1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 124 list_move(&inode->i_io_list, head); 125 126 /* dirty_time doesn't count as dirty_io until expiration */ 127 if (head != &wb->b_dirty_time) 128 return wb_io_lists_populated(wb); 129 130 wb_io_lists_depopulated(wb); 131 return false; 132 } 133 134 static void wb_wakeup(struct bdi_writeback *wb) 135 { 136 spin_lock_bh(&wb->work_lock); 137 if (test_bit(WB_registered, &wb->state)) 138 mod_delayed_work(bdi_wq, &wb->dwork, 0); 139 spin_unlock_bh(&wb->work_lock); 140 } 141 142 static void finish_writeback_work(struct bdi_writeback *wb, 143 struct wb_writeback_work *work) 144 { 145 struct wb_completion *done = work->done; 146 147 if (work->auto_free) 148 kfree(work); 149 if (done) { 150 wait_queue_head_t *waitq = done->waitq; 151 152 /* @done can't be accessed after the following dec */ 153 if (atomic_dec_and_test(&done->cnt)) 154 wake_up_all(waitq); 155 } 156 } 157 158 static void wb_queue_work(struct bdi_writeback *wb, 159 struct wb_writeback_work *work) 160 { 161 trace_writeback_queue(wb, work); 162 163 if (work->done) 164 atomic_inc(&work->done->cnt); 165 166 spin_lock_bh(&wb->work_lock); 167 168 if (test_bit(WB_registered, &wb->state)) { 169 list_add_tail(&work->list, &wb->work_list); 170 mod_delayed_work(bdi_wq, &wb->dwork, 0); 171 } else 172 finish_writeback_work(wb, work); 173 174 spin_unlock_bh(&wb->work_lock); 175 } 176 177 /** 178 * wb_wait_for_completion - wait for completion of bdi_writeback_works 179 * @done: target wb_completion 180 * 181 * Wait for one or more work items issued to @bdi with their ->done field 182 * set to @done, which should have been initialized with 183 * DEFINE_WB_COMPLETION(). This function returns after all such work items 184 * are completed. Work items which are waited upon aren't freed 185 * automatically on completion. 186 */ 187 void wb_wait_for_completion(struct wb_completion *done) 188 { 189 atomic_dec(&done->cnt); /* put down the initial count */ 190 wait_event(*done->waitq, !atomic_read(&done->cnt)); 191 } 192 193 #ifdef CONFIG_CGROUP_WRITEBACK 194 195 /* 196 * Parameters for foreign inode detection, see wbc_detach_inode() to see 197 * how they're used. 198 * 199 * These paramters are inherently heuristical as the detection target 200 * itself is fuzzy. All we want to do is detaching an inode from the 201 * current owner if it's being written to by some other cgroups too much. 202 * 203 * The current cgroup writeback is built on the assumption that multiple 204 * cgroups writing to the same inode concurrently is very rare and a mode 205 * of operation which isn't well supported. As such, the goal is not 206 * taking too long when a different cgroup takes over an inode while 207 * avoiding too aggressive flip-flops from occasional foreign writes. 208 * 209 * We record, very roughly, 2s worth of IO time history and if more than 210 * half of that is foreign, trigger the switch. The recording is quantized 211 * to 16 slots. To avoid tiny writes from swinging the decision too much, 212 * writes smaller than 1/8 of avg size are ignored. 213 */ 214 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 215 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 216 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 217 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 218 219 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 220 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 221 /* each slot's duration is 2s / 16 */ 222 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 223 /* if foreign slots >= 8, switch */ 224 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 225 /* one round can affect upto 5 slots */ 226 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 227 228 /* 229 * Maximum inodes per isw. A specific value has been chosen to make 230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 231 */ 232 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 233 / sizeof(struct inode *)) 234 235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 236 static struct workqueue_struct *isw_wq; 237 238 void __inode_attach_wb(struct inode *inode, struct page *page) 239 { 240 struct backing_dev_info *bdi = inode_to_bdi(inode); 241 struct bdi_writeback *wb = NULL; 242 243 if (inode_cgwb_enabled(inode)) { 244 struct cgroup_subsys_state *memcg_css; 245 246 if (page) { 247 memcg_css = mem_cgroup_css_from_page(page); 248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 249 } else { 250 /* must pin memcg_css, see wb_get_create() */ 251 memcg_css = task_get_css(current, memory_cgrp_id); 252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 253 css_put(memcg_css); 254 } 255 } 256 257 if (!wb) 258 wb = &bdi->wb; 259 260 /* 261 * There may be multiple instances of this function racing to 262 * update the same inode. Use cmpxchg() to tell the winner. 263 */ 264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 265 wb_put(wb); 266 } 267 EXPORT_SYMBOL_GPL(__inode_attach_wb); 268 269 /** 270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 271 * @inode: inode of interest with i_lock held 272 * @wb: target bdi_writeback 273 * 274 * Remove the inode from wb's io lists and if necessarily put onto b_attached 275 * list. Only inodes attached to cgwb's are kept on this list. 276 */ 277 static void inode_cgwb_move_to_attached(struct inode *inode, 278 struct bdi_writeback *wb) 279 { 280 assert_spin_locked(&wb->list_lock); 281 assert_spin_locked(&inode->i_lock); 282 283 inode->i_state &= ~I_SYNC_QUEUED; 284 if (wb != &wb->bdi->wb) 285 list_move(&inode->i_io_list, &wb->b_attached); 286 else 287 list_del_init(&inode->i_io_list); 288 wb_io_lists_depopulated(wb); 289 } 290 291 /** 292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 293 * @inode: inode of interest with i_lock held 294 * 295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 296 * held on entry and is released on return. The returned wb is guaranteed 297 * to stay @inode's associated wb until its list_lock is released. 298 */ 299 static struct bdi_writeback * 300 locked_inode_to_wb_and_lock_list(struct inode *inode) 301 __releases(&inode->i_lock) 302 __acquires(&wb->list_lock) 303 { 304 while (true) { 305 struct bdi_writeback *wb = inode_to_wb(inode); 306 307 /* 308 * inode_to_wb() association is protected by both 309 * @inode->i_lock and @wb->list_lock but list_lock nests 310 * outside i_lock. Drop i_lock and verify that the 311 * association hasn't changed after acquiring list_lock. 312 */ 313 wb_get(wb); 314 spin_unlock(&inode->i_lock); 315 spin_lock(&wb->list_lock); 316 317 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 318 if (likely(wb == inode->i_wb)) { 319 wb_put(wb); /* @inode already has ref */ 320 return wb; 321 } 322 323 spin_unlock(&wb->list_lock); 324 wb_put(wb); 325 cpu_relax(); 326 spin_lock(&inode->i_lock); 327 } 328 } 329 330 /** 331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 332 * @inode: inode of interest 333 * 334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 335 * on entry. 336 */ 337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 338 __acquires(&wb->list_lock) 339 { 340 spin_lock(&inode->i_lock); 341 return locked_inode_to_wb_and_lock_list(inode); 342 } 343 344 struct inode_switch_wbs_context { 345 struct rcu_work work; 346 347 /* 348 * Multiple inodes can be switched at once. The switching procedure 349 * consists of two parts, separated by a RCU grace period. To make 350 * sure that the second part is executed for each inode gone through 351 * the first part, all inode pointers are placed into a NULL-terminated 352 * array embedded into struct inode_switch_wbs_context. Otherwise 353 * an inode could be left in a non-consistent state. 354 */ 355 struct bdi_writeback *new_wb; 356 struct inode *inodes[]; 357 }; 358 359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 360 { 361 down_write(&bdi->wb_switch_rwsem); 362 } 363 364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 365 { 366 up_write(&bdi->wb_switch_rwsem); 367 } 368 369 static bool inode_do_switch_wbs(struct inode *inode, 370 struct bdi_writeback *old_wb, 371 struct bdi_writeback *new_wb) 372 { 373 struct address_space *mapping = inode->i_mapping; 374 XA_STATE(xas, &mapping->i_pages, 0); 375 struct folio *folio; 376 bool switched = false; 377 378 spin_lock(&inode->i_lock); 379 xa_lock_irq(&mapping->i_pages); 380 381 /* 382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 383 * path owns the inode and we shouldn't modify ->i_io_list. 384 */ 385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 386 goto skip_switch; 387 388 trace_inode_switch_wbs(inode, old_wb, new_wb); 389 390 /* 391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 392 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 393 * folios actually under writeback. 394 */ 395 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 396 if (folio_test_dirty(folio)) { 397 long nr = folio_nr_pages(folio); 398 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 399 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 400 } 401 } 402 403 xas_set(&xas, 0); 404 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 405 long nr = folio_nr_pages(folio); 406 WARN_ON_ONCE(!folio_test_writeback(folio)); 407 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 408 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 409 } 410 411 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 412 atomic_dec(&old_wb->writeback_inodes); 413 atomic_inc(&new_wb->writeback_inodes); 414 } 415 416 wb_get(new_wb); 417 418 /* 419 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 420 * the specific list @inode was on is ignored and the @inode is put on 421 * ->b_dirty which is always correct including from ->b_dirty_time. 422 * The transfer preserves @inode->dirtied_when ordering. If the @inode 423 * was clean, it means it was on the b_attached list, so move it onto 424 * the b_attached list of @new_wb. 425 */ 426 if (!list_empty(&inode->i_io_list)) { 427 inode->i_wb = new_wb; 428 429 if (inode->i_state & I_DIRTY_ALL) { 430 struct inode *pos; 431 432 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 433 if (time_after_eq(inode->dirtied_when, 434 pos->dirtied_when)) 435 break; 436 inode_io_list_move_locked(inode, new_wb, 437 pos->i_io_list.prev); 438 } else { 439 inode_cgwb_move_to_attached(inode, new_wb); 440 } 441 } else { 442 inode->i_wb = new_wb; 443 } 444 445 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 446 inode->i_wb_frn_winner = 0; 447 inode->i_wb_frn_avg_time = 0; 448 inode->i_wb_frn_history = 0; 449 switched = true; 450 skip_switch: 451 /* 452 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 453 * ensures that the new wb is visible if they see !I_WB_SWITCH. 454 */ 455 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 456 457 xa_unlock_irq(&mapping->i_pages); 458 spin_unlock(&inode->i_lock); 459 460 return switched; 461 } 462 463 static void inode_switch_wbs_work_fn(struct work_struct *work) 464 { 465 struct inode_switch_wbs_context *isw = 466 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 467 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 468 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 469 struct bdi_writeback *new_wb = isw->new_wb; 470 unsigned long nr_switched = 0; 471 struct inode **inodep; 472 473 /* 474 * If @inode switches cgwb membership while sync_inodes_sb() is 475 * being issued, sync_inodes_sb() might miss it. Synchronize. 476 */ 477 down_read(&bdi->wb_switch_rwsem); 478 479 /* 480 * By the time control reaches here, RCU grace period has passed 481 * since I_WB_SWITCH assertion and all wb stat update transactions 482 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 483 * synchronizing against the i_pages lock. 484 * 485 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 486 * gives us exclusion against all wb related operations on @inode 487 * including IO list manipulations and stat updates. 488 */ 489 if (old_wb < new_wb) { 490 spin_lock(&old_wb->list_lock); 491 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 492 } else { 493 spin_lock(&new_wb->list_lock); 494 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 495 } 496 497 for (inodep = isw->inodes; *inodep; inodep++) { 498 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 499 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 500 nr_switched++; 501 } 502 503 spin_unlock(&new_wb->list_lock); 504 spin_unlock(&old_wb->list_lock); 505 506 up_read(&bdi->wb_switch_rwsem); 507 508 if (nr_switched) { 509 wb_wakeup(new_wb); 510 wb_put_many(old_wb, nr_switched); 511 } 512 513 for (inodep = isw->inodes; *inodep; inodep++) 514 iput(*inodep); 515 wb_put(new_wb); 516 kfree(isw); 517 atomic_dec(&isw_nr_in_flight); 518 } 519 520 static bool inode_prepare_wbs_switch(struct inode *inode, 521 struct bdi_writeback *new_wb) 522 { 523 /* 524 * Paired with smp_mb() in cgroup_writeback_umount(). 525 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 526 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 527 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 528 */ 529 smp_mb(); 530 531 if (IS_DAX(inode)) 532 return false; 533 534 /* while holding I_WB_SWITCH, no one else can update the association */ 535 spin_lock(&inode->i_lock); 536 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 537 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 538 inode_to_wb(inode) == new_wb) { 539 spin_unlock(&inode->i_lock); 540 return false; 541 } 542 inode->i_state |= I_WB_SWITCH; 543 __iget(inode); 544 spin_unlock(&inode->i_lock); 545 546 return true; 547 } 548 549 /** 550 * inode_switch_wbs - change the wb association of an inode 551 * @inode: target inode 552 * @new_wb_id: ID of the new wb 553 * 554 * Switch @inode's wb association to the wb identified by @new_wb_id. The 555 * switching is performed asynchronously and may fail silently. 556 */ 557 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 558 { 559 struct backing_dev_info *bdi = inode_to_bdi(inode); 560 struct cgroup_subsys_state *memcg_css; 561 struct inode_switch_wbs_context *isw; 562 563 /* noop if seems to be already in progress */ 564 if (inode->i_state & I_WB_SWITCH) 565 return; 566 567 /* avoid queueing a new switch if too many are already in flight */ 568 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 569 return; 570 571 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 572 if (!isw) 573 return; 574 575 atomic_inc(&isw_nr_in_flight); 576 577 /* find and pin the new wb */ 578 rcu_read_lock(); 579 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 580 if (memcg_css && !css_tryget(memcg_css)) 581 memcg_css = NULL; 582 rcu_read_unlock(); 583 if (!memcg_css) 584 goto out_free; 585 586 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 587 css_put(memcg_css); 588 if (!isw->new_wb) 589 goto out_free; 590 591 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 592 goto out_free; 593 594 isw->inodes[0] = inode; 595 596 /* 597 * In addition to synchronizing among switchers, I_WB_SWITCH tells 598 * the RCU protected stat update paths to grab the i_page 599 * lock so that stat transfer can synchronize against them. 600 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 601 */ 602 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 603 queue_rcu_work(isw_wq, &isw->work); 604 return; 605 606 out_free: 607 atomic_dec(&isw_nr_in_flight); 608 if (isw->new_wb) 609 wb_put(isw->new_wb); 610 kfree(isw); 611 } 612 613 /** 614 * cleanup_offline_cgwb - detach associated inodes 615 * @wb: target wb 616 * 617 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 618 * to eventually release the dying @wb. Returns %true if not all inodes were 619 * switched and the function has to be restarted. 620 */ 621 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 622 { 623 struct cgroup_subsys_state *memcg_css; 624 struct inode_switch_wbs_context *isw; 625 struct inode *inode; 626 int nr; 627 bool restart = false; 628 629 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 630 GFP_KERNEL); 631 if (!isw) 632 return restart; 633 634 atomic_inc(&isw_nr_in_flight); 635 636 for (memcg_css = wb->memcg_css->parent; memcg_css; 637 memcg_css = memcg_css->parent) { 638 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 639 if (isw->new_wb) 640 break; 641 } 642 if (unlikely(!isw->new_wb)) 643 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 644 645 nr = 0; 646 spin_lock(&wb->list_lock); 647 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 648 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 649 continue; 650 651 isw->inodes[nr++] = inode; 652 653 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 654 restart = true; 655 break; 656 } 657 } 658 spin_unlock(&wb->list_lock); 659 660 /* no attached inodes? bail out */ 661 if (nr == 0) { 662 atomic_dec(&isw_nr_in_flight); 663 wb_put(isw->new_wb); 664 kfree(isw); 665 return restart; 666 } 667 668 /* 669 * In addition to synchronizing among switchers, I_WB_SWITCH tells 670 * the RCU protected stat update paths to grab the i_page 671 * lock so that stat transfer can synchronize against them. 672 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 673 */ 674 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 675 queue_rcu_work(isw_wq, &isw->work); 676 677 return restart; 678 } 679 680 /** 681 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 682 * @wbc: writeback_control of interest 683 * @inode: target inode 684 * 685 * @inode is locked and about to be written back under the control of @wbc. 686 * Record @inode's writeback context into @wbc and unlock the i_lock. On 687 * writeback completion, wbc_detach_inode() should be called. This is used 688 * to track the cgroup writeback context. 689 */ 690 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 691 struct inode *inode) 692 { 693 if (!inode_cgwb_enabled(inode)) { 694 spin_unlock(&inode->i_lock); 695 return; 696 } 697 698 wbc->wb = inode_to_wb(inode); 699 wbc->inode = inode; 700 701 wbc->wb_id = wbc->wb->memcg_css->id; 702 wbc->wb_lcand_id = inode->i_wb_frn_winner; 703 wbc->wb_tcand_id = 0; 704 wbc->wb_bytes = 0; 705 wbc->wb_lcand_bytes = 0; 706 wbc->wb_tcand_bytes = 0; 707 708 wb_get(wbc->wb); 709 spin_unlock(&inode->i_lock); 710 711 /* 712 * A dying wb indicates that either the blkcg associated with the 713 * memcg changed or the associated memcg is dying. In the first 714 * case, a replacement wb should already be available and we should 715 * refresh the wb immediately. In the second case, trying to 716 * refresh will keep failing. 717 */ 718 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 719 inode_switch_wbs(inode, wbc->wb_id); 720 } 721 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 722 723 /** 724 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 725 * @wbc: writeback_control of the just finished writeback 726 * 727 * To be called after a writeback attempt of an inode finishes and undoes 728 * wbc_attach_and_unlock_inode(). Can be called under any context. 729 * 730 * As concurrent write sharing of an inode is expected to be very rare and 731 * memcg only tracks page ownership on first-use basis severely confining 732 * the usefulness of such sharing, cgroup writeback tracks ownership 733 * per-inode. While the support for concurrent write sharing of an inode 734 * is deemed unnecessary, an inode being written to by different cgroups at 735 * different points in time is a lot more common, and, more importantly, 736 * charging only by first-use can too readily lead to grossly incorrect 737 * behaviors (single foreign page can lead to gigabytes of writeback to be 738 * incorrectly attributed). 739 * 740 * To resolve this issue, cgroup writeback detects the majority dirtier of 741 * an inode and transfers the ownership to it. To avoid unnnecessary 742 * oscillation, the detection mechanism keeps track of history and gives 743 * out the switch verdict only if the foreign usage pattern is stable over 744 * a certain amount of time and/or writeback attempts. 745 * 746 * On each writeback attempt, @wbc tries to detect the majority writer 747 * using Boyer-Moore majority vote algorithm. In addition to the byte 748 * count from the majority voting, it also counts the bytes written for the 749 * current wb and the last round's winner wb (max of last round's current 750 * wb, the winner from two rounds ago, and the last round's majority 751 * candidate). Keeping track of the historical winner helps the algorithm 752 * to semi-reliably detect the most active writer even when it's not the 753 * absolute majority. 754 * 755 * Once the winner of the round is determined, whether the winner is 756 * foreign or not and how much IO time the round consumed is recorded in 757 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 758 * over a certain threshold, the switch verdict is given. 759 */ 760 void wbc_detach_inode(struct writeback_control *wbc) 761 { 762 struct bdi_writeback *wb = wbc->wb; 763 struct inode *inode = wbc->inode; 764 unsigned long avg_time, max_bytes, max_time; 765 u16 history; 766 int max_id; 767 768 if (!wb) 769 return; 770 771 history = inode->i_wb_frn_history; 772 avg_time = inode->i_wb_frn_avg_time; 773 774 /* pick the winner of this round */ 775 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 776 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 777 max_id = wbc->wb_id; 778 max_bytes = wbc->wb_bytes; 779 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 780 max_id = wbc->wb_lcand_id; 781 max_bytes = wbc->wb_lcand_bytes; 782 } else { 783 max_id = wbc->wb_tcand_id; 784 max_bytes = wbc->wb_tcand_bytes; 785 } 786 787 /* 788 * Calculate the amount of IO time the winner consumed and fold it 789 * into the running average kept per inode. If the consumed IO 790 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 791 * deciding whether to switch or not. This is to prevent one-off 792 * small dirtiers from skewing the verdict. 793 */ 794 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 795 wb->avg_write_bandwidth); 796 if (avg_time) 797 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 798 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 799 else 800 avg_time = max_time; /* immediate catch up on first run */ 801 802 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 803 int slots; 804 805 /* 806 * The switch verdict is reached if foreign wb's consume 807 * more than a certain proportion of IO time in a 808 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 809 * history mask where each bit represents one sixteenth of 810 * the period. Determine the number of slots to shift into 811 * history from @max_time. 812 */ 813 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 814 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 815 history <<= slots; 816 if (wbc->wb_id != max_id) 817 history |= (1U << slots) - 1; 818 819 if (history) 820 trace_inode_foreign_history(inode, wbc, history); 821 822 /* 823 * Switch if the current wb isn't the consistent winner. 824 * If there are multiple closely competing dirtiers, the 825 * inode may switch across them repeatedly over time, which 826 * is okay. The main goal is avoiding keeping an inode on 827 * the wrong wb for an extended period of time. 828 */ 829 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 830 inode_switch_wbs(inode, max_id); 831 } 832 833 /* 834 * Multiple instances of this function may race to update the 835 * following fields but we don't mind occassional inaccuracies. 836 */ 837 inode->i_wb_frn_winner = max_id; 838 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 839 inode->i_wb_frn_history = history; 840 841 wb_put(wbc->wb); 842 wbc->wb = NULL; 843 } 844 EXPORT_SYMBOL_GPL(wbc_detach_inode); 845 846 /** 847 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 848 * @wbc: writeback_control of the writeback in progress 849 * @page: page being written out 850 * @bytes: number of bytes being written out 851 * 852 * @bytes from @page are about to written out during the writeback 853 * controlled by @wbc. Keep the book for foreign inode detection. See 854 * wbc_detach_inode(). 855 */ 856 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 857 size_t bytes) 858 { 859 struct cgroup_subsys_state *css; 860 int id; 861 862 /* 863 * pageout() path doesn't attach @wbc to the inode being written 864 * out. This is intentional as we don't want the function to block 865 * behind a slow cgroup. Ultimately, we want pageout() to kick off 866 * regular writeback instead of writing things out itself. 867 */ 868 if (!wbc->wb || wbc->no_cgroup_owner) 869 return; 870 871 css = mem_cgroup_css_from_page(page); 872 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 873 if (!(css->flags & CSS_ONLINE)) 874 return; 875 876 id = css->id; 877 878 if (id == wbc->wb_id) { 879 wbc->wb_bytes += bytes; 880 return; 881 } 882 883 if (id == wbc->wb_lcand_id) 884 wbc->wb_lcand_bytes += bytes; 885 886 /* Boyer-Moore majority vote algorithm */ 887 if (!wbc->wb_tcand_bytes) 888 wbc->wb_tcand_id = id; 889 if (id == wbc->wb_tcand_id) 890 wbc->wb_tcand_bytes += bytes; 891 else 892 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 893 } 894 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 895 896 /** 897 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 898 * @wb: target bdi_writeback to split @nr_pages to 899 * @nr_pages: number of pages to write for the whole bdi 900 * 901 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 902 * relation to the total write bandwidth of all wb's w/ dirty inodes on 903 * @wb->bdi. 904 */ 905 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 906 { 907 unsigned long this_bw = wb->avg_write_bandwidth; 908 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 909 910 if (nr_pages == LONG_MAX) 911 return LONG_MAX; 912 913 /* 914 * This may be called on clean wb's and proportional distribution 915 * may not make sense, just use the original @nr_pages in those 916 * cases. In general, we wanna err on the side of writing more. 917 */ 918 if (!tot_bw || this_bw >= tot_bw) 919 return nr_pages; 920 else 921 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 922 } 923 924 /** 925 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 926 * @bdi: target backing_dev_info 927 * @base_work: wb_writeback_work to issue 928 * @skip_if_busy: skip wb's which already have writeback in progress 929 * 930 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 931 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 932 * distributed to the busy wbs according to each wb's proportion in the 933 * total active write bandwidth of @bdi. 934 */ 935 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 936 struct wb_writeback_work *base_work, 937 bool skip_if_busy) 938 { 939 struct bdi_writeback *last_wb = NULL; 940 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 941 struct bdi_writeback, bdi_node); 942 943 might_sleep(); 944 restart: 945 rcu_read_lock(); 946 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 947 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 948 struct wb_writeback_work fallback_work; 949 struct wb_writeback_work *work; 950 long nr_pages; 951 952 if (last_wb) { 953 wb_put(last_wb); 954 last_wb = NULL; 955 } 956 957 /* SYNC_ALL writes out I_DIRTY_TIME too */ 958 if (!wb_has_dirty_io(wb) && 959 (base_work->sync_mode == WB_SYNC_NONE || 960 list_empty(&wb->b_dirty_time))) 961 continue; 962 if (skip_if_busy && writeback_in_progress(wb)) 963 continue; 964 965 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 966 967 work = kmalloc(sizeof(*work), GFP_ATOMIC); 968 if (work) { 969 *work = *base_work; 970 work->nr_pages = nr_pages; 971 work->auto_free = 1; 972 wb_queue_work(wb, work); 973 continue; 974 } 975 976 /* alloc failed, execute synchronously using on-stack fallback */ 977 work = &fallback_work; 978 *work = *base_work; 979 work->nr_pages = nr_pages; 980 work->auto_free = 0; 981 work->done = &fallback_work_done; 982 983 wb_queue_work(wb, work); 984 985 /* 986 * Pin @wb so that it stays on @bdi->wb_list. This allows 987 * continuing iteration from @wb after dropping and 988 * regrabbing rcu read lock. 989 */ 990 wb_get(wb); 991 last_wb = wb; 992 993 rcu_read_unlock(); 994 wb_wait_for_completion(&fallback_work_done); 995 goto restart; 996 } 997 rcu_read_unlock(); 998 999 if (last_wb) 1000 wb_put(last_wb); 1001 } 1002 1003 /** 1004 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1005 * @bdi_id: target bdi id 1006 * @memcg_id: target memcg css id 1007 * @reason: reason why some writeback work initiated 1008 * @done: target wb_completion 1009 * 1010 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1011 * with the specified parameters. 1012 */ 1013 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1014 enum wb_reason reason, struct wb_completion *done) 1015 { 1016 struct backing_dev_info *bdi; 1017 struct cgroup_subsys_state *memcg_css; 1018 struct bdi_writeback *wb; 1019 struct wb_writeback_work *work; 1020 unsigned long dirty; 1021 int ret; 1022 1023 /* lookup bdi and memcg */ 1024 bdi = bdi_get_by_id(bdi_id); 1025 if (!bdi) 1026 return -ENOENT; 1027 1028 rcu_read_lock(); 1029 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1030 if (memcg_css && !css_tryget(memcg_css)) 1031 memcg_css = NULL; 1032 rcu_read_unlock(); 1033 if (!memcg_css) { 1034 ret = -ENOENT; 1035 goto out_bdi_put; 1036 } 1037 1038 /* 1039 * And find the associated wb. If the wb isn't there already 1040 * there's nothing to flush, don't create one. 1041 */ 1042 wb = wb_get_lookup(bdi, memcg_css); 1043 if (!wb) { 1044 ret = -ENOENT; 1045 goto out_css_put; 1046 } 1047 1048 /* 1049 * The caller is attempting to write out most of 1050 * the currently dirty pages. Let's take the current dirty page 1051 * count and inflate it by 25% which should be large enough to 1052 * flush out most dirty pages while avoiding getting livelocked by 1053 * concurrent dirtiers. 1054 * 1055 * BTW the memcg stats are flushed periodically and this is best-effort 1056 * estimation, so some potential error is ok. 1057 */ 1058 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1059 dirty = dirty * 10 / 8; 1060 1061 /* issue the writeback work */ 1062 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1063 if (work) { 1064 work->nr_pages = dirty; 1065 work->sync_mode = WB_SYNC_NONE; 1066 work->range_cyclic = 1; 1067 work->reason = reason; 1068 work->done = done; 1069 work->auto_free = 1; 1070 wb_queue_work(wb, work); 1071 ret = 0; 1072 } else { 1073 ret = -ENOMEM; 1074 } 1075 1076 wb_put(wb); 1077 out_css_put: 1078 css_put(memcg_css); 1079 out_bdi_put: 1080 bdi_put(bdi); 1081 return ret; 1082 } 1083 1084 /** 1085 * cgroup_writeback_umount - flush inode wb switches for umount 1086 * 1087 * This function is called when a super_block is about to be destroyed and 1088 * flushes in-flight inode wb switches. An inode wb switch goes through 1089 * RCU and then workqueue, so the two need to be flushed in order to ensure 1090 * that all previously scheduled switches are finished. As wb switches are 1091 * rare occurrences and synchronize_rcu() can take a while, perform 1092 * flushing iff wb switches are in flight. 1093 */ 1094 void cgroup_writeback_umount(void) 1095 { 1096 /* 1097 * SB_ACTIVE should be reliably cleared before checking 1098 * isw_nr_in_flight, see generic_shutdown_super(). 1099 */ 1100 smp_mb(); 1101 1102 if (atomic_read(&isw_nr_in_flight)) { 1103 /* 1104 * Use rcu_barrier() to wait for all pending callbacks to 1105 * ensure that all in-flight wb switches are in the workqueue. 1106 */ 1107 rcu_barrier(); 1108 flush_workqueue(isw_wq); 1109 } 1110 } 1111 1112 static int __init cgroup_writeback_init(void) 1113 { 1114 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1115 if (!isw_wq) 1116 return -ENOMEM; 1117 return 0; 1118 } 1119 fs_initcall(cgroup_writeback_init); 1120 1121 #else /* CONFIG_CGROUP_WRITEBACK */ 1122 1123 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1124 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1125 1126 static void inode_cgwb_move_to_attached(struct inode *inode, 1127 struct bdi_writeback *wb) 1128 { 1129 assert_spin_locked(&wb->list_lock); 1130 assert_spin_locked(&inode->i_lock); 1131 1132 inode->i_state &= ~I_SYNC_QUEUED; 1133 list_del_init(&inode->i_io_list); 1134 wb_io_lists_depopulated(wb); 1135 } 1136 1137 static struct bdi_writeback * 1138 locked_inode_to_wb_and_lock_list(struct inode *inode) 1139 __releases(&inode->i_lock) 1140 __acquires(&wb->list_lock) 1141 { 1142 struct bdi_writeback *wb = inode_to_wb(inode); 1143 1144 spin_unlock(&inode->i_lock); 1145 spin_lock(&wb->list_lock); 1146 return wb; 1147 } 1148 1149 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1150 __acquires(&wb->list_lock) 1151 { 1152 struct bdi_writeback *wb = inode_to_wb(inode); 1153 1154 spin_lock(&wb->list_lock); 1155 return wb; 1156 } 1157 1158 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1159 { 1160 return nr_pages; 1161 } 1162 1163 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1164 struct wb_writeback_work *base_work, 1165 bool skip_if_busy) 1166 { 1167 might_sleep(); 1168 1169 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1170 base_work->auto_free = 0; 1171 wb_queue_work(&bdi->wb, base_work); 1172 } 1173 } 1174 1175 #endif /* CONFIG_CGROUP_WRITEBACK */ 1176 1177 /* 1178 * Add in the number of potentially dirty inodes, because each inode 1179 * write can dirty pagecache in the underlying blockdev. 1180 */ 1181 static unsigned long get_nr_dirty_pages(void) 1182 { 1183 return global_node_page_state(NR_FILE_DIRTY) + 1184 get_nr_dirty_inodes(); 1185 } 1186 1187 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1188 { 1189 if (!wb_has_dirty_io(wb)) 1190 return; 1191 1192 /* 1193 * All callers of this function want to start writeback of all 1194 * dirty pages. Places like vmscan can call this at a very 1195 * high frequency, causing pointless allocations of tons of 1196 * work items and keeping the flusher threads busy retrieving 1197 * that work. Ensure that we only allow one of them pending and 1198 * inflight at the time. 1199 */ 1200 if (test_bit(WB_start_all, &wb->state) || 1201 test_and_set_bit(WB_start_all, &wb->state)) 1202 return; 1203 1204 wb->start_all_reason = reason; 1205 wb_wakeup(wb); 1206 } 1207 1208 /** 1209 * wb_start_background_writeback - start background writeback 1210 * @wb: bdi_writback to write from 1211 * 1212 * Description: 1213 * This makes sure WB_SYNC_NONE background writeback happens. When 1214 * this function returns, it is only guaranteed that for given wb 1215 * some IO is happening if we are over background dirty threshold. 1216 * Caller need not hold sb s_umount semaphore. 1217 */ 1218 void wb_start_background_writeback(struct bdi_writeback *wb) 1219 { 1220 /* 1221 * We just wake up the flusher thread. It will perform background 1222 * writeback as soon as there is no other work to do. 1223 */ 1224 trace_writeback_wake_background(wb); 1225 wb_wakeup(wb); 1226 } 1227 1228 /* 1229 * Remove the inode from the writeback list it is on. 1230 */ 1231 void inode_io_list_del(struct inode *inode) 1232 { 1233 struct bdi_writeback *wb; 1234 1235 wb = inode_to_wb_and_lock_list(inode); 1236 spin_lock(&inode->i_lock); 1237 1238 inode->i_state &= ~I_SYNC_QUEUED; 1239 list_del_init(&inode->i_io_list); 1240 wb_io_lists_depopulated(wb); 1241 1242 spin_unlock(&inode->i_lock); 1243 spin_unlock(&wb->list_lock); 1244 } 1245 EXPORT_SYMBOL(inode_io_list_del); 1246 1247 /* 1248 * mark an inode as under writeback on the sb 1249 */ 1250 void sb_mark_inode_writeback(struct inode *inode) 1251 { 1252 struct super_block *sb = inode->i_sb; 1253 unsigned long flags; 1254 1255 if (list_empty(&inode->i_wb_list)) { 1256 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1257 if (list_empty(&inode->i_wb_list)) { 1258 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1259 trace_sb_mark_inode_writeback(inode); 1260 } 1261 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1262 } 1263 } 1264 1265 /* 1266 * clear an inode as under writeback on the sb 1267 */ 1268 void sb_clear_inode_writeback(struct inode *inode) 1269 { 1270 struct super_block *sb = inode->i_sb; 1271 unsigned long flags; 1272 1273 if (!list_empty(&inode->i_wb_list)) { 1274 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1275 if (!list_empty(&inode->i_wb_list)) { 1276 list_del_init(&inode->i_wb_list); 1277 trace_sb_clear_inode_writeback(inode); 1278 } 1279 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1280 } 1281 } 1282 1283 /* 1284 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1285 * furthest end of its superblock's dirty-inode list. 1286 * 1287 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1288 * already the most-recently-dirtied inode on the b_dirty list. If that is 1289 * the case then the inode must have been redirtied while it was being written 1290 * out and we don't reset its dirtied_when. 1291 */ 1292 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1293 { 1294 assert_spin_locked(&inode->i_lock); 1295 1296 if (!list_empty(&wb->b_dirty)) { 1297 struct inode *tail; 1298 1299 tail = wb_inode(wb->b_dirty.next); 1300 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1301 inode->dirtied_when = jiffies; 1302 } 1303 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1304 inode->i_state &= ~I_SYNC_QUEUED; 1305 } 1306 1307 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1308 { 1309 spin_lock(&inode->i_lock); 1310 redirty_tail_locked(inode, wb); 1311 spin_unlock(&inode->i_lock); 1312 } 1313 1314 /* 1315 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1316 */ 1317 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1318 { 1319 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1320 } 1321 1322 static void inode_sync_complete(struct inode *inode) 1323 { 1324 inode->i_state &= ~I_SYNC; 1325 /* If inode is clean an unused, put it into LRU now... */ 1326 inode_add_lru(inode); 1327 /* Waiters must see I_SYNC cleared before being woken up */ 1328 smp_mb(); 1329 wake_up_bit(&inode->i_state, __I_SYNC); 1330 } 1331 1332 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1333 { 1334 bool ret = time_after(inode->dirtied_when, t); 1335 #ifndef CONFIG_64BIT 1336 /* 1337 * For inodes being constantly redirtied, dirtied_when can get stuck. 1338 * It _appears_ to be in the future, but is actually in distant past. 1339 * This test is necessary to prevent such wrapped-around relative times 1340 * from permanently stopping the whole bdi writeback. 1341 */ 1342 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1343 #endif 1344 return ret; 1345 } 1346 1347 #define EXPIRE_DIRTY_ATIME 0x0001 1348 1349 /* 1350 * Move expired (dirtied before dirtied_before) dirty inodes from 1351 * @delaying_queue to @dispatch_queue. 1352 */ 1353 static int move_expired_inodes(struct list_head *delaying_queue, 1354 struct list_head *dispatch_queue, 1355 unsigned long dirtied_before) 1356 { 1357 LIST_HEAD(tmp); 1358 struct list_head *pos, *node; 1359 struct super_block *sb = NULL; 1360 struct inode *inode; 1361 int do_sb_sort = 0; 1362 int moved = 0; 1363 1364 while (!list_empty(delaying_queue)) { 1365 inode = wb_inode(delaying_queue->prev); 1366 if (inode_dirtied_after(inode, dirtied_before)) 1367 break; 1368 list_move(&inode->i_io_list, &tmp); 1369 moved++; 1370 spin_lock(&inode->i_lock); 1371 inode->i_state |= I_SYNC_QUEUED; 1372 spin_unlock(&inode->i_lock); 1373 if (sb_is_blkdev_sb(inode->i_sb)) 1374 continue; 1375 if (sb && sb != inode->i_sb) 1376 do_sb_sort = 1; 1377 sb = inode->i_sb; 1378 } 1379 1380 /* just one sb in list, splice to dispatch_queue and we're done */ 1381 if (!do_sb_sort) { 1382 list_splice(&tmp, dispatch_queue); 1383 goto out; 1384 } 1385 1386 /* Move inodes from one superblock together */ 1387 while (!list_empty(&tmp)) { 1388 sb = wb_inode(tmp.prev)->i_sb; 1389 list_for_each_prev_safe(pos, node, &tmp) { 1390 inode = wb_inode(pos); 1391 if (inode->i_sb == sb) 1392 list_move(&inode->i_io_list, dispatch_queue); 1393 } 1394 } 1395 out: 1396 return moved; 1397 } 1398 1399 /* 1400 * Queue all expired dirty inodes for io, eldest first. 1401 * Before 1402 * newly dirtied b_dirty b_io b_more_io 1403 * =============> gf edc BA 1404 * After 1405 * newly dirtied b_dirty b_io b_more_io 1406 * =============> g fBAedc 1407 * | 1408 * +--> dequeue for IO 1409 */ 1410 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1411 unsigned long dirtied_before) 1412 { 1413 int moved; 1414 unsigned long time_expire_jif = dirtied_before; 1415 1416 assert_spin_locked(&wb->list_lock); 1417 list_splice_init(&wb->b_more_io, &wb->b_io); 1418 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1419 if (!work->for_sync) 1420 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1421 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1422 time_expire_jif); 1423 if (moved) 1424 wb_io_lists_populated(wb); 1425 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1426 } 1427 1428 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1429 { 1430 int ret; 1431 1432 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1433 trace_writeback_write_inode_start(inode, wbc); 1434 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1435 trace_writeback_write_inode(inode, wbc); 1436 return ret; 1437 } 1438 return 0; 1439 } 1440 1441 /* 1442 * Wait for writeback on an inode to complete. Called with i_lock held. 1443 * Caller must make sure inode cannot go away when we drop i_lock. 1444 */ 1445 static void __inode_wait_for_writeback(struct inode *inode) 1446 __releases(inode->i_lock) 1447 __acquires(inode->i_lock) 1448 { 1449 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1450 wait_queue_head_t *wqh; 1451 1452 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1453 while (inode->i_state & I_SYNC) { 1454 spin_unlock(&inode->i_lock); 1455 __wait_on_bit(wqh, &wq, bit_wait, 1456 TASK_UNINTERRUPTIBLE); 1457 spin_lock(&inode->i_lock); 1458 } 1459 } 1460 1461 /* 1462 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1463 */ 1464 void inode_wait_for_writeback(struct inode *inode) 1465 { 1466 spin_lock(&inode->i_lock); 1467 __inode_wait_for_writeback(inode); 1468 spin_unlock(&inode->i_lock); 1469 } 1470 1471 /* 1472 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1473 * held and drops it. It is aimed for callers not holding any inode reference 1474 * so once i_lock is dropped, inode can go away. 1475 */ 1476 static void inode_sleep_on_writeback(struct inode *inode) 1477 __releases(inode->i_lock) 1478 { 1479 DEFINE_WAIT(wait); 1480 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1481 int sleep; 1482 1483 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1484 sleep = inode->i_state & I_SYNC; 1485 spin_unlock(&inode->i_lock); 1486 if (sleep) 1487 schedule(); 1488 finish_wait(wqh, &wait); 1489 } 1490 1491 /* 1492 * Find proper writeback list for the inode depending on its current state and 1493 * possibly also change of its state while we were doing writeback. Here we 1494 * handle things such as livelock prevention or fairness of writeback among 1495 * inodes. This function can be called only by flusher thread - noone else 1496 * processes all inodes in writeback lists and requeueing inodes behind flusher 1497 * thread's back can have unexpected consequences. 1498 */ 1499 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1500 struct writeback_control *wbc) 1501 { 1502 if (inode->i_state & I_FREEING) 1503 return; 1504 1505 /* 1506 * Sync livelock prevention. Each inode is tagged and synced in one 1507 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1508 * the dirty time to prevent enqueue and sync it again. 1509 */ 1510 if ((inode->i_state & I_DIRTY) && 1511 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1512 inode->dirtied_when = jiffies; 1513 1514 if (wbc->pages_skipped) { 1515 /* 1516 * writeback is not making progress due to locked 1517 * buffers. Skip this inode for now. 1518 */ 1519 redirty_tail_locked(inode, wb); 1520 return; 1521 } 1522 1523 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1524 /* 1525 * We didn't write back all the pages. nfs_writepages() 1526 * sometimes bales out without doing anything. 1527 */ 1528 if (wbc->nr_to_write <= 0) { 1529 /* Slice used up. Queue for next turn. */ 1530 requeue_io(inode, wb); 1531 } else { 1532 /* 1533 * Writeback blocked by something other than 1534 * congestion. Delay the inode for some time to 1535 * avoid spinning on the CPU (100% iowait) 1536 * retrying writeback of the dirty page/inode 1537 * that cannot be performed immediately. 1538 */ 1539 redirty_tail_locked(inode, wb); 1540 } 1541 } else if (inode->i_state & I_DIRTY) { 1542 /* 1543 * Filesystems can dirty the inode during writeback operations, 1544 * such as delayed allocation during submission or metadata 1545 * updates after data IO completion. 1546 */ 1547 redirty_tail_locked(inode, wb); 1548 } else if (inode->i_state & I_DIRTY_TIME) { 1549 inode->dirtied_when = jiffies; 1550 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1551 inode->i_state &= ~I_SYNC_QUEUED; 1552 } else { 1553 /* The inode is clean. Remove from writeback lists. */ 1554 inode_cgwb_move_to_attached(inode, wb); 1555 } 1556 } 1557 1558 /* 1559 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1560 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1561 * 1562 * This doesn't remove the inode from the writeback list it is on, except 1563 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1564 * expiration. The caller is otherwise responsible for writeback list handling. 1565 * 1566 * The caller is also responsible for setting the I_SYNC flag beforehand and 1567 * calling inode_sync_complete() to clear it afterwards. 1568 */ 1569 static int 1570 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1571 { 1572 struct address_space *mapping = inode->i_mapping; 1573 long nr_to_write = wbc->nr_to_write; 1574 unsigned dirty; 1575 int ret; 1576 1577 WARN_ON(!(inode->i_state & I_SYNC)); 1578 1579 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1580 1581 ret = do_writepages(mapping, wbc); 1582 1583 /* 1584 * Make sure to wait on the data before writing out the metadata. 1585 * This is important for filesystems that modify metadata on data 1586 * I/O completion. We don't do it for sync(2) writeback because it has a 1587 * separate, external IO completion path and ->sync_fs for guaranteeing 1588 * inode metadata is written back correctly. 1589 */ 1590 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1591 int err = filemap_fdatawait(mapping); 1592 if (ret == 0) 1593 ret = err; 1594 } 1595 1596 /* 1597 * If the inode has dirty timestamps and we need to write them, call 1598 * mark_inode_dirty_sync() to notify the filesystem about it and to 1599 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1600 */ 1601 if ((inode->i_state & I_DIRTY_TIME) && 1602 (wbc->sync_mode == WB_SYNC_ALL || 1603 time_after(jiffies, inode->dirtied_time_when + 1604 dirtytime_expire_interval * HZ))) { 1605 trace_writeback_lazytime(inode); 1606 mark_inode_dirty_sync(inode); 1607 } 1608 1609 /* 1610 * Get and clear the dirty flags from i_state. This needs to be done 1611 * after calling writepages because some filesystems may redirty the 1612 * inode during writepages due to delalloc. It also needs to be done 1613 * after handling timestamp expiration, as that may dirty the inode too. 1614 */ 1615 spin_lock(&inode->i_lock); 1616 dirty = inode->i_state & I_DIRTY; 1617 inode->i_state &= ~dirty; 1618 1619 /* 1620 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1621 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1622 * either they see the I_DIRTY bits cleared or we see the dirtied 1623 * inode. 1624 * 1625 * I_DIRTY_PAGES is always cleared together above even if @mapping 1626 * still has dirty pages. The flag is reinstated after smp_mb() if 1627 * necessary. This guarantees that either __mark_inode_dirty() 1628 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1629 */ 1630 smp_mb(); 1631 1632 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1633 inode->i_state |= I_DIRTY_PAGES; 1634 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) { 1635 if (!(inode->i_state & I_DIRTY_PAGES)) { 1636 inode->i_state &= ~I_PINNING_FSCACHE_WB; 1637 wbc->unpinned_fscache_wb = true; 1638 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */ 1639 } 1640 } 1641 1642 spin_unlock(&inode->i_lock); 1643 1644 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1645 if (dirty & ~I_DIRTY_PAGES) { 1646 int err = write_inode(inode, wbc); 1647 if (ret == 0) 1648 ret = err; 1649 } 1650 wbc->unpinned_fscache_wb = false; 1651 trace_writeback_single_inode(inode, wbc, nr_to_write); 1652 return ret; 1653 } 1654 1655 /* 1656 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1657 * the regular batched writeback done by the flusher threads in 1658 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1659 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1660 * 1661 * To prevent the inode from going away, either the caller must have a reference 1662 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1663 */ 1664 static int writeback_single_inode(struct inode *inode, 1665 struct writeback_control *wbc) 1666 { 1667 struct bdi_writeback *wb; 1668 int ret = 0; 1669 1670 spin_lock(&inode->i_lock); 1671 if (!atomic_read(&inode->i_count)) 1672 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1673 else 1674 WARN_ON(inode->i_state & I_WILL_FREE); 1675 1676 if (inode->i_state & I_SYNC) { 1677 /* 1678 * Writeback is already running on the inode. For WB_SYNC_NONE, 1679 * that's enough and we can just return. For WB_SYNC_ALL, we 1680 * must wait for the existing writeback to complete, then do 1681 * writeback again if there's anything left. 1682 */ 1683 if (wbc->sync_mode != WB_SYNC_ALL) 1684 goto out; 1685 __inode_wait_for_writeback(inode); 1686 } 1687 WARN_ON(inode->i_state & I_SYNC); 1688 /* 1689 * If the inode is already fully clean, then there's nothing to do. 1690 * 1691 * For data-integrity syncs we also need to check whether any pages are 1692 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1693 * there are any such pages, we'll need to wait for them. 1694 */ 1695 if (!(inode->i_state & I_DIRTY_ALL) && 1696 (wbc->sync_mode != WB_SYNC_ALL || 1697 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1698 goto out; 1699 inode->i_state |= I_SYNC; 1700 wbc_attach_and_unlock_inode(wbc, inode); 1701 1702 ret = __writeback_single_inode(inode, wbc); 1703 1704 wbc_detach_inode(wbc); 1705 1706 wb = inode_to_wb_and_lock_list(inode); 1707 spin_lock(&inode->i_lock); 1708 /* 1709 * If the inode is now fully clean, then it can be safely removed from 1710 * its writeback list (if any). Otherwise the flusher threads are 1711 * responsible for the writeback lists. 1712 */ 1713 if (!(inode->i_state & I_DIRTY_ALL)) 1714 inode_cgwb_move_to_attached(inode, wb); 1715 spin_unlock(&wb->list_lock); 1716 inode_sync_complete(inode); 1717 out: 1718 spin_unlock(&inode->i_lock); 1719 return ret; 1720 } 1721 1722 static long writeback_chunk_size(struct bdi_writeback *wb, 1723 struct wb_writeback_work *work) 1724 { 1725 long pages; 1726 1727 /* 1728 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1729 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1730 * here avoids calling into writeback_inodes_wb() more than once. 1731 * 1732 * The intended call sequence for WB_SYNC_ALL writeback is: 1733 * 1734 * wb_writeback() 1735 * writeback_sb_inodes() <== called only once 1736 * write_cache_pages() <== called once for each inode 1737 * (quickly) tag currently dirty pages 1738 * (maybe slowly) sync all tagged pages 1739 */ 1740 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1741 pages = LONG_MAX; 1742 else { 1743 pages = min(wb->avg_write_bandwidth / 2, 1744 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1745 pages = min(pages, work->nr_pages); 1746 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1747 MIN_WRITEBACK_PAGES); 1748 } 1749 1750 return pages; 1751 } 1752 1753 /* 1754 * Write a portion of b_io inodes which belong to @sb. 1755 * 1756 * Return the number of pages and/or inodes written. 1757 * 1758 * NOTE! This is called with wb->list_lock held, and will 1759 * unlock and relock that for each inode it ends up doing 1760 * IO for. 1761 */ 1762 static long writeback_sb_inodes(struct super_block *sb, 1763 struct bdi_writeback *wb, 1764 struct wb_writeback_work *work) 1765 { 1766 struct writeback_control wbc = { 1767 .sync_mode = work->sync_mode, 1768 .tagged_writepages = work->tagged_writepages, 1769 .for_kupdate = work->for_kupdate, 1770 .for_background = work->for_background, 1771 .for_sync = work->for_sync, 1772 .range_cyclic = work->range_cyclic, 1773 .range_start = 0, 1774 .range_end = LLONG_MAX, 1775 }; 1776 unsigned long start_time = jiffies; 1777 long write_chunk; 1778 long wrote = 0; /* count both pages and inodes */ 1779 1780 while (!list_empty(&wb->b_io)) { 1781 struct inode *inode = wb_inode(wb->b_io.prev); 1782 struct bdi_writeback *tmp_wb; 1783 1784 if (inode->i_sb != sb) { 1785 if (work->sb) { 1786 /* 1787 * We only want to write back data for this 1788 * superblock, move all inodes not belonging 1789 * to it back onto the dirty list. 1790 */ 1791 redirty_tail(inode, wb); 1792 continue; 1793 } 1794 1795 /* 1796 * The inode belongs to a different superblock. 1797 * Bounce back to the caller to unpin this and 1798 * pin the next superblock. 1799 */ 1800 break; 1801 } 1802 1803 /* 1804 * Don't bother with new inodes or inodes being freed, first 1805 * kind does not need periodic writeout yet, and for the latter 1806 * kind writeout is handled by the freer. 1807 */ 1808 spin_lock(&inode->i_lock); 1809 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1810 redirty_tail_locked(inode, wb); 1811 spin_unlock(&inode->i_lock); 1812 continue; 1813 } 1814 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1815 /* 1816 * If this inode is locked for writeback and we are not 1817 * doing writeback-for-data-integrity, move it to 1818 * b_more_io so that writeback can proceed with the 1819 * other inodes on s_io. 1820 * 1821 * We'll have another go at writing back this inode 1822 * when we completed a full scan of b_io. 1823 */ 1824 spin_unlock(&inode->i_lock); 1825 requeue_io(inode, wb); 1826 trace_writeback_sb_inodes_requeue(inode); 1827 continue; 1828 } 1829 spin_unlock(&wb->list_lock); 1830 1831 /* 1832 * We already requeued the inode if it had I_SYNC set and we 1833 * are doing WB_SYNC_NONE writeback. So this catches only the 1834 * WB_SYNC_ALL case. 1835 */ 1836 if (inode->i_state & I_SYNC) { 1837 /* Wait for I_SYNC. This function drops i_lock... */ 1838 inode_sleep_on_writeback(inode); 1839 /* Inode may be gone, start again */ 1840 spin_lock(&wb->list_lock); 1841 continue; 1842 } 1843 inode->i_state |= I_SYNC; 1844 wbc_attach_and_unlock_inode(&wbc, inode); 1845 1846 write_chunk = writeback_chunk_size(wb, work); 1847 wbc.nr_to_write = write_chunk; 1848 wbc.pages_skipped = 0; 1849 1850 /* 1851 * We use I_SYNC to pin the inode in memory. While it is set 1852 * evict_inode() will wait so the inode cannot be freed. 1853 */ 1854 __writeback_single_inode(inode, &wbc); 1855 1856 wbc_detach_inode(&wbc); 1857 work->nr_pages -= write_chunk - wbc.nr_to_write; 1858 wrote += write_chunk - wbc.nr_to_write; 1859 1860 if (need_resched()) { 1861 /* 1862 * We're trying to balance between building up a nice 1863 * long list of IOs to improve our merge rate, and 1864 * getting those IOs out quickly for anyone throttling 1865 * in balance_dirty_pages(). cond_resched() doesn't 1866 * unplug, so get our IOs out the door before we 1867 * give up the CPU. 1868 */ 1869 if (current->plug) 1870 blk_flush_plug(current->plug, false); 1871 cond_resched(); 1872 } 1873 1874 /* 1875 * Requeue @inode if still dirty. Be careful as @inode may 1876 * have been switched to another wb in the meantime. 1877 */ 1878 tmp_wb = inode_to_wb_and_lock_list(inode); 1879 spin_lock(&inode->i_lock); 1880 if (!(inode->i_state & I_DIRTY_ALL)) 1881 wrote++; 1882 requeue_inode(inode, tmp_wb, &wbc); 1883 inode_sync_complete(inode); 1884 spin_unlock(&inode->i_lock); 1885 1886 if (unlikely(tmp_wb != wb)) { 1887 spin_unlock(&tmp_wb->list_lock); 1888 spin_lock(&wb->list_lock); 1889 } 1890 1891 /* 1892 * bail out to wb_writeback() often enough to check 1893 * background threshold and other termination conditions. 1894 */ 1895 if (wrote) { 1896 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1897 break; 1898 if (work->nr_pages <= 0) 1899 break; 1900 } 1901 } 1902 return wrote; 1903 } 1904 1905 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1906 struct wb_writeback_work *work) 1907 { 1908 unsigned long start_time = jiffies; 1909 long wrote = 0; 1910 1911 while (!list_empty(&wb->b_io)) { 1912 struct inode *inode = wb_inode(wb->b_io.prev); 1913 struct super_block *sb = inode->i_sb; 1914 1915 if (!trylock_super(sb)) { 1916 /* 1917 * trylock_super() may fail consistently due to 1918 * s_umount being grabbed by someone else. Don't use 1919 * requeue_io() to avoid busy retrying the inode/sb. 1920 */ 1921 redirty_tail(inode, wb); 1922 continue; 1923 } 1924 wrote += writeback_sb_inodes(sb, wb, work); 1925 up_read(&sb->s_umount); 1926 1927 /* refer to the same tests at the end of writeback_sb_inodes */ 1928 if (wrote) { 1929 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1930 break; 1931 if (work->nr_pages <= 0) 1932 break; 1933 } 1934 } 1935 /* Leave any unwritten inodes on b_io */ 1936 return wrote; 1937 } 1938 1939 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1940 enum wb_reason reason) 1941 { 1942 struct wb_writeback_work work = { 1943 .nr_pages = nr_pages, 1944 .sync_mode = WB_SYNC_NONE, 1945 .range_cyclic = 1, 1946 .reason = reason, 1947 }; 1948 struct blk_plug plug; 1949 1950 blk_start_plug(&plug); 1951 spin_lock(&wb->list_lock); 1952 if (list_empty(&wb->b_io)) 1953 queue_io(wb, &work, jiffies); 1954 __writeback_inodes_wb(wb, &work); 1955 spin_unlock(&wb->list_lock); 1956 blk_finish_plug(&plug); 1957 1958 return nr_pages - work.nr_pages; 1959 } 1960 1961 /* 1962 * Explicit flushing or periodic writeback of "old" data. 1963 * 1964 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1965 * dirtying-time in the inode's address_space. So this periodic writeback code 1966 * just walks the superblock inode list, writing back any inodes which are 1967 * older than a specific point in time. 1968 * 1969 * Try to run once per dirty_writeback_interval. But if a writeback event 1970 * takes longer than a dirty_writeback_interval interval, then leave a 1971 * one-second gap. 1972 * 1973 * dirtied_before takes precedence over nr_to_write. So we'll only write back 1974 * all dirty pages if they are all attached to "old" mappings. 1975 */ 1976 static long wb_writeback(struct bdi_writeback *wb, 1977 struct wb_writeback_work *work) 1978 { 1979 long nr_pages = work->nr_pages; 1980 unsigned long dirtied_before = jiffies; 1981 struct inode *inode; 1982 long progress; 1983 struct blk_plug plug; 1984 1985 blk_start_plug(&plug); 1986 spin_lock(&wb->list_lock); 1987 for (;;) { 1988 /* 1989 * Stop writeback when nr_pages has been consumed 1990 */ 1991 if (work->nr_pages <= 0) 1992 break; 1993 1994 /* 1995 * Background writeout and kupdate-style writeback may 1996 * run forever. Stop them if there is other work to do 1997 * so that e.g. sync can proceed. They'll be restarted 1998 * after the other works are all done. 1999 */ 2000 if ((work->for_background || work->for_kupdate) && 2001 !list_empty(&wb->work_list)) 2002 break; 2003 2004 /* 2005 * For background writeout, stop when we are below the 2006 * background dirty threshold 2007 */ 2008 if (work->for_background && !wb_over_bg_thresh(wb)) 2009 break; 2010 2011 /* 2012 * Kupdate and background works are special and we want to 2013 * include all inodes that need writing. Livelock avoidance is 2014 * handled by these works yielding to any other work so we are 2015 * safe. 2016 */ 2017 if (work->for_kupdate) { 2018 dirtied_before = jiffies - 2019 msecs_to_jiffies(dirty_expire_interval * 10); 2020 } else if (work->for_background) 2021 dirtied_before = jiffies; 2022 2023 trace_writeback_start(wb, work); 2024 if (list_empty(&wb->b_io)) 2025 queue_io(wb, work, dirtied_before); 2026 if (work->sb) 2027 progress = writeback_sb_inodes(work->sb, wb, work); 2028 else 2029 progress = __writeback_inodes_wb(wb, work); 2030 trace_writeback_written(wb, work); 2031 2032 /* 2033 * Did we write something? Try for more 2034 * 2035 * Dirty inodes are moved to b_io for writeback in batches. 2036 * The completion of the current batch does not necessarily 2037 * mean the overall work is done. So we keep looping as long 2038 * as made some progress on cleaning pages or inodes. 2039 */ 2040 if (progress) 2041 continue; 2042 /* 2043 * No more inodes for IO, bail 2044 */ 2045 if (list_empty(&wb->b_more_io)) 2046 break; 2047 /* 2048 * Nothing written. Wait for some inode to 2049 * become available for writeback. Otherwise 2050 * we'll just busyloop. 2051 */ 2052 trace_writeback_wait(wb, work); 2053 inode = wb_inode(wb->b_more_io.prev); 2054 spin_lock(&inode->i_lock); 2055 spin_unlock(&wb->list_lock); 2056 /* This function drops i_lock... */ 2057 inode_sleep_on_writeback(inode); 2058 spin_lock(&wb->list_lock); 2059 } 2060 spin_unlock(&wb->list_lock); 2061 blk_finish_plug(&plug); 2062 2063 return nr_pages - work->nr_pages; 2064 } 2065 2066 /* 2067 * Return the next wb_writeback_work struct that hasn't been processed yet. 2068 */ 2069 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2070 { 2071 struct wb_writeback_work *work = NULL; 2072 2073 spin_lock_bh(&wb->work_lock); 2074 if (!list_empty(&wb->work_list)) { 2075 work = list_entry(wb->work_list.next, 2076 struct wb_writeback_work, list); 2077 list_del_init(&work->list); 2078 } 2079 spin_unlock_bh(&wb->work_lock); 2080 return work; 2081 } 2082 2083 static long wb_check_background_flush(struct bdi_writeback *wb) 2084 { 2085 if (wb_over_bg_thresh(wb)) { 2086 2087 struct wb_writeback_work work = { 2088 .nr_pages = LONG_MAX, 2089 .sync_mode = WB_SYNC_NONE, 2090 .for_background = 1, 2091 .range_cyclic = 1, 2092 .reason = WB_REASON_BACKGROUND, 2093 }; 2094 2095 return wb_writeback(wb, &work); 2096 } 2097 2098 return 0; 2099 } 2100 2101 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2102 { 2103 unsigned long expired; 2104 long nr_pages; 2105 2106 /* 2107 * When set to zero, disable periodic writeback 2108 */ 2109 if (!dirty_writeback_interval) 2110 return 0; 2111 2112 expired = wb->last_old_flush + 2113 msecs_to_jiffies(dirty_writeback_interval * 10); 2114 if (time_before(jiffies, expired)) 2115 return 0; 2116 2117 wb->last_old_flush = jiffies; 2118 nr_pages = get_nr_dirty_pages(); 2119 2120 if (nr_pages) { 2121 struct wb_writeback_work work = { 2122 .nr_pages = nr_pages, 2123 .sync_mode = WB_SYNC_NONE, 2124 .for_kupdate = 1, 2125 .range_cyclic = 1, 2126 .reason = WB_REASON_PERIODIC, 2127 }; 2128 2129 return wb_writeback(wb, &work); 2130 } 2131 2132 return 0; 2133 } 2134 2135 static long wb_check_start_all(struct bdi_writeback *wb) 2136 { 2137 long nr_pages; 2138 2139 if (!test_bit(WB_start_all, &wb->state)) 2140 return 0; 2141 2142 nr_pages = get_nr_dirty_pages(); 2143 if (nr_pages) { 2144 struct wb_writeback_work work = { 2145 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2146 .sync_mode = WB_SYNC_NONE, 2147 .range_cyclic = 1, 2148 .reason = wb->start_all_reason, 2149 }; 2150 2151 nr_pages = wb_writeback(wb, &work); 2152 } 2153 2154 clear_bit(WB_start_all, &wb->state); 2155 return nr_pages; 2156 } 2157 2158 2159 /* 2160 * Retrieve work items and do the writeback they describe 2161 */ 2162 static long wb_do_writeback(struct bdi_writeback *wb) 2163 { 2164 struct wb_writeback_work *work; 2165 long wrote = 0; 2166 2167 set_bit(WB_writeback_running, &wb->state); 2168 while ((work = get_next_work_item(wb)) != NULL) { 2169 trace_writeback_exec(wb, work); 2170 wrote += wb_writeback(wb, work); 2171 finish_writeback_work(wb, work); 2172 } 2173 2174 /* 2175 * Check for a flush-everything request 2176 */ 2177 wrote += wb_check_start_all(wb); 2178 2179 /* 2180 * Check for periodic writeback, kupdated() style 2181 */ 2182 wrote += wb_check_old_data_flush(wb); 2183 wrote += wb_check_background_flush(wb); 2184 clear_bit(WB_writeback_running, &wb->state); 2185 2186 return wrote; 2187 } 2188 2189 /* 2190 * Handle writeback of dirty data for the device backed by this bdi. Also 2191 * reschedules periodically and does kupdated style flushing. 2192 */ 2193 void wb_workfn(struct work_struct *work) 2194 { 2195 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2196 struct bdi_writeback, dwork); 2197 long pages_written; 2198 2199 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2200 2201 if (likely(!current_is_workqueue_rescuer() || 2202 !test_bit(WB_registered, &wb->state))) { 2203 /* 2204 * The normal path. Keep writing back @wb until its 2205 * work_list is empty. Note that this path is also taken 2206 * if @wb is shutting down even when we're running off the 2207 * rescuer as work_list needs to be drained. 2208 */ 2209 do { 2210 pages_written = wb_do_writeback(wb); 2211 trace_writeback_pages_written(pages_written); 2212 } while (!list_empty(&wb->work_list)); 2213 } else { 2214 /* 2215 * bdi_wq can't get enough workers and we're running off 2216 * the emergency worker. Don't hog it. Hopefully, 1024 is 2217 * enough for efficient IO. 2218 */ 2219 pages_written = writeback_inodes_wb(wb, 1024, 2220 WB_REASON_FORKER_THREAD); 2221 trace_writeback_pages_written(pages_written); 2222 } 2223 2224 if (!list_empty(&wb->work_list)) 2225 wb_wakeup(wb); 2226 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2227 wb_wakeup_delayed(wb); 2228 } 2229 2230 /* 2231 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2232 * write back the whole world. 2233 */ 2234 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2235 enum wb_reason reason) 2236 { 2237 struct bdi_writeback *wb; 2238 2239 if (!bdi_has_dirty_io(bdi)) 2240 return; 2241 2242 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2243 wb_start_writeback(wb, reason); 2244 } 2245 2246 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2247 enum wb_reason reason) 2248 { 2249 rcu_read_lock(); 2250 __wakeup_flusher_threads_bdi(bdi, reason); 2251 rcu_read_unlock(); 2252 } 2253 2254 /* 2255 * Wakeup the flusher threads to start writeback of all currently dirty pages 2256 */ 2257 void wakeup_flusher_threads(enum wb_reason reason) 2258 { 2259 struct backing_dev_info *bdi; 2260 2261 /* 2262 * If we are expecting writeback progress we must submit plugged IO. 2263 */ 2264 if (blk_needs_flush_plug(current)) 2265 blk_flush_plug(current->plug, true); 2266 2267 rcu_read_lock(); 2268 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2269 __wakeup_flusher_threads_bdi(bdi, reason); 2270 rcu_read_unlock(); 2271 } 2272 2273 /* 2274 * Wake up bdi's periodically to make sure dirtytime inodes gets 2275 * written back periodically. We deliberately do *not* check the 2276 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2277 * kernel to be constantly waking up once there are any dirtytime 2278 * inodes on the system. So instead we define a separate delayed work 2279 * function which gets called much more rarely. (By default, only 2280 * once every 12 hours.) 2281 * 2282 * If there is any other write activity going on in the file system, 2283 * this function won't be necessary. But if the only thing that has 2284 * happened on the file system is a dirtytime inode caused by an atime 2285 * update, we need this infrastructure below to make sure that inode 2286 * eventually gets pushed out to disk. 2287 */ 2288 static void wakeup_dirtytime_writeback(struct work_struct *w); 2289 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2290 2291 static void wakeup_dirtytime_writeback(struct work_struct *w) 2292 { 2293 struct backing_dev_info *bdi; 2294 2295 rcu_read_lock(); 2296 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2297 struct bdi_writeback *wb; 2298 2299 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2300 if (!list_empty(&wb->b_dirty_time)) 2301 wb_wakeup(wb); 2302 } 2303 rcu_read_unlock(); 2304 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2305 } 2306 2307 static int __init start_dirtytime_writeback(void) 2308 { 2309 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2310 return 0; 2311 } 2312 __initcall(start_dirtytime_writeback); 2313 2314 int dirtytime_interval_handler(struct ctl_table *table, int write, 2315 void *buffer, size_t *lenp, loff_t *ppos) 2316 { 2317 int ret; 2318 2319 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2320 if (ret == 0 && write) 2321 mod_delayed_work(system_wq, &dirtytime_work, 0); 2322 return ret; 2323 } 2324 2325 /** 2326 * __mark_inode_dirty - internal function to mark an inode dirty 2327 * 2328 * @inode: inode to mark 2329 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2330 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2331 * with I_DIRTY_PAGES. 2332 * 2333 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2334 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2335 * 2336 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2337 * instead of calling this directly. 2338 * 2339 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2340 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2341 * even if they are later hashed, as they will have been marked dirty already. 2342 * 2343 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2344 * 2345 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2346 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2347 * the kernel-internal blockdev inode represents the dirtying time of the 2348 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2349 * page->mapping->host, so the page-dirtying time is recorded in the internal 2350 * blockdev inode. 2351 */ 2352 void __mark_inode_dirty(struct inode *inode, int flags) 2353 { 2354 struct super_block *sb = inode->i_sb; 2355 int dirtytime = 0; 2356 2357 trace_writeback_mark_inode_dirty(inode, flags); 2358 2359 if (flags & I_DIRTY_INODE) { 2360 /* 2361 * Notify the filesystem about the inode being dirtied, so that 2362 * (if needed) it can update on-disk fields and journal the 2363 * inode. This is only needed when the inode itself is being 2364 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2365 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2366 */ 2367 trace_writeback_dirty_inode_start(inode, flags); 2368 if (sb->s_op->dirty_inode) 2369 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE); 2370 trace_writeback_dirty_inode(inode, flags); 2371 2372 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2373 flags &= ~I_DIRTY_TIME; 2374 } else { 2375 /* 2376 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2377 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2378 * in one call to __mark_inode_dirty().) 2379 */ 2380 dirtytime = flags & I_DIRTY_TIME; 2381 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2382 } 2383 2384 /* 2385 * Paired with smp_mb() in __writeback_single_inode() for the 2386 * following lockless i_state test. See there for details. 2387 */ 2388 smp_mb(); 2389 2390 if (((inode->i_state & flags) == flags) || 2391 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2392 return; 2393 2394 spin_lock(&inode->i_lock); 2395 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2396 goto out_unlock_inode; 2397 if ((inode->i_state & flags) != flags) { 2398 const int was_dirty = inode->i_state & I_DIRTY; 2399 2400 inode_attach_wb(inode, NULL); 2401 2402 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2403 if (flags & I_DIRTY_INODE) 2404 inode->i_state &= ~I_DIRTY_TIME; 2405 inode->i_state |= flags; 2406 2407 /* 2408 * If the inode is queued for writeback by flush worker, just 2409 * update its dirty state. Once the flush worker is done with 2410 * the inode it will place it on the appropriate superblock 2411 * list, based upon its state. 2412 */ 2413 if (inode->i_state & I_SYNC_QUEUED) 2414 goto out_unlock_inode; 2415 2416 /* 2417 * Only add valid (hashed) inodes to the superblock's 2418 * dirty list. Add blockdev inodes as well. 2419 */ 2420 if (!S_ISBLK(inode->i_mode)) { 2421 if (inode_unhashed(inode)) 2422 goto out_unlock_inode; 2423 } 2424 if (inode->i_state & I_FREEING) 2425 goto out_unlock_inode; 2426 2427 /* 2428 * If the inode was already on b_dirty/b_io/b_more_io, don't 2429 * reposition it (that would break b_dirty time-ordering). 2430 */ 2431 if (!was_dirty) { 2432 struct bdi_writeback *wb; 2433 struct list_head *dirty_list; 2434 bool wakeup_bdi = false; 2435 2436 wb = locked_inode_to_wb_and_lock_list(inode); 2437 2438 inode->dirtied_when = jiffies; 2439 if (dirtytime) 2440 inode->dirtied_time_when = jiffies; 2441 2442 if (inode->i_state & I_DIRTY) 2443 dirty_list = &wb->b_dirty; 2444 else 2445 dirty_list = &wb->b_dirty_time; 2446 2447 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2448 dirty_list); 2449 2450 spin_unlock(&wb->list_lock); 2451 trace_writeback_dirty_inode_enqueue(inode); 2452 2453 /* 2454 * If this is the first dirty inode for this bdi, 2455 * we have to wake-up the corresponding bdi thread 2456 * to make sure background write-back happens 2457 * later. 2458 */ 2459 if (wakeup_bdi && 2460 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2461 wb_wakeup_delayed(wb); 2462 return; 2463 } 2464 } 2465 out_unlock_inode: 2466 spin_unlock(&inode->i_lock); 2467 } 2468 EXPORT_SYMBOL(__mark_inode_dirty); 2469 2470 /* 2471 * The @s_sync_lock is used to serialise concurrent sync operations 2472 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2473 * Concurrent callers will block on the s_sync_lock rather than doing contending 2474 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2475 * has been issued up to the time this function is enter is guaranteed to be 2476 * completed by the time we have gained the lock and waited for all IO that is 2477 * in progress regardless of the order callers are granted the lock. 2478 */ 2479 static void wait_sb_inodes(struct super_block *sb) 2480 { 2481 LIST_HEAD(sync_list); 2482 2483 /* 2484 * We need to be protected against the filesystem going from 2485 * r/o to r/w or vice versa. 2486 */ 2487 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2488 2489 mutex_lock(&sb->s_sync_lock); 2490 2491 /* 2492 * Splice the writeback list onto a temporary list to avoid waiting on 2493 * inodes that have started writeback after this point. 2494 * 2495 * Use rcu_read_lock() to keep the inodes around until we have a 2496 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2497 * the local list because inodes can be dropped from either by writeback 2498 * completion. 2499 */ 2500 rcu_read_lock(); 2501 spin_lock_irq(&sb->s_inode_wblist_lock); 2502 list_splice_init(&sb->s_inodes_wb, &sync_list); 2503 2504 /* 2505 * Data integrity sync. Must wait for all pages under writeback, because 2506 * there may have been pages dirtied before our sync call, but which had 2507 * writeout started before we write it out. In which case, the inode 2508 * may not be on the dirty list, but we still have to wait for that 2509 * writeout. 2510 */ 2511 while (!list_empty(&sync_list)) { 2512 struct inode *inode = list_first_entry(&sync_list, struct inode, 2513 i_wb_list); 2514 struct address_space *mapping = inode->i_mapping; 2515 2516 /* 2517 * Move each inode back to the wb list before we drop the lock 2518 * to preserve consistency between i_wb_list and the mapping 2519 * writeback tag. Writeback completion is responsible to remove 2520 * the inode from either list once the writeback tag is cleared. 2521 */ 2522 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2523 2524 /* 2525 * The mapping can appear untagged while still on-list since we 2526 * do not have the mapping lock. Skip it here, wb completion 2527 * will remove it. 2528 */ 2529 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2530 continue; 2531 2532 spin_unlock_irq(&sb->s_inode_wblist_lock); 2533 2534 spin_lock(&inode->i_lock); 2535 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2536 spin_unlock(&inode->i_lock); 2537 2538 spin_lock_irq(&sb->s_inode_wblist_lock); 2539 continue; 2540 } 2541 __iget(inode); 2542 spin_unlock(&inode->i_lock); 2543 rcu_read_unlock(); 2544 2545 /* 2546 * We keep the error status of individual mapping so that 2547 * applications can catch the writeback error using fsync(2). 2548 * See filemap_fdatawait_keep_errors() for details. 2549 */ 2550 filemap_fdatawait_keep_errors(mapping); 2551 2552 cond_resched(); 2553 2554 iput(inode); 2555 2556 rcu_read_lock(); 2557 spin_lock_irq(&sb->s_inode_wblist_lock); 2558 } 2559 spin_unlock_irq(&sb->s_inode_wblist_lock); 2560 rcu_read_unlock(); 2561 mutex_unlock(&sb->s_sync_lock); 2562 } 2563 2564 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2565 enum wb_reason reason, bool skip_if_busy) 2566 { 2567 struct backing_dev_info *bdi = sb->s_bdi; 2568 DEFINE_WB_COMPLETION(done, bdi); 2569 struct wb_writeback_work work = { 2570 .sb = sb, 2571 .sync_mode = WB_SYNC_NONE, 2572 .tagged_writepages = 1, 2573 .done = &done, 2574 .nr_pages = nr, 2575 .reason = reason, 2576 }; 2577 2578 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2579 return; 2580 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2581 2582 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2583 wb_wait_for_completion(&done); 2584 } 2585 2586 /** 2587 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2588 * @sb: the superblock 2589 * @nr: the number of pages to write 2590 * @reason: reason why some writeback work initiated 2591 * 2592 * Start writeback on some inodes on this super_block. No guarantees are made 2593 * on how many (if any) will be written, and this function does not wait 2594 * for IO completion of submitted IO. 2595 */ 2596 void writeback_inodes_sb_nr(struct super_block *sb, 2597 unsigned long nr, 2598 enum wb_reason reason) 2599 { 2600 __writeback_inodes_sb_nr(sb, nr, reason, false); 2601 } 2602 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2603 2604 /** 2605 * writeback_inodes_sb - writeback dirty inodes from given super_block 2606 * @sb: the superblock 2607 * @reason: reason why some writeback work was initiated 2608 * 2609 * Start writeback on some inodes on this super_block. No guarantees are made 2610 * on how many (if any) will be written, and this function does not wait 2611 * for IO completion of submitted IO. 2612 */ 2613 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2614 { 2615 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2616 } 2617 EXPORT_SYMBOL(writeback_inodes_sb); 2618 2619 /** 2620 * try_to_writeback_inodes_sb - try to start writeback if none underway 2621 * @sb: the superblock 2622 * @reason: reason why some writeback work was initiated 2623 * 2624 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2625 */ 2626 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2627 { 2628 if (!down_read_trylock(&sb->s_umount)) 2629 return; 2630 2631 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2632 up_read(&sb->s_umount); 2633 } 2634 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2635 2636 /** 2637 * sync_inodes_sb - sync sb inode pages 2638 * @sb: the superblock 2639 * 2640 * This function writes and waits on any dirty inode belonging to this 2641 * super_block. 2642 */ 2643 void sync_inodes_sb(struct super_block *sb) 2644 { 2645 struct backing_dev_info *bdi = sb->s_bdi; 2646 DEFINE_WB_COMPLETION(done, bdi); 2647 struct wb_writeback_work work = { 2648 .sb = sb, 2649 .sync_mode = WB_SYNC_ALL, 2650 .nr_pages = LONG_MAX, 2651 .range_cyclic = 0, 2652 .done = &done, 2653 .reason = WB_REASON_SYNC, 2654 .for_sync = 1, 2655 }; 2656 2657 /* 2658 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2659 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2660 * bdi_has_dirty() need to be written out too. 2661 */ 2662 if (bdi == &noop_backing_dev_info) 2663 return; 2664 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2665 2666 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2667 bdi_down_write_wb_switch_rwsem(bdi); 2668 bdi_split_work_to_wbs(bdi, &work, false); 2669 wb_wait_for_completion(&done); 2670 bdi_up_write_wb_switch_rwsem(bdi); 2671 2672 wait_sb_inodes(sb); 2673 } 2674 EXPORT_SYMBOL(sync_inodes_sb); 2675 2676 /** 2677 * write_inode_now - write an inode to disk 2678 * @inode: inode to write to disk 2679 * @sync: whether the write should be synchronous or not 2680 * 2681 * This function commits an inode to disk immediately if it is dirty. This is 2682 * primarily needed by knfsd. 2683 * 2684 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2685 */ 2686 int write_inode_now(struct inode *inode, int sync) 2687 { 2688 struct writeback_control wbc = { 2689 .nr_to_write = LONG_MAX, 2690 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2691 .range_start = 0, 2692 .range_end = LLONG_MAX, 2693 }; 2694 2695 if (!mapping_can_writeback(inode->i_mapping)) 2696 wbc.nr_to_write = 0; 2697 2698 might_sleep(); 2699 return writeback_single_inode(inode, &wbc); 2700 } 2701 EXPORT_SYMBOL(write_inode_now); 2702 2703 /** 2704 * sync_inode_metadata - write an inode to disk 2705 * @inode: the inode to sync 2706 * @wait: wait for I/O to complete. 2707 * 2708 * Write an inode to disk and adjust its dirty state after completion. 2709 * 2710 * Note: only writes the actual inode, no associated data or other metadata. 2711 */ 2712 int sync_inode_metadata(struct inode *inode, int wait) 2713 { 2714 struct writeback_control wbc = { 2715 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2716 .nr_to_write = 0, /* metadata-only */ 2717 }; 2718 2719 return writeback_single_inode(inode, &wbc); 2720 } 2721 EXPORT_SYMBOL(sync_inode_metadata); 2722