1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include <linux/memcontrol.h> 31 #include "internal.h" 32 33 /* 34 * 4MB minimal write chunk size 35 */ 36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 37 38 struct wb_completion { 39 atomic_t cnt; 40 }; 41 42 /* 43 * Passed into wb_writeback(), essentially a subset of writeback_control 44 */ 45 struct wb_writeback_work { 46 long nr_pages; 47 struct super_block *sb; 48 unsigned long *older_than_this; 49 enum writeback_sync_modes sync_mode; 50 unsigned int tagged_writepages:1; 51 unsigned int for_kupdate:1; 52 unsigned int range_cyclic:1; 53 unsigned int for_background:1; 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 55 unsigned int auto_free:1; /* free on completion */ 56 enum wb_reason reason; /* why was writeback initiated? */ 57 58 struct list_head list; /* pending work list */ 59 struct wb_completion *done; /* set if the caller waits */ 60 }; 61 62 /* 63 * If one wants to wait for one or more wb_writeback_works, each work's 64 * ->done should be set to a wb_completion defined using the following 65 * macro. Once all work items are issued with wb_queue_work(), the caller 66 * can wait for the completion of all using wb_wait_for_completion(). Work 67 * items which are waited upon aren't freed automatically on completion. 68 */ 69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 70 struct wb_completion cmpl = { \ 71 .cnt = ATOMIC_INIT(1), \ 72 } 73 74 75 /* 76 * If an inode is constantly having its pages dirtied, but then the 77 * updates stop dirtytime_expire_interval seconds in the past, it's 78 * possible for the worst case time between when an inode has its 79 * timestamps updated and when they finally get written out to be two 80 * dirtytime_expire_intervals. We set the default to 12 hours (in 81 * seconds), which means most of the time inodes will have their 82 * timestamps written to disk after 12 hours, but in the worst case a 83 * few inodes might not their timestamps updated for 24 hours. 84 */ 85 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 86 87 static inline struct inode *wb_inode(struct list_head *head) 88 { 89 return list_entry(head, struct inode, i_io_list); 90 } 91 92 /* 93 * Include the creation of the trace points after defining the 94 * wb_writeback_work structure and inline functions so that the definition 95 * remains local to this file. 96 */ 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/writeback.h> 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 101 102 static bool wb_io_lists_populated(struct bdi_writeback *wb) 103 { 104 if (wb_has_dirty_io(wb)) { 105 return false; 106 } else { 107 set_bit(WB_has_dirty_io, &wb->state); 108 WARN_ON_ONCE(!wb->avg_write_bandwidth); 109 atomic_long_add(wb->avg_write_bandwidth, 110 &wb->bdi->tot_write_bandwidth); 111 return true; 112 } 113 } 114 115 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 116 { 117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 119 clear_bit(WB_has_dirty_io, &wb->state); 120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 121 &wb->bdi->tot_write_bandwidth) < 0); 122 } 123 } 124 125 /** 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 127 * @inode: inode to be moved 128 * @wb: target bdi_writeback 129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 130 * 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 132 * Returns %true if @inode is the first occupant of the !dirty_time IO 133 * lists; otherwise, %false. 134 */ 135 static bool inode_io_list_move_locked(struct inode *inode, 136 struct bdi_writeback *wb, 137 struct list_head *head) 138 { 139 assert_spin_locked(&wb->list_lock); 140 141 list_move(&inode->i_io_list, head); 142 143 /* dirty_time doesn't count as dirty_io until expiration */ 144 if (head != &wb->b_dirty_time) 145 return wb_io_lists_populated(wb); 146 147 wb_io_lists_depopulated(wb); 148 return false; 149 } 150 151 /** 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 153 * @inode: inode to be removed 154 * @wb: bdi_writeback @inode is being removed from 155 * 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 157 * clear %WB_has_dirty_io if all are empty afterwards. 158 */ 159 static void inode_io_list_del_locked(struct inode *inode, 160 struct bdi_writeback *wb) 161 { 162 assert_spin_locked(&wb->list_lock); 163 164 list_del_init(&inode->i_io_list); 165 wb_io_lists_depopulated(wb); 166 } 167 168 static void wb_wakeup(struct bdi_writeback *wb) 169 { 170 spin_lock_bh(&wb->work_lock); 171 if (test_bit(WB_registered, &wb->state)) 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 spin_unlock_bh(&wb->work_lock); 174 } 175 176 static void finish_writeback_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 struct wb_completion *done = work->done; 180 181 if (work->auto_free) 182 kfree(work); 183 if (done && atomic_dec_and_test(&done->cnt)) 184 wake_up_all(&wb->bdi->wb_waitq); 185 } 186 187 static void wb_queue_work(struct bdi_writeback *wb, 188 struct wb_writeback_work *work) 189 { 190 trace_writeback_queue(wb, work); 191 192 if (work->done) 193 atomic_inc(&work->done->cnt); 194 195 spin_lock_bh(&wb->work_lock); 196 197 if (test_bit(WB_registered, &wb->state)) { 198 list_add_tail(&work->list, &wb->work_list); 199 mod_delayed_work(bdi_wq, &wb->dwork, 0); 200 } else 201 finish_writeback_work(wb, work); 202 203 spin_unlock_bh(&wb->work_lock); 204 } 205 206 /** 207 * wb_wait_for_completion - wait for completion of bdi_writeback_works 208 * @bdi: bdi work items were issued to 209 * @done: target wb_completion 210 * 211 * Wait for one or more work items issued to @bdi with their ->done field 212 * set to @done, which should have been defined with 213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 214 * work items are completed. Work items which are waited upon aren't freed 215 * automatically on completion. 216 */ 217 static void wb_wait_for_completion(struct backing_dev_info *bdi, 218 struct wb_completion *done) 219 { 220 atomic_dec(&done->cnt); /* put down the initial count */ 221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 222 } 223 224 #ifdef CONFIG_CGROUP_WRITEBACK 225 226 /* parameters for foreign inode detection, see wb_detach_inode() */ 227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 231 232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 234 /* each slot's duration is 2s / 16 */ 235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 236 /* if foreign slots >= 8, switch */ 237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 238 /* one round can affect upto 5 slots */ 239 240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 241 static struct workqueue_struct *isw_wq; 242 243 void __inode_attach_wb(struct inode *inode, struct page *page) 244 { 245 struct backing_dev_info *bdi = inode_to_bdi(inode); 246 struct bdi_writeback *wb = NULL; 247 248 if (inode_cgwb_enabled(inode)) { 249 struct cgroup_subsys_state *memcg_css; 250 251 if (page) { 252 memcg_css = mem_cgroup_css_from_page(page); 253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 254 } else { 255 /* must pin memcg_css, see wb_get_create() */ 256 memcg_css = task_get_css(current, memory_cgrp_id); 257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 258 css_put(memcg_css); 259 } 260 } 261 262 if (!wb) 263 wb = &bdi->wb; 264 265 /* 266 * There may be multiple instances of this function racing to 267 * update the same inode. Use cmpxchg() to tell the winner. 268 */ 269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 270 wb_put(wb); 271 } 272 273 /** 274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 275 * @inode: inode of interest with i_lock held 276 * 277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 278 * held on entry and is released on return. The returned wb is guaranteed 279 * to stay @inode's associated wb until its list_lock is released. 280 */ 281 static struct bdi_writeback * 282 locked_inode_to_wb_and_lock_list(struct inode *inode) 283 __releases(&inode->i_lock) 284 __acquires(&wb->list_lock) 285 { 286 while (true) { 287 struct bdi_writeback *wb = inode_to_wb(inode); 288 289 /* 290 * inode_to_wb() association is protected by both 291 * @inode->i_lock and @wb->list_lock but list_lock nests 292 * outside i_lock. Drop i_lock and verify that the 293 * association hasn't changed after acquiring list_lock. 294 */ 295 wb_get(wb); 296 spin_unlock(&inode->i_lock); 297 spin_lock(&wb->list_lock); 298 299 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 300 if (likely(wb == inode->i_wb)) { 301 wb_put(wb); /* @inode already has ref */ 302 return wb; 303 } 304 305 spin_unlock(&wb->list_lock); 306 wb_put(wb); 307 cpu_relax(); 308 spin_lock(&inode->i_lock); 309 } 310 } 311 312 /** 313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 314 * @inode: inode of interest 315 * 316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 317 * on entry. 318 */ 319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 320 __acquires(&wb->list_lock) 321 { 322 spin_lock(&inode->i_lock); 323 return locked_inode_to_wb_and_lock_list(inode); 324 } 325 326 struct inode_switch_wbs_context { 327 struct inode *inode; 328 struct bdi_writeback *new_wb; 329 330 struct rcu_head rcu_head; 331 struct work_struct work; 332 }; 333 334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 335 { 336 down_write(&bdi->wb_switch_rwsem); 337 } 338 339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 340 { 341 up_write(&bdi->wb_switch_rwsem); 342 } 343 344 static void inode_switch_wbs_work_fn(struct work_struct *work) 345 { 346 struct inode_switch_wbs_context *isw = 347 container_of(work, struct inode_switch_wbs_context, work); 348 struct inode *inode = isw->inode; 349 struct backing_dev_info *bdi = inode_to_bdi(inode); 350 struct address_space *mapping = inode->i_mapping; 351 struct bdi_writeback *old_wb = inode->i_wb; 352 struct bdi_writeback *new_wb = isw->new_wb; 353 XA_STATE(xas, &mapping->i_pages, 0); 354 struct page *page; 355 bool switched = false; 356 357 /* 358 * If @inode switches cgwb membership while sync_inodes_sb() is 359 * being issued, sync_inodes_sb() might miss it. Synchronize. 360 */ 361 down_read(&bdi->wb_switch_rwsem); 362 363 /* 364 * By the time control reaches here, RCU grace period has passed 365 * since I_WB_SWITCH assertion and all wb stat update transactions 366 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 367 * synchronizing against the i_pages lock. 368 * 369 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 370 * gives us exclusion against all wb related operations on @inode 371 * including IO list manipulations and stat updates. 372 */ 373 if (old_wb < new_wb) { 374 spin_lock(&old_wb->list_lock); 375 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 376 } else { 377 spin_lock(&new_wb->list_lock); 378 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 379 } 380 spin_lock(&inode->i_lock); 381 xa_lock_irq(&mapping->i_pages); 382 383 /* 384 * Once I_FREEING is visible under i_lock, the eviction path owns 385 * the inode and we shouldn't modify ->i_io_list. 386 */ 387 if (unlikely(inode->i_state & I_FREEING)) 388 goto skip_switch; 389 390 /* 391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 393 * pages actually under writeback. 394 */ 395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 396 if (PageDirty(page)) { 397 dec_wb_stat(old_wb, WB_RECLAIMABLE); 398 inc_wb_stat(new_wb, WB_RECLAIMABLE); 399 } 400 } 401 402 xas_set(&xas, 0); 403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 404 WARN_ON_ONCE(!PageWriteback(page)); 405 dec_wb_stat(old_wb, WB_WRITEBACK); 406 inc_wb_stat(new_wb, WB_WRITEBACK); 407 } 408 409 wb_get(new_wb); 410 411 /* 412 * Transfer to @new_wb's IO list if necessary. The specific list 413 * @inode was on is ignored and the inode is put on ->b_dirty which 414 * is always correct including from ->b_dirty_time. The transfer 415 * preserves @inode->dirtied_when ordering. 416 */ 417 if (!list_empty(&inode->i_io_list)) { 418 struct inode *pos; 419 420 inode_io_list_del_locked(inode, old_wb); 421 inode->i_wb = new_wb; 422 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 423 if (time_after_eq(inode->dirtied_when, 424 pos->dirtied_when)) 425 break; 426 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 427 } else { 428 inode->i_wb = new_wb; 429 } 430 431 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 432 inode->i_wb_frn_winner = 0; 433 inode->i_wb_frn_avg_time = 0; 434 inode->i_wb_frn_history = 0; 435 switched = true; 436 skip_switch: 437 /* 438 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 439 * ensures that the new wb is visible if they see !I_WB_SWITCH. 440 */ 441 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 442 443 xa_unlock_irq(&mapping->i_pages); 444 spin_unlock(&inode->i_lock); 445 spin_unlock(&new_wb->list_lock); 446 spin_unlock(&old_wb->list_lock); 447 448 up_read(&bdi->wb_switch_rwsem); 449 450 if (switched) { 451 wb_wakeup(new_wb); 452 wb_put(old_wb); 453 } 454 wb_put(new_wb); 455 456 iput(inode); 457 kfree(isw); 458 459 atomic_dec(&isw_nr_in_flight); 460 } 461 462 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 463 { 464 struct inode_switch_wbs_context *isw = container_of(rcu_head, 465 struct inode_switch_wbs_context, rcu_head); 466 467 /* needs to grab bh-unsafe locks, bounce to work item */ 468 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 469 queue_work(isw_wq, &isw->work); 470 } 471 472 /** 473 * inode_switch_wbs - change the wb association of an inode 474 * @inode: target inode 475 * @new_wb_id: ID of the new wb 476 * 477 * Switch @inode's wb association to the wb identified by @new_wb_id. The 478 * switching is performed asynchronously and may fail silently. 479 */ 480 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 481 { 482 struct backing_dev_info *bdi = inode_to_bdi(inode); 483 struct cgroup_subsys_state *memcg_css; 484 struct inode_switch_wbs_context *isw; 485 486 /* noop if seems to be already in progress */ 487 if (inode->i_state & I_WB_SWITCH) 488 return; 489 490 /* 491 * Avoid starting new switches while sync_inodes_sb() is in 492 * progress. Otherwise, if the down_write protected issue path 493 * blocks heavily, we might end up starting a large number of 494 * switches which will block on the rwsem. 495 */ 496 if (!down_read_trylock(&bdi->wb_switch_rwsem)) 497 return; 498 499 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 500 if (!isw) 501 goto out_unlock; 502 503 /* find and pin the new wb */ 504 rcu_read_lock(); 505 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 506 if (memcg_css) 507 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 508 rcu_read_unlock(); 509 if (!isw->new_wb) 510 goto out_free; 511 512 /* while holding I_WB_SWITCH, no one else can update the association */ 513 spin_lock(&inode->i_lock); 514 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 515 inode->i_state & (I_WB_SWITCH | I_FREEING) || 516 inode_to_wb(inode) == isw->new_wb) { 517 spin_unlock(&inode->i_lock); 518 goto out_free; 519 } 520 inode->i_state |= I_WB_SWITCH; 521 __iget(inode); 522 spin_unlock(&inode->i_lock); 523 524 isw->inode = inode; 525 526 /* 527 * In addition to synchronizing among switchers, I_WB_SWITCH tells 528 * the RCU protected stat update paths to grab the i_page 529 * lock so that stat transfer can synchronize against them. 530 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 531 */ 532 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 533 534 atomic_inc(&isw_nr_in_flight); 535 536 goto out_unlock; 537 538 out_free: 539 if (isw->new_wb) 540 wb_put(isw->new_wb); 541 kfree(isw); 542 out_unlock: 543 up_read(&bdi->wb_switch_rwsem); 544 } 545 546 /** 547 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 548 * @wbc: writeback_control of interest 549 * @inode: target inode 550 * 551 * @inode is locked and about to be written back under the control of @wbc. 552 * Record @inode's writeback context into @wbc and unlock the i_lock. On 553 * writeback completion, wbc_detach_inode() should be called. This is used 554 * to track the cgroup writeback context. 555 */ 556 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 557 struct inode *inode) 558 { 559 if (!inode_cgwb_enabled(inode)) { 560 spin_unlock(&inode->i_lock); 561 return; 562 } 563 564 wbc->wb = inode_to_wb(inode); 565 wbc->inode = inode; 566 567 wbc->wb_id = wbc->wb->memcg_css->id; 568 wbc->wb_lcand_id = inode->i_wb_frn_winner; 569 wbc->wb_tcand_id = 0; 570 wbc->wb_bytes = 0; 571 wbc->wb_lcand_bytes = 0; 572 wbc->wb_tcand_bytes = 0; 573 574 wb_get(wbc->wb); 575 spin_unlock(&inode->i_lock); 576 577 /* 578 * A dying wb indicates that the memcg-blkcg mapping has changed 579 * and a new wb is already serving the memcg. Switch immediately. 580 */ 581 if (unlikely(wb_dying(wbc->wb))) 582 inode_switch_wbs(inode, wbc->wb_id); 583 } 584 585 /** 586 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 587 * @wbc: writeback_control of the just finished writeback 588 * 589 * To be called after a writeback attempt of an inode finishes and undoes 590 * wbc_attach_and_unlock_inode(). Can be called under any context. 591 * 592 * As concurrent write sharing of an inode is expected to be very rare and 593 * memcg only tracks page ownership on first-use basis severely confining 594 * the usefulness of such sharing, cgroup writeback tracks ownership 595 * per-inode. While the support for concurrent write sharing of an inode 596 * is deemed unnecessary, an inode being written to by different cgroups at 597 * different points in time is a lot more common, and, more importantly, 598 * charging only by first-use can too readily lead to grossly incorrect 599 * behaviors (single foreign page can lead to gigabytes of writeback to be 600 * incorrectly attributed). 601 * 602 * To resolve this issue, cgroup writeback detects the majority dirtier of 603 * an inode and transfers the ownership to it. To avoid unnnecessary 604 * oscillation, the detection mechanism keeps track of history and gives 605 * out the switch verdict only if the foreign usage pattern is stable over 606 * a certain amount of time and/or writeback attempts. 607 * 608 * On each writeback attempt, @wbc tries to detect the majority writer 609 * using Boyer-Moore majority vote algorithm. In addition to the byte 610 * count from the majority voting, it also counts the bytes written for the 611 * current wb and the last round's winner wb (max of last round's current 612 * wb, the winner from two rounds ago, and the last round's majority 613 * candidate). Keeping track of the historical winner helps the algorithm 614 * to semi-reliably detect the most active writer even when it's not the 615 * absolute majority. 616 * 617 * Once the winner of the round is determined, whether the winner is 618 * foreign or not and how much IO time the round consumed is recorded in 619 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 620 * over a certain threshold, the switch verdict is given. 621 */ 622 void wbc_detach_inode(struct writeback_control *wbc) 623 { 624 struct bdi_writeback *wb = wbc->wb; 625 struct inode *inode = wbc->inode; 626 unsigned long avg_time, max_bytes, max_time; 627 u16 history; 628 int max_id; 629 630 if (!wb) 631 return; 632 633 history = inode->i_wb_frn_history; 634 avg_time = inode->i_wb_frn_avg_time; 635 636 /* pick the winner of this round */ 637 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 638 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 639 max_id = wbc->wb_id; 640 max_bytes = wbc->wb_bytes; 641 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 642 max_id = wbc->wb_lcand_id; 643 max_bytes = wbc->wb_lcand_bytes; 644 } else { 645 max_id = wbc->wb_tcand_id; 646 max_bytes = wbc->wb_tcand_bytes; 647 } 648 649 /* 650 * Calculate the amount of IO time the winner consumed and fold it 651 * into the running average kept per inode. If the consumed IO 652 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 653 * deciding whether to switch or not. This is to prevent one-off 654 * small dirtiers from skewing the verdict. 655 */ 656 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 657 wb->avg_write_bandwidth); 658 if (avg_time) 659 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 660 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 661 else 662 avg_time = max_time; /* immediate catch up on first run */ 663 664 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 665 int slots; 666 667 /* 668 * The switch verdict is reached if foreign wb's consume 669 * more than a certain proportion of IO time in a 670 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 671 * history mask where each bit represents one sixteenth of 672 * the period. Determine the number of slots to shift into 673 * history from @max_time. 674 */ 675 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 676 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 677 history <<= slots; 678 if (wbc->wb_id != max_id) 679 history |= (1U << slots) - 1; 680 681 /* 682 * Switch if the current wb isn't the consistent winner. 683 * If there are multiple closely competing dirtiers, the 684 * inode may switch across them repeatedly over time, which 685 * is okay. The main goal is avoiding keeping an inode on 686 * the wrong wb for an extended period of time. 687 */ 688 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 689 inode_switch_wbs(inode, max_id); 690 } 691 692 /* 693 * Multiple instances of this function may race to update the 694 * following fields but we don't mind occassional inaccuracies. 695 */ 696 inode->i_wb_frn_winner = max_id; 697 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 698 inode->i_wb_frn_history = history; 699 700 wb_put(wbc->wb); 701 wbc->wb = NULL; 702 } 703 704 /** 705 * wbc_account_io - account IO issued during writeback 706 * @wbc: writeback_control of the writeback in progress 707 * @page: page being written out 708 * @bytes: number of bytes being written out 709 * 710 * @bytes from @page are about to written out during the writeback 711 * controlled by @wbc. Keep the book for foreign inode detection. See 712 * wbc_detach_inode(). 713 */ 714 void wbc_account_io(struct writeback_control *wbc, struct page *page, 715 size_t bytes) 716 { 717 int id; 718 719 /* 720 * pageout() path doesn't attach @wbc to the inode being written 721 * out. This is intentional as we don't want the function to block 722 * behind a slow cgroup. Ultimately, we want pageout() to kick off 723 * regular writeback instead of writing things out itself. 724 */ 725 if (!wbc->wb) 726 return; 727 728 id = mem_cgroup_css_from_page(page)->id; 729 730 if (id == wbc->wb_id) { 731 wbc->wb_bytes += bytes; 732 return; 733 } 734 735 if (id == wbc->wb_lcand_id) 736 wbc->wb_lcand_bytes += bytes; 737 738 /* Boyer-Moore majority vote algorithm */ 739 if (!wbc->wb_tcand_bytes) 740 wbc->wb_tcand_id = id; 741 if (id == wbc->wb_tcand_id) 742 wbc->wb_tcand_bytes += bytes; 743 else 744 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 745 } 746 EXPORT_SYMBOL_GPL(wbc_account_io); 747 748 /** 749 * inode_congested - test whether an inode is congested 750 * @inode: inode to test for congestion (may be NULL) 751 * @cong_bits: mask of WB_[a]sync_congested bits to test 752 * 753 * Tests whether @inode is congested. @cong_bits is the mask of congestion 754 * bits to test and the return value is the mask of set bits. 755 * 756 * If cgroup writeback is enabled for @inode, the congestion state is 757 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 758 * associated with @inode is congested; otherwise, the root wb's congestion 759 * state is used. 760 * 761 * @inode is allowed to be NULL as this function is often called on 762 * mapping->host which is NULL for the swapper space. 763 */ 764 int inode_congested(struct inode *inode, int cong_bits) 765 { 766 /* 767 * Once set, ->i_wb never becomes NULL while the inode is alive. 768 * Start transaction iff ->i_wb is visible. 769 */ 770 if (inode && inode_to_wb_is_valid(inode)) { 771 struct bdi_writeback *wb; 772 struct wb_lock_cookie lock_cookie = {}; 773 bool congested; 774 775 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 776 congested = wb_congested(wb, cong_bits); 777 unlocked_inode_to_wb_end(inode, &lock_cookie); 778 return congested; 779 } 780 781 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 782 } 783 EXPORT_SYMBOL_GPL(inode_congested); 784 785 /** 786 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 787 * @wb: target bdi_writeback to split @nr_pages to 788 * @nr_pages: number of pages to write for the whole bdi 789 * 790 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 791 * relation to the total write bandwidth of all wb's w/ dirty inodes on 792 * @wb->bdi. 793 */ 794 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 795 { 796 unsigned long this_bw = wb->avg_write_bandwidth; 797 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 798 799 if (nr_pages == LONG_MAX) 800 return LONG_MAX; 801 802 /* 803 * This may be called on clean wb's and proportional distribution 804 * may not make sense, just use the original @nr_pages in those 805 * cases. In general, we wanna err on the side of writing more. 806 */ 807 if (!tot_bw || this_bw >= tot_bw) 808 return nr_pages; 809 else 810 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 811 } 812 813 /** 814 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 815 * @bdi: target backing_dev_info 816 * @base_work: wb_writeback_work to issue 817 * @skip_if_busy: skip wb's which already have writeback in progress 818 * 819 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 820 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 821 * distributed to the busy wbs according to each wb's proportion in the 822 * total active write bandwidth of @bdi. 823 */ 824 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 825 struct wb_writeback_work *base_work, 826 bool skip_if_busy) 827 { 828 struct bdi_writeback *last_wb = NULL; 829 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 830 struct bdi_writeback, bdi_node); 831 832 might_sleep(); 833 restart: 834 rcu_read_lock(); 835 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 836 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 837 struct wb_writeback_work fallback_work; 838 struct wb_writeback_work *work; 839 long nr_pages; 840 841 if (last_wb) { 842 wb_put(last_wb); 843 last_wb = NULL; 844 } 845 846 /* SYNC_ALL writes out I_DIRTY_TIME too */ 847 if (!wb_has_dirty_io(wb) && 848 (base_work->sync_mode == WB_SYNC_NONE || 849 list_empty(&wb->b_dirty_time))) 850 continue; 851 if (skip_if_busy && writeback_in_progress(wb)) 852 continue; 853 854 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 855 856 work = kmalloc(sizeof(*work), GFP_ATOMIC); 857 if (work) { 858 *work = *base_work; 859 work->nr_pages = nr_pages; 860 work->auto_free = 1; 861 wb_queue_work(wb, work); 862 continue; 863 } 864 865 /* alloc failed, execute synchronously using on-stack fallback */ 866 work = &fallback_work; 867 *work = *base_work; 868 work->nr_pages = nr_pages; 869 work->auto_free = 0; 870 work->done = &fallback_work_done; 871 872 wb_queue_work(wb, work); 873 874 /* 875 * Pin @wb so that it stays on @bdi->wb_list. This allows 876 * continuing iteration from @wb after dropping and 877 * regrabbing rcu read lock. 878 */ 879 wb_get(wb); 880 last_wb = wb; 881 882 rcu_read_unlock(); 883 wb_wait_for_completion(bdi, &fallback_work_done); 884 goto restart; 885 } 886 rcu_read_unlock(); 887 888 if (last_wb) 889 wb_put(last_wb); 890 } 891 892 /** 893 * cgroup_writeback_umount - flush inode wb switches for umount 894 * 895 * This function is called when a super_block is about to be destroyed and 896 * flushes in-flight inode wb switches. An inode wb switch goes through 897 * RCU and then workqueue, so the two need to be flushed in order to ensure 898 * that all previously scheduled switches are finished. As wb switches are 899 * rare occurrences and synchronize_rcu() can take a while, perform 900 * flushing iff wb switches are in flight. 901 */ 902 void cgroup_writeback_umount(void) 903 { 904 if (atomic_read(&isw_nr_in_flight)) { 905 /* 906 * Use rcu_barrier() to wait for all pending callbacks to 907 * ensure that all in-flight wb switches are in the workqueue. 908 */ 909 rcu_barrier(); 910 flush_workqueue(isw_wq); 911 } 912 } 913 914 static int __init cgroup_writeback_init(void) 915 { 916 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 917 if (!isw_wq) 918 return -ENOMEM; 919 return 0; 920 } 921 fs_initcall(cgroup_writeback_init); 922 923 #else /* CONFIG_CGROUP_WRITEBACK */ 924 925 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 926 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 927 928 static struct bdi_writeback * 929 locked_inode_to_wb_and_lock_list(struct inode *inode) 930 __releases(&inode->i_lock) 931 __acquires(&wb->list_lock) 932 { 933 struct bdi_writeback *wb = inode_to_wb(inode); 934 935 spin_unlock(&inode->i_lock); 936 spin_lock(&wb->list_lock); 937 return wb; 938 } 939 940 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 941 __acquires(&wb->list_lock) 942 { 943 struct bdi_writeback *wb = inode_to_wb(inode); 944 945 spin_lock(&wb->list_lock); 946 return wb; 947 } 948 949 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 950 { 951 return nr_pages; 952 } 953 954 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 955 struct wb_writeback_work *base_work, 956 bool skip_if_busy) 957 { 958 might_sleep(); 959 960 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 961 base_work->auto_free = 0; 962 wb_queue_work(&bdi->wb, base_work); 963 } 964 } 965 966 #endif /* CONFIG_CGROUP_WRITEBACK */ 967 968 /* 969 * Add in the number of potentially dirty inodes, because each inode 970 * write can dirty pagecache in the underlying blockdev. 971 */ 972 static unsigned long get_nr_dirty_pages(void) 973 { 974 return global_node_page_state(NR_FILE_DIRTY) + 975 global_node_page_state(NR_UNSTABLE_NFS) + 976 get_nr_dirty_inodes(); 977 } 978 979 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 980 { 981 if (!wb_has_dirty_io(wb)) 982 return; 983 984 /* 985 * All callers of this function want to start writeback of all 986 * dirty pages. Places like vmscan can call this at a very 987 * high frequency, causing pointless allocations of tons of 988 * work items and keeping the flusher threads busy retrieving 989 * that work. Ensure that we only allow one of them pending and 990 * inflight at the time. 991 */ 992 if (test_bit(WB_start_all, &wb->state) || 993 test_and_set_bit(WB_start_all, &wb->state)) 994 return; 995 996 wb->start_all_reason = reason; 997 wb_wakeup(wb); 998 } 999 1000 /** 1001 * wb_start_background_writeback - start background writeback 1002 * @wb: bdi_writback to write from 1003 * 1004 * Description: 1005 * This makes sure WB_SYNC_NONE background writeback happens. When 1006 * this function returns, it is only guaranteed that for given wb 1007 * some IO is happening if we are over background dirty threshold. 1008 * Caller need not hold sb s_umount semaphore. 1009 */ 1010 void wb_start_background_writeback(struct bdi_writeback *wb) 1011 { 1012 /* 1013 * We just wake up the flusher thread. It will perform background 1014 * writeback as soon as there is no other work to do. 1015 */ 1016 trace_writeback_wake_background(wb); 1017 wb_wakeup(wb); 1018 } 1019 1020 /* 1021 * Remove the inode from the writeback list it is on. 1022 */ 1023 void inode_io_list_del(struct inode *inode) 1024 { 1025 struct bdi_writeback *wb; 1026 1027 wb = inode_to_wb_and_lock_list(inode); 1028 inode_io_list_del_locked(inode, wb); 1029 spin_unlock(&wb->list_lock); 1030 } 1031 1032 /* 1033 * mark an inode as under writeback on the sb 1034 */ 1035 void sb_mark_inode_writeback(struct inode *inode) 1036 { 1037 struct super_block *sb = inode->i_sb; 1038 unsigned long flags; 1039 1040 if (list_empty(&inode->i_wb_list)) { 1041 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1042 if (list_empty(&inode->i_wb_list)) { 1043 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1044 trace_sb_mark_inode_writeback(inode); 1045 } 1046 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1047 } 1048 } 1049 1050 /* 1051 * clear an inode as under writeback on the sb 1052 */ 1053 void sb_clear_inode_writeback(struct inode *inode) 1054 { 1055 struct super_block *sb = inode->i_sb; 1056 unsigned long flags; 1057 1058 if (!list_empty(&inode->i_wb_list)) { 1059 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1060 if (!list_empty(&inode->i_wb_list)) { 1061 list_del_init(&inode->i_wb_list); 1062 trace_sb_clear_inode_writeback(inode); 1063 } 1064 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1065 } 1066 } 1067 1068 /* 1069 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1070 * furthest end of its superblock's dirty-inode list. 1071 * 1072 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1073 * already the most-recently-dirtied inode on the b_dirty list. If that is 1074 * the case then the inode must have been redirtied while it was being written 1075 * out and we don't reset its dirtied_when. 1076 */ 1077 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1078 { 1079 if (!list_empty(&wb->b_dirty)) { 1080 struct inode *tail; 1081 1082 tail = wb_inode(wb->b_dirty.next); 1083 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1084 inode->dirtied_when = jiffies; 1085 } 1086 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1087 } 1088 1089 /* 1090 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1091 */ 1092 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1093 { 1094 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1095 } 1096 1097 static void inode_sync_complete(struct inode *inode) 1098 { 1099 inode->i_state &= ~I_SYNC; 1100 /* If inode is clean an unused, put it into LRU now... */ 1101 inode_add_lru(inode); 1102 /* Waiters must see I_SYNC cleared before being woken up */ 1103 smp_mb(); 1104 wake_up_bit(&inode->i_state, __I_SYNC); 1105 } 1106 1107 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1108 { 1109 bool ret = time_after(inode->dirtied_when, t); 1110 #ifndef CONFIG_64BIT 1111 /* 1112 * For inodes being constantly redirtied, dirtied_when can get stuck. 1113 * It _appears_ to be in the future, but is actually in distant past. 1114 * This test is necessary to prevent such wrapped-around relative times 1115 * from permanently stopping the whole bdi writeback. 1116 */ 1117 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1118 #endif 1119 return ret; 1120 } 1121 1122 #define EXPIRE_DIRTY_ATIME 0x0001 1123 1124 /* 1125 * Move expired (dirtied before work->older_than_this) dirty inodes from 1126 * @delaying_queue to @dispatch_queue. 1127 */ 1128 static int move_expired_inodes(struct list_head *delaying_queue, 1129 struct list_head *dispatch_queue, 1130 int flags, 1131 struct wb_writeback_work *work) 1132 { 1133 unsigned long *older_than_this = NULL; 1134 unsigned long expire_time; 1135 LIST_HEAD(tmp); 1136 struct list_head *pos, *node; 1137 struct super_block *sb = NULL; 1138 struct inode *inode; 1139 int do_sb_sort = 0; 1140 int moved = 0; 1141 1142 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1143 older_than_this = work->older_than_this; 1144 else if (!work->for_sync) { 1145 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1146 older_than_this = &expire_time; 1147 } 1148 while (!list_empty(delaying_queue)) { 1149 inode = wb_inode(delaying_queue->prev); 1150 if (older_than_this && 1151 inode_dirtied_after(inode, *older_than_this)) 1152 break; 1153 list_move(&inode->i_io_list, &tmp); 1154 moved++; 1155 if (flags & EXPIRE_DIRTY_ATIME) 1156 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1157 if (sb_is_blkdev_sb(inode->i_sb)) 1158 continue; 1159 if (sb && sb != inode->i_sb) 1160 do_sb_sort = 1; 1161 sb = inode->i_sb; 1162 } 1163 1164 /* just one sb in list, splice to dispatch_queue and we're done */ 1165 if (!do_sb_sort) { 1166 list_splice(&tmp, dispatch_queue); 1167 goto out; 1168 } 1169 1170 /* Move inodes from one superblock together */ 1171 while (!list_empty(&tmp)) { 1172 sb = wb_inode(tmp.prev)->i_sb; 1173 list_for_each_prev_safe(pos, node, &tmp) { 1174 inode = wb_inode(pos); 1175 if (inode->i_sb == sb) 1176 list_move(&inode->i_io_list, dispatch_queue); 1177 } 1178 } 1179 out: 1180 return moved; 1181 } 1182 1183 /* 1184 * Queue all expired dirty inodes for io, eldest first. 1185 * Before 1186 * newly dirtied b_dirty b_io b_more_io 1187 * =============> gf edc BA 1188 * After 1189 * newly dirtied b_dirty b_io b_more_io 1190 * =============> g fBAedc 1191 * | 1192 * +--> dequeue for IO 1193 */ 1194 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1195 { 1196 int moved; 1197 1198 assert_spin_locked(&wb->list_lock); 1199 list_splice_init(&wb->b_more_io, &wb->b_io); 1200 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1201 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1202 EXPIRE_DIRTY_ATIME, work); 1203 if (moved) 1204 wb_io_lists_populated(wb); 1205 trace_writeback_queue_io(wb, work, moved); 1206 } 1207 1208 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1209 { 1210 int ret; 1211 1212 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1213 trace_writeback_write_inode_start(inode, wbc); 1214 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1215 trace_writeback_write_inode(inode, wbc); 1216 return ret; 1217 } 1218 return 0; 1219 } 1220 1221 /* 1222 * Wait for writeback on an inode to complete. Called with i_lock held. 1223 * Caller must make sure inode cannot go away when we drop i_lock. 1224 */ 1225 static void __inode_wait_for_writeback(struct inode *inode) 1226 __releases(inode->i_lock) 1227 __acquires(inode->i_lock) 1228 { 1229 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1230 wait_queue_head_t *wqh; 1231 1232 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1233 while (inode->i_state & I_SYNC) { 1234 spin_unlock(&inode->i_lock); 1235 __wait_on_bit(wqh, &wq, bit_wait, 1236 TASK_UNINTERRUPTIBLE); 1237 spin_lock(&inode->i_lock); 1238 } 1239 } 1240 1241 /* 1242 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1243 */ 1244 void inode_wait_for_writeback(struct inode *inode) 1245 { 1246 spin_lock(&inode->i_lock); 1247 __inode_wait_for_writeback(inode); 1248 spin_unlock(&inode->i_lock); 1249 } 1250 1251 /* 1252 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1253 * held and drops it. It is aimed for callers not holding any inode reference 1254 * so once i_lock is dropped, inode can go away. 1255 */ 1256 static void inode_sleep_on_writeback(struct inode *inode) 1257 __releases(inode->i_lock) 1258 { 1259 DEFINE_WAIT(wait); 1260 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1261 int sleep; 1262 1263 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1264 sleep = inode->i_state & I_SYNC; 1265 spin_unlock(&inode->i_lock); 1266 if (sleep) 1267 schedule(); 1268 finish_wait(wqh, &wait); 1269 } 1270 1271 /* 1272 * Find proper writeback list for the inode depending on its current state and 1273 * possibly also change of its state while we were doing writeback. Here we 1274 * handle things such as livelock prevention or fairness of writeback among 1275 * inodes. This function can be called only by flusher thread - noone else 1276 * processes all inodes in writeback lists and requeueing inodes behind flusher 1277 * thread's back can have unexpected consequences. 1278 */ 1279 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1280 struct writeback_control *wbc) 1281 { 1282 if (inode->i_state & I_FREEING) 1283 return; 1284 1285 /* 1286 * Sync livelock prevention. Each inode is tagged and synced in one 1287 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1288 * the dirty time to prevent enqueue and sync it again. 1289 */ 1290 if ((inode->i_state & I_DIRTY) && 1291 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1292 inode->dirtied_when = jiffies; 1293 1294 if (wbc->pages_skipped) { 1295 /* 1296 * writeback is not making progress due to locked 1297 * buffers. Skip this inode for now. 1298 */ 1299 redirty_tail(inode, wb); 1300 return; 1301 } 1302 1303 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1304 /* 1305 * We didn't write back all the pages. nfs_writepages() 1306 * sometimes bales out without doing anything. 1307 */ 1308 if (wbc->nr_to_write <= 0) { 1309 /* Slice used up. Queue for next turn. */ 1310 requeue_io(inode, wb); 1311 } else { 1312 /* 1313 * Writeback blocked by something other than 1314 * congestion. Delay the inode for some time to 1315 * avoid spinning on the CPU (100% iowait) 1316 * retrying writeback of the dirty page/inode 1317 * that cannot be performed immediately. 1318 */ 1319 redirty_tail(inode, wb); 1320 } 1321 } else if (inode->i_state & I_DIRTY) { 1322 /* 1323 * Filesystems can dirty the inode during writeback operations, 1324 * such as delayed allocation during submission or metadata 1325 * updates after data IO completion. 1326 */ 1327 redirty_tail(inode, wb); 1328 } else if (inode->i_state & I_DIRTY_TIME) { 1329 inode->dirtied_when = jiffies; 1330 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1331 } else { 1332 /* The inode is clean. Remove from writeback lists. */ 1333 inode_io_list_del_locked(inode, wb); 1334 } 1335 } 1336 1337 /* 1338 * Write out an inode and its dirty pages. Do not update the writeback list 1339 * linkage. That is left to the caller. The caller is also responsible for 1340 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1341 */ 1342 static int 1343 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1344 { 1345 struct address_space *mapping = inode->i_mapping; 1346 long nr_to_write = wbc->nr_to_write; 1347 unsigned dirty; 1348 int ret; 1349 1350 WARN_ON(!(inode->i_state & I_SYNC)); 1351 1352 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1353 1354 ret = do_writepages(mapping, wbc); 1355 1356 /* 1357 * Make sure to wait on the data before writing out the metadata. 1358 * This is important for filesystems that modify metadata on data 1359 * I/O completion. We don't do it for sync(2) writeback because it has a 1360 * separate, external IO completion path and ->sync_fs for guaranteeing 1361 * inode metadata is written back correctly. 1362 */ 1363 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1364 int err = filemap_fdatawait(mapping); 1365 if (ret == 0) 1366 ret = err; 1367 } 1368 1369 /* 1370 * Some filesystems may redirty the inode during the writeback 1371 * due to delalloc, clear dirty metadata flags right before 1372 * write_inode() 1373 */ 1374 spin_lock(&inode->i_lock); 1375 1376 dirty = inode->i_state & I_DIRTY; 1377 if (inode->i_state & I_DIRTY_TIME) { 1378 if ((dirty & I_DIRTY_INODE) || 1379 wbc->sync_mode == WB_SYNC_ALL || 1380 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1381 unlikely(time_after(jiffies, 1382 (inode->dirtied_time_when + 1383 dirtytime_expire_interval * HZ)))) { 1384 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1385 trace_writeback_lazytime(inode); 1386 } 1387 } else 1388 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1389 inode->i_state &= ~dirty; 1390 1391 /* 1392 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1393 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1394 * either they see the I_DIRTY bits cleared or we see the dirtied 1395 * inode. 1396 * 1397 * I_DIRTY_PAGES is always cleared together above even if @mapping 1398 * still has dirty pages. The flag is reinstated after smp_mb() if 1399 * necessary. This guarantees that either __mark_inode_dirty() 1400 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1401 */ 1402 smp_mb(); 1403 1404 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1405 inode->i_state |= I_DIRTY_PAGES; 1406 1407 spin_unlock(&inode->i_lock); 1408 1409 if (dirty & I_DIRTY_TIME) 1410 mark_inode_dirty_sync(inode); 1411 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1412 if (dirty & ~I_DIRTY_PAGES) { 1413 int err = write_inode(inode, wbc); 1414 if (ret == 0) 1415 ret = err; 1416 } 1417 trace_writeback_single_inode(inode, wbc, nr_to_write); 1418 return ret; 1419 } 1420 1421 /* 1422 * Write out an inode's dirty pages. Either the caller has an active reference 1423 * on the inode or the inode has I_WILL_FREE set. 1424 * 1425 * This function is designed to be called for writing back one inode which 1426 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1427 * and does more profound writeback list handling in writeback_sb_inodes(). 1428 */ 1429 static int writeback_single_inode(struct inode *inode, 1430 struct writeback_control *wbc) 1431 { 1432 struct bdi_writeback *wb; 1433 int ret = 0; 1434 1435 spin_lock(&inode->i_lock); 1436 if (!atomic_read(&inode->i_count)) 1437 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1438 else 1439 WARN_ON(inode->i_state & I_WILL_FREE); 1440 1441 if (inode->i_state & I_SYNC) { 1442 if (wbc->sync_mode != WB_SYNC_ALL) 1443 goto out; 1444 /* 1445 * It's a data-integrity sync. We must wait. Since callers hold 1446 * inode reference or inode has I_WILL_FREE set, it cannot go 1447 * away under us. 1448 */ 1449 __inode_wait_for_writeback(inode); 1450 } 1451 WARN_ON(inode->i_state & I_SYNC); 1452 /* 1453 * Skip inode if it is clean and we have no outstanding writeback in 1454 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1455 * function since flusher thread may be doing for example sync in 1456 * parallel and if we move the inode, it could get skipped. So here we 1457 * make sure inode is on some writeback list and leave it there unless 1458 * we have completely cleaned the inode. 1459 */ 1460 if (!(inode->i_state & I_DIRTY_ALL) && 1461 (wbc->sync_mode != WB_SYNC_ALL || 1462 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1463 goto out; 1464 inode->i_state |= I_SYNC; 1465 wbc_attach_and_unlock_inode(wbc, inode); 1466 1467 ret = __writeback_single_inode(inode, wbc); 1468 1469 wbc_detach_inode(wbc); 1470 1471 wb = inode_to_wb_and_lock_list(inode); 1472 spin_lock(&inode->i_lock); 1473 /* 1474 * If inode is clean, remove it from writeback lists. Otherwise don't 1475 * touch it. See comment above for explanation. 1476 */ 1477 if (!(inode->i_state & I_DIRTY_ALL)) 1478 inode_io_list_del_locked(inode, wb); 1479 spin_unlock(&wb->list_lock); 1480 inode_sync_complete(inode); 1481 out: 1482 spin_unlock(&inode->i_lock); 1483 return ret; 1484 } 1485 1486 static long writeback_chunk_size(struct bdi_writeback *wb, 1487 struct wb_writeback_work *work) 1488 { 1489 long pages; 1490 1491 /* 1492 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1493 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1494 * here avoids calling into writeback_inodes_wb() more than once. 1495 * 1496 * The intended call sequence for WB_SYNC_ALL writeback is: 1497 * 1498 * wb_writeback() 1499 * writeback_sb_inodes() <== called only once 1500 * write_cache_pages() <== called once for each inode 1501 * (quickly) tag currently dirty pages 1502 * (maybe slowly) sync all tagged pages 1503 */ 1504 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1505 pages = LONG_MAX; 1506 else { 1507 pages = min(wb->avg_write_bandwidth / 2, 1508 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1509 pages = min(pages, work->nr_pages); 1510 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1511 MIN_WRITEBACK_PAGES); 1512 } 1513 1514 return pages; 1515 } 1516 1517 /* 1518 * Write a portion of b_io inodes which belong to @sb. 1519 * 1520 * Return the number of pages and/or inodes written. 1521 * 1522 * NOTE! This is called with wb->list_lock held, and will 1523 * unlock and relock that for each inode it ends up doing 1524 * IO for. 1525 */ 1526 static long writeback_sb_inodes(struct super_block *sb, 1527 struct bdi_writeback *wb, 1528 struct wb_writeback_work *work) 1529 { 1530 struct writeback_control wbc = { 1531 .sync_mode = work->sync_mode, 1532 .tagged_writepages = work->tagged_writepages, 1533 .for_kupdate = work->for_kupdate, 1534 .for_background = work->for_background, 1535 .for_sync = work->for_sync, 1536 .range_cyclic = work->range_cyclic, 1537 .range_start = 0, 1538 .range_end = LLONG_MAX, 1539 }; 1540 unsigned long start_time = jiffies; 1541 long write_chunk; 1542 long wrote = 0; /* count both pages and inodes */ 1543 1544 while (!list_empty(&wb->b_io)) { 1545 struct inode *inode = wb_inode(wb->b_io.prev); 1546 struct bdi_writeback *tmp_wb; 1547 1548 if (inode->i_sb != sb) { 1549 if (work->sb) { 1550 /* 1551 * We only want to write back data for this 1552 * superblock, move all inodes not belonging 1553 * to it back onto the dirty list. 1554 */ 1555 redirty_tail(inode, wb); 1556 continue; 1557 } 1558 1559 /* 1560 * The inode belongs to a different superblock. 1561 * Bounce back to the caller to unpin this and 1562 * pin the next superblock. 1563 */ 1564 break; 1565 } 1566 1567 /* 1568 * Don't bother with new inodes or inodes being freed, first 1569 * kind does not need periodic writeout yet, and for the latter 1570 * kind writeout is handled by the freer. 1571 */ 1572 spin_lock(&inode->i_lock); 1573 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1574 spin_unlock(&inode->i_lock); 1575 redirty_tail(inode, wb); 1576 continue; 1577 } 1578 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1579 /* 1580 * If this inode is locked for writeback and we are not 1581 * doing writeback-for-data-integrity, move it to 1582 * b_more_io so that writeback can proceed with the 1583 * other inodes on s_io. 1584 * 1585 * We'll have another go at writing back this inode 1586 * when we completed a full scan of b_io. 1587 */ 1588 spin_unlock(&inode->i_lock); 1589 requeue_io(inode, wb); 1590 trace_writeback_sb_inodes_requeue(inode); 1591 continue; 1592 } 1593 spin_unlock(&wb->list_lock); 1594 1595 /* 1596 * We already requeued the inode if it had I_SYNC set and we 1597 * are doing WB_SYNC_NONE writeback. So this catches only the 1598 * WB_SYNC_ALL case. 1599 */ 1600 if (inode->i_state & I_SYNC) { 1601 /* Wait for I_SYNC. This function drops i_lock... */ 1602 inode_sleep_on_writeback(inode); 1603 /* Inode may be gone, start again */ 1604 spin_lock(&wb->list_lock); 1605 continue; 1606 } 1607 inode->i_state |= I_SYNC; 1608 wbc_attach_and_unlock_inode(&wbc, inode); 1609 1610 write_chunk = writeback_chunk_size(wb, work); 1611 wbc.nr_to_write = write_chunk; 1612 wbc.pages_skipped = 0; 1613 1614 /* 1615 * We use I_SYNC to pin the inode in memory. While it is set 1616 * evict_inode() will wait so the inode cannot be freed. 1617 */ 1618 __writeback_single_inode(inode, &wbc); 1619 1620 wbc_detach_inode(&wbc); 1621 work->nr_pages -= write_chunk - wbc.nr_to_write; 1622 wrote += write_chunk - wbc.nr_to_write; 1623 1624 if (need_resched()) { 1625 /* 1626 * We're trying to balance between building up a nice 1627 * long list of IOs to improve our merge rate, and 1628 * getting those IOs out quickly for anyone throttling 1629 * in balance_dirty_pages(). cond_resched() doesn't 1630 * unplug, so get our IOs out the door before we 1631 * give up the CPU. 1632 */ 1633 blk_flush_plug(current); 1634 cond_resched(); 1635 } 1636 1637 /* 1638 * Requeue @inode if still dirty. Be careful as @inode may 1639 * have been switched to another wb in the meantime. 1640 */ 1641 tmp_wb = inode_to_wb_and_lock_list(inode); 1642 spin_lock(&inode->i_lock); 1643 if (!(inode->i_state & I_DIRTY_ALL)) 1644 wrote++; 1645 requeue_inode(inode, tmp_wb, &wbc); 1646 inode_sync_complete(inode); 1647 spin_unlock(&inode->i_lock); 1648 1649 if (unlikely(tmp_wb != wb)) { 1650 spin_unlock(&tmp_wb->list_lock); 1651 spin_lock(&wb->list_lock); 1652 } 1653 1654 /* 1655 * bail out to wb_writeback() often enough to check 1656 * background threshold and other termination conditions. 1657 */ 1658 if (wrote) { 1659 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1660 break; 1661 if (work->nr_pages <= 0) 1662 break; 1663 } 1664 } 1665 return wrote; 1666 } 1667 1668 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1669 struct wb_writeback_work *work) 1670 { 1671 unsigned long start_time = jiffies; 1672 long wrote = 0; 1673 1674 while (!list_empty(&wb->b_io)) { 1675 struct inode *inode = wb_inode(wb->b_io.prev); 1676 struct super_block *sb = inode->i_sb; 1677 1678 if (!trylock_super(sb)) { 1679 /* 1680 * trylock_super() may fail consistently due to 1681 * s_umount being grabbed by someone else. Don't use 1682 * requeue_io() to avoid busy retrying the inode/sb. 1683 */ 1684 redirty_tail(inode, wb); 1685 continue; 1686 } 1687 wrote += writeback_sb_inodes(sb, wb, work); 1688 up_read(&sb->s_umount); 1689 1690 /* refer to the same tests at the end of writeback_sb_inodes */ 1691 if (wrote) { 1692 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1693 break; 1694 if (work->nr_pages <= 0) 1695 break; 1696 } 1697 } 1698 /* Leave any unwritten inodes on b_io */ 1699 return wrote; 1700 } 1701 1702 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1703 enum wb_reason reason) 1704 { 1705 struct wb_writeback_work work = { 1706 .nr_pages = nr_pages, 1707 .sync_mode = WB_SYNC_NONE, 1708 .range_cyclic = 1, 1709 .reason = reason, 1710 }; 1711 struct blk_plug plug; 1712 1713 blk_start_plug(&plug); 1714 spin_lock(&wb->list_lock); 1715 if (list_empty(&wb->b_io)) 1716 queue_io(wb, &work); 1717 __writeback_inodes_wb(wb, &work); 1718 spin_unlock(&wb->list_lock); 1719 blk_finish_plug(&plug); 1720 1721 return nr_pages - work.nr_pages; 1722 } 1723 1724 /* 1725 * Explicit flushing or periodic writeback of "old" data. 1726 * 1727 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1728 * dirtying-time in the inode's address_space. So this periodic writeback code 1729 * just walks the superblock inode list, writing back any inodes which are 1730 * older than a specific point in time. 1731 * 1732 * Try to run once per dirty_writeback_interval. But if a writeback event 1733 * takes longer than a dirty_writeback_interval interval, then leave a 1734 * one-second gap. 1735 * 1736 * older_than_this takes precedence over nr_to_write. So we'll only write back 1737 * all dirty pages if they are all attached to "old" mappings. 1738 */ 1739 static long wb_writeback(struct bdi_writeback *wb, 1740 struct wb_writeback_work *work) 1741 { 1742 unsigned long wb_start = jiffies; 1743 long nr_pages = work->nr_pages; 1744 unsigned long oldest_jif; 1745 struct inode *inode; 1746 long progress; 1747 struct blk_plug plug; 1748 1749 oldest_jif = jiffies; 1750 work->older_than_this = &oldest_jif; 1751 1752 blk_start_plug(&plug); 1753 spin_lock(&wb->list_lock); 1754 for (;;) { 1755 /* 1756 * Stop writeback when nr_pages has been consumed 1757 */ 1758 if (work->nr_pages <= 0) 1759 break; 1760 1761 /* 1762 * Background writeout and kupdate-style writeback may 1763 * run forever. Stop them if there is other work to do 1764 * so that e.g. sync can proceed. They'll be restarted 1765 * after the other works are all done. 1766 */ 1767 if ((work->for_background || work->for_kupdate) && 1768 !list_empty(&wb->work_list)) 1769 break; 1770 1771 /* 1772 * For background writeout, stop when we are below the 1773 * background dirty threshold 1774 */ 1775 if (work->for_background && !wb_over_bg_thresh(wb)) 1776 break; 1777 1778 /* 1779 * Kupdate and background works are special and we want to 1780 * include all inodes that need writing. Livelock avoidance is 1781 * handled by these works yielding to any other work so we are 1782 * safe. 1783 */ 1784 if (work->for_kupdate) { 1785 oldest_jif = jiffies - 1786 msecs_to_jiffies(dirty_expire_interval * 10); 1787 } else if (work->for_background) 1788 oldest_jif = jiffies; 1789 1790 trace_writeback_start(wb, work); 1791 if (list_empty(&wb->b_io)) 1792 queue_io(wb, work); 1793 if (work->sb) 1794 progress = writeback_sb_inodes(work->sb, wb, work); 1795 else 1796 progress = __writeback_inodes_wb(wb, work); 1797 trace_writeback_written(wb, work); 1798 1799 wb_update_bandwidth(wb, wb_start); 1800 1801 /* 1802 * Did we write something? Try for more 1803 * 1804 * Dirty inodes are moved to b_io for writeback in batches. 1805 * The completion of the current batch does not necessarily 1806 * mean the overall work is done. So we keep looping as long 1807 * as made some progress on cleaning pages or inodes. 1808 */ 1809 if (progress) 1810 continue; 1811 /* 1812 * No more inodes for IO, bail 1813 */ 1814 if (list_empty(&wb->b_more_io)) 1815 break; 1816 /* 1817 * Nothing written. Wait for some inode to 1818 * become available for writeback. Otherwise 1819 * we'll just busyloop. 1820 */ 1821 trace_writeback_wait(wb, work); 1822 inode = wb_inode(wb->b_more_io.prev); 1823 spin_lock(&inode->i_lock); 1824 spin_unlock(&wb->list_lock); 1825 /* This function drops i_lock... */ 1826 inode_sleep_on_writeback(inode); 1827 spin_lock(&wb->list_lock); 1828 } 1829 spin_unlock(&wb->list_lock); 1830 blk_finish_plug(&plug); 1831 1832 return nr_pages - work->nr_pages; 1833 } 1834 1835 /* 1836 * Return the next wb_writeback_work struct that hasn't been processed yet. 1837 */ 1838 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1839 { 1840 struct wb_writeback_work *work = NULL; 1841 1842 spin_lock_bh(&wb->work_lock); 1843 if (!list_empty(&wb->work_list)) { 1844 work = list_entry(wb->work_list.next, 1845 struct wb_writeback_work, list); 1846 list_del_init(&work->list); 1847 } 1848 spin_unlock_bh(&wb->work_lock); 1849 return work; 1850 } 1851 1852 static long wb_check_background_flush(struct bdi_writeback *wb) 1853 { 1854 if (wb_over_bg_thresh(wb)) { 1855 1856 struct wb_writeback_work work = { 1857 .nr_pages = LONG_MAX, 1858 .sync_mode = WB_SYNC_NONE, 1859 .for_background = 1, 1860 .range_cyclic = 1, 1861 .reason = WB_REASON_BACKGROUND, 1862 }; 1863 1864 return wb_writeback(wb, &work); 1865 } 1866 1867 return 0; 1868 } 1869 1870 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1871 { 1872 unsigned long expired; 1873 long nr_pages; 1874 1875 /* 1876 * When set to zero, disable periodic writeback 1877 */ 1878 if (!dirty_writeback_interval) 1879 return 0; 1880 1881 expired = wb->last_old_flush + 1882 msecs_to_jiffies(dirty_writeback_interval * 10); 1883 if (time_before(jiffies, expired)) 1884 return 0; 1885 1886 wb->last_old_flush = jiffies; 1887 nr_pages = get_nr_dirty_pages(); 1888 1889 if (nr_pages) { 1890 struct wb_writeback_work work = { 1891 .nr_pages = nr_pages, 1892 .sync_mode = WB_SYNC_NONE, 1893 .for_kupdate = 1, 1894 .range_cyclic = 1, 1895 .reason = WB_REASON_PERIODIC, 1896 }; 1897 1898 return wb_writeback(wb, &work); 1899 } 1900 1901 return 0; 1902 } 1903 1904 static long wb_check_start_all(struct bdi_writeback *wb) 1905 { 1906 long nr_pages; 1907 1908 if (!test_bit(WB_start_all, &wb->state)) 1909 return 0; 1910 1911 nr_pages = get_nr_dirty_pages(); 1912 if (nr_pages) { 1913 struct wb_writeback_work work = { 1914 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 1915 .sync_mode = WB_SYNC_NONE, 1916 .range_cyclic = 1, 1917 .reason = wb->start_all_reason, 1918 }; 1919 1920 nr_pages = wb_writeback(wb, &work); 1921 } 1922 1923 clear_bit(WB_start_all, &wb->state); 1924 return nr_pages; 1925 } 1926 1927 1928 /* 1929 * Retrieve work items and do the writeback they describe 1930 */ 1931 static long wb_do_writeback(struct bdi_writeback *wb) 1932 { 1933 struct wb_writeback_work *work; 1934 long wrote = 0; 1935 1936 set_bit(WB_writeback_running, &wb->state); 1937 while ((work = get_next_work_item(wb)) != NULL) { 1938 trace_writeback_exec(wb, work); 1939 wrote += wb_writeback(wb, work); 1940 finish_writeback_work(wb, work); 1941 } 1942 1943 /* 1944 * Check for a flush-everything request 1945 */ 1946 wrote += wb_check_start_all(wb); 1947 1948 /* 1949 * Check for periodic writeback, kupdated() style 1950 */ 1951 wrote += wb_check_old_data_flush(wb); 1952 wrote += wb_check_background_flush(wb); 1953 clear_bit(WB_writeback_running, &wb->state); 1954 1955 return wrote; 1956 } 1957 1958 /* 1959 * Handle writeback of dirty data for the device backed by this bdi. Also 1960 * reschedules periodically and does kupdated style flushing. 1961 */ 1962 void wb_workfn(struct work_struct *work) 1963 { 1964 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1965 struct bdi_writeback, dwork); 1966 long pages_written; 1967 1968 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1969 current->flags |= PF_SWAPWRITE; 1970 1971 if (likely(!current_is_workqueue_rescuer() || 1972 !test_bit(WB_registered, &wb->state))) { 1973 /* 1974 * The normal path. Keep writing back @wb until its 1975 * work_list is empty. Note that this path is also taken 1976 * if @wb is shutting down even when we're running off the 1977 * rescuer as work_list needs to be drained. 1978 */ 1979 do { 1980 pages_written = wb_do_writeback(wb); 1981 trace_writeback_pages_written(pages_written); 1982 } while (!list_empty(&wb->work_list)); 1983 } else { 1984 /* 1985 * bdi_wq can't get enough workers and we're running off 1986 * the emergency worker. Don't hog it. Hopefully, 1024 is 1987 * enough for efficient IO. 1988 */ 1989 pages_written = writeback_inodes_wb(wb, 1024, 1990 WB_REASON_FORKER_THREAD); 1991 trace_writeback_pages_written(pages_written); 1992 } 1993 1994 if (!list_empty(&wb->work_list)) 1995 wb_wakeup(wb); 1996 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1997 wb_wakeup_delayed(wb); 1998 1999 current->flags &= ~PF_SWAPWRITE; 2000 } 2001 2002 /* 2003 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2004 * write back the whole world. 2005 */ 2006 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2007 enum wb_reason reason) 2008 { 2009 struct bdi_writeback *wb; 2010 2011 if (!bdi_has_dirty_io(bdi)) 2012 return; 2013 2014 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2015 wb_start_writeback(wb, reason); 2016 } 2017 2018 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2019 enum wb_reason reason) 2020 { 2021 rcu_read_lock(); 2022 __wakeup_flusher_threads_bdi(bdi, reason); 2023 rcu_read_unlock(); 2024 } 2025 2026 /* 2027 * Wakeup the flusher threads to start writeback of all currently dirty pages 2028 */ 2029 void wakeup_flusher_threads(enum wb_reason reason) 2030 { 2031 struct backing_dev_info *bdi; 2032 2033 /* 2034 * If we are expecting writeback progress we must submit plugged IO. 2035 */ 2036 if (blk_needs_flush_plug(current)) 2037 blk_schedule_flush_plug(current); 2038 2039 rcu_read_lock(); 2040 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2041 __wakeup_flusher_threads_bdi(bdi, reason); 2042 rcu_read_unlock(); 2043 } 2044 2045 /* 2046 * Wake up bdi's periodically to make sure dirtytime inodes gets 2047 * written back periodically. We deliberately do *not* check the 2048 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2049 * kernel to be constantly waking up once there are any dirtytime 2050 * inodes on the system. So instead we define a separate delayed work 2051 * function which gets called much more rarely. (By default, only 2052 * once every 12 hours.) 2053 * 2054 * If there is any other write activity going on in the file system, 2055 * this function won't be necessary. But if the only thing that has 2056 * happened on the file system is a dirtytime inode caused by an atime 2057 * update, we need this infrastructure below to make sure that inode 2058 * eventually gets pushed out to disk. 2059 */ 2060 static void wakeup_dirtytime_writeback(struct work_struct *w); 2061 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2062 2063 static void wakeup_dirtytime_writeback(struct work_struct *w) 2064 { 2065 struct backing_dev_info *bdi; 2066 2067 rcu_read_lock(); 2068 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2069 struct bdi_writeback *wb; 2070 2071 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2072 if (!list_empty(&wb->b_dirty_time)) 2073 wb_wakeup(wb); 2074 } 2075 rcu_read_unlock(); 2076 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2077 } 2078 2079 static int __init start_dirtytime_writeback(void) 2080 { 2081 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2082 return 0; 2083 } 2084 __initcall(start_dirtytime_writeback); 2085 2086 int dirtytime_interval_handler(struct ctl_table *table, int write, 2087 void __user *buffer, size_t *lenp, loff_t *ppos) 2088 { 2089 int ret; 2090 2091 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2092 if (ret == 0 && write) 2093 mod_delayed_work(system_wq, &dirtytime_work, 0); 2094 return ret; 2095 } 2096 2097 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2098 { 2099 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2100 struct dentry *dentry; 2101 const char *name = "?"; 2102 2103 dentry = d_find_alias(inode); 2104 if (dentry) { 2105 spin_lock(&dentry->d_lock); 2106 name = (const char *) dentry->d_name.name; 2107 } 2108 printk(KERN_DEBUG 2109 "%s(%d): dirtied inode %lu (%s) on %s\n", 2110 current->comm, task_pid_nr(current), inode->i_ino, 2111 name, inode->i_sb->s_id); 2112 if (dentry) { 2113 spin_unlock(&dentry->d_lock); 2114 dput(dentry); 2115 } 2116 } 2117 } 2118 2119 /** 2120 * __mark_inode_dirty - internal function 2121 * 2122 * @inode: inode to mark 2123 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2124 * 2125 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2126 * mark_inode_dirty_sync. 2127 * 2128 * Put the inode on the super block's dirty list. 2129 * 2130 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2131 * dirty list only if it is hashed or if it refers to a blockdev. 2132 * If it was not hashed, it will never be added to the dirty list 2133 * even if it is later hashed, as it will have been marked dirty already. 2134 * 2135 * In short, make sure you hash any inodes _before_ you start marking 2136 * them dirty. 2137 * 2138 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2139 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2140 * the kernel-internal blockdev inode represents the dirtying time of the 2141 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2142 * page->mapping->host, so the page-dirtying time is recorded in the internal 2143 * blockdev inode. 2144 */ 2145 void __mark_inode_dirty(struct inode *inode, int flags) 2146 { 2147 struct super_block *sb = inode->i_sb; 2148 int dirtytime; 2149 2150 trace_writeback_mark_inode_dirty(inode, flags); 2151 2152 /* 2153 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2154 * dirty the inode itself 2155 */ 2156 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2157 trace_writeback_dirty_inode_start(inode, flags); 2158 2159 if (sb->s_op->dirty_inode) 2160 sb->s_op->dirty_inode(inode, flags); 2161 2162 trace_writeback_dirty_inode(inode, flags); 2163 } 2164 if (flags & I_DIRTY_INODE) 2165 flags &= ~I_DIRTY_TIME; 2166 dirtytime = flags & I_DIRTY_TIME; 2167 2168 /* 2169 * Paired with smp_mb() in __writeback_single_inode() for the 2170 * following lockless i_state test. See there for details. 2171 */ 2172 smp_mb(); 2173 2174 if (((inode->i_state & flags) == flags) || 2175 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2176 return; 2177 2178 if (unlikely(block_dump)) 2179 block_dump___mark_inode_dirty(inode); 2180 2181 spin_lock(&inode->i_lock); 2182 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2183 goto out_unlock_inode; 2184 if ((inode->i_state & flags) != flags) { 2185 const int was_dirty = inode->i_state & I_DIRTY; 2186 2187 inode_attach_wb(inode, NULL); 2188 2189 if (flags & I_DIRTY_INODE) 2190 inode->i_state &= ~I_DIRTY_TIME; 2191 inode->i_state |= flags; 2192 2193 /* 2194 * If the inode is being synced, just update its dirty state. 2195 * The unlocker will place the inode on the appropriate 2196 * superblock list, based upon its state. 2197 */ 2198 if (inode->i_state & I_SYNC) 2199 goto out_unlock_inode; 2200 2201 /* 2202 * Only add valid (hashed) inodes to the superblock's 2203 * dirty list. Add blockdev inodes as well. 2204 */ 2205 if (!S_ISBLK(inode->i_mode)) { 2206 if (inode_unhashed(inode)) 2207 goto out_unlock_inode; 2208 } 2209 if (inode->i_state & I_FREEING) 2210 goto out_unlock_inode; 2211 2212 /* 2213 * If the inode was already on b_dirty/b_io/b_more_io, don't 2214 * reposition it (that would break b_dirty time-ordering). 2215 */ 2216 if (!was_dirty) { 2217 struct bdi_writeback *wb; 2218 struct list_head *dirty_list; 2219 bool wakeup_bdi = false; 2220 2221 wb = locked_inode_to_wb_and_lock_list(inode); 2222 2223 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2224 !test_bit(WB_registered, &wb->state), 2225 "bdi-%s not registered\n", wb->bdi->name); 2226 2227 inode->dirtied_when = jiffies; 2228 if (dirtytime) 2229 inode->dirtied_time_when = jiffies; 2230 2231 if (inode->i_state & I_DIRTY) 2232 dirty_list = &wb->b_dirty; 2233 else 2234 dirty_list = &wb->b_dirty_time; 2235 2236 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2237 dirty_list); 2238 2239 spin_unlock(&wb->list_lock); 2240 trace_writeback_dirty_inode_enqueue(inode); 2241 2242 /* 2243 * If this is the first dirty inode for this bdi, 2244 * we have to wake-up the corresponding bdi thread 2245 * to make sure background write-back happens 2246 * later. 2247 */ 2248 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2249 wb_wakeup_delayed(wb); 2250 return; 2251 } 2252 } 2253 out_unlock_inode: 2254 spin_unlock(&inode->i_lock); 2255 } 2256 EXPORT_SYMBOL(__mark_inode_dirty); 2257 2258 /* 2259 * The @s_sync_lock is used to serialise concurrent sync operations 2260 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2261 * Concurrent callers will block on the s_sync_lock rather than doing contending 2262 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2263 * has been issued up to the time this function is enter is guaranteed to be 2264 * completed by the time we have gained the lock and waited for all IO that is 2265 * in progress regardless of the order callers are granted the lock. 2266 */ 2267 static void wait_sb_inodes(struct super_block *sb) 2268 { 2269 LIST_HEAD(sync_list); 2270 2271 /* 2272 * We need to be protected against the filesystem going from 2273 * r/o to r/w or vice versa. 2274 */ 2275 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2276 2277 mutex_lock(&sb->s_sync_lock); 2278 2279 /* 2280 * Splice the writeback list onto a temporary list to avoid waiting on 2281 * inodes that have started writeback after this point. 2282 * 2283 * Use rcu_read_lock() to keep the inodes around until we have a 2284 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2285 * the local list because inodes can be dropped from either by writeback 2286 * completion. 2287 */ 2288 rcu_read_lock(); 2289 spin_lock_irq(&sb->s_inode_wblist_lock); 2290 list_splice_init(&sb->s_inodes_wb, &sync_list); 2291 2292 /* 2293 * Data integrity sync. Must wait for all pages under writeback, because 2294 * there may have been pages dirtied before our sync call, but which had 2295 * writeout started before we write it out. In which case, the inode 2296 * may not be on the dirty list, but we still have to wait for that 2297 * writeout. 2298 */ 2299 while (!list_empty(&sync_list)) { 2300 struct inode *inode = list_first_entry(&sync_list, struct inode, 2301 i_wb_list); 2302 struct address_space *mapping = inode->i_mapping; 2303 2304 /* 2305 * Move each inode back to the wb list before we drop the lock 2306 * to preserve consistency between i_wb_list and the mapping 2307 * writeback tag. Writeback completion is responsible to remove 2308 * the inode from either list once the writeback tag is cleared. 2309 */ 2310 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2311 2312 /* 2313 * The mapping can appear untagged while still on-list since we 2314 * do not have the mapping lock. Skip it here, wb completion 2315 * will remove it. 2316 */ 2317 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2318 continue; 2319 2320 spin_unlock_irq(&sb->s_inode_wblist_lock); 2321 2322 spin_lock(&inode->i_lock); 2323 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2324 spin_unlock(&inode->i_lock); 2325 2326 spin_lock_irq(&sb->s_inode_wblist_lock); 2327 continue; 2328 } 2329 __iget(inode); 2330 spin_unlock(&inode->i_lock); 2331 rcu_read_unlock(); 2332 2333 /* 2334 * We keep the error status of individual mapping so that 2335 * applications can catch the writeback error using fsync(2). 2336 * See filemap_fdatawait_keep_errors() for details. 2337 */ 2338 filemap_fdatawait_keep_errors(mapping); 2339 2340 cond_resched(); 2341 2342 iput(inode); 2343 2344 rcu_read_lock(); 2345 spin_lock_irq(&sb->s_inode_wblist_lock); 2346 } 2347 spin_unlock_irq(&sb->s_inode_wblist_lock); 2348 rcu_read_unlock(); 2349 mutex_unlock(&sb->s_sync_lock); 2350 } 2351 2352 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2353 enum wb_reason reason, bool skip_if_busy) 2354 { 2355 DEFINE_WB_COMPLETION_ONSTACK(done); 2356 struct wb_writeback_work work = { 2357 .sb = sb, 2358 .sync_mode = WB_SYNC_NONE, 2359 .tagged_writepages = 1, 2360 .done = &done, 2361 .nr_pages = nr, 2362 .reason = reason, 2363 }; 2364 struct backing_dev_info *bdi = sb->s_bdi; 2365 2366 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2367 return; 2368 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2369 2370 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2371 wb_wait_for_completion(bdi, &done); 2372 } 2373 2374 /** 2375 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2376 * @sb: the superblock 2377 * @nr: the number of pages to write 2378 * @reason: reason why some writeback work initiated 2379 * 2380 * Start writeback on some inodes on this super_block. No guarantees are made 2381 * on how many (if any) will be written, and this function does not wait 2382 * for IO completion of submitted IO. 2383 */ 2384 void writeback_inodes_sb_nr(struct super_block *sb, 2385 unsigned long nr, 2386 enum wb_reason reason) 2387 { 2388 __writeback_inodes_sb_nr(sb, nr, reason, false); 2389 } 2390 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2391 2392 /** 2393 * writeback_inodes_sb - writeback dirty inodes from given super_block 2394 * @sb: the superblock 2395 * @reason: reason why some writeback work was initiated 2396 * 2397 * Start writeback on some inodes on this super_block. No guarantees are made 2398 * on how many (if any) will be written, and this function does not wait 2399 * for IO completion of submitted IO. 2400 */ 2401 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2402 { 2403 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2404 } 2405 EXPORT_SYMBOL(writeback_inodes_sb); 2406 2407 /** 2408 * try_to_writeback_inodes_sb - try to start writeback if none underway 2409 * @sb: the superblock 2410 * @reason: reason why some writeback work was initiated 2411 * 2412 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2413 */ 2414 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2415 { 2416 if (!down_read_trylock(&sb->s_umount)) 2417 return; 2418 2419 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2420 up_read(&sb->s_umount); 2421 } 2422 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2423 2424 /** 2425 * sync_inodes_sb - sync sb inode pages 2426 * @sb: the superblock 2427 * 2428 * This function writes and waits on any dirty inode belonging to this 2429 * super_block. 2430 */ 2431 void sync_inodes_sb(struct super_block *sb) 2432 { 2433 DEFINE_WB_COMPLETION_ONSTACK(done); 2434 struct wb_writeback_work work = { 2435 .sb = sb, 2436 .sync_mode = WB_SYNC_ALL, 2437 .nr_pages = LONG_MAX, 2438 .range_cyclic = 0, 2439 .done = &done, 2440 .reason = WB_REASON_SYNC, 2441 .for_sync = 1, 2442 }; 2443 struct backing_dev_info *bdi = sb->s_bdi; 2444 2445 /* 2446 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2447 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2448 * bdi_has_dirty() need to be written out too. 2449 */ 2450 if (bdi == &noop_backing_dev_info) 2451 return; 2452 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2453 2454 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2455 bdi_down_write_wb_switch_rwsem(bdi); 2456 bdi_split_work_to_wbs(bdi, &work, false); 2457 wb_wait_for_completion(bdi, &done); 2458 bdi_up_write_wb_switch_rwsem(bdi); 2459 2460 wait_sb_inodes(sb); 2461 } 2462 EXPORT_SYMBOL(sync_inodes_sb); 2463 2464 /** 2465 * write_inode_now - write an inode to disk 2466 * @inode: inode to write to disk 2467 * @sync: whether the write should be synchronous or not 2468 * 2469 * This function commits an inode to disk immediately if it is dirty. This is 2470 * primarily needed by knfsd. 2471 * 2472 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2473 */ 2474 int write_inode_now(struct inode *inode, int sync) 2475 { 2476 struct writeback_control wbc = { 2477 .nr_to_write = LONG_MAX, 2478 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2479 .range_start = 0, 2480 .range_end = LLONG_MAX, 2481 }; 2482 2483 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2484 wbc.nr_to_write = 0; 2485 2486 might_sleep(); 2487 return writeback_single_inode(inode, &wbc); 2488 } 2489 EXPORT_SYMBOL(write_inode_now); 2490 2491 /** 2492 * sync_inode - write an inode and its pages to disk. 2493 * @inode: the inode to sync 2494 * @wbc: controls the writeback mode 2495 * 2496 * sync_inode() will write an inode and its pages to disk. It will also 2497 * correctly update the inode on its superblock's dirty inode lists and will 2498 * update inode->i_state. 2499 * 2500 * The caller must have a ref on the inode. 2501 */ 2502 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2503 { 2504 return writeback_single_inode(inode, wbc); 2505 } 2506 EXPORT_SYMBOL(sync_inode); 2507 2508 /** 2509 * sync_inode_metadata - write an inode to disk 2510 * @inode: the inode to sync 2511 * @wait: wait for I/O to complete. 2512 * 2513 * Write an inode to disk and adjust its dirty state after completion. 2514 * 2515 * Note: only writes the actual inode, no associated data or other metadata. 2516 */ 2517 int sync_inode_metadata(struct inode *inode, int wait) 2518 { 2519 struct writeback_control wbc = { 2520 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2521 .nr_to_write = 0, /* metadata-only */ 2522 }; 2523 2524 return sync_inode(inode, &wbc); 2525 } 2526 EXPORT_SYMBOL(sync_inode_metadata); 2527