xref: /openbmc/linux/fs/fs-writeback.c (revision c4ee0af3)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	/*
44 	 * Write only inodes dirtied before this time. Don't forget to set
45 	 * older_than_this_is_set when you set this.
46 	 */
47 	unsigned long older_than_this;
48 	enum writeback_sync_modes sync_mode;
49 	unsigned int tagged_writepages:1;
50 	unsigned int for_kupdate:1;
51 	unsigned int range_cyclic:1;
52 	unsigned int for_background:1;
53 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
54 	unsigned int older_than_this_is_set:1;
55 	enum wb_reason reason;		/* why was writeback initiated? */
56 
57 	struct list_head list;		/* pending work list */
58 	struct completion *done;	/* set if the caller waits */
59 };
60 
61 /**
62  * writeback_in_progress - determine whether there is writeback in progress
63  * @bdi: the device's backing_dev_info structure.
64  *
65  * Determine whether there is writeback waiting to be handled against a
66  * backing device.
67  */
68 int writeback_in_progress(struct backing_dev_info *bdi)
69 {
70 	return test_bit(BDI_writeback_running, &bdi->state);
71 }
72 EXPORT_SYMBOL(writeback_in_progress);
73 
74 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
75 {
76 	struct super_block *sb = inode->i_sb;
77 
78 	if (sb_is_blkdev_sb(sb))
79 		return inode->i_mapping->backing_dev_info;
80 
81 	return sb->s_bdi;
82 }
83 
84 static inline struct inode *wb_inode(struct list_head *head)
85 {
86 	return list_entry(head, struct inode, i_wb_list);
87 }
88 
89 /*
90  * Include the creation of the trace points after defining the
91  * wb_writeback_work structure and inline functions so that the definition
92  * remains local to this file.
93  */
94 #define CREATE_TRACE_POINTS
95 #include <trace/events/writeback.h>
96 
97 static void bdi_queue_work(struct backing_dev_info *bdi,
98 			   struct wb_writeback_work *work)
99 {
100 	trace_writeback_queue(bdi, work);
101 
102 	spin_lock_bh(&bdi->wb_lock);
103 	list_add_tail(&work->list, &bdi->work_list);
104 	spin_unlock_bh(&bdi->wb_lock);
105 
106 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
107 }
108 
109 static void
110 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
111 		      bool range_cyclic, enum wb_reason reason)
112 {
113 	struct wb_writeback_work *work;
114 
115 	/*
116 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
117 	 * wakeup the thread for old dirty data writeback
118 	 */
119 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
120 	if (!work) {
121 		trace_writeback_nowork(bdi);
122 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
123 		return;
124 	}
125 
126 	work->sync_mode	= WB_SYNC_NONE;
127 	work->nr_pages	= nr_pages;
128 	work->range_cyclic = range_cyclic;
129 	work->reason	= reason;
130 
131 	bdi_queue_work(bdi, work);
132 }
133 
134 /**
135  * bdi_start_writeback - start writeback
136  * @bdi: the backing device to write from
137  * @nr_pages: the number of pages to write
138  * @reason: reason why some writeback work was initiated
139  *
140  * Description:
141  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
142  *   started when this function returns, we make no guarantees on
143  *   completion. Caller need not hold sb s_umount semaphore.
144  *
145  */
146 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
147 			enum wb_reason reason)
148 {
149 	__bdi_start_writeback(bdi, nr_pages, true, reason);
150 }
151 
152 /**
153  * bdi_start_background_writeback - start background writeback
154  * @bdi: the backing device to write from
155  *
156  * Description:
157  *   This makes sure WB_SYNC_NONE background writeback happens. When
158  *   this function returns, it is only guaranteed that for given BDI
159  *   some IO is happening if we are over background dirty threshold.
160  *   Caller need not hold sb s_umount semaphore.
161  */
162 void bdi_start_background_writeback(struct backing_dev_info *bdi)
163 {
164 	/*
165 	 * We just wake up the flusher thread. It will perform background
166 	 * writeback as soon as there is no other work to do.
167 	 */
168 	trace_writeback_wake_background(bdi);
169 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
170 }
171 
172 /*
173  * Remove the inode from the writeback list it is on.
174  */
175 void inode_wb_list_del(struct inode *inode)
176 {
177 	struct backing_dev_info *bdi = inode_to_bdi(inode);
178 
179 	spin_lock(&bdi->wb.list_lock);
180 	list_del_init(&inode->i_wb_list);
181 	spin_unlock(&bdi->wb.list_lock);
182 }
183 
184 /*
185  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
186  * furthest end of its superblock's dirty-inode list.
187  *
188  * Before stamping the inode's ->dirtied_when, we check to see whether it is
189  * already the most-recently-dirtied inode on the b_dirty list.  If that is
190  * the case then the inode must have been redirtied while it was being written
191  * out and we don't reset its dirtied_when.
192  */
193 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
194 {
195 	assert_spin_locked(&wb->list_lock);
196 	if (!list_empty(&wb->b_dirty)) {
197 		struct inode *tail;
198 
199 		tail = wb_inode(wb->b_dirty.next);
200 		if (time_before(inode->dirtied_when, tail->dirtied_when))
201 			inode->dirtied_when = jiffies;
202 	}
203 	list_move(&inode->i_wb_list, &wb->b_dirty);
204 }
205 
206 /*
207  * requeue inode for re-scanning after bdi->b_io list is exhausted.
208  */
209 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
210 {
211 	assert_spin_locked(&wb->list_lock);
212 	list_move(&inode->i_wb_list, &wb->b_more_io);
213 }
214 
215 static void inode_sync_complete(struct inode *inode)
216 {
217 	inode->i_state &= ~I_SYNC;
218 	/* If inode is clean an unused, put it into LRU now... */
219 	inode_add_lru(inode);
220 	/* Waiters must see I_SYNC cleared before being woken up */
221 	smp_mb();
222 	wake_up_bit(&inode->i_state, __I_SYNC);
223 }
224 
225 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
226 {
227 	bool ret = time_after(inode->dirtied_when, t);
228 #ifndef CONFIG_64BIT
229 	/*
230 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
231 	 * It _appears_ to be in the future, but is actually in distant past.
232 	 * This test is necessary to prevent such wrapped-around relative times
233 	 * from permanently stopping the whole bdi writeback.
234 	 */
235 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
236 #endif
237 	return ret;
238 }
239 
240 /*
241  * Move expired (dirtied before work->older_than_this) dirty inodes from
242  * @delaying_queue to @dispatch_queue.
243  */
244 static int move_expired_inodes(struct list_head *delaying_queue,
245 			       struct list_head *dispatch_queue,
246 			       struct wb_writeback_work *work)
247 {
248 	LIST_HEAD(tmp);
249 	struct list_head *pos, *node;
250 	struct super_block *sb = NULL;
251 	struct inode *inode;
252 	int do_sb_sort = 0;
253 	int moved = 0;
254 
255 	WARN_ON_ONCE(!work->older_than_this_is_set);
256 	while (!list_empty(delaying_queue)) {
257 		inode = wb_inode(delaying_queue->prev);
258 		if (inode_dirtied_after(inode, work->older_than_this))
259 			break;
260 		list_move(&inode->i_wb_list, &tmp);
261 		moved++;
262 		if (sb_is_blkdev_sb(inode->i_sb))
263 			continue;
264 		if (sb && sb != inode->i_sb)
265 			do_sb_sort = 1;
266 		sb = inode->i_sb;
267 	}
268 
269 	/* just one sb in list, splice to dispatch_queue and we're done */
270 	if (!do_sb_sort) {
271 		list_splice(&tmp, dispatch_queue);
272 		goto out;
273 	}
274 
275 	/* Move inodes from one superblock together */
276 	while (!list_empty(&tmp)) {
277 		sb = wb_inode(tmp.prev)->i_sb;
278 		list_for_each_prev_safe(pos, node, &tmp) {
279 			inode = wb_inode(pos);
280 			if (inode->i_sb == sb)
281 				list_move(&inode->i_wb_list, dispatch_queue);
282 		}
283 	}
284 out:
285 	return moved;
286 }
287 
288 /*
289  * Queue all expired dirty inodes for io, eldest first.
290  * Before
291  *         newly dirtied     b_dirty    b_io    b_more_io
292  *         =============>    gf         edc     BA
293  * After
294  *         newly dirtied     b_dirty    b_io    b_more_io
295  *         =============>    g          fBAedc
296  *                                           |
297  *                                           +--> dequeue for IO
298  */
299 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
300 {
301 	int moved;
302 	assert_spin_locked(&wb->list_lock);
303 	list_splice_init(&wb->b_more_io, &wb->b_io);
304 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
305 	trace_writeback_queue_io(wb, work, moved);
306 }
307 
308 static int write_inode(struct inode *inode, struct writeback_control *wbc)
309 {
310 	int ret;
311 
312 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
313 		trace_writeback_write_inode_start(inode, wbc);
314 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
315 		trace_writeback_write_inode(inode, wbc);
316 		return ret;
317 	}
318 	return 0;
319 }
320 
321 /*
322  * Wait for writeback on an inode to complete. Called with i_lock held.
323  * Caller must make sure inode cannot go away when we drop i_lock.
324  */
325 static void __inode_wait_for_writeback(struct inode *inode)
326 	__releases(inode->i_lock)
327 	__acquires(inode->i_lock)
328 {
329 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
330 	wait_queue_head_t *wqh;
331 
332 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
333 	while (inode->i_state & I_SYNC) {
334 		spin_unlock(&inode->i_lock);
335 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
336 		spin_lock(&inode->i_lock);
337 	}
338 }
339 
340 /*
341  * Wait for writeback on an inode to complete. Caller must have inode pinned.
342  */
343 void inode_wait_for_writeback(struct inode *inode)
344 {
345 	spin_lock(&inode->i_lock);
346 	__inode_wait_for_writeback(inode);
347 	spin_unlock(&inode->i_lock);
348 }
349 
350 /*
351  * Sleep until I_SYNC is cleared. This function must be called with i_lock
352  * held and drops it. It is aimed for callers not holding any inode reference
353  * so once i_lock is dropped, inode can go away.
354  */
355 static void inode_sleep_on_writeback(struct inode *inode)
356 	__releases(inode->i_lock)
357 {
358 	DEFINE_WAIT(wait);
359 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
360 	int sleep;
361 
362 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
363 	sleep = inode->i_state & I_SYNC;
364 	spin_unlock(&inode->i_lock);
365 	if (sleep)
366 		schedule();
367 	finish_wait(wqh, &wait);
368 }
369 
370 /*
371  * Find proper writeback list for the inode depending on its current state and
372  * possibly also change of its state while we were doing writeback.  Here we
373  * handle things such as livelock prevention or fairness of writeback among
374  * inodes. This function can be called only by flusher thread - noone else
375  * processes all inodes in writeback lists and requeueing inodes behind flusher
376  * thread's back can have unexpected consequences.
377  */
378 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
379 			  struct writeback_control *wbc)
380 {
381 	if (inode->i_state & I_FREEING)
382 		return;
383 
384 	/*
385 	 * Sync livelock prevention. Each inode is tagged and synced in one
386 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
387 	 * the dirty time to prevent enqueue and sync it again.
388 	 */
389 	if ((inode->i_state & I_DIRTY) &&
390 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
391 		inode->dirtied_when = jiffies;
392 
393 	if (wbc->pages_skipped) {
394 		/*
395 		 * writeback is not making progress due to locked
396 		 * buffers. Skip this inode for now.
397 		 */
398 		redirty_tail(inode, wb);
399 		return;
400 	}
401 
402 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
403 		/*
404 		 * We didn't write back all the pages.  nfs_writepages()
405 		 * sometimes bales out without doing anything.
406 		 */
407 		if (wbc->nr_to_write <= 0) {
408 			/* Slice used up. Queue for next turn. */
409 			requeue_io(inode, wb);
410 		} else {
411 			/*
412 			 * Writeback blocked by something other than
413 			 * congestion. Delay the inode for some time to
414 			 * avoid spinning on the CPU (100% iowait)
415 			 * retrying writeback of the dirty page/inode
416 			 * that cannot be performed immediately.
417 			 */
418 			redirty_tail(inode, wb);
419 		}
420 	} else if (inode->i_state & I_DIRTY) {
421 		/*
422 		 * Filesystems can dirty the inode during writeback operations,
423 		 * such as delayed allocation during submission or metadata
424 		 * updates after data IO completion.
425 		 */
426 		redirty_tail(inode, wb);
427 	} else {
428 		/* The inode is clean. Remove from writeback lists. */
429 		list_del_init(&inode->i_wb_list);
430 	}
431 }
432 
433 /*
434  * Write out an inode and its dirty pages. Do not update the writeback list
435  * linkage. That is left to the caller. The caller is also responsible for
436  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
437  */
438 static int
439 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
440 {
441 	struct address_space *mapping = inode->i_mapping;
442 	long nr_to_write = wbc->nr_to_write;
443 	unsigned dirty;
444 	int ret;
445 
446 	WARN_ON(!(inode->i_state & I_SYNC));
447 
448 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
449 
450 	ret = do_writepages(mapping, wbc);
451 
452 	/*
453 	 * Make sure to wait on the data before writing out the metadata.
454 	 * This is important for filesystems that modify metadata on data
455 	 * I/O completion. We don't do it for sync(2) writeback because it has a
456 	 * separate, external IO completion path and ->sync_fs for guaranteeing
457 	 * inode metadata is written back correctly.
458 	 */
459 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
460 		int err = filemap_fdatawait(mapping);
461 		if (ret == 0)
462 			ret = err;
463 	}
464 
465 	/*
466 	 * Some filesystems may redirty the inode during the writeback
467 	 * due to delalloc, clear dirty metadata flags right before
468 	 * write_inode()
469 	 */
470 	spin_lock(&inode->i_lock);
471 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
472 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
473 		inode->i_state &= ~I_DIRTY_PAGES;
474 	dirty = inode->i_state & I_DIRTY;
475 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
476 	spin_unlock(&inode->i_lock);
477 	/* Don't write the inode if only I_DIRTY_PAGES was set */
478 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
479 		int err = write_inode(inode, wbc);
480 		if (ret == 0)
481 			ret = err;
482 	}
483 	trace_writeback_single_inode(inode, wbc, nr_to_write);
484 	return ret;
485 }
486 
487 /*
488  * Write out an inode's dirty pages. Either the caller has an active reference
489  * on the inode or the inode has I_WILL_FREE set.
490  *
491  * This function is designed to be called for writing back one inode which
492  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
493  * and does more profound writeback list handling in writeback_sb_inodes().
494  */
495 static int
496 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
497 		       struct writeback_control *wbc)
498 {
499 	int ret = 0;
500 
501 	spin_lock(&inode->i_lock);
502 	if (!atomic_read(&inode->i_count))
503 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
504 	else
505 		WARN_ON(inode->i_state & I_WILL_FREE);
506 
507 	if (inode->i_state & I_SYNC) {
508 		if (wbc->sync_mode != WB_SYNC_ALL)
509 			goto out;
510 		/*
511 		 * It's a data-integrity sync. We must wait. Since callers hold
512 		 * inode reference or inode has I_WILL_FREE set, it cannot go
513 		 * away under us.
514 		 */
515 		__inode_wait_for_writeback(inode);
516 	}
517 	WARN_ON(inode->i_state & I_SYNC);
518 	/*
519 	 * Skip inode if it is clean. We don't want to mess with writeback
520 	 * lists in this function since flusher thread may be doing for example
521 	 * sync in parallel and if we move the inode, it could get skipped. So
522 	 * here we make sure inode is on some writeback list and leave it there
523 	 * unless we have completely cleaned the inode.
524 	 */
525 	if (!(inode->i_state & I_DIRTY))
526 		goto out;
527 	inode->i_state |= I_SYNC;
528 	spin_unlock(&inode->i_lock);
529 
530 	ret = __writeback_single_inode(inode, wbc);
531 
532 	spin_lock(&wb->list_lock);
533 	spin_lock(&inode->i_lock);
534 	/*
535 	 * If inode is clean, remove it from writeback lists. Otherwise don't
536 	 * touch it. See comment above for explanation.
537 	 */
538 	if (!(inode->i_state & I_DIRTY))
539 		list_del_init(&inode->i_wb_list);
540 	spin_unlock(&wb->list_lock);
541 	inode_sync_complete(inode);
542 out:
543 	spin_unlock(&inode->i_lock);
544 	return ret;
545 }
546 
547 static long writeback_chunk_size(struct backing_dev_info *bdi,
548 				 struct wb_writeback_work *work)
549 {
550 	long pages;
551 
552 	/*
553 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
554 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
555 	 * here avoids calling into writeback_inodes_wb() more than once.
556 	 *
557 	 * The intended call sequence for WB_SYNC_ALL writeback is:
558 	 *
559 	 *      wb_writeback()
560 	 *          writeback_sb_inodes()       <== called only once
561 	 *              write_cache_pages()     <== called once for each inode
562 	 *                   (quickly) tag currently dirty pages
563 	 *                   (maybe slowly) sync all tagged pages
564 	 */
565 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
566 		pages = LONG_MAX;
567 	else {
568 		pages = min(bdi->avg_write_bandwidth / 2,
569 			    global_dirty_limit / DIRTY_SCOPE);
570 		pages = min(pages, work->nr_pages);
571 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
572 				   MIN_WRITEBACK_PAGES);
573 	}
574 
575 	return pages;
576 }
577 
578 /*
579  * Write a portion of b_io inodes which belong to @sb.
580  *
581  * Return the number of pages and/or inodes written.
582  */
583 static long writeback_sb_inodes(struct super_block *sb,
584 				struct bdi_writeback *wb,
585 				struct wb_writeback_work *work)
586 {
587 	struct writeback_control wbc = {
588 		.sync_mode		= work->sync_mode,
589 		.tagged_writepages	= work->tagged_writepages,
590 		.for_kupdate		= work->for_kupdate,
591 		.for_background		= work->for_background,
592 		.for_sync		= work->for_sync,
593 		.range_cyclic		= work->range_cyclic,
594 		.range_start		= 0,
595 		.range_end		= LLONG_MAX,
596 	};
597 	unsigned long start_time = jiffies;
598 	long write_chunk;
599 	long wrote = 0;  /* count both pages and inodes */
600 
601 	while (!list_empty(&wb->b_io)) {
602 		struct inode *inode = wb_inode(wb->b_io.prev);
603 
604 		if (inode->i_sb != sb) {
605 			if (work->sb) {
606 				/*
607 				 * We only want to write back data for this
608 				 * superblock, move all inodes not belonging
609 				 * to it back onto the dirty list.
610 				 */
611 				redirty_tail(inode, wb);
612 				continue;
613 			}
614 
615 			/*
616 			 * The inode belongs to a different superblock.
617 			 * Bounce back to the caller to unpin this and
618 			 * pin the next superblock.
619 			 */
620 			break;
621 		}
622 
623 		/*
624 		 * Don't bother with new inodes or inodes being freed, first
625 		 * kind does not need periodic writeout yet, and for the latter
626 		 * kind writeout is handled by the freer.
627 		 */
628 		spin_lock(&inode->i_lock);
629 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
630 			spin_unlock(&inode->i_lock);
631 			redirty_tail(inode, wb);
632 			continue;
633 		}
634 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
635 			/*
636 			 * If this inode is locked for writeback and we are not
637 			 * doing writeback-for-data-integrity, move it to
638 			 * b_more_io so that writeback can proceed with the
639 			 * other inodes on s_io.
640 			 *
641 			 * We'll have another go at writing back this inode
642 			 * when we completed a full scan of b_io.
643 			 */
644 			spin_unlock(&inode->i_lock);
645 			requeue_io(inode, wb);
646 			trace_writeback_sb_inodes_requeue(inode);
647 			continue;
648 		}
649 		spin_unlock(&wb->list_lock);
650 
651 		/*
652 		 * We already requeued the inode if it had I_SYNC set and we
653 		 * are doing WB_SYNC_NONE writeback. So this catches only the
654 		 * WB_SYNC_ALL case.
655 		 */
656 		if (inode->i_state & I_SYNC) {
657 			/* Wait for I_SYNC. This function drops i_lock... */
658 			inode_sleep_on_writeback(inode);
659 			/* Inode may be gone, start again */
660 			spin_lock(&wb->list_lock);
661 			continue;
662 		}
663 		inode->i_state |= I_SYNC;
664 		spin_unlock(&inode->i_lock);
665 
666 		write_chunk = writeback_chunk_size(wb->bdi, work);
667 		wbc.nr_to_write = write_chunk;
668 		wbc.pages_skipped = 0;
669 
670 		/*
671 		 * We use I_SYNC to pin the inode in memory. While it is set
672 		 * evict_inode() will wait so the inode cannot be freed.
673 		 */
674 		__writeback_single_inode(inode, &wbc);
675 
676 		work->nr_pages -= write_chunk - wbc.nr_to_write;
677 		wrote += write_chunk - wbc.nr_to_write;
678 		spin_lock(&wb->list_lock);
679 		spin_lock(&inode->i_lock);
680 		if (!(inode->i_state & I_DIRTY))
681 			wrote++;
682 		requeue_inode(inode, wb, &wbc);
683 		inode_sync_complete(inode);
684 		spin_unlock(&inode->i_lock);
685 		cond_resched_lock(&wb->list_lock);
686 		/*
687 		 * bail out to wb_writeback() often enough to check
688 		 * background threshold and other termination conditions.
689 		 */
690 		if (wrote) {
691 			if (time_is_before_jiffies(start_time + HZ / 10UL))
692 				break;
693 			if (work->nr_pages <= 0)
694 				break;
695 		}
696 	}
697 	return wrote;
698 }
699 
700 static long __writeback_inodes_wb(struct bdi_writeback *wb,
701 				  struct wb_writeback_work *work)
702 {
703 	unsigned long start_time = jiffies;
704 	long wrote = 0;
705 
706 	while (!list_empty(&wb->b_io)) {
707 		struct inode *inode = wb_inode(wb->b_io.prev);
708 		struct super_block *sb = inode->i_sb;
709 
710 		if (!grab_super_passive(sb)) {
711 			/*
712 			 * grab_super_passive() may fail consistently due to
713 			 * s_umount being grabbed by someone else. Don't use
714 			 * requeue_io() to avoid busy retrying the inode/sb.
715 			 */
716 			redirty_tail(inode, wb);
717 			continue;
718 		}
719 		wrote += writeback_sb_inodes(sb, wb, work);
720 		drop_super(sb);
721 
722 		/* refer to the same tests at the end of writeback_sb_inodes */
723 		if (wrote) {
724 			if (time_is_before_jiffies(start_time + HZ / 10UL))
725 				break;
726 			if (work->nr_pages <= 0)
727 				break;
728 		}
729 	}
730 	/* Leave any unwritten inodes on b_io */
731 	return wrote;
732 }
733 
734 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
735 				enum wb_reason reason)
736 {
737 	struct wb_writeback_work work = {
738 		.nr_pages	= nr_pages,
739 		.sync_mode	= WB_SYNC_NONE,
740 		.range_cyclic	= 1,
741 		.reason		= reason,
742 		.older_than_this = jiffies,
743 		.older_than_this_is_set = 1,
744 	};
745 
746 	spin_lock(&wb->list_lock);
747 	if (list_empty(&wb->b_io))
748 		queue_io(wb, &work);
749 	__writeback_inodes_wb(wb, &work);
750 	spin_unlock(&wb->list_lock);
751 
752 	return nr_pages - work.nr_pages;
753 }
754 
755 static bool over_bground_thresh(struct backing_dev_info *bdi)
756 {
757 	unsigned long background_thresh, dirty_thresh;
758 
759 	global_dirty_limits(&background_thresh, &dirty_thresh);
760 
761 	if (global_page_state(NR_FILE_DIRTY) +
762 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
763 		return true;
764 
765 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
766 				bdi_dirty_limit(bdi, background_thresh))
767 		return true;
768 
769 	return false;
770 }
771 
772 /*
773  * Called under wb->list_lock. If there are multiple wb per bdi,
774  * only the flusher working on the first wb should do it.
775  */
776 static void wb_update_bandwidth(struct bdi_writeback *wb,
777 				unsigned long start_time)
778 {
779 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
780 }
781 
782 /*
783  * Explicit flushing or periodic writeback of "old" data.
784  *
785  * Define "old": the first time one of an inode's pages is dirtied, we mark the
786  * dirtying-time in the inode's address_space.  So this periodic writeback code
787  * just walks the superblock inode list, writing back any inodes which are
788  * older than a specific point in time.
789  *
790  * Try to run once per dirty_writeback_interval.  But if a writeback event
791  * takes longer than a dirty_writeback_interval interval, then leave a
792  * one-second gap.
793  *
794  * older_than_this takes precedence over nr_to_write.  So we'll only write back
795  * all dirty pages if they are all attached to "old" mappings.
796  */
797 static long wb_writeback(struct bdi_writeback *wb,
798 			 struct wb_writeback_work *work)
799 {
800 	unsigned long wb_start = jiffies;
801 	long nr_pages = work->nr_pages;
802 	struct inode *inode;
803 	long progress;
804 
805 	if (!work->older_than_this_is_set) {
806 		work->older_than_this = jiffies;
807 		work->older_than_this_is_set = 1;
808 	}
809 
810 	spin_lock(&wb->list_lock);
811 	for (;;) {
812 		/*
813 		 * Stop writeback when nr_pages has been consumed
814 		 */
815 		if (work->nr_pages <= 0)
816 			break;
817 
818 		/*
819 		 * Background writeout and kupdate-style writeback may
820 		 * run forever. Stop them if there is other work to do
821 		 * so that e.g. sync can proceed. They'll be restarted
822 		 * after the other works are all done.
823 		 */
824 		if ((work->for_background || work->for_kupdate) &&
825 		    !list_empty(&wb->bdi->work_list))
826 			break;
827 
828 		/*
829 		 * For background writeout, stop when we are below the
830 		 * background dirty threshold
831 		 */
832 		if (work->for_background && !over_bground_thresh(wb->bdi))
833 			break;
834 
835 		/*
836 		 * Kupdate and background works are special and we want to
837 		 * include all inodes that need writing. Livelock avoidance is
838 		 * handled by these works yielding to any other work so we are
839 		 * safe.
840 		 */
841 		if (work->for_kupdate) {
842 			work->older_than_this = jiffies -
843 				msecs_to_jiffies(dirty_expire_interval * 10);
844 		} else if (work->for_background)
845 			work->older_than_this = jiffies;
846 
847 		trace_writeback_start(wb->bdi, work);
848 		if (list_empty(&wb->b_io))
849 			queue_io(wb, work);
850 		if (work->sb)
851 			progress = writeback_sb_inodes(work->sb, wb, work);
852 		else
853 			progress = __writeback_inodes_wb(wb, work);
854 		trace_writeback_written(wb->bdi, work);
855 
856 		wb_update_bandwidth(wb, wb_start);
857 
858 		/*
859 		 * Did we write something? Try for more
860 		 *
861 		 * Dirty inodes are moved to b_io for writeback in batches.
862 		 * The completion of the current batch does not necessarily
863 		 * mean the overall work is done. So we keep looping as long
864 		 * as made some progress on cleaning pages or inodes.
865 		 */
866 		if (progress)
867 			continue;
868 		/*
869 		 * No more inodes for IO, bail
870 		 */
871 		if (list_empty(&wb->b_more_io))
872 			break;
873 		/*
874 		 * Nothing written. Wait for some inode to
875 		 * become available for writeback. Otherwise
876 		 * we'll just busyloop.
877 		 */
878 		if (!list_empty(&wb->b_more_io))  {
879 			trace_writeback_wait(wb->bdi, work);
880 			inode = wb_inode(wb->b_more_io.prev);
881 			spin_lock(&inode->i_lock);
882 			spin_unlock(&wb->list_lock);
883 			/* This function drops i_lock... */
884 			inode_sleep_on_writeback(inode);
885 			spin_lock(&wb->list_lock);
886 		}
887 	}
888 	spin_unlock(&wb->list_lock);
889 
890 	return nr_pages - work->nr_pages;
891 }
892 
893 /*
894  * Return the next wb_writeback_work struct that hasn't been processed yet.
895  */
896 static struct wb_writeback_work *
897 get_next_work_item(struct backing_dev_info *bdi)
898 {
899 	struct wb_writeback_work *work = NULL;
900 
901 	spin_lock_bh(&bdi->wb_lock);
902 	if (!list_empty(&bdi->work_list)) {
903 		work = list_entry(bdi->work_list.next,
904 				  struct wb_writeback_work, list);
905 		list_del_init(&work->list);
906 	}
907 	spin_unlock_bh(&bdi->wb_lock);
908 	return work;
909 }
910 
911 /*
912  * Add in the number of potentially dirty inodes, because each inode
913  * write can dirty pagecache in the underlying blockdev.
914  */
915 static unsigned long get_nr_dirty_pages(void)
916 {
917 	return global_page_state(NR_FILE_DIRTY) +
918 		global_page_state(NR_UNSTABLE_NFS) +
919 		get_nr_dirty_inodes();
920 }
921 
922 static long wb_check_background_flush(struct bdi_writeback *wb)
923 {
924 	if (over_bground_thresh(wb->bdi)) {
925 
926 		struct wb_writeback_work work = {
927 			.nr_pages	= LONG_MAX,
928 			.sync_mode	= WB_SYNC_NONE,
929 			.for_background	= 1,
930 			.range_cyclic	= 1,
931 			.reason		= WB_REASON_BACKGROUND,
932 		};
933 
934 		return wb_writeback(wb, &work);
935 	}
936 
937 	return 0;
938 }
939 
940 static long wb_check_old_data_flush(struct bdi_writeback *wb)
941 {
942 	unsigned long expired;
943 	long nr_pages;
944 
945 	/*
946 	 * When set to zero, disable periodic writeback
947 	 */
948 	if (!dirty_writeback_interval)
949 		return 0;
950 
951 	expired = wb->last_old_flush +
952 			msecs_to_jiffies(dirty_writeback_interval * 10);
953 	if (time_before(jiffies, expired))
954 		return 0;
955 
956 	wb->last_old_flush = jiffies;
957 	nr_pages = get_nr_dirty_pages();
958 
959 	if (nr_pages) {
960 		struct wb_writeback_work work = {
961 			.nr_pages	= nr_pages,
962 			.sync_mode	= WB_SYNC_NONE,
963 			.for_kupdate	= 1,
964 			.range_cyclic	= 1,
965 			.reason		= WB_REASON_PERIODIC,
966 		};
967 
968 		return wb_writeback(wb, &work);
969 	}
970 
971 	return 0;
972 }
973 
974 /*
975  * Retrieve work items and do the writeback they describe
976  */
977 static long wb_do_writeback(struct bdi_writeback *wb)
978 {
979 	struct backing_dev_info *bdi = wb->bdi;
980 	struct wb_writeback_work *work;
981 	long wrote = 0;
982 
983 	set_bit(BDI_writeback_running, &wb->bdi->state);
984 	while ((work = get_next_work_item(bdi)) != NULL) {
985 
986 		trace_writeback_exec(bdi, work);
987 
988 		wrote += wb_writeback(wb, work);
989 
990 		/*
991 		 * Notify the caller of completion if this is a synchronous
992 		 * work item, otherwise just free it.
993 		 */
994 		if (work->done)
995 			complete(work->done);
996 		else
997 			kfree(work);
998 	}
999 
1000 	/*
1001 	 * Check for periodic writeback, kupdated() style
1002 	 */
1003 	wrote += wb_check_old_data_flush(wb);
1004 	wrote += wb_check_background_flush(wb);
1005 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1006 
1007 	return wrote;
1008 }
1009 
1010 /*
1011  * Handle writeback of dirty data for the device backed by this bdi. Also
1012  * reschedules periodically and does kupdated style flushing.
1013  */
1014 void bdi_writeback_workfn(struct work_struct *work)
1015 {
1016 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1017 						struct bdi_writeback, dwork);
1018 	struct backing_dev_info *bdi = wb->bdi;
1019 	long pages_written;
1020 
1021 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1022 	current->flags |= PF_SWAPWRITE;
1023 
1024 	if (likely(!current_is_workqueue_rescuer() ||
1025 		   list_empty(&bdi->bdi_list))) {
1026 		/*
1027 		 * The normal path.  Keep writing back @bdi until its
1028 		 * work_list is empty.  Note that this path is also taken
1029 		 * if @bdi is shutting down even when we're running off the
1030 		 * rescuer as work_list needs to be drained.
1031 		 */
1032 		do {
1033 			pages_written = wb_do_writeback(wb);
1034 			trace_writeback_pages_written(pages_written);
1035 		} while (!list_empty(&bdi->work_list));
1036 	} else {
1037 		/*
1038 		 * bdi_wq can't get enough workers and we're running off
1039 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1040 		 * enough for efficient IO.
1041 		 */
1042 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1043 						    WB_REASON_FORKER_THREAD);
1044 		trace_writeback_pages_written(pages_written);
1045 	}
1046 
1047 	if (!list_empty(&bdi->work_list) ||
1048 	    (wb_has_dirty_io(wb) && dirty_writeback_interval))
1049 		queue_delayed_work(bdi_wq, &wb->dwork,
1050 			msecs_to_jiffies(dirty_writeback_interval * 10));
1051 
1052 	current->flags &= ~PF_SWAPWRITE;
1053 }
1054 
1055 /*
1056  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1057  * the whole world.
1058  */
1059 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1060 {
1061 	struct backing_dev_info *bdi;
1062 
1063 	if (!nr_pages)
1064 		nr_pages = get_nr_dirty_pages();
1065 
1066 	rcu_read_lock();
1067 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1068 		if (!bdi_has_dirty_io(bdi))
1069 			continue;
1070 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1071 	}
1072 	rcu_read_unlock();
1073 }
1074 
1075 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1076 {
1077 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1078 		struct dentry *dentry;
1079 		const char *name = "?";
1080 
1081 		dentry = d_find_alias(inode);
1082 		if (dentry) {
1083 			spin_lock(&dentry->d_lock);
1084 			name = (const char *) dentry->d_name.name;
1085 		}
1086 		printk(KERN_DEBUG
1087 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1088 		       current->comm, task_pid_nr(current), inode->i_ino,
1089 		       name, inode->i_sb->s_id);
1090 		if (dentry) {
1091 			spin_unlock(&dentry->d_lock);
1092 			dput(dentry);
1093 		}
1094 	}
1095 }
1096 
1097 /**
1098  *	__mark_inode_dirty -	internal function
1099  *	@inode: inode to mark
1100  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1101  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1102  *  	mark_inode_dirty_sync.
1103  *
1104  * Put the inode on the super block's dirty list.
1105  *
1106  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1107  * dirty list only if it is hashed or if it refers to a blockdev.
1108  * If it was not hashed, it will never be added to the dirty list
1109  * even if it is later hashed, as it will have been marked dirty already.
1110  *
1111  * In short, make sure you hash any inodes _before_ you start marking
1112  * them dirty.
1113  *
1114  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1115  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1116  * the kernel-internal blockdev inode represents the dirtying time of the
1117  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1118  * page->mapping->host, so the page-dirtying time is recorded in the internal
1119  * blockdev inode.
1120  */
1121 void __mark_inode_dirty(struct inode *inode, int flags)
1122 {
1123 	struct super_block *sb = inode->i_sb;
1124 	struct backing_dev_info *bdi = NULL;
1125 
1126 	/*
1127 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1128 	 * dirty the inode itself
1129 	 */
1130 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1131 		trace_writeback_dirty_inode_start(inode, flags);
1132 
1133 		if (sb->s_op->dirty_inode)
1134 			sb->s_op->dirty_inode(inode, flags);
1135 
1136 		trace_writeback_dirty_inode(inode, flags);
1137 	}
1138 
1139 	/*
1140 	 * make sure that changes are seen by all cpus before we test i_state
1141 	 * -- mikulas
1142 	 */
1143 	smp_mb();
1144 
1145 	/* avoid the locking if we can */
1146 	if ((inode->i_state & flags) == flags)
1147 		return;
1148 
1149 	if (unlikely(block_dump))
1150 		block_dump___mark_inode_dirty(inode);
1151 
1152 	spin_lock(&inode->i_lock);
1153 	if ((inode->i_state & flags) != flags) {
1154 		const int was_dirty = inode->i_state & I_DIRTY;
1155 
1156 		inode->i_state |= flags;
1157 
1158 		/*
1159 		 * If the inode is being synced, just update its dirty state.
1160 		 * The unlocker will place the inode on the appropriate
1161 		 * superblock list, based upon its state.
1162 		 */
1163 		if (inode->i_state & I_SYNC)
1164 			goto out_unlock_inode;
1165 
1166 		/*
1167 		 * Only add valid (hashed) inodes to the superblock's
1168 		 * dirty list.  Add blockdev inodes as well.
1169 		 */
1170 		if (!S_ISBLK(inode->i_mode)) {
1171 			if (inode_unhashed(inode))
1172 				goto out_unlock_inode;
1173 		}
1174 		if (inode->i_state & I_FREEING)
1175 			goto out_unlock_inode;
1176 
1177 		/*
1178 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1179 		 * reposition it (that would break b_dirty time-ordering).
1180 		 */
1181 		if (!was_dirty) {
1182 			bool wakeup_bdi = false;
1183 			bdi = inode_to_bdi(inode);
1184 
1185 			spin_unlock(&inode->i_lock);
1186 			spin_lock(&bdi->wb.list_lock);
1187 			if (bdi_cap_writeback_dirty(bdi)) {
1188 				WARN(!test_bit(BDI_registered, &bdi->state),
1189 				     "bdi-%s not registered\n", bdi->name);
1190 
1191 				/*
1192 				 * If this is the first dirty inode for this
1193 				 * bdi, we have to wake-up the corresponding
1194 				 * bdi thread to make sure background
1195 				 * write-back happens later.
1196 				 */
1197 				if (!wb_has_dirty_io(&bdi->wb))
1198 					wakeup_bdi = true;
1199 			}
1200 
1201 			inode->dirtied_when = jiffies;
1202 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1203 			spin_unlock(&bdi->wb.list_lock);
1204 
1205 			if (wakeup_bdi)
1206 				bdi_wakeup_thread_delayed(bdi);
1207 			return;
1208 		}
1209 	}
1210 out_unlock_inode:
1211 	spin_unlock(&inode->i_lock);
1212 
1213 }
1214 EXPORT_SYMBOL(__mark_inode_dirty);
1215 
1216 static void wait_sb_inodes(struct super_block *sb)
1217 {
1218 	struct inode *inode, *old_inode = NULL;
1219 
1220 	/*
1221 	 * We need to be protected against the filesystem going from
1222 	 * r/o to r/w or vice versa.
1223 	 */
1224 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1225 
1226 	spin_lock(&inode_sb_list_lock);
1227 
1228 	/*
1229 	 * Data integrity sync. Must wait for all pages under writeback,
1230 	 * because there may have been pages dirtied before our sync
1231 	 * call, but which had writeout started before we write it out.
1232 	 * In which case, the inode may not be on the dirty list, but
1233 	 * we still have to wait for that writeout.
1234 	 */
1235 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1236 		struct address_space *mapping = inode->i_mapping;
1237 
1238 		spin_lock(&inode->i_lock);
1239 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1240 		    (mapping->nrpages == 0)) {
1241 			spin_unlock(&inode->i_lock);
1242 			continue;
1243 		}
1244 		__iget(inode);
1245 		spin_unlock(&inode->i_lock);
1246 		spin_unlock(&inode_sb_list_lock);
1247 
1248 		/*
1249 		 * We hold a reference to 'inode' so it couldn't have been
1250 		 * removed from s_inodes list while we dropped the
1251 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1252 		 * be holding the last reference and we cannot iput it under
1253 		 * inode_sb_list_lock. So we keep the reference and iput it
1254 		 * later.
1255 		 */
1256 		iput(old_inode);
1257 		old_inode = inode;
1258 
1259 		filemap_fdatawait(mapping);
1260 
1261 		cond_resched();
1262 
1263 		spin_lock(&inode_sb_list_lock);
1264 	}
1265 	spin_unlock(&inode_sb_list_lock);
1266 	iput(old_inode);
1267 }
1268 
1269 /**
1270  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1271  * @sb: the superblock
1272  * @nr: the number of pages to write
1273  * @reason: reason why some writeback work initiated
1274  *
1275  * Start writeback on some inodes on this super_block. No guarantees are made
1276  * on how many (if any) will be written, and this function does not wait
1277  * for IO completion of submitted IO.
1278  */
1279 void writeback_inodes_sb_nr(struct super_block *sb,
1280 			    unsigned long nr,
1281 			    enum wb_reason reason)
1282 {
1283 	DECLARE_COMPLETION_ONSTACK(done);
1284 	struct wb_writeback_work work = {
1285 		.sb			= sb,
1286 		.sync_mode		= WB_SYNC_NONE,
1287 		.tagged_writepages	= 1,
1288 		.done			= &done,
1289 		.nr_pages		= nr,
1290 		.reason			= reason,
1291 	};
1292 
1293 	if (sb->s_bdi == &noop_backing_dev_info)
1294 		return;
1295 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1296 	bdi_queue_work(sb->s_bdi, &work);
1297 	wait_for_completion(&done);
1298 }
1299 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1300 
1301 /**
1302  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1303  * @sb: the superblock
1304  * @reason: reason why some writeback work was initiated
1305  *
1306  * Start writeback on some inodes on this super_block. No guarantees are made
1307  * on how many (if any) will be written, and this function does not wait
1308  * for IO completion of submitted IO.
1309  */
1310 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1311 {
1312 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1313 }
1314 EXPORT_SYMBOL(writeback_inodes_sb);
1315 
1316 /**
1317  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1318  * @sb: the superblock
1319  * @nr: the number of pages to write
1320  * @reason: the reason of writeback
1321  *
1322  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1323  * Returns 1 if writeback was started, 0 if not.
1324  */
1325 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1326 				  unsigned long nr,
1327 				  enum wb_reason reason)
1328 {
1329 	if (writeback_in_progress(sb->s_bdi))
1330 		return 1;
1331 
1332 	if (!down_read_trylock(&sb->s_umount))
1333 		return 0;
1334 
1335 	writeback_inodes_sb_nr(sb, nr, reason);
1336 	up_read(&sb->s_umount);
1337 	return 1;
1338 }
1339 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1340 
1341 /**
1342  * try_to_writeback_inodes_sb - try to start writeback if none underway
1343  * @sb: the superblock
1344  * @reason: reason why some writeback work was initiated
1345  *
1346  * Implement by try_to_writeback_inodes_sb_nr()
1347  * Returns 1 if writeback was started, 0 if not.
1348  */
1349 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1350 {
1351 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1352 }
1353 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1354 
1355 /**
1356  * sync_inodes_sb	-	sync sb inode pages
1357  * @sb:			the superblock
1358  * @older_than_this:	timestamp
1359  *
1360  * This function writes and waits on any dirty inode belonging to this
1361  * superblock that has been dirtied before given timestamp.
1362  */
1363 void sync_inodes_sb(struct super_block *sb, unsigned long older_than_this)
1364 {
1365 	DECLARE_COMPLETION_ONSTACK(done);
1366 	struct wb_writeback_work work = {
1367 		.sb		= sb,
1368 		.sync_mode	= WB_SYNC_ALL,
1369 		.nr_pages	= LONG_MAX,
1370 		.older_than_this = older_than_this,
1371 		.older_than_this_is_set = 1,
1372 		.range_cyclic	= 0,
1373 		.done		= &done,
1374 		.reason		= WB_REASON_SYNC,
1375 		.for_sync	= 1,
1376 	};
1377 
1378 	/* Nothing to do? */
1379 	if (sb->s_bdi == &noop_backing_dev_info)
1380 		return;
1381 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1382 
1383 	bdi_queue_work(sb->s_bdi, &work);
1384 	wait_for_completion(&done);
1385 
1386 	wait_sb_inodes(sb);
1387 }
1388 EXPORT_SYMBOL(sync_inodes_sb);
1389 
1390 /**
1391  * write_inode_now	-	write an inode to disk
1392  * @inode: inode to write to disk
1393  * @sync: whether the write should be synchronous or not
1394  *
1395  * This function commits an inode to disk immediately if it is dirty. This is
1396  * primarily needed by knfsd.
1397  *
1398  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1399  */
1400 int write_inode_now(struct inode *inode, int sync)
1401 {
1402 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1403 	struct writeback_control wbc = {
1404 		.nr_to_write = LONG_MAX,
1405 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1406 		.range_start = 0,
1407 		.range_end = LLONG_MAX,
1408 	};
1409 
1410 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1411 		wbc.nr_to_write = 0;
1412 
1413 	might_sleep();
1414 	return writeback_single_inode(inode, wb, &wbc);
1415 }
1416 EXPORT_SYMBOL(write_inode_now);
1417 
1418 /**
1419  * sync_inode - write an inode and its pages to disk.
1420  * @inode: the inode to sync
1421  * @wbc: controls the writeback mode
1422  *
1423  * sync_inode() will write an inode and its pages to disk.  It will also
1424  * correctly update the inode on its superblock's dirty inode lists and will
1425  * update inode->i_state.
1426  *
1427  * The caller must have a ref on the inode.
1428  */
1429 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1430 {
1431 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1432 }
1433 EXPORT_SYMBOL(sync_inode);
1434 
1435 /**
1436  * sync_inode_metadata - write an inode to disk
1437  * @inode: the inode to sync
1438  * @wait: wait for I/O to complete.
1439  *
1440  * Write an inode to disk and adjust its dirty state after completion.
1441  *
1442  * Note: only writes the actual inode, no associated data or other metadata.
1443  */
1444 int sync_inode_metadata(struct inode *inode, int wait)
1445 {
1446 	struct writeback_control wbc = {
1447 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1448 		.nr_to_write = 0, /* metadata-only */
1449 	};
1450 
1451 	return sync_inode(inode, &wbc);
1452 }
1453 EXPORT_SYMBOL(sync_inode_metadata);
1454