xref: /openbmc/linux/fs/fs-writeback.c (revision ce932d0c5589e9766e089c22c66890dfc48fbd94)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 	return list_entry(head, struct inode, i_wb_list);
85 }
86 
87 /*
88  * Include the creation of the trace points after defining the
89  * wb_writeback_work structure and inline functions so that the definition
90  * remains local to this file.
91  */
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
94 
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
97 {
98 	if (bdi->wb.task) {
99 		wake_up_process(bdi->wb.task);
100 	} else {
101 		/*
102 		 * The bdi thread isn't there, wake up the forker thread which
103 		 * will create and run it.
104 		 */
105 		wake_up_process(default_backing_dev_info.wb.task);
106 	}
107 }
108 
109 static void bdi_queue_work(struct backing_dev_info *bdi,
110 			   struct wb_writeback_work *work)
111 {
112 	trace_writeback_queue(bdi, work);
113 
114 	spin_lock_bh(&bdi->wb_lock);
115 	list_add_tail(&work->list, &bdi->work_list);
116 	if (!bdi->wb.task)
117 		trace_writeback_nothread(bdi, work);
118 	bdi_wakeup_flusher(bdi);
119 	spin_unlock_bh(&bdi->wb_lock);
120 }
121 
122 static void
123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124 		      bool range_cyclic, enum wb_reason reason)
125 {
126 	struct wb_writeback_work *work;
127 
128 	/*
129 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
130 	 * wakeup the thread for old dirty data writeback
131 	 */
132 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
133 	if (!work) {
134 		if (bdi->wb.task) {
135 			trace_writeback_nowork(bdi);
136 			wake_up_process(bdi->wb.task);
137 		}
138 		return;
139 	}
140 
141 	work->sync_mode	= WB_SYNC_NONE;
142 	work->nr_pages	= nr_pages;
143 	work->range_cyclic = range_cyclic;
144 	work->reason	= reason;
145 
146 	bdi_queue_work(bdi, work);
147 }
148 
149 /**
150  * bdi_start_writeback - start writeback
151  * @bdi: the backing device to write from
152  * @nr_pages: the number of pages to write
153  * @reason: reason why some writeback work was initiated
154  *
155  * Description:
156  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
157  *   started when this function returns, we make no guarantees on
158  *   completion. Caller need not hold sb s_umount semaphore.
159  *
160  */
161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162 			enum wb_reason reason)
163 {
164 	__bdi_start_writeback(bdi, nr_pages, true, reason);
165 }
166 
167 /**
168  * bdi_start_background_writeback - start background writeback
169  * @bdi: the backing device to write from
170  *
171  * Description:
172  *   This makes sure WB_SYNC_NONE background writeback happens. When
173  *   this function returns, it is only guaranteed that for given BDI
174  *   some IO is happening if we are over background dirty threshold.
175  *   Caller need not hold sb s_umount semaphore.
176  */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179 	/*
180 	 * We just wake up the flusher thread. It will perform background
181 	 * writeback as soon as there is no other work to do.
182 	 */
183 	trace_writeback_wake_background(bdi);
184 	spin_lock_bh(&bdi->wb_lock);
185 	bdi_wakeup_flusher(bdi);
186 	spin_unlock_bh(&bdi->wb_lock);
187 }
188 
189 /*
190  * Remove the inode from the writeback list it is on.
191  */
192 void inode_wb_list_del(struct inode *inode)
193 {
194 	struct backing_dev_info *bdi = inode_to_bdi(inode);
195 
196 	spin_lock(&bdi->wb.list_lock);
197 	list_del_init(&inode->i_wb_list);
198 	spin_unlock(&bdi->wb.list_lock);
199 }
200 
201 /*
202  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203  * furthest end of its superblock's dirty-inode list.
204  *
205  * Before stamping the inode's ->dirtied_when, we check to see whether it is
206  * already the most-recently-dirtied inode on the b_dirty list.  If that is
207  * the case then the inode must have been redirtied while it was being written
208  * out and we don't reset its dirtied_when.
209  */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212 	assert_spin_locked(&wb->list_lock);
213 	if (!list_empty(&wb->b_dirty)) {
214 		struct inode *tail;
215 
216 		tail = wb_inode(wb->b_dirty.next);
217 		if (time_before(inode->dirtied_when, tail->dirtied_when))
218 			inode->dirtied_when = jiffies;
219 	}
220 	list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222 
223 /*
224  * requeue inode for re-scanning after bdi->b_io list is exhausted.
225  */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228 	assert_spin_locked(&wb->list_lock);
229 	list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231 
232 static void inode_sync_complete(struct inode *inode)
233 {
234 	/*
235 	 * Prevent speculative execution through
236 	 * spin_unlock(&wb->list_lock);
237 	 */
238 
239 	smp_mb();
240 	wake_up_bit(&inode->i_state, __I_SYNC);
241 }
242 
243 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
244 {
245 	bool ret = time_after(inode->dirtied_when, t);
246 #ifndef CONFIG_64BIT
247 	/*
248 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
249 	 * It _appears_ to be in the future, but is actually in distant past.
250 	 * This test is necessary to prevent such wrapped-around relative times
251 	 * from permanently stopping the whole bdi writeback.
252 	 */
253 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
254 #endif
255 	return ret;
256 }
257 
258 /*
259  * Move expired (dirtied after work->older_than_this) dirty inodes from
260  * @delaying_queue to @dispatch_queue.
261  */
262 static int move_expired_inodes(struct list_head *delaying_queue,
263 			       struct list_head *dispatch_queue,
264 			       struct wb_writeback_work *work)
265 {
266 	LIST_HEAD(tmp);
267 	struct list_head *pos, *node;
268 	struct super_block *sb = NULL;
269 	struct inode *inode;
270 	int do_sb_sort = 0;
271 	int moved = 0;
272 
273 	while (!list_empty(delaying_queue)) {
274 		inode = wb_inode(delaying_queue->prev);
275 		if (work->older_than_this &&
276 		    inode_dirtied_after(inode, *work->older_than_this))
277 			break;
278 		if (sb && sb != inode->i_sb)
279 			do_sb_sort = 1;
280 		sb = inode->i_sb;
281 		list_move(&inode->i_wb_list, &tmp);
282 		moved++;
283 	}
284 
285 	/* just one sb in list, splice to dispatch_queue and we're done */
286 	if (!do_sb_sort) {
287 		list_splice(&tmp, dispatch_queue);
288 		goto out;
289 	}
290 
291 	/* Move inodes from one superblock together */
292 	while (!list_empty(&tmp)) {
293 		sb = wb_inode(tmp.prev)->i_sb;
294 		list_for_each_prev_safe(pos, node, &tmp) {
295 			inode = wb_inode(pos);
296 			if (inode->i_sb == sb)
297 				list_move(&inode->i_wb_list, dispatch_queue);
298 		}
299 	}
300 out:
301 	return moved;
302 }
303 
304 /*
305  * Queue all expired dirty inodes for io, eldest first.
306  * Before
307  *         newly dirtied     b_dirty    b_io    b_more_io
308  *         =============>    gf         edc     BA
309  * After
310  *         newly dirtied     b_dirty    b_io    b_more_io
311  *         =============>    g          fBAedc
312  *                                           |
313  *                                           +--> dequeue for IO
314  */
315 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
316 {
317 	int moved;
318 	assert_spin_locked(&wb->list_lock);
319 	list_splice_init(&wb->b_more_io, &wb->b_io);
320 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
321 	trace_writeback_queue_io(wb, work, moved);
322 }
323 
324 static int write_inode(struct inode *inode, struct writeback_control *wbc)
325 {
326 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
327 		return inode->i_sb->s_op->write_inode(inode, wbc);
328 	return 0;
329 }
330 
331 /*
332  * Wait for writeback on an inode to complete.
333  */
334 static void inode_wait_for_writeback(struct inode *inode,
335 				     struct bdi_writeback *wb)
336 {
337 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
338 	wait_queue_head_t *wqh;
339 
340 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
341 	while (inode->i_state & I_SYNC) {
342 		spin_unlock(&inode->i_lock);
343 		spin_unlock(&wb->list_lock);
344 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
345 		spin_lock(&wb->list_lock);
346 		spin_lock(&inode->i_lock);
347 	}
348 }
349 
350 /*
351  * Write out an inode's dirty pages.  Called under wb->list_lock and
352  * inode->i_lock.  Either the caller has an active reference on the inode or
353  * the inode has I_WILL_FREE set.
354  *
355  * If `wait' is set, wait on the writeout.
356  *
357  * The whole writeout design is quite complex and fragile.  We want to avoid
358  * starvation of particular inodes when others are being redirtied, prevent
359  * livelocks, etc.
360  */
361 static int
362 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
363 		       struct writeback_control *wbc)
364 {
365 	struct address_space *mapping = inode->i_mapping;
366 	long nr_to_write = wbc->nr_to_write;
367 	unsigned dirty;
368 	int ret;
369 
370 	assert_spin_locked(&wb->list_lock);
371 	assert_spin_locked(&inode->i_lock);
372 
373 	if (!atomic_read(&inode->i_count))
374 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
375 	else
376 		WARN_ON(inode->i_state & I_WILL_FREE);
377 
378 	if (inode->i_state & I_SYNC) {
379 		/*
380 		 * If this inode is locked for writeback and we are not doing
381 		 * writeback-for-data-integrity, move it to b_more_io so that
382 		 * writeback can proceed with the other inodes on s_io.
383 		 *
384 		 * We'll have another go at writing back this inode when we
385 		 * completed a full scan of b_io.
386 		 */
387 		if (wbc->sync_mode != WB_SYNC_ALL) {
388 			requeue_io(inode, wb);
389 			trace_writeback_single_inode_requeue(inode, wbc,
390 							     nr_to_write);
391 			return 0;
392 		}
393 
394 		/*
395 		 * It's a data-integrity sync.  We must wait.
396 		 */
397 		inode_wait_for_writeback(inode, wb);
398 	}
399 
400 	BUG_ON(inode->i_state & I_SYNC);
401 
402 	/* Set I_SYNC, reset I_DIRTY_PAGES */
403 	inode->i_state |= I_SYNC;
404 	inode->i_state &= ~I_DIRTY_PAGES;
405 	spin_unlock(&inode->i_lock);
406 	spin_unlock(&wb->list_lock);
407 
408 	ret = do_writepages(mapping, wbc);
409 
410 	/*
411 	 * Make sure to wait on the data before writing out the metadata.
412 	 * This is important for filesystems that modify metadata on data
413 	 * I/O completion.
414 	 */
415 	if (wbc->sync_mode == WB_SYNC_ALL) {
416 		int err = filemap_fdatawait(mapping);
417 		if (ret == 0)
418 			ret = err;
419 	}
420 
421 	/*
422 	 * Some filesystems may redirty the inode during the writeback
423 	 * due to delalloc, clear dirty metadata flags right before
424 	 * write_inode()
425 	 */
426 	spin_lock(&inode->i_lock);
427 	dirty = inode->i_state & I_DIRTY;
428 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
429 	spin_unlock(&inode->i_lock);
430 	/* Don't write the inode if only I_DIRTY_PAGES was set */
431 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
432 		int err = write_inode(inode, wbc);
433 		if (ret == 0)
434 			ret = err;
435 	}
436 
437 	spin_lock(&wb->list_lock);
438 	spin_lock(&inode->i_lock);
439 	inode->i_state &= ~I_SYNC;
440 	if (!(inode->i_state & I_FREEING)) {
441 		/*
442 		 * Sync livelock prevention. Each inode is tagged and synced in
443 		 * one shot. If still dirty, it will be redirty_tail()'ed below.
444 		 * Update the dirty time to prevent enqueue and sync it again.
445 		 */
446 		if ((inode->i_state & I_DIRTY) &&
447 		    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
448 			inode->dirtied_when = jiffies;
449 
450 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
451 			/*
452 			 * We didn't write back all the pages.  nfs_writepages()
453 			 * sometimes bales out without doing anything.
454 			 */
455 			inode->i_state |= I_DIRTY_PAGES;
456 			if (wbc->nr_to_write <= 0) {
457 				/*
458 				 * slice used up: queue for next turn
459 				 */
460 				requeue_io(inode, wb);
461 			} else {
462 				/*
463 				 * Writeback blocked by something other than
464 				 * congestion. Delay the inode for some time to
465 				 * avoid spinning on the CPU (100% iowait)
466 				 * retrying writeback of the dirty page/inode
467 				 * that cannot be performed immediately.
468 				 */
469 				redirty_tail(inode, wb);
470 			}
471 		} else if (inode->i_state & I_DIRTY) {
472 			/*
473 			 * Filesystems can dirty the inode during writeback
474 			 * operations, such as delayed allocation during
475 			 * submission or metadata updates after data IO
476 			 * completion.
477 			 */
478 			redirty_tail(inode, wb);
479 		} else {
480 			/*
481 			 * The inode is clean.  At this point we either have
482 			 * a reference to the inode or it's on it's way out.
483 			 * No need to add it back to the LRU.
484 			 */
485 			list_del_init(&inode->i_wb_list);
486 		}
487 	}
488 	inode_sync_complete(inode);
489 	trace_writeback_single_inode(inode, wbc, nr_to_write);
490 	return ret;
491 }
492 
493 static long writeback_chunk_size(struct backing_dev_info *bdi,
494 				 struct wb_writeback_work *work)
495 {
496 	long pages;
497 
498 	/*
499 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
500 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
501 	 * here avoids calling into writeback_inodes_wb() more than once.
502 	 *
503 	 * The intended call sequence for WB_SYNC_ALL writeback is:
504 	 *
505 	 *      wb_writeback()
506 	 *          writeback_sb_inodes()       <== called only once
507 	 *              write_cache_pages()     <== called once for each inode
508 	 *                   (quickly) tag currently dirty pages
509 	 *                   (maybe slowly) sync all tagged pages
510 	 */
511 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
512 		pages = LONG_MAX;
513 	else {
514 		pages = min(bdi->avg_write_bandwidth / 2,
515 			    global_dirty_limit / DIRTY_SCOPE);
516 		pages = min(pages, work->nr_pages);
517 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
518 				   MIN_WRITEBACK_PAGES);
519 	}
520 
521 	return pages;
522 }
523 
524 /*
525  * Write a portion of b_io inodes which belong to @sb.
526  *
527  * If @only_this_sb is true, then find and write all such
528  * inodes. Otherwise write only ones which go sequentially
529  * in reverse order.
530  *
531  * Return the number of pages and/or inodes written.
532  */
533 static long writeback_sb_inodes(struct super_block *sb,
534 				struct bdi_writeback *wb,
535 				struct wb_writeback_work *work)
536 {
537 	struct writeback_control wbc = {
538 		.sync_mode		= work->sync_mode,
539 		.tagged_writepages	= work->tagged_writepages,
540 		.for_kupdate		= work->for_kupdate,
541 		.for_background		= work->for_background,
542 		.range_cyclic		= work->range_cyclic,
543 		.range_start		= 0,
544 		.range_end		= LLONG_MAX,
545 	};
546 	unsigned long start_time = jiffies;
547 	long write_chunk;
548 	long wrote = 0;  /* count both pages and inodes */
549 
550 	while (!list_empty(&wb->b_io)) {
551 		struct inode *inode = wb_inode(wb->b_io.prev);
552 
553 		if (inode->i_sb != sb) {
554 			if (work->sb) {
555 				/*
556 				 * We only want to write back data for this
557 				 * superblock, move all inodes not belonging
558 				 * to it back onto the dirty list.
559 				 */
560 				redirty_tail(inode, wb);
561 				continue;
562 			}
563 
564 			/*
565 			 * The inode belongs to a different superblock.
566 			 * Bounce back to the caller to unpin this and
567 			 * pin the next superblock.
568 			 */
569 			break;
570 		}
571 
572 		/*
573 		 * Don't bother with new inodes or inodes beeing freed, first
574 		 * kind does not need peridic writeout yet, and for the latter
575 		 * kind writeout is handled by the freer.
576 		 */
577 		spin_lock(&inode->i_lock);
578 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
579 			spin_unlock(&inode->i_lock);
580 			redirty_tail(inode, wb);
581 			continue;
582 		}
583 		__iget(inode);
584 		write_chunk = writeback_chunk_size(wb->bdi, work);
585 		wbc.nr_to_write = write_chunk;
586 		wbc.pages_skipped = 0;
587 
588 		writeback_single_inode(inode, wb, &wbc);
589 
590 		work->nr_pages -= write_chunk - wbc.nr_to_write;
591 		wrote += write_chunk - wbc.nr_to_write;
592 		if (!(inode->i_state & I_DIRTY))
593 			wrote++;
594 		if (wbc.pages_skipped) {
595 			/*
596 			 * writeback is not making progress due to locked
597 			 * buffers.  Skip this inode for now.
598 			 */
599 			redirty_tail(inode, wb);
600 		}
601 		spin_unlock(&inode->i_lock);
602 		spin_unlock(&wb->list_lock);
603 		iput(inode);
604 		cond_resched();
605 		spin_lock(&wb->list_lock);
606 		/*
607 		 * bail out to wb_writeback() often enough to check
608 		 * background threshold and other termination conditions.
609 		 */
610 		if (wrote) {
611 			if (time_is_before_jiffies(start_time + HZ / 10UL))
612 				break;
613 			if (work->nr_pages <= 0)
614 				break;
615 		}
616 	}
617 	return wrote;
618 }
619 
620 static long __writeback_inodes_wb(struct bdi_writeback *wb,
621 				  struct wb_writeback_work *work)
622 {
623 	unsigned long start_time = jiffies;
624 	long wrote = 0;
625 
626 	while (!list_empty(&wb->b_io)) {
627 		struct inode *inode = wb_inode(wb->b_io.prev);
628 		struct super_block *sb = inode->i_sb;
629 
630 		if (!grab_super_passive(sb)) {
631 			/*
632 			 * grab_super_passive() may fail consistently due to
633 			 * s_umount being grabbed by someone else. Don't use
634 			 * requeue_io() to avoid busy retrying the inode/sb.
635 			 */
636 			redirty_tail(inode, wb);
637 			continue;
638 		}
639 		wrote += writeback_sb_inodes(sb, wb, work);
640 		drop_super(sb);
641 
642 		/* refer to the same tests at the end of writeback_sb_inodes */
643 		if (wrote) {
644 			if (time_is_before_jiffies(start_time + HZ / 10UL))
645 				break;
646 			if (work->nr_pages <= 0)
647 				break;
648 		}
649 	}
650 	/* Leave any unwritten inodes on b_io */
651 	return wrote;
652 }
653 
654 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
655 				enum wb_reason reason)
656 {
657 	struct wb_writeback_work work = {
658 		.nr_pages	= nr_pages,
659 		.sync_mode	= WB_SYNC_NONE,
660 		.range_cyclic	= 1,
661 		.reason		= reason,
662 	};
663 
664 	spin_lock(&wb->list_lock);
665 	if (list_empty(&wb->b_io))
666 		queue_io(wb, &work);
667 	__writeback_inodes_wb(wb, &work);
668 	spin_unlock(&wb->list_lock);
669 
670 	return nr_pages - work.nr_pages;
671 }
672 
673 static bool over_bground_thresh(struct backing_dev_info *bdi)
674 {
675 	unsigned long background_thresh, dirty_thresh;
676 
677 	global_dirty_limits(&background_thresh, &dirty_thresh);
678 
679 	if (global_page_state(NR_FILE_DIRTY) +
680 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
681 		return true;
682 
683 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
684 				bdi_dirty_limit(bdi, background_thresh))
685 		return true;
686 
687 	return false;
688 }
689 
690 /*
691  * Called under wb->list_lock. If there are multiple wb per bdi,
692  * only the flusher working on the first wb should do it.
693  */
694 static void wb_update_bandwidth(struct bdi_writeback *wb,
695 				unsigned long start_time)
696 {
697 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
698 }
699 
700 /*
701  * Explicit flushing or periodic writeback of "old" data.
702  *
703  * Define "old": the first time one of an inode's pages is dirtied, we mark the
704  * dirtying-time in the inode's address_space.  So this periodic writeback code
705  * just walks the superblock inode list, writing back any inodes which are
706  * older than a specific point in time.
707  *
708  * Try to run once per dirty_writeback_interval.  But if a writeback event
709  * takes longer than a dirty_writeback_interval interval, then leave a
710  * one-second gap.
711  *
712  * older_than_this takes precedence over nr_to_write.  So we'll only write back
713  * all dirty pages if they are all attached to "old" mappings.
714  */
715 static long wb_writeback(struct bdi_writeback *wb,
716 			 struct wb_writeback_work *work)
717 {
718 	unsigned long wb_start = jiffies;
719 	long nr_pages = work->nr_pages;
720 	unsigned long oldest_jif;
721 	struct inode *inode;
722 	long progress;
723 
724 	oldest_jif = jiffies;
725 	work->older_than_this = &oldest_jif;
726 
727 	spin_lock(&wb->list_lock);
728 	for (;;) {
729 		/*
730 		 * Stop writeback when nr_pages has been consumed
731 		 */
732 		if (work->nr_pages <= 0)
733 			break;
734 
735 		/*
736 		 * Background writeout and kupdate-style writeback may
737 		 * run forever. Stop them if there is other work to do
738 		 * so that e.g. sync can proceed. They'll be restarted
739 		 * after the other works are all done.
740 		 */
741 		if ((work->for_background || work->for_kupdate) &&
742 		    !list_empty(&wb->bdi->work_list))
743 			break;
744 
745 		/*
746 		 * For background writeout, stop when we are below the
747 		 * background dirty threshold
748 		 */
749 		if (work->for_background && !over_bground_thresh(wb->bdi))
750 			break;
751 
752 		/*
753 		 * Kupdate and background works are special and we want to
754 		 * include all inodes that need writing. Livelock avoidance is
755 		 * handled by these works yielding to any other work so we are
756 		 * safe.
757 		 */
758 		if (work->for_kupdate) {
759 			oldest_jif = jiffies -
760 				msecs_to_jiffies(dirty_expire_interval * 10);
761 		} else if (work->for_background)
762 			oldest_jif = jiffies;
763 
764 		trace_writeback_start(wb->bdi, work);
765 		if (list_empty(&wb->b_io))
766 			queue_io(wb, work);
767 		if (work->sb)
768 			progress = writeback_sb_inodes(work->sb, wb, work);
769 		else
770 			progress = __writeback_inodes_wb(wb, work);
771 		trace_writeback_written(wb->bdi, work);
772 
773 		wb_update_bandwidth(wb, wb_start);
774 
775 		/*
776 		 * Did we write something? Try for more
777 		 *
778 		 * Dirty inodes are moved to b_io for writeback in batches.
779 		 * The completion of the current batch does not necessarily
780 		 * mean the overall work is done. So we keep looping as long
781 		 * as made some progress on cleaning pages or inodes.
782 		 */
783 		if (progress)
784 			continue;
785 		/*
786 		 * No more inodes for IO, bail
787 		 */
788 		if (list_empty(&wb->b_more_io))
789 			break;
790 		/*
791 		 * Nothing written. Wait for some inode to
792 		 * become available for writeback. Otherwise
793 		 * we'll just busyloop.
794 		 */
795 		if (!list_empty(&wb->b_more_io))  {
796 			trace_writeback_wait(wb->bdi, work);
797 			inode = wb_inode(wb->b_more_io.prev);
798 			spin_lock(&inode->i_lock);
799 			inode_wait_for_writeback(inode, wb);
800 			spin_unlock(&inode->i_lock);
801 		}
802 	}
803 	spin_unlock(&wb->list_lock);
804 
805 	return nr_pages - work->nr_pages;
806 }
807 
808 /*
809  * Return the next wb_writeback_work struct that hasn't been processed yet.
810  */
811 static struct wb_writeback_work *
812 get_next_work_item(struct backing_dev_info *bdi)
813 {
814 	struct wb_writeback_work *work = NULL;
815 
816 	spin_lock_bh(&bdi->wb_lock);
817 	if (!list_empty(&bdi->work_list)) {
818 		work = list_entry(bdi->work_list.next,
819 				  struct wb_writeback_work, list);
820 		list_del_init(&work->list);
821 	}
822 	spin_unlock_bh(&bdi->wb_lock);
823 	return work;
824 }
825 
826 /*
827  * Add in the number of potentially dirty inodes, because each inode
828  * write can dirty pagecache in the underlying blockdev.
829  */
830 static unsigned long get_nr_dirty_pages(void)
831 {
832 	return global_page_state(NR_FILE_DIRTY) +
833 		global_page_state(NR_UNSTABLE_NFS) +
834 		get_nr_dirty_inodes();
835 }
836 
837 static long wb_check_background_flush(struct bdi_writeback *wb)
838 {
839 	if (over_bground_thresh(wb->bdi)) {
840 
841 		struct wb_writeback_work work = {
842 			.nr_pages	= LONG_MAX,
843 			.sync_mode	= WB_SYNC_NONE,
844 			.for_background	= 1,
845 			.range_cyclic	= 1,
846 			.reason		= WB_REASON_BACKGROUND,
847 		};
848 
849 		return wb_writeback(wb, &work);
850 	}
851 
852 	return 0;
853 }
854 
855 static long wb_check_old_data_flush(struct bdi_writeback *wb)
856 {
857 	unsigned long expired;
858 	long nr_pages;
859 
860 	/*
861 	 * When set to zero, disable periodic writeback
862 	 */
863 	if (!dirty_writeback_interval)
864 		return 0;
865 
866 	expired = wb->last_old_flush +
867 			msecs_to_jiffies(dirty_writeback_interval * 10);
868 	if (time_before(jiffies, expired))
869 		return 0;
870 
871 	wb->last_old_flush = jiffies;
872 	nr_pages = get_nr_dirty_pages();
873 
874 	if (nr_pages) {
875 		struct wb_writeback_work work = {
876 			.nr_pages	= nr_pages,
877 			.sync_mode	= WB_SYNC_NONE,
878 			.for_kupdate	= 1,
879 			.range_cyclic	= 1,
880 			.reason		= WB_REASON_PERIODIC,
881 		};
882 
883 		return wb_writeback(wb, &work);
884 	}
885 
886 	return 0;
887 }
888 
889 /*
890  * Retrieve work items and do the writeback they describe
891  */
892 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
893 {
894 	struct backing_dev_info *bdi = wb->bdi;
895 	struct wb_writeback_work *work;
896 	long wrote = 0;
897 
898 	set_bit(BDI_writeback_running, &wb->bdi->state);
899 	while ((work = get_next_work_item(bdi)) != NULL) {
900 		/*
901 		 * Override sync mode, in case we must wait for completion
902 		 * because this thread is exiting now.
903 		 */
904 		if (force_wait)
905 			work->sync_mode = WB_SYNC_ALL;
906 
907 		trace_writeback_exec(bdi, work);
908 
909 		wrote += wb_writeback(wb, work);
910 
911 		/*
912 		 * Notify the caller of completion if this is a synchronous
913 		 * work item, otherwise just free it.
914 		 */
915 		if (work->done)
916 			complete(work->done);
917 		else
918 			kfree(work);
919 	}
920 
921 	/*
922 	 * Check for periodic writeback, kupdated() style
923 	 */
924 	wrote += wb_check_old_data_flush(wb);
925 	wrote += wb_check_background_flush(wb);
926 	clear_bit(BDI_writeback_running, &wb->bdi->state);
927 
928 	return wrote;
929 }
930 
931 /*
932  * Handle writeback of dirty data for the device backed by this bdi. Also
933  * wakes up periodically and does kupdated style flushing.
934  */
935 int bdi_writeback_thread(void *data)
936 {
937 	struct bdi_writeback *wb = data;
938 	struct backing_dev_info *bdi = wb->bdi;
939 	long pages_written;
940 
941 	current->flags |= PF_SWAPWRITE;
942 	set_freezable();
943 	wb->last_active = jiffies;
944 
945 	/*
946 	 * Our parent may run at a different priority, just set us to normal
947 	 */
948 	set_user_nice(current, 0);
949 
950 	trace_writeback_thread_start(bdi);
951 
952 	while (!kthread_freezable_should_stop(NULL)) {
953 		/*
954 		 * Remove own delayed wake-up timer, since we are already awake
955 		 * and we'll take care of the preriodic write-back.
956 		 */
957 		del_timer(&wb->wakeup_timer);
958 
959 		pages_written = wb_do_writeback(wb, 0);
960 
961 		trace_writeback_pages_written(pages_written);
962 
963 		if (pages_written)
964 			wb->last_active = jiffies;
965 
966 		set_current_state(TASK_INTERRUPTIBLE);
967 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
968 			__set_current_state(TASK_RUNNING);
969 			continue;
970 		}
971 
972 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
973 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
974 		else {
975 			/*
976 			 * We have nothing to do, so can go sleep without any
977 			 * timeout and save power. When a work is queued or
978 			 * something is made dirty - we will be woken up.
979 			 */
980 			schedule();
981 		}
982 	}
983 
984 	/* Flush any work that raced with us exiting */
985 	if (!list_empty(&bdi->work_list))
986 		wb_do_writeback(wb, 1);
987 
988 	trace_writeback_thread_stop(bdi);
989 	return 0;
990 }
991 
992 
993 /*
994  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
995  * the whole world.
996  */
997 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
998 {
999 	struct backing_dev_info *bdi;
1000 
1001 	if (!nr_pages) {
1002 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1003 				global_page_state(NR_UNSTABLE_NFS);
1004 	}
1005 
1006 	rcu_read_lock();
1007 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1008 		if (!bdi_has_dirty_io(bdi))
1009 			continue;
1010 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1011 	}
1012 	rcu_read_unlock();
1013 }
1014 
1015 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1016 {
1017 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1018 		struct dentry *dentry;
1019 		const char *name = "?";
1020 
1021 		dentry = d_find_alias(inode);
1022 		if (dentry) {
1023 			spin_lock(&dentry->d_lock);
1024 			name = (const char *) dentry->d_name.name;
1025 		}
1026 		printk(KERN_DEBUG
1027 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1028 		       current->comm, task_pid_nr(current), inode->i_ino,
1029 		       name, inode->i_sb->s_id);
1030 		if (dentry) {
1031 			spin_unlock(&dentry->d_lock);
1032 			dput(dentry);
1033 		}
1034 	}
1035 }
1036 
1037 /**
1038  *	__mark_inode_dirty -	internal function
1039  *	@inode: inode to mark
1040  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1041  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1042  *  	mark_inode_dirty_sync.
1043  *
1044  * Put the inode on the super block's dirty list.
1045  *
1046  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1047  * dirty list only if it is hashed or if it refers to a blockdev.
1048  * If it was not hashed, it will never be added to the dirty list
1049  * even if it is later hashed, as it will have been marked dirty already.
1050  *
1051  * In short, make sure you hash any inodes _before_ you start marking
1052  * them dirty.
1053  *
1054  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1055  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1056  * the kernel-internal blockdev inode represents the dirtying time of the
1057  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1058  * page->mapping->host, so the page-dirtying time is recorded in the internal
1059  * blockdev inode.
1060  */
1061 void __mark_inode_dirty(struct inode *inode, int flags)
1062 {
1063 	struct super_block *sb = inode->i_sb;
1064 	struct backing_dev_info *bdi = NULL;
1065 
1066 	/*
1067 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1068 	 * dirty the inode itself
1069 	 */
1070 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1071 		if (sb->s_op->dirty_inode)
1072 			sb->s_op->dirty_inode(inode, flags);
1073 	}
1074 
1075 	/*
1076 	 * make sure that changes are seen by all cpus before we test i_state
1077 	 * -- mikulas
1078 	 */
1079 	smp_mb();
1080 
1081 	/* avoid the locking if we can */
1082 	if ((inode->i_state & flags) == flags)
1083 		return;
1084 
1085 	if (unlikely(block_dump))
1086 		block_dump___mark_inode_dirty(inode);
1087 
1088 	spin_lock(&inode->i_lock);
1089 	if ((inode->i_state & flags) != flags) {
1090 		const int was_dirty = inode->i_state & I_DIRTY;
1091 
1092 		inode->i_state |= flags;
1093 
1094 		/*
1095 		 * If the inode is being synced, just update its dirty state.
1096 		 * The unlocker will place the inode on the appropriate
1097 		 * superblock list, based upon its state.
1098 		 */
1099 		if (inode->i_state & I_SYNC)
1100 			goto out_unlock_inode;
1101 
1102 		/*
1103 		 * Only add valid (hashed) inodes to the superblock's
1104 		 * dirty list.  Add blockdev inodes as well.
1105 		 */
1106 		if (!S_ISBLK(inode->i_mode)) {
1107 			if (inode_unhashed(inode))
1108 				goto out_unlock_inode;
1109 		}
1110 		if (inode->i_state & I_FREEING)
1111 			goto out_unlock_inode;
1112 
1113 		/*
1114 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1115 		 * reposition it (that would break b_dirty time-ordering).
1116 		 */
1117 		if (!was_dirty) {
1118 			bool wakeup_bdi = false;
1119 			bdi = inode_to_bdi(inode);
1120 
1121 			if (bdi_cap_writeback_dirty(bdi)) {
1122 				WARN(!test_bit(BDI_registered, &bdi->state),
1123 				     "bdi-%s not registered\n", bdi->name);
1124 
1125 				/*
1126 				 * If this is the first dirty inode for this
1127 				 * bdi, we have to wake-up the corresponding
1128 				 * bdi thread to make sure background
1129 				 * write-back happens later.
1130 				 */
1131 				if (!wb_has_dirty_io(&bdi->wb))
1132 					wakeup_bdi = true;
1133 			}
1134 
1135 			spin_unlock(&inode->i_lock);
1136 			spin_lock(&bdi->wb.list_lock);
1137 			inode->dirtied_when = jiffies;
1138 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1139 			spin_unlock(&bdi->wb.list_lock);
1140 
1141 			if (wakeup_bdi)
1142 				bdi_wakeup_thread_delayed(bdi);
1143 			return;
1144 		}
1145 	}
1146 out_unlock_inode:
1147 	spin_unlock(&inode->i_lock);
1148 
1149 }
1150 EXPORT_SYMBOL(__mark_inode_dirty);
1151 
1152 static void wait_sb_inodes(struct super_block *sb)
1153 {
1154 	struct inode *inode, *old_inode = NULL;
1155 
1156 	/*
1157 	 * We need to be protected against the filesystem going from
1158 	 * r/o to r/w or vice versa.
1159 	 */
1160 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1161 
1162 	spin_lock(&inode_sb_list_lock);
1163 
1164 	/*
1165 	 * Data integrity sync. Must wait for all pages under writeback,
1166 	 * because there may have been pages dirtied before our sync
1167 	 * call, but which had writeout started before we write it out.
1168 	 * In which case, the inode may not be on the dirty list, but
1169 	 * we still have to wait for that writeout.
1170 	 */
1171 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1172 		struct address_space *mapping = inode->i_mapping;
1173 
1174 		spin_lock(&inode->i_lock);
1175 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1176 		    (mapping->nrpages == 0)) {
1177 			spin_unlock(&inode->i_lock);
1178 			continue;
1179 		}
1180 		__iget(inode);
1181 		spin_unlock(&inode->i_lock);
1182 		spin_unlock(&inode_sb_list_lock);
1183 
1184 		/*
1185 		 * We hold a reference to 'inode' so it couldn't have been
1186 		 * removed from s_inodes list while we dropped the
1187 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1188 		 * be holding the last reference and we cannot iput it under
1189 		 * inode_sb_list_lock. So we keep the reference and iput it
1190 		 * later.
1191 		 */
1192 		iput(old_inode);
1193 		old_inode = inode;
1194 
1195 		filemap_fdatawait(mapping);
1196 
1197 		cond_resched();
1198 
1199 		spin_lock(&inode_sb_list_lock);
1200 	}
1201 	spin_unlock(&inode_sb_list_lock);
1202 	iput(old_inode);
1203 }
1204 
1205 /**
1206  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1207  * @sb: the superblock
1208  * @nr: the number of pages to write
1209  * @reason: reason why some writeback work initiated
1210  *
1211  * Start writeback on some inodes on this super_block. No guarantees are made
1212  * on how many (if any) will be written, and this function does not wait
1213  * for IO completion of submitted IO.
1214  */
1215 void writeback_inodes_sb_nr(struct super_block *sb,
1216 			    unsigned long nr,
1217 			    enum wb_reason reason)
1218 {
1219 	DECLARE_COMPLETION_ONSTACK(done);
1220 	struct wb_writeback_work work = {
1221 		.sb			= sb,
1222 		.sync_mode		= WB_SYNC_NONE,
1223 		.tagged_writepages	= 1,
1224 		.done			= &done,
1225 		.nr_pages		= nr,
1226 		.reason			= reason,
1227 	};
1228 
1229 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1230 	bdi_queue_work(sb->s_bdi, &work);
1231 	wait_for_completion(&done);
1232 }
1233 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1234 
1235 /**
1236  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1237  * @sb: the superblock
1238  * @reason: reason why some writeback work was initiated
1239  *
1240  * Start writeback on some inodes on this super_block. No guarantees are made
1241  * on how many (if any) will be written, and this function does not wait
1242  * for IO completion of submitted IO.
1243  */
1244 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1245 {
1246 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1247 }
1248 EXPORT_SYMBOL(writeback_inodes_sb);
1249 
1250 /**
1251  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1252  * @sb: the superblock
1253  * @reason: reason why some writeback work was initiated
1254  *
1255  * Invoke writeback_inodes_sb if no writeback is currently underway.
1256  * Returns 1 if writeback was started, 0 if not.
1257  */
1258 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1259 {
1260 	if (!writeback_in_progress(sb->s_bdi)) {
1261 		down_read(&sb->s_umount);
1262 		writeback_inodes_sb(sb, reason);
1263 		up_read(&sb->s_umount);
1264 		return 1;
1265 	} else
1266 		return 0;
1267 }
1268 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1269 
1270 /**
1271  * writeback_inodes_sb_nr_if_idle	-	start writeback if none underway
1272  * @sb: the superblock
1273  * @nr: the number of pages to write
1274  * @reason: reason why some writeback work was initiated
1275  *
1276  * Invoke writeback_inodes_sb if no writeback is currently underway.
1277  * Returns 1 if writeback was started, 0 if not.
1278  */
1279 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1280 				   unsigned long nr,
1281 				   enum wb_reason reason)
1282 {
1283 	if (!writeback_in_progress(sb->s_bdi)) {
1284 		down_read(&sb->s_umount);
1285 		writeback_inodes_sb_nr(sb, nr, reason);
1286 		up_read(&sb->s_umount);
1287 		return 1;
1288 	} else
1289 		return 0;
1290 }
1291 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1292 
1293 /**
1294  * sync_inodes_sb	-	sync sb inode pages
1295  * @sb: the superblock
1296  *
1297  * This function writes and waits on any dirty inode belonging to this
1298  * super_block.
1299  */
1300 void sync_inodes_sb(struct super_block *sb)
1301 {
1302 	DECLARE_COMPLETION_ONSTACK(done);
1303 	struct wb_writeback_work work = {
1304 		.sb		= sb,
1305 		.sync_mode	= WB_SYNC_ALL,
1306 		.nr_pages	= LONG_MAX,
1307 		.range_cyclic	= 0,
1308 		.done		= &done,
1309 		.reason		= WB_REASON_SYNC,
1310 	};
1311 
1312 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1313 
1314 	bdi_queue_work(sb->s_bdi, &work);
1315 	wait_for_completion(&done);
1316 
1317 	wait_sb_inodes(sb);
1318 }
1319 EXPORT_SYMBOL(sync_inodes_sb);
1320 
1321 /**
1322  * write_inode_now	-	write an inode to disk
1323  * @inode: inode to write to disk
1324  * @sync: whether the write should be synchronous or not
1325  *
1326  * This function commits an inode to disk immediately if it is dirty. This is
1327  * primarily needed by knfsd.
1328  *
1329  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1330  */
1331 int write_inode_now(struct inode *inode, int sync)
1332 {
1333 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1334 	int ret;
1335 	struct writeback_control wbc = {
1336 		.nr_to_write = LONG_MAX,
1337 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1338 		.range_start = 0,
1339 		.range_end = LLONG_MAX,
1340 	};
1341 
1342 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1343 		wbc.nr_to_write = 0;
1344 
1345 	might_sleep();
1346 	spin_lock(&wb->list_lock);
1347 	spin_lock(&inode->i_lock);
1348 	ret = writeback_single_inode(inode, wb, &wbc);
1349 	spin_unlock(&inode->i_lock);
1350 	spin_unlock(&wb->list_lock);
1351 	return ret;
1352 }
1353 EXPORT_SYMBOL(write_inode_now);
1354 
1355 /**
1356  * sync_inode - write an inode and its pages to disk.
1357  * @inode: the inode to sync
1358  * @wbc: controls the writeback mode
1359  *
1360  * sync_inode() will write an inode and its pages to disk.  It will also
1361  * correctly update the inode on its superblock's dirty inode lists and will
1362  * update inode->i_state.
1363  *
1364  * The caller must have a ref on the inode.
1365  */
1366 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1367 {
1368 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1369 	int ret;
1370 
1371 	spin_lock(&wb->list_lock);
1372 	spin_lock(&inode->i_lock);
1373 	ret = writeback_single_inode(inode, wb, wbc);
1374 	spin_unlock(&inode->i_lock);
1375 	spin_unlock(&wb->list_lock);
1376 	return ret;
1377 }
1378 EXPORT_SYMBOL(sync_inode);
1379 
1380 /**
1381  * sync_inode_metadata - write an inode to disk
1382  * @inode: the inode to sync
1383  * @wait: wait for I/O to complete.
1384  *
1385  * Write an inode to disk and adjust its dirty state after completion.
1386  *
1387  * Note: only writes the actual inode, no associated data or other metadata.
1388  */
1389 int sync_inode_metadata(struct inode *inode, int wait)
1390 {
1391 	struct writeback_control wbc = {
1392 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1393 		.nr_to_write = 0, /* metadata-only */
1394 	};
1395 
1396 	return sync_inode(inode, &wbc);
1397 }
1398 EXPORT_SYMBOL(sync_inode_metadata);
1399