1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/freezer.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 enum wb_reason reason; /* why was writeback initiated? */ 50 51 struct list_head list; /* pending work list */ 52 struct completion *done; /* set if the caller waits */ 53 }; 54 55 /* 56 * We don't actually have pdflush, but this one is exported though /proc... 57 */ 58 int nr_pdflush_threads; 59 60 /** 61 * writeback_in_progress - determine whether there is writeback in progress 62 * @bdi: the device's backing_dev_info structure. 63 * 64 * Determine whether there is writeback waiting to be handled against a 65 * backing device. 66 */ 67 int writeback_in_progress(struct backing_dev_info *bdi) 68 { 69 return test_bit(BDI_writeback_running, &bdi->state); 70 } 71 72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 73 { 74 struct super_block *sb = inode->i_sb; 75 76 if (strcmp(sb->s_type->name, "bdev") == 0) 77 return inode->i_mapping->backing_dev_info; 78 79 return sb->s_bdi; 80 } 81 82 static inline struct inode *wb_inode(struct list_head *head) 83 { 84 return list_entry(head, struct inode, i_wb_list); 85 } 86 87 /* 88 * Include the creation of the trace points after defining the 89 * wb_writeback_work structure and inline functions so that the definition 90 * remains local to this file. 91 */ 92 #define CREATE_TRACE_POINTS 93 #include <trace/events/writeback.h> 94 95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 97 { 98 if (bdi->wb.task) { 99 wake_up_process(bdi->wb.task); 100 } else { 101 /* 102 * The bdi thread isn't there, wake up the forker thread which 103 * will create and run it. 104 */ 105 wake_up_process(default_backing_dev_info.wb.task); 106 } 107 } 108 109 static void bdi_queue_work(struct backing_dev_info *bdi, 110 struct wb_writeback_work *work) 111 { 112 trace_writeback_queue(bdi, work); 113 114 spin_lock_bh(&bdi->wb_lock); 115 list_add_tail(&work->list, &bdi->work_list); 116 if (!bdi->wb.task) 117 trace_writeback_nothread(bdi, work); 118 bdi_wakeup_flusher(bdi); 119 spin_unlock_bh(&bdi->wb_lock); 120 } 121 122 static void 123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 124 bool range_cyclic, enum wb_reason reason) 125 { 126 struct wb_writeback_work *work; 127 128 /* 129 * This is WB_SYNC_NONE writeback, so if allocation fails just 130 * wakeup the thread for old dirty data writeback 131 */ 132 work = kzalloc(sizeof(*work), GFP_ATOMIC); 133 if (!work) { 134 if (bdi->wb.task) { 135 trace_writeback_nowork(bdi); 136 wake_up_process(bdi->wb.task); 137 } 138 return; 139 } 140 141 work->sync_mode = WB_SYNC_NONE; 142 work->nr_pages = nr_pages; 143 work->range_cyclic = range_cyclic; 144 work->reason = reason; 145 146 bdi_queue_work(bdi, work); 147 } 148 149 /** 150 * bdi_start_writeback - start writeback 151 * @bdi: the backing device to write from 152 * @nr_pages: the number of pages to write 153 * @reason: reason why some writeback work was initiated 154 * 155 * Description: 156 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 157 * started when this function returns, we make no guarantees on 158 * completion. Caller need not hold sb s_umount semaphore. 159 * 160 */ 161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 162 enum wb_reason reason) 163 { 164 __bdi_start_writeback(bdi, nr_pages, true, reason); 165 } 166 167 /** 168 * bdi_start_background_writeback - start background writeback 169 * @bdi: the backing device to write from 170 * 171 * Description: 172 * This makes sure WB_SYNC_NONE background writeback happens. When 173 * this function returns, it is only guaranteed that for given BDI 174 * some IO is happening if we are over background dirty threshold. 175 * Caller need not hold sb s_umount semaphore. 176 */ 177 void bdi_start_background_writeback(struct backing_dev_info *bdi) 178 { 179 /* 180 * We just wake up the flusher thread. It will perform background 181 * writeback as soon as there is no other work to do. 182 */ 183 trace_writeback_wake_background(bdi); 184 spin_lock_bh(&bdi->wb_lock); 185 bdi_wakeup_flusher(bdi); 186 spin_unlock_bh(&bdi->wb_lock); 187 } 188 189 /* 190 * Remove the inode from the writeback list it is on. 191 */ 192 void inode_wb_list_del(struct inode *inode) 193 { 194 struct backing_dev_info *bdi = inode_to_bdi(inode); 195 196 spin_lock(&bdi->wb.list_lock); 197 list_del_init(&inode->i_wb_list); 198 spin_unlock(&bdi->wb.list_lock); 199 } 200 201 /* 202 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 203 * furthest end of its superblock's dirty-inode list. 204 * 205 * Before stamping the inode's ->dirtied_when, we check to see whether it is 206 * already the most-recently-dirtied inode on the b_dirty list. If that is 207 * the case then the inode must have been redirtied while it was being written 208 * out and we don't reset its dirtied_when. 209 */ 210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 211 { 212 assert_spin_locked(&wb->list_lock); 213 if (!list_empty(&wb->b_dirty)) { 214 struct inode *tail; 215 216 tail = wb_inode(wb->b_dirty.next); 217 if (time_before(inode->dirtied_when, tail->dirtied_when)) 218 inode->dirtied_when = jiffies; 219 } 220 list_move(&inode->i_wb_list, &wb->b_dirty); 221 } 222 223 /* 224 * requeue inode for re-scanning after bdi->b_io list is exhausted. 225 */ 226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 227 { 228 assert_spin_locked(&wb->list_lock); 229 list_move(&inode->i_wb_list, &wb->b_more_io); 230 } 231 232 static void inode_sync_complete(struct inode *inode) 233 { 234 /* 235 * Prevent speculative execution through 236 * spin_unlock(&wb->list_lock); 237 */ 238 239 smp_mb(); 240 wake_up_bit(&inode->i_state, __I_SYNC); 241 } 242 243 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 244 { 245 bool ret = time_after(inode->dirtied_when, t); 246 #ifndef CONFIG_64BIT 247 /* 248 * For inodes being constantly redirtied, dirtied_when can get stuck. 249 * It _appears_ to be in the future, but is actually in distant past. 250 * This test is necessary to prevent such wrapped-around relative times 251 * from permanently stopping the whole bdi writeback. 252 */ 253 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 254 #endif 255 return ret; 256 } 257 258 /* 259 * Move expired (dirtied after work->older_than_this) dirty inodes from 260 * @delaying_queue to @dispatch_queue. 261 */ 262 static int move_expired_inodes(struct list_head *delaying_queue, 263 struct list_head *dispatch_queue, 264 struct wb_writeback_work *work) 265 { 266 LIST_HEAD(tmp); 267 struct list_head *pos, *node; 268 struct super_block *sb = NULL; 269 struct inode *inode; 270 int do_sb_sort = 0; 271 int moved = 0; 272 273 while (!list_empty(delaying_queue)) { 274 inode = wb_inode(delaying_queue->prev); 275 if (work->older_than_this && 276 inode_dirtied_after(inode, *work->older_than_this)) 277 break; 278 if (sb && sb != inode->i_sb) 279 do_sb_sort = 1; 280 sb = inode->i_sb; 281 list_move(&inode->i_wb_list, &tmp); 282 moved++; 283 } 284 285 /* just one sb in list, splice to dispatch_queue and we're done */ 286 if (!do_sb_sort) { 287 list_splice(&tmp, dispatch_queue); 288 goto out; 289 } 290 291 /* Move inodes from one superblock together */ 292 while (!list_empty(&tmp)) { 293 sb = wb_inode(tmp.prev)->i_sb; 294 list_for_each_prev_safe(pos, node, &tmp) { 295 inode = wb_inode(pos); 296 if (inode->i_sb == sb) 297 list_move(&inode->i_wb_list, dispatch_queue); 298 } 299 } 300 out: 301 return moved; 302 } 303 304 /* 305 * Queue all expired dirty inodes for io, eldest first. 306 * Before 307 * newly dirtied b_dirty b_io b_more_io 308 * =============> gf edc BA 309 * After 310 * newly dirtied b_dirty b_io b_more_io 311 * =============> g fBAedc 312 * | 313 * +--> dequeue for IO 314 */ 315 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 316 { 317 int moved; 318 assert_spin_locked(&wb->list_lock); 319 list_splice_init(&wb->b_more_io, &wb->b_io); 320 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 321 trace_writeback_queue_io(wb, work, moved); 322 } 323 324 static int write_inode(struct inode *inode, struct writeback_control *wbc) 325 { 326 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 327 return inode->i_sb->s_op->write_inode(inode, wbc); 328 return 0; 329 } 330 331 /* 332 * Wait for writeback on an inode to complete. 333 */ 334 static void inode_wait_for_writeback(struct inode *inode, 335 struct bdi_writeback *wb) 336 { 337 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 338 wait_queue_head_t *wqh; 339 340 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 341 while (inode->i_state & I_SYNC) { 342 spin_unlock(&inode->i_lock); 343 spin_unlock(&wb->list_lock); 344 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 345 spin_lock(&wb->list_lock); 346 spin_lock(&inode->i_lock); 347 } 348 } 349 350 /* 351 * Write out an inode's dirty pages. Called under wb->list_lock and 352 * inode->i_lock. Either the caller has an active reference on the inode or 353 * the inode has I_WILL_FREE set. 354 * 355 * If `wait' is set, wait on the writeout. 356 * 357 * The whole writeout design is quite complex and fragile. We want to avoid 358 * starvation of particular inodes when others are being redirtied, prevent 359 * livelocks, etc. 360 */ 361 static int 362 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 363 struct writeback_control *wbc) 364 { 365 struct address_space *mapping = inode->i_mapping; 366 long nr_to_write = wbc->nr_to_write; 367 unsigned dirty; 368 int ret; 369 370 assert_spin_locked(&wb->list_lock); 371 assert_spin_locked(&inode->i_lock); 372 373 if (!atomic_read(&inode->i_count)) 374 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 375 else 376 WARN_ON(inode->i_state & I_WILL_FREE); 377 378 if (inode->i_state & I_SYNC) { 379 /* 380 * If this inode is locked for writeback and we are not doing 381 * writeback-for-data-integrity, move it to b_more_io so that 382 * writeback can proceed with the other inodes on s_io. 383 * 384 * We'll have another go at writing back this inode when we 385 * completed a full scan of b_io. 386 */ 387 if (wbc->sync_mode != WB_SYNC_ALL) { 388 requeue_io(inode, wb); 389 trace_writeback_single_inode_requeue(inode, wbc, 390 nr_to_write); 391 return 0; 392 } 393 394 /* 395 * It's a data-integrity sync. We must wait. 396 */ 397 inode_wait_for_writeback(inode, wb); 398 } 399 400 BUG_ON(inode->i_state & I_SYNC); 401 402 /* Set I_SYNC, reset I_DIRTY_PAGES */ 403 inode->i_state |= I_SYNC; 404 inode->i_state &= ~I_DIRTY_PAGES; 405 spin_unlock(&inode->i_lock); 406 spin_unlock(&wb->list_lock); 407 408 ret = do_writepages(mapping, wbc); 409 410 /* 411 * Make sure to wait on the data before writing out the metadata. 412 * This is important for filesystems that modify metadata on data 413 * I/O completion. 414 */ 415 if (wbc->sync_mode == WB_SYNC_ALL) { 416 int err = filemap_fdatawait(mapping); 417 if (ret == 0) 418 ret = err; 419 } 420 421 /* 422 * Some filesystems may redirty the inode during the writeback 423 * due to delalloc, clear dirty metadata flags right before 424 * write_inode() 425 */ 426 spin_lock(&inode->i_lock); 427 dirty = inode->i_state & I_DIRTY; 428 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 429 spin_unlock(&inode->i_lock); 430 /* Don't write the inode if only I_DIRTY_PAGES was set */ 431 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 432 int err = write_inode(inode, wbc); 433 if (ret == 0) 434 ret = err; 435 } 436 437 spin_lock(&wb->list_lock); 438 spin_lock(&inode->i_lock); 439 inode->i_state &= ~I_SYNC; 440 if (!(inode->i_state & I_FREEING)) { 441 /* 442 * Sync livelock prevention. Each inode is tagged and synced in 443 * one shot. If still dirty, it will be redirty_tail()'ed below. 444 * Update the dirty time to prevent enqueue and sync it again. 445 */ 446 if ((inode->i_state & I_DIRTY) && 447 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 448 inode->dirtied_when = jiffies; 449 450 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 451 /* 452 * We didn't write back all the pages. nfs_writepages() 453 * sometimes bales out without doing anything. 454 */ 455 inode->i_state |= I_DIRTY_PAGES; 456 if (wbc->nr_to_write <= 0) { 457 /* 458 * slice used up: queue for next turn 459 */ 460 requeue_io(inode, wb); 461 } else { 462 /* 463 * Writeback blocked by something other than 464 * congestion. Delay the inode for some time to 465 * avoid spinning on the CPU (100% iowait) 466 * retrying writeback of the dirty page/inode 467 * that cannot be performed immediately. 468 */ 469 redirty_tail(inode, wb); 470 } 471 } else if (inode->i_state & I_DIRTY) { 472 /* 473 * Filesystems can dirty the inode during writeback 474 * operations, such as delayed allocation during 475 * submission or metadata updates after data IO 476 * completion. 477 */ 478 redirty_tail(inode, wb); 479 } else { 480 /* 481 * The inode is clean. At this point we either have 482 * a reference to the inode or it's on it's way out. 483 * No need to add it back to the LRU. 484 */ 485 list_del_init(&inode->i_wb_list); 486 } 487 } 488 inode_sync_complete(inode); 489 trace_writeback_single_inode(inode, wbc, nr_to_write); 490 return ret; 491 } 492 493 static long writeback_chunk_size(struct backing_dev_info *bdi, 494 struct wb_writeback_work *work) 495 { 496 long pages; 497 498 /* 499 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 500 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 501 * here avoids calling into writeback_inodes_wb() more than once. 502 * 503 * The intended call sequence for WB_SYNC_ALL writeback is: 504 * 505 * wb_writeback() 506 * writeback_sb_inodes() <== called only once 507 * write_cache_pages() <== called once for each inode 508 * (quickly) tag currently dirty pages 509 * (maybe slowly) sync all tagged pages 510 */ 511 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 512 pages = LONG_MAX; 513 else { 514 pages = min(bdi->avg_write_bandwidth / 2, 515 global_dirty_limit / DIRTY_SCOPE); 516 pages = min(pages, work->nr_pages); 517 pages = round_down(pages + MIN_WRITEBACK_PAGES, 518 MIN_WRITEBACK_PAGES); 519 } 520 521 return pages; 522 } 523 524 /* 525 * Write a portion of b_io inodes which belong to @sb. 526 * 527 * If @only_this_sb is true, then find and write all such 528 * inodes. Otherwise write only ones which go sequentially 529 * in reverse order. 530 * 531 * Return the number of pages and/or inodes written. 532 */ 533 static long writeback_sb_inodes(struct super_block *sb, 534 struct bdi_writeback *wb, 535 struct wb_writeback_work *work) 536 { 537 struct writeback_control wbc = { 538 .sync_mode = work->sync_mode, 539 .tagged_writepages = work->tagged_writepages, 540 .for_kupdate = work->for_kupdate, 541 .for_background = work->for_background, 542 .range_cyclic = work->range_cyclic, 543 .range_start = 0, 544 .range_end = LLONG_MAX, 545 }; 546 unsigned long start_time = jiffies; 547 long write_chunk; 548 long wrote = 0; /* count both pages and inodes */ 549 550 while (!list_empty(&wb->b_io)) { 551 struct inode *inode = wb_inode(wb->b_io.prev); 552 553 if (inode->i_sb != sb) { 554 if (work->sb) { 555 /* 556 * We only want to write back data for this 557 * superblock, move all inodes not belonging 558 * to it back onto the dirty list. 559 */ 560 redirty_tail(inode, wb); 561 continue; 562 } 563 564 /* 565 * The inode belongs to a different superblock. 566 * Bounce back to the caller to unpin this and 567 * pin the next superblock. 568 */ 569 break; 570 } 571 572 /* 573 * Don't bother with new inodes or inodes beeing freed, first 574 * kind does not need peridic writeout yet, and for the latter 575 * kind writeout is handled by the freer. 576 */ 577 spin_lock(&inode->i_lock); 578 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 579 spin_unlock(&inode->i_lock); 580 redirty_tail(inode, wb); 581 continue; 582 } 583 __iget(inode); 584 write_chunk = writeback_chunk_size(wb->bdi, work); 585 wbc.nr_to_write = write_chunk; 586 wbc.pages_skipped = 0; 587 588 writeback_single_inode(inode, wb, &wbc); 589 590 work->nr_pages -= write_chunk - wbc.nr_to_write; 591 wrote += write_chunk - wbc.nr_to_write; 592 if (!(inode->i_state & I_DIRTY)) 593 wrote++; 594 if (wbc.pages_skipped) { 595 /* 596 * writeback is not making progress due to locked 597 * buffers. Skip this inode for now. 598 */ 599 redirty_tail(inode, wb); 600 } 601 spin_unlock(&inode->i_lock); 602 spin_unlock(&wb->list_lock); 603 iput(inode); 604 cond_resched(); 605 spin_lock(&wb->list_lock); 606 /* 607 * bail out to wb_writeback() often enough to check 608 * background threshold and other termination conditions. 609 */ 610 if (wrote) { 611 if (time_is_before_jiffies(start_time + HZ / 10UL)) 612 break; 613 if (work->nr_pages <= 0) 614 break; 615 } 616 } 617 return wrote; 618 } 619 620 static long __writeback_inodes_wb(struct bdi_writeback *wb, 621 struct wb_writeback_work *work) 622 { 623 unsigned long start_time = jiffies; 624 long wrote = 0; 625 626 while (!list_empty(&wb->b_io)) { 627 struct inode *inode = wb_inode(wb->b_io.prev); 628 struct super_block *sb = inode->i_sb; 629 630 if (!grab_super_passive(sb)) { 631 /* 632 * grab_super_passive() may fail consistently due to 633 * s_umount being grabbed by someone else. Don't use 634 * requeue_io() to avoid busy retrying the inode/sb. 635 */ 636 redirty_tail(inode, wb); 637 continue; 638 } 639 wrote += writeback_sb_inodes(sb, wb, work); 640 drop_super(sb); 641 642 /* refer to the same tests at the end of writeback_sb_inodes */ 643 if (wrote) { 644 if (time_is_before_jiffies(start_time + HZ / 10UL)) 645 break; 646 if (work->nr_pages <= 0) 647 break; 648 } 649 } 650 /* Leave any unwritten inodes on b_io */ 651 return wrote; 652 } 653 654 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 655 enum wb_reason reason) 656 { 657 struct wb_writeback_work work = { 658 .nr_pages = nr_pages, 659 .sync_mode = WB_SYNC_NONE, 660 .range_cyclic = 1, 661 .reason = reason, 662 }; 663 664 spin_lock(&wb->list_lock); 665 if (list_empty(&wb->b_io)) 666 queue_io(wb, &work); 667 __writeback_inodes_wb(wb, &work); 668 spin_unlock(&wb->list_lock); 669 670 return nr_pages - work.nr_pages; 671 } 672 673 static bool over_bground_thresh(struct backing_dev_info *bdi) 674 { 675 unsigned long background_thresh, dirty_thresh; 676 677 global_dirty_limits(&background_thresh, &dirty_thresh); 678 679 if (global_page_state(NR_FILE_DIRTY) + 680 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 681 return true; 682 683 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 684 bdi_dirty_limit(bdi, background_thresh)) 685 return true; 686 687 return false; 688 } 689 690 /* 691 * Called under wb->list_lock. If there are multiple wb per bdi, 692 * only the flusher working on the first wb should do it. 693 */ 694 static void wb_update_bandwidth(struct bdi_writeback *wb, 695 unsigned long start_time) 696 { 697 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 698 } 699 700 /* 701 * Explicit flushing or periodic writeback of "old" data. 702 * 703 * Define "old": the first time one of an inode's pages is dirtied, we mark the 704 * dirtying-time in the inode's address_space. So this periodic writeback code 705 * just walks the superblock inode list, writing back any inodes which are 706 * older than a specific point in time. 707 * 708 * Try to run once per dirty_writeback_interval. But if a writeback event 709 * takes longer than a dirty_writeback_interval interval, then leave a 710 * one-second gap. 711 * 712 * older_than_this takes precedence over nr_to_write. So we'll only write back 713 * all dirty pages if they are all attached to "old" mappings. 714 */ 715 static long wb_writeback(struct bdi_writeback *wb, 716 struct wb_writeback_work *work) 717 { 718 unsigned long wb_start = jiffies; 719 long nr_pages = work->nr_pages; 720 unsigned long oldest_jif; 721 struct inode *inode; 722 long progress; 723 724 oldest_jif = jiffies; 725 work->older_than_this = &oldest_jif; 726 727 spin_lock(&wb->list_lock); 728 for (;;) { 729 /* 730 * Stop writeback when nr_pages has been consumed 731 */ 732 if (work->nr_pages <= 0) 733 break; 734 735 /* 736 * Background writeout and kupdate-style writeback may 737 * run forever. Stop them if there is other work to do 738 * so that e.g. sync can proceed. They'll be restarted 739 * after the other works are all done. 740 */ 741 if ((work->for_background || work->for_kupdate) && 742 !list_empty(&wb->bdi->work_list)) 743 break; 744 745 /* 746 * For background writeout, stop when we are below the 747 * background dirty threshold 748 */ 749 if (work->for_background && !over_bground_thresh(wb->bdi)) 750 break; 751 752 /* 753 * Kupdate and background works are special and we want to 754 * include all inodes that need writing. Livelock avoidance is 755 * handled by these works yielding to any other work so we are 756 * safe. 757 */ 758 if (work->for_kupdate) { 759 oldest_jif = jiffies - 760 msecs_to_jiffies(dirty_expire_interval * 10); 761 } else if (work->for_background) 762 oldest_jif = jiffies; 763 764 trace_writeback_start(wb->bdi, work); 765 if (list_empty(&wb->b_io)) 766 queue_io(wb, work); 767 if (work->sb) 768 progress = writeback_sb_inodes(work->sb, wb, work); 769 else 770 progress = __writeback_inodes_wb(wb, work); 771 trace_writeback_written(wb->bdi, work); 772 773 wb_update_bandwidth(wb, wb_start); 774 775 /* 776 * Did we write something? Try for more 777 * 778 * Dirty inodes are moved to b_io for writeback in batches. 779 * The completion of the current batch does not necessarily 780 * mean the overall work is done. So we keep looping as long 781 * as made some progress on cleaning pages or inodes. 782 */ 783 if (progress) 784 continue; 785 /* 786 * No more inodes for IO, bail 787 */ 788 if (list_empty(&wb->b_more_io)) 789 break; 790 /* 791 * Nothing written. Wait for some inode to 792 * become available for writeback. Otherwise 793 * we'll just busyloop. 794 */ 795 if (!list_empty(&wb->b_more_io)) { 796 trace_writeback_wait(wb->bdi, work); 797 inode = wb_inode(wb->b_more_io.prev); 798 spin_lock(&inode->i_lock); 799 inode_wait_for_writeback(inode, wb); 800 spin_unlock(&inode->i_lock); 801 } 802 } 803 spin_unlock(&wb->list_lock); 804 805 return nr_pages - work->nr_pages; 806 } 807 808 /* 809 * Return the next wb_writeback_work struct that hasn't been processed yet. 810 */ 811 static struct wb_writeback_work * 812 get_next_work_item(struct backing_dev_info *bdi) 813 { 814 struct wb_writeback_work *work = NULL; 815 816 spin_lock_bh(&bdi->wb_lock); 817 if (!list_empty(&bdi->work_list)) { 818 work = list_entry(bdi->work_list.next, 819 struct wb_writeback_work, list); 820 list_del_init(&work->list); 821 } 822 spin_unlock_bh(&bdi->wb_lock); 823 return work; 824 } 825 826 /* 827 * Add in the number of potentially dirty inodes, because each inode 828 * write can dirty pagecache in the underlying blockdev. 829 */ 830 static unsigned long get_nr_dirty_pages(void) 831 { 832 return global_page_state(NR_FILE_DIRTY) + 833 global_page_state(NR_UNSTABLE_NFS) + 834 get_nr_dirty_inodes(); 835 } 836 837 static long wb_check_background_flush(struct bdi_writeback *wb) 838 { 839 if (over_bground_thresh(wb->bdi)) { 840 841 struct wb_writeback_work work = { 842 .nr_pages = LONG_MAX, 843 .sync_mode = WB_SYNC_NONE, 844 .for_background = 1, 845 .range_cyclic = 1, 846 .reason = WB_REASON_BACKGROUND, 847 }; 848 849 return wb_writeback(wb, &work); 850 } 851 852 return 0; 853 } 854 855 static long wb_check_old_data_flush(struct bdi_writeback *wb) 856 { 857 unsigned long expired; 858 long nr_pages; 859 860 /* 861 * When set to zero, disable periodic writeback 862 */ 863 if (!dirty_writeback_interval) 864 return 0; 865 866 expired = wb->last_old_flush + 867 msecs_to_jiffies(dirty_writeback_interval * 10); 868 if (time_before(jiffies, expired)) 869 return 0; 870 871 wb->last_old_flush = jiffies; 872 nr_pages = get_nr_dirty_pages(); 873 874 if (nr_pages) { 875 struct wb_writeback_work work = { 876 .nr_pages = nr_pages, 877 .sync_mode = WB_SYNC_NONE, 878 .for_kupdate = 1, 879 .range_cyclic = 1, 880 .reason = WB_REASON_PERIODIC, 881 }; 882 883 return wb_writeback(wb, &work); 884 } 885 886 return 0; 887 } 888 889 /* 890 * Retrieve work items and do the writeback they describe 891 */ 892 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 893 { 894 struct backing_dev_info *bdi = wb->bdi; 895 struct wb_writeback_work *work; 896 long wrote = 0; 897 898 set_bit(BDI_writeback_running, &wb->bdi->state); 899 while ((work = get_next_work_item(bdi)) != NULL) { 900 /* 901 * Override sync mode, in case we must wait for completion 902 * because this thread is exiting now. 903 */ 904 if (force_wait) 905 work->sync_mode = WB_SYNC_ALL; 906 907 trace_writeback_exec(bdi, work); 908 909 wrote += wb_writeback(wb, work); 910 911 /* 912 * Notify the caller of completion if this is a synchronous 913 * work item, otherwise just free it. 914 */ 915 if (work->done) 916 complete(work->done); 917 else 918 kfree(work); 919 } 920 921 /* 922 * Check for periodic writeback, kupdated() style 923 */ 924 wrote += wb_check_old_data_flush(wb); 925 wrote += wb_check_background_flush(wb); 926 clear_bit(BDI_writeback_running, &wb->bdi->state); 927 928 return wrote; 929 } 930 931 /* 932 * Handle writeback of dirty data for the device backed by this bdi. Also 933 * wakes up periodically and does kupdated style flushing. 934 */ 935 int bdi_writeback_thread(void *data) 936 { 937 struct bdi_writeback *wb = data; 938 struct backing_dev_info *bdi = wb->bdi; 939 long pages_written; 940 941 current->flags |= PF_SWAPWRITE; 942 set_freezable(); 943 wb->last_active = jiffies; 944 945 /* 946 * Our parent may run at a different priority, just set us to normal 947 */ 948 set_user_nice(current, 0); 949 950 trace_writeback_thread_start(bdi); 951 952 while (!kthread_freezable_should_stop(NULL)) { 953 /* 954 * Remove own delayed wake-up timer, since we are already awake 955 * and we'll take care of the preriodic write-back. 956 */ 957 del_timer(&wb->wakeup_timer); 958 959 pages_written = wb_do_writeback(wb, 0); 960 961 trace_writeback_pages_written(pages_written); 962 963 if (pages_written) 964 wb->last_active = jiffies; 965 966 set_current_state(TASK_INTERRUPTIBLE); 967 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 968 __set_current_state(TASK_RUNNING); 969 continue; 970 } 971 972 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 973 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 974 else { 975 /* 976 * We have nothing to do, so can go sleep without any 977 * timeout and save power. When a work is queued or 978 * something is made dirty - we will be woken up. 979 */ 980 schedule(); 981 } 982 } 983 984 /* Flush any work that raced with us exiting */ 985 if (!list_empty(&bdi->work_list)) 986 wb_do_writeback(wb, 1); 987 988 trace_writeback_thread_stop(bdi); 989 return 0; 990 } 991 992 993 /* 994 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 995 * the whole world. 996 */ 997 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 998 { 999 struct backing_dev_info *bdi; 1000 1001 if (!nr_pages) { 1002 nr_pages = global_page_state(NR_FILE_DIRTY) + 1003 global_page_state(NR_UNSTABLE_NFS); 1004 } 1005 1006 rcu_read_lock(); 1007 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1008 if (!bdi_has_dirty_io(bdi)) 1009 continue; 1010 __bdi_start_writeback(bdi, nr_pages, false, reason); 1011 } 1012 rcu_read_unlock(); 1013 } 1014 1015 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1016 { 1017 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1018 struct dentry *dentry; 1019 const char *name = "?"; 1020 1021 dentry = d_find_alias(inode); 1022 if (dentry) { 1023 spin_lock(&dentry->d_lock); 1024 name = (const char *) dentry->d_name.name; 1025 } 1026 printk(KERN_DEBUG 1027 "%s(%d): dirtied inode %lu (%s) on %s\n", 1028 current->comm, task_pid_nr(current), inode->i_ino, 1029 name, inode->i_sb->s_id); 1030 if (dentry) { 1031 spin_unlock(&dentry->d_lock); 1032 dput(dentry); 1033 } 1034 } 1035 } 1036 1037 /** 1038 * __mark_inode_dirty - internal function 1039 * @inode: inode to mark 1040 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1041 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1042 * mark_inode_dirty_sync. 1043 * 1044 * Put the inode on the super block's dirty list. 1045 * 1046 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1047 * dirty list only if it is hashed or if it refers to a blockdev. 1048 * If it was not hashed, it will never be added to the dirty list 1049 * even if it is later hashed, as it will have been marked dirty already. 1050 * 1051 * In short, make sure you hash any inodes _before_ you start marking 1052 * them dirty. 1053 * 1054 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1055 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1056 * the kernel-internal blockdev inode represents the dirtying time of the 1057 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1058 * page->mapping->host, so the page-dirtying time is recorded in the internal 1059 * blockdev inode. 1060 */ 1061 void __mark_inode_dirty(struct inode *inode, int flags) 1062 { 1063 struct super_block *sb = inode->i_sb; 1064 struct backing_dev_info *bdi = NULL; 1065 1066 /* 1067 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1068 * dirty the inode itself 1069 */ 1070 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1071 if (sb->s_op->dirty_inode) 1072 sb->s_op->dirty_inode(inode, flags); 1073 } 1074 1075 /* 1076 * make sure that changes are seen by all cpus before we test i_state 1077 * -- mikulas 1078 */ 1079 smp_mb(); 1080 1081 /* avoid the locking if we can */ 1082 if ((inode->i_state & flags) == flags) 1083 return; 1084 1085 if (unlikely(block_dump)) 1086 block_dump___mark_inode_dirty(inode); 1087 1088 spin_lock(&inode->i_lock); 1089 if ((inode->i_state & flags) != flags) { 1090 const int was_dirty = inode->i_state & I_DIRTY; 1091 1092 inode->i_state |= flags; 1093 1094 /* 1095 * If the inode is being synced, just update its dirty state. 1096 * The unlocker will place the inode on the appropriate 1097 * superblock list, based upon its state. 1098 */ 1099 if (inode->i_state & I_SYNC) 1100 goto out_unlock_inode; 1101 1102 /* 1103 * Only add valid (hashed) inodes to the superblock's 1104 * dirty list. Add blockdev inodes as well. 1105 */ 1106 if (!S_ISBLK(inode->i_mode)) { 1107 if (inode_unhashed(inode)) 1108 goto out_unlock_inode; 1109 } 1110 if (inode->i_state & I_FREEING) 1111 goto out_unlock_inode; 1112 1113 /* 1114 * If the inode was already on b_dirty/b_io/b_more_io, don't 1115 * reposition it (that would break b_dirty time-ordering). 1116 */ 1117 if (!was_dirty) { 1118 bool wakeup_bdi = false; 1119 bdi = inode_to_bdi(inode); 1120 1121 if (bdi_cap_writeback_dirty(bdi)) { 1122 WARN(!test_bit(BDI_registered, &bdi->state), 1123 "bdi-%s not registered\n", bdi->name); 1124 1125 /* 1126 * If this is the first dirty inode for this 1127 * bdi, we have to wake-up the corresponding 1128 * bdi thread to make sure background 1129 * write-back happens later. 1130 */ 1131 if (!wb_has_dirty_io(&bdi->wb)) 1132 wakeup_bdi = true; 1133 } 1134 1135 spin_unlock(&inode->i_lock); 1136 spin_lock(&bdi->wb.list_lock); 1137 inode->dirtied_when = jiffies; 1138 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1139 spin_unlock(&bdi->wb.list_lock); 1140 1141 if (wakeup_bdi) 1142 bdi_wakeup_thread_delayed(bdi); 1143 return; 1144 } 1145 } 1146 out_unlock_inode: 1147 spin_unlock(&inode->i_lock); 1148 1149 } 1150 EXPORT_SYMBOL(__mark_inode_dirty); 1151 1152 static void wait_sb_inodes(struct super_block *sb) 1153 { 1154 struct inode *inode, *old_inode = NULL; 1155 1156 /* 1157 * We need to be protected against the filesystem going from 1158 * r/o to r/w or vice versa. 1159 */ 1160 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1161 1162 spin_lock(&inode_sb_list_lock); 1163 1164 /* 1165 * Data integrity sync. Must wait for all pages under writeback, 1166 * because there may have been pages dirtied before our sync 1167 * call, but which had writeout started before we write it out. 1168 * In which case, the inode may not be on the dirty list, but 1169 * we still have to wait for that writeout. 1170 */ 1171 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1172 struct address_space *mapping = inode->i_mapping; 1173 1174 spin_lock(&inode->i_lock); 1175 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1176 (mapping->nrpages == 0)) { 1177 spin_unlock(&inode->i_lock); 1178 continue; 1179 } 1180 __iget(inode); 1181 spin_unlock(&inode->i_lock); 1182 spin_unlock(&inode_sb_list_lock); 1183 1184 /* 1185 * We hold a reference to 'inode' so it couldn't have been 1186 * removed from s_inodes list while we dropped the 1187 * inode_sb_list_lock. We cannot iput the inode now as we can 1188 * be holding the last reference and we cannot iput it under 1189 * inode_sb_list_lock. So we keep the reference and iput it 1190 * later. 1191 */ 1192 iput(old_inode); 1193 old_inode = inode; 1194 1195 filemap_fdatawait(mapping); 1196 1197 cond_resched(); 1198 1199 spin_lock(&inode_sb_list_lock); 1200 } 1201 spin_unlock(&inode_sb_list_lock); 1202 iput(old_inode); 1203 } 1204 1205 /** 1206 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1207 * @sb: the superblock 1208 * @nr: the number of pages to write 1209 * @reason: reason why some writeback work initiated 1210 * 1211 * Start writeback on some inodes on this super_block. No guarantees are made 1212 * on how many (if any) will be written, and this function does not wait 1213 * for IO completion of submitted IO. 1214 */ 1215 void writeback_inodes_sb_nr(struct super_block *sb, 1216 unsigned long nr, 1217 enum wb_reason reason) 1218 { 1219 DECLARE_COMPLETION_ONSTACK(done); 1220 struct wb_writeback_work work = { 1221 .sb = sb, 1222 .sync_mode = WB_SYNC_NONE, 1223 .tagged_writepages = 1, 1224 .done = &done, 1225 .nr_pages = nr, 1226 .reason = reason, 1227 }; 1228 1229 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1230 bdi_queue_work(sb->s_bdi, &work); 1231 wait_for_completion(&done); 1232 } 1233 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1234 1235 /** 1236 * writeback_inodes_sb - writeback dirty inodes from given super_block 1237 * @sb: the superblock 1238 * @reason: reason why some writeback work was initiated 1239 * 1240 * Start writeback on some inodes on this super_block. No guarantees are made 1241 * on how many (if any) will be written, and this function does not wait 1242 * for IO completion of submitted IO. 1243 */ 1244 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1245 { 1246 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1247 } 1248 EXPORT_SYMBOL(writeback_inodes_sb); 1249 1250 /** 1251 * writeback_inodes_sb_if_idle - start writeback if none underway 1252 * @sb: the superblock 1253 * @reason: reason why some writeback work was initiated 1254 * 1255 * Invoke writeback_inodes_sb if no writeback is currently underway. 1256 * Returns 1 if writeback was started, 0 if not. 1257 */ 1258 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason) 1259 { 1260 if (!writeback_in_progress(sb->s_bdi)) { 1261 down_read(&sb->s_umount); 1262 writeback_inodes_sb(sb, reason); 1263 up_read(&sb->s_umount); 1264 return 1; 1265 } else 1266 return 0; 1267 } 1268 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1269 1270 /** 1271 * writeback_inodes_sb_nr_if_idle - start writeback if none underway 1272 * @sb: the superblock 1273 * @nr: the number of pages to write 1274 * @reason: reason why some writeback work was initiated 1275 * 1276 * Invoke writeback_inodes_sb if no writeback is currently underway. 1277 * Returns 1 if writeback was started, 0 if not. 1278 */ 1279 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1280 unsigned long nr, 1281 enum wb_reason reason) 1282 { 1283 if (!writeback_in_progress(sb->s_bdi)) { 1284 down_read(&sb->s_umount); 1285 writeback_inodes_sb_nr(sb, nr, reason); 1286 up_read(&sb->s_umount); 1287 return 1; 1288 } else 1289 return 0; 1290 } 1291 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1292 1293 /** 1294 * sync_inodes_sb - sync sb inode pages 1295 * @sb: the superblock 1296 * 1297 * This function writes and waits on any dirty inode belonging to this 1298 * super_block. 1299 */ 1300 void sync_inodes_sb(struct super_block *sb) 1301 { 1302 DECLARE_COMPLETION_ONSTACK(done); 1303 struct wb_writeback_work work = { 1304 .sb = sb, 1305 .sync_mode = WB_SYNC_ALL, 1306 .nr_pages = LONG_MAX, 1307 .range_cyclic = 0, 1308 .done = &done, 1309 .reason = WB_REASON_SYNC, 1310 }; 1311 1312 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1313 1314 bdi_queue_work(sb->s_bdi, &work); 1315 wait_for_completion(&done); 1316 1317 wait_sb_inodes(sb); 1318 } 1319 EXPORT_SYMBOL(sync_inodes_sb); 1320 1321 /** 1322 * write_inode_now - write an inode to disk 1323 * @inode: inode to write to disk 1324 * @sync: whether the write should be synchronous or not 1325 * 1326 * This function commits an inode to disk immediately if it is dirty. This is 1327 * primarily needed by knfsd. 1328 * 1329 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1330 */ 1331 int write_inode_now(struct inode *inode, int sync) 1332 { 1333 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1334 int ret; 1335 struct writeback_control wbc = { 1336 .nr_to_write = LONG_MAX, 1337 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1338 .range_start = 0, 1339 .range_end = LLONG_MAX, 1340 }; 1341 1342 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1343 wbc.nr_to_write = 0; 1344 1345 might_sleep(); 1346 spin_lock(&wb->list_lock); 1347 spin_lock(&inode->i_lock); 1348 ret = writeback_single_inode(inode, wb, &wbc); 1349 spin_unlock(&inode->i_lock); 1350 spin_unlock(&wb->list_lock); 1351 return ret; 1352 } 1353 EXPORT_SYMBOL(write_inode_now); 1354 1355 /** 1356 * sync_inode - write an inode and its pages to disk. 1357 * @inode: the inode to sync 1358 * @wbc: controls the writeback mode 1359 * 1360 * sync_inode() will write an inode and its pages to disk. It will also 1361 * correctly update the inode on its superblock's dirty inode lists and will 1362 * update inode->i_state. 1363 * 1364 * The caller must have a ref on the inode. 1365 */ 1366 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1367 { 1368 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1369 int ret; 1370 1371 spin_lock(&wb->list_lock); 1372 spin_lock(&inode->i_lock); 1373 ret = writeback_single_inode(inode, wb, wbc); 1374 spin_unlock(&inode->i_lock); 1375 spin_unlock(&wb->list_lock); 1376 return ret; 1377 } 1378 EXPORT_SYMBOL(sync_inode); 1379 1380 /** 1381 * sync_inode_metadata - write an inode to disk 1382 * @inode: the inode to sync 1383 * @wait: wait for I/O to complete. 1384 * 1385 * Write an inode to disk and adjust its dirty state after completion. 1386 * 1387 * Note: only writes the actual inode, no associated data or other metadata. 1388 */ 1389 int sync_inode_metadata(struct inode *inode, int wait) 1390 { 1391 struct writeback_control wbc = { 1392 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1393 .nr_to_write = 0, /* metadata-only */ 1394 }; 1395 1396 return sync_inode(inode, &wbc); 1397 } 1398 EXPORT_SYMBOL(sync_inode_metadata); 1399