xref: /openbmc/linux/fs/fs-writeback.c (revision cb1aaebe)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 				  struct wb_writeback_work *work)
178 {
179 	struct wb_completion *done = work->done;
180 
181 	if (work->auto_free)
182 		kfree(work);
183 	if (done && atomic_dec_and_test(&done->cnt))
184 		wake_up_all(&wb->bdi->wb_waitq);
185 }
186 
187 static void wb_queue_work(struct bdi_writeback *wb,
188 			  struct wb_writeback_work *work)
189 {
190 	trace_writeback_queue(wb, work);
191 
192 	if (work->done)
193 		atomic_inc(&work->done->cnt);
194 
195 	spin_lock_bh(&wb->work_lock);
196 
197 	if (test_bit(WB_registered, &wb->state)) {
198 		list_add_tail(&work->list, &wb->work_list);
199 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 	} else
201 		finish_writeback_work(wb, work);
202 
203 	spin_unlock_bh(&wb->work_lock);
204 }
205 
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 				   struct wb_completion *done)
219 {
220 	atomic_dec(&done->cnt);		/* put down the initial count */
221 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223 
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
231 
232 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 					/* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
236 					/* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 					/* one round can affect upto 5 slots */
239 
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242 
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 	struct backing_dev_info *bdi = inode_to_bdi(inode);
246 	struct bdi_writeback *wb = NULL;
247 
248 	if (inode_cgwb_enabled(inode)) {
249 		struct cgroup_subsys_state *memcg_css;
250 
251 		if (page) {
252 			memcg_css = mem_cgroup_css_from_page(page);
253 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 		} else {
255 			/* must pin memcg_css, see wb_get_create() */
256 			memcg_css = task_get_css(current, memory_cgrp_id);
257 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 			css_put(memcg_css);
259 		}
260 	}
261 
262 	if (!wb)
263 		wb = &bdi->wb;
264 
265 	/*
266 	 * There may be multiple instances of this function racing to
267 	 * update the same inode.  Use cmpxchg() to tell the winner.
268 	 */
269 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 		wb_put(wb);
271 }
272 
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 	__releases(&inode->i_lock)
284 	__acquires(&wb->list_lock)
285 {
286 	while (true) {
287 		struct bdi_writeback *wb = inode_to_wb(inode);
288 
289 		/*
290 		 * inode_to_wb() association is protected by both
291 		 * @inode->i_lock and @wb->list_lock but list_lock nests
292 		 * outside i_lock.  Drop i_lock and verify that the
293 		 * association hasn't changed after acquiring list_lock.
294 		 */
295 		wb_get(wb);
296 		spin_unlock(&inode->i_lock);
297 		spin_lock(&wb->list_lock);
298 
299 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
300 		if (likely(wb == inode->i_wb)) {
301 			wb_put(wb);	/* @inode already has ref */
302 			return wb;
303 		}
304 
305 		spin_unlock(&wb->list_lock);
306 		wb_put(wb);
307 		cpu_relax();
308 		spin_lock(&inode->i_lock);
309 	}
310 }
311 
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 	__acquires(&wb->list_lock)
321 {
322 	spin_lock(&inode->i_lock);
323 	return locked_inode_to_wb_and_lock_list(inode);
324 }
325 
326 struct inode_switch_wbs_context {
327 	struct inode		*inode;
328 	struct bdi_writeback	*new_wb;
329 
330 	struct rcu_head		rcu_head;
331 	struct work_struct	work;
332 };
333 
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336 	down_write(&bdi->wb_switch_rwsem);
337 }
338 
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341 	up_write(&bdi->wb_switch_rwsem);
342 }
343 
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346 	struct inode_switch_wbs_context *isw =
347 		container_of(work, struct inode_switch_wbs_context, work);
348 	struct inode *inode = isw->inode;
349 	struct backing_dev_info *bdi = inode_to_bdi(inode);
350 	struct address_space *mapping = inode->i_mapping;
351 	struct bdi_writeback *old_wb = inode->i_wb;
352 	struct bdi_writeback *new_wb = isw->new_wb;
353 	XA_STATE(xas, &mapping->i_pages, 0);
354 	struct page *page;
355 	bool switched = false;
356 
357 	/*
358 	 * If @inode switches cgwb membership while sync_inodes_sb() is
359 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
360 	 */
361 	down_read(&bdi->wb_switch_rwsem);
362 
363 	/*
364 	 * By the time control reaches here, RCU grace period has passed
365 	 * since I_WB_SWITCH assertion and all wb stat update transactions
366 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 	 * synchronizing against the i_pages lock.
368 	 *
369 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
370 	 * gives us exclusion against all wb related operations on @inode
371 	 * including IO list manipulations and stat updates.
372 	 */
373 	if (old_wb < new_wb) {
374 		spin_lock(&old_wb->list_lock);
375 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 	} else {
377 		spin_lock(&new_wb->list_lock);
378 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 	}
380 	spin_lock(&inode->i_lock);
381 	xa_lock_irq(&mapping->i_pages);
382 
383 	/*
384 	 * Once I_FREEING is visible under i_lock, the eviction path owns
385 	 * the inode and we shouldn't modify ->i_io_list.
386 	 */
387 	if (unlikely(inode->i_state & I_FREEING))
388 		goto skip_switch;
389 
390 	/*
391 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 	 * pages actually under writeback.
394 	 */
395 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 		if (PageDirty(page)) {
397 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 		}
400 	}
401 
402 	xas_set(&xas, 0);
403 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 		WARN_ON_ONCE(!PageWriteback(page));
405 		dec_wb_stat(old_wb, WB_WRITEBACK);
406 		inc_wb_stat(new_wb, WB_WRITEBACK);
407 	}
408 
409 	wb_get(new_wb);
410 
411 	/*
412 	 * Transfer to @new_wb's IO list if necessary.  The specific list
413 	 * @inode was on is ignored and the inode is put on ->b_dirty which
414 	 * is always correct including from ->b_dirty_time.  The transfer
415 	 * preserves @inode->dirtied_when ordering.
416 	 */
417 	if (!list_empty(&inode->i_io_list)) {
418 		struct inode *pos;
419 
420 		inode_io_list_del_locked(inode, old_wb);
421 		inode->i_wb = new_wb;
422 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
423 			if (time_after_eq(inode->dirtied_when,
424 					  pos->dirtied_when))
425 				break;
426 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
427 	} else {
428 		inode->i_wb = new_wb;
429 	}
430 
431 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
432 	inode->i_wb_frn_winner = 0;
433 	inode->i_wb_frn_avg_time = 0;
434 	inode->i_wb_frn_history = 0;
435 	switched = true;
436 skip_switch:
437 	/*
438 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
439 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
440 	 */
441 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
442 
443 	xa_unlock_irq(&mapping->i_pages);
444 	spin_unlock(&inode->i_lock);
445 	spin_unlock(&new_wb->list_lock);
446 	spin_unlock(&old_wb->list_lock);
447 
448 	up_read(&bdi->wb_switch_rwsem);
449 
450 	if (switched) {
451 		wb_wakeup(new_wb);
452 		wb_put(old_wb);
453 	}
454 	wb_put(new_wb);
455 
456 	iput(inode);
457 	kfree(isw);
458 
459 	atomic_dec(&isw_nr_in_flight);
460 }
461 
462 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
463 {
464 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
465 				struct inode_switch_wbs_context, rcu_head);
466 
467 	/* needs to grab bh-unsafe locks, bounce to work item */
468 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
469 	queue_work(isw_wq, &isw->work);
470 }
471 
472 /**
473  * inode_switch_wbs - change the wb association of an inode
474  * @inode: target inode
475  * @new_wb_id: ID of the new wb
476  *
477  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
478  * switching is performed asynchronously and may fail silently.
479  */
480 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
481 {
482 	struct backing_dev_info *bdi = inode_to_bdi(inode);
483 	struct cgroup_subsys_state *memcg_css;
484 	struct inode_switch_wbs_context *isw;
485 
486 	/* noop if seems to be already in progress */
487 	if (inode->i_state & I_WB_SWITCH)
488 		return;
489 
490 	/*
491 	 * Avoid starting new switches while sync_inodes_sb() is in
492 	 * progress.  Otherwise, if the down_write protected issue path
493 	 * blocks heavily, we might end up starting a large number of
494 	 * switches which will block on the rwsem.
495 	 */
496 	if (!down_read_trylock(&bdi->wb_switch_rwsem))
497 		return;
498 
499 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
500 	if (!isw)
501 		goto out_unlock;
502 
503 	/* find and pin the new wb */
504 	rcu_read_lock();
505 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
506 	if (memcg_css)
507 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
508 	rcu_read_unlock();
509 	if (!isw->new_wb)
510 		goto out_free;
511 
512 	/* while holding I_WB_SWITCH, no one else can update the association */
513 	spin_lock(&inode->i_lock);
514 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
515 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
516 	    inode_to_wb(inode) == isw->new_wb) {
517 		spin_unlock(&inode->i_lock);
518 		goto out_free;
519 	}
520 	inode->i_state |= I_WB_SWITCH;
521 	__iget(inode);
522 	spin_unlock(&inode->i_lock);
523 
524 	isw->inode = inode;
525 
526 	/*
527 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
528 	 * the RCU protected stat update paths to grab the i_page
529 	 * lock so that stat transfer can synchronize against them.
530 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
531 	 */
532 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
533 
534 	atomic_inc(&isw_nr_in_flight);
535 
536 	goto out_unlock;
537 
538 out_free:
539 	if (isw->new_wb)
540 		wb_put(isw->new_wb);
541 	kfree(isw);
542 out_unlock:
543 	up_read(&bdi->wb_switch_rwsem);
544 }
545 
546 /**
547  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
548  * @wbc: writeback_control of interest
549  * @inode: target inode
550  *
551  * @inode is locked and about to be written back under the control of @wbc.
552  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
553  * writeback completion, wbc_detach_inode() should be called.  This is used
554  * to track the cgroup writeback context.
555  */
556 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
557 				 struct inode *inode)
558 {
559 	if (!inode_cgwb_enabled(inode)) {
560 		spin_unlock(&inode->i_lock);
561 		return;
562 	}
563 
564 	wbc->wb = inode_to_wb(inode);
565 	wbc->inode = inode;
566 
567 	wbc->wb_id = wbc->wb->memcg_css->id;
568 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
569 	wbc->wb_tcand_id = 0;
570 	wbc->wb_bytes = 0;
571 	wbc->wb_lcand_bytes = 0;
572 	wbc->wb_tcand_bytes = 0;
573 
574 	wb_get(wbc->wb);
575 	spin_unlock(&inode->i_lock);
576 
577 	/*
578 	 * A dying wb indicates that the memcg-blkcg mapping has changed
579 	 * and a new wb is already serving the memcg.  Switch immediately.
580 	 */
581 	if (unlikely(wb_dying(wbc->wb)))
582 		inode_switch_wbs(inode, wbc->wb_id);
583 }
584 
585 /**
586  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
587  * @wbc: writeback_control of the just finished writeback
588  *
589  * To be called after a writeback attempt of an inode finishes and undoes
590  * wbc_attach_and_unlock_inode().  Can be called under any context.
591  *
592  * As concurrent write sharing of an inode is expected to be very rare and
593  * memcg only tracks page ownership on first-use basis severely confining
594  * the usefulness of such sharing, cgroup writeback tracks ownership
595  * per-inode.  While the support for concurrent write sharing of an inode
596  * is deemed unnecessary, an inode being written to by different cgroups at
597  * different points in time is a lot more common, and, more importantly,
598  * charging only by first-use can too readily lead to grossly incorrect
599  * behaviors (single foreign page can lead to gigabytes of writeback to be
600  * incorrectly attributed).
601  *
602  * To resolve this issue, cgroup writeback detects the majority dirtier of
603  * an inode and transfers the ownership to it.  To avoid unnnecessary
604  * oscillation, the detection mechanism keeps track of history and gives
605  * out the switch verdict only if the foreign usage pattern is stable over
606  * a certain amount of time and/or writeback attempts.
607  *
608  * On each writeback attempt, @wbc tries to detect the majority writer
609  * using Boyer-Moore majority vote algorithm.  In addition to the byte
610  * count from the majority voting, it also counts the bytes written for the
611  * current wb and the last round's winner wb (max of last round's current
612  * wb, the winner from two rounds ago, and the last round's majority
613  * candidate).  Keeping track of the historical winner helps the algorithm
614  * to semi-reliably detect the most active writer even when it's not the
615  * absolute majority.
616  *
617  * Once the winner of the round is determined, whether the winner is
618  * foreign or not and how much IO time the round consumed is recorded in
619  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
620  * over a certain threshold, the switch verdict is given.
621  */
622 void wbc_detach_inode(struct writeback_control *wbc)
623 {
624 	struct bdi_writeback *wb = wbc->wb;
625 	struct inode *inode = wbc->inode;
626 	unsigned long avg_time, max_bytes, max_time;
627 	u16 history;
628 	int max_id;
629 
630 	if (!wb)
631 		return;
632 
633 	history = inode->i_wb_frn_history;
634 	avg_time = inode->i_wb_frn_avg_time;
635 
636 	/* pick the winner of this round */
637 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
638 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
639 		max_id = wbc->wb_id;
640 		max_bytes = wbc->wb_bytes;
641 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
642 		max_id = wbc->wb_lcand_id;
643 		max_bytes = wbc->wb_lcand_bytes;
644 	} else {
645 		max_id = wbc->wb_tcand_id;
646 		max_bytes = wbc->wb_tcand_bytes;
647 	}
648 
649 	/*
650 	 * Calculate the amount of IO time the winner consumed and fold it
651 	 * into the running average kept per inode.  If the consumed IO
652 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
653 	 * deciding whether to switch or not.  This is to prevent one-off
654 	 * small dirtiers from skewing the verdict.
655 	 */
656 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
657 				wb->avg_write_bandwidth);
658 	if (avg_time)
659 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
660 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
661 	else
662 		avg_time = max_time;	/* immediate catch up on first run */
663 
664 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
665 		int slots;
666 
667 		/*
668 		 * The switch verdict is reached if foreign wb's consume
669 		 * more than a certain proportion of IO time in a
670 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
671 		 * history mask where each bit represents one sixteenth of
672 		 * the period.  Determine the number of slots to shift into
673 		 * history from @max_time.
674 		 */
675 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
676 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
677 		history <<= slots;
678 		if (wbc->wb_id != max_id)
679 			history |= (1U << slots) - 1;
680 
681 		/*
682 		 * Switch if the current wb isn't the consistent winner.
683 		 * If there are multiple closely competing dirtiers, the
684 		 * inode may switch across them repeatedly over time, which
685 		 * is okay.  The main goal is avoiding keeping an inode on
686 		 * the wrong wb for an extended period of time.
687 		 */
688 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
689 			inode_switch_wbs(inode, max_id);
690 	}
691 
692 	/*
693 	 * Multiple instances of this function may race to update the
694 	 * following fields but we don't mind occassional inaccuracies.
695 	 */
696 	inode->i_wb_frn_winner = max_id;
697 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
698 	inode->i_wb_frn_history = history;
699 
700 	wb_put(wbc->wb);
701 	wbc->wb = NULL;
702 }
703 
704 /**
705  * wbc_account_io - account IO issued during writeback
706  * @wbc: writeback_control of the writeback in progress
707  * @page: page being written out
708  * @bytes: number of bytes being written out
709  *
710  * @bytes from @page are about to written out during the writeback
711  * controlled by @wbc.  Keep the book for foreign inode detection.  See
712  * wbc_detach_inode().
713  */
714 void wbc_account_io(struct writeback_control *wbc, struct page *page,
715 		    size_t bytes)
716 {
717 	int id;
718 
719 	/*
720 	 * pageout() path doesn't attach @wbc to the inode being written
721 	 * out.  This is intentional as we don't want the function to block
722 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
723 	 * regular writeback instead of writing things out itself.
724 	 */
725 	if (!wbc->wb)
726 		return;
727 
728 	id = mem_cgroup_css_from_page(page)->id;
729 
730 	if (id == wbc->wb_id) {
731 		wbc->wb_bytes += bytes;
732 		return;
733 	}
734 
735 	if (id == wbc->wb_lcand_id)
736 		wbc->wb_lcand_bytes += bytes;
737 
738 	/* Boyer-Moore majority vote algorithm */
739 	if (!wbc->wb_tcand_bytes)
740 		wbc->wb_tcand_id = id;
741 	if (id == wbc->wb_tcand_id)
742 		wbc->wb_tcand_bytes += bytes;
743 	else
744 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
745 }
746 EXPORT_SYMBOL_GPL(wbc_account_io);
747 
748 /**
749  * inode_congested - test whether an inode is congested
750  * @inode: inode to test for congestion (may be NULL)
751  * @cong_bits: mask of WB_[a]sync_congested bits to test
752  *
753  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
754  * bits to test and the return value is the mask of set bits.
755  *
756  * If cgroup writeback is enabled for @inode, the congestion state is
757  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
758  * associated with @inode is congested; otherwise, the root wb's congestion
759  * state is used.
760  *
761  * @inode is allowed to be NULL as this function is often called on
762  * mapping->host which is NULL for the swapper space.
763  */
764 int inode_congested(struct inode *inode, int cong_bits)
765 {
766 	/*
767 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
768 	 * Start transaction iff ->i_wb is visible.
769 	 */
770 	if (inode && inode_to_wb_is_valid(inode)) {
771 		struct bdi_writeback *wb;
772 		struct wb_lock_cookie lock_cookie = {};
773 		bool congested;
774 
775 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
776 		congested = wb_congested(wb, cong_bits);
777 		unlocked_inode_to_wb_end(inode, &lock_cookie);
778 		return congested;
779 	}
780 
781 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
782 }
783 EXPORT_SYMBOL_GPL(inode_congested);
784 
785 /**
786  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
787  * @wb: target bdi_writeback to split @nr_pages to
788  * @nr_pages: number of pages to write for the whole bdi
789  *
790  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
791  * relation to the total write bandwidth of all wb's w/ dirty inodes on
792  * @wb->bdi.
793  */
794 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
795 {
796 	unsigned long this_bw = wb->avg_write_bandwidth;
797 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
798 
799 	if (nr_pages == LONG_MAX)
800 		return LONG_MAX;
801 
802 	/*
803 	 * This may be called on clean wb's and proportional distribution
804 	 * may not make sense, just use the original @nr_pages in those
805 	 * cases.  In general, we wanna err on the side of writing more.
806 	 */
807 	if (!tot_bw || this_bw >= tot_bw)
808 		return nr_pages;
809 	else
810 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
811 }
812 
813 /**
814  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
815  * @bdi: target backing_dev_info
816  * @base_work: wb_writeback_work to issue
817  * @skip_if_busy: skip wb's which already have writeback in progress
818  *
819  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
820  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
821  * distributed to the busy wbs according to each wb's proportion in the
822  * total active write bandwidth of @bdi.
823  */
824 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
825 				  struct wb_writeback_work *base_work,
826 				  bool skip_if_busy)
827 {
828 	struct bdi_writeback *last_wb = NULL;
829 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
830 					      struct bdi_writeback, bdi_node);
831 
832 	might_sleep();
833 restart:
834 	rcu_read_lock();
835 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
836 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
837 		struct wb_writeback_work fallback_work;
838 		struct wb_writeback_work *work;
839 		long nr_pages;
840 
841 		if (last_wb) {
842 			wb_put(last_wb);
843 			last_wb = NULL;
844 		}
845 
846 		/* SYNC_ALL writes out I_DIRTY_TIME too */
847 		if (!wb_has_dirty_io(wb) &&
848 		    (base_work->sync_mode == WB_SYNC_NONE ||
849 		     list_empty(&wb->b_dirty_time)))
850 			continue;
851 		if (skip_if_busy && writeback_in_progress(wb))
852 			continue;
853 
854 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
855 
856 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
857 		if (work) {
858 			*work = *base_work;
859 			work->nr_pages = nr_pages;
860 			work->auto_free = 1;
861 			wb_queue_work(wb, work);
862 			continue;
863 		}
864 
865 		/* alloc failed, execute synchronously using on-stack fallback */
866 		work = &fallback_work;
867 		*work = *base_work;
868 		work->nr_pages = nr_pages;
869 		work->auto_free = 0;
870 		work->done = &fallback_work_done;
871 
872 		wb_queue_work(wb, work);
873 
874 		/*
875 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
876 		 * continuing iteration from @wb after dropping and
877 		 * regrabbing rcu read lock.
878 		 */
879 		wb_get(wb);
880 		last_wb = wb;
881 
882 		rcu_read_unlock();
883 		wb_wait_for_completion(bdi, &fallback_work_done);
884 		goto restart;
885 	}
886 	rcu_read_unlock();
887 
888 	if (last_wb)
889 		wb_put(last_wb);
890 }
891 
892 /**
893  * cgroup_writeback_umount - flush inode wb switches for umount
894  *
895  * This function is called when a super_block is about to be destroyed and
896  * flushes in-flight inode wb switches.  An inode wb switch goes through
897  * RCU and then workqueue, so the two need to be flushed in order to ensure
898  * that all previously scheduled switches are finished.  As wb switches are
899  * rare occurrences and synchronize_rcu() can take a while, perform
900  * flushing iff wb switches are in flight.
901  */
902 void cgroup_writeback_umount(void)
903 {
904 	if (atomic_read(&isw_nr_in_flight)) {
905 		/*
906 		 * Use rcu_barrier() to wait for all pending callbacks to
907 		 * ensure that all in-flight wb switches are in the workqueue.
908 		 */
909 		rcu_barrier();
910 		flush_workqueue(isw_wq);
911 	}
912 }
913 
914 static int __init cgroup_writeback_init(void)
915 {
916 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
917 	if (!isw_wq)
918 		return -ENOMEM;
919 	return 0;
920 }
921 fs_initcall(cgroup_writeback_init);
922 
923 #else	/* CONFIG_CGROUP_WRITEBACK */
924 
925 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
926 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
927 
928 static struct bdi_writeback *
929 locked_inode_to_wb_and_lock_list(struct inode *inode)
930 	__releases(&inode->i_lock)
931 	__acquires(&wb->list_lock)
932 {
933 	struct bdi_writeback *wb = inode_to_wb(inode);
934 
935 	spin_unlock(&inode->i_lock);
936 	spin_lock(&wb->list_lock);
937 	return wb;
938 }
939 
940 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
941 	__acquires(&wb->list_lock)
942 {
943 	struct bdi_writeback *wb = inode_to_wb(inode);
944 
945 	spin_lock(&wb->list_lock);
946 	return wb;
947 }
948 
949 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
950 {
951 	return nr_pages;
952 }
953 
954 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
955 				  struct wb_writeback_work *base_work,
956 				  bool skip_if_busy)
957 {
958 	might_sleep();
959 
960 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
961 		base_work->auto_free = 0;
962 		wb_queue_work(&bdi->wb, base_work);
963 	}
964 }
965 
966 #endif	/* CONFIG_CGROUP_WRITEBACK */
967 
968 /*
969  * Add in the number of potentially dirty inodes, because each inode
970  * write can dirty pagecache in the underlying blockdev.
971  */
972 static unsigned long get_nr_dirty_pages(void)
973 {
974 	return global_node_page_state(NR_FILE_DIRTY) +
975 		global_node_page_state(NR_UNSTABLE_NFS) +
976 		get_nr_dirty_inodes();
977 }
978 
979 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
980 {
981 	if (!wb_has_dirty_io(wb))
982 		return;
983 
984 	/*
985 	 * All callers of this function want to start writeback of all
986 	 * dirty pages. Places like vmscan can call this at a very
987 	 * high frequency, causing pointless allocations of tons of
988 	 * work items and keeping the flusher threads busy retrieving
989 	 * that work. Ensure that we only allow one of them pending and
990 	 * inflight at the time.
991 	 */
992 	if (test_bit(WB_start_all, &wb->state) ||
993 	    test_and_set_bit(WB_start_all, &wb->state))
994 		return;
995 
996 	wb->start_all_reason = reason;
997 	wb_wakeup(wb);
998 }
999 
1000 /**
1001  * wb_start_background_writeback - start background writeback
1002  * @wb: bdi_writback to write from
1003  *
1004  * Description:
1005  *   This makes sure WB_SYNC_NONE background writeback happens. When
1006  *   this function returns, it is only guaranteed that for given wb
1007  *   some IO is happening if we are over background dirty threshold.
1008  *   Caller need not hold sb s_umount semaphore.
1009  */
1010 void wb_start_background_writeback(struct bdi_writeback *wb)
1011 {
1012 	/*
1013 	 * We just wake up the flusher thread. It will perform background
1014 	 * writeback as soon as there is no other work to do.
1015 	 */
1016 	trace_writeback_wake_background(wb);
1017 	wb_wakeup(wb);
1018 }
1019 
1020 /*
1021  * Remove the inode from the writeback list it is on.
1022  */
1023 void inode_io_list_del(struct inode *inode)
1024 {
1025 	struct bdi_writeback *wb;
1026 
1027 	wb = inode_to_wb_and_lock_list(inode);
1028 	inode_io_list_del_locked(inode, wb);
1029 	spin_unlock(&wb->list_lock);
1030 }
1031 
1032 /*
1033  * mark an inode as under writeback on the sb
1034  */
1035 void sb_mark_inode_writeback(struct inode *inode)
1036 {
1037 	struct super_block *sb = inode->i_sb;
1038 	unsigned long flags;
1039 
1040 	if (list_empty(&inode->i_wb_list)) {
1041 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1042 		if (list_empty(&inode->i_wb_list)) {
1043 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1044 			trace_sb_mark_inode_writeback(inode);
1045 		}
1046 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1047 	}
1048 }
1049 
1050 /*
1051  * clear an inode as under writeback on the sb
1052  */
1053 void sb_clear_inode_writeback(struct inode *inode)
1054 {
1055 	struct super_block *sb = inode->i_sb;
1056 	unsigned long flags;
1057 
1058 	if (!list_empty(&inode->i_wb_list)) {
1059 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1060 		if (!list_empty(&inode->i_wb_list)) {
1061 			list_del_init(&inode->i_wb_list);
1062 			trace_sb_clear_inode_writeback(inode);
1063 		}
1064 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1065 	}
1066 }
1067 
1068 /*
1069  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1070  * furthest end of its superblock's dirty-inode list.
1071  *
1072  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1073  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1074  * the case then the inode must have been redirtied while it was being written
1075  * out and we don't reset its dirtied_when.
1076  */
1077 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1078 {
1079 	if (!list_empty(&wb->b_dirty)) {
1080 		struct inode *tail;
1081 
1082 		tail = wb_inode(wb->b_dirty.next);
1083 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1084 			inode->dirtied_when = jiffies;
1085 	}
1086 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1087 }
1088 
1089 /*
1090  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1091  */
1092 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1093 {
1094 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1095 }
1096 
1097 static void inode_sync_complete(struct inode *inode)
1098 {
1099 	inode->i_state &= ~I_SYNC;
1100 	/* If inode is clean an unused, put it into LRU now... */
1101 	inode_add_lru(inode);
1102 	/* Waiters must see I_SYNC cleared before being woken up */
1103 	smp_mb();
1104 	wake_up_bit(&inode->i_state, __I_SYNC);
1105 }
1106 
1107 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1108 {
1109 	bool ret = time_after(inode->dirtied_when, t);
1110 #ifndef CONFIG_64BIT
1111 	/*
1112 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1113 	 * It _appears_ to be in the future, but is actually in distant past.
1114 	 * This test is necessary to prevent such wrapped-around relative times
1115 	 * from permanently stopping the whole bdi writeback.
1116 	 */
1117 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1118 #endif
1119 	return ret;
1120 }
1121 
1122 #define EXPIRE_DIRTY_ATIME 0x0001
1123 
1124 /*
1125  * Move expired (dirtied before work->older_than_this) dirty inodes from
1126  * @delaying_queue to @dispatch_queue.
1127  */
1128 static int move_expired_inodes(struct list_head *delaying_queue,
1129 			       struct list_head *dispatch_queue,
1130 			       int flags,
1131 			       struct wb_writeback_work *work)
1132 {
1133 	unsigned long *older_than_this = NULL;
1134 	unsigned long expire_time;
1135 	LIST_HEAD(tmp);
1136 	struct list_head *pos, *node;
1137 	struct super_block *sb = NULL;
1138 	struct inode *inode;
1139 	int do_sb_sort = 0;
1140 	int moved = 0;
1141 
1142 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1143 		older_than_this = work->older_than_this;
1144 	else if (!work->for_sync) {
1145 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1146 		older_than_this = &expire_time;
1147 	}
1148 	while (!list_empty(delaying_queue)) {
1149 		inode = wb_inode(delaying_queue->prev);
1150 		if (older_than_this &&
1151 		    inode_dirtied_after(inode, *older_than_this))
1152 			break;
1153 		list_move(&inode->i_io_list, &tmp);
1154 		moved++;
1155 		if (flags & EXPIRE_DIRTY_ATIME)
1156 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1157 		if (sb_is_blkdev_sb(inode->i_sb))
1158 			continue;
1159 		if (sb && sb != inode->i_sb)
1160 			do_sb_sort = 1;
1161 		sb = inode->i_sb;
1162 	}
1163 
1164 	/* just one sb in list, splice to dispatch_queue and we're done */
1165 	if (!do_sb_sort) {
1166 		list_splice(&tmp, dispatch_queue);
1167 		goto out;
1168 	}
1169 
1170 	/* Move inodes from one superblock together */
1171 	while (!list_empty(&tmp)) {
1172 		sb = wb_inode(tmp.prev)->i_sb;
1173 		list_for_each_prev_safe(pos, node, &tmp) {
1174 			inode = wb_inode(pos);
1175 			if (inode->i_sb == sb)
1176 				list_move(&inode->i_io_list, dispatch_queue);
1177 		}
1178 	}
1179 out:
1180 	return moved;
1181 }
1182 
1183 /*
1184  * Queue all expired dirty inodes for io, eldest first.
1185  * Before
1186  *         newly dirtied     b_dirty    b_io    b_more_io
1187  *         =============>    gf         edc     BA
1188  * After
1189  *         newly dirtied     b_dirty    b_io    b_more_io
1190  *         =============>    g          fBAedc
1191  *                                           |
1192  *                                           +--> dequeue for IO
1193  */
1194 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1195 {
1196 	int moved;
1197 
1198 	assert_spin_locked(&wb->list_lock);
1199 	list_splice_init(&wb->b_more_io, &wb->b_io);
1200 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1201 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1202 				     EXPIRE_DIRTY_ATIME, work);
1203 	if (moved)
1204 		wb_io_lists_populated(wb);
1205 	trace_writeback_queue_io(wb, work, moved);
1206 }
1207 
1208 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1209 {
1210 	int ret;
1211 
1212 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1213 		trace_writeback_write_inode_start(inode, wbc);
1214 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1215 		trace_writeback_write_inode(inode, wbc);
1216 		return ret;
1217 	}
1218 	return 0;
1219 }
1220 
1221 /*
1222  * Wait for writeback on an inode to complete. Called with i_lock held.
1223  * Caller must make sure inode cannot go away when we drop i_lock.
1224  */
1225 static void __inode_wait_for_writeback(struct inode *inode)
1226 	__releases(inode->i_lock)
1227 	__acquires(inode->i_lock)
1228 {
1229 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1230 	wait_queue_head_t *wqh;
1231 
1232 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1233 	while (inode->i_state & I_SYNC) {
1234 		spin_unlock(&inode->i_lock);
1235 		__wait_on_bit(wqh, &wq, bit_wait,
1236 			      TASK_UNINTERRUPTIBLE);
1237 		spin_lock(&inode->i_lock);
1238 	}
1239 }
1240 
1241 /*
1242  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1243  */
1244 void inode_wait_for_writeback(struct inode *inode)
1245 {
1246 	spin_lock(&inode->i_lock);
1247 	__inode_wait_for_writeback(inode);
1248 	spin_unlock(&inode->i_lock);
1249 }
1250 
1251 /*
1252  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1253  * held and drops it. It is aimed for callers not holding any inode reference
1254  * so once i_lock is dropped, inode can go away.
1255  */
1256 static void inode_sleep_on_writeback(struct inode *inode)
1257 	__releases(inode->i_lock)
1258 {
1259 	DEFINE_WAIT(wait);
1260 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1261 	int sleep;
1262 
1263 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1264 	sleep = inode->i_state & I_SYNC;
1265 	spin_unlock(&inode->i_lock);
1266 	if (sleep)
1267 		schedule();
1268 	finish_wait(wqh, &wait);
1269 }
1270 
1271 /*
1272  * Find proper writeback list for the inode depending on its current state and
1273  * possibly also change of its state while we were doing writeback.  Here we
1274  * handle things such as livelock prevention or fairness of writeback among
1275  * inodes. This function can be called only by flusher thread - noone else
1276  * processes all inodes in writeback lists and requeueing inodes behind flusher
1277  * thread's back can have unexpected consequences.
1278  */
1279 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1280 			  struct writeback_control *wbc)
1281 {
1282 	if (inode->i_state & I_FREEING)
1283 		return;
1284 
1285 	/*
1286 	 * Sync livelock prevention. Each inode is tagged and synced in one
1287 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1288 	 * the dirty time to prevent enqueue and sync it again.
1289 	 */
1290 	if ((inode->i_state & I_DIRTY) &&
1291 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1292 		inode->dirtied_when = jiffies;
1293 
1294 	if (wbc->pages_skipped) {
1295 		/*
1296 		 * writeback is not making progress due to locked
1297 		 * buffers. Skip this inode for now.
1298 		 */
1299 		redirty_tail(inode, wb);
1300 		return;
1301 	}
1302 
1303 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1304 		/*
1305 		 * We didn't write back all the pages.  nfs_writepages()
1306 		 * sometimes bales out without doing anything.
1307 		 */
1308 		if (wbc->nr_to_write <= 0) {
1309 			/* Slice used up. Queue for next turn. */
1310 			requeue_io(inode, wb);
1311 		} else {
1312 			/*
1313 			 * Writeback blocked by something other than
1314 			 * congestion. Delay the inode for some time to
1315 			 * avoid spinning on the CPU (100% iowait)
1316 			 * retrying writeback of the dirty page/inode
1317 			 * that cannot be performed immediately.
1318 			 */
1319 			redirty_tail(inode, wb);
1320 		}
1321 	} else if (inode->i_state & I_DIRTY) {
1322 		/*
1323 		 * Filesystems can dirty the inode during writeback operations,
1324 		 * such as delayed allocation during submission or metadata
1325 		 * updates after data IO completion.
1326 		 */
1327 		redirty_tail(inode, wb);
1328 	} else if (inode->i_state & I_DIRTY_TIME) {
1329 		inode->dirtied_when = jiffies;
1330 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1331 	} else {
1332 		/* The inode is clean. Remove from writeback lists. */
1333 		inode_io_list_del_locked(inode, wb);
1334 	}
1335 }
1336 
1337 /*
1338  * Write out an inode and its dirty pages. Do not update the writeback list
1339  * linkage. That is left to the caller. The caller is also responsible for
1340  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1341  */
1342 static int
1343 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1344 {
1345 	struct address_space *mapping = inode->i_mapping;
1346 	long nr_to_write = wbc->nr_to_write;
1347 	unsigned dirty;
1348 	int ret;
1349 
1350 	WARN_ON(!(inode->i_state & I_SYNC));
1351 
1352 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1353 
1354 	ret = do_writepages(mapping, wbc);
1355 
1356 	/*
1357 	 * Make sure to wait on the data before writing out the metadata.
1358 	 * This is important for filesystems that modify metadata on data
1359 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1360 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1361 	 * inode metadata is written back correctly.
1362 	 */
1363 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1364 		int err = filemap_fdatawait(mapping);
1365 		if (ret == 0)
1366 			ret = err;
1367 	}
1368 
1369 	/*
1370 	 * Some filesystems may redirty the inode during the writeback
1371 	 * due to delalloc, clear dirty metadata flags right before
1372 	 * write_inode()
1373 	 */
1374 	spin_lock(&inode->i_lock);
1375 
1376 	dirty = inode->i_state & I_DIRTY;
1377 	if (inode->i_state & I_DIRTY_TIME) {
1378 		if ((dirty & I_DIRTY_INODE) ||
1379 		    wbc->sync_mode == WB_SYNC_ALL ||
1380 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1381 		    unlikely(time_after(jiffies,
1382 					(inode->dirtied_time_when +
1383 					 dirtytime_expire_interval * HZ)))) {
1384 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1385 			trace_writeback_lazytime(inode);
1386 		}
1387 	} else
1388 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1389 	inode->i_state &= ~dirty;
1390 
1391 	/*
1392 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1393 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1394 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1395 	 * inode.
1396 	 *
1397 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1398 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1399 	 * necessary.  This guarantees that either __mark_inode_dirty()
1400 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1401 	 */
1402 	smp_mb();
1403 
1404 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1405 		inode->i_state |= I_DIRTY_PAGES;
1406 
1407 	spin_unlock(&inode->i_lock);
1408 
1409 	if (dirty & I_DIRTY_TIME)
1410 		mark_inode_dirty_sync(inode);
1411 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1412 	if (dirty & ~I_DIRTY_PAGES) {
1413 		int err = write_inode(inode, wbc);
1414 		if (ret == 0)
1415 			ret = err;
1416 	}
1417 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1418 	return ret;
1419 }
1420 
1421 /*
1422  * Write out an inode's dirty pages. Either the caller has an active reference
1423  * on the inode or the inode has I_WILL_FREE set.
1424  *
1425  * This function is designed to be called for writing back one inode which
1426  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1427  * and does more profound writeback list handling in writeback_sb_inodes().
1428  */
1429 static int writeback_single_inode(struct inode *inode,
1430 				  struct writeback_control *wbc)
1431 {
1432 	struct bdi_writeback *wb;
1433 	int ret = 0;
1434 
1435 	spin_lock(&inode->i_lock);
1436 	if (!atomic_read(&inode->i_count))
1437 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1438 	else
1439 		WARN_ON(inode->i_state & I_WILL_FREE);
1440 
1441 	if (inode->i_state & I_SYNC) {
1442 		if (wbc->sync_mode != WB_SYNC_ALL)
1443 			goto out;
1444 		/*
1445 		 * It's a data-integrity sync. We must wait. Since callers hold
1446 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1447 		 * away under us.
1448 		 */
1449 		__inode_wait_for_writeback(inode);
1450 	}
1451 	WARN_ON(inode->i_state & I_SYNC);
1452 	/*
1453 	 * Skip inode if it is clean and we have no outstanding writeback in
1454 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1455 	 * function since flusher thread may be doing for example sync in
1456 	 * parallel and if we move the inode, it could get skipped. So here we
1457 	 * make sure inode is on some writeback list and leave it there unless
1458 	 * we have completely cleaned the inode.
1459 	 */
1460 	if (!(inode->i_state & I_DIRTY_ALL) &&
1461 	    (wbc->sync_mode != WB_SYNC_ALL ||
1462 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1463 		goto out;
1464 	inode->i_state |= I_SYNC;
1465 	wbc_attach_and_unlock_inode(wbc, inode);
1466 
1467 	ret = __writeback_single_inode(inode, wbc);
1468 
1469 	wbc_detach_inode(wbc);
1470 
1471 	wb = inode_to_wb_and_lock_list(inode);
1472 	spin_lock(&inode->i_lock);
1473 	/*
1474 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1475 	 * touch it. See comment above for explanation.
1476 	 */
1477 	if (!(inode->i_state & I_DIRTY_ALL))
1478 		inode_io_list_del_locked(inode, wb);
1479 	spin_unlock(&wb->list_lock);
1480 	inode_sync_complete(inode);
1481 out:
1482 	spin_unlock(&inode->i_lock);
1483 	return ret;
1484 }
1485 
1486 static long writeback_chunk_size(struct bdi_writeback *wb,
1487 				 struct wb_writeback_work *work)
1488 {
1489 	long pages;
1490 
1491 	/*
1492 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1493 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1494 	 * here avoids calling into writeback_inodes_wb() more than once.
1495 	 *
1496 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1497 	 *
1498 	 *      wb_writeback()
1499 	 *          writeback_sb_inodes()       <== called only once
1500 	 *              write_cache_pages()     <== called once for each inode
1501 	 *                   (quickly) tag currently dirty pages
1502 	 *                   (maybe slowly) sync all tagged pages
1503 	 */
1504 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1505 		pages = LONG_MAX;
1506 	else {
1507 		pages = min(wb->avg_write_bandwidth / 2,
1508 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1509 		pages = min(pages, work->nr_pages);
1510 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1511 				   MIN_WRITEBACK_PAGES);
1512 	}
1513 
1514 	return pages;
1515 }
1516 
1517 /*
1518  * Write a portion of b_io inodes which belong to @sb.
1519  *
1520  * Return the number of pages and/or inodes written.
1521  *
1522  * NOTE! This is called with wb->list_lock held, and will
1523  * unlock and relock that for each inode it ends up doing
1524  * IO for.
1525  */
1526 static long writeback_sb_inodes(struct super_block *sb,
1527 				struct bdi_writeback *wb,
1528 				struct wb_writeback_work *work)
1529 {
1530 	struct writeback_control wbc = {
1531 		.sync_mode		= work->sync_mode,
1532 		.tagged_writepages	= work->tagged_writepages,
1533 		.for_kupdate		= work->for_kupdate,
1534 		.for_background		= work->for_background,
1535 		.for_sync		= work->for_sync,
1536 		.range_cyclic		= work->range_cyclic,
1537 		.range_start		= 0,
1538 		.range_end		= LLONG_MAX,
1539 	};
1540 	unsigned long start_time = jiffies;
1541 	long write_chunk;
1542 	long wrote = 0;  /* count both pages and inodes */
1543 
1544 	while (!list_empty(&wb->b_io)) {
1545 		struct inode *inode = wb_inode(wb->b_io.prev);
1546 		struct bdi_writeback *tmp_wb;
1547 
1548 		if (inode->i_sb != sb) {
1549 			if (work->sb) {
1550 				/*
1551 				 * We only want to write back data for this
1552 				 * superblock, move all inodes not belonging
1553 				 * to it back onto the dirty list.
1554 				 */
1555 				redirty_tail(inode, wb);
1556 				continue;
1557 			}
1558 
1559 			/*
1560 			 * The inode belongs to a different superblock.
1561 			 * Bounce back to the caller to unpin this and
1562 			 * pin the next superblock.
1563 			 */
1564 			break;
1565 		}
1566 
1567 		/*
1568 		 * Don't bother with new inodes or inodes being freed, first
1569 		 * kind does not need periodic writeout yet, and for the latter
1570 		 * kind writeout is handled by the freer.
1571 		 */
1572 		spin_lock(&inode->i_lock);
1573 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1574 			spin_unlock(&inode->i_lock);
1575 			redirty_tail(inode, wb);
1576 			continue;
1577 		}
1578 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1579 			/*
1580 			 * If this inode is locked for writeback and we are not
1581 			 * doing writeback-for-data-integrity, move it to
1582 			 * b_more_io so that writeback can proceed with the
1583 			 * other inodes on s_io.
1584 			 *
1585 			 * We'll have another go at writing back this inode
1586 			 * when we completed a full scan of b_io.
1587 			 */
1588 			spin_unlock(&inode->i_lock);
1589 			requeue_io(inode, wb);
1590 			trace_writeback_sb_inodes_requeue(inode);
1591 			continue;
1592 		}
1593 		spin_unlock(&wb->list_lock);
1594 
1595 		/*
1596 		 * We already requeued the inode if it had I_SYNC set and we
1597 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1598 		 * WB_SYNC_ALL case.
1599 		 */
1600 		if (inode->i_state & I_SYNC) {
1601 			/* Wait for I_SYNC. This function drops i_lock... */
1602 			inode_sleep_on_writeback(inode);
1603 			/* Inode may be gone, start again */
1604 			spin_lock(&wb->list_lock);
1605 			continue;
1606 		}
1607 		inode->i_state |= I_SYNC;
1608 		wbc_attach_and_unlock_inode(&wbc, inode);
1609 
1610 		write_chunk = writeback_chunk_size(wb, work);
1611 		wbc.nr_to_write = write_chunk;
1612 		wbc.pages_skipped = 0;
1613 
1614 		/*
1615 		 * We use I_SYNC to pin the inode in memory. While it is set
1616 		 * evict_inode() will wait so the inode cannot be freed.
1617 		 */
1618 		__writeback_single_inode(inode, &wbc);
1619 
1620 		wbc_detach_inode(&wbc);
1621 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1622 		wrote += write_chunk - wbc.nr_to_write;
1623 
1624 		if (need_resched()) {
1625 			/*
1626 			 * We're trying to balance between building up a nice
1627 			 * long list of IOs to improve our merge rate, and
1628 			 * getting those IOs out quickly for anyone throttling
1629 			 * in balance_dirty_pages().  cond_resched() doesn't
1630 			 * unplug, so get our IOs out the door before we
1631 			 * give up the CPU.
1632 			 */
1633 			blk_flush_plug(current);
1634 			cond_resched();
1635 		}
1636 
1637 		/*
1638 		 * Requeue @inode if still dirty.  Be careful as @inode may
1639 		 * have been switched to another wb in the meantime.
1640 		 */
1641 		tmp_wb = inode_to_wb_and_lock_list(inode);
1642 		spin_lock(&inode->i_lock);
1643 		if (!(inode->i_state & I_DIRTY_ALL))
1644 			wrote++;
1645 		requeue_inode(inode, tmp_wb, &wbc);
1646 		inode_sync_complete(inode);
1647 		spin_unlock(&inode->i_lock);
1648 
1649 		if (unlikely(tmp_wb != wb)) {
1650 			spin_unlock(&tmp_wb->list_lock);
1651 			spin_lock(&wb->list_lock);
1652 		}
1653 
1654 		/*
1655 		 * bail out to wb_writeback() often enough to check
1656 		 * background threshold and other termination conditions.
1657 		 */
1658 		if (wrote) {
1659 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1660 				break;
1661 			if (work->nr_pages <= 0)
1662 				break;
1663 		}
1664 	}
1665 	return wrote;
1666 }
1667 
1668 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1669 				  struct wb_writeback_work *work)
1670 {
1671 	unsigned long start_time = jiffies;
1672 	long wrote = 0;
1673 
1674 	while (!list_empty(&wb->b_io)) {
1675 		struct inode *inode = wb_inode(wb->b_io.prev);
1676 		struct super_block *sb = inode->i_sb;
1677 
1678 		if (!trylock_super(sb)) {
1679 			/*
1680 			 * trylock_super() may fail consistently due to
1681 			 * s_umount being grabbed by someone else. Don't use
1682 			 * requeue_io() to avoid busy retrying the inode/sb.
1683 			 */
1684 			redirty_tail(inode, wb);
1685 			continue;
1686 		}
1687 		wrote += writeback_sb_inodes(sb, wb, work);
1688 		up_read(&sb->s_umount);
1689 
1690 		/* refer to the same tests at the end of writeback_sb_inodes */
1691 		if (wrote) {
1692 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1693 				break;
1694 			if (work->nr_pages <= 0)
1695 				break;
1696 		}
1697 	}
1698 	/* Leave any unwritten inodes on b_io */
1699 	return wrote;
1700 }
1701 
1702 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1703 				enum wb_reason reason)
1704 {
1705 	struct wb_writeback_work work = {
1706 		.nr_pages	= nr_pages,
1707 		.sync_mode	= WB_SYNC_NONE,
1708 		.range_cyclic	= 1,
1709 		.reason		= reason,
1710 	};
1711 	struct blk_plug plug;
1712 
1713 	blk_start_plug(&plug);
1714 	spin_lock(&wb->list_lock);
1715 	if (list_empty(&wb->b_io))
1716 		queue_io(wb, &work);
1717 	__writeback_inodes_wb(wb, &work);
1718 	spin_unlock(&wb->list_lock);
1719 	blk_finish_plug(&plug);
1720 
1721 	return nr_pages - work.nr_pages;
1722 }
1723 
1724 /*
1725  * Explicit flushing or periodic writeback of "old" data.
1726  *
1727  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1728  * dirtying-time in the inode's address_space.  So this periodic writeback code
1729  * just walks the superblock inode list, writing back any inodes which are
1730  * older than a specific point in time.
1731  *
1732  * Try to run once per dirty_writeback_interval.  But if a writeback event
1733  * takes longer than a dirty_writeback_interval interval, then leave a
1734  * one-second gap.
1735  *
1736  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1737  * all dirty pages if they are all attached to "old" mappings.
1738  */
1739 static long wb_writeback(struct bdi_writeback *wb,
1740 			 struct wb_writeback_work *work)
1741 {
1742 	unsigned long wb_start = jiffies;
1743 	long nr_pages = work->nr_pages;
1744 	unsigned long oldest_jif;
1745 	struct inode *inode;
1746 	long progress;
1747 	struct blk_plug plug;
1748 
1749 	oldest_jif = jiffies;
1750 	work->older_than_this = &oldest_jif;
1751 
1752 	blk_start_plug(&plug);
1753 	spin_lock(&wb->list_lock);
1754 	for (;;) {
1755 		/*
1756 		 * Stop writeback when nr_pages has been consumed
1757 		 */
1758 		if (work->nr_pages <= 0)
1759 			break;
1760 
1761 		/*
1762 		 * Background writeout and kupdate-style writeback may
1763 		 * run forever. Stop them if there is other work to do
1764 		 * so that e.g. sync can proceed. They'll be restarted
1765 		 * after the other works are all done.
1766 		 */
1767 		if ((work->for_background || work->for_kupdate) &&
1768 		    !list_empty(&wb->work_list))
1769 			break;
1770 
1771 		/*
1772 		 * For background writeout, stop when we are below the
1773 		 * background dirty threshold
1774 		 */
1775 		if (work->for_background && !wb_over_bg_thresh(wb))
1776 			break;
1777 
1778 		/*
1779 		 * Kupdate and background works are special and we want to
1780 		 * include all inodes that need writing. Livelock avoidance is
1781 		 * handled by these works yielding to any other work so we are
1782 		 * safe.
1783 		 */
1784 		if (work->for_kupdate) {
1785 			oldest_jif = jiffies -
1786 				msecs_to_jiffies(dirty_expire_interval * 10);
1787 		} else if (work->for_background)
1788 			oldest_jif = jiffies;
1789 
1790 		trace_writeback_start(wb, work);
1791 		if (list_empty(&wb->b_io))
1792 			queue_io(wb, work);
1793 		if (work->sb)
1794 			progress = writeback_sb_inodes(work->sb, wb, work);
1795 		else
1796 			progress = __writeback_inodes_wb(wb, work);
1797 		trace_writeback_written(wb, work);
1798 
1799 		wb_update_bandwidth(wb, wb_start);
1800 
1801 		/*
1802 		 * Did we write something? Try for more
1803 		 *
1804 		 * Dirty inodes are moved to b_io for writeback in batches.
1805 		 * The completion of the current batch does not necessarily
1806 		 * mean the overall work is done. So we keep looping as long
1807 		 * as made some progress on cleaning pages or inodes.
1808 		 */
1809 		if (progress)
1810 			continue;
1811 		/*
1812 		 * No more inodes for IO, bail
1813 		 */
1814 		if (list_empty(&wb->b_more_io))
1815 			break;
1816 		/*
1817 		 * Nothing written. Wait for some inode to
1818 		 * become available for writeback. Otherwise
1819 		 * we'll just busyloop.
1820 		 */
1821 		trace_writeback_wait(wb, work);
1822 		inode = wb_inode(wb->b_more_io.prev);
1823 		spin_lock(&inode->i_lock);
1824 		spin_unlock(&wb->list_lock);
1825 		/* This function drops i_lock... */
1826 		inode_sleep_on_writeback(inode);
1827 		spin_lock(&wb->list_lock);
1828 	}
1829 	spin_unlock(&wb->list_lock);
1830 	blk_finish_plug(&plug);
1831 
1832 	return nr_pages - work->nr_pages;
1833 }
1834 
1835 /*
1836  * Return the next wb_writeback_work struct that hasn't been processed yet.
1837  */
1838 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1839 {
1840 	struct wb_writeback_work *work = NULL;
1841 
1842 	spin_lock_bh(&wb->work_lock);
1843 	if (!list_empty(&wb->work_list)) {
1844 		work = list_entry(wb->work_list.next,
1845 				  struct wb_writeback_work, list);
1846 		list_del_init(&work->list);
1847 	}
1848 	spin_unlock_bh(&wb->work_lock);
1849 	return work;
1850 }
1851 
1852 static long wb_check_background_flush(struct bdi_writeback *wb)
1853 {
1854 	if (wb_over_bg_thresh(wb)) {
1855 
1856 		struct wb_writeback_work work = {
1857 			.nr_pages	= LONG_MAX,
1858 			.sync_mode	= WB_SYNC_NONE,
1859 			.for_background	= 1,
1860 			.range_cyclic	= 1,
1861 			.reason		= WB_REASON_BACKGROUND,
1862 		};
1863 
1864 		return wb_writeback(wb, &work);
1865 	}
1866 
1867 	return 0;
1868 }
1869 
1870 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1871 {
1872 	unsigned long expired;
1873 	long nr_pages;
1874 
1875 	/*
1876 	 * When set to zero, disable periodic writeback
1877 	 */
1878 	if (!dirty_writeback_interval)
1879 		return 0;
1880 
1881 	expired = wb->last_old_flush +
1882 			msecs_to_jiffies(dirty_writeback_interval * 10);
1883 	if (time_before(jiffies, expired))
1884 		return 0;
1885 
1886 	wb->last_old_flush = jiffies;
1887 	nr_pages = get_nr_dirty_pages();
1888 
1889 	if (nr_pages) {
1890 		struct wb_writeback_work work = {
1891 			.nr_pages	= nr_pages,
1892 			.sync_mode	= WB_SYNC_NONE,
1893 			.for_kupdate	= 1,
1894 			.range_cyclic	= 1,
1895 			.reason		= WB_REASON_PERIODIC,
1896 		};
1897 
1898 		return wb_writeback(wb, &work);
1899 	}
1900 
1901 	return 0;
1902 }
1903 
1904 static long wb_check_start_all(struct bdi_writeback *wb)
1905 {
1906 	long nr_pages;
1907 
1908 	if (!test_bit(WB_start_all, &wb->state))
1909 		return 0;
1910 
1911 	nr_pages = get_nr_dirty_pages();
1912 	if (nr_pages) {
1913 		struct wb_writeback_work work = {
1914 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1915 			.sync_mode	= WB_SYNC_NONE,
1916 			.range_cyclic	= 1,
1917 			.reason		= wb->start_all_reason,
1918 		};
1919 
1920 		nr_pages = wb_writeback(wb, &work);
1921 	}
1922 
1923 	clear_bit(WB_start_all, &wb->state);
1924 	return nr_pages;
1925 }
1926 
1927 
1928 /*
1929  * Retrieve work items and do the writeback they describe
1930  */
1931 static long wb_do_writeback(struct bdi_writeback *wb)
1932 {
1933 	struct wb_writeback_work *work;
1934 	long wrote = 0;
1935 
1936 	set_bit(WB_writeback_running, &wb->state);
1937 	while ((work = get_next_work_item(wb)) != NULL) {
1938 		trace_writeback_exec(wb, work);
1939 		wrote += wb_writeback(wb, work);
1940 		finish_writeback_work(wb, work);
1941 	}
1942 
1943 	/*
1944 	 * Check for a flush-everything request
1945 	 */
1946 	wrote += wb_check_start_all(wb);
1947 
1948 	/*
1949 	 * Check for periodic writeback, kupdated() style
1950 	 */
1951 	wrote += wb_check_old_data_flush(wb);
1952 	wrote += wb_check_background_flush(wb);
1953 	clear_bit(WB_writeback_running, &wb->state);
1954 
1955 	return wrote;
1956 }
1957 
1958 /*
1959  * Handle writeback of dirty data for the device backed by this bdi. Also
1960  * reschedules periodically and does kupdated style flushing.
1961  */
1962 void wb_workfn(struct work_struct *work)
1963 {
1964 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1965 						struct bdi_writeback, dwork);
1966 	long pages_written;
1967 
1968 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1969 	current->flags |= PF_SWAPWRITE;
1970 
1971 	if (likely(!current_is_workqueue_rescuer() ||
1972 		   !test_bit(WB_registered, &wb->state))) {
1973 		/*
1974 		 * The normal path.  Keep writing back @wb until its
1975 		 * work_list is empty.  Note that this path is also taken
1976 		 * if @wb is shutting down even when we're running off the
1977 		 * rescuer as work_list needs to be drained.
1978 		 */
1979 		do {
1980 			pages_written = wb_do_writeback(wb);
1981 			trace_writeback_pages_written(pages_written);
1982 		} while (!list_empty(&wb->work_list));
1983 	} else {
1984 		/*
1985 		 * bdi_wq can't get enough workers and we're running off
1986 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1987 		 * enough for efficient IO.
1988 		 */
1989 		pages_written = writeback_inodes_wb(wb, 1024,
1990 						    WB_REASON_FORKER_THREAD);
1991 		trace_writeback_pages_written(pages_written);
1992 	}
1993 
1994 	if (!list_empty(&wb->work_list))
1995 		wb_wakeup(wb);
1996 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1997 		wb_wakeup_delayed(wb);
1998 
1999 	current->flags &= ~PF_SWAPWRITE;
2000 }
2001 
2002 /*
2003  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2004  * write back the whole world.
2005  */
2006 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2007 					 enum wb_reason reason)
2008 {
2009 	struct bdi_writeback *wb;
2010 
2011 	if (!bdi_has_dirty_io(bdi))
2012 		return;
2013 
2014 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2015 		wb_start_writeback(wb, reason);
2016 }
2017 
2018 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2019 				enum wb_reason reason)
2020 {
2021 	rcu_read_lock();
2022 	__wakeup_flusher_threads_bdi(bdi, reason);
2023 	rcu_read_unlock();
2024 }
2025 
2026 /*
2027  * Wakeup the flusher threads to start writeback of all currently dirty pages
2028  */
2029 void wakeup_flusher_threads(enum wb_reason reason)
2030 {
2031 	struct backing_dev_info *bdi;
2032 
2033 	/*
2034 	 * If we are expecting writeback progress we must submit plugged IO.
2035 	 */
2036 	if (blk_needs_flush_plug(current))
2037 		blk_schedule_flush_plug(current);
2038 
2039 	rcu_read_lock();
2040 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2041 		__wakeup_flusher_threads_bdi(bdi, reason);
2042 	rcu_read_unlock();
2043 }
2044 
2045 /*
2046  * Wake up bdi's periodically to make sure dirtytime inodes gets
2047  * written back periodically.  We deliberately do *not* check the
2048  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2049  * kernel to be constantly waking up once there are any dirtytime
2050  * inodes on the system.  So instead we define a separate delayed work
2051  * function which gets called much more rarely.  (By default, only
2052  * once every 12 hours.)
2053  *
2054  * If there is any other write activity going on in the file system,
2055  * this function won't be necessary.  But if the only thing that has
2056  * happened on the file system is a dirtytime inode caused by an atime
2057  * update, we need this infrastructure below to make sure that inode
2058  * eventually gets pushed out to disk.
2059  */
2060 static void wakeup_dirtytime_writeback(struct work_struct *w);
2061 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2062 
2063 static void wakeup_dirtytime_writeback(struct work_struct *w)
2064 {
2065 	struct backing_dev_info *bdi;
2066 
2067 	rcu_read_lock();
2068 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2069 		struct bdi_writeback *wb;
2070 
2071 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2072 			if (!list_empty(&wb->b_dirty_time))
2073 				wb_wakeup(wb);
2074 	}
2075 	rcu_read_unlock();
2076 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2077 }
2078 
2079 static int __init start_dirtytime_writeback(void)
2080 {
2081 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2082 	return 0;
2083 }
2084 __initcall(start_dirtytime_writeback);
2085 
2086 int dirtytime_interval_handler(struct ctl_table *table, int write,
2087 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2088 {
2089 	int ret;
2090 
2091 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2092 	if (ret == 0 && write)
2093 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2094 	return ret;
2095 }
2096 
2097 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2098 {
2099 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2100 		struct dentry *dentry;
2101 		const char *name = "?";
2102 
2103 		dentry = d_find_alias(inode);
2104 		if (dentry) {
2105 			spin_lock(&dentry->d_lock);
2106 			name = (const char *) dentry->d_name.name;
2107 		}
2108 		printk(KERN_DEBUG
2109 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2110 		       current->comm, task_pid_nr(current), inode->i_ino,
2111 		       name, inode->i_sb->s_id);
2112 		if (dentry) {
2113 			spin_unlock(&dentry->d_lock);
2114 			dput(dentry);
2115 		}
2116 	}
2117 }
2118 
2119 /**
2120  * __mark_inode_dirty -	internal function
2121  *
2122  * @inode: inode to mark
2123  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2124  *
2125  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2126  * mark_inode_dirty_sync.
2127  *
2128  * Put the inode on the super block's dirty list.
2129  *
2130  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2131  * dirty list only if it is hashed or if it refers to a blockdev.
2132  * If it was not hashed, it will never be added to the dirty list
2133  * even if it is later hashed, as it will have been marked dirty already.
2134  *
2135  * In short, make sure you hash any inodes _before_ you start marking
2136  * them dirty.
2137  *
2138  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2139  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2140  * the kernel-internal blockdev inode represents the dirtying time of the
2141  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2142  * page->mapping->host, so the page-dirtying time is recorded in the internal
2143  * blockdev inode.
2144  */
2145 void __mark_inode_dirty(struct inode *inode, int flags)
2146 {
2147 	struct super_block *sb = inode->i_sb;
2148 	int dirtytime;
2149 
2150 	trace_writeback_mark_inode_dirty(inode, flags);
2151 
2152 	/*
2153 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2154 	 * dirty the inode itself
2155 	 */
2156 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2157 		trace_writeback_dirty_inode_start(inode, flags);
2158 
2159 		if (sb->s_op->dirty_inode)
2160 			sb->s_op->dirty_inode(inode, flags);
2161 
2162 		trace_writeback_dirty_inode(inode, flags);
2163 	}
2164 	if (flags & I_DIRTY_INODE)
2165 		flags &= ~I_DIRTY_TIME;
2166 	dirtytime = flags & I_DIRTY_TIME;
2167 
2168 	/*
2169 	 * Paired with smp_mb() in __writeback_single_inode() for the
2170 	 * following lockless i_state test.  See there for details.
2171 	 */
2172 	smp_mb();
2173 
2174 	if (((inode->i_state & flags) == flags) ||
2175 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2176 		return;
2177 
2178 	if (unlikely(block_dump))
2179 		block_dump___mark_inode_dirty(inode);
2180 
2181 	spin_lock(&inode->i_lock);
2182 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2183 		goto out_unlock_inode;
2184 	if ((inode->i_state & flags) != flags) {
2185 		const int was_dirty = inode->i_state & I_DIRTY;
2186 
2187 		inode_attach_wb(inode, NULL);
2188 
2189 		if (flags & I_DIRTY_INODE)
2190 			inode->i_state &= ~I_DIRTY_TIME;
2191 		inode->i_state |= flags;
2192 
2193 		/*
2194 		 * If the inode is being synced, just update its dirty state.
2195 		 * The unlocker will place the inode on the appropriate
2196 		 * superblock list, based upon its state.
2197 		 */
2198 		if (inode->i_state & I_SYNC)
2199 			goto out_unlock_inode;
2200 
2201 		/*
2202 		 * Only add valid (hashed) inodes to the superblock's
2203 		 * dirty list.  Add blockdev inodes as well.
2204 		 */
2205 		if (!S_ISBLK(inode->i_mode)) {
2206 			if (inode_unhashed(inode))
2207 				goto out_unlock_inode;
2208 		}
2209 		if (inode->i_state & I_FREEING)
2210 			goto out_unlock_inode;
2211 
2212 		/*
2213 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2214 		 * reposition it (that would break b_dirty time-ordering).
2215 		 */
2216 		if (!was_dirty) {
2217 			struct bdi_writeback *wb;
2218 			struct list_head *dirty_list;
2219 			bool wakeup_bdi = false;
2220 
2221 			wb = locked_inode_to_wb_and_lock_list(inode);
2222 
2223 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2224 			     !test_bit(WB_registered, &wb->state),
2225 			     "bdi-%s not registered\n", wb->bdi->name);
2226 
2227 			inode->dirtied_when = jiffies;
2228 			if (dirtytime)
2229 				inode->dirtied_time_when = jiffies;
2230 
2231 			if (inode->i_state & I_DIRTY)
2232 				dirty_list = &wb->b_dirty;
2233 			else
2234 				dirty_list = &wb->b_dirty_time;
2235 
2236 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2237 							       dirty_list);
2238 
2239 			spin_unlock(&wb->list_lock);
2240 			trace_writeback_dirty_inode_enqueue(inode);
2241 
2242 			/*
2243 			 * If this is the first dirty inode for this bdi,
2244 			 * we have to wake-up the corresponding bdi thread
2245 			 * to make sure background write-back happens
2246 			 * later.
2247 			 */
2248 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2249 				wb_wakeup_delayed(wb);
2250 			return;
2251 		}
2252 	}
2253 out_unlock_inode:
2254 	spin_unlock(&inode->i_lock);
2255 }
2256 EXPORT_SYMBOL(__mark_inode_dirty);
2257 
2258 /*
2259  * The @s_sync_lock is used to serialise concurrent sync operations
2260  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2261  * Concurrent callers will block on the s_sync_lock rather than doing contending
2262  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2263  * has been issued up to the time this function is enter is guaranteed to be
2264  * completed by the time we have gained the lock and waited for all IO that is
2265  * in progress regardless of the order callers are granted the lock.
2266  */
2267 static void wait_sb_inodes(struct super_block *sb)
2268 {
2269 	LIST_HEAD(sync_list);
2270 
2271 	/*
2272 	 * We need to be protected against the filesystem going from
2273 	 * r/o to r/w or vice versa.
2274 	 */
2275 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2276 
2277 	mutex_lock(&sb->s_sync_lock);
2278 
2279 	/*
2280 	 * Splice the writeback list onto a temporary list to avoid waiting on
2281 	 * inodes that have started writeback after this point.
2282 	 *
2283 	 * Use rcu_read_lock() to keep the inodes around until we have a
2284 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2285 	 * the local list because inodes can be dropped from either by writeback
2286 	 * completion.
2287 	 */
2288 	rcu_read_lock();
2289 	spin_lock_irq(&sb->s_inode_wblist_lock);
2290 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2291 
2292 	/*
2293 	 * Data integrity sync. Must wait for all pages under writeback, because
2294 	 * there may have been pages dirtied before our sync call, but which had
2295 	 * writeout started before we write it out.  In which case, the inode
2296 	 * may not be on the dirty list, but we still have to wait for that
2297 	 * writeout.
2298 	 */
2299 	while (!list_empty(&sync_list)) {
2300 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2301 						       i_wb_list);
2302 		struct address_space *mapping = inode->i_mapping;
2303 
2304 		/*
2305 		 * Move each inode back to the wb list before we drop the lock
2306 		 * to preserve consistency between i_wb_list and the mapping
2307 		 * writeback tag. Writeback completion is responsible to remove
2308 		 * the inode from either list once the writeback tag is cleared.
2309 		 */
2310 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2311 
2312 		/*
2313 		 * The mapping can appear untagged while still on-list since we
2314 		 * do not have the mapping lock. Skip it here, wb completion
2315 		 * will remove it.
2316 		 */
2317 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2318 			continue;
2319 
2320 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2321 
2322 		spin_lock(&inode->i_lock);
2323 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2324 			spin_unlock(&inode->i_lock);
2325 
2326 			spin_lock_irq(&sb->s_inode_wblist_lock);
2327 			continue;
2328 		}
2329 		__iget(inode);
2330 		spin_unlock(&inode->i_lock);
2331 		rcu_read_unlock();
2332 
2333 		/*
2334 		 * We keep the error status of individual mapping so that
2335 		 * applications can catch the writeback error using fsync(2).
2336 		 * See filemap_fdatawait_keep_errors() for details.
2337 		 */
2338 		filemap_fdatawait_keep_errors(mapping);
2339 
2340 		cond_resched();
2341 
2342 		iput(inode);
2343 
2344 		rcu_read_lock();
2345 		spin_lock_irq(&sb->s_inode_wblist_lock);
2346 	}
2347 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2348 	rcu_read_unlock();
2349 	mutex_unlock(&sb->s_sync_lock);
2350 }
2351 
2352 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2353 				     enum wb_reason reason, bool skip_if_busy)
2354 {
2355 	DEFINE_WB_COMPLETION_ONSTACK(done);
2356 	struct wb_writeback_work work = {
2357 		.sb			= sb,
2358 		.sync_mode		= WB_SYNC_NONE,
2359 		.tagged_writepages	= 1,
2360 		.done			= &done,
2361 		.nr_pages		= nr,
2362 		.reason			= reason,
2363 	};
2364 	struct backing_dev_info *bdi = sb->s_bdi;
2365 
2366 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2367 		return;
2368 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2369 
2370 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2371 	wb_wait_for_completion(bdi, &done);
2372 }
2373 
2374 /**
2375  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2376  * @sb: the superblock
2377  * @nr: the number of pages to write
2378  * @reason: reason why some writeback work initiated
2379  *
2380  * Start writeback on some inodes on this super_block. No guarantees are made
2381  * on how many (if any) will be written, and this function does not wait
2382  * for IO completion of submitted IO.
2383  */
2384 void writeback_inodes_sb_nr(struct super_block *sb,
2385 			    unsigned long nr,
2386 			    enum wb_reason reason)
2387 {
2388 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2389 }
2390 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2391 
2392 /**
2393  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2394  * @sb: the superblock
2395  * @reason: reason why some writeback work was initiated
2396  *
2397  * Start writeback on some inodes on this super_block. No guarantees are made
2398  * on how many (if any) will be written, and this function does not wait
2399  * for IO completion of submitted IO.
2400  */
2401 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2402 {
2403 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2404 }
2405 EXPORT_SYMBOL(writeback_inodes_sb);
2406 
2407 /**
2408  * try_to_writeback_inodes_sb - try to start writeback if none underway
2409  * @sb: the superblock
2410  * @reason: reason why some writeback work was initiated
2411  *
2412  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2413  */
2414 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2415 {
2416 	if (!down_read_trylock(&sb->s_umount))
2417 		return;
2418 
2419 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2420 	up_read(&sb->s_umount);
2421 }
2422 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2423 
2424 /**
2425  * sync_inodes_sb	-	sync sb inode pages
2426  * @sb: the superblock
2427  *
2428  * This function writes and waits on any dirty inode belonging to this
2429  * super_block.
2430  */
2431 void sync_inodes_sb(struct super_block *sb)
2432 {
2433 	DEFINE_WB_COMPLETION_ONSTACK(done);
2434 	struct wb_writeback_work work = {
2435 		.sb		= sb,
2436 		.sync_mode	= WB_SYNC_ALL,
2437 		.nr_pages	= LONG_MAX,
2438 		.range_cyclic	= 0,
2439 		.done		= &done,
2440 		.reason		= WB_REASON_SYNC,
2441 		.for_sync	= 1,
2442 	};
2443 	struct backing_dev_info *bdi = sb->s_bdi;
2444 
2445 	/*
2446 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2447 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2448 	 * bdi_has_dirty() need to be written out too.
2449 	 */
2450 	if (bdi == &noop_backing_dev_info)
2451 		return;
2452 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2453 
2454 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2455 	bdi_down_write_wb_switch_rwsem(bdi);
2456 	bdi_split_work_to_wbs(bdi, &work, false);
2457 	wb_wait_for_completion(bdi, &done);
2458 	bdi_up_write_wb_switch_rwsem(bdi);
2459 
2460 	wait_sb_inodes(sb);
2461 }
2462 EXPORT_SYMBOL(sync_inodes_sb);
2463 
2464 /**
2465  * write_inode_now	-	write an inode to disk
2466  * @inode: inode to write to disk
2467  * @sync: whether the write should be synchronous or not
2468  *
2469  * This function commits an inode to disk immediately if it is dirty. This is
2470  * primarily needed by knfsd.
2471  *
2472  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2473  */
2474 int write_inode_now(struct inode *inode, int sync)
2475 {
2476 	struct writeback_control wbc = {
2477 		.nr_to_write = LONG_MAX,
2478 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2479 		.range_start = 0,
2480 		.range_end = LLONG_MAX,
2481 	};
2482 
2483 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2484 		wbc.nr_to_write = 0;
2485 
2486 	might_sleep();
2487 	return writeback_single_inode(inode, &wbc);
2488 }
2489 EXPORT_SYMBOL(write_inode_now);
2490 
2491 /**
2492  * sync_inode - write an inode and its pages to disk.
2493  * @inode: the inode to sync
2494  * @wbc: controls the writeback mode
2495  *
2496  * sync_inode() will write an inode and its pages to disk.  It will also
2497  * correctly update the inode on its superblock's dirty inode lists and will
2498  * update inode->i_state.
2499  *
2500  * The caller must have a ref on the inode.
2501  */
2502 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2503 {
2504 	return writeback_single_inode(inode, wbc);
2505 }
2506 EXPORT_SYMBOL(sync_inode);
2507 
2508 /**
2509  * sync_inode_metadata - write an inode to disk
2510  * @inode: the inode to sync
2511  * @wait: wait for I/O to complete.
2512  *
2513  * Write an inode to disk and adjust its dirty state after completion.
2514  *
2515  * Note: only writes the actual inode, no associated data or other metadata.
2516  */
2517 int sync_inode_metadata(struct inode *inode, int wait)
2518 {
2519 	struct writeback_control wbc = {
2520 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2521 		.nr_to_write = 0, /* metadata-only */
2522 	};
2523 
2524 	return sync_inode(inode, &wbc);
2525 }
2526 EXPORT_SYMBOL(sync_inode_metadata);
2527