xref: /openbmc/linux/fs/fs-writeback.c (revision e6c81cce)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
50 	enum wb_reason reason;		/* why was writeback initiated? */
51 
52 	struct list_head list;		/* pending work list */
53 	struct completion *done;	/* set if the caller waits */
54 };
55 
56 /*
57  * If an inode is constantly having its pages dirtied, but then the
58  * updates stop dirtytime_expire_interval seconds in the past, it's
59  * possible for the worst case time between when an inode has its
60  * timestamps updated and when they finally get written out to be two
61  * dirtytime_expire_intervals.  We set the default to 12 hours (in
62  * seconds), which means most of the time inodes will have their
63  * timestamps written to disk after 12 hours, but in the worst case a
64  * few inodes might not their timestamps updated for 24 hours.
65  */
66 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
67 
68 /**
69  * writeback_in_progress - determine whether there is writeback in progress
70  * @bdi: the device's backing_dev_info structure.
71  *
72  * Determine whether there is writeback waiting to be handled against a
73  * backing device.
74  */
75 int writeback_in_progress(struct backing_dev_info *bdi)
76 {
77 	return test_bit(BDI_writeback_running, &bdi->state);
78 }
79 EXPORT_SYMBOL(writeback_in_progress);
80 
81 struct backing_dev_info *inode_to_bdi(struct inode *inode)
82 {
83 	struct super_block *sb;
84 
85 	if (!inode)
86 		return &noop_backing_dev_info;
87 
88 	sb = inode->i_sb;
89 #ifdef CONFIG_BLOCK
90 	if (sb_is_blkdev_sb(sb))
91 		return blk_get_backing_dev_info(I_BDEV(inode));
92 #endif
93 	return sb->s_bdi;
94 }
95 EXPORT_SYMBOL_GPL(inode_to_bdi);
96 
97 static inline struct inode *wb_inode(struct list_head *head)
98 {
99 	return list_entry(head, struct inode, i_wb_list);
100 }
101 
102 /*
103  * Include the creation of the trace points after defining the
104  * wb_writeback_work structure and inline functions so that the definition
105  * remains local to this file.
106  */
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/writeback.h>
109 
110 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
111 
112 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
113 {
114 	spin_lock_bh(&bdi->wb_lock);
115 	if (test_bit(BDI_registered, &bdi->state))
116 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
117 	spin_unlock_bh(&bdi->wb_lock);
118 }
119 
120 static void bdi_queue_work(struct backing_dev_info *bdi,
121 			   struct wb_writeback_work *work)
122 {
123 	trace_writeback_queue(bdi, work);
124 
125 	spin_lock_bh(&bdi->wb_lock);
126 	if (!test_bit(BDI_registered, &bdi->state)) {
127 		if (work->done)
128 			complete(work->done);
129 		goto out_unlock;
130 	}
131 	list_add_tail(&work->list, &bdi->work_list);
132 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
133 out_unlock:
134 	spin_unlock_bh(&bdi->wb_lock);
135 }
136 
137 static void
138 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
139 		      bool range_cyclic, enum wb_reason reason)
140 {
141 	struct wb_writeback_work *work;
142 
143 	/*
144 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
145 	 * wakeup the thread for old dirty data writeback
146 	 */
147 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
148 	if (!work) {
149 		trace_writeback_nowork(bdi);
150 		bdi_wakeup_thread(bdi);
151 		return;
152 	}
153 
154 	work->sync_mode	= WB_SYNC_NONE;
155 	work->nr_pages	= nr_pages;
156 	work->range_cyclic = range_cyclic;
157 	work->reason	= reason;
158 
159 	bdi_queue_work(bdi, work);
160 }
161 
162 /**
163  * bdi_start_writeback - start writeback
164  * @bdi: the backing device to write from
165  * @nr_pages: the number of pages to write
166  * @reason: reason why some writeback work was initiated
167  *
168  * Description:
169  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
170  *   started when this function returns, we make no guarantees on
171  *   completion. Caller need not hold sb s_umount semaphore.
172  *
173  */
174 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
175 			enum wb_reason reason)
176 {
177 	__bdi_start_writeback(bdi, nr_pages, true, reason);
178 }
179 
180 /**
181  * bdi_start_background_writeback - start background writeback
182  * @bdi: the backing device to write from
183  *
184  * Description:
185  *   This makes sure WB_SYNC_NONE background writeback happens. When
186  *   this function returns, it is only guaranteed that for given BDI
187  *   some IO is happening if we are over background dirty threshold.
188  *   Caller need not hold sb s_umount semaphore.
189  */
190 void bdi_start_background_writeback(struct backing_dev_info *bdi)
191 {
192 	/*
193 	 * We just wake up the flusher thread. It will perform background
194 	 * writeback as soon as there is no other work to do.
195 	 */
196 	trace_writeback_wake_background(bdi);
197 	bdi_wakeup_thread(bdi);
198 }
199 
200 /*
201  * Remove the inode from the writeback list it is on.
202  */
203 void inode_wb_list_del(struct inode *inode)
204 {
205 	struct backing_dev_info *bdi = inode_to_bdi(inode);
206 
207 	spin_lock(&bdi->wb.list_lock);
208 	list_del_init(&inode->i_wb_list);
209 	spin_unlock(&bdi->wb.list_lock);
210 }
211 
212 /*
213  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
214  * furthest end of its superblock's dirty-inode list.
215  *
216  * Before stamping the inode's ->dirtied_when, we check to see whether it is
217  * already the most-recently-dirtied inode on the b_dirty list.  If that is
218  * the case then the inode must have been redirtied while it was being written
219  * out and we don't reset its dirtied_when.
220  */
221 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
222 {
223 	assert_spin_locked(&wb->list_lock);
224 	if (!list_empty(&wb->b_dirty)) {
225 		struct inode *tail;
226 
227 		tail = wb_inode(wb->b_dirty.next);
228 		if (time_before(inode->dirtied_when, tail->dirtied_when))
229 			inode->dirtied_when = jiffies;
230 	}
231 	list_move(&inode->i_wb_list, &wb->b_dirty);
232 }
233 
234 /*
235  * requeue inode for re-scanning after bdi->b_io list is exhausted.
236  */
237 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
238 {
239 	assert_spin_locked(&wb->list_lock);
240 	list_move(&inode->i_wb_list, &wb->b_more_io);
241 }
242 
243 static void inode_sync_complete(struct inode *inode)
244 {
245 	inode->i_state &= ~I_SYNC;
246 	/* If inode is clean an unused, put it into LRU now... */
247 	inode_add_lru(inode);
248 	/* Waiters must see I_SYNC cleared before being woken up */
249 	smp_mb();
250 	wake_up_bit(&inode->i_state, __I_SYNC);
251 }
252 
253 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
254 {
255 	bool ret = time_after(inode->dirtied_when, t);
256 #ifndef CONFIG_64BIT
257 	/*
258 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
259 	 * It _appears_ to be in the future, but is actually in distant past.
260 	 * This test is necessary to prevent such wrapped-around relative times
261 	 * from permanently stopping the whole bdi writeback.
262 	 */
263 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
264 #endif
265 	return ret;
266 }
267 
268 #define EXPIRE_DIRTY_ATIME 0x0001
269 
270 /*
271  * Move expired (dirtied before work->older_than_this) dirty inodes from
272  * @delaying_queue to @dispatch_queue.
273  */
274 static int move_expired_inodes(struct list_head *delaying_queue,
275 			       struct list_head *dispatch_queue,
276 			       int flags,
277 			       struct wb_writeback_work *work)
278 {
279 	unsigned long *older_than_this = NULL;
280 	unsigned long expire_time;
281 	LIST_HEAD(tmp);
282 	struct list_head *pos, *node;
283 	struct super_block *sb = NULL;
284 	struct inode *inode;
285 	int do_sb_sort = 0;
286 	int moved = 0;
287 
288 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
289 		older_than_this = work->older_than_this;
290 	else if (!work->for_sync) {
291 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
292 		older_than_this = &expire_time;
293 	}
294 	while (!list_empty(delaying_queue)) {
295 		inode = wb_inode(delaying_queue->prev);
296 		if (older_than_this &&
297 		    inode_dirtied_after(inode, *older_than_this))
298 			break;
299 		list_move(&inode->i_wb_list, &tmp);
300 		moved++;
301 		if (flags & EXPIRE_DIRTY_ATIME)
302 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
303 		if (sb_is_blkdev_sb(inode->i_sb))
304 			continue;
305 		if (sb && sb != inode->i_sb)
306 			do_sb_sort = 1;
307 		sb = inode->i_sb;
308 	}
309 
310 	/* just one sb in list, splice to dispatch_queue and we're done */
311 	if (!do_sb_sort) {
312 		list_splice(&tmp, dispatch_queue);
313 		goto out;
314 	}
315 
316 	/* Move inodes from one superblock together */
317 	while (!list_empty(&tmp)) {
318 		sb = wb_inode(tmp.prev)->i_sb;
319 		list_for_each_prev_safe(pos, node, &tmp) {
320 			inode = wb_inode(pos);
321 			if (inode->i_sb == sb)
322 				list_move(&inode->i_wb_list, dispatch_queue);
323 		}
324 	}
325 out:
326 	return moved;
327 }
328 
329 /*
330  * Queue all expired dirty inodes for io, eldest first.
331  * Before
332  *         newly dirtied     b_dirty    b_io    b_more_io
333  *         =============>    gf         edc     BA
334  * After
335  *         newly dirtied     b_dirty    b_io    b_more_io
336  *         =============>    g          fBAedc
337  *                                           |
338  *                                           +--> dequeue for IO
339  */
340 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
341 {
342 	int moved;
343 
344 	assert_spin_locked(&wb->list_lock);
345 	list_splice_init(&wb->b_more_io, &wb->b_io);
346 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
347 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
348 				     EXPIRE_DIRTY_ATIME, work);
349 	trace_writeback_queue_io(wb, work, moved);
350 }
351 
352 static int write_inode(struct inode *inode, struct writeback_control *wbc)
353 {
354 	int ret;
355 
356 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
357 		trace_writeback_write_inode_start(inode, wbc);
358 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
359 		trace_writeback_write_inode(inode, wbc);
360 		return ret;
361 	}
362 	return 0;
363 }
364 
365 /*
366  * Wait for writeback on an inode to complete. Called with i_lock held.
367  * Caller must make sure inode cannot go away when we drop i_lock.
368  */
369 static void __inode_wait_for_writeback(struct inode *inode)
370 	__releases(inode->i_lock)
371 	__acquires(inode->i_lock)
372 {
373 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
374 	wait_queue_head_t *wqh;
375 
376 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
377 	while (inode->i_state & I_SYNC) {
378 		spin_unlock(&inode->i_lock);
379 		__wait_on_bit(wqh, &wq, bit_wait,
380 			      TASK_UNINTERRUPTIBLE);
381 		spin_lock(&inode->i_lock);
382 	}
383 }
384 
385 /*
386  * Wait for writeback on an inode to complete. Caller must have inode pinned.
387  */
388 void inode_wait_for_writeback(struct inode *inode)
389 {
390 	spin_lock(&inode->i_lock);
391 	__inode_wait_for_writeback(inode);
392 	spin_unlock(&inode->i_lock);
393 }
394 
395 /*
396  * Sleep until I_SYNC is cleared. This function must be called with i_lock
397  * held and drops it. It is aimed for callers not holding any inode reference
398  * so once i_lock is dropped, inode can go away.
399  */
400 static void inode_sleep_on_writeback(struct inode *inode)
401 	__releases(inode->i_lock)
402 {
403 	DEFINE_WAIT(wait);
404 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
405 	int sleep;
406 
407 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
408 	sleep = inode->i_state & I_SYNC;
409 	spin_unlock(&inode->i_lock);
410 	if (sleep)
411 		schedule();
412 	finish_wait(wqh, &wait);
413 }
414 
415 /*
416  * Find proper writeback list for the inode depending on its current state and
417  * possibly also change of its state while we were doing writeback.  Here we
418  * handle things such as livelock prevention or fairness of writeback among
419  * inodes. This function can be called only by flusher thread - noone else
420  * processes all inodes in writeback lists and requeueing inodes behind flusher
421  * thread's back can have unexpected consequences.
422  */
423 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
424 			  struct writeback_control *wbc)
425 {
426 	if (inode->i_state & I_FREEING)
427 		return;
428 
429 	/*
430 	 * Sync livelock prevention. Each inode is tagged and synced in one
431 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
432 	 * the dirty time to prevent enqueue and sync it again.
433 	 */
434 	if ((inode->i_state & I_DIRTY) &&
435 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
436 		inode->dirtied_when = jiffies;
437 
438 	if (wbc->pages_skipped) {
439 		/*
440 		 * writeback is not making progress due to locked
441 		 * buffers. Skip this inode for now.
442 		 */
443 		redirty_tail(inode, wb);
444 		return;
445 	}
446 
447 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
448 		/*
449 		 * We didn't write back all the pages.  nfs_writepages()
450 		 * sometimes bales out without doing anything.
451 		 */
452 		if (wbc->nr_to_write <= 0) {
453 			/* Slice used up. Queue for next turn. */
454 			requeue_io(inode, wb);
455 		} else {
456 			/*
457 			 * Writeback blocked by something other than
458 			 * congestion. Delay the inode for some time to
459 			 * avoid spinning on the CPU (100% iowait)
460 			 * retrying writeback of the dirty page/inode
461 			 * that cannot be performed immediately.
462 			 */
463 			redirty_tail(inode, wb);
464 		}
465 	} else if (inode->i_state & I_DIRTY) {
466 		/*
467 		 * Filesystems can dirty the inode during writeback operations,
468 		 * such as delayed allocation during submission or metadata
469 		 * updates after data IO completion.
470 		 */
471 		redirty_tail(inode, wb);
472 	} else if (inode->i_state & I_DIRTY_TIME) {
473 		inode->dirtied_when = jiffies;
474 		list_move(&inode->i_wb_list, &wb->b_dirty_time);
475 	} else {
476 		/* The inode is clean. Remove from writeback lists. */
477 		list_del_init(&inode->i_wb_list);
478 	}
479 }
480 
481 /*
482  * Write out an inode and its dirty pages. Do not update the writeback list
483  * linkage. That is left to the caller. The caller is also responsible for
484  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
485  */
486 static int
487 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
488 {
489 	struct address_space *mapping = inode->i_mapping;
490 	long nr_to_write = wbc->nr_to_write;
491 	unsigned dirty;
492 	int ret;
493 
494 	WARN_ON(!(inode->i_state & I_SYNC));
495 
496 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
497 
498 	ret = do_writepages(mapping, wbc);
499 
500 	/*
501 	 * Make sure to wait on the data before writing out the metadata.
502 	 * This is important for filesystems that modify metadata on data
503 	 * I/O completion. We don't do it for sync(2) writeback because it has a
504 	 * separate, external IO completion path and ->sync_fs for guaranteeing
505 	 * inode metadata is written back correctly.
506 	 */
507 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
508 		int err = filemap_fdatawait(mapping);
509 		if (ret == 0)
510 			ret = err;
511 	}
512 
513 	/*
514 	 * Some filesystems may redirty the inode during the writeback
515 	 * due to delalloc, clear dirty metadata flags right before
516 	 * write_inode()
517 	 */
518 	spin_lock(&inode->i_lock);
519 
520 	dirty = inode->i_state & I_DIRTY;
521 	if (inode->i_state & I_DIRTY_TIME) {
522 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
523 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
524 		    unlikely(time_after(jiffies,
525 					(inode->dirtied_time_when +
526 					 dirtytime_expire_interval * HZ)))) {
527 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
528 			trace_writeback_lazytime(inode);
529 		}
530 	} else
531 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
532 	inode->i_state &= ~dirty;
533 
534 	/*
535 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
536 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
537 	 * either they see the I_DIRTY bits cleared or we see the dirtied
538 	 * inode.
539 	 *
540 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
541 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
542 	 * necessary.  This guarantees that either __mark_inode_dirty()
543 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
544 	 */
545 	smp_mb();
546 
547 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
548 		inode->i_state |= I_DIRTY_PAGES;
549 
550 	spin_unlock(&inode->i_lock);
551 
552 	if (dirty & I_DIRTY_TIME)
553 		mark_inode_dirty_sync(inode);
554 	/* Don't write the inode if only I_DIRTY_PAGES was set */
555 	if (dirty & ~I_DIRTY_PAGES) {
556 		int err = write_inode(inode, wbc);
557 		if (ret == 0)
558 			ret = err;
559 	}
560 	trace_writeback_single_inode(inode, wbc, nr_to_write);
561 	return ret;
562 }
563 
564 /*
565  * Write out an inode's dirty pages. Either the caller has an active reference
566  * on the inode or the inode has I_WILL_FREE set.
567  *
568  * This function is designed to be called for writing back one inode which
569  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
570  * and does more profound writeback list handling in writeback_sb_inodes().
571  */
572 static int
573 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
574 		       struct writeback_control *wbc)
575 {
576 	int ret = 0;
577 
578 	spin_lock(&inode->i_lock);
579 	if (!atomic_read(&inode->i_count))
580 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
581 	else
582 		WARN_ON(inode->i_state & I_WILL_FREE);
583 
584 	if (inode->i_state & I_SYNC) {
585 		if (wbc->sync_mode != WB_SYNC_ALL)
586 			goto out;
587 		/*
588 		 * It's a data-integrity sync. We must wait. Since callers hold
589 		 * inode reference or inode has I_WILL_FREE set, it cannot go
590 		 * away under us.
591 		 */
592 		__inode_wait_for_writeback(inode);
593 	}
594 	WARN_ON(inode->i_state & I_SYNC);
595 	/*
596 	 * Skip inode if it is clean and we have no outstanding writeback in
597 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
598 	 * function since flusher thread may be doing for example sync in
599 	 * parallel and if we move the inode, it could get skipped. So here we
600 	 * make sure inode is on some writeback list and leave it there unless
601 	 * we have completely cleaned the inode.
602 	 */
603 	if (!(inode->i_state & I_DIRTY_ALL) &&
604 	    (wbc->sync_mode != WB_SYNC_ALL ||
605 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
606 		goto out;
607 	inode->i_state |= I_SYNC;
608 	spin_unlock(&inode->i_lock);
609 
610 	ret = __writeback_single_inode(inode, wbc);
611 
612 	spin_lock(&wb->list_lock);
613 	spin_lock(&inode->i_lock);
614 	/*
615 	 * If inode is clean, remove it from writeback lists. Otherwise don't
616 	 * touch it. See comment above for explanation.
617 	 */
618 	if (!(inode->i_state & I_DIRTY_ALL))
619 		list_del_init(&inode->i_wb_list);
620 	spin_unlock(&wb->list_lock);
621 	inode_sync_complete(inode);
622 out:
623 	spin_unlock(&inode->i_lock);
624 	return ret;
625 }
626 
627 static long writeback_chunk_size(struct backing_dev_info *bdi,
628 				 struct wb_writeback_work *work)
629 {
630 	long pages;
631 
632 	/*
633 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
634 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
635 	 * here avoids calling into writeback_inodes_wb() more than once.
636 	 *
637 	 * The intended call sequence for WB_SYNC_ALL writeback is:
638 	 *
639 	 *      wb_writeback()
640 	 *          writeback_sb_inodes()       <== called only once
641 	 *              write_cache_pages()     <== called once for each inode
642 	 *                   (quickly) tag currently dirty pages
643 	 *                   (maybe slowly) sync all tagged pages
644 	 */
645 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
646 		pages = LONG_MAX;
647 	else {
648 		pages = min(bdi->avg_write_bandwidth / 2,
649 			    global_dirty_limit / DIRTY_SCOPE);
650 		pages = min(pages, work->nr_pages);
651 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
652 				   MIN_WRITEBACK_PAGES);
653 	}
654 
655 	return pages;
656 }
657 
658 /*
659  * Write a portion of b_io inodes which belong to @sb.
660  *
661  * Return the number of pages and/or inodes written.
662  */
663 static long writeback_sb_inodes(struct super_block *sb,
664 				struct bdi_writeback *wb,
665 				struct wb_writeback_work *work)
666 {
667 	struct writeback_control wbc = {
668 		.sync_mode		= work->sync_mode,
669 		.tagged_writepages	= work->tagged_writepages,
670 		.for_kupdate		= work->for_kupdate,
671 		.for_background		= work->for_background,
672 		.for_sync		= work->for_sync,
673 		.range_cyclic		= work->range_cyclic,
674 		.range_start		= 0,
675 		.range_end		= LLONG_MAX,
676 	};
677 	unsigned long start_time = jiffies;
678 	long write_chunk;
679 	long wrote = 0;  /* count both pages and inodes */
680 
681 	while (!list_empty(&wb->b_io)) {
682 		struct inode *inode = wb_inode(wb->b_io.prev);
683 
684 		if (inode->i_sb != sb) {
685 			if (work->sb) {
686 				/*
687 				 * We only want to write back data for this
688 				 * superblock, move all inodes not belonging
689 				 * to it back onto the dirty list.
690 				 */
691 				redirty_tail(inode, wb);
692 				continue;
693 			}
694 
695 			/*
696 			 * The inode belongs to a different superblock.
697 			 * Bounce back to the caller to unpin this and
698 			 * pin the next superblock.
699 			 */
700 			break;
701 		}
702 
703 		/*
704 		 * Don't bother with new inodes or inodes being freed, first
705 		 * kind does not need periodic writeout yet, and for the latter
706 		 * kind writeout is handled by the freer.
707 		 */
708 		spin_lock(&inode->i_lock);
709 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
710 			spin_unlock(&inode->i_lock);
711 			redirty_tail(inode, wb);
712 			continue;
713 		}
714 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
715 			/*
716 			 * If this inode is locked for writeback and we are not
717 			 * doing writeback-for-data-integrity, move it to
718 			 * b_more_io so that writeback can proceed with the
719 			 * other inodes on s_io.
720 			 *
721 			 * We'll have another go at writing back this inode
722 			 * when we completed a full scan of b_io.
723 			 */
724 			spin_unlock(&inode->i_lock);
725 			requeue_io(inode, wb);
726 			trace_writeback_sb_inodes_requeue(inode);
727 			continue;
728 		}
729 		spin_unlock(&wb->list_lock);
730 
731 		/*
732 		 * We already requeued the inode if it had I_SYNC set and we
733 		 * are doing WB_SYNC_NONE writeback. So this catches only the
734 		 * WB_SYNC_ALL case.
735 		 */
736 		if (inode->i_state & I_SYNC) {
737 			/* Wait for I_SYNC. This function drops i_lock... */
738 			inode_sleep_on_writeback(inode);
739 			/* Inode may be gone, start again */
740 			spin_lock(&wb->list_lock);
741 			continue;
742 		}
743 		inode->i_state |= I_SYNC;
744 		spin_unlock(&inode->i_lock);
745 
746 		write_chunk = writeback_chunk_size(wb->bdi, work);
747 		wbc.nr_to_write = write_chunk;
748 		wbc.pages_skipped = 0;
749 
750 		/*
751 		 * We use I_SYNC to pin the inode in memory. While it is set
752 		 * evict_inode() will wait so the inode cannot be freed.
753 		 */
754 		__writeback_single_inode(inode, &wbc);
755 
756 		work->nr_pages -= write_chunk - wbc.nr_to_write;
757 		wrote += write_chunk - wbc.nr_to_write;
758 		spin_lock(&wb->list_lock);
759 		spin_lock(&inode->i_lock);
760 		if (!(inode->i_state & I_DIRTY_ALL))
761 			wrote++;
762 		requeue_inode(inode, wb, &wbc);
763 		inode_sync_complete(inode);
764 		spin_unlock(&inode->i_lock);
765 		cond_resched_lock(&wb->list_lock);
766 		/*
767 		 * bail out to wb_writeback() often enough to check
768 		 * background threshold and other termination conditions.
769 		 */
770 		if (wrote) {
771 			if (time_is_before_jiffies(start_time + HZ / 10UL))
772 				break;
773 			if (work->nr_pages <= 0)
774 				break;
775 		}
776 	}
777 	return wrote;
778 }
779 
780 static long __writeback_inodes_wb(struct bdi_writeback *wb,
781 				  struct wb_writeback_work *work)
782 {
783 	unsigned long start_time = jiffies;
784 	long wrote = 0;
785 
786 	while (!list_empty(&wb->b_io)) {
787 		struct inode *inode = wb_inode(wb->b_io.prev);
788 		struct super_block *sb = inode->i_sb;
789 
790 		if (!trylock_super(sb)) {
791 			/*
792 			 * trylock_super() may fail consistently due to
793 			 * s_umount being grabbed by someone else. Don't use
794 			 * requeue_io() to avoid busy retrying the inode/sb.
795 			 */
796 			redirty_tail(inode, wb);
797 			continue;
798 		}
799 		wrote += writeback_sb_inodes(sb, wb, work);
800 		up_read(&sb->s_umount);
801 
802 		/* refer to the same tests at the end of writeback_sb_inodes */
803 		if (wrote) {
804 			if (time_is_before_jiffies(start_time + HZ / 10UL))
805 				break;
806 			if (work->nr_pages <= 0)
807 				break;
808 		}
809 	}
810 	/* Leave any unwritten inodes on b_io */
811 	return wrote;
812 }
813 
814 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
815 				enum wb_reason reason)
816 {
817 	struct wb_writeback_work work = {
818 		.nr_pages	= nr_pages,
819 		.sync_mode	= WB_SYNC_NONE,
820 		.range_cyclic	= 1,
821 		.reason		= reason,
822 	};
823 
824 	spin_lock(&wb->list_lock);
825 	if (list_empty(&wb->b_io))
826 		queue_io(wb, &work);
827 	__writeback_inodes_wb(wb, &work);
828 	spin_unlock(&wb->list_lock);
829 
830 	return nr_pages - work.nr_pages;
831 }
832 
833 static bool over_bground_thresh(struct backing_dev_info *bdi)
834 {
835 	unsigned long background_thresh, dirty_thresh;
836 
837 	global_dirty_limits(&background_thresh, &dirty_thresh);
838 
839 	if (global_page_state(NR_FILE_DIRTY) +
840 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
841 		return true;
842 
843 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
844 				bdi_dirty_limit(bdi, background_thresh))
845 		return true;
846 
847 	return false;
848 }
849 
850 /*
851  * Called under wb->list_lock. If there are multiple wb per bdi,
852  * only the flusher working on the first wb should do it.
853  */
854 static void wb_update_bandwidth(struct bdi_writeback *wb,
855 				unsigned long start_time)
856 {
857 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
858 }
859 
860 /*
861  * Explicit flushing or periodic writeback of "old" data.
862  *
863  * Define "old": the first time one of an inode's pages is dirtied, we mark the
864  * dirtying-time in the inode's address_space.  So this periodic writeback code
865  * just walks the superblock inode list, writing back any inodes which are
866  * older than a specific point in time.
867  *
868  * Try to run once per dirty_writeback_interval.  But if a writeback event
869  * takes longer than a dirty_writeback_interval interval, then leave a
870  * one-second gap.
871  *
872  * older_than_this takes precedence over nr_to_write.  So we'll only write back
873  * all dirty pages if they are all attached to "old" mappings.
874  */
875 static long wb_writeback(struct bdi_writeback *wb,
876 			 struct wb_writeback_work *work)
877 {
878 	unsigned long wb_start = jiffies;
879 	long nr_pages = work->nr_pages;
880 	unsigned long oldest_jif;
881 	struct inode *inode;
882 	long progress;
883 
884 	oldest_jif = jiffies;
885 	work->older_than_this = &oldest_jif;
886 
887 	spin_lock(&wb->list_lock);
888 	for (;;) {
889 		/*
890 		 * Stop writeback when nr_pages has been consumed
891 		 */
892 		if (work->nr_pages <= 0)
893 			break;
894 
895 		/*
896 		 * Background writeout and kupdate-style writeback may
897 		 * run forever. Stop them if there is other work to do
898 		 * so that e.g. sync can proceed. They'll be restarted
899 		 * after the other works are all done.
900 		 */
901 		if ((work->for_background || work->for_kupdate) &&
902 		    !list_empty(&wb->bdi->work_list))
903 			break;
904 
905 		/*
906 		 * For background writeout, stop when we are below the
907 		 * background dirty threshold
908 		 */
909 		if (work->for_background && !over_bground_thresh(wb->bdi))
910 			break;
911 
912 		/*
913 		 * Kupdate and background works are special and we want to
914 		 * include all inodes that need writing. Livelock avoidance is
915 		 * handled by these works yielding to any other work so we are
916 		 * safe.
917 		 */
918 		if (work->for_kupdate) {
919 			oldest_jif = jiffies -
920 				msecs_to_jiffies(dirty_expire_interval * 10);
921 		} else if (work->for_background)
922 			oldest_jif = jiffies;
923 
924 		trace_writeback_start(wb->bdi, work);
925 		if (list_empty(&wb->b_io))
926 			queue_io(wb, work);
927 		if (work->sb)
928 			progress = writeback_sb_inodes(work->sb, wb, work);
929 		else
930 			progress = __writeback_inodes_wb(wb, work);
931 		trace_writeback_written(wb->bdi, work);
932 
933 		wb_update_bandwidth(wb, wb_start);
934 
935 		/*
936 		 * Did we write something? Try for more
937 		 *
938 		 * Dirty inodes are moved to b_io for writeback in batches.
939 		 * The completion of the current batch does not necessarily
940 		 * mean the overall work is done. So we keep looping as long
941 		 * as made some progress on cleaning pages or inodes.
942 		 */
943 		if (progress)
944 			continue;
945 		/*
946 		 * No more inodes for IO, bail
947 		 */
948 		if (list_empty(&wb->b_more_io))
949 			break;
950 		/*
951 		 * Nothing written. Wait for some inode to
952 		 * become available for writeback. Otherwise
953 		 * we'll just busyloop.
954 		 */
955 		if (!list_empty(&wb->b_more_io))  {
956 			trace_writeback_wait(wb->bdi, work);
957 			inode = wb_inode(wb->b_more_io.prev);
958 			spin_lock(&inode->i_lock);
959 			spin_unlock(&wb->list_lock);
960 			/* This function drops i_lock... */
961 			inode_sleep_on_writeback(inode);
962 			spin_lock(&wb->list_lock);
963 		}
964 	}
965 	spin_unlock(&wb->list_lock);
966 
967 	return nr_pages - work->nr_pages;
968 }
969 
970 /*
971  * Return the next wb_writeback_work struct that hasn't been processed yet.
972  */
973 static struct wb_writeback_work *
974 get_next_work_item(struct backing_dev_info *bdi)
975 {
976 	struct wb_writeback_work *work = NULL;
977 
978 	spin_lock_bh(&bdi->wb_lock);
979 	if (!list_empty(&bdi->work_list)) {
980 		work = list_entry(bdi->work_list.next,
981 				  struct wb_writeback_work, list);
982 		list_del_init(&work->list);
983 	}
984 	spin_unlock_bh(&bdi->wb_lock);
985 	return work;
986 }
987 
988 /*
989  * Add in the number of potentially dirty inodes, because each inode
990  * write can dirty pagecache in the underlying blockdev.
991  */
992 static unsigned long get_nr_dirty_pages(void)
993 {
994 	return global_page_state(NR_FILE_DIRTY) +
995 		global_page_state(NR_UNSTABLE_NFS) +
996 		get_nr_dirty_inodes();
997 }
998 
999 static long wb_check_background_flush(struct bdi_writeback *wb)
1000 {
1001 	if (over_bground_thresh(wb->bdi)) {
1002 
1003 		struct wb_writeback_work work = {
1004 			.nr_pages	= LONG_MAX,
1005 			.sync_mode	= WB_SYNC_NONE,
1006 			.for_background	= 1,
1007 			.range_cyclic	= 1,
1008 			.reason		= WB_REASON_BACKGROUND,
1009 		};
1010 
1011 		return wb_writeback(wb, &work);
1012 	}
1013 
1014 	return 0;
1015 }
1016 
1017 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1018 {
1019 	unsigned long expired;
1020 	long nr_pages;
1021 
1022 	/*
1023 	 * When set to zero, disable periodic writeback
1024 	 */
1025 	if (!dirty_writeback_interval)
1026 		return 0;
1027 
1028 	expired = wb->last_old_flush +
1029 			msecs_to_jiffies(dirty_writeback_interval * 10);
1030 	if (time_before(jiffies, expired))
1031 		return 0;
1032 
1033 	wb->last_old_flush = jiffies;
1034 	nr_pages = get_nr_dirty_pages();
1035 
1036 	if (nr_pages) {
1037 		struct wb_writeback_work work = {
1038 			.nr_pages	= nr_pages,
1039 			.sync_mode	= WB_SYNC_NONE,
1040 			.for_kupdate	= 1,
1041 			.range_cyclic	= 1,
1042 			.reason		= WB_REASON_PERIODIC,
1043 		};
1044 
1045 		return wb_writeback(wb, &work);
1046 	}
1047 
1048 	return 0;
1049 }
1050 
1051 /*
1052  * Retrieve work items and do the writeback they describe
1053  */
1054 static long wb_do_writeback(struct bdi_writeback *wb)
1055 {
1056 	struct backing_dev_info *bdi = wb->bdi;
1057 	struct wb_writeback_work *work;
1058 	long wrote = 0;
1059 
1060 	set_bit(BDI_writeback_running, &wb->bdi->state);
1061 	while ((work = get_next_work_item(bdi)) != NULL) {
1062 
1063 		trace_writeback_exec(bdi, work);
1064 
1065 		wrote += wb_writeback(wb, work);
1066 
1067 		/*
1068 		 * Notify the caller of completion if this is a synchronous
1069 		 * work item, otherwise just free it.
1070 		 */
1071 		if (work->done)
1072 			complete(work->done);
1073 		else
1074 			kfree(work);
1075 	}
1076 
1077 	/*
1078 	 * Check for periodic writeback, kupdated() style
1079 	 */
1080 	wrote += wb_check_old_data_flush(wb);
1081 	wrote += wb_check_background_flush(wb);
1082 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1083 
1084 	return wrote;
1085 }
1086 
1087 /*
1088  * Handle writeback of dirty data for the device backed by this bdi. Also
1089  * reschedules periodically and does kupdated style flushing.
1090  */
1091 void bdi_writeback_workfn(struct work_struct *work)
1092 {
1093 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1094 						struct bdi_writeback, dwork);
1095 	struct backing_dev_info *bdi = wb->bdi;
1096 	long pages_written;
1097 
1098 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1099 	current->flags |= PF_SWAPWRITE;
1100 
1101 	if (likely(!current_is_workqueue_rescuer() ||
1102 		   !test_bit(BDI_registered, &bdi->state))) {
1103 		/*
1104 		 * The normal path.  Keep writing back @bdi until its
1105 		 * work_list is empty.  Note that this path is also taken
1106 		 * if @bdi is shutting down even when we're running off the
1107 		 * rescuer as work_list needs to be drained.
1108 		 */
1109 		do {
1110 			pages_written = wb_do_writeback(wb);
1111 			trace_writeback_pages_written(pages_written);
1112 		} while (!list_empty(&bdi->work_list));
1113 	} else {
1114 		/*
1115 		 * bdi_wq can't get enough workers and we're running off
1116 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1117 		 * enough for efficient IO.
1118 		 */
1119 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1120 						    WB_REASON_FORKER_THREAD);
1121 		trace_writeback_pages_written(pages_written);
1122 	}
1123 
1124 	if (!list_empty(&bdi->work_list))
1125 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1126 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1127 		bdi_wakeup_thread_delayed(bdi);
1128 
1129 	current->flags &= ~PF_SWAPWRITE;
1130 }
1131 
1132 /*
1133  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1134  * the whole world.
1135  */
1136 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1137 {
1138 	struct backing_dev_info *bdi;
1139 
1140 	if (!nr_pages)
1141 		nr_pages = get_nr_dirty_pages();
1142 
1143 	rcu_read_lock();
1144 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1145 		if (!bdi_has_dirty_io(bdi))
1146 			continue;
1147 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1148 	}
1149 	rcu_read_unlock();
1150 }
1151 
1152 /*
1153  * Wake up bdi's periodically to make sure dirtytime inodes gets
1154  * written back periodically.  We deliberately do *not* check the
1155  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1156  * kernel to be constantly waking up once there are any dirtytime
1157  * inodes on the system.  So instead we define a separate delayed work
1158  * function which gets called much more rarely.  (By default, only
1159  * once every 12 hours.)
1160  *
1161  * If there is any other write activity going on in the file system,
1162  * this function won't be necessary.  But if the only thing that has
1163  * happened on the file system is a dirtytime inode caused by an atime
1164  * update, we need this infrastructure below to make sure that inode
1165  * eventually gets pushed out to disk.
1166  */
1167 static void wakeup_dirtytime_writeback(struct work_struct *w);
1168 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1169 
1170 static void wakeup_dirtytime_writeback(struct work_struct *w)
1171 {
1172 	struct backing_dev_info *bdi;
1173 
1174 	rcu_read_lock();
1175 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1176 		if (list_empty(&bdi->wb.b_dirty_time))
1177 			continue;
1178 		bdi_wakeup_thread(bdi);
1179 	}
1180 	rcu_read_unlock();
1181 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1182 }
1183 
1184 static int __init start_dirtytime_writeback(void)
1185 {
1186 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1187 	return 0;
1188 }
1189 __initcall(start_dirtytime_writeback);
1190 
1191 int dirtytime_interval_handler(struct ctl_table *table, int write,
1192 			       void __user *buffer, size_t *lenp, loff_t *ppos)
1193 {
1194 	int ret;
1195 
1196 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1197 	if (ret == 0 && write)
1198 		mod_delayed_work(system_wq, &dirtytime_work, 0);
1199 	return ret;
1200 }
1201 
1202 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1203 {
1204 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1205 		struct dentry *dentry;
1206 		const char *name = "?";
1207 
1208 		dentry = d_find_alias(inode);
1209 		if (dentry) {
1210 			spin_lock(&dentry->d_lock);
1211 			name = (const char *) dentry->d_name.name;
1212 		}
1213 		printk(KERN_DEBUG
1214 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1215 		       current->comm, task_pid_nr(current), inode->i_ino,
1216 		       name, inode->i_sb->s_id);
1217 		if (dentry) {
1218 			spin_unlock(&dentry->d_lock);
1219 			dput(dentry);
1220 		}
1221 	}
1222 }
1223 
1224 /**
1225  *	__mark_inode_dirty -	internal function
1226  *	@inode: inode to mark
1227  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1228  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1229  *  	mark_inode_dirty_sync.
1230  *
1231  * Put the inode on the super block's dirty list.
1232  *
1233  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1234  * dirty list only if it is hashed or if it refers to a blockdev.
1235  * If it was not hashed, it will never be added to the dirty list
1236  * even if it is later hashed, as it will have been marked dirty already.
1237  *
1238  * In short, make sure you hash any inodes _before_ you start marking
1239  * them dirty.
1240  *
1241  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1242  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1243  * the kernel-internal blockdev inode represents the dirtying time of the
1244  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1245  * page->mapping->host, so the page-dirtying time is recorded in the internal
1246  * blockdev inode.
1247  */
1248 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1249 void __mark_inode_dirty(struct inode *inode, int flags)
1250 {
1251 	struct super_block *sb = inode->i_sb;
1252 	struct backing_dev_info *bdi = NULL;
1253 	int dirtytime;
1254 
1255 	trace_writeback_mark_inode_dirty(inode, flags);
1256 
1257 	/*
1258 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1259 	 * dirty the inode itself
1260 	 */
1261 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1262 		trace_writeback_dirty_inode_start(inode, flags);
1263 
1264 		if (sb->s_op->dirty_inode)
1265 			sb->s_op->dirty_inode(inode, flags);
1266 
1267 		trace_writeback_dirty_inode(inode, flags);
1268 	}
1269 	if (flags & I_DIRTY_INODE)
1270 		flags &= ~I_DIRTY_TIME;
1271 	dirtytime = flags & I_DIRTY_TIME;
1272 
1273 	/*
1274 	 * Paired with smp_mb() in __writeback_single_inode() for the
1275 	 * following lockless i_state test.  See there for details.
1276 	 */
1277 	smp_mb();
1278 
1279 	if (((inode->i_state & flags) == flags) ||
1280 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1281 		return;
1282 
1283 	if (unlikely(block_dump))
1284 		block_dump___mark_inode_dirty(inode);
1285 
1286 	spin_lock(&inode->i_lock);
1287 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1288 		goto out_unlock_inode;
1289 	if ((inode->i_state & flags) != flags) {
1290 		const int was_dirty = inode->i_state & I_DIRTY;
1291 
1292 		if (flags & I_DIRTY_INODE)
1293 			inode->i_state &= ~I_DIRTY_TIME;
1294 		inode->i_state |= flags;
1295 
1296 		/*
1297 		 * If the inode is being synced, just update its dirty state.
1298 		 * The unlocker will place the inode on the appropriate
1299 		 * superblock list, based upon its state.
1300 		 */
1301 		if (inode->i_state & I_SYNC)
1302 			goto out_unlock_inode;
1303 
1304 		/*
1305 		 * Only add valid (hashed) inodes to the superblock's
1306 		 * dirty list.  Add blockdev inodes as well.
1307 		 */
1308 		if (!S_ISBLK(inode->i_mode)) {
1309 			if (inode_unhashed(inode))
1310 				goto out_unlock_inode;
1311 		}
1312 		if (inode->i_state & I_FREEING)
1313 			goto out_unlock_inode;
1314 
1315 		/*
1316 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1317 		 * reposition it (that would break b_dirty time-ordering).
1318 		 */
1319 		if (!was_dirty) {
1320 			bool wakeup_bdi = false;
1321 			bdi = inode_to_bdi(inode);
1322 
1323 			spin_unlock(&inode->i_lock);
1324 			spin_lock(&bdi->wb.list_lock);
1325 			if (bdi_cap_writeback_dirty(bdi)) {
1326 				WARN(!test_bit(BDI_registered, &bdi->state),
1327 				     "bdi-%s not registered\n", bdi->name);
1328 
1329 				/*
1330 				 * If this is the first dirty inode for this
1331 				 * bdi, we have to wake-up the corresponding
1332 				 * bdi thread to make sure background
1333 				 * write-back happens later.
1334 				 */
1335 				if (!wb_has_dirty_io(&bdi->wb))
1336 					wakeup_bdi = true;
1337 			}
1338 
1339 			inode->dirtied_when = jiffies;
1340 			if (dirtytime)
1341 				inode->dirtied_time_when = jiffies;
1342 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
1343 				list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1344 			else
1345 				list_move(&inode->i_wb_list,
1346 					  &bdi->wb.b_dirty_time);
1347 			spin_unlock(&bdi->wb.list_lock);
1348 			trace_writeback_dirty_inode_enqueue(inode);
1349 
1350 			if (wakeup_bdi)
1351 				bdi_wakeup_thread_delayed(bdi);
1352 			return;
1353 		}
1354 	}
1355 out_unlock_inode:
1356 	spin_unlock(&inode->i_lock);
1357 
1358 }
1359 EXPORT_SYMBOL(__mark_inode_dirty);
1360 
1361 static void wait_sb_inodes(struct super_block *sb)
1362 {
1363 	struct inode *inode, *old_inode = NULL;
1364 
1365 	/*
1366 	 * We need to be protected against the filesystem going from
1367 	 * r/o to r/w or vice versa.
1368 	 */
1369 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1370 
1371 	spin_lock(&inode_sb_list_lock);
1372 
1373 	/*
1374 	 * Data integrity sync. Must wait for all pages under writeback,
1375 	 * because there may have been pages dirtied before our sync
1376 	 * call, but which had writeout started before we write it out.
1377 	 * In which case, the inode may not be on the dirty list, but
1378 	 * we still have to wait for that writeout.
1379 	 */
1380 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1381 		struct address_space *mapping = inode->i_mapping;
1382 
1383 		spin_lock(&inode->i_lock);
1384 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1385 		    (mapping->nrpages == 0)) {
1386 			spin_unlock(&inode->i_lock);
1387 			continue;
1388 		}
1389 		__iget(inode);
1390 		spin_unlock(&inode->i_lock);
1391 		spin_unlock(&inode_sb_list_lock);
1392 
1393 		/*
1394 		 * We hold a reference to 'inode' so it couldn't have been
1395 		 * removed from s_inodes list while we dropped the
1396 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1397 		 * be holding the last reference and we cannot iput it under
1398 		 * inode_sb_list_lock. So we keep the reference and iput it
1399 		 * later.
1400 		 */
1401 		iput(old_inode);
1402 		old_inode = inode;
1403 
1404 		filemap_fdatawait(mapping);
1405 
1406 		cond_resched();
1407 
1408 		spin_lock(&inode_sb_list_lock);
1409 	}
1410 	spin_unlock(&inode_sb_list_lock);
1411 	iput(old_inode);
1412 }
1413 
1414 /**
1415  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1416  * @sb: the superblock
1417  * @nr: the number of pages to write
1418  * @reason: reason why some writeback work initiated
1419  *
1420  * Start writeback on some inodes on this super_block. No guarantees are made
1421  * on how many (if any) will be written, and this function does not wait
1422  * for IO completion of submitted IO.
1423  */
1424 void writeback_inodes_sb_nr(struct super_block *sb,
1425 			    unsigned long nr,
1426 			    enum wb_reason reason)
1427 {
1428 	DECLARE_COMPLETION_ONSTACK(done);
1429 	struct wb_writeback_work work = {
1430 		.sb			= sb,
1431 		.sync_mode		= WB_SYNC_NONE,
1432 		.tagged_writepages	= 1,
1433 		.done			= &done,
1434 		.nr_pages		= nr,
1435 		.reason			= reason,
1436 	};
1437 
1438 	if (sb->s_bdi == &noop_backing_dev_info)
1439 		return;
1440 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1441 	bdi_queue_work(sb->s_bdi, &work);
1442 	wait_for_completion(&done);
1443 }
1444 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1445 
1446 /**
1447  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1448  * @sb: the superblock
1449  * @reason: reason why some writeback work was initiated
1450  *
1451  * Start writeback on some inodes on this super_block. No guarantees are made
1452  * on how many (if any) will be written, and this function does not wait
1453  * for IO completion of submitted IO.
1454  */
1455 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1456 {
1457 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1458 }
1459 EXPORT_SYMBOL(writeback_inodes_sb);
1460 
1461 /**
1462  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1463  * @sb: the superblock
1464  * @nr: the number of pages to write
1465  * @reason: the reason of writeback
1466  *
1467  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1468  * Returns 1 if writeback was started, 0 if not.
1469  */
1470 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1471 				  unsigned long nr,
1472 				  enum wb_reason reason)
1473 {
1474 	if (writeback_in_progress(sb->s_bdi))
1475 		return 1;
1476 
1477 	if (!down_read_trylock(&sb->s_umount))
1478 		return 0;
1479 
1480 	writeback_inodes_sb_nr(sb, nr, reason);
1481 	up_read(&sb->s_umount);
1482 	return 1;
1483 }
1484 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1485 
1486 /**
1487  * try_to_writeback_inodes_sb - try to start writeback if none underway
1488  * @sb: the superblock
1489  * @reason: reason why some writeback work was initiated
1490  *
1491  * Implement by try_to_writeback_inodes_sb_nr()
1492  * Returns 1 if writeback was started, 0 if not.
1493  */
1494 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1495 {
1496 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1497 }
1498 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1499 
1500 /**
1501  * sync_inodes_sb	-	sync sb inode pages
1502  * @sb: the superblock
1503  *
1504  * This function writes and waits on any dirty inode belonging to this
1505  * super_block.
1506  */
1507 void sync_inodes_sb(struct super_block *sb)
1508 {
1509 	DECLARE_COMPLETION_ONSTACK(done);
1510 	struct wb_writeback_work work = {
1511 		.sb		= sb,
1512 		.sync_mode	= WB_SYNC_ALL,
1513 		.nr_pages	= LONG_MAX,
1514 		.range_cyclic	= 0,
1515 		.done		= &done,
1516 		.reason		= WB_REASON_SYNC,
1517 		.for_sync	= 1,
1518 	};
1519 
1520 	/* Nothing to do? */
1521 	if (sb->s_bdi == &noop_backing_dev_info)
1522 		return;
1523 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1524 
1525 	bdi_queue_work(sb->s_bdi, &work);
1526 	wait_for_completion(&done);
1527 
1528 	wait_sb_inodes(sb);
1529 }
1530 EXPORT_SYMBOL(sync_inodes_sb);
1531 
1532 /**
1533  * write_inode_now	-	write an inode to disk
1534  * @inode: inode to write to disk
1535  * @sync: whether the write should be synchronous or not
1536  *
1537  * This function commits an inode to disk immediately if it is dirty. This is
1538  * primarily needed by knfsd.
1539  *
1540  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1541  */
1542 int write_inode_now(struct inode *inode, int sync)
1543 {
1544 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1545 	struct writeback_control wbc = {
1546 		.nr_to_write = LONG_MAX,
1547 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1548 		.range_start = 0,
1549 		.range_end = LLONG_MAX,
1550 	};
1551 
1552 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1553 		wbc.nr_to_write = 0;
1554 
1555 	might_sleep();
1556 	return writeback_single_inode(inode, wb, &wbc);
1557 }
1558 EXPORT_SYMBOL(write_inode_now);
1559 
1560 /**
1561  * sync_inode - write an inode and its pages to disk.
1562  * @inode: the inode to sync
1563  * @wbc: controls the writeback mode
1564  *
1565  * sync_inode() will write an inode and its pages to disk.  It will also
1566  * correctly update the inode on its superblock's dirty inode lists and will
1567  * update inode->i_state.
1568  *
1569  * The caller must have a ref on the inode.
1570  */
1571 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1572 {
1573 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1574 }
1575 EXPORT_SYMBOL(sync_inode);
1576 
1577 /**
1578  * sync_inode_metadata - write an inode to disk
1579  * @inode: the inode to sync
1580  * @wait: wait for I/O to complete.
1581  *
1582  * Write an inode to disk and adjust its dirty state after completion.
1583  *
1584  * Note: only writes the actual inode, no associated data or other metadata.
1585  */
1586 int sync_inode_metadata(struct inode *inode, int wait)
1587 {
1588 	struct writeback_control wbc = {
1589 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1590 		.nr_to_write = 0, /* metadata-only */
1591 	};
1592 
1593 	return sync_inode(inode, &wbc);
1594 }
1595 EXPORT_SYMBOL(sync_inode_metadata);
1596