1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 124 list_move(&inode->i_io_list, head); 125 126 /* dirty_time doesn't count as dirty_io until expiration */ 127 if (head != &wb->b_dirty_time) 128 return wb_io_lists_populated(wb); 129 130 wb_io_lists_depopulated(wb); 131 return false; 132 } 133 134 static void wb_wakeup(struct bdi_writeback *wb) 135 { 136 spin_lock_bh(&wb->work_lock); 137 if (test_bit(WB_registered, &wb->state)) 138 mod_delayed_work(bdi_wq, &wb->dwork, 0); 139 spin_unlock_bh(&wb->work_lock); 140 } 141 142 static void finish_writeback_work(struct bdi_writeback *wb, 143 struct wb_writeback_work *work) 144 { 145 struct wb_completion *done = work->done; 146 147 if (work->auto_free) 148 kfree(work); 149 if (done) { 150 wait_queue_head_t *waitq = done->waitq; 151 152 /* @done can't be accessed after the following dec */ 153 if (atomic_dec_and_test(&done->cnt)) 154 wake_up_all(waitq); 155 } 156 } 157 158 static void wb_queue_work(struct bdi_writeback *wb, 159 struct wb_writeback_work *work) 160 { 161 trace_writeback_queue(wb, work); 162 163 if (work->done) 164 atomic_inc(&work->done->cnt); 165 166 spin_lock_bh(&wb->work_lock); 167 168 if (test_bit(WB_registered, &wb->state)) { 169 list_add_tail(&work->list, &wb->work_list); 170 mod_delayed_work(bdi_wq, &wb->dwork, 0); 171 } else 172 finish_writeback_work(wb, work); 173 174 spin_unlock_bh(&wb->work_lock); 175 } 176 177 /** 178 * wb_wait_for_completion - wait for completion of bdi_writeback_works 179 * @done: target wb_completion 180 * 181 * Wait for one or more work items issued to @bdi with their ->done field 182 * set to @done, which should have been initialized with 183 * DEFINE_WB_COMPLETION(). This function returns after all such work items 184 * are completed. Work items which are waited upon aren't freed 185 * automatically on completion. 186 */ 187 void wb_wait_for_completion(struct wb_completion *done) 188 { 189 atomic_dec(&done->cnt); /* put down the initial count */ 190 wait_event(*done->waitq, !atomic_read(&done->cnt)); 191 } 192 193 #ifdef CONFIG_CGROUP_WRITEBACK 194 195 /* 196 * Parameters for foreign inode detection, see wbc_detach_inode() to see 197 * how they're used. 198 * 199 * These paramters are inherently heuristical as the detection target 200 * itself is fuzzy. All we want to do is detaching an inode from the 201 * current owner if it's being written to by some other cgroups too much. 202 * 203 * The current cgroup writeback is built on the assumption that multiple 204 * cgroups writing to the same inode concurrently is very rare and a mode 205 * of operation which isn't well supported. As such, the goal is not 206 * taking too long when a different cgroup takes over an inode while 207 * avoiding too aggressive flip-flops from occasional foreign writes. 208 * 209 * We record, very roughly, 2s worth of IO time history and if more than 210 * half of that is foreign, trigger the switch. The recording is quantized 211 * to 16 slots. To avoid tiny writes from swinging the decision too much, 212 * writes smaller than 1/8 of avg size are ignored. 213 */ 214 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 215 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 216 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 217 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 218 219 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 220 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 221 /* each slot's duration is 2s / 16 */ 222 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 223 /* if foreign slots >= 8, switch */ 224 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 225 /* one round can affect upto 5 slots */ 226 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 227 228 /* 229 * Maximum inodes per isw. A specific value has been chosen to make 230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 231 */ 232 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 233 / sizeof(struct inode *)) 234 235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 236 static struct workqueue_struct *isw_wq; 237 238 void __inode_attach_wb(struct inode *inode, struct page *page) 239 { 240 struct backing_dev_info *bdi = inode_to_bdi(inode); 241 struct bdi_writeback *wb = NULL; 242 243 if (inode_cgwb_enabled(inode)) { 244 struct cgroup_subsys_state *memcg_css; 245 246 if (page) { 247 memcg_css = mem_cgroup_css_from_page(page); 248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 249 } else { 250 /* must pin memcg_css, see wb_get_create() */ 251 memcg_css = task_get_css(current, memory_cgrp_id); 252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 253 css_put(memcg_css); 254 } 255 } 256 257 if (!wb) 258 wb = &bdi->wb; 259 260 /* 261 * There may be multiple instances of this function racing to 262 * update the same inode. Use cmpxchg() to tell the winner. 263 */ 264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 265 wb_put(wb); 266 } 267 EXPORT_SYMBOL_GPL(__inode_attach_wb); 268 269 /** 270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 271 * @inode: inode of interest with i_lock held 272 * @wb: target bdi_writeback 273 * 274 * Remove the inode from wb's io lists and if necessarily put onto b_attached 275 * list. Only inodes attached to cgwb's are kept on this list. 276 */ 277 static void inode_cgwb_move_to_attached(struct inode *inode, 278 struct bdi_writeback *wb) 279 { 280 assert_spin_locked(&wb->list_lock); 281 assert_spin_locked(&inode->i_lock); 282 283 inode->i_state &= ~I_SYNC_QUEUED; 284 if (wb != &wb->bdi->wb) 285 list_move(&inode->i_io_list, &wb->b_attached); 286 else 287 list_del_init(&inode->i_io_list); 288 wb_io_lists_depopulated(wb); 289 } 290 291 /** 292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 293 * @inode: inode of interest with i_lock held 294 * 295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 296 * held on entry and is released on return. The returned wb is guaranteed 297 * to stay @inode's associated wb until its list_lock is released. 298 */ 299 static struct bdi_writeback * 300 locked_inode_to_wb_and_lock_list(struct inode *inode) 301 __releases(&inode->i_lock) 302 __acquires(&wb->list_lock) 303 { 304 while (true) { 305 struct bdi_writeback *wb = inode_to_wb(inode); 306 307 /* 308 * inode_to_wb() association is protected by both 309 * @inode->i_lock and @wb->list_lock but list_lock nests 310 * outside i_lock. Drop i_lock and verify that the 311 * association hasn't changed after acquiring list_lock. 312 */ 313 wb_get(wb); 314 spin_unlock(&inode->i_lock); 315 spin_lock(&wb->list_lock); 316 317 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 318 if (likely(wb == inode->i_wb)) { 319 wb_put(wb); /* @inode already has ref */ 320 return wb; 321 } 322 323 spin_unlock(&wb->list_lock); 324 wb_put(wb); 325 cpu_relax(); 326 spin_lock(&inode->i_lock); 327 } 328 } 329 330 /** 331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 332 * @inode: inode of interest 333 * 334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 335 * on entry. 336 */ 337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 338 __acquires(&wb->list_lock) 339 { 340 spin_lock(&inode->i_lock); 341 return locked_inode_to_wb_and_lock_list(inode); 342 } 343 344 struct inode_switch_wbs_context { 345 struct rcu_work work; 346 347 /* 348 * Multiple inodes can be switched at once. The switching procedure 349 * consists of two parts, separated by a RCU grace period. To make 350 * sure that the second part is executed for each inode gone through 351 * the first part, all inode pointers are placed into a NULL-terminated 352 * array embedded into struct inode_switch_wbs_context. Otherwise 353 * an inode could be left in a non-consistent state. 354 */ 355 struct bdi_writeback *new_wb; 356 struct inode *inodes[]; 357 }; 358 359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 360 { 361 down_write(&bdi->wb_switch_rwsem); 362 } 363 364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 365 { 366 up_write(&bdi->wb_switch_rwsem); 367 } 368 369 static bool inode_do_switch_wbs(struct inode *inode, 370 struct bdi_writeback *old_wb, 371 struct bdi_writeback *new_wb) 372 { 373 struct address_space *mapping = inode->i_mapping; 374 XA_STATE(xas, &mapping->i_pages, 0); 375 struct page *page; 376 bool switched = false; 377 378 spin_lock(&inode->i_lock); 379 xa_lock_irq(&mapping->i_pages); 380 381 /* 382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 383 * path owns the inode and we shouldn't modify ->i_io_list. 384 */ 385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 386 goto skip_switch; 387 388 trace_inode_switch_wbs(inode, old_wb, new_wb); 389 390 /* 391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 393 * pages actually under writeback. 394 */ 395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 396 if (PageDirty(page)) { 397 dec_wb_stat(old_wb, WB_RECLAIMABLE); 398 inc_wb_stat(new_wb, WB_RECLAIMABLE); 399 } 400 } 401 402 xas_set(&xas, 0); 403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 404 WARN_ON_ONCE(!PageWriteback(page)); 405 dec_wb_stat(old_wb, WB_WRITEBACK); 406 inc_wb_stat(new_wb, WB_WRITEBACK); 407 } 408 409 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 410 atomic_dec(&old_wb->writeback_inodes); 411 atomic_inc(&new_wb->writeback_inodes); 412 } 413 414 wb_get(new_wb); 415 416 /* 417 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 418 * the specific list @inode was on is ignored and the @inode is put on 419 * ->b_dirty which is always correct including from ->b_dirty_time. 420 * The transfer preserves @inode->dirtied_when ordering. If the @inode 421 * was clean, it means it was on the b_attached list, so move it onto 422 * the b_attached list of @new_wb. 423 */ 424 if (!list_empty(&inode->i_io_list)) { 425 inode->i_wb = new_wb; 426 427 if (inode->i_state & I_DIRTY_ALL) { 428 struct inode *pos; 429 430 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 431 if (time_after_eq(inode->dirtied_when, 432 pos->dirtied_when)) 433 break; 434 inode_io_list_move_locked(inode, new_wb, 435 pos->i_io_list.prev); 436 } else { 437 inode_cgwb_move_to_attached(inode, new_wb); 438 } 439 } else { 440 inode->i_wb = new_wb; 441 } 442 443 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 444 inode->i_wb_frn_winner = 0; 445 inode->i_wb_frn_avg_time = 0; 446 inode->i_wb_frn_history = 0; 447 switched = true; 448 skip_switch: 449 /* 450 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 451 * ensures that the new wb is visible if they see !I_WB_SWITCH. 452 */ 453 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 454 455 xa_unlock_irq(&mapping->i_pages); 456 spin_unlock(&inode->i_lock); 457 458 return switched; 459 } 460 461 static void inode_switch_wbs_work_fn(struct work_struct *work) 462 { 463 struct inode_switch_wbs_context *isw = 464 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 465 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 466 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 467 struct bdi_writeback *new_wb = isw->new_wb; 468 unsigned long nr_switched = 0; 469 struct inode **inodep; 470 471 /* 472 * If @inode switches cgwb membership while sync_inodes_sb() is 473 * being issued, sync_inodes_sb() might miss it. Synchronize. 474 */ 475 down_read(&bdi->wb_switch_rwsem); 476 477 /* 478 * By the time control reaches here, RCU grace period has passed 479 * since I_WB_SWITCH assertion and all wb stat update transactions 480 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 481 * synchronizing against the i_pages lock. 482 * 483 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 484 * gives us exclusion against all wb related operations on @inode 485 * including IO list manipulations and stat updates. 486 */ 487 if (old_wb < new_wb) { 488 spin_lock(&old_wb->list_lock); 489 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 490 } else { 491 spin_lock(&new_wb->list_lock); 492 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 493 } 494 495 for (inodep = isw->inodes; *inodep; inodep++) { 496 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 497 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 498 nr_switched++; 499 } 500 501 spin_unlock(&new_wb->list_lock); 502 spin_unlock(&old_wb->list_lock); 503 504 up_read(&bdi->wb_switch_rwsem); 505 506 if (nr_switched) { 507 wb_wakeup(new_wb); 508 wb_put_many(old_wb, nr_switched); 509 } 510 511 for (inodep = isw->inodes; *inodep; inodep++) 512 iput(*inodep); 513 wb_put(new_wb); 514 kfree(isw); 515 atomic_dec(&isw_nr_in_flight); 516 } 517 518 static bool inode_prepare_wbs_switch(struct inode *inode, 519 struct bdi_writeback *new_wb) 520 { 521 /* 522 * Paired with smp_mb() in cgroup_writeback_umount(). 523 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 524 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 525 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 526 */ 527 smp_mb(); 528 529 if (IS_DAX(inode)) 530 return false; 531 532 /* while holding I_WB_SWITCH, no one else can update the association */ 533 spin_lock(&inode->i_lock); 534 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 535 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 536 inode_to_wb(inode) == new_wb) { 537 spin_unlock(&inode->i_lock); 538 return false; 539 } 540 inode->i_state |= I_WB_SWITCH; 541 __iget(inode); 542 spin_unlock(&inode->i_lock); 543 544 return true; 545 } 546 547 /** 548 * inode_switch_wbs - change the wb association of an inode 549 * @inode: target inode 550 * @new_wb_id: ID of the new wb 551 * 552 * Switch @inode's wb association to the wb identified by @new_wb_id. The 553 * switching is performed asynchronously and may fail silently. 554 */ 555 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 556 { 557 struct backing_dev_info *bdi = inode_to_bdi(inode); 558 struct cgroup_subsys_state *memcg_css; 559 struct inode_switch_wbs_context *isw; 560 561 /* noop if seems to be already in progress */ 562 if (inode->i_state & I_WB_SWITCH) 563 return; 564 565 /* avoid queueing a new switch if too many are already in flight */ 566 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 567 return; 568 569 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 570 if (!isw) 571 return; 572 573 atomic_inc(&isw_nr_in_flight); 574 575 /* find and pin the new wb */ 576 rcu_read_lock(); 577 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 578 if (memcg_css && !css_tryget(memcg_css)) 579 memcg_css = NULL; 580 rcu_read_unlock(); 581 if (!memcg_css) 582 goto out_free; 583 584 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 585 css_put(memcg_css); 586 if (!isw->new_wb) 587 goto out_free; 588 589 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 590 goto out_free; 591 592 isw->inodes[0] = inode; 593 594 /* 595 * In addition to synchronizing among switchers, I_WB_SWITCH tells 596 * the RCU protected stat update paths to grab the i_page 597 * lock so that stat transfer can synchronize against them. 598 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 599 */ 600 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 601 queue_rcu_work(isw_wq, &isw->work); 602 return; 603 604 out_free: 605 atomic_dec(&isw_nr_in_flight); 606 if (isw->new_wb) 607 wb_put(isw->new_wb); 608 kfree(isw); 609 } 610 611 /** 612 * cleanup_offline_cgwb - detach associated inodes 613 * @wb: target wb 614 * 615 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 616 * to eventually release the dying @wb. Returns %true if not all inodes were 617 * switched and the function has to be restarted. 618 */ 619 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 620 { 621 struct cgroup_subsys_state *memcg_css; 622 struct inode_switch_wbs_context *isw; 623 struct inode *inode; 624 int nr; 625 bool restart = false; 626 627 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 628 GFP_KERNEL); 629 if (!isw) 630 return restart; 631 632 atomic_inc(&isw_nr_in_flight); 633 634 for (memcg_css = wb->memcg_css->parent; memcg_css; 635 memcg_css = memcg_css->parent) { 636 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 637 if (isw->new_wb) 638 break; 639 } 640 if (unlikely(!isw->new_wb)) 641 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 642 643 nr = 0; 644 spin_lock(&wb->list_lock); 645 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 646 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 647 continue; 648 649 isw->inodes[nr++] = inode; 650 651 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 652 restart = true; 653 break; 654 } 655 } 656 spin_unlock(&wb->list_lock); 657 658 /* no attached inodes? bail out */ 659 if (nr == 0) { 660 atomic_dec(&isw_nr_in_flight); 661 wb_put(isw->new_wb); 662 kfree(isw); 663 return restart; 664 } 665 666 /* 667 * In addition to synchronizing among switchers, I_WB_SWITCH tells 668 * the RCU protected stat update paths to grab the i_page 669 * lock so that stat transfer can synchronize against them. 670 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 671 */ 672 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 673 queue_rcu_work(isw_wq, &isw->work); 674 675 return restart; 676 } 677 678 /** 679 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 680 * @wbc: writeback_control of interest 681 * @inode: target inode 682 * 683 * @inode is locked and about to be written back under the control of @wbc. 684 * Record @inode's writeback context into @wbc and unlock the i_lock. On 685 * writeback completion, wbc_detach_inode() should be called. This is used 686 * to track the cgroup writeback context. 687 */ 688 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 689 struct inode *inode) 690 { 691 if (!inode_cgwb_enabled(inode)) { 692 spin_unlock(&inode->i_lock); 693 return; 694 } 695 696 wbc->wb = inode_to_wb(inode); 697 wbc->inode = inode; 698 699 wbc->wb_id = wbc->wb->memcg_css->id; 700 wbc->wb_lcand_id = inode->i_wb_frn_winner; 701 wbc->wb_tcand_id = 0; 702 wbc->wb_bytes = 0; 703 wbc->wb_lcand_bytes = 0; 704 wbc->wb_tcand_bytes = 0; 705 706 wb_get(wbc->wb); 707 spin_unlock(&inode->i_lock); 708 709 /* 710 * A dying wb indicates that either the blkcg associated with the 711 * memcg changed or the associated memcg is dying. In the first 712 * case, a replacement wb should already be available and we should 713 * refresh the wb immediately. In the second case, trying to 714 * refresh will keep failing. 715 */ 716 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 717 inode_switch_wbs(inode, wbc->wb_id); 718 } 719 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 720 721 /** 722 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 723 * @wbc: writeback_control of the just finished writeback 724 * 725 * To be called after a writeback attempt of an inode finishes and undoes 726 * wbc_attach_and_unlock_inode(). Can be called under any context. 727 * 728 * As concurrent write sharing of an inode is expected to be very rare and 729 * memcg only tracks page ownership on first-use basis severely confining 730 * the usefulness of such sharing, cgroup writeback tracks ownership 731 * per-inode. While the support for concurrent write sharing of an inode 732 * is deemed unnecessary, an inode being written to by different cgroups at 733 * different points in time is a lot more common, and, more importantly, 734 * charging only by first-use can too readily lead to grossly incorrect 735 * behaviors (single foreign page can lead to gigabytes of writeback to be 736 * incorrectly attributed). 737 * 738 * To resolve this issue, cgroup writeback detects the majority dirtier of 739 * an inode and transfers the ownership to it. To avoid unnnecessary 740 * oscillation, the detection mechanism keeps track of history and gives 741 * out the switch verdict only if the foreign usage pattern is stable over 742 * a certain amount of time and/or writeback attempts. 743 * 744 * On each writeback attempt, @wbc tries to detect the majority writer 745 * using Boyer-Moore majority vote algorithm. In addition to the byte 746 * count from the majority voting, it also counts the bytes written for the 747 * current wb and the last round's winner wb (max of last round's current 748 * wb, the winner from two rounds ago, and the last round's majority 749 * candidate). Keeping track of the historical winner helps the algorithm 750 * to semi-reliably detect the most active writer even when it's not the 751 * absolute majority. 752 * 753 * Once the winner of the round is determined, whether the winner is 754 * foreign or not and how much IO time the round consumed is recorded in 755 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 756 * over a certain threshold, the switch verdict is given. 757 */ 758 void wbc_detach_inode(struct writeback_control *wbc) 759 { 760 struct bdi_writeback *wb = wbc->wb; 761 struct inode *inode = wbc->inode; 762 unsigned long avg_time, max_bytes, max_time; 763 u16 history; 764 int max_id; 765 766 if (!wb) 767 return; 768 769 history = inode->i_wb_frn_history; 770 avg_time = inode->i_wb_frn_avg_time; 771 772 /* pick the winner of this round */ 773 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 774 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 775 max_id = wbc->wb_id; 776 max_bytes = wbc->wb_bytes; 777 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 778 max_id = wbc->wb_lcand_id; 779 max_bytes = wbc->wb_lcand_bytes; 780 } else { 781 max_id = wbc->wb_tcand_id; 782 max_bytes = wbc->wb_tcand_bytes; 783 } 784 785 /* 786 * Calculate the amount of IO time the winner consumed and fold it 787 * into the running average kept per inode. If the consumed IO 788 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 789 * deciding whether to switch or not. This is to prevent one-off 790 * small dirtiers from skewing the verdict. 791 */ 792 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 793 wb->avg_write_bandwidth); 794 if (avg_time) 795 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 796 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 797 else 798 avg_time = max_time; /* immediate catch up on first run */ 799 800 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 801 int slots; 802 803 /* 804 * The switch verdict is reached if foreign wb's consume 805 * more than a certain proportion of IO time in a 806 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 807 * history mask where each bit represents one sixteenth of 808 * the period. Determine the number of slots to shift into 809 * history from @max_time. 810 */ 811 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 812 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 813 history <<= slots; 814 if (wbc->wb_id != max_id) 815 history |= (1U << slots) - 1; 816 817 if (history) 818 trace_inode_foreign_history(inode, wbc, history); 819 820 /* 821 * Switch if the current wb isn't the consistent winner. 822 * If there are multiple closely competing dirtiers, the 823 * inode may switch across them repeatedly over time, which 824 * is okay. The main goal is avoiding keeping an inode on 825 * the wrong wb for an extended period of time. 826 */ 827 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 828 inode_switch_wbs(inode, max_id); 829 } 830 831 /* 832 * Multiple instances of this function may race to update the 833 * following fields but we don't mind occassional inaccuracies. 834 */ 835 inode->i_wb_frn_winner = max_id; 836 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 837 inode->i_wb_frn_history = history; 838 839 wb_put(wbc->wb); 840 wbc->wb = NULL; 841 } 842 EXPORT_SYMBOL_GPL(wbc_detach_inode); 843 844 /** 845 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 846 * @wbc: writeback_control of the writeback in progress 847 * @page: page being written out 848 * @bytes: number of bytes being written out 849 * 850 * @bytes from @page are about to written out during the writeback 851 * controlled by @wbc. Keep the book for foreign inode detection. See 852 * wbc_detach_inode(). 853 */ 854 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 855 size_t bytes) 856 { 857 struct cgroup_subsys_state *css; 858 int id; 859 860 /* 861 * pageout() path doesn't attach @wbc to the inode being written 862 * out. This is intentional as we don't want the function to block 863 * behind a slow cgroup. Ultimately, we want pageout() to kick off 864 * regular writeback instead of writing things out itself. 865 */ 866 if (!wbc->wb || wbc->no_cgroup_owner) 867 return; 868 869 css = mem_cgroup_css_from_page(page); 870 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 871 if (!(css->flags & CSS_ONLINE)) 872 return; 873 874 id = css->id; 875 876 if (id == wbc->wb_id) { 877 wbc->wb_bytes += bytes; 878 return; 879 } 880 881 if (id == wbc->wb_lcand_id) 882 wbc->wb_lcand_bytes += bytes; 883 884 /* Boyer-Moore majority vote algorithm */ 885 if (!wbc->wb_tcand_bytes) 886 wbc->wb_tcand_id = id; 887 if (id == wbc->wb_tcand_id) 888 wbc->wb_tcand_bytes += bytes; 889 else 890 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 891 } 892 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 893 894 /** 895 * inode_congested - test whether an inode is congested 896 * @inode: inode to test for congestion (may be NULL) 897 * @cong_bits: mask of WB_[a]sync_congested bits to test 898 * 899 * Tests whether @inode is congested. @cong_bits is the mask of congestion 900 * bits to test and the return value is the mask of set bits. 901 * 902 * If cgroup writeback is enabled for @inode, the congestion state is 903 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 904 * associated with @inode is congested; otherwise, the root wb's congestion 905 * state is used. 906 * 907 * @inode is allowed to be NULL as this function is often called on 908 * mapping->host which is NULL for the swapper space. 909 */ 910 int inode_congested(struct inode *inode, int cong_bits) 911 { 912 /* 913 * Once set, ->i_wb never becomes NULL while the inode is alive. 914 * Start transaction iff ->i_wb is visible. 915 */ 916 if (inode && inode_to_wb_is_valid(inode)) { 917 struct bdi_writeback *wb; 918 struct wb_lock_cookie lock_cookie = {}; 919 bool congested; 920 921 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 922 congested = wb_congested(wb, cong_bits); 923 unlocked_inode_to_wb_end(inode, &lock_cookie); 924 return congested; 925 } 926 927 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 928 } 929 EXPORT_SYMBOL_GPL(inode_congested); 930 931 /** 932 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 933 * @wb: target bdi_writeback to split @nr_pages to 934 * @nr_pages: number of pages to write for the whole bdi 935 * 936 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 937 * relation to the total write bandwidth of all wb's w/ dirty inodes on 938 * @wb->bdi. 939 */ 940 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 941 { 942 unsigned long this_bw = wb->avg_write_bandwidth; 943 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 944 945 if (nr_pages == LONG_MAX) 946 return LONG_MAX; 947 948 /* 949 * This may be called on clean wb's and proportional distribution 950 * may not make sense, just use the original @nr_pages in those 951 * cases. In general, we wanna err on the side of writing more. 952 */ 953 if (!tot_bw || this_bw >= tot_bw) 954 return nr_pages; 955 else 956 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 957 } 958 959 /** 960 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 961 * @bdi: target backing_dev_info 962 * @base_work: wb_writeback_work to issue 963 * @skip_if_busy: skip wb's which already have writeback in progress 964 * 965 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 966 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 967 * distributed to the busy wbs according to each wb's proportion in the 968 * total active write bandwidth of @bdi. 969 */ 970 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 971 struct wb_writeback_work *base_work, 972 bool skip_if_busy) 973 { 974 struct bdi_writeback *last_wb = NULL; 975 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 976 struct bdi_writeback, bdi_node); 977 978 might_sleep(); 979 restart: 980 rcu_read_lock(); 981 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 982 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 983 struct wb_writeback_work fallback_work; 984 struct wb_writeback_work *work; 985 long nr_pages; 986 987 if (last_wb) { 988 wb_put(last_wb); 989 last_wb = NULL; 990 } 991 992 /* SYNC_ALL writes out I_DIRTY_TIME too */ 993 if (!wb_has_dirty_io(wb) && 994 (base_work->sync_mode == WB_SYNC_NONE || 995 list_empty(&wb->b_dirty_time))) 996 continue; 997 if (skip_if_busy && writeback_in_progress(wb)) 998 continue; 999 1000 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 1001 1002 work = kmalloc(sizeof(*work), GFP_ATOMIC); 1003 if (work) { 1004 *work = *base_work; 1005 work->nr_pages = nr_pages; 1006 work->auto_free = 1; 1007 wb_queue_work(wb, work); 1008 continue; 1009 } 1010 1011 /* alloc failed, execute synchronously using on-stack fallback */ 1012 work = &fallback_work; 1013 *work = *base_work; 1014 work->nr_pages = nr_pages; 1015 work->auto_free = 0; 1016 work->done = &fallback_work_done; 1017 1018 wb_queue_work(wb, work); 1019 1020 /* 1021 * Pin @wb so that it stays on @bdi->wb_list. This allows 1022 * continuing iteration from @wb after dropping and 1023 * regrabbing rcu read lock. 1024 */ 1025 wb_get(wb); 1026 last_wb = wb; 1027 1028 rcu_read_unlock(); 1029 wb_wait_for_completion(&fallback_work_done); 1030 goto restart; 1031 } 1032 rcu_read_unlock(); 1033 1034 if (last_wb) 1035 wb_put(last_wb); 1036 } 1037 1038 /** 1039 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1040 * @bdi_id: target bdi id 1041 * @memcg_id: target memcg css id 1042 * @reason: reason why some writeback work initiated 1043 * @done: target wb_completion 1044 * 1045 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1046 * with the specified parameters. 1047 */ 1048 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1049 enum wb_reason reason, struct wb_completion *done) 1050 { 1051 struct backing_dev_info *bdi; 1052 struct cgroup_subsys_state *memcg_css; 1053 struct bdi_writeback *wb; 1054 struct wb_writeback_work *work; 1055 unsigned long dirty; 1056 int ret; 1057 1058 /* lookup bdi and memcg */ 1059 bdi = bdi_get_by_id(bdi_id); 1060 if (!bdi) 1061 return -ENOENT; 1062 1063 rcu_read_lock(); 1064 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1065 if (memcg_css && !css_tryget(memcg_css)) 1066 memcg_css = NULL; 1067 rcu_read_unlock(); 1068 if (!memcg_css) { 1069 ret = -ENOENT; 1070 goto out_bdi_put; 1071 } 1072 1073 /* 1074 * And find the associated wb. If the wb isn't there already 1075 * there's nothing to flush, don't create one. 1076 */ 1077 wb = wb_get_lookup(bdi, memcg_css); 1078 if (!wb) { 1079 ret = -ENOENT; 1080 goto out_css_put; 1081 } 1082 1083 /* 1084 * The caller is attempting to write out most of 1085 * the currently dirty pages. Let's take the current dirty page 1086 * count and inflate it by 25% which should be large enough to 1087 * flush out most dirty pages while avoiding getting livelocked by 1088 * concurrent dirtiers. 1089 * 1090 * BTW the memcg stats are flushed periodically and this is best-effort 1091 * estimation, so some potential error is ok. 1092 */ 1093 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1094 dirty = dirty * 10 / 8; 1095 1096 /* issue the writeback work */ 1097 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1098 if (work) { 1099 work->nr_pages = dirty; 1100 work->sync_mode = WB_SYNC_NONE; 1101 work->range_cyclic = 1; 1102 work->reason = reason; 1103 work->done = done; 1104 work->auto_free = 1; 1105 wb_queue_work(wb, work); 1106 ret = 0; 1107 } else { 1108 ret = -ENOMEM; 1109 } 1110 1111 wb_put(wb); 1112 out_css_put: 1113 css_put(memcg_css); 1114 out_bdi_put: 1115 bdi_put(bdi); 1116 return ret; 1117 } 1118 1119 /** 1120 * cgroup_writeback_umount - flush inode wb switches for umount 1121 * 1122 * This function is called when a super_block is about to be destroyed and 1123 * flushes in-flight inode wb switches. An inode wb switch goes through 1124 * RCU and then workqueue, so the two need to be flushed in order to ensure 1125 * that all previously scheduled switches are finished. As wb switches are 1126 * rare occurrences and synchronize_rcu() can take a while, perform 1127 * flushing iff wb switches are in flight. 1128 */ 1129 void cgroup_writeback_umount(void) 1130 { 1131 /* 1132 * SB_ACTIVE should be reliably cleared before checking 1133 * isw_nr_in_flight, see generic_shutdown_super(). 1134 */ 1135 smp_mb(); 1136 1137 if (atomic_read(&isw_nr_in_flight)) { 1138 /* 1139 * Use rcu_barrier() to wait for all pending callbacks to 1140 * ensure that all in-flight wb switches are in the workqueue. 1141 */ 1142 rcu_barrier(); 1143 flush_workqueue(isw_wq); 1144 } 1145 } 1146 1147 static int __init cgroup_writeback_init(void) 1148 { 1149 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1150 if (!isw_wq) 1151 return -ENOMEM; 1152 return 0; 1153 } 1154 fs_initcall(cgroup_writeback_init); 1155 1156 #else /* CONFIG_CGROUP_WRITEBACK */ 1157 1158 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1159 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1160 1161 static void inode_cgwb_move_to_attached(struct inode *inode, 1162 struct bdi_writeback *wb) 1163 { 1164 assert_spin_locked(&wb->list_lock); 1165 assert_spin_locked(&inode->i_lock); 1166 1167 inode->i_state &= ~I_SYNC_QUEUED; 1168 list_del_init(&inode->i_io_list); 1169 wb_io_lists_depopulated(wb); 1170 } 1171 1172 static struct bdi_writeback * 1173 locked_inode_to_wb_and_lock_list(struct inode *inode) 1174 __releases(&inode->i_lock) 1175 __acquires(&wb->list_lock) 1176 { 1177 struct bdi_writeback *wb = inode_to_wb(inode); 1178 1179 spin_unlock(&inode->i_lock); 1180 spin_lock(&wb->list_lock); 1181 return wb; 1182 } 1183 1184 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1185 __acquires(&wb->list_lock) 1186 { 1187 struct bdi_writeback *wb = inode_to_wb(inode); 1188 1189 spin_lock(&wb->list_lock); 1190 return wb; 1191 } 1192 1193 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1194 { 1195 return nr_pages; 1196 } 1197 1198 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1199 struct wb_writeback_work *base_work, 1200 bool skip_if_busy) 1201 { 1202 might_sleep(); 1203 1204 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1205 base_work->auto_free = 0; 1206 wb_queue_work(&bdi->wb, base_work); 1207 } 1208 } 1209 1210 #endif /* CONFIG_CGROUP_WRITEBACK */ 1211 1212 /* 1213 * Add in the number of potentially dirty inodes, because each inode 1214 * write can dirty pagecache in the underlying blockdev. 1215 */ 1216 static unsigned long get_nr_dirty_pages(void) 1217 { 1218 return global_node_page_state(NR_FILE_DIRTY) + 1219 get_nr_dirty_inodes(); 1220 } 1221 1222 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1223 { 1224 if (!wb_has_dirty_io(wb)) 1225 return; 1226 1227 /* 1228 * All callers of this function want to start writeback of all 1229 * dirty pages. Places like vmscan can call this at a very 1230 * high frequency, causing pointless allocations of tons of 1231 * work items and keeping the flusher threads busy retrieving 1232 * that work. Ensure that we only allow one of them pending and 1233 * inflight at the time. 1234 */ 1235 if (test_bit(WB_start_all, &wb->state) || 1236 test_and_set_bit(WB_start_all, &wb->state)) 1237 return; 1238 1239 wb->start_all_reason = reason; 1240 wb_wakeup(wb); 1241 } 1242 1243 /** 1244 * wb_start_background_writeback - start background writeback 1245 * @wb: bdi_writback to write from 1246 * 1247 * Description: 1248 * This makes sure WB_SYNC_NONE background writeback happens. When 1249 * this function returns, it is only guaranteed that for given wb 1250 * some IO is happening if we are over background dirty threshold. 1251 * Caller need not hold sb s_umount semaphore. 1252 */ 1253 void wb_start_background_writeback(struct bdi_writeback *wb) 1254 { 1255 /* 1256 * We just wake up the flusher thread. It will perform background 1257 * writeback as soon as there is no other work to do. 1258 */ 1259 trace_writeback_wake_background(wb); 1260 wb_wakeup(wb); 1261 } 1262 1263 /* 1264 * Remove the inode from the writeback list it is on. 1265 */ 1266 void inode_io_list_del(struct inode *inode) 1267 { 1268 struct bdi_writeback *wb; 1269 1270 wb = inode_to_wb_and_lock_list(inode); 1271 spin_lock(&inode->i_lock); 1272 1273 inode->i_state &= ~I_SYNC_QUEUED; 1274 list_del_init(&inode->i_io_list); 1275 wb_io_lists_depopulated(wb); 1276 1277 spin_unlock(&inode->i_lock); 1278 spin_unlock(&wb->list_lock); 1279 } 1280 EXPORT_SYMBOL(inode_io_list_del); 1281 1282 /* 1283 * mark an inode as under writeback on the sb 1284 */ 1285 void sb_mark_inode_writeback(struct inode *inode) 1286 { 1287 struct super_block *sb = inode->i_sb; 1288 unsigned long flags; 1289 1290 if (list_empty(&inode->i_wb_list)) { 1291 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1292 if (list_empty(&inode->i_wb_list)) { 1293 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1294 trace_sb_mark_inode_writeback(inode); 1295 } 1296 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1297 } 1298 } 1299 1300 /* 1301 * clear an inode as under writeback on the sb 1302 */ 1303 void sb_clear_inode_writeback(struct inode *inode) 1304 { 1305 struct super_block *sb = inode->i_sb; 1306 unsigned long flags; 1307 1308 if (!list_empty(&inode->i_wb_list)) { 1309 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1310 if (!list_empty(&inode->i_wb_list)) { 1311 list_del_init(&inode->i_wb_list); 1312 trace_sb_clear_inode_writeback(inode); 1313 } 1314 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1315 } 1316 } 1317 1318 /* 1319 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1320 * furthest end of its superblock's dirty-inode list. 1321 * 1322 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1323 * already the most-recently-dirtied inode on the b_dirty list. If that is 1324 * the case then the inode must have been redirtied while it was being written 1325 * out and we don't reset its dirtied_when. 1326 */ 1327 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1328 { 1329 assert_spin_locked(&inode->i_lock); 1330 1331 if (!list_empty(&wb->b_dirty)) { 1332 struct inode *tail; 1333 1334 tail = wb_inode(wb->b_dirty.next); 1335 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1336 inode->dirtied_when = jiffies; 1337 } 1338 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1339 inode->i_state &= ~I_SYNC_QUEUED; 1340 } 1341 1342 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1343 { 1344 spin_lock(&inode->i_lock); 1345 redirty_tail_locked(inode, wb); 1346 spin_unlock(&inode->i_lock); 1347 } 1348 1349 /* 1350 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1351 */ 1352 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1353 { 1354 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1355 } 1356 1357 static void inode_sync_complete(struct inode *inode) 1358 { 1359 inode->i_state &= ~I_SYNC; 1360 /* If inode is clean an unused, put it into LRU now... */ 1361 inode_add_lru(inode); 1362 /* Waiters must see I_SYNC cleared before being woken up */ 1363 smp_mb(); 1364 wake_up_bit(&inode->i_state, __I_SYNC); 1365 } 1366 1367 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1368 { 1369 bool ret = time_after(inode->dirtied_when, t); 1370 #ifndef CONFIG_64BIT 1371 /* 1372 * For inodes being constantly redirtied, dirtied_when can get stuck. 1373 * It _appears_ to be in the future, but is actually in distant past. 1374 * This test is necessary to prevent such wrapped-around relative times 1375 * from permanently stopping the whole bdi writeback. 1376 */ 1377 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1378 #endif 1379 return ret; 1380 } 1381 1382 #define EXPIRE_DIRTY_ATIME 0x0001 1383 1384 /* 1385 * Move expired (dirtied before dirtied_before) dirty inodes from 1386 * @delaying_queue to @dispatch_queue. 1387 */ 1388 static int move_expired_inodes(struct list_head *delaying_queue, 1389 struct list_head *dispatch_queue, 1390 unsigned long dirtied_before) 1391 { 1392 LIST_HEAD(tmp); 1393 struct list_head *pos, *node; 1394 struct super_block *sb = NULL; 1395 struct inode *inode; 1396 int do_sb_sort = 0; 1397 int moved = 0; 1398 1399 while (!list_empty(delaying_queue)) { 1400 inode = wb_inode(delaying_queue->prev); 1401 if (inode_dirtied_after(inode, dirtied_before)) 1402 break; 1403 list_move(&inode->i_io_list, &tmp); 1404 moved++; 1405 spin_lock(&inode->i_lock); 1406 inode->i_state |= I_SYNC_QUEUED; 1407 spin_unlock(&inode->i_lock); 1408 if (sb_is_blkdev_sb(inode->i_sb)) 1409 continue; 1410 if (sb && sb != inode->i_sb) 1411 do_sb_sort = 1; 1412 sb = inode->i_sb; 1413 } 1414 1415 /* just one sb in list, splice to dispatch_queue and we're done */ 1416 if (!do_sb_sort) { 1417 list_splice(&tmp, dispatch_queue); 1418 goto out; 1419 } 1420 1421 /* Move inodes from one superblock together */ 1422 while (!list_empty(&tmp)) { 1423 sb = wb_inode(tmp.prev)->i_sb; 1424 list_for_each_prev_safe(pos, node, &tmp) { 1425 inode = wb_inode(pos); 1426 if (inode->i_sb == sb) 1427 list_move(&inode->i_io_list, dispatch_queue); 1428 } 1429 } 1430 out: 1431 return moved; 1432 } 1433 1434 /* 1435 * Queue all expired dirty inodes for io, eldest first. 1436 * Before 1437 * newly dirtied b_dirty b_io b_more_io 1438 * =============> gf edc BA 1439 * After 1440 * newly dirtied b_dirty b_io b_more_io 1441 * =============> g fBAedc 1442 * | 1443 * +--> dequeue for IO 1444 */ 1445 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1446 unsigned long dirtied_before) 1447 { 1448 int moved; 1449 unsigned long time_expire_jif = dirtied_before; 1450 1451 assert_spin_locked(&wb->list_lock); 1452 list_splice_init(&wb->b_more_io, &wb->b_io); 1453 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1454 if (!work->for_sync) 1455 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1456 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1457 time_expire_jif); 1458 if (moved) 1459 wb_io_lists_populated(wb); 1460 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1461 } 1462 1463 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1464 { 1465 int ret; 1466 1467 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1468 trace_writeback_write_inode_start(inode, wbc); 1469 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1470 trace_writeback_write_inode(inode, wbc); 1471 return ret; 1472 } 1473 return 0; 1474 } 1475 1476 /* 1477 * Wait for writeback on an inode to complete. Called with i_lock held. 1478 * Caller must make sure inode cannot go away when we drop i_lock. 1479 */ 1480 static void __inode_wait_for_writeback(struct inode *inode) 1481 __releases(inode->i_lock) 1482 __acquires(inode->i_lock) 1483 { 1484 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1485 wait_queue_head_t *wqh; 1486 1487 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1488 while (inode->i_state & I_SYNC) { 1489 spin_unlock(&inode->i_lock); 1490 __wait_on_bit(wqh, &wq, bit_wait, 1491 TASK_UNINTERRUPTIBLE); 1492 spin_lock(&inode->i_lock); 1493 } 1494 } 1495 1496 /* 1497 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1498 */ 1499 void inode_wait_for_writeback(struct inode *inode) 1500 { 1501 spin_lock(&inode->i_lock); 1502 __inode_wait_for_writeback(inode); 1503 spin_unlock(&inode->i_lock); 1504 } 1505 1506 /* 1507 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1508 * held and drops it. It is aimed for callers not holding any inode reference 1509 * so once i_lock is dropped, inode can go away. 1510 */ 1511 static void inode_sleep_on_writeback(struct inode *inode) 1512 __releases(inode->i_lock) 1513 { 1514 DEFINE_WAIT(wait); 1515 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1516 int sleep; 1517 1518 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1519 sleep = inode->i_state & I_SYNC; 1520 spin_unlock(&inode->i_lock); 1521 if (sleep) 1522 schedule(); 1523 finish_wait(wqh, &wait); 1524 } 1525 1526 /* 1527 * Find proper writeback list for the inode depending on its current state and 1528 * possibly also change of its state while we were doing writeback. Here we 1529 * handle things such as livelock prevention or fairness of writeback among 1530 * inodes. This function can be called only by flusher thread - noone else 1531 * processes all inodes in writeback lists and requeueing inodes behind flusher 1532 * thread's back can have unexpected consequences. 1533 */ 1534 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1535 struct writeback_control *wbc) 1536 { 1537 if (inode->i_state & I_FREEING) 1538 return; 1539 1540 /* 1541 * Sync livelock prevention. Each inode is tagged and synced in one 1542 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1543 * the dirty time to prevent enqueue and sync it again. 1544 */ 1545 if ((inode->i_state & I_DIRTY) && 1546 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1547 inode->dirtied_when = jiffies; 1548 1549 if (wbc->pages_skipped) { 1550 /* 1551 * writeback is not making progress due to locked 1552 * buffers. Skip this inode for now. 1553 */ 1554 redirty_tail_locked(inode, wb); 1555 return; 1556 } 1557 1558 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1559 /* 1560 * We didn't write back all the pages. nfs_writepages() 1561 * sometimes bales out without doing anything. 1562 */ 1563 if (wbc->nr_to_write <= 0) { 1564 /* Slice used up. Queue for next turn. */ 1565 requeue_io(inode, wb); 1566 } else { 1567 /* 1568 * Writeback blocked by something other than 1569 * congestion. Delay the inode for some time to 1570 * avoid spinning on the CPU (100% iowait) 1571 * retrying writeback of the dirty page/inode 1572 * that cannot be performed immediately. 1573 */ 1574 redirty_tail_locked(inode, wb); 1575 } 1576 } else if (inode->i_state & I_DIRTY) { 1577 /* 1578 * Filesystems can dirty the inode during writeback operations, 1579 * such as delayed allocation during submission or metadata 1580 * updates after data IO completion. 1581 */ 1582 redirty_tail_locked(inode, wb); 1583 } else if (inode->i_state & I_DIRTY_TIME) { 1584 inode->dirtied_when = jiffies; 1585 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1586 inode->i_state &= ~I_SYNC_QUEUED; 1587 } else { 1588 /* The inode is clean. Remove from writeback lists. */ 1589 inode_cgwb_move_to_attached(inode, wb); 1590 } 1591 } 1592 1593 /* 1594 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1595 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1596 * 1597 * This doesn't remove the inode from the writeback list it is on, except 1598 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1599 * expiration. The caller is otherwise responsible for writeback list handling. 1600 * 1601 * The caller is also responsible for setting the I_SYNC flag beforehand and 1602 * calling inode_sync_complete() to clear it afterwards. 1603 */ 1604 static int 1605 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1606 { 1607 struct address_space *mapping = inode->i_mapping; 1608 long nr_to_write = wbc->nr_to_write; 1609 unsigned dirty; 1610 int ret; 1611 1612 WARN_ON(!(inode->i_state & I_SYNC)); 1613 1614 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1615 1616 ret = do_writepages(mapping, wbc); 1617 1618 /* 1619 * Make sure to wait on the data before writing out the metadata. 1620 * This is important for filesystems that modify metadata on data 1621 * I/O completion. We don't do it for sync(2) writeback because it has a 1622 * separate, external IO completion path and ->sync_fs for guaranteeing 1623 * inode metadata is written back correctly. 1624 */ 1625 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1626 int err = filemap_fdatawait(mapping); 1627 if (ret == 0) 1628 ret = err; 1629 } 1630 1631 /* 1632 * If the inode has dirty timestamps and we need to write them, call 1633 * mark_inode_dirty_sync() to notify the filesystem about it and to 1634 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1635 */ 1636 if ((inode->i_state & I_DIRTY_TIME) && 1637 (wbc->sync_mode == WB_SYNC_ALL || 1638 time_after(jiffies, inode->dirtied_time_when + 1639 dirtytime_expire_interval * HZ))) { 1640 trace_writeback_lazytime(inode); 1641 mark_inode_dirty_sync(inode); 1642 } 1643 1644 /* 1645 * Get and clear the dirty flags from i_state. This needs to be done 1646 * after calling writepages because some filesystems may redirty the 1647 * inode during writepages due to delalloc. It also needs to be done 1648 * after handling timestamp expiration, as that may dirty the inode too. 1649 */ 1650 spin_lock(&inode->i_lock); 1651 dirty = inode->i_state & I_DIRTY; 1652 inode->i_state &= ~dirty; 1653 1654 /* 1655 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1656 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1657 * either they see the I_DIRTY bits cleared or we see the dirtied 1658 * inode. 1659 * 1660 * I_DIRTY_PAGES is always cleared together above even if @mapping 1661 * still has dirty pages. The flag is reinstated after smp_mb() if 1662 * necessary. This guarantees that either __mark_inode_dirty() 1663 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1664 */ 1665 smp_mb(); 1666 1667 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1668 inode->i_state |= I_DIRTY_PAGES; 1669 1670 spin_unlock(&inode->i_lock); 1671 1672 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1673 if (dirty & ~I_DIRTY_PAGES) { 1674 int err = write_inode(inode, wbc); 1675 if (ret == 0) 1676 ret = err; 1677 } 1678 trace_writeback_single_inode(inode, wbc, nr_to_write); 1679 return ret; 1680 } 1681 1682 /* 1683 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1684 * the regular batched writeback done by the flusher threads in 1685 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1686 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1687 * 1688 * To prevent the inode from going away, either the caller must have a reference 1689 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1690 */ 1691 static int writeback_single_inode(struct inode *inode, 1692 struct writeback_control *wbc) 1693 { 1694 struct bdi_writeback *wb; 1695 int ret = 0; 1696 1697 spin_lock(&inode->i_lock); 1698 if (!atomic_read(&inode->i_count)) 1699 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1700 else 1701 WARN_ON(inode->i_state & I_WILL_FREE); 1702 1703 if (inode->i_state & I_SYNC) { 1704 /* 1705 * Writeback is already running on the inode. For WB_SYNC_NONE, 1706 * that's enough and we can just return. For WB_SYNC_ALL, we 1707 * must wait for the existing writeback to complete, then do 1708 * writeback again if there's anything left. 1709 */ 1710 if (wbc->sync_mode != WB_SYNC_ALL) 1711 goto out; 1712 __inode_wait_for_writeback(inode); 1713 } 1714 WARN_ON(inode->i_state & I_SYNC); 1715 /* 1716 * If the inode is already fully clean, then there's nothing to do. 1717 * 1718 * For data-integrity syncs we also need to check whether any pages are 1719 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1720 * there are any such pages, we'll need to wait for them. 1721 */ 1722 if (!(inode->i_state & I_DIRTY_ALL) && 1723 (wbc->sync_mode != WB_SYNC_ALL || 1724 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1725 goto out; 1726 inode->i_state |= I_SYNC; 1727 wbc_attach_and_unlock_inode(wbc, inode); 1728 1729 ret = __writeback_single_inode(inode, wbc); 1730 1731 wbc_detach_inode(wbc); 1732 1733 wb = inode_to_wb_and_lock_list(inode); 1734 spin_lock(&inode->i_lock); 1735 /* 1736 * If the inode is now fully clean, then it can be safely removed from 1737 * its writeback list (if any). Otherwise the flusher threads are 1738 * responsible for the writeback lists. 1739 */ 1740 if (!(inode->i_state & I_DIRTY_ALL)) 1741 inode_cgwb_move_to_attached(inode, wb); 1742 spin_unlock(&wb->list_lock); 1743 inode_sync_complete(inode); 1744 out: 1745 spin_unlock(&inode->i_lock); 1746 return ret; 1747 } 1748 1749 static long writeback_chunk_size(struct bdi_writeback *wb, 1750 struct wb_writeback_work *work) 1751 { 1752 long pages; 1753 1754 /* 1755 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1756 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1757 * here avoids calling into writeback_inodes_wb() more than once. 1758 * 1759 * The intended call sequence for WB_SYNC_ALL writeback is: 1760 * 1761 * wb_writeback() 1762 * writeback_sb_inodes() <== called only once 1763 * write_cache_pages() <== called once for each inode 1764 * (quickly) tag currently dirty pages 1765 * (maybe slowly) sync all tagged pages 1766 */ 1767 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1768 pages = LONG_MAX; 1769 else { 1770 pages = min(wb->avg_write_bandwidth / 2, 1771 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1772 pages = min(pages, work->nr_pages); 1773 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1774 MIN_WRITEBACK_PAGES); 1775 } 1776 1777 return pages; 1778 } 1779 1780 /* 1781 * Write a portion of b_io inodes which belong to @sb. 1782 * 1783 * Return the number of pages and/or inodes written. 1784 * 1785 * NOTE! This is called with wb->list_lock held, and will 1786 * unlock and relock that for each inode it ends up doing 1787 * IO for. 1788 */ 1789 static long writeback_sb_inodes(struct super_block *sb, 1790 struct bdi_writeback *wb, 1791 struct wb_writeback_work *work) 1792 { 1793 struct writeback_control wbc = { 1794 .sync_mode = work->sync_mode, 1795 .tagged_writepages = work->tagged_writepages, 1796 .for_kupdate = work->for_kupdate, 1797 .for_background = work->for_background, 1798 .for_sync = work->for_sync, 1799 .range_cyclic = work->range_cyclic, 1800 .range_start = 0, 1801 .range_end = LLONG_MAX, 1802 }; 1803 unsigned long start_time = jiffies; 1804 long write_chunk; 1805 long wrote = 0; /* count both pages and inodes */ 1806 1807 while (!list_empty(&wb->b_io)) { 1808 struct inode *inode = wb_inode(wb->b_io.prev); 1809 struct bdi_writeback *tmp_wb; 1810 1811 if (inode->i_sb != sb) { 1812 if (work->sb) { 1813 /* 1814 * We only want to write back data for this 1815 * superblock, move all inodes not belonging 1816 * to it back onto the dirty list. 1817 */ 1818 redirty_tail(inode, wb); 1819 continue; 1820 } 1821 1822 /* 1823 * The inode belongs to a different superblock. 1824 * Bounce back to the caller to unpin this and 1825 * pin the next superblock. 1826 */ 1827 break; 1828 } 1829 1830 /* 1831 * Don't bother with new inodes or inodes being freed, first 1832 * kind does not need periodic writeout yet, and for the latter 1833 * kind writeout is handled by the freer. 1834 */ 1835 spin_lock(&inode->i_lock); 1836 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1837 redirty_tail_locked(inode, wb); 1838 spin_unlock(&inode->i_lock); 1839 continue; 1840 } 1841 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1842 /* 1843 * If this inode is locked for writeback and we are not 1844 * doing writeback-for-data-integrity, move it to 1845 * b_more_io so that writeback can proceed with the 1846 * other inodes on s_io. 1847 * 1848 * We'll have another go at writing back this inode 1849 * when we completed a full scan of b_io. 1850 */ 1851 spin_unlock(&inode->i_lock); 1852 requeue_io(inode, wb); 1853 trace_writeback_sb_inodes_requeue(inode); 1854 continue; 1855 } 1856 spin_unlock(&wb->list_lock); 1857 1858 /* 1859 * We already requeued the inode if it had I_SYNC set and we 1860 * are doing WB_SYNC_NONE writeback. So this catches only the 1861 * WB_SYNC_ALL case. 1862 */ 1863 if (inode->i_state & I_SYNC) { 1864 /* Wait for I_SYNC. This function drops i_lock... */ 1865 inode_sleep_on_writeback(inode); 1866 /* Inode may be gone, start again */ 1867 spin_lock(&wb->list_lock); 1868 continue; 1869 } 1870 inode->i_state |= I_SYNC; 1871 wbc_attach_and_unlock_inode(&wbc, inode); 1872 1873 write_chunk = writeback_chunk_size(wb, work); 1874 wbc.nr_to_write = write_chunk; 1875 wbc.pages_skipped = 0; 1876 1877 /* 1878 * We use I_SYNC to pin the inode in memory. While it is set 1879 * evict_inode() will wait so the inode cannot be freed. 1880 */ 1881 __writeback_single_inode(inode, &wbc); 1882 1883 wbc_detach_inode(&wbc); 1884 work->nr_pages -= write_chunk - wbc.nr_to_write; 1885 wrote += write_chunk - wbc.nr_to_write; 1886 1887 if (need_resched()) { 1888 /* 1889 * We're trying to balance between building up a nice 1890 * long list of IOs to improve our merge rate, and 1891 * getting those IOs out quickly for anyone throttling 1892 * in balance_dirty_pages(). cond_resched() doesn't 1893 * unplug, so get our IOs out the door before we 1894 * give up the CPU. 1895 */ 1896 if (current->plug) 1897 blk_flush_plug(current->plug, false); 1898 cond_resched(); 1899 } 1900 1901 /* 1902 * Requeue @inode if still dirty. Be careful as @inode may 1903 * have been switched to another wb in the meantime. 1904 */ 1905 tmp_wb = inode_to_wb_and_lock_list(inode); 1906 spin_lock(&inode->i_lock); 1907 if (!(inode->i_state & I_DIRTY_ALL)) 1908 wrote++; 1909 requeue_inode(inode, tmp_wb, &wbc); 1910 inode_sync_complete(inode); 1911 spin_unlock(&inode->i_lock); 1912 1913 if (unlikely(tmp_wb != wb)) { 1914 spin_unlock(&tmp_wb->list_lock); 1915 spin_lock(&wb->list_lock); 1916 } 1917 1918 /* 1919 * bail out to wb_writeback() often enough to check 1920 * background threshold and other termination conditions. 1921 */ 1922 if (wrote) { 1923 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1924 break; 1925 if (work->nr_pages <= 0) 1926 break; 1927 } 1928 } 1929 return wrote; 1930 } 1931 1932 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1933 struct wb_writeback_work *work) 1934 { 1935 unsigned long start_time = jiffies; 1936 long wrote = 0; 1937 1938 while (!list_empty(&wb->b_io)) { 1939 struct inode *inode = wb_inode(wb->b_io.prev); 1940 struct super_block *sb = inode->i_sb; 1941 1942 if (!trylock_super(sb)) { 1943 /* 1944 * trylock_super() may fail consistently due to 1945 * s_umount being grabbed by someone else. Don't use 1946 * requeue_io() to avoid busy retrying the inode/sb. 1947 */ 1948 redirty_tail(inode, wb); 1949 continue; 1950 } 1951 wrote += writeback_sb_inodes(sb, wb, work); 1952 up_read(&sb->s_umount); 1953 1954 /* refer to the same tests at the end of writeback_sb_inodes */ 1955 if (wrote) { 1956 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1957 break; 1958 if (work->nr_pages <= 0) 1959 break; 1960 } 1961 } 1962 /* Leave any unwritten inodes on b_io */ 1963 return wrote; 1964 } 1965 1966 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1967 enum wb_reason reason) 1968 { 1969 struct wb_writeback_work work = { 1970 .nr_pages = nr_pages, 1971 .sync_mode = WB_SYNC_NONE, 1972 .range_cyclic = 1, 1973 .reason = reason, 1974 }; 1975 struct blk_plug plug; 1976 1977 blk_start_plug(&plug); 1978 spin_lock(&wb->list_lock); 1979 if (list_empty(&wb->b_io)) 1980 queue_io(wb, &work, jiffies); 1981 __writeback_inodes_wb(wb, &work); 1982 spin_unlock(&wb->list_lock); 1983 blk_finish_plug(&plug); 1984 1985 return nr_pages - work.nr_pages; 1986 } 1987 1988 /* 1989 * Explicit flushing or periodic writeback of "old" data. 1990 * 1991 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1992 * dirtying-time in the inode's address_space. So this periodic writeback code 1993 * just walks the superblock inode list, writing back any inodes which are 1994 * older than a specific point in time. 1995 * 1996 * Try to run once per dirty_writeback_interval. But if a writeback event 1997 * takes longer than a dirty_writeback_interval interval, then leave a 1998 * one-second gap. 1999 * 2000 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2001 * all dirty pages if they are all attached to "old" mappings. 2002 */ 2003 static long wb_writeback(struct bdi_writeback *wb, 2004 struct wb_writeback_work *work) 2005 { 2006 long nr_pages = work->nr_pages; 2007 unsigned long dirtied_before = jiffies; 2008 struct inode *inode; 2009 long progress; 2010 struct blk_plug plug; 2011 2012 blk_start_plug(&plug); 2013 spin_lock(&wb->list_lock); 2014 for (;;) { 2015 /* 2016 * Stop writeback when nr_pages has been consumed 2017 */ 2018 if (work->nr_pages <= 0) 2019 break; 2020 2021 /* 2022 * Background writeout and kupdate-style writeback may 2023 * run forever. Stop them if there is other work to do 2024 * so that e.g. sync can proceed. They'll be restarted 2025 * after the other works are all done. 2026 */ 2027 if ((work->for_background || work->for_kupdate) && 2028 !list_empty(&wb->work_list)) 2029 break; 2030 2031 /* 2032 * For background writeout, stop when we are below the 2033 * background dirty threshold 2034 */ 2035 if (work->for_background && !wb_over_bg_thresh(wb)) 2036 break; 2037 2038 /* 2039 * Kupdate and background works are special and we want to 2040 * include all inodes that need writing. Livelock avoidance is 2041 * handled by these works yielding to any other work so we are 2042 * safe. 2043 */ 2044 if (work->for_kupdate) { 2045 dirtied_before = jiffies - 2046 msecs_to_jiffies(dirty_expire_interval * 10); 2047 } else if (work->for_background) 2048 dirtied_before = jiffies; 2049 2050 trace_writeback_start(wb, work); 2051 if (list_empty(&wb->b_io)) 2052 queue_io(wb, work, dirtied_before); 2053 if (work->sb) 2054 progress = writeback_sb_inodes(work->sb, wb, work); 2055 else 2056 progress = __writeback_inodes_wb(wb, work); 2057 trace_writeback_written(wb, work); 2058 2059 /* 2060 * Did we write something? Try for more 2061 * 2062 * Dirty inodes are moved to b_io for writeback in batches. 2063 * The completion of the current batch does not necessarily 2064 * mean the overall work is done. So we keep looping as long 2065 * as made some progress on cleaning pages or inodes. 2066 */ 2067 if (progress) 2068 continue; 2069 /* 2070 * No more inodes for IO, bail 2071 */ 2072 if (list_empty(&wb->b_more_io)) 2073 break; 2074 /* 2075 * Nothing written. Wait for some inode to 2076 * become available for writeback. Otherwise 2077 * we'll just busyloop. 2078 */ 2079 trace_writeback_wait(wb, work); 2080 inode = wb_inode(wb->b_more_io.prev); 2081 spin_lock(&inode->i_lock); 2082 spin_unlock(&wb->list_lock); 2083 /* This function drops i_lock... */ 2084 inode_sleep_on_writeback(inode); 2085 spin_lock(&wb->list_lock); 2086 } 2087 spin_unlock(&wb->list_lock); 2088 blk_finish_plug(&plug); 2089 2090 return nr_pages - work->nr_pages; 2091 } 2092 2093 /* 2094 * Return the next wb_writeback_work struct that hasn't been processed yet. 2095 */ 2096 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2097 { 2098 struct wb_writeback_work *work = NULL; 2099 2100 spin_lock_bh(&wb->work_lock); 2101 if (!list_empty(&wb->work_list)) { 2102 work = list_entry(wb->work_list.next, 2103 struct wb_writeback_work, list); 2104 list_del_init(&work->list); 2105 } 2106 spin_unlock_bh(&wb->work_lock); 2107 return work; 2108 } 2109 2110 static long wb_check_background_flush(struct bdi_writeback *wb) 2111 { 2112 if (wb_over_bg_thresh(wb)) { 2113 2114 struct wb_writeback_work work = { 2115 .nr_pages = LONG_MAX, 2116 .sync_mode = WB_SYNC_NONE, 2117 .for_background = 1, 2118 .range_cyclic = 1, 2119 .reason = WB_REASON_BACKGROUND, 2120 }; 2121 2122 return wb_writeback(wb, &work); 2123 } 2124 2125 return 0; 2126 } 2127 2128 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2129 { 2130 unsigned long expired; 2131 long nr_pages; 2132 2133 /* 2134 * When set to zero, disable periodic writeback 2135 */ 2136 if (!dirty_writeback_interval) 2137 return 0; 2138 2139 expired = wb->last_old_flush + 2140 msecs_to_jiffies(dirty_writeback_interval * 10); 2141 if (time_before(jiffies, expired)) 2142 return 0; 2143 2144 wb->last_old_flush = jiffies; 2145 nr_pages = get_nr_dirty_pages(); 2146 2147 if (nr_pages) { 2148 struct wb_writeback_work work = { 2149 .nr_pages = nr_pages, 2150 .sync_mode = WB_SYNC_NONE, 2151 .for_kupdate = 1, 2152 .range_cyclic = 1, 2153 .reason = WB_REASON_PERIODIC, 2154 }; 2155 2156 return wb_writeback(wb, &work); 2157 } 2158 2159 return 0; 2160 } 2161 2162 static long wb_check_start_all(struct bdi_writeback *wb) 2163 { 2164 long nr_pages; 2165 2166 if (!test_bit(WB_start_all, &wb->state)) 2167 return 0; 2168 2169 nr_pages = get_nr_dirty_pages(); 2170 if (nr_pages) { 2171 struct wb_writeback_work work = { 2172 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2173 .sync_mode = WB_SYNC_NONE, 2174 .range_cyclic = 1, 2175 .reason = wb->start_all_reason, 2176 }; 2177 2178 nr_pages = wb_writeback(wb, &work); 2179 } 2180 2181 clear_bit(WB_start_all, &wb->state); 2182 return nr_pages; 2183 } 2184 2185 2186 /* 2187 * Retrieve work items and do the writeback they describe 2188 */ 2189 static long wb_do_writeback(struct bdi_writeback *wb) 2190 { 2191 struct wb_writeback_work *work; 2192 long wrote = 0; 2193 2194 set_bit(WB_writeback_running, &wb->state); 2195 while ((work = get_next_work_item(wb)) != NULL) { 2196 trace_writeback_exec(wb, work); 2197 wrote += wb_writeback(wb, work); 2198 finish_writeback_work(wb, work); 2199 } 2200 2201 /* 2202 * Check for a flush-everything request 2203 */ 2204 wrote += wb_check_start_all(wb); 2205 2206 /* 2207 * Check for periodic writeback, kupdated() style 2208 */ 2209 wrote += wb_check_old_data_flush(wb); 2210 wrote += wb_check_background_flush(wb); 2211 clear_bit(WB_writeback_running, &wb->state); 2212 2213 return wrote; 2214 } 2215 2216 /* 2217 * Handle writeback of dirty data for the device backed by this bdi. Also 2218 * reschedules periodically and does kupdated style flushing. 2219 */ 2220 void wb_workfn(struct work_struct *work) 2221 { 2222 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2223 struct bdi_writeback, dwork); 2224 long pages_written; 2225 2226 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2227 current->flags |= PF_SWAPWRITE; 2228 2229 if (likely(!current_is_workqueue_rescuer() || 2230 !test_bit(WB_registered, &wb->state))) { 2231 /* 2232 * The normal path. Keep writing back @wb until its 2233 * work_list is empty. Note that this path is also taken 2234 * if @wb is shutting down even when we're running off the 2235 * rescuer as work_list needs to be drained. 2236 */ 2237 do { 2238 pages_written = wb_do_writeback(wb); 2239 trace_writeback_pages_written(pages_written); 2240 } while (!list_empty(&wb->work_list)); 2241 } else { 2242 /* 2243 * bdi_wq can't get enough workers and we're running off 2244 * the emergency worker. Don't hog it. Hopefully, 1024 is 2245 * enough for efficient IO. 2246 */ 2247 pages_written = writeback_inodes_wb(wb, 1024, 2248 WB_REASON_FORKER_THREAD); 2249 trace_writeback_pages_written(pages_written); 2250 } 2251 2252 if (!list_empty(&wb->work_list)) 2253 wb_wakeup(wb); 2254 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2255 wb_wakeup_delayed(wb); 2256 2257 current->flags &= ~PF_SWAPWRITE; 2258 } 2259 2260 /* 2261 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2262 * write back the whole world. 2263 */ 2264 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2265 enum wb_reason reason) 2266 { 2267 struct bdi_writeback *wb; 2268 2269 if (!bdi_has_dirty_io(bdi)) 2270 return; 2271 2272 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2273 wb_start_writeback(wb, reason); 2274 } 2275 2276 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2277 enum wb_reason reason) 2278 { 2279 rcu_read_lock(); 2280 __wakeup_flusher_threads_bdi(bdi, reason); 2281 rcu_read_unlock(); 2282 } 2283 2284 /* 2285 * Wakeup the flusher threads to start writeback of all currently dirty pages 2286 */ 2287 void wakeup_flusher_threads(enum wb_reason reason) 2288 { 2289 struct backing_dev_info *bdi; 2290 2291 /* 2292 * If we are expecting writeback progress we must submit plugged IO. 2293 */ 2294 if (blk_needs_flush_plug(current)) 2295 blk_flush_plug(current->plug, true); 2296 2297 rcu_read_lock(); 2298 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2299 __wakeup_flusher_threads_bdi(bdi, reason); 2300 rcu_read_unlock(); 2301 } 2302 2303 /* 2304 * Wake up bdi's periodically to make sure dirtytime inodes gets 2305 * written back periodically. We deliberately do *not* check the 2306 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2307 * kernel to be constantly waking up once there are any dirtytime 2308 * inodes on the system. So instead we define a separate delayed work 2309 * function which gets called much more rarely. (By default, only 2310 * once every 12 hours.) 2311 * 2312 * If there is any other write activity going on in the file system, 2313 * this function won't be necessary. But if the only thing that has 2314 * happened on the file system is a dirtytime inode caused by an atime 2315 * update, we need this infrastructure below to make sure that inode 2316 * eventually gets pushed out to disk. 2317 */ 2318 static void wakeup_dirtytime_writeback(struct work_struct *w); 2319 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2320 2321 static void wakeup_dirtytime_writeback(struct work_struct *w) 2322 { 2323 struct backing_dev_info *bdi; 2324 2325 rcu_read_lock(); 2326 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2327 struct bdi_writeback *wb; 2328 2329 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2330 if (!list_empty(&wb->b_dirty_time)) 2331 wb_wakeup(wb); 2332 } 2333 rcu_read_unlock(); 2334 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2335 } 2336 2337 static int __init start_dirtytime_writeback(void) 2338 { 2339 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2340 return 0; 2341 } 2342 __initcall(start_dirtytime_writeback); 2343 2344 int dirtytime_interval_handler(struct ctl_table *table, int write, 2345 void *buffer, size_t *lenp, loff_t *ppos) 2346 { 2347 int ret; 2348 2349 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2350 if (ret == 0 && write) 2351 mod_delayed_work(system_wq, &dirtytime_work, 0); 2352 return ret; 2353 } 2354 2355 /** 2356 * __mark_inode_dirty - internal function to mark an inode dirty 2357 * 2358 * @inode: inode to mark 2359 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2360 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2361 * with I_DIRTY_PAGES. 2362 * 2363 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2364 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2365 * 2366 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2367 * instead of calling this directly. 2368 * 2369 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2370 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2371 * even if they are later hashed, as they will have been marked dirty already. 2372 * 2373 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2374 * 2375 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2376 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2377 * the kernel-internal blockdev inode represents the dirtying time of the 2378 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2379 * page->mapping->host, so the page-dirtying time is recorded in the internal 2380 * blockdev inode. 2381 */ 2382 void __mark_inode_dirty(struct inode *inode, int flags) 2383 { 2384 struct super_block *sb = inode->i_sb; 2385 int dirtytime = 0; 2386 2387 trace_writeback_mark_inode_dirty(inode, flags); 2388 2389 if (flags & I_DIRTY_INODE) { 2390 /* 2391 * Notify the filesystem about the inode being dirtied, so that 2392 * (if needed) it can update on-disk fields and journal the 2393 * inode. This is only needed when the inode itself is being 2394 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2395 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2396 */ 2397 trace_writeback_dirty_inode_start(inode, flags); 2398 if (sb->s_op->dirty_inode) 2399 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE); 2400 trace_writeback_dirty_inode(inode, flags); 2401 2402 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2403 flags &= ~I_DIRTY_TIME; 2404 } else { 2405 /* 2406 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2407 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2408 * in one call to __mark_inode_dirty().) 2409 */ 2410 dirtytime = flags & I_DIRTY_TIME; 2411 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2412 } 2413 2414 /* 2415 * Paired with smp_mb() in __writeback_single_inode() for the 2416 * following lockless i_state test. See there for details. 2417 */ 2418 smp_mb(); 2419 2420 if (((inode->i_state & flags) == flags) || 2421 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2422 return; 2423 2424 spin_lock(&inode->i_lock); 2425 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2426 goto out_unlock_inode; 2427 if ((inode->i_state & flags) != flags) { 2428 const int was_dirty = inode->i_state & I_DIRTY; 2429 2430 inode_attach_wb(inode, NULL); 2431 2432 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2433 if (flags & I_DIRTY_INODE) 2434 inode->i_state &= ~I_DIRTY_TIME; 2435 inode->i_state |= flags; 2436 2437 /* 2438 * If the inode is queued for writeback by flush worker, just 2439 * update its dirty state. Once the flush worker is done with 2440 * the inode it will place it on the appropriate superblock 2441 * list, based upon its state. 2442 */ 2443 if (inode->i_state & I_SYNC_QUEUED) 2444 goto out_unlock_inode; 2445 2446 /* 2447 * Only add valid (hashed) inodes to the superblock's 2448 * dirty list. Add blockdev inodes as well. 2449 */ 2450 if (!S_ISBLK(inode->i_mode)) { 2451 if (inode_unhashed(inode)) 2452 goto out_unlock_inode; 2453 } 2454 if (inode->i_state & I_FREEING) 2455 goto out_unlock_inode; 2456 2457 /* 2458 * If the inode was already on b_dirty/b_io/b_more_io, don't 2459 * reposition it (that would break b_dirty time-ordering). 2460 */ 2461 if (!was_dirty) { 2462 struct bdi_writeback *wb; 2463 struct list_head *dirty_list; 2464 bool wakeup_bdi = false; 2465 2466 wb = locked_inode_to_wb_and_lock_list(inode); 2467 2468 inode->dirtied_when = jiffies; 2469 if (dirtytime) 2470 inode->dirtied_time_when = jiffies; 2471 2472 if (inode->i_state & I_DIRTY) 2473 dirty_list = &wb->b_dirty; 2474 else 2475 dirty_list = &wb->b_dirty_time; 2476 2477 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2478 dirty_list); 2479 2480 spin_unlock(&wb->list_lock); 2481 trace_writeback_dirty_inode_enqueue(inode); 2482 2483 /* 2484 * If this is the first dirty inode for this bdi, 2485 * we have to wake-up the corresponding bdi thread 2486 * to make sure background write-back happens 2487 * later. 2488 */ 2489 if (wakeup_bdi && 2490 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2491 wb_wakeup_delayed(wb); 2492 return; 2493 } 2494 } 2495 out_unlock_inode: 2496 spin_unlock(&inode->i_lock); 2497 } 2498 EXPORT_SYMBOL(__mark_inode_dirty); 2499 2500 /* 2501 * The @s_sync_lock is used to serialise concurrent sync operations 2502 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2503 * Concurrent callers will block on the s_sync_lock rather than doing contending 2504 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2505 * has been issued up to the time this function is enter is guaranteed to be 2506 * completed by the time we have gained the lock and waited for all IO that is 2507 * in progress regardless of the order callers are granted the lock. 2508 */ 2509 static void wait_sb_inodes(struct super_block *sb) 2510 { 2511 LIST_HEAD(sync_list); 2512 2513 /* 2514 * We need to be protected against the filesystem going from 2515 * r/o to r/w or vice versa. 2516 */ 2517 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2518 2519 mutex_lock(&sb->s_sync_lock); 2520 2521 /* 2522 * Splice the writeback list onto a temporary list to avoid waiting on 2523 * inodes that have started writeback after this point. 2524 * 2525 * Use rcu_read_lock() to keep the inodes around until we have a 2526 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2527 * the local list because inodes can be dropped from either by writeback 2528 * completion. 2529 */ 2530 rcu_read_lock(); 2531 spin_lock_irq(&sb->s_inode_wblist_lock); 2532 list_splice_init(&sb->s_inodes_wb, &sync_list); 2533 2534 /* 2535 * Data integrity sync. Must wait for all pages under writeback, because 2536 * there may have been pages dirtied before our sync call, but which had 2537 * writeout started before we write it out. In which case, the inode 2538 * may not be on the dirty list, but we still have to wait for that 2539 * writeout. 2540 */ 2541 while (!list_empty(&sync_list)) { 2542 struct inode *inode = list_first_entry(&sync_list, struct inode, 2543 i_wb_list); 2544 struct address_space *mapping = inode->i_mapping; 2545 2546 /* 2547 * Move each inode back to the wb list before we drop the lock 2548 * to preserve consistency between i_wb_list and the mapping 2549 * writeback tag. Writeback completion is responsible to remove 2550 * the inode from either list once the writeback tag is cleared. 2551 */ 2552 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2553 2554 /* 2555 * The mapping can appear untagged while still on-list since we 2556 * do not have the mapping lock. Skip it here, wb completion 2557 * will remove it. 2558 */ 2559 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2560 continue; 2561 2562 spin_unlock_irq(&sb->s_inode_wblist_lock); 2563 2564 spin_lock(&inode->i_lock); 2565 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2566 spin_unlock(&inode->i_lock); 2567 2568 spin_lock_irq(&sb->s_inode_wblist_lock); 2569 continue; 2570 } 2571 __iget(inode); 2572 spin_unlock(&inode->i_lock); 2573 rcu_read_unlock(); 2574 2575 /* 2576 * We keep the error status of individual mapping so that 2577 * applications can catch the writeback error using fsync(2). 2578 * See filemap_fdatawait_keep_errors() for details. 2579 */ 2580 filemap_fdatawait_keep_errors(mapping); 2581 2582 cond_resched(); 2583 2584 iput(inode); 2585 2586 rcu_read_lock(); 2587 spin_lock_irq(&sb->s_inode_wblist_lock); 2588 } 2589 spin_unlock_irq(&sb->s_inode_wblist_lock); 2590 rcu_read_unlock(); 2591 mutex_unlock(&sb->s_sync_lock); 2592 } 2593 2594 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2595 enum wb_reason reason, bool skip_if_busy) 2596 { 2597 struct backing_dev_info *bdi = sb->s_bdi; 2598 DEFINE_WB_COMPLETION(done, bdi); 2599 struct wb_writeback_work work = { 2600 .sb = sb, 2601 .sync_mode = WB_SYNC_NONE, 2602 .tagged_writepages = 1, 2603 .done = &done, 2604 .nr_pages = nr, 2605 .reason = reason, 2606 }; 2607 2608 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2609 return; 2610 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2611 2612 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2613 wb_wait_for_completion(&done); 2614 } 2615 2616 /** 2617 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2618 * @sb: the superblock 2619 * @nr: the number of pages to write 2620 * @reason: reason why some writeback work initiated 2621 * 2622 * Start writeback on some inodes on this super_block. No guarantees are made 2623 * on how many (if any) will be written, and this function does not wait 2624 * for IO completion of submitted IO. 2625 */ 2626 void writeback_inodes_sb_nr(struct super_block *sb, 2627 unsigned long nr, 2628 enum wb_reason reason) 2629 { 2630 __writeback_inodes_sb_nr(sb, nr, reason, false); 2631 } 2632 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2633 2634 /** 2635 * writeback_inodes_sb - writeback dirty inodes from given super_block 2636 * @sb: the superblock 2637 * @reason: reason why some writeback work was initiated 2638 * 2639 * Start writeback on some inodes on this super_block. No guarantees are made 2640 * on how many (if any) will be written, and this function does not wait 2641 * for IO completion of submitted IO. 2642 */ 2643 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2644 { 2645 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2646 } 2647 EXPORT_SYMBOL(writeback_inodes_sb); 2648 2649 /** 2650 * try_to_writeback_inodes_sb - try to start writeback if none underway 2651 * @sb: the superblock 2652 * @reason: reason why some writeback work was initiated 2653 * 2654 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2655 */ 2656 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2657 { 2658 if (!down_read_trylock(&sb->s_umount)) 2659 return; 2660 2661 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2662 up_read(&sb->s_umount); 2663 } 2664 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2665 2666 /** 2667 * sync_inodes_sb - sync sb inode pages 2668 * @sb: the superblock 2669 * 2670 * This function writes and waits on any dirty inode belonging to this 2671 * super_block. 2672 */ 2673 void sync_inodes_sb(struct super_block *sb) 2674 { 2675 struct backing_dev_info *bdi = sb->s_bdi; 2676 DEFINE_WB_COMPLETION(done, bdi); 2677 struct wb_writeback_work work = { 2678 .sb = sb, 2679 .sync_mode = WB_SYNC_ALL, 2680 .nr_pages = LONG_MAX, 2681 .range_cyclic = 0, 2682 .done = &done, 2683 .reason = WB_REASON_SYNC, 2684 .for_sync = 1, 2685 }; 2686 2687 /* 2688 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2689 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2690 * bdi_has_dirty() need to be written out too. 2691 */ 2692 if (bdi == &noop_backing_dev_info) 2693 return; 2694 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2695 2696 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2697 bdi_down_write_wb_switch_rwsem(bdi); 2698 bdi_split_work_to_wbs(bdi, &work, false); 2699 wb_wait_for_completion(&done); 2700 bdi_up_write_wb_switch_rwsem(bdi); 2701 2702 wait_sb_inodes(sb); 2703 } 2704 EXPORT_SYMBOL(sync_inodes_sb); 2705 2706 /** 2707 * write_inode_now - write an inode to disk 2708 * @inode: inode to write to disk 2709 * @sync: whether the write should be synchronous or not 2710 * 2711 * This function commits an inode to disk immediately if it is dirty. This is 2712 * primarily needed by knfsd. 2713 * 2714 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2715 */ 2716 int write_inode_now(struct inode *inode, int sync) 2717 { 2718 struct writeback_control wbc = { 2719 .nr_to_write = LONG_MAX, 2720 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2721 .range_start = 0, 2722 .range_end = LLONG_MAX, 2723 }; 2724 2725 if (!mapping_can_writeback(inode->i_mapping)) 2726 wbc.nr_to_write = 0; 2727 2728 might_sleep(); 2729 return writeback_single_inode(inode, &wbc); 2730 } 2731 EXPORT_SYMBOL(write_inode_now); 2732 2733 /** 2734 * sync_inode_metadata - write an inode to disk 2735 * @inode: the inode to sync 2736 * @wait: wait for I/O to complete. 2737 * 2738 * Write an inode to disk and adjust its dirty state after completion. 2739 * 2740 * Note: only writes the actual inode, no associated data or other metadata. 2741 */ 2742 int sync_inode_metadata(struct inode *inode, int wait) 2743 { 2744 struct writeback_control wbc = { 2745 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2746 .nr_to_write = 0, /* metadata-only */ 2747 }; 2748 2749 return writeback_single_inode(inode, &wbc); 2750 } 2751 EXPORT_SYMBOL(sync_inode_metadata); 2752