xref: /openbmc/linux/fs/fs-writeback.c (revision dd2939ef)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 
124 	list_move(&inode->i_io_list, head);
125 
126 	/* dirty_time doesn't count as dirty_io until expiration */
127 	if (head != &wb->b_dirty_time)
128 		return wb_io_lists_populated(wb);
129 
130 	wb_io_lists_depopulated(wb);
131 	return false;
132 }
133 
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136 	spin_lock_bh(&wb->work_lock);
137 	if (test_bit(WB_registered, &wb->state))
138 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 	spin_unlock_bh(&wb->work_lock);
140 }
141 
142 static void finish_writeback_work(struct bdi_writeback *wb,
143 				  struct wb_writeback_work *work)
144 {
145 	struct wb_completion *done = work->done;
146 
147 	if (work->auto_free)
148 		kfree(work);
149 	if (done) {
150 		wait_queue_head_t *waitq = done->waitq;
151 
152 		/* @done can't be accessed after the following dec */
153 		if (atomic_dec_and_test(&done->cnt))
154 			wake_up_all(waitq);
155 	}
156 }
157 
158 static void wb_queue_work(struct bdi_writeback *wb,
159 			  struct wb_writeback_work *work)
160 {
161 	trace_writeback_queue(wb, work);
162 
163 	if (work->done)
164 		atomic_inc(&work->done->cnt);
165 
166 	spin_lock_bh(&wb->work_lock);
167 
168 	if (test_bit(WB_registered, &wb->state)) {
169 		list_add_tail(&work->list, &wb->work_list);
170 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 	} else
172 		finish_writeback_work(wb, work);
173 
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189 	atomic_dec(&done->cnt);		/* put down the initial count */
190 	wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192 
193 #ifdef CONFIG_CGROUP_WRITEBACK
194 
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
218 
219 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 					/* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
223 					/* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 					/* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
227 
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234 
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237 
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240 	struct backing_dev_info *bdi = inode_to_bdi(inode);
241 	struct bdi_writeback *wb = NULL;
242 
243 	if (inode_cgwb_enabled(inode)) {
244 		struct cgroup_subsys_state *memcg_css;
245 
246 		if (page) {
247 			memcg_css = mem_cgroup_css_from_page(page);
248 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249 		} else {
250 			/* must pin memcg_css, see wb_get_create() */
251 			memcg_css = task_get_css(current, memory_cgrp_id);
252 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253 			css_put(memcg_css);
254 		}
255 	}
256 
257 	if (!wb)
258 		wb = &bdi->wb;
259 
260 	/*
261 	 * There may be multiple instances of this function racing to
262 	 * update the same inode.  Use cmpxchg() to tell the winner.
263 	 */
264 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265 		wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268 
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278 					struct bdi_writeback *wb)
279 {
280 	assert_spin_locked(&wb->list_lock);
281 	assert_spin_locked(&inode->i_lock);
282 
283 	inode->i_state &= ~I_SYNC_QUEUED;
284 	if (wb != &wb->bdi->wb)
285 		list_move(&inode->i_io_list, &wb->b_attached);
286 	else
287 		list_del_init(&inode->i_io_list);
288 	wb_io_lists_depopulated(wb);
289 }
290 
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301 	__releases(&inode->i_lock)
302 	__acquires(&wb->list_lock)
303 {
304 	while (true) {
305 		struct bdi_writeback *wb = inode_to_wb(inode);
306 
307 		/*
308 		 * inode_to_wb() association is protected by both
309 		 * @inode->i_lock and @wb->list_lock but list_lock nests
310 		 * outside i_lock.  Drop i_lock and verify that the
311 		 * association hasn't changed after acquiring list_lock.
312 		 */
313 		wb_get(wb);
314 		spin_unlock(&inode->i_lock);
315 		spin_lock(&wb->list_lock);
316 
317 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
318 		if (likely(wb == inode->i_wb)) {
319 			wb_put(wb);	/* @inode already has ref */
320 			return wb;
321 		}
322 
323 		spin_unlock(&wb->list_lock);
324 		wb_put(wb);
325 		cpu_relax();
326 		spin_lock(&inode->i_lock);
327 	}
328 }
329 
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 	__acquires(&wb->list_lock)
339 {
340 	spin_lock(&inode->i_lock);
341 	return locked_inode_to_wb_and_lock_list(inode);
342 }
343 
344 struct inode_switch_wbs_context {
345 	struct rcu_work		work;
346 
347 	/*
348 	 * Multiple inodes can be switched at once.  The switching procedure
349 	 * consists of two parts, separated by a RCU grace period.  To make
350 	 * sure that the second part is executed for each inode gone through
351 	 * the first part, all inode pointers are placed into a NULL-terminated
352 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
353 	 * an inode could be left in a non-consistent state.
354 	 */
355 	struct bdi_writeback	*new_wb;
356 	struct inode		*inodes[];
357 };
358 
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361 	down_write(&bdi->wb_switch_rwsem);
362 }
363 
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366 	up_write(&bdi->wb_switch_rwsem);
367 }
368 
369 static bool inode_do_switch_wbs(struct inode *inode,
370 				struct bdi_writeback *old_wb,
371 				struct bdi_writeback *new_wb)
372 {
373 	struct address_space *mapping = inode->i_mapping;
374 	XA_STATE(xas, &mapping->i_pages, 0);
375 	struct page *page;
376 	bool switched = false;
377 
378 	spin_lock(&inode->i_lock);
379 	xa_lock_irq(&mapping->i_pages);
380 
381 	/*
382 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 	 * path owns the inode and we shouldn't modify ->i_io_list.
384 	 */
385 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386 		goto skip_switch;
387 
388 	trace_inode_switch_wbs(inode, old_wb, new_wb);
389 
390 	/*
391 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 	 * pages actually under writeback.
394 	 */
395 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 		if (PageDirty(page)) {
397 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 		}
400 	}
401 
402 	xas_set(&xas, 0);
403 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 		WARN_ON_ONCE(!PageWriteback(page));
405 		dec_wb_stat(old_wb, WB_WRITEBACK);
406 		inc_wb_stat(new_wb, WB_WRITEBACK);
407 	}
408 
409 	wb_get(new_wb);
410 
411 	/*
412 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
413 	 * the specific list @inode was on is ignored and the @inode is put on
414 	 * ->b_dirty which is always correct including from ->b_dirty_time.
415 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
416 	 * was clean, it means it was on the b_attached list, so move it onto
417 	 * the b_attached list of @new_wb.
418 	 */
419 	if (!list_empty(&inode->i_io_list)) {
420 		inode->i_wb = new_wb;
421 
422 		if (inode->i_state & I_DIRTY_ALL) {
423 			struct inode *pos;
424 
425 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
426 				if (time_after_eq(inode->dirtied_when,
427 						  pos->dirtied_when))
428 					break;
429 			inode_io_list_move_locked(inode, new_wb,
430 						  pos->i_io_list.prev);
431 		} else {
432 			inode_cgwb_move_to_attached(inode, new_wb);
433 		}
434 	} else {
435 		inode->i_wb = new_wb;
436 	}
437 
438 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 	inode->i_wb_frn_winner = 0;
440 	inode->i_wb_frn_avg_time = 0;
441 	inode->i_wb_frn_history = 0;
442 	switched = true;
443 skip_switch:
444 	/*
445 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 	 */
448 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449 
450 	xa_unlock_irq(&mapping->i_pages);
451 	spin_unlock(&inode->i_lock);
452 
453 	return switched;
454 }
455 
456 static void inode_switch_wbs_work_fn(struct work_struct *work)
457 {
458 	struct inode_switch_wbs_context *isw =
459 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
460 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
461 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
462 	struct bdi_writeback *new_wb = isw->new_wb;
463 	unsigned long nr_switched = 0;
464 	struct inode **inodep;
465 
466 	/*
467 	 * If @inode switches cgwb membership while sync_inodes_sb() is
468 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
469 	 */
470 	down_read(&bdi->wb_switch_rwsem);
471 
472 	/*
473 	 * By the time control reaches here, RCU grace period has passed
474 	 * since I_WB_SWITCH assertion and all wb stat update transactions
475 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
476 	 * synchronizing against the i_pages lock.
477 	 *
478 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
479 	 * gives us exclusion against all wb related operations on @inode
480 	 * including IO list manipulations and stat updates.
481 	 */
482 	if (old_wb < new_wb) {
483 		spin_lock(&old_wb->list_lock);
484 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
485 	} else {
486 		spin_lock(&new_wb->list_lock);
487 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
488 	}
489 
490 	for (inodep = isw->inodes; *inodep; inodep++) {
491 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
492 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
493 			nr_switched++;
494 	}
495 
496 	spin_unlock(&new_wb->list_lock);
497 	spin_unlock(&old_wb->list_lock);
498 
499 	up_read(&bdi->wb_switch_rwsem);
500 
501 	if (nr_switched) {
502 		wb_wakeup(new_wb);
503 		wb_put_many(old_wb, nr_switched);
504 	}
505 
506 	for (inodep = isw->inodes; *inodep; inodep++)
507 		iput(*inodep);
508 	wb_put(new_wb);
509 	kfree(isw);
510 	atomic_dec(&isw_nr_in_flight);
511 }
512 
513 static bool inode_prepare_wbs_switch(struct inode *inode,
514 				     struct bdi_writeback *new_wb)
515 {
516 	/*
517 	 * Paired with smp_mb() in cgroup_writeback_umount().
518 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
519 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
520 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
521 	 */
522 	smp_mb();
523 
524 	if (IS_DAX(inode))
525 		return false;
526 
527 	/* while holding I_WB_SWITCH, no one else can update the association */
528 	spin_lock(&inode->i_lock);
529 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
530 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
531 	    inode_to_wb(inode) == new_wb) {
532 		spin_unlock(&inode->i_lock);
533 		return false;
534 	}
535 	inode->i_state |= I_WB_SWITCH;
536 	__iget(inode);
537 	spin_unlock(&inode->i_lock);
538 
539 	return true;
540 }
541 
542 /**
543  * inode_switch_wbs - change the wb association of an inode
544  * @inode: target inode
545  * @new_wb_id: ID of the new wb
546  *
547  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
548  * switching is performed asynchronously and may fail silently.
549  */
550 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
551 {
552 	struct backing_dev_info *bdi = inode_to_bdi(inode);
553 	struct cgroup_subsys_state *memcg_css;
554 	struct inode_switch_wbs_context *isw;
555 
556 	/* noop if seems to be already in progress */
557 	if (inode->i_state & I_WB_SWITCH)
558 		return;
559 
560 	/* avoid queueing a new switch if too many are already in flight */
561 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
562 		return;
563 
564 	isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
565 	if (!isw)
566 		return;
567 
568 	atomic_inc(&isw_nr_in_flight);
569 
570 	/* find and pin the new wb */
571 	rcu_read_lock();
572 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
573 	if (memcg_css && !css_tryget(memcg_css))
574 		memcg_css = NULL;
575 	rcu_read_unlock();
576 	if (!memcg_css)
577 		goto out_free;
578 
579 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
580 	css_put(memcg_css);
581 	if (!isw->new_wb)
582 		goto out_free;
583 
584 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
585 		goto out_free;
586 
587 	isw->inodes[0] = inode;
588 
589 	/*
590 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
591 	 * the RCU protected stat update paths to grab the i_page
592 	 * lock so that stat transfer can synchronize against them.
593 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
594 	 */
595 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
596 	queue_rcu_work(isw_wq, &isw->work);
597 	return;
598 
599 out_free:
600 	atomic_dec(&isw_nr_in_flight);
601 	if (isw->new_wb)
602 		wb_put(isw->new_wb);
603 	kfree(isw);
604 }
605 
606 /**
607  * cleanup_offline_cgwb - detach associated inodes
608  * @wb: target wb
609  *
610  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
611  * to eventually release the dying @wb.  Returns %true if not all inodes were
612  * switched and the function has to be restarted.
613  */
614 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
615 {
616 	struct cgroup_subsys_state *memcg_css;
617 	struct inode_switch_wbs_context *isw;
618 	struct inode *inode;
619 	int nr;
620 	bool restart = false;
621 
622 	isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
623 		      sizeof(struct inode *), GFP_KERNEL);
624 	if (!isw)
625 		return restart;
626 
627 	atomic_inc(&isw_nr_in_flight);
628 
629 	for (memcg_css = wb->memcg_css->parent; memcg_css;
630 	     memcg_css = memcg_css->parent) {
631 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
632 		if (isw->new_wb)
633 			break;
634 	}
635 	if (unlikely(!isw->new_wb))
636 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
637 
638 	nr = 0;
639 	spin_lock(&wb->list_lock);
640 	list_for_each_entry(inode, &wb->b_attached, i_io_list) {
641 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
642 			continue;
643 
644 		isw->inodes[nr++] = inode;
645 
646 		if (nr >= WB_MAX_INODES_PER_ISW - 1) {
647 			restart = true;
648 			break;
649 		}
650 	}
651 	spin_unlock(&wb->list_lock);
652 
653 	/* no attached inodes? bail out */
654 	if (nr == 0) {
655 		atomic_dec(&isw_nr_in_flight);
656 		wb_put(isw->new_wb);
657 		kfree(isw);
658 		return restart;
659 	}
660 
661 	/*
662 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
663 	 * the RCU protected stat update paths to grab the i_page
664 	 * lock so that stat transfer can synchronize against them.
665 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
666 	 */
667 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
668 	queue_rcu_work(isw_wq, &isw->work);
669 
670 	return restart;
671 }
672 
673 /**
674  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
675  * @wbc: writeback_control of interest
676  * @inode: target inode
677  *
678  * @inode is locked and about to be written back under the control of @wbc.
679  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
680  * writeback completion, wbc_detach_inode() should be called.  This is used
681  * to track the cgroup writeback context.
682  */
683 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
684 				 struct inode *inode)
685 {
686 	if (!inode_cgwb_enabled(inode)) {
687 		spin_unlock(&inode->i_lock);
688 		return;
689 	}
690 
691 	wbc->wb = inode_to_wb(inode);
692 	wbc->inode = inode;
693 
694 	wbc->wb_id = wbc->wb->memcg_css->id;
695 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
696 	wbc->wb_tcand_id = 0;
697 	wbc->wb_bytes = 0;
698 	wbc->wb_lcand_bytes = 0;
699 	wbc->wb_tcand_bytes = 0;
700 
701 	wb_get(wbc->wb);
702 	spin_unlock(&inode->i_lock);
703 
704 	/*
705 	 * A dying wb indicates that either the blkcg associated with the
706 	 * memcg changed or the associated memcg is dying.  In the first
707 	 * case, a replacement wb should already be available and we should
708 	 * refresh the wb immediately.  In the second case, trying to
709 	 * refresh will keep failing.
710 	 */
711 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
712 		inode_switch_wbs(inode, wbc->wb_id);
713 }
714 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
715 
716 /**
717  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
718  * @wbc: writeback_control of the just finished writeback
719  *
720  * To be called after a writeback attempt of an inode finishes and undoes
721  * wbc_attach_and_unlock_inode().  Can be called under any context.
722  *
723  * As concurrent write sharing of an inode is expected to be very rare and
724  * memcg only tracks page ownership on first-use basis severely confining
725  * the usefulness of such sharing, cgroup writeback tracks ownership
726  * per-inode.  While the support for concurrent write sharing of an inode
727  * is deemed unnecessary, an inode being written to by different cgroups at
728  * different points in time is a lot more common, and, more importantly,
729  * charging only by first-use can too readily lead to grossly incorrect
730  * behaviors (single foreign page can lead to gigabytes of writeback to be
731  * incorrectly attributed).
732  *
733  * To resolve this issue, cgroup writeback detects the majority dirtier of
734  * an inode and transfers the ownership to it.  To avoid unnnecessary
735  * oscillation, the detection mechanism keeps track of history and gives
736  * out the switch verdict only if the foreign usage pattern is stable over
737  * a certain amount of time and/or writeback attempts.
738  *
739  * On each writeback attempt, @wbc tries to detect the majority writer
740  * using Boyer-Moore majority vote algorithm.  In addition to the byte
741  * count from the majority voting, it also counts the bytes written for the
742  * current wb and the last round's winner wb (max of last round's current
743  * wb, the winner from two rounds ago, and the last round's majority
744  * candidate).  Keeping track of the historical winner helps the algorithm
745  * to semi-reliably detect the most active writer even when it's not the
746  * absolute majority.
747  *
748  * Once the winner of the round is determined, whether the winner is
749  * foreign or not and how much IO time the round consumed is recorded in
750  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
751  * over a certain threshold, the switch verdict is given.
752  */
753 void wbc_detach_inode(struct writeback_control *wbc)
754 {
755 	struct bdi_writeback *wb = wbc->wb;
756 	struct inode *inode = wbc->inode;
757 	unsigned long avg_time, max_bytes, max_time;
758 	u16 history;
759 	int max_id;
760 
761 	if (!wb)
762 		return;
763 
764 	history = inode->i_wb_frn_history;
765 	avg_time = inode->i_wb_frn_avg_time;
766 
767 	/* pick the winner of this round */
768 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
769 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
770 		max_id = wbc->wb_id;
771 		max_bytes = wbc->wb_bytes;
772 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
773 		max_id = wbc->wb_lcand_id;
774 		max_bytes = wbc->wb_lcand_bytes;
775 	} else {
776 		max_id = wbc->wb_tcand_id;
777 		max_bytes = wbc->wb_tcand_bytes;
778 	}
779 
780 	/*
781 	 * Calculate the amount of IO time the winner consumed and fold it
782 	 * into the running average kept per inode.  If the consumed IO
783 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
784 	 * deciding whether to switch or not.  This is to prevent one-off
785 	 * small dirtiers from skewing the verdict.
786 	 */
787 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
788 				wb->avg_write_bandwidth);
789 	if (avg_time)
790 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
791 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
792 	else
793 		avg_time = max_time;	/* immediate catch up on first run */
794 
795 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
796 		int slots;
797 
798 		/*
799 		 * The switch verdict is reached if foreign wb's consume
800 		 * more than a certain proportion of IO time in a
801 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
802 		 * history mask where each bit represents one sixteenth of
803 		 * the period.  Determine the number of slots to shift into
804 		 * history from @max_time.
805 		 */
806 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
807 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
808 		history <<= slots;
809 		if (wbc->wb_id != max_id)
810 			history |= (1U << slots) - 1;
811 
812 		if (history)
813 			trace_inode_foreign_history(inode, wbc, history);
814 
815 		/*
816 		 * Switch if the current wb isn't the consistent winner.
817 		 * If there are multiple closely competing dirtiers, the
818 		 * inode may switch across them repeatedly over time, which
819 		 * is okay.  The main goal is avoiding keeping an inode on
820 		 * the wrong wb for an extended period of time.
821 		 */
822 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
823 			inode_switch_wbs(inode, max_id);
824 	}
825 
826 	/*
827 	 * Multiple instances of this function may race to update the
828 	 * following fields but we don't mind occassional inaccuracies.
829 	 */
830 	inode->i_wb_frn_winner = max_id;
831 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
832 	inode->i_wb_frn_history = history;
833 
834 	wb_put(wbc->wb);
835 	wbc->wb = NULL;
836 }
837 EXPORT_SYMBOL_GPL(wbc_detach_inode);
838 
839 /**
840  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
841  * @wbc: writeback_control of the writeback in progress
842  * @page: page being written out
843  * @bytes: number of bytes being written out
844  *
845  * @bytes from @page are about to written out during the writeback
846  * controlled by @wbc.  Keep the book for foreign inode detection.  See
847  * wbc_detach_inode().
848  */
849 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
850 			      size_t bytes)
851 {
852 	struct cgroup_subsys_state *css;
853 	int id;
854 
855 	/*
856 	 * pageout() path doesn't attach @wbc to the inode being written
857 	 * out.  This is intentional as we don't want the function to block
858 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
859 	 * regular writeback instead of writing things out itself.
860 	 */
861 	if (!wbc->wb || wbc->no_cgroup_owner)
862 		return;
863 
864 	css = mem_cgroup_css_from_page(page);
865 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
866 	if (!(css->flags & CSS_ONLINE))
867 		return;
868 
869 	id = css->id;
870 
871 	if (id == wbc->wb_id) {
872 		wbc->wb_bytes += bytes;
873 		return;
874 	}
875 
876 	if (id == wbc->wb_lcand_id)
877 		wbc->wb_lcand_bytes += bytes;
878 
879 	/* Boyer-Moore majority vote algorithm */
880 	if (!wbc->wb_tcand_bytes)
881 		wbc->wb_tcand_id = id;
882 	if (id == wbc->wb_tcand_id)
883 		wbc->wb_tcand_bytes += bytes;
884 	else
885 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
886 }
887 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
888 
889 /**
890  * inode_congested - test whether an inode is congested
891  * @inode: inode to test for congestion (may be NULL)
892  * @cong_bits: mask of WB_[a]sync_congested bits to test
893  *
894  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
895  * bits to test and the return value is the mask of set bits.
896  *
897  * If cgroup writeback is enabled for @inode, the congestion state is
898  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
899  * associated with @inode is congested; otherwise, the root wb's congestion
900  * state is used.
901  *
902  * @inode is allowed to be NULL as this function is often called on
903  * mapping->host which is NULL for the swapper space.
904  */
905 int inode_congested(struct inode *inode, int cong_bits)
906 {
907 	/*
908 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
909 	 * Start transaction iff ->i_wb is visible.
910 	 */
911 	if (inode && inode_to_wb_is_valid(inode)) {
912 		struct bdi_writeback *wb;
913 		struct wb_lock_cookie lock_cookie = {};
914 		bool congested;
915 
916 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
917 		congested = wb_congested(wb, cong_bits);
918 		unlocked_inode_to_wb_end(inode, &lock_cookie);
919 		return congested;
920 	}
921 
922 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
923 }
924 EXPORT_SYMBOL_GPL(inode_congested);
925 
926 /**
927  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
928  * @wb: target bdi_writeback to split @nr_pages to
929  * @nr_pages: number of pages to write for the whole bdi
930  *
931  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
932  * relation to the total write bandwidth of all wb's w/ dirty inodes on
933  * @wb->bdi.
934  */
935 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
936 {
937 	unsigned long this_bw = wb->avg_write_bandwidth;
938 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
939 
940 	if (nr_pages == LONG_MAX)
941 		return LONG_MAX;
942 
943 	/*
944 	 * This may be called on clean wb's and proportional distribution
945 	 * may not make sense, just use the original @nr_pages in those
946 	 * cases.  In general, we wanna err on the side of writing more.
947 	 */
948 	if (!tot_bw || this_bw >= tot_bw)
949 		return nr_pages;
950 	else
951 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
952 }
953 
954 /**
955  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
956  * @bdi: target backing_dev_info
957  * @base_work: wb_writeback_work to issue
958  * @skip_if_busy: skip wb's which already have writeback in progress
959  *
960  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
961  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
962  * distributed to the busy wbs according to each wb's proportion in the
963  * total active write bandwidth of @bdi.
964  */
965 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
966 				  struct wb_writeback_work *base_work,
967 				  bool skip_if_busy)
968 {
969 	struct bdi_writeback *last_wb = NULL;
970 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
971 					      struct bdi_writeback, bdi_node);
972 
973 	might_sleep();
974 restart:
975 	rcu_read_lock();
976 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
977 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
978 		struct wb_writeback_work fallback_work;
979 		struct wb_writeback_work *work;
980 		long nr_pages;
981 
982 		if (last_wb) {
983 			wb_put(last_wb);
984 			last_wb = NULL;
985 		}
986 
987 		/* SYNC_ALL writes out I_DIRTY_TIME too */
988 		if (!wb_has_dirty_io(wb) &&
989 		    (base_work->sync_mode == WB_SYNC_NONE ||
990 		     list_empty(&wb->b_dirty_time)))
991 			continue;
992 		if (skip_if_busy && writeback_in_progress(wb))
993 			continue;
994 
995 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
996 
997 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
998 		if (work) {
999 			*work = *base_work;
1000 			work->nr_pages = nr_pages;
1001 			work->auto_free = 1;
1002 			wb_queue_work(wb, work);
1003 			continue;
1004 		}
1005 
1006 		/* alloc failed, execute synchronously using on-stack fallback */
1007 		work = &fallback_work;
1008 		*work = *base_work;
1009 		work->nr_pages = nr_pages;
1010 		work->auto_free = 0;
1011 		work->done = &fallback_work_done;
1012 
1013 		wb_queue_work(wb, work);
1014 
1015 		/*
1016 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1017 		 * continuing iteration from @wb after dropping and
1018 		 * regrabbing rcu read lock.
1019 		 */
1020 		wb_get(wb);
1021 		last_wb = wb;
1022 
1023 		rcu_read_unlock();
1024 		wb_wait_for_completion(&fallback_work_done);
1025 		goto restart;
1026 	}
1027 	rcu_read_unlock();
1028 
1029 	if (last_wb)
1030 		wb_put(last_wb);
1031 }
1032 
1033 /**
1034  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1035  * @bdi_id: target bdi id
1036  * @memcg_id: target memcg css id
1037  * @nr: number of pages to write, 0 for best-effort dirty flushing
1038  * @reason: reason why some writeback work initiated
1039  * @done: target wb_completion
1040  *
1041  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1042  * with the specified parameters.
1043  */
1044 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
1045 			   enum wb_reason reason, struct wb_completion *done)
1046 {
1047 	struct backing_dev_info *bdi;
1048 	struct cgroup_subsys_state *memcg_css;
1049 	struct bdi_writeback *wb;
1050 	struct wb_writeback_work *work;
1051 	int ret;
1052 
1053 	/* lookup bdi and memcg */
1054 	bdi = bdi_get_by_id(bdi_id);
1055 	if (!bdi)
1056 		return -ENOENT;
1057 
1058 	rcu_read_lock();
1059 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1060 	if (memcg_css && !css_tryget(memcg_css))
1061 		memcg_css = NULL;
1062 	rcu_read_unlock();
1063 	if (!memcg_css) {
1064 		ret = -ENOENT;
1065 		goto out_bdi_put;
1066 	}
1067 
1068 	/*
1069 	 * And find the associated wb.  If the wb isn't there already
1070 	 * there's nothing to flush, don't create one.
1071 	 */
1072 	wb = wb_get_lookup(bdi, memcg_css);
1073 	if (!wb) {
1074 		ret = -ENOENT;
1075 		goto out_css_put;
1076 	}
1077 
1078 	/*
1079 	 * If @nr is zero, the caller is attempting to write out most of
1080 	 * the currently dirty pages.  Let's take the current dirty page
1081 	 * count and inflate it by 25% which should be large enough to
1082 	 * flush out most dirty pages while avoiding getting livelocked by
1083 	 * concurrent dirtiers.
1084 	 */
1085 	if (!nr) {
1086 		unsigned long filepages, headroom, dirty, writeback;
1087 
1088 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
1089 				      &writeback);
1090 		nr = dirty * 10 / 8;
1091 	}
1092 
1093 	/* issue the writeback work */
1094 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1095 	if (work) {
1096 		work->nr_pages = nr;
1097 		work->sync_mode = WB_SYNC_NONE;
1098 		work->range_cyclic = 1;
1099 		work->reason = reason;
1100 		work->done = done;
1101 		work->auto_free = 1;
1102 		wb_queue_work(wb, work);
1103 		ret = 0;
1104 	} else {
1105 		ret = -ENOMEM;
1106 	}
1107 
1108 	wb_put(wb);
1109 out_css_put:
1110 	css_put(memcg_css);
1111 out_bdi_put:
1112 	bdi_put(bdi);
1113 	return ret;
1114 }
1115 
1116 /**
1117  * cgroup_writeback_umount - flush inode wb switches for umount
1118  *
1119  * This function is called when a super_block is about to be destroyed and
1120  * flushes in-flight inode wb switches.  An inode wb switch goes through
1121  * RCU and then workqueue, so the two need to be flushed in order to ensure
1122  * that all previously scheduled switches are finished.  As wb switches are
1123  * rare occurrences and synchronize_rcu() can take a while, perform
1124  * flushing iff wb switches are in flight.
1125  */
1126 void cgroup_writeback_umount(void)
1127 {
1128 	/*
1129 	 * SB_ACTIVE should be reliably cleared before checking
1130 	 * isw_nr_in_flight, see generic_shutdown_super().
1131 	 */
1132 	smp_mb();
1133 
1134 	if (atomic_read(&isw_nr_in_flight)) {
1135 		/*
1136 		 * Use rcu_barrier() to wait for all pending callbacks to
1137 		 * ensure that all in-flight wb switches are in the workqueue.
1138 		 */
1139 		rcu_barrier();
1140 		flush_workqueue(isw_wq);
1141 	}
1142 }
1143 
1144 static int __init cgroup_writeback_init(void)
1145 {
1146 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1147 	if (!isw_wq)
1148 		return -ENOMEM;
1149 	return 0;
1150 }
1151 fs_initcall(cgroup_writeback_init);
1152 
1153 #else	/* CONFIG_CGROUP_WRITEBACK */
1154 
1155 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1156 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1157 
1158 static void inode_cgwb_move_to_attached(struct inode *inode,
1159 					struct bdi_writeback *wb)
1160 {
1161 	assert_spin_locked(&wb->list_lock);
1162 	assert_spin_locked(&inode->i_lock);
1163 
1164 	inode->i_state &= ~I_SYNC_QUEUED;
1165 	list_del_init(&inode->i_io_list);
1166 	wb_io_lists_depopulated(wb);
1167 }
1168 
1169 static struct bdi_writeback *
1170 locked_inode_to_wb_and_lock_list(struct inode *inode)
1171 	__releases(&inode->i_lock)
1172 	__acquires(&wb->list_lock)
1173 {
1174 	struct bdi_writeback *wb = inode_to_wb(inode);
1175 
1176 	spin_unlock(&inode->i_lock);
1177 	spin_lock(&wb->list_lock);
1178 	return wb;
1179 }
1180 
1181 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1182 	__acquires(&wb->list_lock)
1183 {
1184 	struct bdi_writeback *wb = inode_to_wb(inode);
1185 
1186 	spin_lock(&wb->list_lock);
1187 	return wb;
1188 }
1189 
1190 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1191 {
1192 	return nr_pages;
1193 }
1194 
1195 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1196 				  struct wb_writeback_work *base_work,
1197 				  bool skip_if_busy)
1198 {
1199 	might_sleep();
1200 
1201 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1202 		base_work->auto_free = 0;
1203 		wb_queue_work(&bdi->wb, base_work);
1204 	}
1205 }
1206 
1207 #endif	/* CONFIG_CGROUP_WRITEBACK */
1208 
1209 /*
1210  * Add in the number of potentially dirty inodes, because each inode
1211  * write can dirty pagecache in the underlying blockdev.
1212  */
1213 static unsigned long get_nr_dirty_pages(void)
1214 {
1215 	return global_node_page_state(NR_FILE_DIRTY) +
1216 		get_nr_dirty_inodes();
1217 }
1218 
1219 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1220 {
1221 	if (!wb_has_dirty_io(wb))
1222 		return;
1223 
1224 	/*
1225 	 * All callers of this function want to start writeback of all
1226 	 * dirty pages. Places like vmscan can call this at a very
1227 	 * high frequency, causing pointless allocations of tons of
1228 	 * work items and keeping the flusher threads busy retrieving
1229 	 * that work. Ensure that we only allow one of them pending and
1230 	 * inflight at the time.
1231 	 */
1232 	if (test_bit(WB_start_all, &wb->state) ||
1233 	    test_and_set_bit(WB_start_all, &wb->state))
1234 		return;
1235 
1236 	wb->start_all_reason = reason;
1237 	wb_wakeup(wb);
1238 }
1239 
1240 /**
1241  * wb_start_background_writeback - start background writeback
1242  * @wb: bdi_writback to write from
1243  *
1244  * Description:
1245  *   This makes sure WB_SYNC_NONE background writeback happens. When
1246  *   this function returns, it is only guaranteed that for given wb
1247  *   some IO is happening if we are over background dirty threshold.
1248  *   Caller need not hold sb s_umount semaphore.
1249  */
1250 void wb_start_background_writeback(struct bdi_writeback *wb)
1251 {
1252 	/*
1253 	 * We just wake up the flusher thread. It will perform background
1254 	 * writeback as soon as there is no other work to do.
1255 	 */
1256 	trace_writeback_wake_background(wb);
1257 	wb_wakeup(wb);
1258 }
1259 
1260 /*
1261  * Remove the inode from the writeback list it is on.
1262  */
1263 void inode_io_list_del(struct inode *inode)
1264 {
1265 	struct bdi_writeback *wb;
1266 
1267 	wb = inode_to_wb_and_lock_list(inode);
1268 	spin_lock(&inode->i_lock);
1269 
1270 	inode->i_state &= ~I_SYNC_QUEUED;
1271 	list_del_init(&inode->i_io_list);
1272 	wb_io_lists_depopulated(wb);
1273 
1274 	spin_unlock(&inode->i_lock);
1275 	spin_unlock(&wb->list_lock);
1276 }
1277 EXPORT_SYMBOL(inode_io_list_del);
1278 
1279 /*
1280  * mark an inode as under writeback on the sb
1281  */
1282 void sb_mark_inode_writeback(struct inode *inode)
1283 {
1284 	struct super_block *sb = inode->i_sb;
1285 	unsigned long flags;
1286 
1287 	if (list_empty(&inode->i_wb_list)) {
1288 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1289 		if (list_empty(&inode->i_wb_list)) {
1290 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1291 			trace_sb_mark_inode_writeback(inode);
1292 		}
1293 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1294 	}
1295 }
1296 
1297 /*
1298  * clear an inode as under writeback on the sb
1299  */
1300 void sb_clear_inode_writeback(struct inode *inode)
1301 {
1302 	struct super_block *sb = inode->i_sb;
1303 	unsigned long flags;
1304 
1305 	if (!list_empty(&inode->i_wb_list)) {
1306 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1307 		if (!list_empty(&inode->i_wb_list)) {
1308 			list_del_init(&inode->i_wb_list);
1309 			trace_sb_clear_inode_writeback(inode);
1310 		}
1311 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1312 	}
1313 }
1314 
1315 /*
1316  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1317  * furthest end of its superblock's dirty-inode list.
1318  *
1319  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1320  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1321  * the case then the inode must have been redirtied while it was being written
1322  * out and we don't reset its dirtied_when.
1323  */
1324 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1325 {
1326 	assert_spin_locked(&inode->i_lock);
1327 
1328 	if (!list_empty(&wb->b_dirty)) {
1329 		struct inode *tail;
1330 
1331 		tail = wb_inode(wb->b_dirty.next);
1332 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1333 			inode->dirtied_when = jiffies;
1334 	}
1335 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1336 	inode->i_state &= ~I_SYNC_QUEUED;
1337 }
1338 
1339 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1340 {
1341 	spin_lock(&inode->i_lock);
1342 	redirty_tail_locked(inode, wb);
1343 	spin_unlock(&inode->i_lock);
1344 }
1345 
1346 /*
1347  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1348  */
1349 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1350 {
1351 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1352 }
1353 
1354 static void inode_sync_complete(struct inode *inode)
1355 {
1356 	inode->i_state &= ~I_SYNC;
1357 	/* If inode is clean an unused, put it into LRU now... */
1358 	inode_add_lru(inode);
1359 	/* Waiters must see I_SYNC cleared before being woken up */
1360 	smp_mb();
1361 	wake_up_bit(&inode->i_state, __I_SYNC);
1362 }
1363 
1364 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1365 {
1366 	bool ret = time_after(inode->dirtied_when, t);
1367 #ifndef CONFIG_64BIT
1368 	/*
1369 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1370 	 * It _appears_ to be in the future, but is actually in distant past.
1371 	 * This test is necessary to prevent such wrapped-around relative times
1372 	 * from permanently stopping the whole bdi writeback.
1373 	 */
1374 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1375 #endif
1376 	return ret;
1377 }
1378 
1379 #define EXPIRE_DIRTY_ATIME 0x0001
1380 
1381 /*
1382  * Move expired (dirtied before dirtied_before) dirty inodes from
1383  * @delaying_queue to @dispatch_queue.
1384  */
1385 static int move_expired_inodes(struct list_head *delaying_queue,
1386 			       struct list_head *dispatch_queue,
1387 			       unsigned long dirtied_before)
1388 {
1389 	LIST_HEAD(tmp);
1390 	struct list_head *pos, *node;
1391 	struct super_block *sb = NULL;
1392 	struct inode *inode;
1393 	int do_sb_sort = 0;
1394 	int moved = 0;
1395 
1396 	while (!list_empty(delaying_queue)) {
1397 		inode = wb_inode(delaying_queue->prev);
1398 		if (inode_dirtied_after(inode, dirtied_before))
1399 			break;
1400 		list_move(&inode->i_io_list, &tmp);
1401 		moved++;
1402 		spin_lock(&inode->i_lock);
1403 		inode->i_state |= I_SYNC_QUEUED;
1404 		spin_unlock(&inode->i_lock);
1405 		if (sb_is_blkdev_sb(inode->i_sb))
1406 			continue;
1407 		if (sb && sb != inode->i_sb)
1408 			do_sb_sort = 1;
1409 		sb = inode->i_sb;
1410 	}
1411 
1412 	/* just one sb in list, splice to dispatch_queue and we're done */
1413 	if (!do_sb_sort) {
1414 		list_splice(&tmp, dispatch_queue);
1415 		goto out;
1416 	}
1417 
1418 	/* Move inodes from one superblock together */
1419 	while (!list_empty(&tmp)) {
1420 		sb = wb_inode(tmp.prev)->i_sb;
1421 		list_for_each_prev_safe(pos, node, &tmp) {
1422 			inode = wb_inode(pos);
1423 			if (inode->i_sb == sb)
1424 				list_move(&inode->i_io_list, dispatch_queue);
1425 		}
1426 	}
1427 out:
1428 	return moved;
1429 }
1430 
1431 /*
1432  * Queue all expired dirty inodes for io, eldest first.
1433  * Before
1434  *         newly dirtied     b_dirty    b_io    b_more_io
1435  *         =============>    gf         edc     BA
1436  * After
1437  *         newly dirtied     b_dirty    b_io    b_more_io
1438  *         =============>    g          fBAedc
1439  *                                           |
1440  *                                           +--> dequeue for IO
1441  */
1442 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1443 		     unsigned long dirtied_before)
1444 {
1445 	int moved;
1446 	unsigned long time_expire_jif = dirtied_before;
1447 
1448 	assert_spin_locked(&wb->list_lock);
1449 	list_splice_init(&wb->b_more_io, &wb->b_io);
1450 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1451 	if (!work->for_sync)
1452 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1453 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1454 				     time_expire_jif);
1455 	if (moved)
1456 		wb_io_lists_populated(wb);
1457 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1458 }
1459 
1460 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1461 {
1462 	int ret;
1463 
1464 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1465 		trace_writeback_write_inode_start(inode, wbc);
1466 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1467 		trace_writeback_write_inode(inode, wbc);
1468 		return ret;
1469 	}
1470 	return 0;
1471 }
1472 
1473 /*
1474  * Wait for writeback on an inode to complete. Called with i_lock held.
1475  * Caller must make sure inode cannot go away when we drop i_lock.
1476  */
1477 static void __inode_wait_for_writeback(struct inode *inode)
1478 	__releases(inode->i_lock)
1479 	__acquires(inode->i_lock)
1480 {
1481 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1482 	wait_queue_head_t *wqh;
1483 
1484 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1485 	while (inode->i_state & I_SYNC) {
1486 		spin_unlock(&inode->i_lock);
1487 		__wait_on_bit(wqh, &wq, bit_wait,
1488 			      TASK_UNINTERRUPTIBLE);
1489 		spin_lock(&inode->i_lock);
1490 	}
1491 }
1492 
1493 /*
1494  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1495  */
1496 void inode_wait_for_writeback(struct inode *inode)
1497 {
1498 	spin_lock(&inode->i_lock);
1499 	__inode_wait_for_writeback(inode);
1500 	spin_unlock(&inode->i_lock);
1501 }
1502 
1503 /*
1504  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1505  * held and drops it. It is aimed for callers not holding any inode reference
1506  * so once i_lock is dropped, inode can go away.
1507  */
1508 static void inode_sleep_on_writeback(struct inode *inode)
1509 	__releases(inode->i_lock)
1510 {
1511 	DEFINE_WAIT(wait);
1512 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1513 	int sleep;
1514 
1515 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1516 	sleep = inode->i_state & I_SYNC;
1517 	spin_unlock(&inode->i_lock);
1518 	if (sleep)
1519 		schedule();
1520 	finish_wait(wqh, &wait);
1521 }
1522 
1523 /*
1524  * Find proper writeback list for the inode depending on its current state and
1525  * possibly also change of its state while we were doing writeback.  Here we
1526  * handle things such as livelock prevention or fairness of writeback among
1527  * inodes. This function can be called only by flusher thread - noone else
1528  * processes all inodes in writeback lists and requeueing inodes behind flusher
1529  * thread's back can have unexpected consequences.
1530  */
1531 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1532 			  struct writeback_control *wbc)
1533 {
1534 	if (inode->i_state & I_FREEING)
1535 		return;
1536 
1537 	/*
1538 	 * Sync livelock prevention. Each inode is tagged and synced in one
1539 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1540 	 * the dirty time to prevent enqueue and sync it again.
1541 	 */
1542 	if ((inode->i_state & I_DIRTY) &&
1543 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1544 		inode->dirtied_when = jiffies;
1545 
1546 	if (wbc->pages_skipped) {
1547 		/*
1548 		 * writeback is not making progress due to locked
1549 		 * buffers. Skip this inode for now.
1550 		 */
1551 		redirty_tail_locked(inode, wb);
1552 		return;
1553 	}
1554 
1555 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1556 		/*
1557 		 * We didn't write back all the pages.  nfs_writepages()
1558 		 * sometimes bales out without doing anything.
1559 		 */
1560 		if (wbc->nr_to_write <= 0) {
1561 			/* Slice used up. Queue for next turn. */
1562 			requeue_io(inode, wb);
1563 		} else {
1564 			/*
1565 			 * Writeback blocked by something other than
1566 			 * congestion. Delay the inode for some time to
1567 			 * avoid spinning on the CPU (100% iowait)
1568 			 * retrying writeback of the dirty page/inode
1569 			 * that cannot be performed immediately.
1570 			 */
1571 			redirty_tail_locked(inode, wb);
1572 		}
1573 	} else if (inode->i_state & I_DIRTY) {
1574 		/*
1575 		 * Filesystems can dirty the inode during writeback operations,
1576 		 * such as delayed allocation during submission or metadata
1577 		 * updates after data IO completion.
1578 		 */
1579 		redirty_tail_locked(inode, wb);
1580 	} else if (inode->i_state & I_DIRTY_TIME) {
1581 		inode->dirtied_when = jiffies;
1582 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1583 		inode->i_state &= ~I_SYNC_QUEUED;
1584 	} else {
1585 		/* The inode is clean. Remove from writeback lists. */
1586 		inode_cgwb_move_to_attached(inode, wb);
1587 	}
1588 }
1589 
1590 /*
1591  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1592  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1593  *
1594  * This doesn't remove the inode from the writeback list it is on, except
1595  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1596  * expiration.  The caller is otherwise responsible for writeback list handling.
1597  *
1598  * The caller is also responsible for setting the I_SYNC flag beforehand and
1599  * calling inode_sync_complete() to clear it afterwards.
1600  */
1601 static int
1602 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1603 {
1604 	struct address_space *mapping = inode->i_mapping;
1605 	long nr_to_write = wbc->nr_to_write;
1606 	unsigned dirty;
1607 	int ret;
1608 
1609 	WARN_ON(!(inode->i_state & I_SYNC));
1610 
1611 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1612 
1613 	ret = do_writepages(mapping, wbc);
1614 
1615 	/*
1616 	 * Make sure to wait on the data before writing out the metadata.
1617 	 * This is important for filesystems that modify metadata on data
1618 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1619 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1620 	 * inode metadata is written back correctly.
1621 	 */
1622 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1623 		int err = filemap_fdatawait(mapping);
1624 		if (ret == 0)
1625 			ret = err;
1626 	}
1627 
1628 	/*
1629 	 * If the inode has dirty timestamps and we need to write them, call
1630 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1631 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1632 	 */
1633 	if ((inode->i_state & I_DIRTY_TIME) &&
1634 	    (wbc->sync_mode == WB_SYNC_ALL ||
1635 	     time_after(jiffies, inode->dirtied_time_when +
1636 			dirtytime_expire_interval * HZ))) {
1637 		trace_writeback_lazytime(inode);
1638 		mark_inode_dirty_sync(inode);
1639 	}
1640 
1641 	/*
1642 	 * Get and clear the dirty flags from i_state.  This needs to be done
1643 	 * after calling writepages because some filesystems may redirty the
1644 	 * inode during writepages due to delalloc.  It also needs to be done
1645 	 * after handling timestamp expiration, as that may dirty the inode too.
1646 	 */
1647 	spin_lock(&inode->i_lock);
1648 	dirty = inode->i_state & I_DIRTY;
1649 	inode->i_state &= ~dirty;
1650 
1651 	/*
1652 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1653 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1654 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1655 	 * inode.
1656 	 *
1657 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1658 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1659 	 * necessary.  This guarantees that either __mark_inode_dirty()
1660 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1661 	 */
1662 	smp_mb();
1663 
1664 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1665 		inode->i_state |= I_DIRTY_PAGES;
1666 
1667 	spin_unlock(&inode->i_lock);
1668 
1669 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1670 	if (dirty & ~I_DIRTY_PAGES) {
1671 		int err = write_inode(inode, wbc);
1672 		if (ret == 0)
1673 			ret = err;
1674 	}
1675 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1676 	return ret;
1677 }
1678 
1679 /*
1680  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1681  * the regular batched writeback done by the flusher threads in
1682  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1683  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1684  *
1685  * To prevent the inode from going away, either the caller must have a reference
1686  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1687  */
1688 static int writeback_single_inode(struct inode *inode,
1689 				  struct writeback_control *wbc)
1690 {
1691 	struct bdi_writeback *wb;
1692 	int ret = 0;
1693 
1694 	spin_lock(&inode->i_lock);
1695 	if (!atomic_read(&inode->i_count))
1696 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1697 	else
1698 		WARN_ON(inode->i_state & I_WILL_FREE);
1699 
1700 	if (inode->i_state & I_SYNC) {
1701 		/*
1702 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1703 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1704 		 * must wait for the existing writeback to complete, then do
1705 		 * writeback again if there's anything left.
1706 		 */
1707 		if (wbc->sync_mode != WB_SYNC_ALL)
1708 			goto out;
1709 		__inode_wait_for_writeback(inode);
1710 	}
1711 	WARN_ON(inode->i_state & I_SYNC);
1712 	/*
1713 	 * If the inode is already fully clean, then there's nothing to do.
1714 	 *
1715 	 * For data-integrity syncs we also need to check whether any pages are
1716 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1717 	 * there are any such pages, we'll need to wait for them.
1718 	 */
1719 	if (!(inode->i_state & I_DIRTY_ALL) &&
1720 	    (wbc->sync_mode != WB_SYNC_ALL ||
1721 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1722 		goto out;
1723 	inode->i_state |= I_SYNC;
1724 	wbc_attach_and_unlock_inode(wbc, inode);
1725 
1726 	ret = __writeback_single_inode(inode, wbc);
1727 
1728 	wbc_detach_inode(wbc);
1729 
1730 	wb = inode_to_wb_and_lock_list(inode);
1731 	spin_lock(&inode->i_lock);
1732 	/*
1733 	 * If the inode is now fully clean, then it can be safely removed from
1734 	 * its writeback list (if any).  Otherwise the flusher threads are
1735 	 * responsible for the writeback lists.
1736 	 */
1737 	if (!(inode->i_state & I_DIRTY_ALL))
1738 		inode_cgwb_move_to_attached(inode, wb);
1739 	spin_unlock(&wb->list_lock);
1740 	inode_sync_complete(inode);
1741 out:
1742 	spin_unlock(&inode->i_lock);
1743 	return ret;
1744 }
1745 
1746 static long writeback_chunk_size(struct bdi_writeback *wb,
1747 				 struct wb_writeback_work *work)
1748 {
1749 	long pages;
1750 
1751 	/*
1752 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1753 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1754 	 * here avoids calling into writeback_inodes_wb() more than once.
1755 	 *
1756 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1757 	 *
1758 	 *      wb_writeback()
1759 	 *          writeback_sb_inodes()       <== called only once
1760 	 *              write_cache_pages()     <== called once for each inode
1761 	 *                   (quickly) tag currently dirty pages
1762 	 *                   (maybe slowly) sync all tagged pages
1763 	 */
1764 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1765 		pages = LONG_MAX;
1766 	else {
1767 		pages = min(wb->avg_write_bandwidth / 2,
1768 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1769 		pages = min(pages, work->nr_pages);
1770 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1771 				   MIN_WRITEBACK_PAGES);
1772 	}
1773 
1774 	return pages;
1775 }
1776 
1777 /*
1778  * Write a portion of b_io inodes which belong to @sb.
1779  *
1780  * Return the number of pages and/or inodes written.
1781  *
1782  * NOTE! This is called with wb->list_lock held, and will
1783  * unlock and relock that for each inode it ends up doing
1784  * IO for.
1785  */
1786 static long writeback_sb_inodes(struct super_block *sb,
1787 				struct bdi_writeback *wb,
1788 				struct wb_writeback_work *work)
1789 {
1790 	struct writeback_control wbc = {
1791 		.sync_mode		= work->sync_mode,
1792 		.tagged_writepages	= work->tagged_writepages,
1793 		.for_kupdate		= work->for_kupdate,
1794 		.for_background		= work->for_background,
1795 		.for_sync		= work->for_sync,
1796 		.range_cyclic		= work->range_cyclic,
1797 		.range_start		= 0,
1798 		.range_end		= LLONG_MAX,
1799 	};
1800 	unsigned long start_time = jiffies;
1801 	long write_chunk;
1802 	long wrote = 0;  /* count both pages and inodes */
1803 
1804 	while (!list_empty(&wb->b_io)) {
1805 		struct inode *inode = wb_inode(wb->b_io.prev);
1806 		struct bdi_writeback *tmp_wb;
1807 
1808 		if (inode->i_sb != sb) {
1809 			if (work->sb) {
1810 				/*
1811 				 * We only want to write back data for this
1812 				 * superblock, move all inodes not belonging
1813 				 * to it back onto the dirty list.
1814 				 */
1815 				redirty_tail(inode, wb);
1816 				continue;
1817 			}
1818 
1819 			/*
1820 			 * The inode belongs to a different superblock.
1821 			 * Bounce back to the caller to unpin this and
1822 			 * pin the next superblock.
1823 			 */
1824 			break;
1825 		}
1826 
1827 		/*
1828 		 * Don't bother with new inodes or inodes being freed, first
1829 		 * kind does not need periodic writeout yet, and for the latter
1830 		 * kind writeout is handled by the freer.
1831 		 */
1832 		spin_lock(&inode->i_lock);
1833 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1834 			redirty_tail_locked(inode, wb);
1835 			spin_unlock(&inode->i_lock);
1836 			continue;
1837 		}
1838 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1839 			/*
1840 			 * If this inode is locked for writeback and we are not
1841 			 * doing writeback-for-data-integrity, move it to
1842 			 * b_more_io so that writeback can proceed with the
1843 			 * other inodes on s_io.
1844 			 *
1845 			 * We'll have another go at writing back this inode
1846 			 * when we completed a full scan of b_io.
1847 			 */
1848 			spin_unlock(&inode->i_lock);
1849 			requeue_io(inode, wb);
1850 			trace_writeback_sb_inodes_requeue(inode);
1851 			continue;
1852 		}
1853 		spin_unlock(&wb->list_lock);
1854 
1855 		/*
1856 		 * We already requeued the inode if it had I_SYNC set and we
1857 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1858 		 * WB_SYNC_ALL case.
1859 		 */
1860 		if (inode->i_state & I_SYNC) {
1861 			/* Wait for I_SYNC. This function drops i_lock... */
1862 			inode_sleep_on_writeback(inode);
1863 			/* Inode may be gone, start again */
1864 			spin_lock(&wb->list_lock);
1865 			continue;
1866 		}
1867 		inode->i_state |= I_SYNC;
1868 		wbc_attach_and_unlock_inode(&wbc, inode);
1869 
1870 		write_chunk = writeback_chunk_size(wb, work);
1871 		wbc.nr_to_write = write_chunk;
1872 		wbc.pages_skipped = 0;
1873 
1874 		/*
1875 		 * We use I_SYNC to pin the inode in memory. While it is set
1876 		 * evict_inode() will wait so the inode cannot be freed.
1877 		 */
1878 		__writeback_single_inode(inode, &wbc);
1879 
1880 		wbc_detach_inode(&wbc);
1881 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1882 		wrote += write_chunk - wbc.nr_to_write;
1883 
1884 		if (need_resched()) {
1885 			/*
1886 			 * We're trying to balance between building up a nice
1887 			 * long list of IOs to improve our merge rate, and
1888 			 * getting those IOs out quickly for anyone throttling
1889 			 * in balance_dirty_pages().  cond_resched() doesn't
1890 			 * unplug, so get our IOs out the door before we
1891 			 * give up the CPU.
1892 			 */
1893 			blk_flush_plug(current);
1894 			cond_resched();
1895 		}
1896 
1897 		/*
1898 		 * Requeue @inode if still dirty.  Be careful as @inode may
1899 		 * have been switched to another wb in the meantime.
1900 		 */
1901 		tmp_wb = inode_to_wb_and_lock_list(inode);
1902 		spin_lock(&inode->i_lock);
1903 		if (!(inode->i_state & I_DIRTY_ALL))
1904 			wrote++;
1905 		requeue_inode(inode, tmp_wb, &wbc);
1906 		inode_sync_complete(inode);
1907 		spin_unlock(&inode->i_lock);
1908 
1909 		if (unlikely(tmp_wb != wb)) {
1910 			spin_unlock(&tmp_wb->list_lock);
1911 			spin_lock(&wb->list_lock);
1912 		}
1913 
1914 		/*
1915 		 * bail out to wb_writeback() often enough to check
1916 		 * background threshold and other termination conditions.
1917 		 */
1918 		if (wrote) {
1919 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1920 				break;
1921 			if (work->nr_pages <= 0)
1922 				break;
1923 		}
1924 	}
1925 	return wrote;
1926 }
1927 
1928 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1929 				  struct wb_writeback_work *work)
1930 {
1931 	unsigned long start_time = jiffies;
1932 	long wrote = 0;
1933 
1934 	while (!list_empty(&wb->b_io)) {
1935 		struct inode *inode = wb_inode(wb->b_io.prev);
1936 		struct super_block *sb = inode->i_sb;
1937 
1938 		if (!trylock_super(sb)) {
1939 			/*
1940 			 * trylock_super() may fail consistently due to
1941 			 * s_umount being grabbed by someone else. Don't use
1942 			 * requeue_io() to avoid busy retrying the inode/sb.
1943 			 */
1944 			redirty_tail(inode, wb);
1945 			continue;
1946 		}
1947 		wrote += writeback_sb_inodes(sb, wb, work);
1948 		up_read(&sb->s_umount);
1949 
1950 		/* refer to the same tests at the end of writeback_sb_inodes */
1951 		if (wrote) {
1952 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1953 				break;
1954 			if (work->nr_pages <= 0)
1955 				break;
1956 		}
1957 	}
1958 	/* Leave any unwritten inodes on b_io */
1959 	return wrote;
1960 }
1961 
1962 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1963 				enum wb_reason reason)
1964 {
1965 	struct wb_writeback_work work = {
1966 		.nr_pages	= nr_pages,
1967 		.sync_mode	= WB_SYNC_NONE,
1968 		.range_cyclic	= 1,
1969 		.reason		= reason,
1970 	};
1971 	struct blk_plug plug;
1972 
1973 	blk_start_plug(&plug);
1974 	spin_lock(&wb->list_lock);
1975 	if (list_empty(&wb->b_io))
1976 		queue_io(wb, &work, jiffies);
1977 	__writeback_inodes_wb(wb, &work);
1978 	spin_unlock(&wb->list_lock);
1979 	blk_finish_plug(&plug);
1980 
1981 	return nr_pages - work.nr_pages;
1982 }
1983 
1984 /*
1985  * Explicit flushing or periodic writeback of "old" data.
1986  *
1987  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1988  * dirtying-time in the inode's address_space.  So this periodic writeback code
1989  * just walks the superblock inode list, writing back any inodes which are
1990  * older than a specific point in time.
1991  *
1992  * Try to run once per dirty_writeback_interval.  But if a writeback event
1993  * takes longer than a dirty_writeback_interval interval, then leave a
1994  * one-second gap.
1995  *
1996  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1997  * all dirty pages if they are all attached to "old" mappings.
1998  */
1999 static long wb_writeback(struct bdi_writeback *wb,
2000 			 struct wb_writeback_work *work)
2001 {
2002 	unsigned long wb_start = jiffies;
2003 	long nr_pages = work->nr_pages;
2004 	unsigned long dirtied_before = jiffies;
2005 	struct inode *inode;
2006 	long progress;
2007 	struct blk_plug plug;
2008 
2009 	blk_start_plug(&plug);
2010 	spin_lock(&wb->list_lock);
2011 	for (;;) {
2012 		/*
2013 		 * Stop writeback when nr_pages has been consumed
2014 		 */
2015 		if (work->nr_pages <= 0)
2016 			break;
2017 
2018 		/*
2019 		 * Background writeout and kupdate-style writeback may
2020 		 * run forever. Stop them if there is other work to do
2021 		 * so that e.g. sync can proceed. They'll be restarted
2022 		 * after the other works are all done.
2023 		 */
2024 		if ((work->for_background || work->for_kupdate) &&
2025 		    !list_empty(&wb->work_list))
2026 			break;
2027 
2028 		/*
2029 		 * For background writeout, stop when we are below the
2030 		 * background dirty threshold
2031 		 */
2032 		if (work->for_background && !wb_over_bg_thresh(wb))
2033 			break;
2034 
2035 		/*
2036 		 * Kupdate and background works are special and we want to
2037 		 * include all inodes that need writing. Livelock avoidance is
2038 		 * handled by these works yielding to any other work so we are
2039 		 * safe.
2040 		 */
2041 		if (work->for_kupdate) {
2042 			dirtied_before = jiffies -
2043 				msecs_to_jiffies(dirty_expire_interval * 10);
2044 		} else if (work->for_background)
2045 			dirtied_before = jiffies;
2046 
2047 		trace_writeback_start(wb, work);
2048 		if (list_empty(&wb->b_io))
2049 			queue_io(wb, work, dirtied_before);
2050 		if (work->sb)
2051 			progress = writeback_sb_inodes(work->sb, wb, work);
2052 		else
2053 			progress = __writeback_inodes_wb(wb, work);
2054 		trace_writeback_written(wb, work);
2055 
2056 		wb_update_bandwidth(wb, wb_start);
2057 
2058 		/*
2059 		 * Did we write something? Try for more
2060 		 *
2061 		 * Dirty inodes are moved to b_io for writeback in batches.
2062 		 * The completion of the current batch does not necessarily
2063 		 * mean the overall work is done. So we keep looping as long
2064 		 * as made some progress on cleaning pages or inodes.
2065 		 */
2066 		if (progress)
2067 			continue;
2068 		/*
2069 		 * No more inodes for IO, bail
2070 		 */
2071 		if (list_empty(&wb->b_more_io))
2072 			break;
2073 		/*
2074 		 * Nothing written. Wait for some inode to
2075 		 * become available for writeback. Otherwise
2076 		 * we'll just busyloop.
2077 		 */
2078 		trace_writeback_wait(wb, work);
2079 		inode = wb_inode(wb->b_more_io.prev);
2080 		spin_lock(&inode->i_lock);
2081 		spin_unlock(&wb->list_lock);
2082 		/* This function drops i_lock... */
2083 		inode_sleep_on_writeback(inode);
2084 		spin_lock(&wb->list_lock);
2085 	}
2086 	spin_unlock(&wb->list_lock);
2087 	blk_finish_plug(&plug);
2088 
2089 	return nr_pages - work->nr_pages;
2090 }
2091 
2092 /*
2093  * Return the next wb_writeback_work struct that hasn't been processed yet.
2094  */
2095 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2096 {
2097 	struct wb_writeback_work *work = NULL;
2098 
2099 	spin_lock_bh(&wb->work_lock);
2100 	if (!list_empty(&wb->work_list)) {
2101 		work = list_entry(wb->work_list.next,
2102 				  struct wb_writeback_work, list);
2103 		list_del_init(&work->list);
2104 	}
2105 	spin_unlock_bh(&wb->work_lock);
2106 	return work;
2107 }
2108 
2109 static long wb_check_background_flush(struct bdi_writeback *wb)
2110 {
2111 	if (wb_over_bg_thresh(wb)) {
2112 
2113 		struct wb_writeback_work work = {
2114 			.nr_pages	= LONG_MAX,
2115 			.sync_mode	= WB_SYNC_NONE,
2116 			.for_background	= 1,
2117 			.range_cyclic	= 1,
2118 			.reason		= WB_REASON_BACKGROUND,
2119 		};
2120 
2121 		return wb_writeback(wb, &work);
2122 	}
2123 
2124 	return 0;
2125 }
2126 
2127 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2128 {
2129 	unsigned long expired;
2130 	long nr_pages;
2131 
2132 	/*
2133 	 * When set to zero, disable periodic writeback
2134 	 */
2135 	if (!dirty_writeback_interval)
2136 		return 0;
2137 
2138 	expired = wb->last_old_flush +
2139 			msecs_to_jiffies(dirty_writeback_interval * 10);
2140 	if (time_before(jiffies, expired))
2141 		return 0;
2142 
2143 	wb->last_old_flush = jiffies;
2144 	nr_pages = get_nr_dirty_pages();
2145 
2146 	if (nr_pages) {
2147 		struct wb_writeback_work work = {
2148 			.nr_pages	= nr_pages,
2149 			.sync_mode	= WB_SYNC_NONE,
2150 			.for_kupdate	= 1,
2151 			.range_cyclic	= 1,
2152 			.reason		= WB_REASON_PERIODIC,
2153 		};
2154 
2155 		return wb_writeback(wb, &work);
2156 	}
2157 
2158 	return 0;
2159 }
2160 
2161 static long wb_check_start_all(struct bdi_writeback *wb)
2162 {
2163 	long nr_pages;
2164 
2165 	if (!test_bit(WB_start_all, &wb->state))
2166 		return 0;
2167 
2168 	nr_pages = get_nr_dirty_pages();
2169 	if (nr_pages) {
2170 		struct wb_writeback_work work = {
2171 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2172 			.sync_mode	= WB_SYNC_NONE,
2173 			.range_cyclic	= 1,
2174 			.reason		= wb->start_all_reason,
2175 		};
2176 
2177 		nr_pages = wb_writeback(wb, &work);
2178 	}
2179 
2180 	clear_bit(WB_start_all, &wb->state);
2181 	return nr_pages;
2182 }
2183 
2184 
2185 /*
2186  * Retrieve work items and do the writeback they describe
2187  */
2188 static long wb_do_writeback(struct bdi_writeback *wb)
2189 {
2190 	struct wb_writeback_work *work;
2191 	long wrote = 0;
2192 
2193 	set_bit(WB_writeback_running, &wb->state);
2194 	while ((work = get_next_work_item(wb)) != NULL) {
2195 		trace_writeback_exec(wb, work);
2196 		wrote += wb_writeback(wb, work);
2197 		finish_writeback_work(wb, work);
2198 	}
2199 
2200 	/*
2201 	 * Check for a flush-everything request
2202 	 */
2203 	wrote += wb_check_start_all(wb);
2204 
2205 	/*
2206 	 * Check for periodic writeback, kupdated() style
2207 	 */
2208 	wrote += wb_check_old_data_flush(wb);
2209 	wrote += wb_check_background_flush(wb);
2210 	clear_bit(WB_writeback_running, &wb->state);
2211 
2212 	return wrote;
2213 }
2214 
2215 /*
2216  * Handle writeback of dirty data for the device backed by this bdi. Also
2217  * reschedules periodically and does kupdated style flushing.
2218  */
2219 void wb_workfn(struct work_struct *work)
2220 {
2221 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2222 						struct bdi_writeback, dwork);
2223 	long pages_written;
2224 
2225 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2226 	current->flags |= PF_SWAPWRITE;
2227 
2228 	if (likely(!current_is_workqueue_rescuer() ||
2229 		   !test_bit(WB_registered, &wb->state))) {
2230 		/*
2231 		 * The normal path.  Keep writing back @wb until its
2232 		 * work_list is empty.  Note that this path is also taken
2233 		 * if @wb is shutting down even when we're running off the
2234 		 * rescuer as work_list needs to be drained.
2235 		 */
2236 		do {
2237 			pages_written = wb_do_writeback(wb);
2238 			trace_writeback_pages_written(pages_written);
2239 		} while (!list_empty(&wb->work_list));
2240 	} else {
2241 		/*
2242 		 * bdi_wq can't get enough workers and we're running off
2243 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2244 		 * enough for efficient IO.
2245 		 */
2246 		pages_written = writeback_inodes_wb(wb, 1024,
2247 						    WB_REASON_FORKER_THREAD);
2248 		trace_writeback_pages_written(pages_written);
2249 	}
2250 
2251 	if (!list_empty(&wb->work_list))
2252 		wb_wakeup(wb);
2253 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2254 		wb_wakeup_delayed(wb);
2255 
2256 	current->flags &= ~PF_SWAPWRITE;
2257 }
2258 
2259 /*
2260  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2261  * write back the whole world.
2262  */
2263 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2264 					 enum wb_reason reason)
2265 {
2266 	struct bdi_writeback *wb;
2267 
2268 	if (!bdi_has_dirty_io(bdi))
2269 		return;
2270 
2271 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2272 		wb_start_writeback(wb, reason);
2273 }
2274 
2275 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2276 				enum wb_reason reason)
2277 {
2278 	rcu_read_lock();
2279 	__wakeup_flusher_threads_bdi(bdi, reason);
2280 	rcu_read_unlock();
2281 }
2282 
2283 /*
2284  * Wakeup the flusher threads to start writeback of all currently dirty pages
2285  */
2286 void wakeup_flusher_threads(enum wb_reason reason)
2287 {
2288 	struct backing_dev_info *bdi;
2289 
2290 	/*
2291 	 * If we are expecting writeback progress we must submit plugged IO.
2292 	 */
2293 	if (blk_needs_flush_plug(current))
2294 		blk_schedule_flush_plug(current);
2295 
2296 	rcu_read_lock();
2297 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2298 		__wakeup_flusher_threads_bdi(bdi, reason);
2299 	rcu_read_unlock();
2300 }
2301 
2302 /*
2303  * Wake up bdi's periodically to make sure dirtytime inodes gets
2304  * written back periodically.  We deliberately do *not* check the
2305  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2306  * kernel to be constantly waking up once there are any dirtytime
2307  * inodes on the system.  So instead we define a separate delayed work
2308  * function which gets called much more rarely.  (By default, only
2309  * once every 12 hours.)
2310  *
2311  * If there is any other write activity going on in the file system,
2312  * this function won't be necessary.  But if the only thing that has
2313  * happened on the file system is a dirtytime inode caused by an atime
2314  * update, we need this infrastructure below to make sure that inode
2315  * eventually gets pushed out to disk.
2316  */
2317 static void wakeup_dirtytime_writeback(struct work_struct *w);
2318 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2319 
2320 static void wakeup_dirtytime_writeback(struct work_struct *w)
2321 {
2322 	struct backing_dev_info *bdi;
2323 
2324 	rcu_read_lock();
2325 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2326 		struct bdi_writeback *wb;
2327 
2328 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2329 			if (!list_empty(&wb->b_dirty_time))
2330 				wb_wakeup(wb);
2331 	}
2332 	rcu_read_unlock();
2333 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2334 }
2335 
2336 static int __init start_dirtytime_writeback(void)
2337 {
2338 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2339 	return 0;
2340 }
2341 __initcall(start_dirtytime_writeback);
2342 
2343 int dirtytime_interval_handler(struct ctl_table *table, int write,
2344 			       void *buffer, size_t *lenp, loff_t *ppos)
2345 {
2346 	int ret;
2347 
2348 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2349 	if (ret == 0 && write)
2350 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2351 	return ret;
2352 }
2353 
2354 /**
2355  * __mark_inode_dirty -	internal function to mark an inode dirty
2356  *
2357  * @inode: inode to mark
2358  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2359  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2360  *	   with I_DIRTY_PAGES.
2361  *
2362  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2363  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2364  *
2365  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2366  * instead of calling this directly.
2367  *
2368  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2369  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2370  * even if they are later hashed, as they will have been marked dirty already.
2371  *
2372  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2373  *
2374  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2375  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2376  * the kernel-internal blockdev inode represents the dirtying time of the
2377  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2378  * page->mapping->host, so the page-dirtying time is recorded in the internal
2379  * blockdev inode.
2380  */
2381 void __mark_inode_dirty(struct inode *inode, int flags)
2382 {
2383 	struct super_block *sb = inode->i_sb;
2384 	int dirtytime = 0;
2385 
2386 	trace_writeback_mark_inode_dirty(inode, flags);
2387 
2388 	if (flags & I_DIRTY_INODE) {
2389 		/*
2390 		 * Notify the filesystem about the inode being dirtied, so that
2391 		 * (if needed) it can update on-disk fields and journal the
2392 		 * inode.  This is only needed when the inode itself is being
2393 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2394 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2395 		 */
2396 		trace_writeback_dirty_inode_start(inode, flags);
2397 		if (sb->s_op->dirty_inode)
2398 			sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2399 		trace_writeback_dirty_inode(inode, flags);
2400 
2401 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2402 		flags &= ~I_DIRTY_TIME;
2403 	} else {
2404 		/*
2405 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2406 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2407 		 * in one call to __mark_inode_dirty().)
2408 		 */
2409 		dirtytime = flags & I_DIRTY_TIME;
2410 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2411 	}
2412 
2413 	/*
2414 	 * Paired with smp_mb() in __writeback_single_inode() for the
2415 	 * following lockless i_state test.  See there for details.
2416 	 */
2417 	smp_mb();
2418 
2419 	if (((inode->i_state & flags) == flags) ||
2420 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2421 		return;
2422 
2423 	spin_lock(&inode->i_lock);
2424 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2425 		goto out_unlock_inode;
2426 	if ((inode->i_state & flags) != flags) {
2427 		const int was_dirty = inode->i_state & I_DIRTY;
2428 
2429 		inode_attach_wb(inode, NULL);
2430 
2431 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2432 		if (flags & I_DIRTY_INODE)
2433 			inode->i_state &= ~I_DIRTY_TIME;
2434 		inode->i_state |= flags;
2435 
2436 		/*
2437 		 * If the inode is queued for writeback by flush worker, just
2438 		 * update its dirty state. Once the flush worker is done with
2439 		 * the inode it will place it on the appropriate superblock
2440 		 * list, based upon its state.
2441 		 */
2442 		if (inode->i_state & I_SYNC_QUEUED)
2443 			goto out_unlock_inode;
2444 
2445 		/*
2446 		 * Only add valid (hashed) inodes to the superblock's
2447 		 * dirty list.  Add blockdev inodes as well.
2448 		 */
2449 		if (!S_ISBLK(inode->i_mode)) {
2450 			if (inode_unhashed(inode))
2451 				goto out_unlock_inode;
2452 		}
2453 		if (inode->i_state & I_FREEING)
2454 			goto out_unlock_inode;
2455 
2456 		/*
2457 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2458 		 * reposition it (that would break b_dirty time-ordering).
2459 		 */
2460 		if (!was_dirty) {
2461 			struct bdi_writeback *wb;
2462 			struct list_head *dirty_list;
2463 			bool wakeup_bdi = false;
2464 
2465 			wb = locked_inode_to_wb_and_lock_list(inode);
2466 
2467 			inode->dirtied_when = jiffies;
2468 			if (dirtytime)
2469 				inode->dirtied_time_when = jiffies;
2470 
2471 			if (inode->i_state & I_DIRTY)
2472 				dirty_list = &wb->b_dirty;
2473 			else
2474 				dirty_list = &wb->b_dirty_time;
2475 
2476 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2477 							       dirty_list);
2478 
2479 			spin_unlock(&wb->list_lock);
2480 			trace_writeback_dirty_inode_enqueue(inode);
2481 
2482 			/*
2483 			 * If this is the first dirty inode for this bdi,
2484 			 * we have to wake-up the corresponding bdi thread
2485 			 * to make sure background write-back happens
2486 			 * later.
2487 			 */
2488 			if (wakeup_bdi &&
2489 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2490 				wb_wakeup_delayed(wb);
2491 			return;
2492 		}
2493 	}
2494 out_unlock_inode:
2495 	spin_unlock(&inode->i_lock);
2496 }
2497 EXPORT_SYMBOL(__mark_inode_dirty);
2498 
2499 /*
2500  * The @s_sync_lock is used to serialise concurrent sync operations
2501  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2502  * Concurrent callers will block on the s_sync_lock rather than doing contending
2503  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2504  * has been issued up to the time this function is enter is guaranteed to be
2505  * completed by the time we have gained the lock and waited for all IO that is
2506  * in progress regardless of the order callers are granted the lock.
2507  */
2508 static void wait_sb_inodes(struct super_block *sb)
2509 {
2510 	LIST_HEAD(sync_list);
2511 
2512 	/*
2513 	 * We need to be protected against the filesystem going from
2514 	 * r/o to r/w or vice versa.
2515 	 */
2516 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2517 
2518 	mutex_lock(&sb->s_sync_lock);
2519 
2520 	/*
2521 	 * Splice the writeback list onto a temporary list to avoid waiting on
2522 	 * inodes that have started writeback after this point.
2523 	 *
2524 	 * Use rcu_read_lock() to keep the inodes around until we have a
2525 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2526 	 * the local list because inodes can be dropped from either by writeback
2527 	 * completion.
2528 	 */
2529 	rcu_read_lock();
2530 	spin_lock_irq(&sb->s_inode_wblist_lock);
2531 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2532 
2533 	/*
2534 	 * Data integrity sync. Must wait for all pages under writeback, because
2535 	 * there may have been pages dirtied before our sync call, but which had
2536 	 * writeout started before we write it out.  In which case, the inode
2537 	 * may not be on the dirty list, but we still have to wait for that
2538 	 * writeout.
2539 	 */
2540 	while (!list_empty(&sync_list)) {
2541 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2542 						       i_wb_list);
2543 		struct address_space *mapping = inode->i_mapping;
2544 
2545 		/*
2546 		 * Move each inode back to the wb list before we drop the lock
2547 		 * to preserve consistency between i_wb_list and the mapping
2548 		 * writeback tag. Writeback completion is responsible to remove
2549 		 * the inode from either list once the writeback tag is cleared.
2550 		 */
2551 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2552 
2553 		/*
2554 		 * The mapping can appear untagged while still on-list since we
2555 		 * do not have the mapping lock. Skip it here, wb completion
2556 		 * will remove it.
2557 		 */
2558 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2559 			continue;
2560 
2561 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2562 
2563 		spin_lock(&inode->i_lock);
2564 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2565 			spin_unlock(&inode->i_lock);
2566 
2567 			spin_lock_irq(&sb->s_inode_wblist_lock);
2568 			continue;
2569 		}
2570 		__iget(inode);
2571 		spin_unlock(&inode->i_lock);
2572 		rcu_read_unlock();
2573 
2574 		/*
2575 		 * We keep the error status of individual mapping so that
2576 		 * applications can catch the writeback error using fsync(2).
2577 		 * See filemap_fdatawait_keep_errors() for details.
2578 		 */
2579 		filemap_fdatawait_keep_errors(mapping);
2580 
2581 		cond_resched();
2582 
2583 		iput(inode);
2584 
2585 		rcu_read_lock();
2586 		spin_lock_irq(&sb->s_inode_wblist_lock);
2587 	}
2588 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2589 	rcu_read_unlock();
2590 	mutex_unlock(&sb->s_sync_lock);
2591 }
2592 
2593 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2594 				     enum wb_reason reason, bool skip_if_busy)
2595 {
2596 	struct backing_dev_info *bdi = sb->s_bdi;
2597 	DEFINE_WB_COMPLETION(done, bdi);
2598 	struct wb_writeback_work work = {
2599 		.sb			= sb,
2600 		.sync_mode		= WB_SYNC_NONE,
2601 		.tagged_writepages	= 1,
2602 		.done			= &done,
2603 		.nr_pages		= nr,
2604 		.reason			= reason,
2605 	};
2606 
2607 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2608 		return;
2609 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2610 
2611 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2612 	wb_wait_for_completion(&done);
2613 }
2614 
2615 /**
2616  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2617  * @sb: the superblock
2618  * @nr: the number of pages to write
2619  * @reason: reason why some writeback work initiated
2620  *
2621  * Start writeback on some inodes on this super_block. No guarantees are made
2622  * on how many (if any) will be written, and this function does not wait
2623  * for IO completion of submitted IO.
2624  */
2625 void writeback_inodes_sb_nr(struct super_block *sb,
2626 			    unsigned long nr,
2627 			    enum wb_reason reason)
2628 {
2629 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2630 }
2631 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2632 
2633 /**
2634  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2635  * @sb: the superblock
2636  * @reason: reason why some writeback work was initiated
2637  *
2638  * Start writeback on some inodes on this super_block. No guarantees are made
2639  * on how many (if any) will be written, and this function does not wait
2640  * for IO completion of submitted IO.
2641  */
2642 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2643 {
2644 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2645 }
2646 EXPORT_SYMBOL(writeback_inodes_sb);
2647 
2648 /**
2649  * try_to_writeback_inodes_sb - try to start writeback if none underway
2650  * @sb: the superblock
2651  * @reason: reason why some writeback work was initiated
2652  *
2653  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2654  */
2655 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2656 {
2657 	if (!down_read_trylock(&sb->s_umount))
2658 		return;
2659 
2660 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2661 	up_read(&sb->s_umount);
2662 }
2663 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2664 
2665 /**
2666  * sync_inodes_sb	-	sync sb inode pages
2667  * @sb: the superblock
2668  *
2669  * This function writes and waits on any dirty inode belonging to this
2670  * super_block.
2671  */
2672 void sync_inodes_sb(struct super_block *sb)
2673 {
2674 	struct backing_dev_info *bdi = sb->s_bdi;
2675 	DEFINE_WB_COMPLETION(done, bdi);
2676 	struct wb_writeback_work work = {
2677 		.sb		= sb,
2678 		.sync_mode	= WB_SYNC_ALL,
2679 		.nr_pages	= LONG_MAX,
2680 		.range_cyclic	= 0,
2681 		.done		= &done,
2682 		.reason		= WB_REASON_SYNC,
2683 		.for_sync	= 1,
2684 	};
2685 
2686 	/*
2687 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2688 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2689 	 * bdi_has_dirty() need to be written out too.
2690 	 */
2691 	if (bdi == &noop_backing_dev_info)
2692 		return;
2693 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2694 
2695 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2696 	bdi_down_write_wb_switch_rwsem(bdi);
2697 	bdi_split_work_to_wbs(bdi, &work, false);
2698 	wb_wait_for_completion(&done);
2699 	bdi_up_write_wb_switch_rwsem(bdi);
2700 
2701 	wait_sb_inodes(sb);
2702 }
2703 EXPORT_SYMBOL(sync_inodes_sb);
2704 
2705 /**
2706  * write_inode_now	-	write an inode to disk
2707  * @inode: inode to write to disk
2708  * @sync: whether the write should be synchronous or not
2709  *
2710  * This function commits an inode to disk immediately if it is dirty. This is
2711  * primarily needed by knfsd.
2712  *
2713  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2714  */
2715 int write_inode_now(struct inode *inode, int sync)
2716 {
2717 	struct writeback_control wbc = {
2718 		.nr_to_write = LONG_MAX,
2719 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2720 		.range_start = 0,
2721 		.range_end = LLONG_MAX,
2722 	};
2723 
2724 	if (!mapping_can_writeback(inode->i_mapping))
2725 		wbc.nr_to_write = 0;
2726 
2727 	might_sleep();
2728 	return writeback_single_inode(inode, &wbc);
2729 }
2730 EXPORT_SYMBOL(write_inode_now);
2731 
2732 /**
2733  * sync_inode - write an inode and its pages to disk.
2734  * @inode: the inode to sync
2735  * @wbc: controls the writeback mode
2736  *
2737  * sync_inode() will write an inode and its pages to disk.  It will also
2738  * correctly update the inode on its superblock's dirty inode lists and will
2739  * update inode->i_state.
2740  *
2741  * The caller must have a ref on the inode.
2742  */
2743 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2744 {
2745 	return writeback_single_inode(inode, wbc);
2746 }
2747 EXPORT_SYMBOL(sync_inode);
2748 
2749 /**
2750  * sync_inode_metadata - write an inode to disk
2751  * @inode: the inode to sync
2752  * @wait: wait for I/O to complete.
2753  *
2754  * Write an inode to disk and adjust its dirty state after completion.
2755  *
2756  * Note: only writes the actual inode, no associated data or other metadata.
2757  */
2758 int sync_inode_metadata(struct inode *inode, int wait)
2759 {
2760 	struct writeback_control wbc = {
2761 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2762 		.nr_to_write = 0, /* metadata-only */
2763 	};
2764 
2765 	return sync_inode(inode, &wbc);
2766 }
2767 EXPORT_SYMBOL(sync_inode_metadata);
2768