1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 124 list_move(&inode->i_io_list, head); 125 126 /* dirty_time doesn't count as dirty_io until expiration */ 127 if (head != &wb->b_dirty_time) 128 return wb_io_lists_populated(wb); 129 130 wb_io_lists_depopulated(wb); 131 return false; 132 } 133 134 /** 135 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 136 * @inode: inode to be removed 137 * @wb: bdi_writeback @inode is being removed from 138 * 139 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 140 * clear %WB_has_dirty_io if all are empty afterwards. 141 */ 142 static void inode_io_list_del_locked(struct inode *inode, 143 struct bdi_writeback *wb) 144 { 145 assert_spin_locked(&wb->list_lock); 146 assert_spin_locked(&inode->i_lock); 147 148 inode->i_state &= ~I_SYNC_QUEUED; 149 list_del_init(&inode->i_io_list); 150 wb_io_lists_depopulated(wb); 151 } 152 153 static void wb_wakeup(struct bdi_writeback *wb) 154 { 155 spin_lock_bh(&wb->work_lock); 156 if (test_bit(WB_registered, &wb->state)) 157 mod_delayed_work(bdi_wq, &wb->dwork, 0); 158 spin_unlock_bh(&wb->work_lock); 159 } 160 161 static void finish_writeback_work(struct bdi_writeback *wb, 162 struct wb_writeback_work *work) 163 { 164 struct wb_completion *done = work->done; 165 166 if (work->auto_free) 167 kfree(work); 168 if (done) { 169 wait_queue_head_t *waitq = done->waitq; 170 171 /* @done can't be accessed after the following dec */ 172 if (atomic_dec_and_test(&done->cnt)) 173 wake_up_all(waitq); 174 } 175 } 176 177 static void wb_queue_work(struct bdi_writeback *wb, 178 struct wb_writeback_work *work) 179 { 180 trace_writeback_queue(wb, work); 181 182 if (work->done) 183 atomic_inc(&work->done->cnt); 184 185 spin_lock_bh(&wb->work_lock); 186 187 if (test_bit(WB_registered, &wb->state)) { 188 list_add_tail(&work->list, &wb->work_list); 189 mod_delayed_work(bdi_wq, &wb->dwork, 0); 190 } else 191 finish_writeback_work(wb, work); 192 193 spin_unlock_bh(&wb->work_lock); 194 } 195 196 /** 197 * wb_wait_for_completion - wait for completion of bdi_writeback_works 198 * @done: target wb_completion 199 * 200 * Wait for one or more work items issued to @bdi with their ->done field 201 * set to @done, which should have been initialized with 202 * DEFINE_WB_COMPLETION(). This function returns after all such work items 203 * are completed. Work items which are waited upon aren't freed 204 * automatically on completion. 205 */ 206 void wb_wait_for_completion(struct wb_completion *done) 207 { 208 atomic_dec(&done->cnt); /* put down the initial count */ 209 wait_event(*done->waitq, !atomic_read(&done->cnt)); 210 } 211 212 #ifdef CONFIG_CGROUP_WRITEBACK 213 214 /* 215 * Parameters for foreign inode detection, see wbc_detach_inode() to see 216 * how they're used. 217 * 218 * These paramters are inherently heuristical as the detection target 219 * itself is fuzzy. All we want to do is detaching an inode from the 220 * current owner if it's being written to by some other cgroups too much. 221 * 222 * The current cgroup writeback is built on the assumption that multiple 223 * cgroups writing to the same inode concurrently is very rare and a mode 224 * of operation which isn't well supported. As such, the goal is not 225 * taking too long when a different cgroup takes over an inode while 226 * avoiding too aggressive flip-flops from occasional foreign writes. 227 * 228 * We record, very roughly, 2s worth of IO time history and if more than 229 * half of that is foreign, trigger the switch. The recording is quantized 230 * to 16 slots. To avoid tiny writes from swinging the decision too much, 231 * writes smaller than 1/8 of avg size are ignored. 232 */ 233 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 234 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 235 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 236 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 237 238 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 239 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 240 /* each slot's duration is 2s / 16 */ 241 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 242 /* if foreign slots >= 8, switch */ 243 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 244 /* one round can affect upto 5 slots */ 245 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 246 247 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 248 static struct workqueue_struct *isw_wq; 249 250 void __inode_attach_wb(struct inode *inode, struct page *page) 251 { 252 struct backing_dev_info *bdi = inode_to_bdi(inode); 253 struct bdi_writeback *wb = NULL; 254 255 if (inode_cgwb_enabled(inode)) { 256 struct cgroup_subsys_state *memcg_css; 257 258 if (page) { 259 memcg_css = mem_cgroup_css_from_page(page); 260 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 261 } else { 262 /* must pin memcg_css, see wb_get_create() */ 263 memcg_css = task_get_css(current, memory_cgrp_id); 264 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 265 css_put(memcg_css); 266 } 267 } 268 269 if (!wb) 270 wb = &bdi->wb; 271 272 /* 273 * There may be multiple instances of this function racing to 274 * update the same inode. Use cmpxchg() to tell the winner. 275 */ 276 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 277 wb_put(wb); 278 } 279 EXPORT_SYMBOL_GPL(__inode_attach_wb); 280 281 /** 282 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 283 * @inode: inode of interest with i_lock held 284 * 285 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 286 * held on entry and is released on return. The returned wb is guaranteed 287 * to stay @inode's associated wb until its list_lock is released. 288 */ 289 static struct bdi_writeback * 290 locked_inode_to_wb_and_lock_list(struct inode *inode) 291 __releases(&inode->i_lock) 292 __acquires(&wb->list_lock) 293 { 294 while (true) { 295 struct bdi_writeback *wb = inode_to_wb(inode); 296 297 /* 298 * inode_to_wb() association is protected by both 299 * @inode->i_lock and @wb->list_lock but list_lock nests 300 * outside i_lock. Drop i_lock and verify that the 301 * association hasn't changed after acquiring list_lock. 302 */ 303 wb_get(wb); 304 spin_unlock(&inode->i_lock); 305 spin_lock(&wb->list_lock); 306 307 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 308 if (likely(wb == inode->i_wb)) { 309 wb_put(wb); /* @inode already has ref */ 310 return wb; 311 } 312 313 spin_unlock(&wb->list_lock); 314 wb_put(wb); 315 cpu_relax(); 316 spin_lock(&inode->i_lock); 317 } 318 } 319 320 /** 321 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 322 * @inode: inode of interest 323 * 324 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 325 * on entry. 326 */ 327 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 328 __acquires(&wb->list_lock) 329 { 330 spin_lock(&inode->i_lock); 331 return locked_inode_to_wb_and_lock_list(inode); 332 } 333 334 struct inode_switch_wbs_context { 335 struct inode *inode; 336 struct bdi_writeback *new_wb; 337 338 struct rcu_head rcu_head; 339 struct work_struct work; 340 }; 341 342 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 343 { 344 down_write(&bdi->wb_switch_rwsem); 345 } 346 347 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 348 { 349 up_write(&bdi->wb_switch_rwsem); 350 } 351 352 static void inode_switch_wbs_work_fn(struct work_struct *work) 353 { 354 struct inode_switch_wbs_context *isw = 355 container_of(work, struct inode_switch_wbs_context, work); 356 struct inode *inode = isw->inode; 357 struct backing_dev_info *bdi = inode_to_bdi(inode); 358 struct address_space *mapping = inode->i_mapping; 359 struct bdi_writeback *old_wb = inode->i_wb; 360 struct bdi_writeback *new_wb = isw->new_wb; 361 XA_STATE(xas, &mapping->i_pages, 0); 362 struct page *page; 363 bool switched = false; 364 365 /* 366 * If @inode switches cgwb membership while sync_inodes_sb() is 367 * being issued, sync_inodes_sb() might miss it. Synchronize. 368 */ 369 down_read(&bdi->wb_switch_rwsem); 370 371 /* 372 * By the time control reaches here, RCU grace period has passed 373 * since I_WB_SWITCH assertion and all wb stat update transactions 374 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 375 * synchronizing against the i_pages lock. 376 * 377 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 378 * gives us exclusion against all wb related operations on @inode 379 * including IO list manipulations and stat updates. 380 */ 381 if (old_wb < new_wb) { 382 spin_lock(&old_wb->list_lock); 383 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 384 } else { 385 spin_lock(&new_wb->list_lock); 386 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 387 } 388 spin_lock(&inode->i_lock); 389 xa_lock_irq(&mapping->i_pages); 390 391 /* 392 * Once I_FREEING is visible under i_lock, the eviction path owns 393 * the inode and we shouldn't modify ->i_io_list. 394 */ 395 if (unlikely(inode->i_state & I_FREEING)) 396 goto skip_switch; 397 398 trace_inode_switch_wbs(inode, old_wb, new_wb); 399 400 /* 401 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 402 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 403 * pages actually under writeback. 404 */ 405 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 406 if (PageDirty(page)) { 407 dec_wb_stat(old_wb, WB_RECLAIMABLE); 408 inc_wb_stat(new_wb, WB_RECLAIMABLE); 409 } 410 } 411 412 xas_set(&xas, 0); 413 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 414 WARN_ON_ONCE(!PageWriteback(page)); 415 dec_wb_stat(old_wb, WB_WRITEBACK); 416 inc_wb_stat(new_wb, WB_WRITEBACK); 417 } 418 419 wb_get(new_wb); 420 421 /* 422 * Transfer to @new_wb's IO list if necessary. The specific list 423 * @inode was on is ignored and the inode is put on ->b_dirty which 424 * is always correct including from ->b_dirty_time. The transfer 425 * preserves @inode->dirtied_when ordering. 426 */ 427 if (!list_empty(&inode->i_io_list)) { 428 struct inode *pos; 429 430 inode_io_list_del_locked(inode, old_wb); 431 inode->i_wb = new_wb; 432 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 433 if (time_after_eq(inode->dirtied_when, 434 pos->dirtied_when)) 435 break; 436 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 437 } else { 438 inode->i_wb = new_wb; 439 } 440 441 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 442 inode->i_wb_frn_winner = 0; 443 inode->i_wb_frn_avg_time = 0; 444 inode->i_wb_frn_history = 0; 445 switched = true; 446 skip_switch: 447 /* 448 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 449 * ensures that the new wb is visible if they see !I_WB_SWITCH. 450 */ 451 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 452 453 xa_unlock_irq(&mapping->i_pages); 454 spin_unlock(&inode->i_lock); 455 spin_unlock(&new_wb->list_lock); 456 spin_unlock(&old_wb->list_lock); 457 458 up_read(&bdi->wb_switch_rwsem); 459 460 if (switched) { 461 wb_wakeup(new_wb); 462 wb_put(old_wb); 463 } 464 wb_put(new_wb); 465 466 iput(inode); 467 kfree(isw); 468 469 atomic_dec(&isw_nr_in_flight); 470 } 471 472 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 473 { 474 struct inode_switch_wbs_context *isw = container_of(rcu_head, 475 struct inode_switch_wbs_context, rcu_head); 476 477 /* needs to grab bh-unsafe locks, bounce to work item */ 478 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 479 queue_work(isw_wq, &isw->work); 480 } 481 482 /** 483 * inode_switch_wbs - change the wb association of an inode 484 * @inode: target inode 485 * @new_wb_id: ID of the new wb 486 * 487 * Switch @inode's wb association to the wb identified by @new_wb_id. The 488 * switching is performed asynchronously and may fail silently. 489 */ 490 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 491 { 492 struct backing_dev_info *bdi = inode_to_bdi(inode); 493 struct cgroup_subsys_state *memcg_css; 494 struct inode_switch_wbs_context *isw; 495 496 /* noop if seems to be already in progress */ 497 if (inode->i_state & I_WB_SWITCH) 498 return; 499 500 /* avoid queueing a new switch if too many are already in flight */ 501 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 502 return; 503 504 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 505 if (!isw) 506 return; 507 508 /* find and pin the new wb */ 509 rcu_read_lock(); 510 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 511 if (memcg_css) 512 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 513 rcu_read_unlock(); 514 if (!isw->new_wb) 515 goto out_free; 516 517 /* while holding I_WB_SWITCH, no one else can update the association */ 518 spin_lock(&inode->i_lock); 519 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 520 inode->i_state & (I_WB_SWITCH | I_FREEING) || 521 inode_to_wb(inode) == isw->new_wb) { 522 spin_unlock(&inode->i_lock); 523 goto out_free; 524 } 525 inode->i_state |= I_WB_SWITCH; 526 __iget(inode); 527 spin_unlock(&inode->i_lock); 528 529 isw->inode = inode; 530 531 /* 532 * In addition to synchronizing among switchers, I_WB_SWITCH tells 533 * the RCU protected stat update paths to grab the i_page 534 * lock so that stat transfer can synchronize against them. 535 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 536 */ 537 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 538 539 atomic_inc(&isw_nr_in_flight); 540 return; 541 542 out_free: 543 if (isw->new_wb) 544 wb_put(isw->new_wb); 545 kfree(isw); 546 } 547 548 /** 549 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 550 * @wbc: writeback_control of interest 551 * @inode: target inode 552 * 553 * @inode is locked and about to be written back under the control of @wbc. 554 * Record @inode's writeback context into @wbc and unlock the i_lock. On 555 * writeback completion, wbc_detach_inode() should be called. This is used 556 * to track the cgroup writeback context. 557 */ 558 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 559 struct inode *inode) 560 { 561 if (!inode_cgwb_enabled(inode)) { 562 spin_unlock(&inode->i_lock); 563 return; 564 } 565 566 wbc->wb = inode_to_wb(inode); 567 wbc->inode = inode; 568 569 wbc->wb_id = wbc->wb->memcg_css->id; 570 wbc->wb_lcand_id = inode->i_wb_frn_winner; 571 wbc->wb_tcand_id = 0; 572 wbc->wb_bytes = 0; 573 wbc->wb_lcand_bytes = 0; 574 wbc->wb_tcand_bytes = 0; 575 576 wb_get(wbc->wb); 577 spin_unlock(&inode->i_lock); 578 579 /* 580 * A dying wb indicates that either the blkcg associated with the 581 * memcg changed or the associated memcg is dying. In the first 582 * case, a replacement wb should already be available and we should 583 * refresh the wb immediately. In the second case, trying to 584 * refresh will keep failing. 585 */ 586 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 587 inode_switch_wbs(inode, wbc->wb_id); 588 } 589 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 590 591 /** 592 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 593 * @wbc: writeback_control of the just finished writeback 594 * 595 * To be called after a writeback attempt of an inode finishes and undoes 596 * wbc_attach_and_unlock_inode(). Can be called under any context. 597 * 598 * As concurrent write sharing of an inode is expected to be very rare and 599 * memcg only tracks page ownership on first-use basis severely confining 600 * the usefulness of such sharing, cgroup writeback tracks ownership 601 * per-inode. While the support for concurrent write sharing of an inode 602 * is deemed unnecessary, an inode being written to by different cgroups at 603 * different points in time is a lot more common, and, more importantly, 604 * charging only by first-use can too readily lead to grossly incorrect 605 * behaviors (single foreign page can lead to gigabytes of writeback to be 606 * incorrectly attributed). 607 * 608 * To resolve this issue, cgroup writeback detects the majority dirtier of 609 * an inode and transfers the ownership to it. To avoid unnnecessary 610 * oscillation, the detection mechanism keeps track of history and gives 611 * out the switch verdict only if the foreign usage pattern is stable over 612 * a certain amount of time and/or writeback attempts. 613 * 614 * On each writeback attempt, @wbc tries to detect the majority writer 615 * using Boyer-Moore majority vote algorithm. In addition to the byte 616 * count from the majority voting, it also counts the bytes written for the 617 * current wb and the last round's winner wb (max of last round's current 618 * wb, the winner from two rounds ago, and the last round's majority 619 * candidate). Keeping track of the historical winner helps the algorithm 620 * to semi-reliably detect the most active writer even when it's not the 621 * absolute majority. 622 * 623 * Once the winner of the round is determined, whether the winner is 624 * foreign or not and how much IO time the round consumed is recorded in 625 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 626 * over a certain threshold, the switch verdict is given. 627 */ 628 void wbc_detach_inode(struct writeback_control *wbc) 629 { 630 struct bdi_writeback *wb = wbc->wb; 631 struct inode *inode = wbc->inode; 632 unsigned long avg_time, max_bytes, max_time; 633 u16 history; 634 int max_id; 635 636 if (!wb) 637 return; 638 639 history = inode->i_wb_frn_history; 640 avg_time = inode->i_wb_frn_avg_time; 641 642 /* pick the winner of this round */ 643 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 644 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 645 max_id = wbc->wb_id; 646 max_bytes = wbc->wb_bytes; 647 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 648 max_id = wbc->wb_lcand_id; 649 max_bytes = wbc->wb_lcand_bytes; 650 } else { 651 max_id = wbc->wb_tcand_id; 652 max_bytes = wbc->wb_tcand_bytes; 653 } 654 655 /* 656 * Calculate the amount of IO time the winner consumed and fold it 657 * into the running average kept per inode. If the consumed IO 658 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 659 * deciding whether to switch or not. This is to prevent one-off 660 * small dirtiers from skewing the verdict. 661 */ 662 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 663 wb->avg_write_bandwidth); 664 if (avg_time) 665 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 666 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 667 else 668 avg_time = max_time; /* immediate catch up on first run */ 669 670 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 671 int slots; 672 673 /* 674 * The switch verdict is reached if foreign wb's consume 675 * more than a certain proportion of IO time in a 676 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 677 * history mask where each bit represents one sixteenth of 678 * the period. Determine the number of slots to shift into 679 * history from @max_time. 680 */ 681 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 682 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 683 history <<= slots; 684 if (wbc->wb_id != max_id) 685 history |= (1U << slots) - 1; 686 687 if (history) 688 trace_inode_foreign_history(inode, wbc, history); 689 690 /* 691 * Switch if the current wb isn't the consistent winner. 692 * If there are multiple closely competing dirtiers, the 693 * inode may switch across them repeatedly over time, which 694 * is okay. The main goal is avoiding keeping an inode on 695 * the wrong wb for an extended period of time. 696 */ 697 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 698 inode_switch_wbs(inode, max_id); 699 } 700 701 /* 702 * Multiple instances of this function may race to update the 703 * following fields but we don't mind occassional inaccuracies. 704 */ 705 inode->i_wb_frn_winner = max_id; 706 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 707 inode->i_wb_frn_history = history; 708 709 wb_put(wbc->wb); 710 wbc->wb = NULL; 711 } 712 EXPORT_SYMBOL_GPL(wbc_detach_inode); 713 714 /** 715 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 716 * @wbc: writeback_control of the writeback in progress 717 * @page: page being written out 718 * @bytes: number of bytes being written out 719 * 720 * @bytes from @page are about to written out during the writeback 721 * controlled by @wbc. Keep the book for foreign inode detection. See 722 * wbc_detach_inode(). 723 */ 724 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 725 size_t bytes) 726 { 727 struct cgroup_subsys_state *css; 728 int id; 729 730 /* 731 * pageout() path doesn't attach @wbc to the inode being written 732 * out. This is intentional as we don't want the function to block 733 * behind a slow cgroup. Ultimately, we want pageout() to kick off 734 * regular writeback instead of writing things out itself. 735 */ 736 if (!wbc->wb || wbc->no_cgroup_owner) 737 return; 738 739 css = mem_cgroup_css_from_page(page); 740 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 741 if (!(css->flags & CSS_ONLINE)) 742 return; 743 744 id = css->id; 745 746 if (id == wbc->wb_id) { 747 wbc->wb_bytes += bytes; 748 return; 749 } 750 751 if (id == wbc->wb_lcand_id) 752 wbc->wb_lcand_bytes += bytes; 753 754 /* Boyer-Moore majority vote algorithm */ 755 if (!wbc->wb_tcand_bytes) 756 wbc->wb_tcand_id = id; 757 if (id == wbc->wb_tcand_id) 758 wbc->wb_tcand_bytes += bytes; 759 else 760 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 761 } 762 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 763 764 /** 765 * inode_congested - test whether an inode is congested 766 * @inode: inode to test for congestion (may be NULL) 767 * @cong_bits: mask of WB_[a]sync_congested bits to test 768 * 769 * Tests whether @inode is congested. @cong_bits is the mask of congestion 770 * bits to test and the return value is the mask of set bits. 771 * 772 * If cgroup writeback is enabled for @inode, the congestion state is 773 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 774 * associated with @inode is congested; otherwise, the root wb's congestion 775 * state is used. 776 * 777 * @inode is allowed to be NULL as this function is often called on 778 * mapping->host which is NULL for the swapper space. 779 */ 780 int inode_congested(struct inode *inode, int cong_bits) 781 { 782 /* 783 * Once set, ->i_wb never becomes NULL while the inode is alive. 784 * Start transaction iff ->i_wb is visible. 785 */ 786 if (inode && inode_to_wb_is_valid(inode)) { 787 struct bdi_writeback *wb; 788 struct wb_lock_cookie lock_cookie = {}; 789 bool congested; 790 791 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 792 congested = wb_congested(wb, cong_bits); 793 unlocked_inode_to_wb_end(inode, &lock_cookie); 794 return congested; 795 } 796 797 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 798 } 799 EXPORT_SYMBOL_GPL(inode_congested); 800 801 /** 802 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 803 * @wb: target bdi_writeback to split @nr_pages to 804 * @nr_pages: number of pages to write for the whole bdi 805 * 806 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 807 * relation to the total write bandwidth of all wb's w/ dirty inodes on 808 * @wb->bdi. 809 */ 810 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 811 { 812 unsigned long this_bw = wb->avg_write_bandwidth; 813 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 814 815 if (nr_pages == LONG_MAX) 816 return LONG_MAX; 817 818 /* 819 * This may be called on clean wb's and proportional distribution 820 * may not make sense, just use the original @nr_pages in those 821 * cases. In general, we wanna err on the side of writing more. 822 */ 823 if (!tot_bw || this_bw >= tot_bw) 824 return nr_pages; 825 else 826 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 827 } 828 829 /** 830 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 831 * @bdi: target backing_dev_info 832 * @base_work: wb_writeback_work to issue 833 * @skip_if_busy: skip wb's which already have writeback in progress 834 * 835 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 836 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 837 * distributed to the busy wbs according to each wb's proportion in the 838 * total active write bandwidth of @bdi. 839 */ 840 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 841 struct wb_writeback_work *base_work, 842 bool skip_if_busy) 843 { 844 struct bdi_writeback *last_wb = NULL; 845 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 846 struct bdi_writeback, bdi_node); 847 848 might_sleep(); 849 restart: 850 rcu_read_lock(); 851 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 852 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 853 struct wb_writeback_work fallback_work; 854 struct wb_writeback_work *work; 855 long nr_pages; 856 857 if (last_wb) { 858 wb_put(last_wb); 859 last_wb = NULL; 860 } 861 862 /* SYNC_ALL writes out I_DIRTY_TIME too */ 863 if (!wb_has_dirty_io(wb) && 864 (base_work->sync_mode == WB_SYNC_NONE || 865 list_empty(&wb->b_dirty_time))) 866 continue; 867 if (skip_if_busy && writeback_in_progress(wb)) 868 continue; 869 870 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 871 872 work = kmalloc(sizeof(*work), GFP_ATOMIC); 873 if (work) { 874 *work = *base_work; 875 work->nr_pages = nr_pages; 876 work->auto_free = 1; 877 wb_queue_work(wb, work); 878 continue; 879 } 880 881 /* alloc failed, execute synchronously using on-stack fallback */ 882 work = &fallback_work; 883 *work = *base_work; 884 work->nr_pages = nr_pages; 885 work->auto_free = 0; 886 work->done = &fallback_work_done; 887 888 wb_queue_work(wb, work); 889 890 /* 891 * Pin @wb so that it stays on @bdi->wb_list. This allows 892 * continuing iteration from @wb after dropping and 893 * regrabbing rcu read lock. 894 */ 895 wb_get(wb); 896 last_wb = wb; 897 898 rcu_read_unlock(); 899 wb_wait_for_completion(&fallback_work_done); 900 goto restart; 901 } 902 rcu_read_unlock(); 903 904 if (last_wb) 905 wb_put(last_wb); 906 } 907 908 /** 909 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 910 * @bdi_id: target bdi id 911 * @memcg_id: target memcg css id 912 * @nr: number of pages to write, 0 for best-effort dirty flushing 913 * @reason: reason why some writeback work initiated 914 * @done: target wb_completion 915 * 916 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 917 * with the specified parameters. 918 */ 919 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, 920 enum wb_reason reason, struct wb_completion *done) 921 { 922 struct backing_dev_info *bdi; 923 struct cgroup_subsys_state *memcg_css; 924 struct bdi_writeback *wb; 925 struct wb_writeback_work *work; 926 int ret; 927 928 /* lookup bdi and memcg */ 929 bdi = bdi_get_by_id(bdi_id); 930 if (!bdi) 931 return -ENOENT; 932 933 rcu_read_lock(); 934 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 935 if (memcg_css && !css_tryget(memcg_css)) 936 memcg_css = NULL; 937 rcu_read_unlock(); 938 if (!memcg_css) { 939 ret = -ENOENT; 940 goto out_bdi_put; 941 } 942 943 /* 944 * And find the associated wb. If the wb isn't there already 945 * there's nothing to flush, don't create one. 946 */ 947 wb = wb_get_lookup(bdi, memcg_css); 948 if (!wb) { 949 ret = -ENOENT; 950 goto out_css_put; 951 } 952 953 /* 954 * If @nr is zero, the caller is attempting to write out most of 955 * the currently dirty pages. Let's take the current dirty page 956 * count and inflate it by 25% which should be large enough to 957 * flush out most dirty pages while avoiding getting livelocked by 958 * concurrent dirtiers. 959 */ 960 if (!nr) { 961 unsigned long filepages, headroom, dirty, writeback; 962 963 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, 964 &writeback); 965 nr = dirty * 10 / 8; 966 } 967 968 /* issue the writeback work */ 969 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 970 if (work) { 971 work->nr_pages = nr; 972 work->sync_mode = WB_SYNC_NONE; 973 work->range_cyclic = 1; 974 work->reason = reason; 975 work->done = done; 976 work->auto_free = 1; 977 wb_queue_work(wb, work); 978 ret = 0; 979 } else { 980 ret = -ENOMEM; 981 } 982 983 wb_put(wb); 984 out_css_put: 985 css_put(memcg_css); 986 out_bdi_put: 987 bdi_put(bdi); 988 return ret; 989 } 990 991 /** 992 * cgroup_writeback_umount - flush inode wb switches for umount 993 * 994 * This function is called when a super_block is about to be destroyed and 995 * flushes in-flight inode wb switches. An inode wb switch goes through 996 * RCU and then workqueue, so the two need to be flushed in order to ensure 997 * that all previously scheduled switches are finished. As wb switches are 998 * rare occurrences and synchronize_rcu() can take a while, perform 999 * flushing iff wb switches are in flight. 1000 */ 1001 void cgroup_writeback_umount(void) 1002 { 1003 if (atomic_read(&isw_nr_in_flight)) { 1004 /* 1005 * Use rcu_barrier() to wait for all pending callbacks to 1006 * ensure that all in-flight wb switches are in the workqueue. 1007 */ 1008 rcu_barrier(); 1009 flush_workqueue(isw_wq); 1010 } 1011 } 1012 1013 static int __init cgroup_writeback_init(void) 1014 { 1015 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1016 if (!isw_wq) 1017 return -ENOMEM; 1018 return 0; 1019 } 1020 fs_initcall(cgroup_writeback_init); 1021 1022 #else /* CONFIG_CGROUP_WRITEBACK */ 1023 1024 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1025 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1026 1027 static struct bdi_writeback * 1028 locked_inode_to_wb_and_lock_list(struct inode *inode) 1029 __releases(&inode->i_lock) 1030 __acquires(&wb->list_lock) 1031 { 1032 struct bdi_writeback *wb = inode_to_wb(inode); 1033 1034 spin_unlock(&inode->i_lock); 1035 spin_lock(&wb->list_lock); 1036 return wb; 1037 } 1038 1039 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1040 __acquires(&wb->list_lock) 1041 { 1042 struct bdi_writeback *wb = inode_to_wb(inode); 1043 1044 spin_lock(&wb->list_lock); 1045 return wb; 1046 } 1047 1048 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1049 { 1050 return nr_pages; 1051 } 1052 1053 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1054 struct wb_writeback_work *base_work, 1055 bool skip_if_busy) 1056 { 1057 might_sleep(); 1058 1059 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1060 base_work->auto_free = 0; 1061 wb_queue_work(&bdi->wb, base_work); 1062 } 1063 } 1064 1065 #endif /* CONFIG_CGROUP_WRITEBACK */ 1066 1067 /* 1068 * Add in the number of potentially dirty inodes, because each inode 1069 * write can dirty pagecache in the underlying blockdev. 1070 */ 1071 static unsigned long get_nr_dirty_pages(void) 1072 { 1073 return global_node_page_state(NR_FILE_DIRTY) + 1074 get_nr_dirty_inodes(); 1075 } 1076 1077 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1078 { 1079 if (!wb_has_dirty_io(wb)) 1080 return; 1081 1082 /* 1083 * All callers of this function want to start writeback of all 1084 * dirty pages. Places like vmscan can call this at a very 1085 * high frequency, causing pointless allocations of tons of 1086 * work items and keeping the flusher threads busy retrieving 1087 * that work. Ensure that we only allow one of them pending and 1088 * inflight at the time. 1089 */ 1090 if (test_bit(WB_start_all, &wb->state) || 1091 test_and_set_bit(WB_start_all, &wb->state)) 1092 return; 1093 1094 wb->start_all_reason = reason; 1095 wb_wakeup(wb); 1096 } 1097 1098 /** 1099 * wb_start_background_writeback - start background writeback 1100 * @wb: bdi_writback to write from 1101 * 1102 * Description: 1103 * This makes sure WB_SYNC_NONE background writeback happens. When 1104 * this function returns, it is only guaranteed that for given wb 1105 * some IO is happening if we are over background dirty threshold. 1106 * Caller need not hold sb s_umount semaphore. 1107 */ 1108 void wb_start_background_writeback(struct bdi_writeback *wb) 1109 { 1110 /* 1111 * We just wake up the flusher thread. It will perform background 1112 * writeback as soon as there is no other work to do. 1113 */ 1114 trace_writeback_wake_background(wb); 1115 wb_wakeup(wb); 1116 } 1117 1118 /* 1119 * Remove the inode from the writeback list it is on. 1120 */ 1121 void inode_io_list_del(struct inode *inode) 1122 { 1123 struct bdi_writeback *wb; 1124 1125 wb = inode_to_wb_and_lock_list(inode); 1126 spin_lock(&inode->i_lock); 1127 inode_io_list_del_locked(inode, wb); 1128 spin_unlock(&inode->i_lock); 1129 spin_unlock(&wb->list_lock); 1130 } 1131 EXPORT_SYMBOL(inode_io_list_del); 1132 1133 /* 1134 * mark an inode as under writeback on the sb 1135 */ 1136 void sb_mark_inode_writeback(struct inode *inode) 1137 { 1138 struct super_block *sb = inode->i_sb; 1139 unsigned long flags; 1140 1141 if (list_empty(&inode->i_wb_list)) { 1142 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1143 if (list_empty(&inode->i_wb_list)) { 1144 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1145 trace_sb_mark_inode_writeback(inode); 1146 } 1147 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1148 } 1149 } 1150 1151 /* 1152 * clear an inode as under writeback on the sb 1153 */ 1154 void sb_clear_inode_writeback(struct inode *inode) 1155 { 1156 struct super_block *sb = inode->i_sb; 1157 unsigned long flags; 1158 1159 if (!list_empty(&inode->i_wb_list)) { 1160 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1161 if (!list_empty(&inode->i_wb_list)) { 1162 list_del_init(&inode->i_wb_list); 1163 trace_sb_clear_inode_writeback(inode); 1164 } 1165 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1166 } 1167 } 1168 1169 /* 1170 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1171 * furthest end of its superblock's dirty-inode list. 1172 * 1173 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1174 * already the most-recently-dirtied inode on the b_dirty list. If that is 1175 * the case then the inode must have been redirtied while it was being written 1176 * out and we don't reset its dirtied_when. 1177 */ 1178 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1179 { 1180 assert_spin_locked(&inode->i_lock); 1181 1182 if (!list_empty(&wb->b_dirty)) { 1183 struct inode *tail; 1184 1185 tail = wb_inode(wb->b_dirty.next); 1186 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1187 inode->dirtied_when = jiffies; 1188 } 1189 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1190 inode->i_state &= ~I_SYNC_QUEUED; 1191 } 1192 1193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1194 { 1195 spin_lock(&inode->i_lock); 1196 redirty_tail_locked(inode, wb); 1197 spin_unlock(&inode->i_lock); 1198 } 1199 1200 /* 1201 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1202 */ 1203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1204 { 1205 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1206 } 1207 1208 static void inode_sync_complete(struct inode *inode) 1209 { 1210 inode->i_state &= ~I_SYNC; 1211 /* If inode is clean an unused, put it into LRU now... */ 1212 inode_add_lru(inode); 1213 /* Waiters must see I_SYNC cleared before being woken up */ 1214 smp_mb(); 1215 wake_up_bit(&inode->i_state, __I_SYNC); 1216 } 1217 1218 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1219 { 1220 bool ret = time_after(inode->dirtied_when, t); 1221 #ifndef CONFIG_64BIT 1222 /* 1223 * For inodes being constantly redirtied, dirtied_when can get stuck. 1224 * It _appears_ to be in the future, but is actually in distant past. 1225 * This test is necessary to prevent such wrapped-around relative times 1226 * from permanently stopping the whole bdi writeback. 1227 */ 1228 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1229 #endif 1230 return ret; 1231 } 1232 1233 #define EXPIRE_DIRTY_ATIME 0x0001 1234 1235 /* 1236 * Move expired (dirtied before dirtied_before) dirty inodes from 1237 * @delaying_queue to @dispatch_queue. 1238 */ 1239 static int move_expired_inodes(struct list_head *delaying_queue, 1240 struct list_head *dispatch_queue, 1241 unsigned long dirtied_before) 1242 { 1243 LIST_HEAD(tmp); 1244 struct list_head *pos, *node; 1245 struct super_block *sb = NULL; 1246 struct inode *inode; 1247 int do_sb_sort = 0; 1248 int moved = 0; 1249 1250 while (!list_empty(delaying_queue)) { 1251 inode = wb_inode(delaying_queue->prev); 1252 if (inode_dirtied_after(inode, dirtied_before)) 1253 break; 1254 list_move(&inode->i_io_list, &tmp); 1255 moved++; 1256 spin_lock(&inode->i_lock); 1257 inode->i_state |= I_SYNC_QUEUED; 1258 spin_unlock(&inode->i_lock); 1259 if (sb_is_blkdev_sb(inode->i_sb)) 1260 continue; 1261 if (sb && sb != inode->i_sb) 1262 do_sb_sort = 1; 1263 sb = inode->i_sb; 1264 } 1265 1266 /* just one sb in list, splice to dispatch_queue and we're done */ 1267 if (!do_sb_sort) { 1268 list_splice(&tmp, dispatch_queue); 1269 goto out; 1270 } 1271 1272 /* Move inodes from one superblock together */ 1273 while (!list_empty(&tmp)) { 1274 sb = wb_inode(tmp.prev)->i_sb; 1275 list_for_each_prev_safe(pos, node, &tmp) { 1276 inode = wb_inode(pos); 1277 if (inode->i_sb == sb) 1278 list_move(&inode->i_io_list, dispatch_queue); 1279 } 1280 } 1281 out: 1282 return moved; 1283 } 1284 1285 /* 1286 * Queue all expired dirty inodes for io, eldest first. 1287 * Before 1288 * newly dirtied b_dirty b_io b_more_io 1289 * =============> gf edc BA 1290 * After 1291 * newly dirtied b_dirty b_io b_more_io 1292 * =============> g fBAedc 1293 * | 1294 * +--> dequeue for IO 1295 */ 1296 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1297 unsigned long dirtied_before) 1298 { 1299 int moved; 1300 unsigned long time_expire_jif = dirtied_before; 1301 1302 assert_spin_locked(&wb->list_lock); 1303 list_splice_init(&wb->b_more_io, &wb->b_io); 1304 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1305 if (!work->for_sync) 1306 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1307 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1308 time_expire_jif); 1309 if (moved) 1310 wb_io_lists_populated(wb); 1311 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1312 } 1313 1314 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1315 { 1316 int ret; 1317 1318 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1319 trace_writeback_write_inode_start(inode, wbc); 1320 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1321 trace_writeback_write_inode(inode, wbc); 1322 return ret; 1323 } 1324 return 0; 1325 } 1326 1327 /* 1328 * Wait for writeback on an inode to complete. Called with i_lock held. 1329 * Caller must make sure inode cannot go away when we drop i_lock. 1330 */ 1331 static void __inode_wait_for_writeback(struct inode *inode) 1332 __releases(inode->i_lock) 1333 __acquires(inode->i_lock) 1334 { 1335 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1336 wait_queue_head_t *wqh; 1337 1338 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1339 while (inode->i_state & I_SYNC) { 1340 spin_unlock(&inode->i_lock); 1341 __wait_on_bit(wqh, &wq, bit_wait, 1342 TASK_UNINTERRUPTIBLE); 1343 spin_lock(&inode->i_lock); 1344 } 1345 } 1346 1347 /* 1348 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1349 */ 1350 void inode_wait_for_writeback(struct inode *inode) 1351 { 1352 spin_lock(&inode->i_lock); 1353 __inode_wait_for_writeback(inode); 1354 spin_unlock(&inode->i_lock); 1355 } 1356 1357 /* 1358 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1359 * held and drops it. It is aimed for callers not holding any inode reference 1360 * so once i_lock is dropped, inode can go away. 1361 */ 1362 static void inode_sleep_on_writeback(struct inode *inode) 1363 __releases(inode->i_lock) 1364 { 1365 DEFINE_WAIT(wait); 1366 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1367 int sleep; 1368 1369 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1370 sleep = inode->i_state & I_SYNC; 1371 spin_unlock(&inode->i_lock); 1372 if (sleep) 1373 schedule(); 1374 finish_wait(wqh, &wait); 1375 } 1376 1377 /* 1378 * Find proper writeback list for the inode depending on its current state and 1379 * possibly also change of its state while we were doing writeback. Here we 1380 * handle things such as livelock prevention or fairness of writeback among 1381 * inodes. This function can be called only by flusher thread - noone else 1382 * processes all inodes in writeback lists and requeueing inodes behind flusher 1383 * thread's back can have unexpected consequences. 1384 */ 1385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1386 struct writeback_control *wbc) 1387 { 1388 if (inode->i_state & I_FREEING) 1389 return; 1390 1391 /* 1392 * Sync livelock prevention. Each inode is tagged and synced in one 1393 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1394 * the dirty time to prevent enqueue and sync it again. 1395 */ 1396 if ((inode->i_state & I_DIRTY) && 1397 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1398 inode->dirtied_when = jiffies; 1399 1400 if (wbc->pages_skipped) { 1401 /* 1402 * writeback is not making progress due to locked 1403 * buffers. Skip this inode for now. 1404 */ 1405 redirty_tail_locked(inode, wb); 1406 return; 1407 } 1408 1409 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1410 /* 1411 * We didn't write back all the pages. nfs_writepages() 1412 * sometimes bales out without doing anything. 1413 */ 1414 if (wbc->nr_to_write <= 0) { 1415 /* Slice used up. Queue for next turn. */ 1416 requeue_io(inode, wb); 1417 } else { 1418 /* 1419 * Writeback blocked by something other than 1420 * congestion. Delay the inode for some time to 1421 * avoid spinning on the CPU (100% iowait) 1422 * retrying writeback of the dirty page/inode 1423 * that cannot be performed immediately. 1424 */ 1425 redirty_tail_locked(inode, wb); 1426 } 1427 } else if (inode->i_state & I_DIRTY) { 1428 /* 1429 * Filesystems can dirty the inode during writeback operations, 1430 * such as delayed allocation during submission or metadata 1431 * updates after data IO completion. 1432 */ 1433 redirty_tail_locked(inode, wb); 1434 } else if (inode->i_state & I_DIRTY_TIME) { 1435 inode->dirtied_when = jiffies; 1436 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1437 inode->i_state &= ~I_SYNC_QUEUED; 1438 } else { 1439 /* The inode is clean. Remove from writeback lists. */ 1440 inode_io_list_del_locked(inode, wb); 1441 } 1442 } 1443 1444 /* 1445 * Write out an inode and its dirty pages. Do not update the writeback list 1446 * linkage. That is left to the caller. The caller is also responsible for 1447 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1448 */ 1449 static int 1450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1451 { 1452 struct address_space *mapping = inode->i_mapping; 1453 long nr_to_write = wbc->nr_to_write; 1454 unsigned dirty; 1455 int ret; 1456 1457 WARN_ON(!(inode->i_state & I_SYNC)); 1458 1459 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1460 1461 ret = do_writepages(mapping, wbc); 1462 1463 /* 1464 * Make sure to wait on the data before writing out the metadata. 1465 * This is important for filesystems that modify metadata on data 1466 * I/O completion. We don't do it for sync(2) writeback because it has a 1467 * separate, external IO completion path and ->sync_fs for guaranteeing 1468 * inode metadata is written back correctly. 1469 */ 1470 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1471 int err = filemap_fdatawait(mapping); 1472 if (ret == 0) 1473 ret = err; 1474 } 1475 1476 /* 1477 * Some filesystems may redirty the inode during the writeback 1478 * due to delalloc, clear dirty metadata flags right before 1479 * write_inode() 1480 */ 1481 spin_lock(&inode->i_lock); 1482 1483 dirty = inode->i_state & I_DIRTY; 1484 if ((inode->i_state & I_DIRTY_TIME) && 1485 ((dirty & I_DIRTY_INODE) || 1486 wbc->sync_mode == WB_SYNC_ALL || wbc->for_sync || 1487 time_after(jiffies, inode->dirtied_time_when + 1488 dirtytime_expire_interval * HZ))) { 1489 dirty |= I_DIRTY_TIME; 1490 trace_writeback_lazytime(inode); 1491 } 1492 inode->i_state &= ~dirty; 1493 1494 /* 1495 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1496 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1497 * either they see the I_DIRTY bits cleared or we see the dirtied 1498 * inode. 1499 * 1500 * I_DIRTY_PAGES is always cleared together above even if @mapping 1501 * still has dirty pages. The flag is reinstated after smp_mb() if 1502 * necessary. This guarantees that either __mark_inode_dirty() 1503 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1504 */ 1505 smp_mb(); 1506 1507 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1508 inode->i_state |= I_DIRTY_PAGES; 1509 1510 spin_unlock(&inode->i_lock); 1511 1512 if (dirty & I_DIRTY_TIME) 1513 mark_inode_dirty_sync(inode); 1514 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1515 if (dirty & ~I_DIRTY_PAGES) { 1516 int err = write_inode(inode, wbc); 1517 if (ret == 0) 1518 ret = err; 1519 } 1520 trace_writeback_single_inode(inode, wbc, nr_to_write); 1521 return ret; 1522 } 1523 1524 /* 1525 * Write out an inode's dirty pages. Either the caller has an active reference 1526 * on the inode or the inode has I_WILL_FREE set. 1527 * 1528 * This function is designed to be called for writing back one inode which 1529 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1530 * and does more profound writeback list handling in writeback_sb_inodes(). 1531 */ 1532 static int writeback_single_inode(struct inode *inode, 1533 struct writeback_control *wbc) 1534 { 1535 struct bdi_writeback *wb; 1536 int ret = 0; 1537 1538 spin_lock(&inode->i_lock); 1539 if (!atomic_read(&inode->i_count)) 1540 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1541 else 1542 WARN_ON(inode->i_state & I_WILL_FREE); 1543 1544 if (inode->i_state & I_SYNC) { 1545 if (wbc->sync_mode != WB_SYNC_ALL) 1546 goto out; 1547 /* 1548 * It's a data-integrity sync. We must wait. Since callers hold 1549 * inode reference or inode has I_WILL_FREE set, it cannot go 1550 * away under us. 1551 */ 1552 __inode_wait_for_writeback(inode); 1553 } 1554 WARN_ON(inode->i_state & I_SYNC); 1555 /* 1556 * Skip inode if it is clean and we have no outstanding writeback in 1557 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1558 * function since flusher thread may be doing for example sync in 1559 * parallel and if we move the inode, it could get skipped. So here we 1560 * make sure inode is on some writeback list and leave it there unless 1561 * we have completely cleaned the inode. 1562 */ 1563 if (!(inode->i_state & I_DIRTY_ALL) && 1564 (wbc->sync_mode != WB_SYNC_ALL || 1565 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1566 goto out; 1567 inode->i_state |= I_SYNC; 1568 wbc_attach_and_unlock_inode(wbc, inode); 1569 1570 ret = __writeback_single_inode(inode, wbc); 1571 1572 wbc_detach_inode(wbc); 1573 1574 wb = inode_to_wb_and_lock_list(inode); 1575 spin_lock(&inode->i_lock); 1576 /* 1577 * If inode is clean, remove it from writeback lists. Otherwise don't 1578 * touch it. See comment above for explanation. 1579 */ 1580 if (!(inode->i_state & I_DIRTY_ALL)) 1581 inode_io_list_del_locked(inode, wb); 1582 spin_unlock(&wb->list_lock); 1583 inode_sync_complete(inode); 1584 out: 1585 spin_unlock(&inode->i_lock); 1586 return ret; 1587 } 1588 1589 static long writeback_chunk_size(struct bdi_writeback *wb, 1590 struct wb_writeback_work *work) 1591 { 1592 long pages; 1593 1594 /* 1595 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1596 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1597 * here avoids calling into writeback_inodes_wb() more than once. 1598 * 1599 * The intended call sequence for WB_SYNC_ALL writeback is: 1600 * 1601 * wb_writeback() 1602 * writeback_sb_inodes() <== called only once 1603 * write_cache_pages() <== called once for each inode 1604 * (quickly) tag currently dirty pages 1605 * (maybe slowly) sync all tagged pages 1606 */ 1607 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1608 pages = LONG_MAX; 1609 else { 1610 pages = min(wb->avg_write_bandwidth / 2, 1611 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1612 pages = min(pages, work->nr_pages); 1613 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1614 MIN_WRITEBACK_PAGES); 1615 } 1616 1617 return pages; 1618 } 1619 1620 /* 1621 * Write a portion of b_io inodes which belong to @sb. 1622 * 1623 * Return the number of pages and/or inodes written. 1624 * 1625 * NOTE! This is called with wb->list_lock held, and will 1626 * unlock and relock that for each inode it ends up doing 1627 * IO for. 1628 */ 1629 static long writeback_sb_inodes(struct super_block *sb, 1630 struct bdi_writeback *wb, 1631 struct wb_writeback_work *work) 1632 { 1633 struct writeback_control wbc = { 1634 .sync_mode = work->sync_mode, 1635 .tagged_writepages = work->tagged_writepages, 1636 .for_kupdate = work->for_kupdate, 1637 .for_background = work->for_background, 1638 .for_sync = work->for_sync, 1639 .range_cyclic = work->range_cyclic, 1640 .range_start = 0, 1641 .range_end = LLONG_MAX, 1642 }; 1643 unsigned long start_time = jiffies; 1644 long write_chunk; 1645 long wrote = 0; /* count both pages and inodes */ 1646 1647 while (!list_empty(&wb->b_io)) { 1648 struct inode *inode = wb_inode(wb->b_io.prev); 1649 struct bdi_writeback *tmp_wb; 1650 1651 if (inode->i_sb != sb) { 1652 if (work->sb) { 1653 /* 1654 * We only want to write back data for this 1655 * superblock, move all inodes not belonging 1656 * to it back onto the dirty list. 1657 */ 1658 redirty_tail(inode, wb); 1659 continue; 1660 } 1661 1662 /* 1663 * The inode belongs to a different superblock. 1664 * Bounce back to the caller to unpin this and 1665 * pin the next superblock. 1666 */ 1667 break; 1668 } 1669 1670 /* 1671 * Don't bother with new inodes or inodes being freed, first 1672 * kind does not need periodic writeout yet, and for the latter 1673 * kind writeout is handled by the freer. 1674 */ 1675 spin_lock(&inode->i_lock); 1676 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1677 redirty_tail_locked(inode, wb); 1678 spin_unlock(&inode->i_lock); 1679 continue; 1680 } 1681 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1682 /* 1683 * If this inode is locked for writeback and we are not 1684 * doing writeback-for-data-integrity, move it to 1685 * b_more_io so that writeback can proceed with the 1686 * other inodes on s_io. 1687 * 1688 * We'll have another go at writing back this inode 1689 * when we completed a full scan of b_io. 1690 */ 1691 spin_unlock(&inode->i_lock); 1692 requeue_io(inode, wb); 1693 trace_writeback_sb_inodes_requeue(inode); 1694 continue; 1695 } 1696 spin_unlock(&wb->list_lock); 1697 1698 /* 1699 * We already requeued the inode if it had I_SYNC set and we 1700 * are doing WB_SYNC_NONE writeback. So this catches only the 1701 * WB_SYNC_ALL case. 1702 */ 1703 if (inode->i_state & I_SYNC) { 1704 /* Wait for I_SYNC. This function drops i_lock... */ 1705 inode_sleep_on_writeback(inode); 1706 /* Inode may be gone, start again */ 1707 spin_lock(&wb->list_lock); 1708 continue; 1709 } 1710 inode->i_state |= I_SYNC; 1711 wbc_attach_and_unlock_inode(&wbc, inode); 1712 1713 write_chunk = writeback_chunk_size(wb, work); 1714 wbc.nr_to_write = write_chunk; 1715 wbc.pages_skipped = 0; 1716 1717 /* 1718 * We use I_SYNC to pin the inode in memory. While it is set 1719 * evict_inode() will wait so the inode cannot be freed. 1720 */ 1721 __writeback_single_inode(inode, &wbc); 1722 1723 wbc_detach_inode(&wbc); 1724 work->nr_pages -= write_chunk - wbc.nr_to_write; 1725 wrote += write_chunk - wbc.nr_to_write; 1726 1727 if (need_resched()) { 1728 /* 1729 * We're trying to balance between building up a nice 1730 * long list of IOs to improve our merge rate, and 1731 * getting those IOs out quickly for anyone throttling 1732 * in balance_dirty_pages(). cond_resched() doesn't 1733 * unplug, so get our IOs out the door before we 1734 * give up the CPU. 1735 */ 1736 blk_flush_plug(current); 1737 cond_resched(); 1738 } 1739 1740 /* 1741 * Requeue @inode if still dirty. Be careful as @inode may 1742 * have been switched to another wb in the meantime. 1743 */ 1744 tmp_wb = inode_to_wb_and_lock_list(inode); 1745 spin_lock(&inode->i_lock); 1746 if (!(inode->i_state & I_DIRTY_ALL)) 1747 wrote++; 1748 requeue_inode(inode, tmp_wb, &wbc); 1749 inode_sync_complete(inode); 1750 spin_unlock(&inode->i_lock); 1751 1752 if (unlikely(tmp_wb != wb)) { 1753 spin_unlock(&tmp_wb->list_lock); 1754 spin_lock(&wb->list_lock); 1755 } 1756 1757 /* 1758 * bail out to wb_writeback() often enough to check 1759 * background threshold and other termination conditions. 1760 */ 1761 if (wrote) { 1762 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1763 break; 1764 if (work->nr_pages <= 0) 1765 break; 1766 } 1767 } 1768 return wrote; 1769 } 1770 1771 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1772 struct wb_writeback_work *work) 1773 { 1774 unsigned long start_time = jiffies; 1775 long wrote = 0; 1776 1777 while (!list_empty(&wb->b_io)) { 1778 struct inode *inode = wb_inode(wb->b_io.prev); 1779 struct super_block *sb = inode->i_sb; 1780 1781 if (!trylock_super(sb)) { 1782 /* 1783 * trylock_super() may fail consistently due to 1784 * s_umount being grabbed by someone else. Don't use 1785 * requeue_io() to avoid busy retrying the inode/sb. 1786 */ 1787 redirty_tail(inode, wb); 1788 continue; 1789 } 1790 wrote += writeback_sb_inodes(sb, wb, work); 1791 up_read(&sb->s_umount); 1792 1793 /* refer to the same tests at the end of writeback_sb_inodes */ 1794 if (wrote) { 1795 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1796 break; 1797 if (work->nr_pages <= 0) 1798 break; 1799 } 1800 } 1801 /* Leave any unwritten inodes on b_io */ 1802 return wrote; 1803 } 1804 1805 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1806 enum wb_reason reason) 1807 { 1808 struct wb_writeback_work work = { 1809 .nr_pages = nr_pages, 1810 .sync_mode = WB_SYNC_NONE, 1811 .range_cyclic = 1, 1812 .reason = reason, 1813 }; 1814 struct blk_plug plug; 1815 1816 blk_start_plug(&plug); 1817 spin_lock(&wb->list_lock); 1818 if (list_empty(&wb->b_io)) 1819 queue_io(wb, &work, jiffies); 1820 __writeback_inodes_wb(wb, &work); 1821 spin_unlock(&wb->list_lock); 1822 blk_finish_plug(&plug); 1823 1824 return nr_pages - work.nr_pages; 1825 } 1826 1827 /* 1828 * Explicit flushing or periodic writeback of "old" data. 1829 * 1830 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1831 * dirtying-time in the inode's address_space. So this periodic writeback code 1832 * just walks the superblock inode list, writing back any inodes which are 1833 * older than a specific point in time. 1834 * 1835 * Try to run once per dirty_writeback_interval. But if a writeback event 1836 * takes longer than a dirty_writeback_interval interval, then leave a 1837 * one-second gap. 1838 * 1839 * dirtied_before takes precedence over nr_to_write. So we'll only write back 1840 * all dirty pages if they are all attached to "old" mappings. 1841 */ 1842 static long wb_writeback(struct bdi_writeback *wb, 1843 struct wb_writeback_work *work) 1844 { 1845 unsigned long wb_start = jiffies; 1846 long nr_pages = work->nr_pages; 1847 unsigned long dirtied_before = jiffies; 1848 struct inode *inode; 1849 long progress; 1850 struct blk_plug plug; 1851 1852 blk_start_plug(&plug); 1853 spin_lock(&wb->list_lock); 1854 for (;;) { 1855 /* 1856 * Stop writeback when nr_pages has been consumed 1857 */ 1858 if (work->nr_pages <= 0) 1859 break; 1860 1861 /* 1862 * Background writeout and kupdate-style writeback may 1863 * run forever. Stop them if there is other work to do 1864 * so that e.g. sync can proceed. They'll be restarted 1865 * after the other works are all done. 1866 */ 1867 if ((work->for_background || work->for_kupdate) && 1868 !list_empty(&wb->work_list)) 1869 break; 1870 1871 /* 1872 * For background writeout, stop when we are below the 1873 * background dirty threshold 1874 */ 1875 if (work->for_background && !wb_over_bg_thresh(wb)) 1876 break; 1877 1878 /* 1879 * Kupdate and background works are special and we want to 1880 * include all inodes that need writing. Livelock avoidance is 1881 * handled by these works yielding to any other work so we are 1882 * safe. 1883 */ 1884 if (work->for_kupdate) { 1885 dirtied_before = jiffies - 1886 msecs_to_jiffies(dirty_expire_interval * 10); 1887 } else if (work->for_background) 1888 dirtied_before = jiffies; 1889 1890 trace_writeback_start(wb, work); 1891 if (list_empty(&wb->b_io)) 1892 queue_io(wb, work, dirtied_before); 1893 if (work->sb) 1894 progress = writeback_sb_inodes(work->sb, wb, work); 1895 else 1896 progress = __writeback_inodes_wb(wb, work); 1897 trace_writeback_written(wb, work); 1898 1899 wb_update_bandwidth(wb, wb_start); 1900 1901 /* 1902 * Did we write something? Try for more 1903 * 1904 * Dirty inodes are moved to b_io for writeback in batches. 1905 * The completion of the current batch does not necessarily 1906 * mean the overall work is done. So we keep looping as long 1907 * as made some progress on cleaning pages or inodes. 1908 */ 1909 if (progress) 1910 continue; 1911 /* 1912 * No more inodes for IO, bail 1913 */ 1914 if (list_empty(&wb->b_more_io)) 1915 break; 1916 /* 1917 * Nothing written. Wait for some inode to 1918 * become available for writeback. Otherwise 1919 * we'll just busyloop. 1920 */ 1921 trace_writeback_wait(wb, work); 1922 inode = wb_inode(wb->b_more_io.prev); 1923 spin_lock(&inode->i_lock); 1924 spin_unlock(&wb->list_lock); 1925 /* This function drops i_lock... */ 1926 inode_sleep_on_writeback(inode); 1927 spin_lock(&wb->list_lock); 1928 } 1929 spin_unlock(&wb->list_lock); 1930 blk_finish_plug(&plug); 1931 1932 return nr_pages - work->nr_pages; 1933 } 1934 1935 /* 1936 * Return the next wb_writeback_work struct that hasn't been processed yet. 1937 */ 1938 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1939 { 1940 struct wb_writeback_work *work = NULL; 1941 1942 spin_lock_bh(&wb->work_lock); 1943 if (!list_empty(&wb->work_list)) { 1944 work = list_entry(wb->work_list.next, 1945 struct wb_writeback_work, list); 1946 list_del_init(&work->list); 1947 } 1948 spin_unlock_bh(&wb->work_lock); 1949 return work; 1950 } 1951 1952 static long wb_check_background_flush(struct bdi_writeback *wb) 1953 { 1954 if (wb_over_bg_thresh(wb)) { 1955 1956 struct wb_writeback_work work = { 1957 .nr_pages = LONG_MAX, 1958 .sync_mode = WB_SYNC_NONE, 1959 .for_background = 1, 1960 .range_cyclic = 1, 1961 .reason = WB_REASON_BACKGROUND, 1962 }; 1963 1964 return wb_writeback(wb, &work); 1965 } 1966 1967 return 0; 1968 } 1969 1970 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1971 { 1972 unsigned long expired; 1973 long nr_pages; 1974 1975 /* 1976 * When set to zero, disable periodic writeback 1977 */ 1978 if (!dirty_writeback_interval) 1979 return 0; 1980 1981 expired = wb->last_old_flush + 1982 msecs_to_jiffies(dirty_writeback_interval * 10); 1983 if (time_before(jiffies, expired)) 1984 return 0; 1985 1986 wb->last_old_flush = jiffies; 1987 nr_pages = get_nr_dirty_pages(); 1988 1989 if (nr_pages) { 1990 struct wb_writeback_work work = { 1991 .nr_pages = nr_pages, 1992 .sync_mode = WB_SYNC_NONE, 1993 .for_kupdate = 1, 1994 .range_cyclic = 1, 1995 .reason = WB_REASON_PERIODIC, 1996 }; 1997 1998 return wb_writeback(wb, &work); 1999 } 2000 2001 return 0; 2002 } 2003 2004 static long wb_check_start_all(struct bdi_writeback *wb) 2005 { 2006 long nr_pages; 2007 2008 if (!test_bit(WB_start_all, &wb->state)) 2009 return 0; 2010 2011 nr_pages = get_nr_dirty_pages(); 2012 if (nr_pages) { 2013 struct wb_writeback_work work = { 2014 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2015 .sync_mode = WB_SYNC_NONE, 2016 .range_cyclic = 1, 2017 .reason = wb->start_all_reason, 2018 }; 2019 2020 nr_pages = wb_writeback(wb, &work); 2021 } 2022 2023 clear_bit(WB_start_all, &wb->state); 2024 return nr_pages; 2025 } 2026 2027 2028 /* 2029 * Retrieve work items and do the writeback they describe 2030 */ 2031 static long wb_do_writeback(struct bdi_writeback *wb) 2032 { 2033 struct wb_writeback_work *work; 2034 long wrote = 0; 2035 2036 set_bit(WB_writeback_running, &wb->state); 2037 while ((work = get_next_work_item(wb)) != NULL) { 2038 trace_writeback_exec(wb, work); 2039 wrote += wb_writeback(wb, work); 2040 finish_writeback_work(wb, work); 2041 } 2042 2043 /* 2044 * Check for a flush-everything request 2045 */ 2046 wrote += wb_check_start_all(wb); 2047 2048 /* 2049 * Check for periodic writeback, kupdated() style 2050 */ 2051 wrote += wb_check_old_data_flush(wb); 2052 wrote += wb_check_background_flush(wb); 2053 clear_bit(WB_writeback_running, &wb->state); 2054 2055 return wrote; 2056 } 2057 2058 /* 2059 * Handle writeback of dirty data for the device backed by this bdi. Also 2060 * reschedules periodically and does kupdated style flushing. 2061 */ 2062 void wb_workfn(struct work_struct *work) 2063 { 2064 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2065 struct bdi_writeback, dwork); 2066 long pages_written; 2067 2068 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2069 current->flags |= PF_SWAPWRITE; 2070 2071 if (likely(!current_is_workqueue_rescuer() || 2072 !test_bit(WB_registered, &wb->state))) { 2073 /* 2074 * The normal path. Keep writing back @wb until its 2075 * work_list is empty. Note that this path is also taken 2076 * if @wb is shutting down even when we're running off the 2077 * rescuer as work_list needs to be drained. 2078 */ 2079 do { 2080 pages_written = wb_do_writeback(wb); 2081 trace_writeback_pages_written(pages_written); 2082 } while (!list_empty(&wb->work_list)); 2083 } else { 2084 /* 2085 * bdi_wq can't get enough workers and we're running off 2086 * the emergency worker. Don't hog it. Hopefully, 1024 is 2087 * enough for efficient IO. 2088 */ 2089 pages_written = writeback_inodes_wb(wb, 1024, 2090 WB_REASON_FORKER_THREAD); 2091 trace_writeback_pages_written(pages_written); 2092 } 2093 2094 if (!list_empty(&wb->work_list)) 2095 wb_wakeup(wb); 2096 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2097 wb_wakeup_delayed(wb); 2098 2099 current->flags &= ~PF_SWAPWRITE; 2100 } 2101 2102 /* 2103 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2104 * write back the whole world. 2105 */ 2106 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2107 enum wb_reason reason) 2108 { 2109 struct bdi_writeback *wb; 2110 2111 if (!bdi_has_dirty_io(bdi)) 2112 return; 2113 2114 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2115 wb_start_writeback(wb, reason); 2116 } 2117 2118 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2119 enum wb_reason reason) 2120 { 2121 rcu_read_lock(); 2122 __wakeup_flusher_threads_bdi(bdi, reason); 2123 rcu_read_unlock(); 2124 } 2125 2126 /* 2127 * Wakeup the flusher threads to start writeback of all currently dirty pages 2128 */ 2129 void wakeup_flusher_threads(enum wb_reason reason) 2130 { 2131 struct backing_dev_info *bdi; 2132 2133 /* 2134 * If we are expecting writeback progress we must submit plugged IO. 2135 */ 2136 if (blk_needs_flush_plug(current)) 2137 blk_schedule_flush_plug(current); 2138 2139 rcu_read_lock(); 2140 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2141 __wakeup_flusher_threads_bdi(bdi, reason); 2142 rcu_read_unlock(); 2143 } 2144 2145 /* 2146 * Wake up bdi's periodically to make sure dirtytime inodes gets 2147 * written back periodically. We deliberately do *not* check the 2148 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2149 * kernel to be constantly waking up once there are any dirtytime 2150 * inodes on the system. So instead we define a separate delayed work 2151 * function which gets called much more rarely. (By default, only 2152 * once every 12 hours.) 2153 * 2154 * If there is any other write activity going on in the file system, 2155 * this function won't be necessary. But if the only thing that has 2156 * happened on the file system is a dirtytime inode caused by an atime 2157 * update, we need this infrastructure below to make sure that inode 2158 * eventually gets pushed out to disk. 2159 */ 2160 static void wakeup_dirtytime_writeback(struct work_struct *w); 2161 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2162 2163 static void wakeup_dirtytime_writeback(struct work_struct *w) 2164 { 2165 struct backing_dev_info *bdi; 2166 2167 rcu_read_lock(); 2168 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2169 struct bdi_writeback *wb; 2170 2171 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2172 if (!list_empty(&wb->b_dirty_time)) 2173 wb_wakeup(wb); 2174 } 2175 rcu_read_unlock(); 2176 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2177 } 2178 2179 static int __init start_dirtytime_writeback(void) 2180 { 2181 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2182 return 0; 2183 } 2184 __initcall(start_dirtytime_writeback); 2185 2186 int dirtytime_interval_handler(struct ctl_table *table, int write, 2187 void *buffer, size_t *lenp, loff_t *ppos) 2188 { 2189 int ret; 2190 2191 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2192 if (ret == 0 && write) 2193 mod_delayed_work(system_wq, &dirtytime_work, 0); 2194 return ret; 2195 } 2196 2197 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2198 { 2199 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2200 struct dentry *dentry; 2201 const char *name = "?"; 2202 2203 dentry = d_find_alias(inode); 2204 if (dentry) { 2205 spin_lock(&dentry->d_lock); 2206 name = (const char *) dentry->d_name.name; 2207 } 2208 printk(KERN_DEBUG 2209 "%s(%d): dirtied inode %lu (%s) on %s\n", 2210 current->comm, task_pid_nr(current), inode->i_ino, 2211 name, inode->i_sb->s_id); 2212 if (dentry) { 2213 spin_unlock(&dentry->d_lock); 2214 dput(dentry); 2215 } 2216 } 2217 } 2218 2219 /** 2220 * __mark_inode_dirty - internal function 2221 * 2222 * @inode: inode to mark 2223 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2224 * 2225 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2226 * mark_inode_dirty_sync. 2227 * 2228 * Put the inode on the super block's dirty list. 2229 * 2230 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2231 * dirty list only if it is hashed or if it refers to a blockdev. 2232 * If it was not hashed, it will never be added to the dirty list 2233 * even if it is later hashed, as it will have been marked dirty already. 2234 * 2235 * In short, make sure you hash any inodes _before_ you start marking 2236 * them dirty. 2237 * 2238 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2239 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2240 * the kernel-internal blockdev inode represents the dirtying time of the 2241 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2242 * page->mapping->host, so the page-dirtying time is recorded in the internal 2243 * blockdev inode. 2244 */ 2245 void __mark_inode_dirty(struct inode *inode, int flags) 2246 { 2247 struct super_block *sb = inode->i_sb; 2248 int dirtytime; 2249 2250 trace_writeback_mark_inode_dirty(inode, flags); 2251 2252 /* 2253 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2254 * dirty the inode itself 2255 */ 2256 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2257 trace_writeback_dirty_inode_start(inode, flags); 2258 2259 if (sb->s_op->dirty_inode) 2260 sb->s_op->dirty_inode(inode, flags); 2261 2262 trace_writeback_dirty_inode(inode, flags); 2263 } 2264 if (flags & I_DIRTY_INODE) 2265 flags &= ~I_DIRTY_TIME; 2266 dirtytime = flags & I_DIRTY_TIME; 2267 2268 /* 2269 * Paired with smp_mb() in __writeback_single_inode() for the 2270 * following lockless i_state test. See there for details. 2271 */ 2272 smp_mb(); 2273 2274 if (((inode->i_state & flags) == flags) || 2275 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2276 return; 2277 2278 if (unlikely(block_dump)) 2279 block_dump___mark_inode_dirty(inode); 2280 2281 spin_lock(&inode->i_lock); 2282 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2283 goto out_unlock_inode; 2284 if ((inode->i_state & flags) != flags) { 2285 const int was_dirty = inode->i_state & I_DIRTY; 2286 2287 inode_attach_wb(inode, NULL); 2288 2289 if (flags & I_DIRTY_INODE) 2290 inode->i_state &= ~I_DIRTY_TIME; 2291 inode->i_state |= flags; 2292 2293 /* 2294 * If the inode is queued for writeback by flush worker, just 2295 * update its dirty state. Once the flush worker is done with 2296 * the inode it will place it on the appropriate superblock 2297 * list, based upon its state. 2298 */ 2299 if (inode->i_state & I_SYNC_QUEUED) 2300 goto out_unlock_inode; 2301 2302 /* 2303 * Only add valid (hashed) inodes to the superblock's 2304 * dirty list. Add blockdev inodes as well. 2305 */ 2306 if (!S_ISBLK(inode->i_mode)) { 2307 if (inode_unhashed(inode)) 2308 goto out_unlock_inode; 2309 } 2310 if (inode->i_state & I_FREEING) 2311 goto out_unlock_inode; 2312 2313 /* 2314 * If the inode was already on b_dirty/b_io/b_more_io, don't 2315 * reposition it (that would break b_dirty time-ordering). 2316 */ 2317 if (!was_dirty) { 2318 struct bdi_writeback *wb; 2319 struct list_head *dirty_list; 2320 bool wakeup_bdi = false; 2321 2322 wb = locked_inode_to_wb_and_lock_list(inode); 2323 2324 WARN((wb->bdi->capabilities & BDI_CAP_WRITEBACK) && 2325 !test_bit(WB_registered, &wb->state), 2326 "bdi-%s not registered\n", bdi_dev_name(wb->bdi)); 2327 2328 inode->dirtied_when = jiffies; 2329 if (dirtytime) 2330 inode->dirtied_time_when = jiffies; 2331 2332 if (inode->i_state & I_DIRTY) 2333 dirty_list = &wb->b_dirty; 2334 else 2335 dirty_list = &wb->b_dirty_time; 2336 2337 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2338 dirty_list); 2339 2340 spin_unlock(&wb->list_lock); 2341 trace_writeback_dirty_inode_enqueue(inode); 2342 2343 /* 2344 * If this is the first dirty inode for this bdi, 2345 * we have to wake-up the corresponding bdi thread 2346 * to make sure background write-back happens 2347 * later. 2348 */ 2349 if (wakeup_bdi && 2350 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2351 wb_wakeup_delayed(wb); 2352 return; 2353 } 2354 } 2355 out_unlock_inode: 2356 spin_unlock(&inode->i_lock); 2357 } 2358 EXPORT_SYMBOL(__mark_inode_dirty); 2359 2360 /* 2361 * The @s_sync_lock is used to serialise concurrent sync operations 2362 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2363 * Concurrent callers will block on the s_sync_lock rather than doing contending 2364 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2365 * has been issued up to the time this function is enter is guaranteed to be 2366 * completed by the time we have gained the lock and waited for all IO that is 2367 * in progress regardless of the order callers are granted the lock. 2368 */ 2369 static void wait_sb_inodes(struct super_block *sb) 2370 { 2371 LIST_HEAD(sync_list); 2372 2373 /* 2374 * We need to be protected against the filesystem going from 2375 * r/o to r/w or vice versa. 2376 */ 2377 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2378 2379 mutex_lock(&sb->s_sync_lock); 2380 2381 /* 2382 * Splice the writeback list onto a temporary list to avoid waiting on 2383 * inodes that have started writeback after this point. 2384 * 2385 * Use rcu_read_lock() to keep the inodes around until we have a 2386 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2387 * the local list because inodes can be dropped from either by writeback 2388 * completion. 2389 */ 2390 rcu_read_lock(); 2391 spin_lock_irq(&sb->s_inode_wblist_lock); 2392 list_splice_init(&sb->s_inodes_wb, &sync_list); 2393 2394 /* 2395 * Data integrity sync. Must wait for all pages under writeback, because 2396 * there may have been pages dirtied before our sync call, but which had 2397 * writeout started before we write it out. In which case, the inode 2398 * may not be on the dirty list, but we still have to wait for that 2399 * writeout. 2400 */ 2401 while (!list_empty(&sync_list)) { 2402 struct inode *inode = list_first_entry(&sync_list, struct inode, 2403 i_wb_list); 2404 struct address_space *mapping = inode->i_mapping; 2405 2406 /* 2407 * Move each inode back to the wb list before we drop the lock 2408 * to preserve consistency between i_wb_list and the mapping 2409 * writeback tag. Writeback completion is responsible to remove 2410 * the inode from either list once the writeback tag is cleared. 2411 */ 2412 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2413 2414 /* 2415 * The mapping can appear untagged while still on-list since we 2416 * do not have the mapping lock. Skip it here, wb completion 2417 * will remove it. 2418 */ 2419 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2420 continue; 2421 2422 spin_unlock_irq(&sb->s_inode_wblist_lock); 2423 2424 spin_lock(&inode->i_lock); 2425 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2426 spin_unlock(&inode->i_lock); 2427 2428 spin_lock_irq(&sb->s_inode_wblist_lock); 2429 continue; 2430 } 2431 __iget(inode); 2432 spin_unlock(&inode->i_lock); 2433 rcu_read_unlock(); 2434 2435 /* 2436 * We keep the error status of individual mapping so that 2437 * applications can catch the writeback error using fsync(2). 2438 * See filemap_fdatawait_keep_errors() for details. 2439 */ 2440 filemap_fdatawait_keep_errors(mapping); 2441 2442 cond_resched(); 2443 2444 iput(inode); 2445 2446 rcu_read_lock(); 2447 spin_lock_irq(&sb->s_inode_wblist_lock); 2448 } 2449 spin_unlock_irq(&sb->s_inode_wblist_lock); 2450 rcu_read_unlock(); 2451 mutex_unlock(&sb->s_sync_lock); 2452 } 2453 2454 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2455 enum wb_reason reason, bool skip_if_busy) 2456 { 2457 struct backing_dev_info *bdi = sb->s_bdi; 2458 DEFINE_WB_COMPLETION(done, bdi); 2459 struct wb_writeback_work work = { 2460 .sb = sb, 2461 .sync_mode = WB_SYNC_NONE, 2462 .tagged_writepages = 1, 2463 .done = &done, 2464 .nr_pages = nr, 2465 .reason = reason, 2466 }; 2467 2468 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2469 return; 2470 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2471 2472 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2473 wb_wait_for_completion(&done); 2474 } 2475 2476 /** 2477 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2478 * @sb: the superblock 2479 * @nr: the number of pages to write 2480 * @reason: reason why some writeback work initiated 2481 * 2482 * Start writeback on some inodes on this super_block. No guarantees are made 2483 * on how many (if any) will be written, and this function does not wait 2484 * for IO completion of submitted IO. 2485 */ 2486 void writeback_inodes_sb_nr(struct super_block *sb, 2487 unsigned long nr, 2488 enum wb_reason reason) 2489 { 2490 __writeback_inodes_sb_nr(sb, nr, reason, false); 2491 } 2492 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2493 2494 /** 2495 * writeback_inodes_sb - writeback dirty inodes from given super_block 2496 * @sb: the superblock 2497 * @reason: reason why some writeback work was initiated 2498 * 2499 * Start writeback on some inodes on this super_block. No guarantees are made 2500 * on how many (if any) will be written, and this function does not wait 2501 * for IO completion of submitted IO. 2502 */ 2503 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2504 { 2505 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2506 } 2507 EXPORT_SYMBOL(writeback_inodes_sb); 2508 2509 /** 2510 * try_to_writeback_inodes_sb - try to start writeback if none underway 2511 * @sb: the superblock 2512 * @reason: reason why some writeback work was initiated 2513 * 2514 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2515 */ 2516 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2517 { 2518 if (!down_read_trylock(&sb->s_umount)) 2519 return; 2520 2521 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2522 up_read(&sb->s_umount); 2523 } 2524 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2525 2526 /** 2527 * sync_inodes_sb - sync sb inode pages 2528 * @sb: the superblock 2529 * 2530 * This function writes and waits on any dirty inode belonging to this 2531 * super_block. 2532 */ 2533 void sync_inodes_sb(struct super_block *sb) 2534 { 2535 struct backing_dev_info *bdi = sb->s_bdi; 2536 DEFINE_WB_COMPLETION(done, bdi); 2537 struct wb_writeback_work work = { 2538 .sb = sb, 2539 .sync_mode = WB_SYNC_ALL, 2540 .nr_pages = LONG_MAX, 2541 .range_cyclic = 0, 2542 .done = &done, 2543 .reason = WB_REASON_SYNC, 2544 .for_sync = 1, 2545 }; 2546 2547 /* 2548 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2549 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2550 * bdi_has_dirty() need to be written out too. 2551 */ 2552 if (bdi == &noop_backing_dev_info) 2553 return; 2554 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2555 2556 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2557 bdi_down_write_wb_switch_rwsem(bdi); 2558 bdi_split_work_to_wbs(bdi, &work, false); 2559 wb_wait_for_completion(&done); 2560 bdi_up_write_wb_switch_rwsem(bdi); 2561 2562 wait_sb_inodes(sb); 2563 } 2564 EXPORT_SYMBOL(sync_inodes_sb); 2565 2566 /** 2567 * write_inode_now - write an inode to disk 2568 * @inode: inode to write to disk 2569 * @sync: whether the write should be synchronous or not 2570 * 2571 * This function commits an inode to disk immediately if it is dirty. This is 2572 * primarily needed by knfsd. 2573 * 2574 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2575 */ 2576 int write_inode_now(struct inode *inode, int sync) 2577 { 2578 struct writeback_control wbc = { 2579 .nr_to_write = LONG_MAX, 2580 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2581 .range_start = 0, 2582 .range_end = LLONG_MAX, 2583 }; 2584 2585 if (!mapping_can_writeback(inode->i_mapping)) 2586 wbc.nr_to_write = 0; 2587 2588 might_sleep(); 2589 return writeback_single_inode(inode, &wbc); 2590 } 2591 EXPORT_SYMBOL(write_inode_now); 2592 2593 /** 2594 * sync_inode - write an inode and its pages to disk. 2595 * @inode: the inode to sync 2596 * @wbc: controls the writeback mode 2597 * 2598 * sync_inode() will write an inode and its pages to disk. It will also 2599 * correctly update the inode on its superblock's dirty inode lists and will 2600 * update inode->i_state. 2601 * 2602 * The caller must have a ref on the inode. 2603 */ 2604 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2605 { 2606 return writeback_single_inode(inode, wbc); 2607 } 2608 EXPORT_SYMBOL(sync_inode); 2609 2610 /** 2611 * sync_inode_metadata - write an inode to disk 2612 * @inode: the inode to sync 2613 * @wait: wait for I/O to complete. 2614 * 2615 * Write an inode to disk and adjust its dirty state after completion. 2616 * 2617 * Note: only writes the actual inode, no associated data or other metadata. 2618 */ 2619 int sync_inode_metadata(struct inode *inode, int wait) 2620 { 2621 struct writeback_control wbc = { 2622 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2623 .nr_to_write = 0, /* metadata-only */ 2624 }; 2625 2626 return sync_inode(inode, &wbc); 2627 } 2628 EXPORT_SYMBOL(sync_inode_metadata); 2629