1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 50 enum wb_reason reason; /* why was writeback initiated? */ 51 52 struct list_head list; /* pending work list */ 53 struct completion *done; /* set if the caller waits */ 54 }; 55 56 /* 57 * If an inode is constantly having its pages dirtied, but then the 58 * updates stop dirtytime_expire_interval seconds in the past, it's 59 * possible for the worst case time between when an inode has its 60 * timestamps updated and when they finally get written out to be two 61 * dirtytime_expire_intervals. We set the default to 12 hours (in 62 * seconds), which means most of the time inodes will have their 63 * timestamps written to disk after 12 hours, but in the worst case a 64 * few inodes might not their timestamps updated for 24 hours. 65 */ 66 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 67 68 /** 69 * writeback_in_progress - determine whether there is writeback in progress 70 * @bdi: the device's backing_dev_info structure. 71 * 72 * Determine whether there is writeback waiting to be handled against a 73 * backing device. 74 */ 75 int writeback_in_progress(struct backing_dev_info *bdi) 76 { 77 return test_bit(BDI_writeback_running, &bdi->state); 78 } 79 EXPORT_SYMBOL(writeback_in_progress); 80 81 struct backing_dev_info *inode_to_bdi(struct inode *inode) 82 { 83 struct super_block *sb; 84 85 if (!inode) 86 return &noop_backing_dev_info; 87 88 sb = inode->i_sb; 89 #ifdef CONFIG_BLOCK 90 if (sb_is_blkdev_sb(sb)) 91 return blk_get_backing_dev_info(I_BDEV(inode)); 92 #endif 93 return sb->s_bdi; 94 } 95 EXPORT_SYMBOL_GPL(inode_to_bdi); 96 97 static inline struct inode *wb_inode(struct list_head *head) 98 { 99 return list_entry(head, struct inode, i_wb_list); 100 } 101 102 /* 103 * Include the creation of the trace points after defining the 104 * wb_writeback_work structure and inline functions so that the definition 105 * remains local to this file. 106 */ 107 #define CREATE_TRACE_POINTS 108 #include <trace/events/writeback.h> 109 110 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 111 112 static void bdi_wakeup_thread(struct backing_dev_info *bdi) 113 { 114 spin_lock_bh(&bdi->wb_lock); 115 if (test_bit(BDI_registered, &bdi->state)) 116 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 117 spin_unlock_bh(&bdi->wb_lock); 118 } 119 120 static void bdi_queue_work(struct backing_dev_info *bdi, 121 struct wb_writeback_work *work) 122 { 123 trace_writeback_queue(bdi, work); 124 125 spin_lock_bh(&bdi->wb_lock); 126 if (!test_bit(BDI_registered, &bdi->state)) { 127 if (work->done) 128 complete(work->done); 129 goto out_unlock; 130 } 131 list_add_tail(&work->list, &bdi->work_list); 132 mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0); 133 out_unlock: 134 spin_unlock_bh(&bdi->wb_lock); 135 } 136 137 static void 138 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 139 bool range_cyclic, enum wb_reason reason) 140 { 141 struct wb_writeback_work *work; 142 143 /* 144 * This is WB_SYNC_NONE writeback, so if allocation fails just 145 * wakeup the thread for old dirty data writeback 146 */ 147 work = kzalloc(sizeof(*work), GFP_ATOMIC); 148 if (!work) { 149 trace_writeback_nowork(bdi); 150 bdi_wakeup_thread(bdi); 151 return; 152 } 153 154 work->sync_mode = WB_SYNC_NONE; 155 work->nr_pages = nr_pages; 156 work->range_cyclic = range_cyclic; 157 work->reason = reason; 158 159 bdi_queue_work(bdi, work); 160 } 161 162 /** 163 * bdi_start_writeback - start writeback 164 * @bdi: the backing device to write from 165 * @nr_pages: the number of pages to write 166 * @reason: reason why some writeback work was initiated 167 * 168 * Description: 169 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 170 * started when this function returns, we make no guarantees on 171 * completion. Caller need not hold sb s_umount semaphore. 172 * 173 */ 174 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 175 enum wb_reason reason) 176 { 177 __bdi_start_writeback(bdi, nr_pages, true, reason); 178 } 179 180 /** 181 * bdi_start_background_writeback - start background writeback 182 * @bdi: the backing device to write from 183 * 184 * Description: 185 * This makes sure WB_SYNC_NONE background writeback happens. When 186 * this function returns, it is only guaranteed that for given BDI 187 * some IO is happening if we are over background dirty threshold. 188 * Caller need not hold sb s_umount semaphore. 189 */ 190 void bdi_start_background_writeback(struct backing_dev_info *bdi) 191 { 192 /* 193 * We just wake up the flusher thread. It will perform background 194 * writeback as soon as there is no other work to do. 195 */ 196 trace_writeback_wake_background(bdi); 197 bdi_wakeup_thread(bdi); 198 } 199 200 /* 201 * Remove the inode from the writeback list it is on. 202 */ 203 void inode_wb_list_del(struct inode *inode) 204 { 205 struct backing_dev_info *bdi = inode_to_bdi(inode); 206 207 spin_lock(&bdi->wb.list_lock); 208 list_del_init(&inode->i_wb_list); 209 spin_unlock(&bdi->wb.list_lock); 210 } 211 212 /* 213 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 214 * furthest end of its superblock's dirty-inode list. 215 * 216 * Before stamping the inode's ->dirtied_when, we check to see whether it is 217 * already the most-recently-dirtied inode on the b_dirty list. If that is 218 * the case then the inode must have been redirtied while it was being written 219 * out and we don't reset its dirtied_when. 220 */ 221 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 222 { 223 assert_spin_locked(&wb->list_lock); 224 if (!list_empty(&wb->b_dirty)) { 225 struct inode *tail; 226 227 tail = wb_inode(wb->b_dirty.next); 228 if (time_before(inode->dirtied_when, tail->dirtied_when)) 229 inode->dirtied_when = jiffies; 230 } 231 list_move(&inode->i_wb_list, &wb->b_dirty); 232 } 233 234 /* 235 * requeue inode for re-scanning after bdi->b_io list is exhausted. 236 */ 237 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 238 { 239 assert_spin_locked(&wb->list_lock); 240 list_move(&inode->i_wb_list, &wb->b_more_io); 241 } 242 243 static void inode_sync_complete(struct inode *inode) 244 { 245 inode->i_state &= ~I_SYNC; 246 /* If inode is clean an unused, put it into LRU now... */ 247 inode_add_lru(inode); 248 /* Waiters must see I_SYNC cleared before being woken up */ 249 smp_mb(); 250 wake_up_bit(&inode->i_state, __I_SYNC); 251 } 252 253 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 254 { 255 bool ret = time_after(inode->dirtied_when, t); 256 #ifndef CONFIG_64BIT 257 /* 258 * For inodes being constantly redirtied, dirtied_when can get stuck. 259 * It _appears_ to be in the future, but is actually in distant past. 260 * This test is necessary to prevent such wrapped-around relative times 261 * from permanently stopping the whole bdi writeback. 262 */ 263 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 264 #endif 265 return ret; 266 } 267 268 #define EXPIRE_DIRTY_ATIME 0x0001 269 270 /* 271 * Move expired (dirtied before work->older_than_this) dirty inodes from 272 * @delaying_queue to @dispatch_queue. 273 */ 274 static int move_expired_inodes(struct list_head *delaying_queue, 275 struct list_head *dispatch_queue, 276 int flags, 277 struct wb_writeback_work *work) 278 { 279 unsigned long *older_than_this = NULL; 280 unsigned long expire_time; 281 LIST_HEAD(tmp); 282 struct list_head *pos, *node; 283 struct super_block *sb = NULL; 284 struct inode *inode; 285 int do_sb_sort = 0; 286 int moved = 0; 287 288 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 289 older_than_this = work->older_than_this; 290 else if (!work->for_sync) { 291 expire_time = jiffies - (dirtytime_expire_interval * HZ); 292 older_than_this = &expire_time; 293 } 294 while (!list_empty(delaying_queue)) { 295 inode = wb_inode(delaying_queue->prev); 296 if (older_than_this && 297 inode_dirtied_after(inode, *older_than_this)) 298 break; 299 list_move(&inode->i_wb_list, &tmp); 300 moved++; 301 if (flags & EXPIRE_DIRTY_ATIME) 302 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 303 if (sb_is_blkdev_sb(inode->i_sb)) 304 continue; 305 if (sb && sb != inode->i_sb) 306 do_sb_sort = 1; 307 sb = inode->i_sb; 308 } 309 310 /* just one sb in list, splice to dispatch_queue and we're done */ 311 if (!do_sb_sort) { 312 list_splice(&tmp, dispatch_queue); 313 goto out; 314 } 315 316 /* Move inodes from one superblock together */ 317 while (!list_empty(&tmp)) { 318 sb = wb_inode(tmp.prev)->i_sb; 319 list_for_each_prev_safe(pos, node, &tmp) { 320 inode = wb_inode(pos); 321 if (inode->i_sb == sb) 322 list_move(&inode->i_wb_list, dispatch_queue); 323 } 324 } 325 out: 326 return moved; 327 } 328 329 /* 330 * Queue all expired dirty inodes for io, eldest first. 331 * Before 332 * newly dirtied b_dirty b_io b_more_io 333 * =============> gf edc BA 334 * After 335 * newly dirtied b_dirty b_io b_more_io 336 * =============> g fBAedc 337 * | 338 * +--> dequeue for IO 339 */ 340 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 341 { 342 int moved; 343 344 assert_spin_locked(&wb->list_lock); 345 list_splice_init(&wb->b_more_io, &wb->b_io); 346 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 347 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 348 EXPIRE_DIRTY_ATIME, work); 349 trace_writeback_queue_io(wb, work, moved); 350 } 351 352 static int write_inode(struct inode *inode, struct writeback_control *wbc) 353 { 354 int ret; 355 356 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 357 trace_writeback_write_inode_start(inode, wbc); 358 ret = inode->i_sb->s_op->write_inode(inode, wbc); 359 trace_writeback_write_inode(inode, wbc); 360 return ret; 361 } 362 return 0; 363 } 364 365 /* 366 * Wait for writeback on an inode to complete. Called with i_lock held. 367 * Caller must make sure inode cannot go away when we drop i_lock. 368 */ 369 static void __inode_wait_for_writeback(struct inode *inode) 370 __releases(inode->i_lock) 371 __acquires(inode->i_lock) 372 { 373 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 374 wait_queue_head_t *wqh; 375 376 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 377 while (inode->i_state & I_SYNC) { 378 spin_unlock(&inode->i_lock); 379 __wait_on_bit(wqh, &wq, bit_wait, 380 TASK_UNINTERRUPTIBLE); 381 spin_lock(&inode->i_lock); 382 } 383 } 384 385 /* 386 * Wait for writeback on an inode to complete. Caller must have inode pinned. 387 */ 388 void inode_wait_for_writeback(struct inode *inode) 389 { 390 spin_lock(&inode->i_lock); 391 __inode_wait_for_writeback(inode); 392 spin_unlock(&inode->i_lock); 393 } 394 395 /* 396 * Sleep until I_SYNC is cleared. This function must be called with i_lock 397 * held and drops it. It is aimed for callers not holding any inode reference 398 * so once i_lock is dropped, inode can go away. 399 */ 400 static void inode_sleep_on_writeback(struct inode *inode) 401 __releases(inode->i_lock) 402 { 403 DEFINE_WAIT(wait); 404 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 405 int sleep; 406 407 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 408 sleep = inode->i_state & I_SYNC; 409 spin_unlock(&inode->i_lock); 410 if (sleep) 411 schedule(); 412 finish_wait(wqh, &wait); 413 } 414 415 /* 416 * Find proper writeback list for the inode depending on its current state and 417 * possibly also change of its state while we were doing writeback. Here we 418 * handle things such as livelock prevention or fairness of writeback among 419 * inodes. This function can be called only by flusher thread - noone else 420 * processes all inodes in writeback lists and requeueing inodes behind flusher 421 * thread's back can have unexpected consequences. 422 */ 423 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 424 struct writeback_control *wbc) 425 { 426 if (inode->i_state & I_FREEING) 427 return; 428 429 /* 430 * Sync livelock prevention. Each inode is tagged and synced in one 431 * shot. If still dirty, it will be redirty_tail()'ed below. Update 432 * the dirty time to prevent enqueue and sync it again. 433 */ 434 if ((inode->i_state & I_DIRTY) && 435 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 436 inode->dirtied_when = jiffies; 437 438 if (wbc->pages_skipped) { 439 /* 440 * writeback is not making progress due to locked 441 * buffers. Skip this inode for now. 442 */ 443 redirty_tail(inode, wb); 444 return; 445 } 446 447 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 448 /* 449 * We didn't write back all the pages. nfs_writepages() 450 * sometimes bales out without doing anything. 451 */ 452 if (wbc->nr_to_write <= 0) { 453 /* Slice used up. Queue for next turn. */ 454 requeue_io(inode, wb); 455 } else { 456 /* 457 * Writeback blocked by something other than 458 * congestion. Delay the inode for some time to 459 * avoid spinning on the CPU (100% iowait) 460 * retrying writeback of the dirty page/inode 461 * that cannot be performed immediately. 462 */ 463 redirty_tail(inode, wb); 464 } 465 } else if (inode->i_state & I_DIRTY) { 466 /* 467 * Filesystems can dirty the inode during writeback operations, 468 * such as delayed allocation during submission or metadata 469 * updates after data IO completion. 470 */ 471 redirty_tail(inode, wb); 472 } else if (inode->i_state & I_DIRTY_TIME) { 473 inode->dirtied_when = jiffies; 474 list_move(&inode->i_wb_list, &wb->b_dirty_time); 475 } else { 476 /* The inode is clean. Remove from writeback lists. */ 477 list_del_init(&inode->i_wb_list); 478 } 479 } 480 481 /* 482 * Write out an inode and its dirty pages. Do not update the writeback list 483 * linkage. That is left to the caller. The caller is also responsible for 484 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 485 */ 486 static int 487 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 488 { 489 struct address_space *mapping = inode->i_mapping; 490 long nr_to_write = wbc->nr_to_write; 491 unsigned dirty; 492 int ret; 493 494 WARN_ON(!(inode->i_state & I_SYNC)); 495 496 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 497 498 ret = do_writepages(mapping, wbc); 499 500 /* 501 * Make sure to wait on the data before writing out the metadata. 502 * This is important for filesystems that modify metadata on data 503 * I/O completion. We don't do it for sync(2) writeback because it has a 504 * separate, external IO completion path and ->sync_fs for guaranteeing 505 * inode metadata is written back correctly. 506 */ 507 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 508 int err = filemap_fdatawait(mapping); 509 if (ret == 0) 510 ret = err; 511 } 512 513 /* 514 * Some filesystems may redirty the inode during the writeback 515 * due to delalloc, clear dirty metadata flags right before 516 * write_inode() 517 */ 518 spin_lock(&inode->i_lock); 519 520 dirty = inode->i_state & I_DIRTY; 521 if (inode->i_state & I_DIRTY_TIME) { 522 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 523 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 524 unlikely(time_after(jiffies, 525 (inode->dirtied_time_when + 526 dirtytime_expire_interval * HZ)))) { 527 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 528 trace_writeback_lazytime(inode); 529 } 530 } else 531 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 532 inode->i_state &= ~dirty; 533 534 /* 535 * Paired with smp_mb() in __mark_inode_dirty(). This allows 536 * __mark_inode_dirty() to test i_state without grabbing i_lock - 537 * either they see the I_DIRTY bits cleared or we see the dirtied 538 * inode. 539 * 540 * I_DIRTY_PAGES is always cleared together above even if @mapping 541 * still has dirty pages. The flag is reinstated after smp_mb() if 542 * necessary. This guarantees that either __mark_inode_dirty() 543 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 544 */ 545 smp_mb(); 546 547 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 548 inode->i_state |= I_DIRTY_PAGES; 549 550 spin_unlock(&inode->i_lock); 551 552 if (dirty & I_DIRTY_TIME) 553 mark_inode_dirty_sync(inode); 554 /* Don't write the inode if only I_DIRTY_PAGES was set */ 555 if (dirty & ~I_DIRTY_PAGES) { 556 int err = write_inode(inode, wbc); 557 if (ret == 0) 558 ret = err; 559 } 560 trace_writeback_single_inode(inode, wbc, nr_to_write); 561 return ret; 562 } 563 564 /* 565 * Write out an inode's dirty pages. Either the caller has an active reference 566 * on the inode or the inode has I_WILL_FREE set. 567 * 568 * This function is designed to be called for writing back one inode which 569 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 570 * and does more profound writeback list handling in writeback_sb_inodes(). 571 */ 572 static int 573 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 574 struct writeback_control *wbc) 575 { 576 int ret = 0; 577 578 spin_lock(&inode->i_lock); 579 if (!atomic_read(&inode->i_count)) 580 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 581 else 582 WARN_ON(inode->i_state & I_WILL_FREE); 583 584 if (inode->i_state & I_SYNC) { 585 if (wbc->sync_mode != WB_SYNC_ALL) 586 goto out; 587 /* 588 * It's a data-integrity sync. We must wait. Since callers hold 589 * inode reference or inode has I_WILL_FREE set, it cannot go 590 * away under us. 591 */ 592 __inode_wait_for_writeback(inode); 593 } 594 WARN_ON(inode->i_state & I_SYNC); 595 /* 596 * Skip inode if it is clean and we have no outstanding writeback in 597 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 598 * function since flusher thread may be doing for example sync in 599 * parallel and if we move the inode, it could get skipped. So here we 600 * make sure inode is on some writeback list and leave it there unless 601 * we have completely cleaned the inode. 602 */ 603 if (!(inode->i_state & I_DIRTY_ALL) && 604 (wbc->sync_mode != WB_SYNC_ALL || 605 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 606 goto out; 607 inode->i_state |= I_SYNC; 608 spin_unlock(&inode->i_lock); 609 610 ret = __writeback_single_inode(inode, wbc); 611 612 spin_lock(&wb->list_lock); 613 spin_lock(&inode->i_lock); 614 /* 615 * If inode is clean, remove it from writeback lists. Otherwise don't 616 * touch it. See comment above for explanation. 617 */ 618 if (!(inode->i_state & I_DIRTY_ALL)) 619 list_del_init(&inode->i_wb_list); 620 spin_unlock(&wb->list_lock); 621 inode_sync_complete(inode); 622 out: 623 spin_unlock(&inode->i_lock); 624 return ret; 625 } 626 627 static long writeback_chunk_size(struct backing_dev_info *bdi, 628 struct wb_writeback_work *work) 629 { 630 long pages; 631 632 /* 633 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 634 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 635 * here avoids calling into writeback_inodes_wb() more than once. 636 * 637 * The intended call sequence for WB_SYNC_ALL writeback is: 638 * 639 * wb_writeback() 640 * writeback_sb_inodes() <== called only once 641 * write_cache_pages() <== called once for each inode 642 * (quickly) tag currently dirty pages 643 * (maybe slowly) sync all tagged pages 644 */ 645 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 646 pages = LONG_MAX; 647 else { 648 pages = min(bdi->avg_write_bandwidth / 2, 649 global_dirty_limit / DIRTY_SCOPE); 650 pages = min(pages, work->nr_pages); 651 pages = round_down(pages + MIN_WRITEBACK_PAGES, 652 MIN_WRITEBACK_PAGES); 653 } 654 655 return pages; 656 } 657 658 /* 659 * Write a portion of b_io inodes which belong to @sb. 660 * 661 * Return the number of pages and/or inodes written. 662 */ 663 static long writeback_sb_inodes(struct super_block *sb, 664 struct bdi_writeback *wb, 665 struct wb_writeback_work *work) 666 { 667 struct writeback_control wbc = { 668 .sync_mode = work->sync_mode, 669 .tagged_writepages = work->tagged_writepages, 670 .for_kupdate = work->for_kupdate, 671 .for_background = work->for_background, 672 .for_sync = work->for_sync, 673 .range_cyclic = work->range_cyclic, 674 .range_start = 0, 675 .range_end = LLONG_MAX, 676 }; 677 unsigned long start_time = jiffies; 678 long write_chunk; 679 long wrote = 0; /* count both pages and inodes */ 680 681 while (!list_empty(&wb->b_io)) { 682 struct inode *inode = wb_inode(wb->b_io.prev); 683 684 if (inode->i_sb != sb) { 685 if (work->sb) { 686 /* 687 * We only want to write back data for this 688 * superblock, move all inodes not belonging 689 * to it back onto the dirty list. 690 */ 691 redirty_tail(inode, wb); 692 continue; 693 } 694 695 /* 696 * The inode belongs to a different superblock. 697 * Bounce back to the caller to unpin this and 698 * pin the next superblock. 699 */ 700 break; 701 } 702 703 /* 704 * Don't bother with new inodes or inodes being freed, first 705 * kind does not need periodic writeout yet, and for the latter 706 * kind writeout is handled by the freer. 707 */ 708 spin_lock(&inode->i_lock); 709 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 710 spin_unlock(&inode->i_lock); 711 redirty_tail(inode, wb); 712 continue; 713 } 714 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 715 /* 716 * If this inode is locked for writeback and we are not 717 * doing writeback-for-data-integrity, move it to 718 * b_more_io so that writeback can proceed with the 719 * other inodes on s_io. 720 * 721 * We'll have another go at writing back this inode 722 * when we completed a full scan of b_io. 723 */ 724 spin_unlock(&inode->i_lock); 725 requeue_io(inode, wb); 726 trace_writeback_sb_inodes_requeue(inode); 727 continue; 728 } 729 spin_unlock(&wb->list_lock); 730 731 /* 732 * We already requeued the inode if it had I_SYNC set and we 733 * are doing WB_SYNC_NONE writeback. So this catches only the 734 * WB_SYNC_ALL case. 735 */ 736 if (inode->i_state & I_SYNC) { 737 /* Wait for I_SYNC. This function drops i_lock... */ 738 inode_sleep_on_writeback(inode); 739 /* Inode may be gone, start again */ 740 spin_lock(&wb->list_lock); 741 continue; 742 } 743 inode->i_state |= I_SYNC; 744 spin_unlock(&inode->i_lock); 745 746 write_chunk = writeback_chunk_size(wb->bdi, work); 747 wbc.nr_to_write = write_chunk; 748 wbc.pages_skipped = 0; 749 750 /* 751 * We use I_SYNC to pin the inode in memory. While it is set 752 * evict_inode() will wait so the inode cannot be freed. 753 */ 754 __writeback_single_inode(inode, &wbc); 755 756 work->nr_pages -= write_chunk - wbc.nr_to_write; 757 wrote += write_chunk - wbc.nr_to_write; 758 spin_lock(&wb->list_lock); 759 spin_lock(&inode->i_lock); 760 if (!(inode->i_state & I_DIRTY_ALL)) 761 wrote++; 762 requeue_inode(inode, wb, &wbc); 763 inode_sync_complete(inode); 764 spin_unlock(&inode->i_lock); 765 cond_resched_lock(&wb->list_lock); 766 /* 767 * bail out to wb_writeback() often enough to check 768 * background threshold and other termination conditions. 769 */ 770 if (wrote) { 771 if (time_is_before_jiffies(start_time + HZ / 10UL)) 772 break; 773 if (work->nr_pages <= 0) 774 break; 775 } 776 } 777 return wrote; 778 } 779 780 static long __writeback_inodes_wb(struct bdi_writeback *wb, 781 struct wb_writeback_work *work) 782 { 783 unsigned long start_time = jiffies; 784 long wrote = 0; 785 786 while (!list_empty(&wb->b_io)) { 787 struct inode *inode = wb_inode(wb->b_io.prev); 788 struct super_block *sb = inode->i_sb; 789 790 if (!trylock_super(sb)) { 791 /* 792 * trylock_super() may fail consistently due to 793 * s_umount being grabbed by someone else. Don't use 794 * requeue_io() to avoid busy retrying the inode/sb. 795 */ 796 redirty_tail(inode, wb); 797 continue; 798 } 799 wrote += writeback_sb_inodes(sb, wb, work); 800 up_read(&sb->s_umount); 801 802 /* refer to the same tests at the end of writeback_sb_inodes */ 803 if (wrote) { 804 if (time_is_before_jiffies(start_time + HZ / 10UL)) 805 break; 806 if (work->nr_pages <= 0) 807 break; 808 } 809 } 810 /* Leave any unwritten inodes on b_io */ 811 return wrote; 812 } 813 814 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 815 enum wb_reason reason) 816 { 817 struct wb_writeback_work work = { 818 .nr_pages = nr_pages, 819 .sync_mode = WB_SYNC_NONE, 820 .range_cyclic = 1, 821 .reason = reason, 822 }; 823 824 spin_lock(&wb->list_lock); 825 if (list_empty(&wb->b_io)) 826 queue_io(wb, &work); 827 __writeback_inodes_wb(wb, &work); 828 spin_unlock(&wb->list_lock); 829 830 return nr_pages - work.nr_pages; 831 } 832 833 static bool over_bground_thresh(struct backing_dev_info *bdi) 834 { 835 unsigned long background_thresh, dirty_thresh; 836 837 global_dirty_limits(&background_thresh, &dirty_thresh); 838 839 if (global_page_state(NR_FILE_DIRTY) + 840 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 841 return true; 842 843 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 844 bdi_dirty_limit(bdi, background_thresh)) 845 return true; 846 847 return false; 848 } 849 850 /* 851 * Called under wb->list_lock. If there are multiple wb per bdi, 852 * only the flusher working on the first wb should do it. 853 */ 854 static void wb_update_bandwidth(struct bdi_writeback *wb, 855 unsigned long start_time) 856 { 857 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 858 } 859 860 /* 861 * Explicit flushing or periodic writeback of "old" data. 862 * 863 * Define "old": the first time one of an inode's pages is dirtied, we mark the 864 * dirtying-time in the inode's address_space. So this periodic writeback code 865 * just walks the superblock inode list, writing back any inodes which are 866 * older than a specific point in time. 867 * 868 * Try to run once per dirty_writeback_interval. But if a writeback event 869 * takes longer than a dirty_writeback_interval interval, then leave a 870 * one-second gap. 871 * 872 * older_than_this takes precedence over nr_to_write. So we'll only write back 873 * all dirty pages if they are all attached to "old" mappings. 874 */ 875 static long wb_writeback(struct bdi_writeback *wb, 876 struct wb_writeback_work *work) 877 { 878 unsigned long wb_start = jiffies; 879 long nr_pages = work->nr_pages; 880 unsigned long oldest_jif; 881 struct inode *inode; 882 long progress; 883 884 oldest_jif = jiffies; 885 work->older_than_this = &oldest_jif; 886 887 spin_lock(&wb->list_lock); 888 for (;;) { 889 /* 890 * Stop writeback when nr_pages has been consumed 891 */ 892 if (work->nr_pages <= 0) 893 break; 894 895 /* 896 * Background writeout and kupdate-style writeback may 897 * run forever. Stop them if there is other work to do 898 * so that e.g. sync can proceed. They'll be restarted 899 * after the other works are all done. 900 */ 901 if ((work->for_background || work->for_kupdate) && 902 !list_empty(&wb->bdi->work_list)) 903 break; 904 905 /* 906 * For background writeout, stop when we are below the 907 * background dirty threshold 908 */ 909 if (work->for_background && !over_bground_thresh(wb->bdi)) 910 break; 911 912 /* 913 * Kupdate and background works are special and we want to 914 * include all inodes that need writing. Livelock avoidance is 915 * handled by these works yielding to any other work so we are 916 * safe. 917 */ 918 if (work->for_kupdate) { 919 oldest_jif = jiffies - 920 msecs_to_jiffies(dirty_expire_interval * 10); 921 } else if (work->for_background) 922 oldest_jif = jiffies; 923 924 trace_writeback_start(wb->bdi, work); 925 if (list_empty(&wb->b_io)) 926 queue_io(wb, work); 927 if (work->sb) 928 progress = writeback_sb_inodes(work->sb, wb, work); 929 else 930 progress = __writeback_inodes_wb(wb, work); 931 trace_writeback_written(wb->bdi, work); 932 933 wb_update_bandwidth(wb, wb_start); 934 935 /* 936 * Did we write something? Try for more 937 * 938 * Dirty inodes are moved to b_io for writeback in batches. 939 * The completion of the current batch does not necessarily 940 * mean the overall work is done. So we keep looping as long 941 * as made some progress on cleaning pages or inodes. 942 */ 943 if (progress) 944 continue; 945 /* 946 * No more inodes for IO, bail 947 */ 948 if (list_empty(&wb->b_more_io)) 949 break; 950 /* 951 * Nothing written. Wait for some inode to 952 * become available for writeback. Otherwise 953 * we'll just busyloop. 954 */ 955 if (!list_empty(&wb->b_more_io)) { 956 trace_writeback_wait(wb->bdi, work); 957 inode = wb_inode(wb->b_more_io.prev); 958 spin_lock(&inode->i_lock); 959 spin_unlock(&wb->list_lock); 960 /* This function drops i_lock... */ 961 inode_sleep_on_writeback(inode); 962 spin_lock(&wb->list_lock); 963 } 964 } 965 spin_unlock(&wb->list_lock); 966 967 return nr_pages - work->nr_pages; 968 } 969 970 /* 971 * Return the next wb_writeback_work struct that hasn't been processed yet. 972 */ 973 static struct wb_writeback_work * 974 get_next_work_item(struct backing_dev_info *bdi) 975 { 976 struct wb_writeback_work *work = NULL; 977 978 spin_lock_bh(&bdi->wb_lock); 979 if (!list_empty(&bdi->work_list)) { 980 work = list_entry(bdi->work_list.next, 981 struct wb_writeback_work, list); 982 list_del_init(&work->list); 983 } 984 spin_unlock_bh(&bdi->wb_lock); 985 return work; 986 } 987 988 /* 989 * Add in the number of potentially dirty inodes, because each inode 990 * write can dirty pagecache in the underlying blockdev. 991 */ 992 static unsigned long get_nr_dirty_pages(void) 993 { 994 return global_page_state(NR_FILE_DIRTY) + 995 global_page_state(NR_UNSTABLE_NFS) + 996 get_nr_dirty_inodes(); 997 } 998 999 static long wb_check_background_flush(struct bdi_writeback *wb) 1000 { 1001 if (over_bground_thresh(wb->bdi)) { 1002 1003 struct wb_writeback_work work = { 1004 .nr_pages = LONG_MAX, 1005 .sync_mode = WB_SYNC_NONE, 1006 .for_background = 1, 1007 .range_cyclic = 1, 1008 .reason = WB_REASON_BACKGROUND, 1009 }; 1010 1011 return wb_writeback(wb, &work); 1012 } 1013 1014 return 0; 1015 } 1016 1017 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1018 { 1019 unsigned long expired; 1020 long nr_pages; 1021 1022 /* 1023 * When set to zero, disable periodic writeback 1024 */ 1025 if (!dirty_writeback_interval) 1026 return 0; 1027 1028 expired = wb->last_old_flush + 1029 msecs_to_jiffies(dirty_writeback_interval * 10); 1030 if (time_before(jiffies, expired)) 1031 return 0; 1032 1033 wb->last_old_flush = jiffies; 1034 nr_pages = get_nr_dirty_pages(); 1035 1036 if (nr_pages) { 1037 struct wb_writeback_work work = { 1038 .nr_pages = nr_pages, 1039 .sync_mode = WB_SYNC_NONE, 1040 .for_kupdate = 1, 1041 .range_cyclic = 1, 1042 .reason = WB_REASON_PERIODIC, 1043 }; 1044 1045 return wb_writeback(wb, &work); 1046 } 1047 1048 return 0; 1049 } 1050 1051 /* 1052 * Retrieve work items and do the writeback they describe 1053 */ 1054 static long wb_do_writeback(struct bdi_writeback *wb) 1055 { 1056 struct backing_dev_info *bdi = wb->bdi; 1057 struct wb_writeback_work *work; 1058 long wrote = 0; 1059 1060 set_bit(BDI_writeback_running, &wb->bdi->state); 1061 while ((work = get_next_work_item(bdi)) != NULL) { 1062 1063 trace_writeback_exec(bdi, work); 1064 1065 wrote += wb_writeback(wb, work); 1066 1067 /* 1068 * Notify the caller of completion if this is a synchronous 1069 * work item, otherwise just free it. 1070 */ 1071 if (work->done) 1072 complete(work->done); 1073 else 1074 kfree(work); 1075 } 1076 1077 /* 1078 * Check for periodic writeback, kupdated() style 1079 */ 1080 wrote += wb_check_old_data_flush(wb); 1081 wrote += wb_check_background_flush(wb); 1082 clear_bit(BDI_writeback_running, &wb->bdi->state); 1083 1084 return wrote; 1085 } 1086 1087 /* 1088 * Handle writeback of dirty data for the device backed by this bdi. Also 1089 * reschedules periodically and does kupdated style flushing. 1090 */ 1091 void bdi_writeback_workfn(struct work_struct *work) 1092 { 1093 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1094 struct bdi_writeback, dwork); 1095 struct backing_dev_info *bdi = wb->bdi; 1096 long pages_written; 1097 1098 set_worker_desc("flush-%s", dev_name(bdi->dev)); 1099 current->flags |= PF_SWAPWRITE; 1100 1101 if (likely(!current_is_workqueue_rescuer() || 1102 !test_bit(BDI_registered, &bdi->state))) { 1103 /* 1104 * The normal path. Keep writing back @bdi until its 1105 * work_list is empty. Note that this path is also taken 1106 * if @bdi is shutting down even when we're running off the 1107 * rescuer as work_list needs to be drained. 1108 */ 1109 do { 1110 pages_written = wb_do_writeback(wb); 1111 trace_writeback_pages_written(pages_written); 1112 } while (!list_empty(&bdi->work_list)); 1113 } else { 1114 /* 1115 * bdi_wq can't get enough workers and we're running off 1116 * the emergency worker. Don't hog it. Hopefully, 1024 is 1117 * enough for efficient IO. 1118 */ 1119 pages_written = writeback_inodes_wb(&bdi->wb, 1024, 1120 WB_REASON_FORKER_THREAD); 1121 trace_writeback_pages_written(pages_written); 1122 } 1123 1124 if (!list_empty(&bdi->work_list)) 1125 mod_delayed_work(bdi_wq, &wb->dwork, 0); 1126 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1127 bdi_wakeup_thread_delayed(bdi); 1128 1129 current->flags &= ~PF_SWAPWRITE; 1130 } 1131 1132 /* 1133 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1134 * the whole world. 1135 */ 1136 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1137 { 1138 struct backing_dev_info *bdi; 1139 1140 if (!nr_pages) 1141 nr_pages = get_nr_dirty_pages(); 1142 1143 rcu_read_lock(); 1144 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1145 if (!bdi_has_dirty_io(bdi)) 1146 continue; 1147 __bdi_start_writeback(bdi, nr_pages, false, reason); 1148 } 1149 rcu_read_unlock(); 1150 } 1151 1152 /* 1153 * Wake up bdi's periodically to make sure dirtytime inodes gets 1154 * written back periodically. We deliberately do *not* check the 1155 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 1156 * kernel to be constantly waking up once there are any dirtytime 1157 * inodes on the system. So instead we define a separate delayed work 1158 * function which gets called much more rarely. (By default, only 1159 * once every 12 hours.) 1160 * 1161 * If there is any other write activity going on in the file system, 1162 * this function won't be necessary. But if the only thing that has 1163 * happened on the file system is a dirtytime inode caused by an atime 1164 * update, we need this infrastructure below to make sure that inode 1165 * eventually gets pushed out to disk. 1166 */ 1167 static void wakeup_dirtytime_writeback(struct work_struct *w); 1168 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 1169 1170 static void wakeup_dirtytime_writeback(struct work_struct *w) 1171 { 1172 struct backing_dev_info *bdi; 1173 1174 rcu_read_lock(); 1175 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1176 if (list_empty(&bdi->wb.b_dirty_time)) 1177 continue; 1178 bdi_wakeup_thread(bdi); 1179 } 1180 rcu_read_unlock(); 1181 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 1182 } 1183 1184 static int __init start_dirtytime_writeback(void) 1185 { 1186 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 1187 return 0; 1188 } 1189 __initcall(start_dirtytime_writeback); 1190 1191 int dirtytime_interval_handler(struct ctl_table *table, int write, 1192 void __user *buffer, size_t *lenp, loff_t *ppos) 1193 { 1194 int ret; 1195 1196 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 1197 if (ret == 0 && write) 1198 mod_delayed_work(system_wq, &dirtytime_work, 0); 1199 return ret; 1200 } 1201 1202 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1203 { 1204 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1205 struct dentry *dentry; 1206 const char *name = "?"; 1207 1208 dentry = d_find_alias(inode); 1209 if (dentry) { 1210 spin_lock(&dentry->d_lock); 1211 name = (const char *) dentry->d_name.name; 1212 } 1213 printk(KERN_DEBUG 1214 "%s(%d): dirtied inode %lu (%s) on %s\n", 1215 current->comm, task_pid_nr(current), inode->i_ino, 1216 name, inode->i_sb->s_id); 1217 if (dentry) { 1218 spin_unlock(&dentry->d_lock); 1219 dput(dentry); 1220 } 1221 } 1222 } 1223 1224 /** 1225 * __mark_inode_dirty - internal function 1226 * @inode: inode to mark 1227 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1228 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1229 * mark_inode_dirty_sync. 1230 * 1231 * Put the inode on the super block's dirty list. 1232 * 1233 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1234 * dirty list only if it is hashed or if it refers to a blockdev. 1235 * If it was not hashed, it will never be added to the dirty list 1236 * even if it is later hashed, as it will have been marked dirty already. 1237 * 1238 * In short, make sure you hash any inodes _before_ you start marking 1239 * them dirty. 1240 * 1241 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1242 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1243 * the kernel-internal blockdev inode represents the dirtying time of the 1244 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1245 * page->mapping->host, so the page-dirtying time is recorded in the internal 1246 * blockdev inode. 1247 */ 1248 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC) 1249 void __mark_inode_dirty(struct inode *inode, int flags) 1250 { 1251 struct super_block *sb = inode->i_sb; 1252 struct backing_dev_info *bdi = NULL; 1253 int dirtytime; 1254 1255 trace_writeback_mark_inode_dirty(inode, flags); 1256 1257 /* 1258 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1259 * dirty the inode itself 1260 */ 1261 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) { 1262 trace_writeback_dirty_inode_start(inode, flags); 1263 1264 if (sb->s_op->dirty_inode) 1265 sb->s_op->dirty_inode(inode, flags); 1266 1267 trace_writeback_dirty_inode(inode, flags); 1268 } 1269 if (flags & I_DIRTY_INODE) 1270 flags &= ~I_DIRTY_TIME; 1271 dirtytime = flags & I_DIRTY_TIME; 1272 1273 /* 1274 * Paired with smp_mb() in __writeback_single_inode() for the 1275 * following lockless i_state test. See there for details. 1276 */ 1277 smp_mb(); 1278 1279 if (((inode->i_state & flags) == flags) || 1280 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 1281 return; 1282 1283 if (unlikely(block_dump)) 1284 block_dump___mark_inode_dirty(inode); 1285 1286 spin_lock(&inode->i_lock); 1287 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 1288 goto out_unlock_inode; 1289 if ((inode->i_state & flags) != flags) { 1290 const int was_dirty = inode->i_state & I_DIRTY; 1291 1292 if (flags & I_DIRTY_INODE) 1293 inode->i_state &= ~I_DIRTY_TIME; 1294 inode->i_state |= flags; 1295 1296 /* 1297 * If the inode is being synced, just update its dirty state. 1298 * The unlocker will place the inode on the appropriate 1299 * superblock list, based upon its state. 1300 */ 1301 if (inode->i_state & I_SYNC) 1302 goto out_unlock_inode; 1303 1304 /* 1305 * Only add valid (hashed) inodes to the superblock's 1306 * dirty list. Add blockdev inodes as well. 1307 */ 1308 if (!S_ISBLK(inode->i_mode)) { 1309 if (inode_unhashed(inode)) 1310 goto out_unlock_inode; 1311 } 1312 if (inode->i_state & I_FREEING) 1313 goto out_unlock_inode; 1314 1315 /* 1316 * If the inode was already on b_dirty/b_io/b_more_io, don't 1317 * reposition it (that would break b_dirty time-ordering). 1318 */ 1319 if (!was_dirty) { 1320 bool wakeup_bdi = false; 1321 bdi = inode_to_bdi(inode); 1322 1323 spin_unlock(&inode->i_lock); 1324 spin_lock(&bdi->wb.list_lock); 1325 if (bdi_cap_writeback_dirty(bdi)) { 1326 WARN(!test_bit(BDI_registered, &bdi->state), 1327 "bdi-%s not registered\n", bdi->name); 1328 1329 /* 1330 * If this is the first dirty inode for this 1331 * bdi, we have to wake-up the corresponding 1332 * bdi thread to make sure background 1333 * write-back happens later. 1334 */ 1335 if (!wb_has_dirty_io(&bdi->wb)) 1336 wakeup_bdi = true; 1337 } 1338 1339 inode->dirtied_when = jiffies; 1340 if (dirtytime) 1341 inode->dirtied_time_when = jiffies; 1342 if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES)) 1343 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1344 else 1345 list_move(&inode->i_wb_list, 1346 &bdi->wb.b_dirty_time); 1347 spin_unlock(&bdi->wb.list_lock); 1348 trace_writeback_dirty_inode_enqueue(inode); 1349 1350 if (wakeup_bdi) 1351 bdi_wakeup_thread_delayed(bdi); 1352 return; 1353 } 1354 } 1355 out_unlock_inode: 1356 spin_unlock(&inode->i_lock); 1357 1358 } 1359 EXPORT_SYMBOL(__mark_inode_dirty); 1360 1361 static void wait_sb_inodes(struct super_block *sb) 1362 { 1363 struct inode *inode, *old_inode = NULL; 1364 1365 /* 1366 * We need to be protected against the filesystem going from 1367 * r/o to r/w or vice versa. 1368 */ 1369 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1370 1371 spin_lock(&inode_sb_list_lock); 1372 1373 /* 1374 * Data integrity sync. Must wait for all pages under writeback, 1375 * because there may have been pages dirtied before our sync 1376 * call, but which had writeout started before we write it out. 1377 * In which case, the inode may not be on the dirty list, but 1378 * we still have to wait for that writeout. 1379 */ 1380 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1381 struct address_space *mapping = inode->i_mapping; 1382 1383 spin_lock(&inode->i_lock); 1384 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1385 (mapping->nrpages == 0)) { 1386 spin_unlock(&inode->i_lock); 1387 continue; 1388 } 1389 __iget(inode); 1390 spin_unlock(&inode->i_lock); 1391 spin_unlock(&inode_sb_list_lock); 1392 1393 /* 1394 * We hold a reference to 'inode' so it couldn't have been 1395 * removed from s_inodes list while we dropped the 1396 * inode_sb_list_lock. We cannot iput the inode now as we can 1397 * be holding the last reference and we cannot iput it under 1398 * inode_sb_list_lock. So we keep the reference and iput it 1399 * later. 1400 */ 1401 iput(old_inode); 1402 old_inode = inode; 1403 1404 filemap_fdatawait(mapping); 1405 1406 cond_resched(); 1407 1408 spin_lock(&inode_sb_list_lock); 1409 } 1410 spin_unlock(&inode_sb_list_lock); 1411 iput(old_inode); 1412 } 1413 1414 /** 1415 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1416 * @sb: the superblock 1417 * @nr: the number of pages to write 1418 * @reason: reason why some writeback work initiated 1419 * 1420 * Start writeback on some inodes on this super_block. No guarantees are made 1421 * on how many (if any) will be written, and this function does not wait 1422 * for IO completion of submitted IO. 1423 */ 1424 void writeback_inodes_sb_nr(struct super_block *sb, 1425 unsigned long nr, 1426 enum wb_reason reason) 1427 { 1428 DECLARE_COMPLETION_ONSTACK(done); 1429 struct wb_writeback_work work = { 1430 .sb = sb, 1431 .sync_mode = WB_SYNC_NONE, 1432 .tagged_writepages = 1, 1433 .done = &done, 1434 .nr_pages = nr, 1435 .reason = reason, 1436 }; 1437 1438 if (sb->s_bdi == &noop_backing_dev_info) 1439 return; 1440 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1441 bdi_queue_work(sb->s_bdi, &work); 1442 wait_for_completion(&done); 1443 } 1444 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1445 1446 /** 1447 * writeback_inodes_sb - writeback dirty inodes from given super_block 1448 * @sb: the superblock 1449 * @reason: reason why some writeback work was initiated 1450 * 1451 * Start writeback on some inodes on this super_block. No guarantees are made 1452 * on how many (if any) will be written, and this function does not wait 1453 * for IO completion of submitted IO. 1454 */ 1455 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1456 { 1457 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1458 } 1459 EXPORT_SYMBOL(writeback_inodes_sb); 1460 1461 /** 1462 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 1463 * @sb: the superblock 1464 * @nr: the number of pages to write 1465 * @reason: the reason of writeback 1466 * 1467 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 1468 * Returns 1 if writeback was started, 0 if not. 1469 */ 1470 int try_to_writeback_inodes_sb_nr(struct super_block *sb, 1471 unsigned long nr, 1472 enum wb_reason reason) 1473 { 1474 if (writeback_in_progress(sb->s_bdi)) 1475 return 1; 1476 1477 if (!down_read_trylock(&sb->s_umount)) 1478 return 0; 1479 1480 writeback_inodes_sb_nr(sb, nr, reason); 1481 up_read(&sb->s_umount); 1482 return 1; 1483 } 1484 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 1485 1486 /** 1487 * try_to_writeback_inodes_sb - try to start writeback if none underway 1488 * @sb: the superblock 1489 * @reason: reason why some writeback work was initiated 1490 * 1491 * Implement by try_to_writeback_inodes_sb_nr() 1492 * Returns 1 if writeback was started, 0 if not. 1493 */ 1494 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1495 { 1496 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1497 } 1498 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 1499 1500 /** 1501 * sync_inodes_sb - sync sb inode pages 1502 * @sb: the superblock 1503 * 1504 * This function writes and waits on any dirty inode belonging to this 1505 * super_block. 1506 */ 1507 void sync_inodes_sb(struct super_block *sb) 1508 { 1509 DECLARE_COMPLETION_ONSTACK(done); 1510 struct wb_writeback_work work = { 1511 .sb = sb, 1512 .sync_mode = WB_SYNC_ALL, 1513 .nr_pages = LONG_MAX, 1514 .range_cyclic = 0, 1515 .done = &done, 1516 .reason = WB_REASON_SYNC, 1517 .for_sync = 1, 1518 }; 1519 1520 /* Nothing to do? */ 1521 if (sb->s_bdi == &noop_backing_dev_info) 1522 return; 1523 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1524 1525 bdi_queue_work(sb->s_bdi, &work); 1526 wait_for_completion(&done); 1527 1528 wait_sb_inodes(sb); 1529 } 1530 EXPORT_SYMBOL(sync_inodes_sb); 1531 1532 /** 1533 * write_inode_now - write an inode to disk 1534 * @inode: inode to write to disk 1535 * @sync: whether the write should be synchronous or not 1536 * 1537 * This function commits an inode to disk immediately if it is dirty. This is 1538 * primarily needed by knfsd. 1539 * 1540 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1541 */ 1542 int write_inode_now(struct inode *inode, int sync) 1543 { 1544 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1545 struct writeback_control wbc = { 1546 .nr_to_write = LONG_MAX, 1547 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1548 .range_start = 0, 1549 .range_end = LLONG_MAX, 1550 }; 1551 1552 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1553 wbc.nr_to_write = 0; 1554 1555 might_sleep(); 1556 return writeback_single_inode(inode, wb, &wbc); 1557 } 1558 EXPORT_SYMBOL(write_inode_now); 1559 1560 /** 1561 * sync_inode - write an inode and its pages to disk. 1562 * @inode: the inode to sync 1563 * @wbc: controls the writeback mode 1564 * 1565 * sync_inode() will write an inode and its pages to disk. It will also 1566 * correctly update the inode on its superblock's dirty inode lists and will 1567 * update inode->i_state. 1568 * 1569 * The caller must have a ref on the inode. 1570 */ 1571 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1572 { 1573 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1574 } 1575 EXPORT_SYMBOL(sync_inode); 1576 1577 /** 1578 * sync_inode_metadata - write an inode to disk 1579 * @inode: the inode to sync 1580 * @wait: wait for I/O to complete. 1581 * 1582 * Write an inode to disk and adjust its dirty state after completion. 1583 * 1584 * Note: only writes the actual inode, no associated data or other metadata. 1585 */ 1586 int sync_inode_metadata(struct inode *inode, int wait) 1587 { 1588 struct writeback_control wbc = { 1589 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1590 .nr_to_write = 0, /* metadata-only */ 1591 }; 1592 1593 return sync_inode(inode, &wbc); 1594 } 1595 EXPORT_SYMBOL(sync_inode_metadata); 1596