWITCH assertion and all wb stat update transactions 483 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 484 * synchronizing against the i_pages lock. 485 * 486 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 487 * gives us exclusion against all wb related operations on @inode 488 * including IO list manipulations and stat updates. 489 */ 490 if (old_wb < new_wb) { 491 spin_lock(&old_wb->list_lock); 492 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 493 } else { 494 spin_lock(&new_wb->list_lock); 495 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 496 } 497 498 for (inodep = isw->inodes; *inodep; inodep++) { 499 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 500 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 501 nr_switched++; 502 } 503 504 spin_unlock(&new_wb->list_lock); 505 spin_unlock(&old_wb->list_lock); 506 507 up_read(&bdi->wb_switch_rwsem); 508 509 if (nr_switched) { 510 wb_wakeup(new_wb); 511 wb_put_many(old_wb, nr_switched); 512 } 513 514 for (inodep = isw->inodes; *inodep; inodep++) 515 iput(*inodep); 516 wb_put(new_wb); 517 kfree(isw); 518 atomic_dec(&isw_nr_in_flight); 519 } 520 521 static bool inode_prepare_wbs_switch(struct inode *inode, 522 struct bdi_writeback *new_wb) 523 { 524 /* 525 * Paired with smp_mb() in cgroup_writeback_umount(). 526 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 527 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 528 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 529 */ 530 smp_mb(); 531 532 if (IS_DAX(inode)) 533 return false; 534 535 /* while holding I_WB_SWITCH, no one else can update the association */ 536 spin_lock(&inode->i_lock); 537 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 538 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 539 inode_to_wb(inode) == new_wb) { 540 spin_unlock(&inode->i_lock); 541 return false; 542 } 543 inode->i_state |= I_WB_SWITCH; 544 __iget(inode); 545 spin_unlock(&inode->i_lock); 546 547 return true; 548 } 549 550 /** 551 * inode_switch_wbs - change the wb association of an inode 552 * @inode: target inode 553 * @new_wb_id: ID of the new wb 554 * 555 * Switch @inode's wb association to the wb identified by @new_wb_id. The 556 * switching is performed asynchronously and may fail silently. 557 */ 558 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 559 { 560 struct backing_dev_info *bdi = inode_to_bdi(inode); 561 struct cgroup_subsys_state *memcg_css; 562 struct inode_switch_wbs_context *isw; 563 564 /* noop if seems to be already in progress */ 565 if (inode->i_state & I_WB_SWITCH) 566 return; 567 568 /* avoid queueing a new switch if too many are already in flight */ 569 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 570 return; 571 572 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 573 if (!isw) 574 return; 575 576 atomic_inc(&isw_nr_in_flight); 577 578 /* find and pin the new wb */ 579 rcu_read_lock(); 580 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 581 if (memcg_css && !css_tryget(memcg_css)) 582 memcg_css = NULL; 583 rcu_read_unlock(); 584 if (!memcg_css) 585 goto out_free; 586 587 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 588 css_put(memcg_css); 589 if (!isw->new_wb) 590 goto out_free; 591 592 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 593 goto out_free; 594 595 isw->inodes[0] = inode; 596 597 /* 598 * In addition to synchronizing among switchers, I_WB_SWITCH tells 599 * the RCU protected stat update paths to grab the i_page 600 * lock so that stat transfer can synchronize against them. 601 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 602 */ 603 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 604 queue_rcu_work(isw_wq, &isw->work); 605 return; 606 607 out_free: 608 atomic_dec(&isw_nr_in_flight); 609 if (isw->new_wb) 610 wb_put(isw->new_wb); 611 kfree(isw); 612 } 613 614 /** 615 * cleanup_offline_cgwb - detach associated inodes 616 * @wb: target wb 617 * 618 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 619 * to eventually release the dying @wb. Returns %true if not all inodes were 620 * switched and the function has to be restarted. 621 */ 622 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 623 { 624 struct cgroup_subsys_state *memcg_css; 625 struct inode_switch_wbs_context *isw; 626 struct inode *inode; 627 int nr; 628 bool restart = false; 629 630 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 631 GFP_KERNEL); 632 if (!isw) 633 return restart; 634 635 atomic_inc(&isw_nr_in_flight); 636 637 for (memcg_css = wb->memcg_css->parent; memcg_css; 638 memcg_css = memcg_css->parent) { 639 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 640 if (isw->new_wb) 641 break; 642 } 643 if (unlikely(!isw->new_wb)) 644 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 645 646 nr = 0; 647 spin_lock(&wb->list_lock); 648 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 649 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 650 continue; 651 652 isw->inodes[nr++] = inode; 653 654 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 655 restart = true; 656 break; 657 } 658 } 659 spin_unlock(&wb->list_lock); 660 661 /* no attached inodes? bail out */ 662 if (nr == 0) { 663 atomic_dec(&isw_nr_in_flight); 664 wb_put(isw->new_wb); 665 kfree(isw); 666 return restart; 667 } 668 669 /* 670 * In addition to synchronizing among switchers, I_WB_SWITCH tells 671 * the RCU protected stat update paths to grab the i_page 672 * lock so that stat transfer can synchronize against them. 673 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 674 */ 675 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 676 queue_rcu_work(isw_wq, &isw->work); 677 678 return restart; 679 } 680 681 /** 682 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 683 * @wbc: writeback_control of interest 684 * @inode: target inode 685 * 686 * @inode is locked and about to be written back under the control of @wbc. 687 * Record @inode's writeback context into @wbc and unlock the i_lock. On 688 * writeback completion, wbc_detach_inode() should be called. This is used 689 * to track the cgroup writeback context. 690 */ 691 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 692 struct inode *inode) 693 { 694 if (!inode_cgwb_enabled(inode)) { 695 spin_unlock(&inode->i_lock); 696 return; 697 } 698 699 wbc->wb = inode_to_wb(inode); 700 wbc->inode = inode; 701 702 wbc->wb_id = wbc->wb->memcg_css->id; 703 wbc->wb_lcand_id = inode->i_wb_frn_winner; 704 wbc->wb_tcand_id = 0; 705 wbc->wb_bytes = 0; 706 wbc->wb_lcand_bytes = 0; 707 wbc->wb_tcand_bytes = 0; 708 709 wb_get(wbc->wb); 710 spin_unlock(&inode->i_lock); 711 712 /* 713 * A dying wb indicates that either the blkcg associated with the 714 * memcg changed or the associated memcg is dying. In the first 715 * case, a replacement wb should already be available and we should 716 * refresh the wb immediately. In the second case, trying to 717 * refresh will keep failing. 718 */ 719 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 720 inode_switch_wbs(inode, wbc->wb_id); 721 } 722 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 723 724 /** 725 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 726 * @wbc: writeback_control of the just finished writeback 727 * 728 * To be called after a writeback attempt of an inode finishes and undoes 729 * wbc_attach_and_unlock_inode(). Can be called under any context. 730 * 731 * As concurrent write sharing of an inode is expected to be very rare and 732 * memcg only tracks page ownership on first-use basis severely confining 733 * the usefulness of such sharing, cgroup writeback tracks ownership 734 * per-inode. While the support for concurrent write sharing of an inode 735 * is deemed unnecessary, an inode being written to by different cgroups at 736 * different points in time is a lot more common, and, more importantly, 737 * charging only by first-use can too readily lead to grossly incorrect 738 * behaviors (single foreign page can lead to gigabytes of writeback to be 739 * incorrectly attributed). 740 * 741 * To resolve this issue, cgroup writeback detects the majority dirtier of 742 * an inode and transfers the ownership to it. To avoid unnecessary 743 * oscillation, the detection mechanism keeps track of history and gives 744 * out the switch verdict only if the foreign usage pattern is stable over 745 * a certain amount of time and/or writeback attempts. 746 * 747 * On each writeback attempt, @wbc tries to detect the majority writer 748 * using Boyer-Moore majority vote algorithm. In addition to the byte 749 * count from the majority voting, it also counts the bytes written for the 750 * current wb and the last round's winner wb (max of last round's current 751 * wb, the winner from two rounds ago, and the last round's majority 752 * candidate). Keeping track of the historical winner helps the algorithm 753 * to semi-reliably detect the most active writer even when it's not the 754 * absolute majority. 755 * 756 * Once the winner of the round is determined, whether the winner is 757 * foreign or not and how much IO time the round consumed is recorded in 758 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 759 * over a certain threshold, the switch verdict is given. 760 */ 761 void wbc_detach_inode(struct writeback_control *wbc) 762 { 763 struct bdi_writeback *wb = wbc->wb; 764 struct inode *inode = wbc->inode; 765 unsigned long avg_time, max_bytes, max_time; 766 u16 history; 767 int max_id; 768 769 if (!wb) 770 return; 771 772 history = inode->i_wb_frn_history; 773 avg_time = inode->i_wb_frn_avg_time; 774 775 /* pick the winner of this round */ 776 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 777 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 778 max_id = wbc->wb_id; 779 max_bytes = wbc->wb_bytes; 780 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 781 max_id = wbc->wb_lcand_id; 782 max_bytes = wbc->wb_lcand_bytes; 783 } else { 784 max_id = wbc->wb_tcand_id; 785 max_bytes = wbc->wb_tcand_bytes; 786 } 787 788 /* 789 * Calculate the amount of IO time the winner consumed and fold it 790 * into the running average kept per inode. If the consumed IO 791 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 792 * deciding whether to switch or not. This is to prevent one-off 793 * small dirtiers from skewing the verdict. 794 */ 795 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 796 wb->avg_write_bandwidth); 797 if (avg_time) 798 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 799 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 800 else 801 avg_time = max_time; /* immediate catch up on first run */ 802 803 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 804 int slots; 805 806 /* 807 * The switch verdict is reached if foreign wb's consume 808 * more than a certain proportion of IO time in a 809 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 810 * history mask where each bit represents one sixteenth of 811 * the period. Determine the number of slots to shift into 812 * history from @max_time. 813 */ 814 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 815 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 816 history <<= slots; 817 if (wbc->wb_id != max_id) 818 history |= (1U << slots) - 1; 819 820 if (history) 821 trace_inode_foreign_history(inode, wbc, history); 822 823 /* 824 * Switch if the current wb isn't the consistent winner. 825 * If there are multiple closely competing dirtiers, the 826 * inode may switch across them repeatedly over time, which 827 * is okay. The main goal is avoiding keeping an inode on 828 * the wrong wb for an extended period of time. 829 */ 830 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 831 inode_switch_wbs(inode, max_id); 832 } 833 834 /* 835 * Multiple instances of this function may race to update the 836 * following fields but we don't mind occassional inaccuracies. 837 */ 838 inode->i_wb_frn_winner = max_id; 839 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 840 inode->i_wb_frn_history = history; 841 842 wb_put(wbc->wb); 843 wbc->wb = NULL; 844 } 845 EXPORT_SYMBOL_GPL(wbc_detach_inode); 846 847 /** 848 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 849 * @wbc: writeback_control of the writeback in progress 850 * @page: page being written out 851 * @bytes: number of bytes being written out 852 * 853 * @bytes from @page are about to written out during the writeback 854 * controlled by @wbc. Keep the book for foreign inode detection. See 855 * wbc_detach_inode(). 856 */ 857 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 858 size_t bytes) 859 { 860 struct cgroup_subsys_state *css; 861 int id; 862 863 /* 864 * pageout() path doesn't attach @wbc to the inode being written 865 * out. This is intentional as we don't want the function to block 866 * behind a slow cgroup. Ultimately, we want pageout() to kick off 867 * regular writeback instead of writing things out itself. 868 */ 869 if (!wbc->wb || wbc->no_cgroup_owner) 870 return; 871 872 css = mem_cgroup_css_from_page(page); 873 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 874 if (!(css->flags & CSS_ONLINE)) 875 return; 876 877 id = css->id; 878 879 if (id == wbc->wb_id) { 880 wbc->wb_bytes += bytes; 881 return; 882 } 883 884 if (id == wbc->wb_lcand_id) 885 wbc->wb_lcand_bytes += bytes; 886 887 /* Boyer-Moore majority vote algorithm */ 888 if (!wbc->wb_tcand_bytes) 889 wbc->wb_tcand_id = id; 890 if (id == wbc->wb_tcand_id) 891 wbc->wb_tcand_bytes += bytes; 892 else 893 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 894 } 895 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 896 897 /** 898 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 899 * @wb: target bdi_writeback to split @nr_pages to 900 * @nr_pages: number of pages to write for the whole bdi 901 * 902 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 903 * relation to the total write bandwidth of all wb's w/ dirty inodes on 904 * @wb->bdi. 905 */ 906 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 907 { 908 unsigned long this_bw = wb->avg_write_bandwidth; 909 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 910 911 if (nr_pages == LONG_MAX) 912 return LONG_MAX; 913 914 /* 915 * This may be called on clean wb's and proportional distribution 916 * may not make sense, just use the original @nr_pages in those 917 * cases. In general, we wanna err on the side of writing more. 918 */ 919 if (!tot_bw || this_bw >= tot_bw) 920 return nr_pages; 921 else 922 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 923 } 924 925 /** 926 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 927 * @bdi: target backing_dev_info 928 * @base_work: wb_writeback_work to issue 929 * @skip_if_busy: skip wb's which already have writeback in progress 930 * 931 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 932 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 933 * distributed to the busy wbs according to each wb's proportion in the 934 * total active write bandwidth of @bdi. 935 */ 936 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 937 struct wb_writeback_work *base_work, 938 bool skip_if_busy) 939 { 940 struct bdi_writeback *last_wb = NULL; 941 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 942 struct bdi_writeback, bdi_node); 943 944 might_sleep(); 945 restart: 946 rcu_read_lock(); 947 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 948 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 949 struct wb_writeback_work fallback_work; 950 struct wb_writeback_work *work; 951 long nr_pages; 952 953 if (last_wb) { 954 wb_put(last_wb); 955 last_wb = NULL; 956 } 957 958 /* SYNC_ALL writes out I_DIRTY_TIME too */ 959 if (!wb_has_dirty_io(wb) && 960 (base_work->sync_mode == WB_SYNC_NONE || 961 list_empty(&wb->b_dirty_time))) 962 continue; 963 if (skip_if_busy && writeback_in_progress(wb)) 964 continue; 965 966 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 967 968 work = kmalloc(sizeof(*work), GFP_ATOMIC); 969 if (work) { 970 *work = *base_work; 971 work->nr_pages = nr_pages; 972 work->auto_free = 1; 973 wb_queue_work(wb, work); 974 continue; 975 } 976 977 /* alloc failed, execute synchronously using on-stack fallback */ 978 work = &fallback_work; 979 *work = *base_work; 980 work->nr_pages = nr_pages; 981 work->auto_free = 0; 982 work->done = &fallback_work_done; 983 984 wb_queue_work(wb, work); 985 986 /* 987 * Pin @wb so that it stays on @bdi->wb_list. This allows 988 * continuing iteration from @wb after dropping and 989 * regrabbing rcu read lock. 990 */ 991 wb_get(wb); 992 last_wb = wb; 993 994 rcu_read_unlock(); 995 wb_wait_for_completion(&fallback_work_done); 996 goto restart; 997 } 998 rcu_read_unlock(); 999 1000 if (last_wb) 1001 wb_put(last_wb); 1002 } 1003 1004 /** 1005 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1006 * @bdi_id: target bdi id 1007 * @memcg_id: target memcg css id 1008 * @reason: reason why some writeback work initiated 1009 * @done: target wb_completion 1010 * 1011 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1012 * with the specified parameters. 1013 */ 1014 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1015 enum wb_reason reason, struct wb_completion *done) 1016 { 1017 struct backing_dev_info *bdi; 1018 struct cgroup_subsys_state *memcg_css; 1019 struct bdi_writeback *wb; 1020 struct wb_writeback_work *work; 1021 unsigned long dirty; 1022 int ret; 1023 1024 /* lookup bdi and memcg */ 1025 bdi = bdi_get_by_id(bdi_id); 1026 if (!bdi) 1027 return -ENOENT; 1028 1029 rcu_read_lock(); 1030 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1031 if (memcg_css && !css_tryget(memcg_css)) 1032 memcg_css = NULL; 1033 rcu_read_unlock(); 1034 if (!memcg_css) { 1035 ret = -ENOENT; 1036 goto out_bdi_put; 1037 } 1038 1039 /* 1040 * And find the associated wb. If the wb isn't there already 1041 * there's nothing to flush, don't create one. 1042 */ 1043 wb = wb_get_lookup(bdi, memcg_css); 1044 if (!wb) { 1045 ret = -ENOENT; 1046 goto out_css_put; 1047 } 1048 1049 /* 1050 * The caller is attempting to write out most of 1051 * the currently dirty pages. Let's take the current dirty page 1052 * count and inflate it by 25% which should be large enough to 1053 * flush out most dirty pages while avoiding getting livelocked by 1054 * concurrent dirtiers. 1055 * 1056 * BTW the memcg stats are flushed periodically and this is best-effort 1057 * estimation, so some potential error is ok. 1058 */ 1059 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1060 dirty = dirty * 10 / 8; 1061 1062 /* issue the writeback work */ 1063 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1064 if (work) { 1065 work->nr_pages = dirty; 1066 work->sync_mode = WB_SYNC_NONE; 1067 work->range_cyclic = 1; 1068 work->reason = reason; 1069 work->done = done; 1070 work->auto_free = 1; 1071 wb_queue_work(wb, work); 1072 ret = 0; 1073 } else { 1074 ret = -ENOMEM; 1075 } 1076 1077 wb_put(wb); 1078 out_css_put: 1079 css_put(memcg_css); 1080 out_bdi_put: 1081 bdi_put(bdi); 1082 return ret; 1083 } 1084 1085 /** 1086 * cgroup_writeback_umount - flush inode wb switches for umount 1087 * 1088 * This function is called when a super_block is about to be destroyed and 1089 * flushes in-flight inode wb switches. An inode wb switch goes through 1090 * RCU and then workqueue, so the two need to be flushed in order to ensure 1091 * that all previously scheduled switches are finished. As wb switches are 1092 * rare occurrences and synchronize_rcu() can take a while, perform 1093 * flushing iff wb switches are in flight. 1094 */ 1095 void cgroup_writeback_umount(void) 1096 { 1097 /* 1098 * SB_ACTIVE should be reliably cleared before checking 1099 * isw_nr_in_flight, see generic_shutdown_super(). 1100 */ 1101 smp_mb(); 1102 1103 if (atomic_read(&isw_nr_in_flight)) { 1104 /* 1105 * Use rcu_barrier() to wait for all pending callbacks to 1106 * ensure that all in-flight wb switches are in the workqueue. 1107 */ 1108 rcu_barrier(); 1109 flush_workqueue(isw_wq); 1110 } 1111 } 1112 1113 static int __init cgroup_writeback_init(void) 1114 { 1115 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1116 if (!isw_wq) 1117 return -ENOMEM; 1118 return 0; 1119 } 1120 fs_initcall(cgroup_writeback_init); 1121 1122 #else /* CONFIG_CGROUP_WRITEBACK */ 1123 1124 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1125 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1126 1127 static void inode_cgwb_move_to_attached(struct inode *inode, 1128 struct bdi_writeback *wb) 1129 { 1130 assert_spin_locked(&wb->list_lock); 1131 assert_spin_locked(&inode->i_lock); 1132 1133 inode->i_state &= ~I_SYNC_QUEUED; 1134 list_del_init(&inode->i_io_list); 1135 wb_io_lists_depopulated(wb); 1136 } 1137 1138 static struct bdi_writeback * 1139 locked_inode_to_wb_and_lock_list(struct inode *inode) 1140 __releases(&inode->i_lock) 1141 __acquires(&wb->list_lock) 1142 { 1143 struct bdi_writeback *wb = inode_to_wb(inode); 1144 1145 spin_unlock(&inode->i_lock); 1146 spin_lock(&wb->list_lock); 1147 return wb; 1148 } 1149 1150 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1151 __acquires(&wb->list_lock) 1152 { 1153 struct bdi_writeback *wb = inode_to_wb(inode); 1154 1155 spin_lock(&wb->list_lock); 1156 return wb; 1157 } 1158 1159 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1160 { 1161 return nr_pages; 1162 } 1163 1164 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1165 struct wb_writeback_work *base_work, 1166 bool skip_if_busy) 1167 { 1168 might_sleep(); 1169 1170 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1171 base_work->auto_free = 0; 1172 wb_queue_work(&bdi->wb, base_work); 1173 } 1174 } 1175 1176 #endif /* CONFIG_CGROUP_WRITEBACK */ 1177 1178 /* 1179 * Add in the number of potentially dirty inodes, because each inode 1180 * write can dirty pagecache in the underlying blockdev. 1181 */ 1182 static unsigned long get_nr_dirty_pages(void) 1183 { 1184 return global_node_page_state(NR_FILE_DIRTY) + 1185 get_nr_dirty_inodes(); 1186 } 1187 1188 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1189 { 1190 if (!wb_has_dirty_io(wb)) 1191 return; 1192 1193 /* 1194 * All callers of this function want to start writeback of all 1195 * dirty pages. Places like vmscan can call this at a very 1196 * high frequency, causing pointless allocations of tons of 1197 * work items and keeping the flusher threads busy retrieving 1198 * that work. Ensure that we only allow one of them pending and 1199 * inflight at the time. 1200 */ 1201 if (test_bit(WB_start_all, &wb->state) || 1202 test_and_set_bit(WB_start_all, &wb->state)) 1203 return; 1204 1205 wb->start_all_reason = reason; 1206 wb_wakeup(wb); 1207 } 1208 1209 /** 1210 * wb_start_background_writeback - start background writeback 1211 * @wb: bdi_writback to write from 1212 * 1213 * Description: 1214 * This makes sure WB_SYNC_NONE background writeback happens. When 1215 * this function returns, it is only guaranteed that for given wb 1216 * some IO is happening if we are over background dirty threshold. 1217 * Caller need not hold sb s_umount semaphore. 1218 */ 1219 void wb_start_background_writeback(struct bdi_writeback *wb) 1220 { 1221 /* 1222 * We just wake up the flusher thread. It will perform background 1223 * writeback as soon as there is no other work to do. 1224 */ 1225 trace_writeback_wake_background(wb); 1226 wb_wakeup(wb); 1227 } 1228 1229 /* 1230 * Remove the inode from the writeback list it is on. 1231 */ 1232 void inode_io_list_del(struct inode *inode) 1233 { 1234 struct bdi_writeback *wb; 1235 1236 wb = inode_to_wb_and_lock_list(inode); 1237 spin_lock(&inode->i_lock); 1238 1239 inode->i_state &= ~I_SYNC_QUEUED; 1240 list_del_init(&inode->i_io_list); 1241 wb_io_lists_depopulated(wb); 1242 1243 spin_unlock(&inode->i_lock); 1244 spin_unlock(&wb->list_lock); 1245 } 1246 EXPORT_SYMBOL(inode_io_list_del); 1247 1248 /* 1249 * mark an inode as under writeback on the sb 1250 */ 1251 void sb_mark_inode_writeback(struct inode *inode) 1252 { 1253 struct super_block *sb = inode->i_sb; 1254 unsigned long flags; 1255 1256 if (list_empty(&inode->i_wb_list)) { 1257 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1258 if (list_empty(&inode->i_wb_list)) { 1259 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1260 trace_sb_mark_inode_writeback(inode); 1261 } 1262 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1263 } 1264 } 1265 1266 /* 1267 * clear an inode as under writeback on the sb 1268 */ 1269 void sb_clear_inode_writeback(struct inode *inode) 1270 { 1271 struct super_block *sb = inode->i_sb; 1272 unsigned long flags; 1273 1274 if (!list_empty(&inode->i_wb_list)) { 1275 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1276 if (!list_empty(&inode->i_wb_list)) { 1277 list_del_init(&inode->i_wb_list); 1278 trace_sb_clear_inode_writeback(inode); 1279 } 1280 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1281 } 1282 } 1283 1284 /* 1285 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1286 * furthest end of its superblock's dirty-inode list. 1287 * 1288 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1289 * already the most-recently-dirtied inode on the b_dirty list. If that is 1290 * the case then the inode must have been redirtied while it was being written 1291 * out and we don't reset its dirtied_when. 1292 */ 1293 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1294 { 1295 assert_spin_locked(&inode->i_lock); 1296 1297 if (!list_empty(&wb->b_dirty)) { 1298 struct inode *tail; 1299 1300 tail = wb_inode(wb->b_dirty.next); 1301 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1302 inode->dirtied_when = jiffies; 1303 } 1304 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1305 inode->i_state &= ~I_SYNC_QUEUED; 1306 } 1307 1308 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1309 { 1310 spin_lock(&inode->i_lock); 1311 redirty_tail_locked(inode, wb); 1312 spin_unlock(&inode->i_lock); 1313 } 1314 1315 /* 1316 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1317 */ 1318 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1319 { 1320 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1321 } 1322 1323 static void inode_sync_complete(struct inode *inode) 1324 { 1325 inode->i_state &= ~I_SYNC; 1326 /* If inode is clean an unused, put it into LRU now... */ 1327 inode_add_lru(inode); 1328 /* Waiters must see I_SYNC cleared before being woken up */ 1329 smp_mb(); 1330 wake_up_bit(&inode->i_state, __I_SYNC); 1331 } 1332 1333 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1334 { 1335 bool ret = time_after(inode->dirtied_when, t); 1336 #ifndef CONFIG_64BIT 1337 /* 1338 * For inodes being constantly redirtied, dirtied_when can get stuck. 1339 * It _appears_ to be in the future, but is actually in distant past. 1340 * This test is necessary to prevent such wrapped-around relative times 1341 * from permanently stopping the whole bdi writeback. 1342 */ 1343 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1344 #endif 1345 return ret; 1346 } 1347 1348 #define EXPIRE_DIRTY_ATIME 0x0001 1349 1350 /* 1351 * Move expired (dirtied before dirtied_before) dirty inodes from 1352 * @delaying_queue to @dispatch_queue. 1353 */ 1354 static int move_expired_inodes(struct list_head *delaying_queue, 1355 struct list_head *dispatch_queue, 1356 unsigned long dirtied_before) 1357 { 1358 LIST_HEAD(tmp); 1359 struct list_head *pos, *node; 1360 struct super_block *sb = NULL; 1361 struct inode *inode; 1362 int do_sb_sort = 0; 1363 int moved = 0; 1364 1365 while (!list_empty(delaying_queue)) { 1366 inode = wb_inode(delaying_queue->prev); 1367 if (inode_dirtied_after(inode, dirtied_before)) 1368 break; 1369 spin_lock(&inode->i_lock); 1370 list_move(&inode->i_io_list, &tmp); 1371 moved++; 1372 inode->i_state |= I_SYNC_QUEUED; 1373 spin_unlock(&inode->i_lock); 1374 if (sb_is_blkdev_sb(inode->i_sb)) 1375 continue; 1376 if (sb && sb != inode->i_sb) 1377 do_sb_sort = 1; 1378 sb = inode->i_sb; 1379 } 1380 1381 /* just one sb in list, splice to dispatch_queue and we're done */ 1382 if (!do_sb_sort) { 1383 list_splice(&tmp, dispatch_queue); 1384 goto out; 1385 } 1386 1387 /* 1388 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1389 * we don't take inode->i_lock here because it is just a pointless overhead. 1390 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1391 * fully under our control. 1392 */ 1393 while (!list_empty(&tmp)) { 1394 sb = wb_inode(tmp.prev)->i_sb; 1395 list_for_each_prev_safe(pos, node, &tmp) { 1396 inode = wb_inode(pos); 1397 if (inode->i_sb == sb) 1398 list_move(&inode->i_io_list, dispatch_queue); 1399 } 1400 } 1401 out: 1402 return moved; 1403 } 1404 1405 /* 1406 * Queue all expired dirty inodes for io, eldest first. 1407 * Before 1408 * newly dirtied b_dirty b_io b_more_io 1409 * =============> gf edc BA 1410 * After 1411 * newly dirtied b_dirty b_io b_more_io 1412 * =============> g fBAedc 1413 * | 1414 * +--> dequeue for IO 1415 */ 1416 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1417 unsigned long dirtied_before) 1418 { 1419 int moved; 1420 unsigned long time_expire_jif = dirtied_before; 1421 1422 assert_spin_locked(&wb->list_lock); 1423 list_splice_init(&wb->b_more_io, &wb->b_io); 1424 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1425 if (!work->for_sync) 1426 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1427 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1428 time_expire_jif); 1429 if (moved) 1430 wb_io_lists_populated(wb); 1431 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1432 } 1433 1434 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1435 { 1436 int ret; 1437 1438 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1439 trace_writeback_write_inode_start(inode, wbc); 1440 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1441 trace_writeback_write_inode(inode, wbc); 1442 return ret; 1443 } 1444 return 0; 1445 } 1446 1447 /* 1448 * Wait for writeback on an inode to complete. Called with i_lock held. 1449 * Caller must make sure inode cannot go away when we drop i_lock. 1450 */ 1451 static void __inode_wait_for_writeback(struct inode *inode) 1452 __releases(inode->i_lock) 1453 __acquires(inode->i_lock) 1454 { 1455 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1456 wait_queue_head_t *wqh; 1457 1458 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1459 while (inode->i_state & I_SYNC) { 1460 spin_unlock(&inode->i_lock); 1461 __wait_on_bit(wqh, &wq, bit_wait, 1462 TASK_UNINTERRUPTIBLE); 1463 spin_lock(&inode->i_lock); 1464 } 1465 } 1466 1467 /* 1468 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1469 */ 1470 void inode_wait_for_writeback(struct inode *inode) 1471 { 1472 spin_lock(&inode->i_lock); 1473 __inode_wait_for_writeback(inode); 1474 spin_unlock(&inode->i_lock); 1475 } 1476 1477 /* 1478 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1479 * held and drops it. It is aimed for callers not holding any inode reference 1480 * so once i_lock is dropped, inode can go away. 1481 */ 1482 static void inode_sleep_on_writeback(struct inode *inode) 1483 __releases(inode->i_lock) 1484 { 1485 DEFINE_WAIT(wait); 1486 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1487 int sleep; 1488 1489 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1490 sleep = inode->i_state & I_SYNC; 1491 spin_unlock(&inode->i_lock); 1492 if (sleep) 1493 schedule(); 1494 finish_wait(wqh, &wait); 1495 } 1496 1497 /* 1498 * Find proper writeback list for the inode depending on its current state and 1499 * possibly also change of its state while we were doing writeback. Here we 1500 * handle things such as livelock prevention or fairness of writeback among 1501 * inodes. This function can be called only by flusher thread - noone else 1502 * processes all inodes in writeback lists and requeueing inodes behind flusher 1503 * thread's back can have unexpected consequences. 1504 */ 1505 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1506 struct writeback_control *wbc) 1507 { 1508 if (inode->i_state & I_FREEING) 1509 return; 1510 1511 /* 1512 * Sync livelock prevention. Each inode is tagged and synced in one 1513 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1514 * the dirty time to prevent enqueue and sync it again. 1515 */ 1516 if ((inode->i_state & I_DIRTY) && 1517 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1518 inode->dirtied_when = jiffies; 1519 1520 if (wbc->pages_skipped) { 1521 /* 1522 * writeback is not making progress due to locked 1523 * buffers. Skip this inode for now. 1524 */ 1525 redirty_tail_locked(inode, wb); 1526 return; 1527 } 1528 1529 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1530 /* 1531 * We didn't write back all the pages. nfs_writepages() 1532 * sometimes bales out without doing anything. 1533 */ 1534 if (wbc->nr_to_write <= 0) { 1535 /* Slice used up. Queue for next turn. */ 1536 requeue_io(inode, wb); 1537 } else { 1538 /* 1539 * Writeback blocked by something other than 1540 * congestion. Delay the inode for some time to 1541 * avoid spinning on the CPU (100% iowait) 1542 * retrying writeback of the dirty page/inode 1543 * that cannot be performed immediately. 1544 */ 1545 redirty_tail_locked(inode, wb); 1546 } 1547 } else if (inode->i_state & I_DIRTY) { 1548 /* 1549 * Filesystems can dirty the inode during writeback operations, 1550 * such as delayed allocation during submission or metadata 1551 * updates after data IO completion. 1552 */ 1553 redirty_tail_locked(inode, wb); 1554 } else if (inode->i_state & I_DIRTY_TIME) { 1555 inode->dirtied_when = jiffies; 1556 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1557 inode->i_state &= ~I_SYNC_QUEUED; 1558 } else { 1559 /* The inode is clean. Remove from writeback lists. */ 1560 inode_cgwb_move_to_attached(inode, wb); 1561 } 1562 } 1563 1564 /* 1565 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1566 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1567 * 1568 * This doesn't remove the inode from the writeback list it is on, except 1569 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1570 * expiration. The caller is otherwise responsible for writeback list handling. 1571 * 1572 * The caller is also responsible for setting the I_SYNC flag beforehand and 1573 * calling inode_sync_complete() to clear it afterwards. 1574 */ 1575 static int 1576 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1577 { 1578 struct address_space *mapping = inode->i_mapping; 1579 long nr_to_write = wbc->nr_to_write; 1580 unsigned dirty; 1581 int ret; 1582 1583 WARN_ON(!(inode->i_state & I_SYNC)); 1584 1585 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1586 1587 ret = do_writepages(mapping, wbc); 1588 1589 /* 1590 * Make sure to wait on the data before writing out the metadata. 1591 * This is important for filesystems that modify metadata on data 1592 * I/O completion. We don't do it for sync(2) writeback because it has a 1593 * separate, external IO completion path and ->sync_fs for guaranteeing 1594 * inode metadata is written back correctly. 1595 */ 1596 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1597 int err = filemap_fdatawait(mapping); 1598 if (ret == 0) 1599 ret = err; 1600 } 1601 1602 /* 1603 * If the inode has dirty timestamps and we need to write them, call 1604 * mark_inode_dirty_sync() to notify the filesystem about it and to 1605 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1606 */ 1607 if ((inode->i_state & I_DIRTY_TIME) && 1608 (wbc->sync_mode == WB_SYNC_ALL || 1609 time_after(jiffies, inode->dirtied_time_when + 1610 dirtytime_expire_interval * HZ))) { 1611 trace_writeback_lazytime(inode); 1612 mark_inode_dirty_sync(inode); 1613 } 1614 1615 /* 1616 * Get and clear the dirty flags from i_state. This needs to be done 1617 * after calling writepages because some filesystems may redirty the 1618 * inode during writepages due to delalloc. It also needs to be done 1619 * after handling timestamp expiration, as that may dirty the inode too. 1620 */ 1621 spin_lock(&inode->i_lock); 1622 dirty = inode->i_state & I_DIRTY; 1623 inode->i_state &= ~dirty; 1624 1625 /* 1626 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1627 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1628 * either they see the I_DIRTY bits cleared or we see the dirtied 1629 * inode. 1630 * 1631 * I_DIRTY_PAGES is always cleared together above even if @mapping 1632 * still has dirty pages. The flag is reinstated after smp_mb() if 1633 * necessary. This guarantees that either __mark_inode_dirty() 1634 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1635 */ 1636 smp_mb(); 1637 1638 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1639 inode->i_state |= I_DIRTY_PAGES; 1640 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) { 1641 if (!(inode->i_state & I_DIRTY_PAGES)) { 1642 inode->i_state &= ~I_PINNING_FSCACHE_WB; 1643 wbc->unpinned_fscache_wb = true; 1644 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */ 1645 } 1646 } 1647 1648 spin_unlock(&inode->i_lock); 1649 1650 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1651 if (dirty & ~I_DIRTY_PAGES) { 1652 int err = write_inode(inode, wbc); 1653 if (ret == 0) 1654 ret = err; 1655 } 1656 wbc->unpinned_fscache_wb = false; 1657 trace_writeback_single_inode(inode, wbc, nr_to_write); 1658 return ret; 1659 } 1660 1661 /* 1662 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1663 * the regular batched writeback done by the flusher threads in 1664 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1665 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1666 * 1667 * To prevent the inode from going away, either the caller must have a reference 1668 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1669 */ 1670 static int writeback_single_inode(struct inode *inode, 1671 struct writeback_control *wbc) 1672 { 1673 struct bdi_writeback *wb; 1674 int ret = 0; 1675 1676 spin_lock(&inode->i_lock); 1677 if (!atomic_read(&inode->i_count)) 1678 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1679 else 1680 WARN_ON(inode->i_state & I_WILL_FREE); 1681 1682 if (inode->i_state & I_SYNC) { 1683 /* 1684 * Writeback is already running on the inode. For WB_SYNC_NONE, 1685 * that's enough and we can just return. For WB_SYNC_ALL, we 1686 * must wait for the existing writeback to complete, then do 1687 * writeback again if there's anything left. 1688 */ 1689 if (wbc->sync_mode != WB_SYNC_ALL) 1690 goto out; 1691 __inode_wait_for_writeback(inode); 1692 } 1693 WARN_ON(inode->i_state & I_SYNC); 1694 /* 1695 * If the inode is already fully clean, then there's nothing to do. 1696 * 1697 * For data-integrity syncs we also need to check whether any pages are 1698 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1699 * there are any such pages, we'll need to wait for them. 1700 */ 1701 if (!(inode->i_state & I_DIRTY_ALL) && 1702 (wbc->sync_mode != WB_SYNC_ALL || 1703 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1704 goto out; 1705 inode->i_state |= I_SYNC; 1706 wbc_attach_and_unlock_inode(wbc, inode); 1707 1708 ret = __writeback_single_inode(inode, wbc); 1709 1710 wbc_detach_inode(wbc); 1711 1712 wb = inode_to_wb_and_lock_list(inode); 1713 spin_lock(&inode->i_lock); 1714 /* 1715 * If the inode is freeing, its i_io_list shoudn't be updated 1716 * as it can be finally deleted at this moment. 1717 */ 1718 if (!(inode->i_state & I_FREEING)) { 1719 /* 1720 * If the inode is now fully clean, then it can be safely 1721 * removed from its writeback list (if any). Otherwise the 1722 * flusher threads are responsible for the writeback lists. 1723 */ 1724 if (!(inode->i_state & I_DIRTY_ALL)) 1725 inode_cgwb_move_to_attached(inode, wb); 1726 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1727 if ((inode->i_state & I_DIRTY)) 1728 redirty_tail_locked(inode, wb); 1729 else if (inode->i_state & I_DIRTY_TIME) { 1730 inode->dirtied_when = jiffies; 1731 inode_io_list_move_locked(inode, 1732 wb, 1733 &wb->b_dirty_time); 1734 } 1735 } 1736 } 1737 1738 spin_unlock(&wb->list_lock); 1739 inode_sync_complete(inode); 1740 out: 1741 spin_unlock(&inode->i_lock); 1742 return ret; 1743 } 1744 1745 static long writeback_chunk_size(struct bdi_writeback *wb, 1746 struct wb_writeback_work *work) 1747 { 1748 long pages; 1749 1750 /* 1751 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1752 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1753 * here avoids calling into writeback_inodes_wb() more than once. 1754 * 1755 * The intended call sequence for WB_SYNC_ALL writeback is: 1756 * 1757 * wb_writeback() 1758 * writeback_sb_inodes() <== called only once 1759 * write_cache_pages() <== called once for each inode 1760 * (quickly) tag currently dirty pages 1761 * (maybe slowly) sync all tagged pages 1762 */ 1763 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1764 pages = LONG_MAX; 1765 else { 1766 pages = min(wb->avg_write_bandwidth / 2, 1767 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1768 pages = min(pages, work->nr_pages); 1769 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1770 MIN_WRITEBACK_PAGES); 1771 } 1772 1773 return pages; 1774 } 1775 1776 /* 1777 * Write a portion of b_io inodes which belong to @sb. 1778 * 1779 * Return the number of pages and/or inodes written. 1780 * 1781 * NOTE! This is called with wb->list_lock held, and will 1782 * unlock and relock that for each inode it ends up doing 1783 * IO for. 1784 */ 1785 static long writeback_sb_inodes(struct super_block *sb, 1786 struct bdi_writeback *wb, 1787 struct wb_writeback_work *work) 1788 { 1789 struct writeback_control wbc = { 1790 .sync_mode = work->sync_mode, 1791 .tagged_writepages = work->tagged_writepages, 1792 .for_kupdate = work->for_kupdate, 1793 .for_background = work->for_background, 1794 .for_sync = work->for_sync, 1795 .range_cyclic = work->range_cyclic, 1796 .range_start = 0, 1797 .range_end = LLONG_MAX, 1798 }; 1799 unsigned long start_time = jiffies; 1800 long write_chunk; 1801 long total_wrote = 0; /* count both pages and inodes */ 1802 1803 while (!list_empty(&wb->b_io)) { 1804 struct inode *inode = wb_inode(wb->b_io.prev); 1805 struct bdi_writeback *tmp_wb; 1806 long wrote; 1807 1808 if (inode->i_sb != sb) { 1809 if (work->sb) { 1810 /* 1811 * We only want to write back data for this 1812 * superblock, move all inodes not belonging 1813 * to it back onto the dirty list. 1814 */ 1815 redirty_tail(inode, wb); 1816 continue; 1817 } 1818 1819 /* 1820 * The inode belongs to a different superblock. 1821 * Bounce back to the caller to unpin this and 1822 * pin the next superblock. 1823 */ 1824 break; 1825 } 1826 1827 /* 1828 * Don't bother with new inodes or inodes being freed, first 1829 * kind does not need periodic writeout yet, and for the latter 1830 * kind writeout is handled by the freer. 1831 */ 1832 spin_lock(&inode->i_lock); 1833 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1834 redirty_tail_locked(inode, wb); 1835 spin_unlock(&inode->i_lock); 1836 continue; 1837 } 1838 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1839 /* 1840 * If this inode is locked for writeback and we are not 1841 * doing writeback-for-data-integrity, move it to 1842 * b_more_io so that writeback can proceed with the 1843 * other inodes on s_io. 1844 * 1845 * We'll have another go at writing back this inode 1846 * when we completed a full scan of b_io. 1847 */ 1848 requeue_io(inode, wb); 1849 spin_unlock(&inode->i_lock); 1850 trace_writeback_sb_inodes_requeue(inode); 1851 continue; 1852 } 1853 spin_unlock(&wb->list_lock); 1854 1855 /* 1856 * We already requeued the inode if it had I_SYNC set and we 1857 * are doing WB_SYNC_NONE writeback. So this catches only the 1858 * WB_SYNC_ALL case. 1859 */ 1860 if (inode->i_state & I_SYNC) { 1861 /* Wait for I_SYNC. This function drops i_lock... */ 1862 inode_sleep_on_writeback(inode); 1863 /* Inode may be gone, start again */ 1864 spin_lock(&wb->list_lock); 1865 continue; 1866 } 1867 inode->i_state |= I_SYNC; 1868 wbc_attach_and_unlock_inode(&wbc, inode); 1869 1870 write_chunk = writeback_chunk_size(wb, work); 1871 wbc.nr_to_write = write_chunk; 1872 wbc.pages_skipped = 0; 1873 1874 /* 1875 * We use I_SYNC to pin the inode in memory. While it is set 1876 * evict_inode() will wait so the inode cannot be freed. 1877 */ 1878 __writeback_single_inode(inode, &wbc); 1879 1880 wbc_detach_inode(&wbc); 1881 work->nr_pages -= write_chunk - wbc.nr_to_write; 1882 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1883 wrote = wrote < 0 ? 0 : wrote; 1884 total_wrote += wrote; 1885 1886 if (need_resched()) { 1887 /* 1888 * We're trying to balance between building up a nice 1889 * long list of IOs to improve our merge rate, and 1890 * getting those IOs out quickly for anyone throttling 1891 * in balance_dirty_pages(). cond_resched() doesn't 1892 * unplug, so get our IOs out the door before we 1893 * give up the CPU. 1894 */ 1895 blk_flush_plug(current->plug, false); 1896 cond_resched(); 1897 } 1898 1899 /* 1900 * Requeue @inode if still dirty. Be careful as @inode may 1901 * have been switched to another wb in the meantime. 1902 */ 1903 tmp_wb = inode_to_wb_and_lock_list(inode); 1904 spin_lock(&inode->i_lock); 1905 if (!(inode->i_state & I_DIRTY_ALL)) 1906 total_wrote++; 1907 requeue_inode(inode, tmp_wb, &wbc); 1908 inode_sync_complete(inode); 1909 spin_unlock(&inode->i_lock); 1910 1911 if (unlikely(tmp_wb != wb)) { 1912 spin_unlock(&tmp_wb->list_lock); 1913 spin_lock(&wb->list_lock); 1914 } 1915 1916 /* 1917 * bail out to wb_writeback() often enough to check 1918 * background threshold and other termination conditions. 1919 */ 1920 if (total_wrote) { 1921 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1922 break; 1923 if (work->nr_pages <= 0) 1924 break; 1925 } 1926 } 1927 return total_wrote; 1928 } 1929 1930 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1931 struct wb_writeback_work *work) 1932 { 1933 unsigned long start_time = jiffies; 1934 long wrote = 0; 1935 1936 while (!list_empty(&wb->b_io)) { 1937 struct inode *inode = wb_inode(wb->b_io.prev); 1938 struct super_block *sb = inode->i_sb; 1939 1940 if (!trylock_super(sb)) { 1941 /* 1942 * trylock_super() may fail consistently due to 1943 * s_umount being grabbed by someone else. Don't use 1944 * requeue_io() to avoid busy retrying the inode/sb. 1945 */ 1946 redirty_tail(inode, wb); 1947 continue; 1948 } 1949 wrote += writeback_sb_inodes(sb, wb, work); 1950 up_read(&sb->s_umount); 1951 1952 /* refer to the same tests at the end of writeback_sb_inodes */ 1953 if (wrote) { 1954 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1955 break; 1956 if (work->nr_pages <= 0) 1957 break; 1958 } 1959 } 1960 /* Leave any unwritten inodes on b_io */ 1961 return wrote; 1962 } 1963 1964 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1965 enum wb_reason reason) 1966 { 1967 struct wb_writeback_work work = { 1968 .nr_pages = nr_pages, 1969 .sync_mode = WB_SYNC_NONE, 1970 .range_cyclic = 1, 1971 .reason = reason, 1972 }; 1973 struct blk_plug plug; 1974 1975 blk_start_plug(&plug); 1976 spin_lock(&wb->list_lock); 1977 if (list_empty(&wb->b_io)) 1978 queue_io(wb, &work, jiffies); 1979 __writeback_inodes_wb(wb, &work); 1980 spin_unlock(&wb->list_lock); 1981 blk_finish_plug(&plug); 1982 1983 return nr_pages - work.nr_pages; 1984 } 1985 1986 /* 1987 * Explicit flushing or periodic writeback of "old" data. 1988 * 1989 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1990 * dirtying-time in the inode's address_space. So this periodic writeback code 1991 * just walks the superblock inode list, writing back any inodes which are 1992 * older than a specific point in time. 1993 * 1994 * Try to run once per dirty_writeback_interval. But if a writeback event 1995 * takes longer than a dirty_writeback_interval interval, then leave a 1996 * one-second gap. 1997 * 1998 * dirtied_before takes precedence over nr_to_write. So we'll only write back 1999 * all dirty pages if they are all attached to "old" mappings. 2000 */ 2001 static long wb_writeback(struct bdi_writeback *wb, 2002 struct wb_writeback_work *work) 2003 { 2004 long nr_pages = work->nr_pages; 2005 unsigned long dirtied_before = jiffies; 2006 struct inode *inode; 2007 long progress; 2008 struct blk_plug plug; 2009 2010 blk_start_plug(&plug); 2011 spin_lock(&wb->list_lock); 2012 for (;;) { 2013 /* 2014 * Stop writeback when nr_pages has been consumed 2015 */ 2016 if (work->nr_pages <= 0) 2017 break; 2018 2019 /* 2020 * Background writeout and kupdate-style writeback may 2021 * run forever. Stop them if there is other work to do 2022 * so that e.g. sync can proceed. They'll be restarted 2023 * after the other works are all done. 2024 */ 2025 if ((work->for_background || work->for_kupdate) && 2026 !list_empty(&wb->work_list)) 2027 break; 2028 2029 /* 2030 * For background writeout, stop when we are below the 2031 * background dirty threshold 2032 */ 2033 if (work->for_background && !wb_over_bg_thresh(wb)) 2034 break; 2035 2036 /* 2037 * Kupdate and background works are special and we want to 2038 * include all inodes that need writing. Livelock avoidance is 2039 * handled by these works yielding to any other work so we are 2040 * safe. 2041 */ 2042 if (work->for_kupdate) { 2043 dirtied_before = jiffies - 2044 msecs_to_jiffies(dirty_expire_interval * 10); 2045 } else if (work->for_background) 2046 dirtied_before = jiffies; 2047 2048 trace_writeback_start(wb, work); 2049 if (list_empty(&wb->b_io)) 2050 queue_io(wb, work, dirtied_before); 2051 if (work->sb) 2052 progress = writeback_sb_inodes(work->sb, wb, work); 2053 else 2054 progress = __writeback_inodes_wb(wb, work); 2055 trace_writeback_written(wb, work); 2056 2057 /* 2058 * Did we write something? Try for more 2059 * 2060 * Dirty inodes are moved to b_io for writeback in batches. 2061 * The completion of the current batch does not necessarily 2062 * mean the overall work is done. So we keep looping as long 2063 * as made some progress on cleaning pages or inodes. 2064 */ 2065 if (progress) 2066 continue; 2067 /* 2068 * No more inodes for IO, bail 2069 */ 2070 if (list_empty(&wb->b_more_io)) 2071 break; 2072 /* 2073 * Nothing written. Wait for some inode to 2074 * become available for writeback. Otherwise 2075 * we'll just busyloop. 2076 */ 2077 trace_writeback_wait(wb, work); 2078 inode = wb_inode(wb->b_more_io.prev); 2079 spin_lock(&inode->i_lock); 2080 spin_unlock(&wb->list_lock); 2081 /* This function drops i_lock... */ 2082 inode_sleep_on_writeback(inode); 2083 spin_lock(&wb->list_lock); 2084 } 2085 spin_unlock(&wb->list_lock); 2086 blk_finish_plug(&plug); 2087 2088 return nr_pages - work->nr_pages; 2089 } 2090 2091 /* 2092 * Return the next wb_writeback_work struct that hasn't been processed yet. 2093 */ 2094 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2095 { 2096 struct wb_writeback_work *work = NULL; 2097 2098 spin_lock_irq(&wb->work_lock); 2099 if (!list_empty(&wb->work_list)) { 2100 work = list_entry(wb->work_list.next, 2101 struct wb_writeback_work, list); 2102 list_del_init(&work->list); 2103 } 2104 spin_unlock_irq(&wb->work_lock); 2105 return work; 2106 } 2107 2108 static long wb_check_background_flush(struct bdi_writeback *wb) 2109 { 2110 if (wb_over_bg_thresh(wb)) { 2111 2112 struct wb_writeback_work work = { 2113 .nr_pages = LONG_MAX, 2114 .sync_mode = WB_SYNC_NONE, 2115 .for_background = 1, 2116 .range_cyclic = 1, 2117 .reason = WB_REASON_BACKGROUND, 2118 }; 2119 2120 return wb_writeback(wb, &work); 2121 } 2122 2123 return 0; 2124 } 2125 2126 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2127 { 2128 unsigned long expired; 2129 long nr_pages; 2130 2131 /* 2132 * When set to zero, disable periodic writeback 2133 */ 2134 if (!dirty_writeback_interval) 2135 return 0; 2136 2137 expired = wb->last_old_flush + 2138 msecs_to_jiffies(dirty_writeback_interval * 10); 2139 if (time_before(jiffies, expired)) 2140 return 0; 2141 2142 wb->last_old_flush = jiffies; 2143 nr_pages = get_nr_dirty_pages(); 2144 2145 if (nr_pages) { 2146 struct wb_writeback_work work = { 2147 .nr_pages = nr_pages, 2148 .sync_mode = WB_SYNC_NONE, 2149 .for_kupdate = 1, 2150 .range_cyclic = 1, 2151 .reason = WB_REASON_PERIODIC, 2152 }; 2153 2154 return wb_writeback(wb, &work); 2155 } 2156 2157 return 0; 2158 } 2159 2160 static long wb_check_start_all(struct bdi_writeback *wb) 2161 { 2162 long nr_pages; 2163 2164 if (!test_bit(WB_start_all, &wb->state)) 2165 return 0; 2166 2167 nr_pages = get_nr_dirty_pages(); 2168 if (nr_pages) { 2169 struct wb_writeback_work work = { 2170 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2171 .sync_mode = WB_SYNC_NONE, 2172 .range_cyclic = 1, 2173 .reason = wb->start_all_reason, 2174 }; 2175 2176 nr_pages = wb_writeback(wb, &work); 2177 } 2178 2179 clear_bit(WB_start_all, &wb->state); 2180 return nr_pages; 2181 } 2182 2183 2184 /* 2185 * Retrieve work items and do the writeback they describe 2186 */ 2187 static long wb_do_writeback(struct bdi_writeback *wb) 2188 { 2189 struct wb_writeback_work *work; 2190 long wrote = 0; 2191 2192 set_bit(WB_writeback_running, &wb->state); 2193 while ((work = get_next_work_item(wb)) != NULL) { 2194 trace_writeback_exec(wb, work); 2195 wrote += wb_writeback(wb, work); 2196 finish_writeback_work(wb, work); 2197 } 2198 2199 /* 2200 * Check for a flush-everything request 2201 */ 2202 wrote += wb_check_start_all(wb); 2203 2204 /* 2205 * Check for periodic writeback, kupdated() style 2206 */ 2207 wrote += wb_check_old_data_flush(wb); 2208 wrote += wb_check_background_flush(wb); 2209 clear_bit(WB_writeback_running, &wb->state); 2210 2211 return wrote; 2212 } 2213 2214 /* 2215 * Handle writeback of dirty data for the device backed by this bdi. Also 2216 * reschedules periodically and does kupdated style flushing. 2217 */ 2218 void wb_workfn(struct work_struct *work) 2219 { 2220 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2221 struct bdi_writeback, dwork); 2222 long pages_written; 2223 2224 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2225 2226 if (likely(!current_is_workqueue_rescuer() || 2227 !test_bit(WB_registered, &wb->state))) { 2228 /* 2229 * The normal path. Keep writing back @wb until its 2230 * work_list is empty. Note that this path is also taken 2231 * if @wb is shutting down even when we're running off the 2232 * rescuer as work_list needs to be drained. 2233 */ 2234 do { 2235 pages_written = wb_do_writeback(wb); 2236 trace_writeback_pages_written(pages_written); 2237 } while (!list_empty(&wb->work_list)); 2238 } else { 2239 /* 2240 * bdi_wq can't get enough workers and we're running off 2241 * the emergency worker. Don't hog it. Hopefully, 1024 is 2242 * enough for efficient IO. 2243 */ 2244 pages_written = writeback_inodes_wb(wb, 1024, 2245 WB_REASON_FORKER_THREAD); 2246 trace_writeback_pages_written(pages_written); 2247 } 2248 2249 if (!list_empty(&wb->work_list)) 2250 wb_wakeup(wb); 2251 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2252 wb_wakeup_delayed(wb); 2253 } 2254 2255 /* 2256 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2257 * write back the whole world. 2258 */ 2259 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2260 enum wb_reason reason) 2261 { 2262 struct bdi_writeback *wb; 2263 2264 if (!bdi_has_dirty_io(bdi)) 2265 return; 2266 2267 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2268 wb_start_writeback(wb, reason); 2269 } 2270 2271 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2272 enum wb_reason reason) 2273 { 2274 rcu_read_lock(); 2275 __wakeup_flusher_threads_bdi(bdi, reason); 2276 rcu_read_unlock(); 2277 } 2278 2279 /* 2280 * Wakeup the flusher threads to start writeback of all currently dirty pages 2281 */ 2282 void wakeup_flusher_threads(enum wb_reason reason) 2283 { 2284 struct backing_dev_info *bdi; 2285 2286 /* 2287 * If we are expecting writeback progress we must submit plugged IO. 2288 */ 2289 blk_flush_plug(current->plug, true); 2290 2291 rcu_read_lock(); 2292 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2293 __wakeup_flusher_threads_bdi(bdi, reason); 2294 rcu_read_unlock(); 2295 } 2296 2297 /* 2298 * Wake up bdi's periodically to make sure dirtytime inodes gets 2299 * written back periodically. We deliberately do *not* check the 2300 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2301 * kernel to be constantly waking up once there are any dirtytime 2302 * inodes on the system. So instead we define a separate delayed work 2303 * function which gets called much more rarely. (By default, only 2304 * once every 12 hours.) 2305 * 2306 * If there is any other write activity going on in the file system, 2307 * this function won't be necessary. But if the only thing that has 2308 * happened on the file system is a dirtytime inode caused by an atime 2309 * update, we need this infrastructure below to make sure that inode 2310 * eventually gets pushed out to disk. 2311 */ 2312 static void wakeup_dirtytime_writeback(struct work_struct *w); 2313 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2314 2315 static void wakeup_dirtytime_writeback(struct work_struct *w) 2316 { 2317 struct backing_dev_info *bdi; 2318 2319 rcu_read_lock(); 2320 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2321 struct bdi_writeback *wb; 2322 2323 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2324 if (!list_empty(&wb->b_dirty_time)) 2325 wb_wakeup(wb); 2326 } 2327 rcu_read_unlock(); 2328 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2329 } 2330 2331 static int __init start_dirtytime_writeback(void) 2332 { 2333 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2334 return 0; 2335 } 2336 __initcall(start_dirtytime_writeback); 2337 2338 int dirtytime_interval_handler(struct ctl_table *table, int write, 2339 void *buffer, size_t *lenp, loff_t *ppos) 2340 { 2341 int ret; 2342 2343 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2344 if (ret == 0 && write) 2345 mod_delayed_work(system_wq, &dirtytime_work, 0); 2346 return ret; 2347 } 2348 2349 /** 2350 * __mark_inode_dirty - internal function to mark an inode dirty 2351 * 2352 * @inode: inode to mark 2353 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2354 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2355 * with I_DIRTY_PAGES. 2356 * 2357 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2358 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2359 * 2360 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2361 * instead of calling this directly. 2362 * 2363 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2364 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2365 * even if they are later hashed, as they will have been marked dirty already. 2366 * 2367 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2368 * 2369 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2370 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2371 * the kernel-internal blockdev inode represents the dirtying time of the 2372 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2373 * page->mapping->host, so the page-dirtying time is recorded in the internal 2374 * blockdev inode. 2375 */ 2376 void __mark_inode_dirty(struct inode *inode, int flags) 2377 { 2378 struct super_block *sb = inode->i_sb; 2379 int dirtytime = 0; 2380 struct bdi_writeback *wb = NULL; 2381 2382 trace_writeback_mark_inode_dirty(inode, flags); 2383 2384 if (flags & I_DIRTY_INODE) { 2385 /* 2386 * Inode timestamp update will piggback on this dirtying. 2387 * We tell ->dirty_inode callback that timestamps need to 2388 * be updated by setting I_DIRTY_TIME in flags. 2389 */ 2390 if (inode->i_state & I_DIRTY_TIME) { 2391 spin_lock(&inode->i_lock); 2392 if (inode->i_state & I_DIRTY_TIME) { 2393 inode->i_state &= ~I_DIRTY_TIME; 2394 flags |= I_DIRTY_TIME; 2395 } 2396 spin_unlock(&inode->i_lock); 2397 } 2398 2399 /* 2400 * Notify the filesystem about the inode being dirtied, so that 2401 * (if needed) it can update on-disk fields and journal the 2402 * inode. This is only needed when the inode itself is being 2403 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2404 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2405 */ 2406 trace_writeback_dirty_inode_start(inode, flags); 2407 if (sb->s_op->dirty_inode) 2408 sb->s_op->dirty_inode(inode, 2409 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2410 trace_writeback_dirty_inode(inode, flags); 2411 2412 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2413 flags &= ~I_DIRTY_TIME; 2414 } else { 2415 /* 2416 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2417 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2418 * in one call to __mark_inode_dirty().) 2419 */ 2420 dirtytime = flags & I_DIRTY_TIME; 2421 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2422 } 2423 2424 /* 2425 * Paired with smp_mb() in __writeback_single_inode() for the 2426 * following lockless i_state test. See there for details. 2427 */ 2428 smp_mb(); 2429 2430 if ((inode->i_state & flags) == flags) 2431 return; 2432 2433 spin_lock(&inode->i_lock); 2434 if ((inode->i_state & flags) != flags) { 2435 const int was_dirty = inode->i_state & I_DIRTY; 2436 2437 inode_attach_wb(inode, NULL); 2438 2439 inode->i_state |= flags; 2440 2441 /* 2442 * Grab inode's wb early because it requires dropping i_lock and we 2443 * need to make sure following checks happen atomically with dirty 2444 * list handling so that we don't move inodes under flush worker's 2445 * hands. 2446 */ 2447 if (!was_dirty) { 2448 wb = locked_inode_to_wb_and_lock_list(inode); 2449 spin_lock(&inode->i_lock); 2450 } 2451 2452 /* 2453 * If the inode is queued for writeback by flush worker, just 2454 * update its dirty state. Once the flush worker is done with 2455 * the inode it will place it on the appropriate superblock 2456 * list, based upon its state. 2457 */ 2458 if (inode->i_state & I_SYNC_QUEUED) 2459 goto out_unlock; 2460 2461 /* 2462 * Only add valid (hashed) inodes to the superblock's 2463 * dirty list. Add blockdev inodes as well. 2464 */ 2465 if (!S_ISBLK(inode->i_mode)) { 2466 if (inode_unhashed(inode)) 2467 goto out_unlock; 2468 } 2469 if (inode->i_state & I_FREEING) 2470 goto out_unlock; 2471 2472 /* 2473 * If the inode was already on b_dirty/b_io/b_more_io, don't 2474 * reposition it (that would break b_dirty time-ordering). 2475 */ 2476 if (!was_dirty) { 2477 struct list_head *dirty_list; 2478 bool wakeup_bdi = false; 2479 2480 inode->dirtied_when = jiffies; 2481 if (dirtytime) 2482 inode->dirtied_time_when = jiffies; 2483 2484 if (inode->i_state & I_DIRTY) 2485 dirty_list = &wb->b_dirty; 2486 else 2487 dirty_list = &wb->b_dirty_time; 2488 2489 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2490 dirty_list); 2491 2492 spin_unlock(&wb->list_lock); 2493 spin_unlock(&inode->i_lock); 2494 trace_writeback_dirty_inode_enqueue(inode); 2495 2496 /* 2497 * If this is the first dirty inode for this bdi, 2498 * we have to wake-up the corresponding bdi thread 2499 * to make sure background write-back happens 2500 * later. 2501 */ 2502 if (wakeup_bdi && 2503 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2504 wb_wakeup_delayed(wb); 2505 return; 2506 } 2507 } 2508 out_unlock: 2509 if (wb) 2510 spin_unlock(&wb->list_lock); 2511 spin_unlock(&inode->i_lock); 2512 } 2513 EXPORT_SYMBOL(__mark_inode_dirty); 2514 2515 /* 2516 * The @s_sync_lock is used to serialise concurrent sync operations 2517 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2518 * Concurrent callers will block on the s_sync_lock rather than doing contending 2519 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2520 * has been issued up to the time this function is enter is guaranteed to be 2521 * completed by the time we have gained the lock and waited for all IO that is 2522 * in progress regardless of the order callers are granted the lock. 2523 */ 2524 static void wait_sb_inodes(struct super_block *sb) 2525 { 2526 LIST_HEAD(sync_list); 2527 2528 /* 2529 * We need to be protected against the filesystem going from 2530 * r/o to r/w or vice versa. 2531 */ 2532 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2533 2534 mutex_lock(&sb->s_sync_lock); 2535 2536 /* 2537 * Splice the writeback list onto a temporary list to avoid waiting on 2538 * inodes that have started writeback after this point. 2539 * 2540 * Use rcu_read_lock() to keep the inodes around until we have a 2541 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2542 * the local list because inodes can be dropped from either by writeback 2543 * completion. 2544 */ 2545 rcu_read_lock(); 2546 spin_lock_irq(&sb->s_inode_wblist_lock); 2547 list_splice_init(&sb->s_inodes_wb, &sync_list); 2548 2549 /* 2550 * Data integrity sync. Must wait for all pages under writeback, because 2551 * there may have been pages dirtied before our sync call, but which had 2552 * writeout started before we write it out. In which case, the inode 2553 * may not be on the dirty list, but we still have to wait for that 2554 * writeout. 2555 */ 2556 while (!list_empty(&sync_list)) { 2557 struct inode *inode = list_first_entry(&sync_list, struct inode, 2558 i_wb_list); 2559 struct address_space *mapping = inode->i_mapping; 2560 2561 /* 2562 * Move each inode back to the wb list before we drop the lock 2563 * to preserve consistency between i_wb_list and the mapping 2564 * writeback tag. Writeback completion is responsible to remove 2565 * the inode from either list once the writeback tag is cleared. 2566 */ 2567 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2568 2569 /* 2570 * The mapping can appear untagged while still on-list since we 2571 * do not have the mapping lock. Skip it here, wb completion 2572 * will remove it. 2573 */ 2574 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2575 continue; 2576 2577 spin_unlock_irq(&sb->s_inode_wblist_lock); 2578 2579 spin_lock(&inode->i_lock); 2580 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2581 spin_unlock(&inode->i_lock); 2582 2583 spin_lock_irq(&sb->s_inode_wblist_lock); 2584 continue; 2585 } 2586 __iget(inode); 2587 spin_unlock(&inode->i_lock); 2588 rcu_read_unlock(); 2589 2590 /* 2591 * We keep the error status of individual mapping so that 2592 * applications can catch the writeback error using fsync(2). 2593 * See filemap_fdatawait_keep_errors() for details. 2594 */ 2595 filemap_fdatawait_keep_errors(mapping); 2596 2597 cond_resched(); 2598 2599 iput(inode); 2600 2601 rcu_read_lock(); 2602 spin_lock_irq(&sb->s_inode_wblist_lock); 2603 } 2604 spin_unlock_irq(&sb->s_inode_wblist_lock); 2605 rcu_read_unlock(); 2606 mutex_unlock(&sb->s_sync_lock); 2607 } 2608 2609 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2610 enum wb_reason reason, bool skip_if_busy) 2611 { 2612 struct backing_dev_info *bdi = sb->s_bdi; 2613 DEFINE_WB_COMPLETION(done, bdi); 2614 struct wb_writeback_work work = { 2615 .sb = sb, 2616 .sync_mode = WB_SYNC_NONE, 2617 .tagged_writepages = 1, 2618 .done = &done, 2619 .nr_pages = nr, 2620 .reason = reason, 2621 }; 2622 2623 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2624 return; 2625 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2626 2627 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2628 wb_wait_for_completion(&done); 2629 } 2630 2631 /** 2632 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2633 * @sb: the superblock 2634 * @nr: the number of pages to write 2635 * @reason: reason why some writeback work initiated 2636 * 2637 * Start writeback on some inodes on this super_block. No guarantees are made 2638 * on how many (if any) will be written, and this function does not wait 2639 * for IO completion of submitted IO. 2640 */ 2641 void writeback_inodes_sb_nr(struct super_block *sb, 2642 unsigned long nr, 2643 enum wb_reason reason) 2644 { 2645 __writeback_inodes_sb_nr(sb, nr, reason, false); 2646 } 2647 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2648 2649 /** 2650 * writeback_inodes_sb - writeback dirty inodes from given super_block 2651 * @sb: the superblock 2652 * @reason: reason why some writeback work was initiated 2653 * 2654 * Start writeback on some inodes on this super_block. No guarantees are made 2655 * on how many (if any) will be written, and this function does not wait 2656 * for IO completion of submitted IO. 2657 */ 2658 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2659 { 2660 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2661 } 2662 EXPORT_SYMBOL(writeback_inodes_sb); 2663 2664 /** 2665 * try_to_writeback_inodes_sb - try to start writeback if none underway 2666 * @sb: the superblock 2667 * @reason: reason why some writeback work was initiated 2668 * 2669 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2670 */ 2671 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2672 { 2673 if (!down_read_trylock(&sb->s_umount)) 2674 return; 2675 2676 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2677 up_read(&sb->s_umount); 2678 } 2679 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2680 2681 /** 2682 * sync_inodes_sb - sync sb inode pages 2683 * @sb: the superblock 2684 * 2685 * This function writes and waits on any dirty inode belonging to this 2686 * super_block. 2687 */ 2688 void sync_inodes_sb(struct super_block *sb) 2689 { 2690 struct backing_dev_info *bdi = sb->s_bdi; 2691 DEFINE_WB_COMPLETION(done, bdi); 2692 struct wb_writeback_work work = { 2693 .sb = sb, 2694 .sync_mode = WB_SYNC_ALL, 2695 .nr_pages = LONG_MAX, 2696 .range_cyclic = 0, 2697 .done = &done, 2698 .reason = WB_REASON_SYNC, 2699 .for_sync = 1, 2700 }; 2701 2702 /* 2703 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2704 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2705 * bdi_has_dirty() need to be written out too. 2706 */ 2707 if (bdi == &noop_backing_dev_info) 2708 return; 2709 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2710 2711 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2712 bdi_down_write_wb_switch_rwsem(bdi); 2713 bdi_split_work_to_wbs(bdi, &work, false); 2714 wb_wait_for_completion(&done); 2715 bdi_up_write_wb_switch_rwsem(bdi); 2716 2717 wait_sb_inodes(sb); 2718 } 2719 EXPORT_SYMBOL(sync_inodes_sb); 2720 2721 /** 2722 * write_inode_now - write an inode to disk 2723 * @inode: inode to write to disk 2724 * @sync: whether the write should be synchronous or not 2725 * 2726 * This function commits an inode to disk immediately if it is dirty. This is 2727 * primarily needed by knfsd. 2728 * 2729 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2730 */ 2731 int write_inode_now(struct inode *inode, int sync) 2732 { 2733 struct writeback_control wbc = { 2734 .nr_to_write = LONG_MAX, 2735 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2736 .range_start = 0, 2737 .range_end = LLONG_MAX, 2738 }; 2739 2740 if (!mapping_can_writeback(inode->i_mapping)) 2741 wbc.nr_to_write = 0; 2742 2743 might_sleep(); 2744 return writeback_single_inode(inode, &wbc); 2745 } 2746 EXPORT_SYMBOL(write_inode_now); 2747 2748 /** 2749 * sync_inode_metadata - write an inode to disk 2750 * @inode: the inode to sync 2751 * @wait: wait for I/O to complete. 2752 * 2753 * Write an inode to disk and adjust its dirty state after completion. 2754 * 2755 * Note: only writes the actual inode, no associated data or other metadata. 2756 */ 2757 int sync_inode_metadata(struct inode *inode, int wait) 2758 { 2759 struct writeback_control wbc = { 2760 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2761 .nr_to_write = 0, /* metadata-only */ 2762 }; 2763 2764 return writeback_single_inode(inode, &wbc); 2765 } 2766 EXPORT_SYMBOL(sync_inode_metadata); 2767