1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include <linux/memcontrol.h> 31 #include "internal.h" 32 33 /* 34 * 4MB minimal write chunk size 35 */ 36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 37 38 struct wb_completion { 39 atomic_t cnt; 40 }; 41 42 /* 43 * Passed into wb_writeback(), essentially a subset of writeback_control 44 */ 45 struct wb_writeback_work { 46 long nr_pages; 47 struct super_block *sb; 48 unsigned long *older_than_this; 49 enum writeback_sync_modes sync_mode; 50 unsigned int tagged_writepages:1; 51 unsigned int for_kupdate:1; 52 unsigned int range_cyclic:1; 53 unsigned int for_background:1; 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 55 unsigned int auto_free:1; /* free on completion */ 56 enum wb_reason reason; /* why was writeback initiated? */ 57 58 struct list_head list; /* pending work list */ 59 struct wb_completion *done; /* set if the caller waits */ 60 }; 61 62 /* 63 * If one wants to wait for one or more wb_writeback_works, each work's 64 * ->done should be set to a wb_completion defined using the following 65 * macro. Once all work items are issued with wb_queue_work(), the caller 66 * can wait for the completion of all using wb_wait_for_completion(). Work 67 * items which are waited upon aren't freed automatically on completion. 68 */ 69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 70 struct wb_completion cmpl = { \ 71 .cnt = ATOMIC_INIT(1), \ 72 } 73 74 75 /* 76 * If an inode is constantly having its pages dirtied, but then the 77 * updates stop dirtytime_expire_interval seconds in the past, it's 78 * possible for the worst case time between when an inode has its 79 * timestamps updated and when they finally get written out to be two 80 * dirtytime_expire_intervals. We set the default to 12 hours (in 81 * seconds), which means most of the time inodes will have their 82 * timestamps written to disk after 12 hours, but in the worst case a 83 * few inodes might not their timestamps updated for 24 hours. 84 */ 85 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 86 87 static inline struct inode *wb_inode(struct list_head *head) 88 { 89 return list_entry(head, struct inode, i_io_list); 90 } 91 92 /* 93 * Include the creation of the trace points after defining the 94 * wb_writeback_work structure and inline functions so that the definition 95 * remains local to this file. 96 */ 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/writeback.h> 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 101 102 static bool wb_io_lists_populated(struct bdi_writeback *wb) 103 { 104 if (wb_has_dirty_io(wb)) { 105 return false; 106 } else { 107 set_bit(WB_has_dirty_io, &wb->state); 108 WARN_ON_ONCE(!wb->avg_write_bandwidth); 109 atomic_long_add(wb->avg_write_bandwidth, 110 &wb->bdi->tot_write_bandwidth); 111 return true; 112 } 113 } 114 115 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 116 { 117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 119 clear_bit(WB_has_dirty_io, &wb->state); 120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 121 &wb->bdi->tot_write_bandwidth) < 0); 122 } 123 } 124 125 /** 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 127 * @inode: inode to be moved 128 * @wb: target bdi_writeback 129 * @head: one of @wb->b_{dirty|io|more_io} 130 * 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 132 * Returns %true if @inode is the first occupant of the !dirty_time IO 133 * lists; otherwise, %false. 134 */ 135 static bool inode_io_list_move_locked(struct inode *inode, 136 struct bdi_writeback *wb, 137 struct list_head *head) 138 { 139 assert_spin_locked(&wb->list_lock); 140 141 list_move(&inode->i_io_list, head); 142 143 /* dirty_time doesn't count as dirty_io until expiration */ 144 if (head != &wb->b_dirty_time) 145 return wb_io_lists_populated(wb); 146 147 wb_io_lists_depopulated(wb); 148 return false; 149 } 150 151 /** 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 153 * @inode: inode to be removed 154 * @wb: bdi_writeback @inode is being removed from 155 * 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 157 * clear %WB_has_dirty_io if all are empty afterwards. 158 */ 159 static void inode_io_list_del_locked(struct inode *inode, 160 struct bdi_writeback *wb) 161 { 162 assert_spin_locked(&wb->list_lock); 163 164 list_del_init(&inode->i_io_list); 165 wb_io_lists_depopulated(wb); 166 } 167 168 static void wb_wakeup(struct bdi_writeback *wb) 169 { 170 spin_lock_bh(&wb->work_lock); 171 if (test_bit(WB_registered, &wb->state)) 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 spin_unlock_bh(&wb->work_lock); 174 } 175 176 static void wb_queue_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 trace_writeback_queue(wb, work); 180 181 spin_lock_bh(&wb->work_lock); 182 if (!test_bit(WB_registered, &wb->state)) 183 goto out_unlock; 184 if (work->done) 185 atomic_inc(&work->done->cnt); 186 list_add_tail(&work->list, &wb->work_list); 187 mod_delayed_work(bdi_wq, &wb->dwork, 0); 188 out_unlock: 189 spin_unlock_bh(&wb->work_lock); 190 } 191 192 /** 193 * wb_wait_for_completion - wait for completion of bdi_writeback_works 194 * @bdi: bdi work items were issued to 195 * @done: target wb_completion 196 * 197 * Wait for one or more work items issued to @bdi with their ->done field 198 * set to @done, which should have been defined with 199 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 200 * work items are completed. Work items which are waited upon aren't freed 201 * automatically on completion. 202 */ 203 static void wb_wait_for_completion(struct backing_dev_info *bdi, 204 struct wb_completion *done) 205 { 206 atomic_dec(&done->cnt); /* put down the initial count */ 207 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 208 } 209 210 #ifdef CONFIG_CGROUP_WRITEBACK 211 212 /* parameters for foreign inode detection, see wb_detach_inode() */ 213 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 214 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 215 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 216 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 217 218 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 219 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 220 /* each slot's duration is 2s / 16 */ 221 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 222 /* if foreign slots >= 8, switch */ 223 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 224 /* one round can affect upto 5 slots */ 225 226 void __inode_attach_wb(struct inode *inode, struct page *page) 227 { 228 struct backing_dev_info *bdi = inode_to_bdi(inode); 229 struct bdi_writeback *wb = NULL; 230 231 if (inode_cgwb_enabled(inode)) { 232 struct cgroup_subsys_state *memcg_css; 233 234 if (page) { 235 memcg_css = mem_cgroup_css_from_page(page); 236 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 237 } else { 238 /* must pin memcg_css, see wb_get_create() */ 239 memcg_css = task_get_css(current, memory_cgrp_id); 240 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 241 css_put(memcg_css); 242 } 243 } 244 245 if (!wb) 246 wb = &bdi->wb; 247 248 /* 249 * There may be multiple instances of this function racing to 250 * update the same inode. Use cmpxchg() to tell the winner. 251 */ 252 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 253 wb_put(wb); 254 } 255 256 /** 257 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 258 * @inode: inode of interest with i_lock held 259 * 260 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 261 * held on entry and is released on return. The returned wb is guaranteed 262 * to stay @inode's associated wb until its list_lock is released. 263 */ 264 static struct bdi_writeback * 265 locked_inode_to_wb_and_lock_list(struct inode *inode) 266 __releases(&inode->i_lock) 267 __acquires(&wb->list_lock) 268 { 269 while (true) { 270 struct bdi_writeback *wb = inode_to_wb(inode); 271 272 /* 273 * inode_to_wb() association is protected by both 274 * @inode->i_lock and @wb->list_lock but list_lock nests 275 * outside i_lock. Drop i_lock and verify that the 276 * association hasn't changed after acquiring list_lock. 277 */ 278 wb_get(wb); 279 spin_unlock(&inode->i_lock); 280 spin_lock(&wb->list_lock); 281 wb_put(wb); /* not gonna deref it anymore */ 282 283 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 284 if (likely(wb == inode->i_wb)) 285 return wb; /* @inode already has ref */ 286 287 spin_unlock(&wb->list_lock); 288 cpu_relax(); 289 spin_lock(&inode->i_lock); 290 } 291 } 292 293 /** 294 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 295 * @inode: inode of interest 296 * 297 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 298 * on entry. 299 */ 300 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 301 __acquires(&wb->list_lock) 302 { 303 spin_lock(&inode->i_lock); 304 return locked_inode_to_wb_and_lock_list(inode); 305 } 306 307 struct inode_switch_wbs_context { 308 struct inode *inode; 309 struct bdi_writeback *new_wb; 310 311 struct rcu_head rcu_head; 312 struct work_struct work; 313 }; 314 315 static void inode_switch_wbs_work_fn(struct work_struct *work) 316 { 317 struct inode_switch_wbs_context *isw = 318 container_of(work, struct inode_switch_wbs_context, work); 319 struct inode *inode = isw->inode; 320 struct address_space *mapping = inode->i_mapping; 321 struct bdi_writeback *old_wb = inode->i_wb; 322 struct bdi_writeback *new_wb = isw->new_wb; 323 struct radix_tree_iter iter; 324 bool switched = false; 325 void **slot; 326 327 /* 328 * By the time control reaches here, RCU grace period has passed 329 * since I_WB_SWITCH assertion and all wb stat update transactions 330 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 331 * synchronizing against mapping->tree_lock. 332 * 333 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock 334 * gives us exclusion against all wb related operations on @inode 335 * including IO list manipulations and stat updates. 336 */ 337 if (old_wb < new_wb) { 338 spin_lock(&old_wb->list_lock); 339 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 340 } else { 341 spin_lock(&new_wb->list_lock); 342 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 343 } 344 spin_lock(&inode->i_lock); 345 spin_lock_irq(&mapping->tree_lock); 346 347 /* 348 * Once I_FREEING is visible under i_lock, the eviction path owns 349 * the inode and we shouldn't modify ->i_io_list. 350 */ 351 if (unlikely(inode->i_state & I_FREEING)) 352 goto skip_switch; 353 354 /* 355 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 356 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 357 * pages actually under underwriteback. 358 */ 359 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 360 PAGECACHE_TAG_DIRTY) { 361 struct page *page = radix_tree_deref_slot_protected(slot, 362 &mapping->tree_lock); 363 if (likely(page) && PageDirty(page)) { 364 __dec_wb_stat(old_wb, WB_RECLAIMABLE); 365 __inc_wb_stat(new_wb, WB_RECLAIMABLE); 366 } 367 } 368 369 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0, 370 PAGECACHE_TAG_WRITEBACK) { 371 struct page *page = radix_tree_deref_slot_protected(slot, 372 &mapping->tree_lock); 373 if (likely(page)) { 374 WARN_ON_ONCE(!PageWriteback(page)); 375 __dec_wb_stat(old_wb, WB_WRITEBACK); 376 __inc_wb_stat(new_wb, WB_WRITEBACK); 377 } 378 } 379 380 wb_get(new_wb); 381 382 /* 383 * Transfer to @new_wb's IO list if necessary. The specific list 384 * @inode was on is ignored and the inode is put on ->b_dirty which 385 * is always correct including from ->b_dirty_time. The transfer 386 * preserves @inode->dirtied_when ordering. 387 */ 388 if (!list_empty(&inode->i_io_list)) { 389 struct inode *pos; 390 391 inode_io_list_del_locked(inode, old_wb); 392 inode->i_wb = new_wb; 393 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 394 if (time_after_eq(inode->dirtied_when, 395 pos->dirtied_when)) 396 break; 397 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 398 } else { 399 inode->i_wb = new_wb; 400 } 401 402 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 403 inode->i_wb_frn_winner = 0; 404 inode->i_wb_frn_avg_time = 0; 405 inode->i_wb_frn_history = 0; 406 switched = true; 407 skip_switch: 408 /* 409 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 410 * ensures that the new wb is visible if they see !I_WB_SWITCH. 411 */ 412 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 413 414 spin_unlock_irq(&mapping->tree_lock); 415 spin_unlock(&inode->i_lock); 416 spin_unlock(&new_wb->list_lock); 417 spin_unlock(&old_wb->list_lock); 418 419 if (switched) { 420 wb_wakeup(new_wb); 421 wb_put(old_wb); 422 } 423 wb_put(new_wb); 424 425 iput(inode); 426 kfree(isw); 427 } 428 429 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 430 { 431 struct inode_switch_wbs_context *isw = container_of(rcu_head, 432 struct inode_switch_wbs_context, rcu_head); 433 434 /* needs to grab bh-unsafe locks, bounce to work item */ 435 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 436 schedule_work(&isw->work); 437 } 438 439 /** 440 * inode_switch_wbs - change the wb association of an inode 441 * @inode: target inode 442 * @new_wb_id: ID of the new wb 443 * 444 * Switch @inode's wb association to the wb identified by @new_wb_id. The 445 * switching is performed asynchronously and may fail silently. 446 */ 447 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 448 { 449 struct backing_dev_info *bdi = inode_to_bdi(inode); 450 struct cgroup_subsys_state *memcg_css; 451 struct inode_switch_wbs_context *isw; 452 453 /* noop if seems to be already in progress */ 454 if (inode->i_state & I_WB_SWITCH) 455 return; 456 457 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 458 if (!isw) 459 return; 460 461 /* find and pin the new wb */ 462 rcu_read_lock(); 463 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 464 if (memcg_css) 465 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 466 rcu_read_unlock(); 467 if (!isw->new_wb) 468 goto out_free; 469 470 /* while holding I_WB_SWITCH, no one else can update the association */ 471 spin_lock(&inode->i_lock); 472 if (inode->i_state & (I_WB_SWITCH | I_FREEING) || 473 inode_to_wb(inode) == isw->new_wb) { 474 spin_unlock(&inode->i_lock); 475 goto out_free; 476 } 477 inode->i_state |= I_WB_SWITCH; 478 spin_unlock(&inode->i_lock); 479 480 ihold(inode); 481 isw->inode = inode; 482 483 /* 484 * In addition to synchronizing among switchers, I_WB_SWITCH tells 485 * the RCU protected stat update paths to grab the mapping's 486 * tree_lock so that stat transfer can synchronize against them. 487 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 488 */ 489 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 490 return; 491 492 out_free: 493 if (isw->new_wb) 494 wb_put(isw->new_wb); 495 kfree(isw); 496 } 497 498 /** 499 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 500 * @wbc: writeback_control of interest 501 * @inode: target inode 502 * 503 * @inode is locked and about to be written back under the control of @wbc. 504 * Record @inode's writeback context into @wbc and unlock the i_lock. On 505 * writeback completion, wbc_detach_inode() should be called. This is used 506 * to track the cgroup writeback context. 507 */ 508 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 509 struct inode *inode) 510 { 511 if (!inode_cgwb_enabled(inode)) { 512 spin_unlock(&inode->i_lock); 513 return; 514 } 515 516 wbc->wb = inode_to_wb(inode); 517 wbc->inode = inode; 518 519 wbc->wb_id = wbc->wb->memcg_css->id; 520 wbc->wb_lcand_id = inode->i_wb_frn_winner; 521 wbc->wb_tcand_id = 0; 522 wbc->wb_bytes = 0; 523 wbc->wb_lcand_bytes = 0; 524 wbc->wb_tcand_bytes = 0; 525 526 wb_get(wbc->wb); 527 spin_unlock(&inode->i_lock); 528 529 /* 530 * A dying wb indicates that the memcg-blkcg mapping has changed 531 * and a new wb is already serving the memcg. Switch immediately. 532 */ 533 if (unlikely(wb_dying(wbc->wb))) 534 inode_switch_wbs(inode, wbc->wb_id); 535 } 536 537 /** 538 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 539 * @wbc: writeback_control of the just finished writeback 540 * 541 * To be called after a writeback attempt of an inode finishes and undoes 542 * wbc_attach_and_unlock_inode(). Can be called under any context. 543 * 544 * As concurrent write sharing of an inode is expected to be very rare and 545 * memcg only tracks page ownership on first-use basis severely confining 546 * the usefulness of such sharing, cgroup writeback tracks ownership 547 * per-inode. While the support for concurrent write sharing of an inode 548 * is deemed unnecessary, an inode being written to by different cgroups at 549 * different points in time is a lot more common, and, more importantly, 550 * charging only by first-use can too readily lead to grossly incorrect 551 * behaviors (single foreign page can lead to gigabytes of writeback to be 552 * incorrectly attributed). 553 * 554 * To resolve this issue, cgroup writeback detects the majority dirtier of 555 * an inode and transfers the ownership to it. To avoid unnnecessary 556 * oscillation, the detection mechanism keeps track of history and gives 557 * out the switch verdict only if the foreign usage pattern is stable over 558 * a certain amount of time and/or writeback attempts. 559 * 560 * On each writeback attempt, @wbc tries to detect the majority writer 561 * using Boyer-Moore majority vote algorithm. In addition to the byte 562 * count from the majority voting, it also counts the bytes written for the 563 * current wb and the last round's winner wb (max of last round's current 564 * wb, the winner from two rounds ago, and the last round's majority 565 * candidate). Keeping track of the historical winner helps the algorithm 566 * to semi-reliably detect the most active writer even when it's not the 567 * absolute majority. 568 * 569 * Once the winner of the round is determined, whether the winner is 570 * foreign or not and how much IO time the round consumed is recorded in 571 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 572 * over a certain threshold, the switch verdict is given. 573 */ 574 void wbc_detach_inode(struct writeback_control *wbc) 575 { 576 struct bdi_writeback *wb = wbc->wb; 577 struct inode *inode = wbc->inode; 578 unsigned long avg_time, max_bytes, max_time; 579 u16 history; 580 int max_id; 581 582 if (!wb) 583 return; 584 585 history = inode->i_wb_frn_history; 586 avg_time = inode->i_wb_frn_avg_time; 587 588 /* pick the winner of this round */ 589 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 590 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 591 max_id = wbc->wb_id; 592 max_bytes = wbc->wb_bytes; 593 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 594 max_id = wbc->wb_lcand_id; 595 max_bytes = wbc->wb_lcand_bytes; 596 } else { 597 max_id = wbc->wb_tcand_id; 598 max_bytes = wbc->wb_tcand_bytes; 599 } 600 601 /* 602 * Calculate the amount of IO time the winner consumed and fold it 603 * into the running average kept per inode. If the consumed IO 604 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 605 * deciding whether to switch or not. This is to prevent one-off 606 * small dirtiers from skewing the verdict. 607 */ 608 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 609 wb->avg_write_bandwidth); 610 if (avg_time) 611 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 612 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 613 else 614 avg_time = max_time; /* immediate catch up on first run */ 615 616 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 617 int slots; 618 619 /* 620 * The switch verdict is reached if foreign wb's consume 621 * more than a certain proportion of IO time in a 622 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 623 * history mask where each bit represents one sixteenth of 624 * the period. Determine the number of slots to shift into 625 * history from @max_time. 626 */ 627 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 628 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 629 history <<= slots; 630 if (wbc->wb_id != max_id) 631 history |= (1U << slots) - 1; 632 633 /* 634 * Switch if the current wb isn't the consistent winner. 635 * If there are multiple closely competing dirtiers, the 636 * inode may switch across them repeatedly over time, which 637 * is okay. The main goal is avoiding keeping an inode on 638 * the wrong wb for an extended period of time. 639 */ 640 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 641 inode_switch_wbs(inode, max_id); 642 } 643 644 /* 645 * Multiple instances of this function may race to update the 646 * following fields but we don't mind occassional inaccuracies. 647 */ 648 inode->i_wb_frn_winner = max_id; 649 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 650 inode->i_wb_frn_history = history; 651 652 wb_put(wbc->wb); 653 wbc->wb = NULL; 654 } 655 656 /** 657 * wbc_account_io - account IO issued during writeback 658 * @wbc: writeback_control of the writeback in progress 659 * @page: page being written out 660 * @bytes: number of bytes being written out 661 * 662 * @bytes from @page are about to written out during the writeback 663 * controlled by @wbc. Keep the book for foreign inode detection. See 664 * wbc_detach_inode(). 665 */ 666 void wbc_account_io(struct writeback_control *wbc, struct page *page, 667 size_t bytes) 668 { 669 int id; 670 671 /* 672 * pageout() path doesn't attach @wbc to the inode being written 673 * out. This is intentional as we don't want the function to block 674 * behind a slow cgroup. Ultimately, we want pageout() to kick off 675 * regular writeback instead of writing things out itself. 676 */ 677 if (!wbc->wb) 678 return; 679 680 rcu_read_lock(); 681 id = mem_cgroup_css_from_page(page)->id; 682 rcu_read_unlock(); 683 684 if (id == wbc->wb_id) { 685 wbc->wb_bytes += bytes; 686 return; 687 } 688 689 if (id == wbc->wb_lcand_id) 690 wbc->wb_lcand_bytes += bytes; 691 692 /* Boyer-Moore majority vote algorithm */ 693 if (!wbc->wb_tcand_bytes) 694 wbc->wb_tcand_id = id; 695 if (id == wbc->wb_tcand_id) 696 wbc->wb_tcand_bytes += bytes; 697 else 698 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 699 } 700 EXPORT_SYMBOL_GPL(wbc_account_io); 701 702 /** 703 * inode_congested - test whether an inode is congested 704 * @inode: inode to test for congestion (may be NULL) 705 * @cong_bits: mask of WB_[a]sync_congested bits to test 706 * 707 * Tests whether @inode is congested. @cong_bits is the mask of congestion 708 * bits to test and the return value is the mask of set bits. 709 * 710 * If cgroup writeback is enabled for @inode, the congestion state is 711 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 712 * associated with @inode is congested; otherwise, the root wb's congestion 713 * state is used. 714 * 715 * @inode is allowed to be NULL as this function is often called on 716 * mapping->host which is NULL for the swapper space. 717 */ 718 int inode_congested(struct inode *inode, int cong_bits) 719 { 720 /* 721 * Once set, ->i_wb never becomes NULL while the inode is alive. 722 * Start transaction iff ->i_wb is visible. 723 */ 724 if (inode && inode_to_wb_is_valid(inode)) { 725 struct bdi_writeback *wb; 726 bool locked, congested; 727 728 wb = unlocked_inode_to_wb_begin(inode, &locked); 729 congested = wb_congested(wb, cong_bits); 730 unlocked_inode_to_wb_end(inode, locked); 731 return congested; 732 } 733 734 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 735 } 736 EXPORT_SYMBOL_GPL(inode_congested); 737 738 /** 739 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 740 * @wb: target bdi_writeback to split @nr_pages to 741 * @nr_pages: number of pages to write for the whole bdi 742 * 743 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 744 * relation to the total write bandwidth of all wb's w/ dirty inodes on 745 * @wb->bdi. 746 */ 747 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 748 { 749 unsigned long this_bw = wb->avg_write_bandwidth; 750 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 751 752 if (nr_pages == LONG_MAX) 753 return LONG_MAX; 754 755 /* 756 * This may be called on clean wb's and proportional distribution 757 * may not make sense, just use the original @nr_pages in those 758 * cases. In general, we wanna err on the side of writing more. 759 */ 760 if (!tot_bw || this_bw >= tot_bw) 761 return nr_pages; 762 else 763 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 764 } 765 766 /** 767 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 768 * @bdi: target backing_dev_info 769 * @base_work: wb_writeback_work to issue 770 * @skip_if_busy: skip wb's which already have writeback in progress 771 * 772 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 773 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 774 * distributed to the busy wbs according to each wb's proportion in the 775 * total active write bandwidth of @bdi. 776 */ 777 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 778 struct wb_writeback_work *base_work, 779 bool skip_if_busy) 780 { 781 int next_memcg_id = 0; 782 struct bdi_writeback *wb; 783 struct wb_iter iter; 784 785 might_sleep(); 786 restart: 787 rcu_read_lock(); 788 bdi_for_each_wb(wb, bdi, &iter, next_memcg_id) { 789 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 790 struct wb_writeback_work fallback_work; 791 struct wb_writeback_work *work; 792 long nr_pages; 793 794 /* SYNC_ALL writes out I_DIRTY_TIME too */ 795 if (!wb_has_dirty_io(wb) && 796 (base_work->sync_mode == WB_SYNC_NONE || 797 list_empty(&wb->b_dirty_time))) 798 continue; 799 if (skip_if_busy && writeback_in_progress(wb)) 800 continue; 801 802 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 803 804 work = kmalloc(sizeof(*work), GFP_ATOMIC); 805 if (work) { 806 *work = *base_work; 807 work->nr_pages = nr_pages; 808 work->auto_free = 1; 809 wb_queue_work(wb, work); 810 continue; 811 } 812 813 /* alloc failed, execute synchronously using on-stack fallback */ 814 work = &fallback_work; 815 *work = *base_work; 816 work->nr_pages = nr_pages; 817 work->auto_free = 0; 818 work->done = &fallback_work_done; 819 820 wb_queue_work(wb, work); 821 822 next_memcg_id = wb->memcg_css->id + 1; 823 rcu_read_unlock(); 824 wb_wait_for_completion(bdi, &fallback_work_done); 825 goto restart; 826 } 827 rcu_read_unlock(); 828 } 829 830 #else /* CONFIG_CGROUP_WRITEBACK */ 831 832 static struct bdi_writeback * 833 locked_inode_to_wb_and_lock_list(struct inode *inode) 834 __releases(&inode->i_lock) 835 __acquires(&wb->list_lock) 836 { 837 struct bdi_writeback *wb = inode_to_wb(inode); 838 839 spin_unlock(&inode->i_lock); 840 spin_lock(&wb->list_lock); 841 return wb; 842 } 843 844 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 845 __acquires(&wb->list_lock) 846 { 847 struct bdi_writeback *wb = inode_to_wb(inode); 848 849 spin_lock(&wb->list_lock); 850 return wb; 851 } 852 853 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 854 { 855 return nr_pages; 856 } 857 858 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 859 struct wb_writeback_work *base_work, 860 bool skip_if_busy) 861 { 862 might_sleep(); 863 864 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 865 base_work->auto_free = 0; 866 wb_queue_work(&bdi->wb, base_work); 867 } 868 } 869 870 #endif /* CONFIG_CGROUP_WRITEBACK */ 871 872 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages, 873 bool range_cyclic, enum wb_reason reason) 874 { 875 struct wb_writeback_work *work; 876 877 if (!wb_has_dirty_io(wb)) 878 return; 879 880 /* 881 * This is WB_SYNC_NONE writeback, so if allocation fails just 882 * wakeup the thread for old dirty data writeback 883 */ 884 work = kzalloc(sizeof(*work), GFP_ATOMIC); 885 if (!work) { 886 trace_writeback_nowork(wb); 887 wb_wakeup(wb); 888 return; 889 } 890 891 work->sync_mode = WB_SYNC_NONE; 892 work->nr_pages = nr_pages; 893 work->range_cyclic = range_cyclic; 894 work->reason = reason; 895 work->auto_free = 1; 896 897 wb_queue_work(wb, work); 898 } 899 900 /** 901 * wb_start_background_writeback - start background writeback 902 * @wb: bdi_writback to write from 903 * 904 * Description: 905 * This makes sure WB_SYNC_NONE background writeback happens. When 906 * this function returns, it is only guaranteed that for given wb 907 * some IO is happening if we are over background dirty threshold. 908 * Caller need not hold sb s_umount semaphore. 909 */ 910 void wb_start_background_writeback(struct bdi_writeback *wb) 911 { 912 /* 913 * We just wake up the flusher thread. It will perform background 914 * writeback as soon as there is no other work to do. 915 */ 916 trace_writeback_wake_background(wb); 917 wb_wakeup(wb); 918 } 919 920 /* 921 * Remove the inode from the writeback list it is on. 922 */ 923 void inode_io_list_del(struct inode *inode) 924 { 925 struct bdi_writeback *wb; 926 927 wb = inode_to_wb_and_lock_list(inode); 928 inode_io_list_del_locked(inode, wb); 929 spin_unlock(&wb->list_lock); 930 } 931 932 /* 933 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 934 * furthest end of its superblock's dirty-inode list. 935 * 936 * Before stamping the inode's ->dirtied_when, we check to see whether it is 937 * already the most-recently-dirtied inode on the b_dirty list. If that is 938 * the case then the inode must have been redirtied while it was being written 939 * out and we don't reset its dirtied_when. 940 */ 941 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 942 { 943 if (!list_empty(&wb->b_dirty)) { 944 struct inode *tail; 945 946 tail = wb_inode(wb->b_dirty.next); 947 if (time_before(inode->dirtied_when, tail->dirtied_when)) 948 inode->dirtied_when = jiffies; 949 } 950 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 951 } 952 953 /* 954 * requeue inode for re-scanning after bdi->b_io list is exhausted. 955 */ 956 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 957 { 958 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 959 } 960 961 static void inode_sync_complete(struct inode *inode) 962 { 963 inode->i_state &= ~I_SYNC; 964 /* If inode is clean an unused, put it into LRU now... */ 965 inode_add_lru(inode); 966 /* Waiters must see I_SYNC cleared before being woken up */ 967 smp_mb(); 968 wake_up_bit(&inode->i_state, __I_SYNC); 969 } 970 971 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 972 { 973 bool ret = time_after(inode->dirtied_when, t); 974 #ifndef CONFIG_64BIT 975 /* 976 * For inodes being constantly redirtied, dirtied_when can get stuck. 977 * It _appears_ to be in the future, but is actually in distant past. 978 * This test is necessary to prevent such wrapped-around relative times 979 * from permanently stopping the whole bdi writeback. 980 */ 981 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 982 #endif 983 return ret; 984 } 985 986 #define EXPIRE_DIRTY_ATIME 0x0001 987 988 /* 989 * Move expired (dirtied before work->older_than_this) dirty inodes from 990 * @delaying_queue to @dispatch_queue. 991 */ 992 static int move_expired_inodes(struct list_head *delaying_queue, 993 struct list_head *dispatch_queue, 994 int flags, 995 struct wb_writeback_work *work) 996 { 997 unsigned long *older_than_this = NULL; 998 unsigned long expire_time; 999 LIST_HEAD(tmp); 1000 struct list_head *pos, *node; 1001 struct super_block *sb = NULL; 1002 struct inode *inode; 1003 int do_sb_sort = 0; 1004 int moved = 0; 1005 1006 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1007 older_than_this = work->older_than_this; 1008 else if (!work->for_sync) { 1009 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1010 older_than_this = &expire_time; 1011 } 1012 while (!list_empty(delaying_queue)) { 1013 inode = wb_inode(delaying_queue->prev); 1014 if (older_than_this && 1015 inode_dirtied_after(inode, *older_than_this)) 1016 break; 1017 list_move(&inode->i_io_list, &tmp); 1018 moved++; 1019 if (flags & EXPIRE_DIRTY_ATIME) 1020 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1021 if (sb_is_blkdev_sb(inode->i_sb)) 1022 continue; 1023 if (sb && sb != inode->i_sb) 1024 do_sb_sort = 1; 1025 sb = inode->i_sb; 1026 } 1027 1028 /* just one sb in list, splice to dispatch_queue and we're done */ 1029 if (!do_sb_sort) { 1030 list_splice(&tmp, dispatch_queue); 1031 goto out; 1032 } 1033 1034 /* Move inodes from one superblock together */ 1035 while (!list_empty(&tmp)) { 1036 sb = wb_inode(tmp.prev)->i_sb; 1037 list_for_each_prev_safe(pos, node, &tmp) { 1038 inode = wb_inode(pos); 1039 if (inode->i_sb == sb) 1040 list_move(&inode->i_io_list, dispatch_queue); 1041 } 1042 } 1043 out: 1044 return moved; 1045 } 1046 1047 /* 1048 * Queue all expired dirty inodes for io, eldest first. 1049 * Before 1050 * newly dirtied b_dirty b_io b_more_io 1051 * =============> gf edc BA 1052 * After 1053 * newly dirtied b_dirty b_io b_more_io 1054 * =============> g fBAedc 1055 * | 1056 * +--> dequeue for IO 1057 */ 1058 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1059 { 1060 int moved; 1061 1062 assert_spin_locked(&wb->list_lock); 1063 list_splice_init(&wb->b_more_io, &wb->b_io); 1064 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1065 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1066 EXPIRE_DIRTY_ATIME, work); 1067 if (moved) 1068 wb_io_lists_populated(wb); 1069 trace_writeback_queue_io(wb, work, moved); 1070 } 1071 1072 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1073 { 1074 int ret; 1075 1076 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1077 trace_writeback_write_inode_start(inode, wbc); 1078 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1079 trace_writeback_write_inode(inode, wbc); 1080 return ret; 1081 } 1082 return 0; 1083 } 1084 1085 /* 1086 * Wait for writeback on an inode to complete. Called with i_lock held. 1087 * Caller must make sure inode cannot go away when we drop i_lock. 1088 */ 1089 static void __inode_wait_for_writeback(struct inode *inode) 1090 __releases(inode->i_lock) 1091 __acquires(inode->i_lock) 1092 { 1093 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1094 wait_queue_head_t *wqh; 1095 1096 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1097 while (inode->i_state & I_SYNC) { 1098 spin_unlock(&inode->i_lock); 1099 __wait_on_bit(wqh, &wq, bit_wait, 1100 TASK_UNINTERRUPTIBLE); 1101 spin_lock(&inode->i_lock); 1102 } 1103 } 1104 1105 /* 1106 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1107 */ 1108 void inode_wait_for_writeback(struct inode *inode) 1109 { 1110 spin_lock(&inode->i_lock); 1111 __inode_wait_for_writeback(inode); 1112 spin_unlock(&inode->i_lock); 1113 } 1114 1115 /* 1116 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1117 * held and drops it. It is aimed for callers not holding any inode reference 1118 * so once i_lock is dropped, inode can go away. 1119 */ 1120 static void inode_sleep_on_writeback(struct inode *inode) 1121 __releases(inode->i_lock) 1122 { 1123 DEFINE_WAIT(wait); 1124 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1125 int sleep; 1126 1127 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1128 sleep = inode->i_state & I_SYNC; 1129 spin_unlock(&inode->i_lock); 1130 if (sleep) 1131 schedule(); 1132 finish_wait(wqh, &wait); 1133 } 1134 1135 /* 1136 * Find proper writeback list for the inode depending on its current state and 1137 * possibly also change of its state while we were doing writeback. Here we 1138 * handle things such as livelock prevention or fairness of writeback among 1139 * inodes. This function can be called only by flusher thread - noone else 1140 * processes all inodes in writeback lists and requeueing inodes behind flusher 1141 * thread's back can have unexpected consequences. 1142 */ 1143 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1144 struct writeback_control *wbc) 1145 { 1146 if (inode->i_state & I_FREEING) 1147 return; 1148 1149 /* 1150 * Sync livelock prevention. Each inode is tagged and synced in one 1151 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1152 * the dirty time to prevent enqueue and sync it again. 1153 */ 1154 if ((inode->i_state & I_DIRTY) && 1155 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1156 inode->dirtied_when = jiffies; 1157 1158 if (wbc->pages_skipped) { 1159 /* 1160 * writeback is not making progress due to locked 1161 * buffers. Skip this inode for now. 1162 */ 1163 redirty_tail(inode, wb); 1164 return; 1165 } 1166 1167 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1168 /* 1169 * We didn't write back all the pages. nfs_writepages() 1170 * sometimes bales out without doing anything. 1171 */ 1172 if (wbc->nr_to_write <= 0) { 1173 /* Slice used up. Queue for next turn. */ 1174 requeue_io(inode, wb); 1175 } else { 1176 /* 1177 * Writeback blocked by something other than 1178 * congestion. Delay the inode for some time to 1179 * avoid spinning on the CPU (100% iowait) 1180 * retrying writeback of the dirty page/inode 1181 * that cannot be performed immediately. 1182 */ 1183 redirty_tail(inode, wb); 1184 } 1185 } else if (inode->i_state & I_DIRTY) { 1186 /* 1187 * Filesystems can dirty the inode during writeback operations, 1188 * such as delayed allocation during submission or metadata 1189 * updates after data IO completion. 1190 */ 1191 redirty_tail(inode, wb); 1192 } else if (inode->i_state & I_DIRTY_TIME) { 1193 inode->dirtied_when = jiffies; 1194 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1195 } else { 1196 /* The inode is clean. Remove from writeback lists. */ 1197 inode_io_list_del_locked(inode, wb); 1198 } 1199 } 1200 1201 /* 1202 * Write out an inode and its dirty pages. Do not update the writeback list 1203 * linkage. That is left to the caller. The caller is also responsible for 1204 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1205 */ 1206 static int 1207 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1208 { 1209 struct address_space *mapping = inode->i_mapping; 1210 long nr_to_write = wbc->nr_to_write; 1211 unsigned dirty; 1212 int ret; 1213 1214 WARN_ON(!(inode->i_state & I_SYNC)); 1215 1216 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1217 1218 ret = do_writepages(mapping, wbc); 1219 1220 /* 1221 * Make sure to wait on the data before writing out the metadata. 1222 * This is important for filesystems that modify metadata on data 1223 * I/O completion. We don't do it for sync(2) writeback because it has a 1224 * separate, external IO completion path and ->sync_fs for guaranteeing 1225 * inode metadata is written back correctly. 1226 */ 1227 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1228 int err = filemap_fdatawait(mapping); 1229 if (ret == 0) 1230 ret = err; 1231 } 1232 1233 /* 1234 * Some filesystems may redirty the inode during the writeback 1235 * due to delalloc, clear dirty metadata flags right before 1236 * write_inode() 1237 */ 1238 spin_lock(&inode->i_lock); 1239 1240 dirty = inode->i_state & I_DIRTY; 1241 if (inode->i_state & I_DIRTY_TIME) { 1242 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 1243 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1244 unlikely(time_after(jiffies, 1245 (inode->dirtied_time_when + 1246 dirtytime_expire_interval * HZ)))) { 1247 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1248 trace_writeback_lazytime(inode); 1249 } 1250 } else 1251 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1252 inode->i_state &= ~dirty; 1253 1254 /* 1255 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1256 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1257 * either they see the I_DIRTY bits cleared or we see the dirtied 1258 * inode. 1259 * 1260 * I_DIRTY_PAGES is always cleared together above even if @mapping 1261 * still has dirty pages. The flag is reinstated after smp_mb() if 1262 * necessary. This guarantees that either __mark_inode_dirty() 1263 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1264 */ 1265 smp_mb(); 1266 1267 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1268 inode->i_state |= I_DIRTY_PAGES; 1269 1270 spin_unlock(&inode->i_lock); 1271 1272 if (dirty & I_DIRTY_TIME) 1273 mark_inode_dirty_sync(inode); 1274 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1275 if (dirty & ~I_DIRTY_PAGES) { 1276 int err = write_inode(inode, wbc); 1277 if (ret == 0) 1278 ret = err; 1279 } 1280 trace_writeback_single_inode(inode, wbc, nr_to_write); 1281 return ret; 1282 } 1283 1284 /* 1285 * Write out an inode's dirty pages. Either the caller has an active reference 1286 * on the inode or the inode has I_WILL_FREE set. 1287 * 1288 * This function is designed to be called for writing back one inode which 1289 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1290 * and does more profound writeback list handling in writeback_sb_inodes(). 1291 */ 1292 static int 1293 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 1294 struct writeback_control *wbc) 1295 { 1296 int ret = 0; 1297 1298 spin_lock(&inode->i_lock); 1299 if (!atomic_read(&inode->i_count)) 1300 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1301 else 1302 WARN_ON(inode->i_state & I_WILL_FREE); 1303 1304 if (inode->i_state & I_SYNC) { 1305 if (wbc->sync_mode != WB_SYNC_ALL) 1306 goto out; 1307 /* 1308 * It's a data-integrity sync. We must wait. Since callers hold 1309 * inode reference or inode has I_WILL_FREE set, it cannot go 1310 * away under us. 1311 */ 1312 __inode_wait_for_writeback(inode); 1313 } 1314 WARN_ON(inode->i_state & I_SYNC); 1315 /* 1316 * Skip inode if it is clean and we have no outstanding writeback in 1317 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1318 * function since flusher thread may be doing for example sync in 1319 * parallel and if we move the inode, it could get skipped. So here we 1320 * make sure inode is on some writeback list and leave it there unless 1321 * we have completely cleaned the inode. 1322 */ 1323 if (!(inode->i_state & I_DIRTY_ALL) && 1324 (wbc->sync_mode != WB_SYNC_ALL || 1325 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1326 goto out; 1327 inode->i_state |= I_SYNC; 1328 wbc_attach_and_unlock_inode(wbc, inode); 1329 1330 ret = __writeback_single_inode(inode, wbc); 1331 1332 wbc_detach_inode(wbc); 1333 spin_lock(&wb->list_lock); 1334 spin_lock(&inode->i_lock); 1335 /* 1336 * If inode is clean, remove it from writeback lists. Otherwise don't 1337 * touch it. See comment above for explanation. 1338 */ 1339 if (!(inode->i_state & I_DIRTY_ALL)) 1340 inode_io_list_del_locked(inode, wb); 1341 spin_unlock(&wb->list_lock); 1342 inode_sync_complete(inode); 1343 out: 1344 spin_unlock(&inode->i_lock); 1345 return ret; 1346 } 1347 1348 static long writeback_chunk_size(struct bdi_writeback *wb, 1349 struct wb_writeback_work *work) 1350 { 1351 long pages; 1352 1353 /* 1354 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1355 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1356 * here avoids calling into writeback_inodes_wb() more than once. 1357 * 1358 * The intended call sequence for WB_SYNC_ALL writeback is: 1359 * 1360 * wb_writeback() 1361 * writeback_sb_inodes() <== called only once 1362 * write_cache_pages() <== called once for each inode 1363 * (quickly) tag currently dirty pages 1364 * (maybe slowly) sync all tagged pages 1365 */ 1366 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1367 pages = LONG_MAX; 1368 else { 1369 pages = min(wb->avg_write_bandwidth / 2, 1370 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1371 pages = min(pages, work->nr_pages); 1372 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1373 MIN_WRITEBACK_PAGES); 1374 } 1375 1376 return pages; 1377 } 1378 1379 /* 1380 * Write a portion of b_io inodes which belong to @sb. 1381 * 1382 * Return the number of pages and/or inodes written. 1383 * 1384 * NOTE! This is called with wb->list_lock held, and will 1385 * unlock and relock that for each inode it ends up doing 1386 * IO for. 1387 */ 1388 static long writeback_sb_inodes(struct super_block *sb, 1389 struct bdi_writeback *wb, 1390 struct wb_writeback_work *work) 1391 { 1392 struct writeback_control wbc = { 1393 .sync_mode = work->sync_mode, 1394 .tagged_writepages = work->tagged_writepages, 1395 .for_kupdate = work->for_kupdate, 1396 .for_background = work->for_background, 1397 .for_sync = work->for_sync, 1398 .range_cyclic = work->range_cyclic, 1399 .range_start = 0, 1400 .range_end = LLONG_MAX, 1401 }; 1402 unsigned long start_time = jiffies; 1403 long write_chunk; 1404 long wrote = 0; /* count both pages and inodes */ 1405 1406 while (!list_empty(&wb->b_io)) { 1407 struct inode *inode = wb_inode(wb->b_io.prev); 1408 1409 if (inode->i_sb != sb) { 1410 if (work->sb) { 1411 /* 1412 * We only want to write back data for this 1413 * superblock, move all inodes not belonging 1414 * to it back onto the dirty list. 1415 */ 1416 redirty_tail(inode, wb); 1417 continue; 1418 } 1419 1420 /* 1421 * The inode belongs to a different superblock. 1422 * Bounce back to the caller to unpin this and 1423 * pin the next superblock. 1424 */ 1425 break; 1426 } 1427 1428 /* 1429 * Don't bother with new inodes or inodes being freed, first 1430 * kind does not need periodic writeout yet, and for the latter 1431 * kind writeout is handled by the freer. 1432 */ 1433 spin_lock(&inode->i_lock); 1434 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1435 spin_unlock(&inode->i_lock); 1436 redirty_tail(inode, wb); 1437 continue; 1438 } 1439 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1440 /* 1441 * If this inode is locked for writeback and we are not 1442 * doing writeback-for-data-integrity, move it to 1443 * b_more_io so that writeback can proceed with the 1444 * other inodes on s_io. 1445 * 1446 * We'll have another go at writing back this inode 1447 * when we completed a full scan of b_io. 1448 */ 1449 spin_unlock(&inode->i_lock); 1450 requeue_io(inode, wb); 1451 trace_writeback_sb_inodes_requeue(inode); 1452 continue; 1453 } 1454 spin_unlock(&wb->list_lock); 1455 1456 /* 1457 * We already requeued the inode if it had I_SYNC set and we 1458 * are doing WB_SYNC_NONE writeback. So this catches only the 1459 * WB_SYNC_ALL case. 1460 */ 1461 if (inode->i_state & I_SYNC) { 1462 /* Wait for I_SYNC. This function drops i_lock... */ 1463 inode_sleep_on_writeback(inode); 1464 /* Inode may be gone, start again */ 1465 spin_lock(&wb->list_lock); 1466 continue; 1467 } 1468 inode->i_state |= I_SYNC; 1469 wbc_attach_and_unlock_inode(&wbc, inode); 1470 1471 write_chunk = writeback_chunk_size(wb, work); 1472 wbc.nr_to_write = write_chunk; 1473 wbc.pages_skipped = 0; 1474 1475 /* 1476 * We use I_SYNC to pin the inode in memory. While it is set 1477 * evict_inode() will wait so the inode cannot be freed. 1478 */ 1479 __writeback_single_inode(inode, &wbc); 1480 1481 wbc_detach_inode(&wbc); 1482 work->nr_pages -= write_chunk - wbc.nr_to_write; 1483 wrote += write_chunk - wbc.nr_to_write; 1484 1485 if (need_resched()) { 1486 /* 1487 * We're trying to balance between building up a nice 1488 * long list of IOs to improve our merge rate, and 1489 * getting those IOs out quickly for anyone throttling 1490 * in balance_dirty_pages(). cond_resched() doesn't 1491 * unplug, so get our IOs out the door before we 1492 * give up the CPU. 1493 */ 1494 blk_flush_plug(current); 1495 cond_resched(); 1496 } 1497 1498 1499 spin_lock(&wb->list_lock); 1500 spin_lock(&inode->i_lock); 1501 if (!(inode->i_state & I_DIRTY_ALL)) 1502 wrote++; 1503 requeue_inode(inode, wb, &wbc); 1504 inode_sync_complete(inode); 1505 spin_unlock(&inode->i_lock); 1506 1507 /* 1508 * bail out to wb_writeback() often enough to check 1509 * background threshold and other termination conditions. 1510 */ 1511 if (wrote) { 1512 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1513 break; 1514 if (work->nr_pages <= 0) 1515 break; 1516 } 1517 } 1518 return wrote; 1519 } 1520 1521 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1522 struct wb_writeback_work *work) 1523 { 1524 unsigned long start_time = jiffies; 1525 long wrote = 0; 1526 1527 while (!list_empty(&wb->b_io)) { 1528 struct inode *inode = wb_inode(wb->b_io.prev); 1529 struct super_block *sb = inode->i_sb; 1530 1531 if (!trylock_super(sb)) { 1532 /* 1533 * trylock_super() may fail consistently due to 1534 * s_umount being grabbed by someone else. Don't use 1535 * requeue_io() to avoid busy retrying the inode/sb. 1536 */ 1537 redirty_tail(inode, wb); 1538 continue; 1539 } 1540 wrote += writeback_sb_inodes(sb, wb, work); 1541 up_read(&sb->s_umount); 1542 1543 /* refer to the same tests at the end of writeback_sb_inodes */ 1544 if (wrote) { 1545 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1546 break; 1547 if (work->nr_pages <= 0) 1548 break; 1549 } 1550 } 1551 /* Leave any unwritten inodes on b_io */ 1552 return wrote; 1553 } 1554 1555 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1556 enum wb_reason reason) 1557 { 1558 struct wb_writeback_work work = { 1559 .nr_pages = nr_pages, 1560 .sync_mode = WB_SYNC_NONE, 1561 .range_cyclic = 1, 1562 .reason = reason, 1563 }; 1564 struct blk_plug plug; 1565 1566 blk_start_plug(&plug); 1567 spin_lock(&wb->list_lock); 1568 if (list_empty(&wb->b_io)) 1569 queue_io(wb, &work); 1570 __writeback_inodes_wb(wb, &work); 1571 spin_unlock(&wb->list_lock); 1572 blk_finish_plug(&plug); 1573 1574 return nr_pages - work.nr_pages; 1575 } 1576 1577 /* 1578 * Explicit flushing or periodic writeback of "old" data. 1579 * 1580 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1581 * dirtying-time in the inode's address_space. So this periodic writeback code 1582 * just walks the superblock inode list, writing back any inodes which are 1583 * older than a specific point in time. 1584 * 1585 * Try to run once per dirty_writeback_interval. But if a writeback event 1586 * takes longer than a dirty_writeback_interval interval, then leave a 1587 * one-second gap. 1588 * 1589 * older_than_this takes precedence over nr_to_write. So we'll only write back 1590 * all dirty pages if they are all attached to "old" mappings. 1591 */ 1592 static long wb_writeback(struct bdi_writeback *wb, 1593 struct wb_writeback_work *work) 1594 { 1595 unsigned long wb_start = jiffies; 1596 long nr_pages = work->nr_pages; 1597 unsigned long oldest_jif; 1598 struct inode *inode; 1599 long progress; 1600 struct blk_plug plug; 1601 1602 oldest_jif = jiffies; 1603 work->older_than_this = &oldest_jif; 1604 1605 blk_start_plug(&plug); 1606 spin_lock(&wb->list_lock); 1607 for (;;) { 1608 /* 1609 * Stop writeback when nr_pages has been consumed 1610 */ 1611 if (work->nr_pages <= 0) 1612 break; 1613 1614 /* 1615 * Background writeout and kupdate-style writeback may 1616 * run forever. Stop them if there is other work to do 1617 * so that e.g. sync can proceed. They'll be restarted 1618 * after the other works are all done. 1619 */ 1620 if ((work->for_background || work->for_kupdate) && 1621 !list_empty(&wb->work_list)) 1622 break; 1623 1624 /* 1625 * For background writeout, stop when we are below the 1626 * background dirty threshold 1627 */ 1628 if (work->for_background && !wb_over_bg_thresh(wb)) 1629 break; 1630 1631 /* 1632 * Kupdate and background works are special and we want to 1633 * include all inodes that need writing. Livelock avoidance is 1634 * handled by these works yielding to any other work so we are 1635 * safe. 1636 */ 1637 if (work->for_kupdate) { 1638 oldest_jif = jiffies - 1639 msecs_to_jiffies(dirty_expire_interval * 10); 1640 } else if (work->for_background) 1641 oldest_jif = jiffies; 1642 1643 trace_writeback_start(wb, work); 1644 if (list_empty(&wb->b_io)) 1645 queue_io(wb, work); 1646 if (work->sb) 1647 progress = writeback_sb_inodes(work->sb, wb, work); 1648 else 1649 progress = __writeback_inodes_wb(wb, work); 1650 trace_writeback_written(wb, work); 1651 1652 wb_update_bandwidth(wb, wb_start); 1653 1654 /* 1655 * Did we write something? Try for more 1656 * 1657 * Dirty inodes are moved to b_io for writeback in batches. 1658 * The completion of the current batch does not necessarily 1659 * mean the overall work is done. So we keep looping as long 1660 * as made some progress on cleaning pages or inodes. 1661 */ 1662 if (progress) 1663 continue; 1664 /* 1665 * No more inodes for IO, bail 1666 */ 1667 if (list_empty(&wb->b_more_io)) 1668 break; 1669 /* 1670 * Nothing written. Wait for some inode to 1671 * become available for writeback. Otherwise 1672 * we'll just busyloop. 1673 */ 1674 if (!list_empty(&wb->b_more_io)) { 1675 trace_writeback_wait(wb, work); 1676 inode = wb_inode(wb->b_more_io.prev); 1677 spin_lock(&inode->i_lock); 1678 spin_unlock(&wb->list_lock); 1679 /* This function drops i_lock... */ 1680 inode_sleep_on_writeback(inode); 1681 spin_lock(&wb->list_lock); 1682 } 1683 } 1684 spin_unlock(&wb->list_lock); 1685 blk_finish_plug(&plug); 1686 1687 return nr_pages - work->nr_pages; 1688 } 1689 1690 /* 1691 * Return the next wb_writeback_work struct that hasn't been processed yet. 1692 */ 1693 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1694 { 1695 struct wb_writeback_work *work = NULL; 1696 1697 spin_lock_bh(&wb->work_lock); 1698 if (!list_empty(&wb->work_list)) { 1699 work = list_entry(wb->work_list.next, 1700 struct wb_writeback_work, list); 1701 list_del_init(&work->list); 1702 } 1703 spin_unlock_bh(&wb->work_lock); 1704 return work; 1705 } 1706 1707 /* 1708 * Add in the number of potentially dirty inodes, because each inode 1709 * write can dirty pagecache in the underlying blockdev. 1710 */ 1711 static unsigned long get_nr_dirty_pages(void) 1712 { 1713 return global_page_state(NR_FILE_DIRTY) + 1714 global_page_state(NR_UNSTABLE_NFS) + 1715 get_nr_dirty_inodes(); 1716 } 1717 1718 static long wb_check_background_flush(struct bdi_writeback *wb) 1719 { 1720 if (wb_over_bg_thresh(wb)) { 1721 1722 struct wb_writeback_work work = { 1723 .nr_pages = LONG_MAX, 1724 .sync_mode = WB_SYNC_NONE, 1725 .for_background = 1, 1726 .range_cyclic = 1, 1727 .reason = WB_REASON_BACKGROUND, 1728 }; 1729 1730 return wb_writeback(wb, &work); 1731 } 1732 1733 return 0; 1734 } 1735 1736 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1737 { 1738 unsigned long expired; 1739 long nr_pages; 1740 1741 /* 1742 * When set to zero, disable periodic writeback 1743 */ 1744 if (!dirty_writeback_interval) 1745 return 0; 1746 1747 expired = wb->last_old_flush + 1748 msecs_to_jiffies(dirty_writeback_interval * 10); 1749 if (time_before(jiffies, expired)) 1750 return 0; 1751 1752 wb->last_old_flush = jiffies; 1753 nr_pages = get_nr_dirty_pages(); 1754 1755 if (nr_pages) { 1756 struct wb_writeback_work work = { 1757 .nr_pages = nr_pages, 1758 .sync_mode = WB_SYNC_NONE, 1759 .for_kupdate = 1, 1760 .range_cyclic = 1, 1761 .reason = WB_REASON_PERIODIC, 1762 }; 1763 1764 return wb_writeback(wb, &work); 1765 } 1766 1767 return 0; 1768 } 1769 1770 /* 1771 * Retrieve work items and do the writeback they describe 1772 */ 1773 static long wb_do_writeback(struct bdi_writeback *wb) 1774 { 1775 struct wb_writeback_work *work; 1776 long wrote = 0; 1777 1778 set_bit(WB_writeback_running, &wb->state); 1779 while ((work = get_next_work_item(wb)) != NULL) { 1780 struct wb_completion *done = work->done; 1781 1782 trace_writeback_exec(wb, work); 1783 1784 wrote += wb_writeback(wb, work); 1785 1786 if (work->auto_free) 1787 kfree(work); 1788 if (done && atomic_dec_and_test(&done->cnt)) 1789 wake_up_all(&wb->bdi->wb_waitq); 1790 } 1791 1792 /* 1793 * Check for periodic writeback, kupdated() style 1794 */ 1795 wrote += wb_check_old_data_flush(wb); 1796 wrote += wb_check_background_flush(wb); 1797 clear_bit(WB_writeback_running, &wb->state); 1798 1799 return wrote; 1800 } 1801 1802 /* 1803 * Handle writeback of dirty data for the device backed by this bdi. Also 1804 * reschedules periodically and does kupdated style flushing. 1805 */ 1806 void wb_workfn(struct work_struct *work) 1807 { 1808 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1809 struct bdi_writeback, dwork); 1810 long pages_written; 1811 1812 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1813 current->flags |= PF_SWAPWRITE; 1814 1815 if (likely(!current_is_workqueue_rescuer() || 1816 !test_bit(WB_registered, &wb->state))) { 1817 /* 1818 * The normal path. Keep writing back @wb until its 1819 * work_list is empty. Note that this path is also taken 1820 * if @wb is shutting down even when we're running off the 1821 * rescuer as work_list needs to be drained. 1822 */ 1823 do { 1824 pages_written = wb_do_writeback(wb); 1825 trace_writeback_pages_written(pages_written); 1826 } while (!list_empty(&wb->work_list)); 1827 } else { 1828 /* 1829 * bdi_wq can't get enough workers and we're running off 1830 * the emergency worker. Don't hog it. Hopefully, 1024 is 1831 * enough for efficient IO. 1832 */ 1833 pages_written = writeback_inodes_wb(wb, 1024, 1834 WB_REASON_FORKER_THREAD); 1835 trace_writeback_pages_written(pages_written); 1836 } 1837 1838 if (!list_empty(&wb->work_list)) 1839 mod_delayed_work(bdi_wq, &wb->dwork, 0); 1840 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1841 wb_wakeup_delayed(wb); 1842 1843 current->flags &= ~PF_SWAPWRITE; 1844 } 1845 1846 /* 1847 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1848 * the whole world. 1849 */ 1850 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1851 { 1852 struct backing_dev_info *bdi; 1853 1854 if (!nr_pages) 1855 nr_pages = get_nr_dirty_pages(); 1856 1857 rcu_read_lock(); 1858 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1859 struct bdi_writeback *wb; 1860 struct wb_iter iter; 1861 1862 if (!bdi_has_dirty_io(bdi)) 1863 continue; 1864 1865 bdi_for_each_wb(wb, bdi, &iter, 0) 1866 wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages), 1867 false, reason); 1868 } 1869 rcu_read_unlock(); 1870 } 1871 1872 /* 1873 * Wake up bdi's periodically to make sure dirtytime inodes gets 1874 * written back periodically. We deliberately do *not* check the 1875 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 1876 * kernel to be constantly waking up once there are any dirtytime 1877 * inodes on the system. So instead we define a separate delayed work 1878 * function which gets called much more rarely. (By default, only 1879 * once every 12 hours.) 1880 * 1881 * If there is any other write activity going on in the file system, 1882 * this function won't be necessary. But if the only thing that has 1883 * happened on the file system is a dirtytime inode caused by an atime 1884 * update, we need this infrastructure below to make sure that inode 1885 * eventually gets pushed out to disk. 1886 */ 1887 static void wakeup_dirtytime_writeback(struct work_struct *w); 1888 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 1889 1890 static void wakeup_dirtytime_writeback(struct work_struct *w) 1891 { 1892 struct backing_dev_info *bdi; 1893 1894 rcu_read_lock(); 1895 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1896 struct bdi_writeback *wb; 1897 struct wb_iter iter; 1898 1899 bdi_for_each_wb(wb, bdi, &iter, 0) 1900 if (!list_empty(&bdi->wb.b_dirty_time)) 1901 wb_wakeup(&bdi->wb); 1902 } 1903 rcu_read_unlock(); 1904 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 1905 } 1906 1907 static int __init start_dirtytime_writeback(void) 1908 { 1909 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 1910 return 0; 1911 } 1912 __initcall(start_dirtytime_writeback); 1913 1914 int dirtytime_interval_handler(struct ctl_table *table, int write, 1915 void __user *buffer, size_t *lenp, loff_t *ppos) 1916 { 1917 int ret; 1918 1919 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 1920 if (ret == 0 && write) 1921 mod_delayed_work(system_wq, &dirtytime_work, 0); 1922 return ret; 1923 } 1924 1925 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1926 { 1927 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1928 struct dentry *dentry; 1929 const char *name = "?"; 1930 1931 dentry = d_find_alias(inode); 1932 if (dentry) { 1933 spin_lock(&dentry->d_lock); 1934 name = (const char *) dentry->d_name.name; 1935 } 1936 printk(KERN_DEBUG 1937 "%s(%d): dirtied inode %lu (%s) on %s\n", 1938 current->comm, task_pid_nr(current), inode->i_ino, 1939 name, inode->i_sb->s_id); 1940 if (dentry) { 1941 spin_unlock(&dentry->d_lock); 1942 dput(dentry); 1943 } 1944 } 1945 } 1946 1947 /** 1948 * __mark_inode_dirty - internal function 1949 * @inode: inode to mark 1950 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1951 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1952 * mark_inode_dirty_sync. 1953 * 1954 * Put the inode on the super block's dirty list. 1955 * 1956 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1957 * dirty list only if it is hashed or if it refers to a blockdev. 1958 * If it was not hashed, it will never be added to the dirty list 1959 * even if it is later hashed, as it will have been marked dirty already. 1960 * 1961 * In short, make sure you hash any inodes _before_ you start marking 1962 * them dirty. 1963 * 1964 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1965 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1966 * the kernel-internal blockdev inode represents the dirtying time of the 1967 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1968 * page->mapping->host, so the page-dirtying time is recorded in the internal 1969 * blockdev inode. 1970 */ 1971 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 1972 void __mark_inode_dirty(struct inode *inode, int flags) 1973 { 1974 struct super_block *sb = inode->i_sb; 1975 int dirtytime; 1976 1977 trace_writeback_mark_inode_dirty(inode, flags); 1978 1979 /* 1980 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1981 * dirty the inode itself 1982 */ 1983 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) { 1984 trace_writeback_dirty_inode_start(inode, flags); 1985 1986 if (sb->s_op->dirty_inode) 1987 sb->s_op->dirty_inode(inode, flags); 1988 1989 trace_writeback_dirty_inode(inode, flags); 1990 } 1991 if (flags & I_DIRTY_INODE) 1992 flags &= ~I_DIRTY_TIME; 1993 dirtytime = flags & I_DIRTY_TIME; 1994 1995 /* 1996 * Paired with smp_mb() in __writeback_single_inode() for the 1997 * following lockless i_state test. See there for details. 1998 */ 1999 smp_mb(); 2000 2001 if (((inode->i_state & flags) == flags) || 2002 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2003 return; 2004 2005 if (unlikely(block_dump)) 2006 block_dump___mark_inode_dirty(inode); 2007 2008 spin_lock(&inode->i_lock); 2009 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2010 goto out_unlock_inode; 2011 if ((inode->i_state & flags) != flags) { 2012 const int was_dirty = inode->i_state & I_DIRTY; 2013 2014 inode_attach_wb(inode, NULL); 2015 2016 if (flags & I_DIRTY_INODE) 2017 inode->i_state &= ~I_DIRTY_TIME; 2018 inode->i_state |= flags; 2019 2020 /* 2021 * If the inode is being synced, just update its dirty state. 2022 * The unlocker will place the inode on the appropriate 2023 * superblock list, based upon its state. 2024 */ 2025 if (inode->i_state & I_SYNC) 2026 goto out_unlock_inode; 2027 2028 /* 2029 * Only add valid (hashed) inodes to the superblock's 2030 * dirty list. Add blockdev inodes as well. 2031 */ 2032 if (!S_ISBLK(inode->i_mode)) { 2033 if (inode_unhashed(inode)) 2034 goto out_unlock_inode; 2035 } 2036 if (inode->i_state & I_FREEING) 2037 goto out_unlock_inode; 2038 2039 /* 2040 * If the inode was already on b_dirty/b_io/b_more_io, don't 2041 * reposition it (that would break b_dirty time-ordering). 2042 */ 2043 if (!was_dirty) { 2044 struct bdi_writeback *wb; 2045 struct list_head *dirty_list; 2046 bool wakeup_bdi = false; 2047 2048 wb = locked_inode_to_wb_and_lock_list(inode); 2049 2050 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2051 !test_bit(WB_registered, &wb->state), 2052 "bdi-%s not registered\n", wb->bdi->name); 2053 2054 inode->dirtied_when = jiffies; 2055 if (dirtytime) 2056 inode->dirtied_time_when = jiffies; 2057 2058 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES)) 2059 dirty_list = &wb->b_dirty; 2060 else 2061 dirty_list = &wb->b_dirty_time; 2062 2063 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2064 dirty_list); 2065 2066 spin_unlock(&wb->list_lock); 2067 trace_writeback_dirty_inode_enqueue(inode); 2068 2069 /* 2070 * If this is the first dirty inode for this bdi, 2071 * we have to wake-up the corresponding bdi thread 2072 * to make sure background write-back happens 2073 * later. 2074 */ 2075 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2076 wb_wakeup_delayed(wb); 2077 return; 2078 } 2079 } 2080 out_unlock_inode: 2081 spin_unlock(&inode->i_lock); 2082 2083 } 2084 EXPORT_SYMBOL(__mark_inode_dirty); 2085 2086 /* 2087 * The @s_sync_lock is used to serialise concurrent sync operations 2088 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2089 * Concurrent callers will block on the s_sync_lock rather than doing contending 2090 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2091 * has been issued up to the time this function is enter is guaranteed to be 2092 * completed by the time we have gained the lock and waited for all IO that is 2093 * in progress regardless of the order callers are granted the lock. 2094 */ 2095 static void wait_sb_inodes(struct super_block *sb) 2096 { 2097 struct inode *inode, *old_inode = NULL; 2098 2099 /* 2100 * We need to be protected against the filesystem going from 2101 * r/o to r/w or vice versa. 2102 */ 2103 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2104 2105 mutex_lock(&sb->s_sync_lock); 2106 spin_lock(&sb->s_inode_list_lock); 2107 2108 /* 2109 * Data integrity sync. Must wait for all pages under writeback, 2110 * because there may have been pages dirtied before our sync 2111 * call, but which had writeout started before we write it out. 2112 * In which case, the inode may not be on the dirty list, but 2113 * we still have to wait for that writeout. 2114 */ 2115 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 2116 struct address_space *mapping = inode->i_mapping; 2117 2118 spin_lock(&inode->i_lock); 2119 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 2120 (mapping->nrpages == 0)) { 2121 spin_unlock(&inode->i_lock); 2122 continue; 2123 } 2124 __iget(inode); 2125 spin_unlock(&inode->i_lock); 2126 spin_unlock(&sb->s_inode_list_lock); 2127 2128 /* 2129 * We hold a reference to 'inode' so it couldn't have been 2130 * removed from s_inodes list while we dropped the 2131 * s_inode_list_lock. We cannot iput the inode now as we can 2132 * be holding the last reference and we cannot iput it under 2133 * s_inode_list_lock. So we keep the reference and iput it 2134 * later. 2135 */ 2136 iput(old_inode); 2137 old_inode = inode; 2138 2139 filemap_fdatawait(mapping); 2140 2141 cond_resched(); 2142 2143 spin_lock(&sb->s_inode_list_lock); 2144 } 2145 spin_unlock(&sb->s_inode_list_lock); 2146 iput(old_inode); 2147 mutex_unlock(&sb->s_sync_lock); 2148 } 2149 2150 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2151 enum wb_reason reason, bool skip_if_busy) 2152 { 2153 DEFINE_WB_COMPLETION_ONSTACK(done); 2154 struct wb_writeback_work work = { 2155 .sb = sb, 2156 .sync_mode = WB_SYNC_NONE, 2157 .tagged_writepages = 1, 2158 .done = &done, 2159 .nr_pages = nr, 2160 .reason = reason, 2161 }; 2162 struct backing_dev_info *bdi = sb->s_bdi; 2163 2164 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2165 return; 2166 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2167 2168 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2169 wb_wait_for_completion(bdi, &done); 2170 } 2171 2172 /** 2173 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2174 * @sb: the superblock 2175 * @nr: the number of pages to write 2176 * @reason: reason why some writeback work initiated 2177 * 2178 * Start writeback on some inodes on this super_block. No guarantees are made 2179 * on how many (if any) will be written, and this function does not wait 2180 * for IO completion of submitted IO. 2181 */ 2182 void writeback_inodes_sb_nr(struct super_block *sb, 2183 unsigned long nr, 2184 enum wb_reason reason) 2185 { 2186 __writeback_inodes_sb_nr(sb, nr, reason, false); 2187 } 2188 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2189 2190 /** 2191 * writeback_inodes_sb - writeback dirty inodes from given super_block 2192 * @sb: the superblock 2193 * @reason: reason why some writeback work was initiated 2194 * 2195 * Start writeback on some inodes on this super_block. No guarantees are made 2196 * on how many (if any) will be written, and this function does not wait 2197 * for IO completion of submitted IO. 2198 */ 2199 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2200 { 2201 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2202 } 2203 EXPORT_SYMBOL(writeback_inodes_sb); 2204 2205 /** 2206 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 2207 * @sb: the superblock 2208 * @nr: the number of pages to write 2209 * @reason: the reason of writeback 2210 * 2211 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 2212 * Returns 1 if writeback was started, 0 if not. 2213 */ 2214 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2215 enum wb_reason reason) 2216 { 2217 if (!down_read_trylock(&sb->s_umount)) 2218 return false; 2219 2220 __writeback_inodes_sb_nr(sb, nr, reason, true); 2221 up_read(&sb->s_umount); 2222 return true; 2223 } 2224 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 2225 2226 /** 2227 * try_to_writeback_inodes_sb - try to start writeback if none underway 2228 * @sb: the superblock 2229 * @reason: reason why some writeback work was initiated 2230 * 2231 * Implement by try_to_writeback_inodes_sb_nr() 2232 * Returns 1 if writeback was started, 0 if not. 2233 */ 2234 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2235 { 2236 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2237 } 2238 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2239 2240 /** 2241 * sync_inodes_sb - sync sb inode pages 2242 * @sb: the superblock 2243 * 2244 * This function writes and waits on any dirty inode belonging to this 2245 * super_block. 2246 */ 2247 void sync_inodes_sb(struct super_block *sb) 2248 { 2249 DEFINE_WB_COMPLETION_ONSTACK(done); 2250 struct wb_writeback_work work = { 2251 .sb = sb, 2252 .sync_mode = WB_SYNC_ALL, 2253 .nr_pages = LONG_MAX, 2254 .range_cyclic = 0, 2255 .done = &done, 2256 .reason = WB_REASON_SYNC, 2257 .for_sync = 1, 2258 }; 2259 struct backing_dev_info *bdi = sb->s_bdi; 2260 2261 /* 2262 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2263 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2264 * bdi_has_dirty() need to be written out too. 2265 */ 2266 if (bdi == &noop_backing_dev_info) 2267 return; 2268 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2269 2270 bdi_split_work_to_wbs(bdi, &work, false); 2271 wb_wait_for_completion(bdi, &done); 2272 2273 wait_sb_inodes(sb); 2274 } 2275 EXPORT_SYMBOL(sync_inodes_sb); 2276 2277 /** 2278 * write_inode_now - write an inode to disk 2279 * @inode: inode to write to disk 2280 * @sync: whether the write should be synchronous or not 2281 * 2282 * This function commits an inode to disk immediately if it is dirty. This is 2283 * primarily needed by knfsd. 2284 * 2285 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2286 */ 2287 int write_inode_now(struct inode *inode, int sync) 2288 { 2289 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 2290 struct writeback_control wbc = { 2291 .nr_to_write = LONG_MAX, 2292 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2293 .range_start = 0, 2294 .range_end = LLONG_MAX, 2295 }; 2296 2297 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2298 wbc.nr_to_write = 0; 2299 2300 might_sleep(); 2301 return writeback_single_inode(inode, wb, &wbc); 2302 } 2303 EXPORT_SYMBOL(write_inode_now); 2304 2305 /** 2306 * sync_inode - write an inode and its pages to disk. 2307 * @inode: the inode to sync 2308 * @wbc: controls the writeback mode 2309 * 2310 * sync_inode() will write an inode and its pages to disk. It will also 2311 * correctly update the inode on its superblock's dirty inode lists and will 2312 * update inode->i_state. 2313 * 2314 * The caller must have a ref on the inode. 2315 */ 2316 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2317 { 2318 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 2319 } 2320 EXPORT_SYMBOL(sync_inode); 2321 2322 /** 2323 * sync_inode_metadata - write an inode to disk 2324 * @inode: the inode to sync 2325 * @wait: wait for I/O to complete. 2326 * 2327 * Write an inode to disk and adjust its dirty state after completion. 2328 * 2329 * Note: only writes the actual inode, no associated data or other metadata. 2330 */ 2331 int sync_inode_metadata(struct inode *inode, int wait) 2332 { 2333 struct writeback_control wbc = { 2334 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2335 .nr_to_write = 0, /* metadata-only */ 2336 }; 2337 2338 return sync_inode(inode, &wbc); 2339 } 2340 EXPORT_SYMBOL(sync_inode_metadata); 2341