xref: /openbmc/linux/fs/fs-writeback.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int for_kupdate:1;
40 	unsigned int range_cyclic:1;
41 	unsigned int for_background:1;
42 
43 	struct list_head list;		/* pending work list */
44 	struct completion *done;	/* set if the caller waits */
45 };
46 
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 	return list_entry(head, struct inode, i_wb_list);
85 }
86 
87 static void bdi_queue_work(struct backing_dev_info *bdi,
88 		struct wb_writeback_work *work)
89 {
90 	trace_writeback_queue(bdi, work);
91 
92 	spin_lock_bh(&bdi->wb_lock);
93 	list_add_tail(&work->list, &bdi->work_list);
94 	if (bdi->wb.task) {
95 		wake_up_process(bdi->wb.task);
96 	} else {
97 		/*
98 		 * The bdi thread isn't there, wake up the forker thread which
99 		 * will create and run it.
100 		 */
101 		trace_writeback_nothread(bdi, work);
102 		wake_up_process(default_backing_dev_info.wb.task);
103 	}
104 	spin_unlock_bh(&bdi->wb_lock);
105 }
106 
107 static void
108 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
109 		bool range_cyclic, bool for_background)
110 {
111 	struct wb_writeback_work *work;
112 
113 	/*
114 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
115 	 * wakeup the thread for old dirty data writeback
116 	 */
117 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
118 	if (!work) {
119 		if (bdi->wb.task) {
120 			trace_writeback_nowork(bdi);
121 			wake_up_process(bdi->wb.task);
122 		}
123 		return;
124 	}
125 
126 	work->sync_mode	= WB_SYNC_NONE;
127 	work->nr_pages	= nr_pages;
128 	work->range_cyclic = range_cyclic;
129 	work->for_background = for_background;
130 
131 	bdi_queue_work(bdi, work);
132 }
133 
134 /**
135  * bdi_start_writeback - start writeback
136  * @bdi: the backing device to write from
137  * @nr_pages: the number of pages to write
138  *
139  * Description:
140  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
141  *   started when this function returns, we make no guarentees on
142  *   completion. Caller need not hold sb s_umount semaphore.
143  *
144  */
145 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
146 {
147 	__bdi_start_writeback(bdi, nr_pages, true, false);
148 }
149 
150 /**
151  * bdi_start_background_writeback - start background writeback
152  * @bdi: the backing device to write from
153  *
154  * Description:
155  *   This does WB_SYNC_NONE background writeback. The IO is only
156  *   started when this function returns, we make no guarentees on
157  *   completion. Caller need not hold sb s_umount semaphore.
158  */
159 void bdi_start_background_writeback(struct backing_dev_info *bdi)
160 {
161 	__bdi_start_writeback(bdi, LONG_MAX, true, true);
162 }
163 
164 /*
165  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
166  * furthest end of its superblock's dirty-inode list.
167  *
168  * Before stamping the inode's ->dirtied_when, we check to see whether it is
169  * already the most-recently-dirtied inode on the b_dirty list.  If that is
170  * the case then the inode must have been redirtied while it was being written
171  * out and we don't reset its dirtied_when.
172  */
173 static void redirty_tail(struct inode *inode)
174 {
175 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
176 
177 	if (!list_empty(&wb->b_dirty)) {
178 		struct inode *tail;
179 
180 		tail = wb_inode(wb->b_dirty.next);
181 		if (time_before(inode->dirtied_when, tail->dirtied_when))
182 			inode->dirtied_when = jiffies;
183 	}
184 	list_move(&inode->i_wb_list, &wb->b_dirty);
185 }
186 
187 /*
188  * requeue inode for re-scanning after bdi->b_io list is exhausted.
189  */
190 static void requeue_io(struct inode *inode)
191 {
192 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
193 
194 	list_move(&inode->i_wb_list, &wb->b_more_io);
195 }
196 
197 static void inode_sync_complete(struct inode *inode)
198 {
199 	/*
200 	 * Prevent speculative execution through spin_unlock(&inode_lock);
201 	 */
202 	smp_mb();
203 	wake_up_bit(&inode->i_state, __I_SYNC);
204 }
205 
206 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
207 {
208 	bool ret = time_after(inode->dirtied_when, t);
209 #ifndef CONFIG_64BIT
210 	/*
211 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
212 	 * It _appears_ to be in the future, but is actually in distant past.
213 	 * This test is necessary to prevent such wrapped-around relative times
214 	 * from permanently stopping the whole bdi writeback.
215 	 */
216 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
217 #endif
218 	return ret;
219 }
220 
221 /*
222  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
223  */
224 static void move_expired_inodes(struct list_head *delaying_queue,
225 			       struct list_head *dispatch_queue,
226 				unsigned long *older_than_this)
227 {
228 	LIST_HEAD(tmp);
229 	struct list_head *pos, *node;
230 	struct super_block *sb = NULL;
231 	struct inode *inode;
232 	int do_sb_sort = 0;
233 
234 	while (!list_empty(delaying_queue)) {
235 		inode = wb_inode(delaying_queue->prev);
236 		if (older_than_this &&
237 		    inode_dirtied_after(inode, *older_than_this))
238 			break;
239 		if (sb && sb != inode->i_sb)
240 			do_sb_sort = 1;
241 		sb = inode->i_sb;
242 		list_move(&inode->i_wb_list, &tmp);
243 	}
244 
245 	/* just one sb in list, splice to dispatch_queue and we're done */
246 	if (!do_sb_sort) {
247 		list_splice(&tmp, dispatch_queue);
248 		return;
249 	}
250 
251 	/* Move inodes from one superblock together */
252 	while (!list_empty(&tmp)) {
253 		sb = wb_inode(tmp.prev)->i_sb;
254 		list_for_each_prev_safe(pos, node, &tmp) {
255 			inode = wb_inode(pos);
256 			if (inode->i_sb == sb)
257 				list_move(&inode->i_wb_list, dispatch_queue);
258 		}
259 	}
260 }
261 
262 /*
263  * Queue all expired dirty inodes for io, eldest first.
264  * Before
265  *         newly dirtied     b_dirty    b_io    b_more_io
266  *         =============>    gf         edc     BA
267  * After
268  *         newly dirtied     b_dirty    b_io    b_more_io
269  *         =============>    g          fBAedc
270  *                                           |
271  *                                           +--> dequeue for IO
272  */
273 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
274 {
275 	list_splice_init(&wb->b_more_io, &wb->b_io);
276 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
277 }
278 
279 static int write_inode(struct inode *inode, struct writeback_control *wbc)
280 {
281 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
282 		return inode->i_sb->s_op->write_inode(inode, wbc);
283 	return 0;
284 }
285 
286 /*
287  * Wait for writeback on an inode to complete.
288  */
289 static void inode_wait_for_writeback(struct inode *inode)
290 {
291 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
292 	wait_queue_head_t *wqh;
293 
294 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
295 	 while (inode->i_state & I_SYNC) {
296 		spin_unlock(&inode_lock);
297 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
298 		spin_lock(&inode_lock);
299 	}
300 }
301 
302 /*
303  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
304  * caller has ref on the inode (either via __iget or via syscall against an fd)
305  * or the inode has I_WILL_FREE set (via generic_forget_inode)
306  *
307  * If `wait' is set, wait on the writeout.
308  *
309  * The whole writeout design is quite complex and fragile.  We want to avoid
310  * starvation of particular inodes when others are being redirtied, prevent
311  * livelocks, etc.
312  *
313  * Called under inode_lock.
314  */
315 static int
316 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
317 {
318 	struct address_space *mapping = inode->i_mapping;
319 	unsigned dirty;
320 	int ret;
321 
322 	if (!atomic_read(&inode->i_count))
323 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
324 	else
325 		WARN_ON(inode->i_state & I_WILL_FREE);
326 
327 	if (inode->i_state & I_SYNC) {
328 		/*
329 		 * If this inode is locked for writeback and we are not doing
330 		 * writeback-for-data-integrity, move it to b_more_io so that
331 		 * writeback can proceed with the other inodes on s_io.
332 		 *
333 		 * We'll have another go at writing back this inode when we
334 		 * completed a full scan of b_io.
335 		 */
336 		if (wbc->sync_mode != WB_SYNC_ALL) {
337 			requeue_io(inode);
338 			return 0;
339 		}
340 
341 		/*
342 		 * It's a data-integrity sync.  We must wait.
343 		 */
344 		inode_wait_for_writeback(inode);
345 	}
346 
347 	BUG_ON(inode->i_state & I_SYNC);
348 
349 	/* Set I_SYNC, reset I_DIRTY_PAGES */
350 	inode->i_state |= I_SYNC;
351 	inode->i_state &= ~I_DIRTY_PAGES;
352 	spin_unlock(&inode_lock);
353 
354 	ret = do_writepages(mapping, wbc);
355 
356 	/*
357 	 * Make sure to wait on the data before writing out the metadata.
358 	 * This is important for filesystems that modify metadata on data
359 	 * I/O completion.
360 	 */
361 	if (wbc->sync_mode == WB_SYNC_ALL) {
362 		int err = filemap_fdatawait(mapping);
363 		if (ret == 0)
364 			ret = err;
365 	}
366 
367 	/*
368 	 * Some filesystems may redirty the inode during the writeback
369 	 * due to delalloc, clear dirty metadata flags right before
370 	 * write_inode()
371 	 */
372 	spin_lock(&inode_lock);
373 	dirty = inode->i_state & I_DIRTY;
374 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
375 	spin_unlock(&inode_lock);
376 	/* Don't write the inode if only I_DIRTY_PAGES was set */
377 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
378 		int err = write_inode(inode, wbc);
379 		if (ret == 0)
380 			ret = err;
381 	}
382 
383 	spin_lock(&inode_lock);
384 	inode->i_state &= ~I_SYNC;
385 	if (!(inode->i_state & I_FREEING)) {
386 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
387 			/*
388 			 * We didn't write back all the pages.  nfs_writepages()
389 			 * sometimes bales out without doing anything.
390 			 */
391 			inode->i_state |= I_DIRTY_PAGES;
392 			if (wbc->nr_to_write <= 0) {
393 				/*
394 				 * slice used up: queue for next turn
395 				 */
396 				requeue_io(inode);
397 			} else {
398 				/*
399 				 * Writeback blocked by something other than
400 				 * congestion. Delay the inode for some time to
401 				 * avoid spinning on the CPU (100% iowait)
402 				 * retrying writeback of the dirty page/inode
403 				 * that cannot be performed immediately.
404 				 */
405 				redirty_tail(inode);
406 			}
407 		} else if (inode->i_state & I_DIRTY) {
408 			/*
409 			 * Filesystems can dirty the inode during writeback
410 			 * operations, such as delayed allocation during
411 			 * submission or metadata updates after data IO
412 			 * completion.
413 			 */
414 			redirty_tail(inode);
415 		} else {
416 			/*
417 			 * The inode is clean.  At this point we either have
418 			 * a reference to the inode or it's on it's way out.
419 			 * No need to add it back to the LRU.
420 			 */
421 			list_del_init(&inode->i_wb_list);
422 		}
423 	}
424 	inode_sync_complete(inode);
425 	return ret;
426 }
427 
428 /*
429  * For background writeback the caller does not have the sb pinned
430  * before calling writeback. So make sure that we do pin it, so it doesn't
431  * go away while we are writing inodes from it.
432  */
433 static bool pin_sb_for_writeback(struct super_block *sb)
434 {
435 	spin_lock(&sb_lock);
436 	if (list_empty(&sb->s_instances)) {
437 		spin_unlock(&sb_lock);
438 		return false;
439 	}
440 
441 	sb->s_count++;
442 	spin_unlock(&sb_lock);
443 
444 	if (down_read_trylock(&sb->s_umount)) {
445 		if (sb->s_root)
446 			return true;
447 		up_read(&sb->s_umount);
448 	}
449 
450 	put_super(sb);
451 	return false;
452 }
453 
454 /*
455  * Write a portion of b_io inodes which belong to @sb.
456  *
457  * If @only_this_sb is true, then find and write all such
458  * inodes. Otherwise write only ones which go sequentially
459  * in reverse order.
460  *
461  * Return 1, if the caller writeback routine should be
462  * interrupted. Otherwise return 0.
463  */
464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
465 		struct writeback_control *wbc, bool only_this_sb)
466 {
467 	while (!list_empty(&wb->b_io)) {
468 		long pages_skipped;
469 		struct inode *inode = wb_inode(wb->b_io.prev);
470 
471 		if (inode->i_sb != sb) {
472 			if (only_this_sb) {
473 				/*
474 				 * We only want to write back data for this
475 				 * superblock, move all inodes not belonging
476 				 * to it back onto the dirty list.
477 				 */
478 				redirty_tail(inode);
479 				continue;
480 			}
481 
482 			/*
483 			 * The inode belongs to a different superblock.
484 			 * Bounce back to the caller to unpin this and
485 			 * pin the next superblock.
486 			 */
487 			return 0;
488 		}
489 
490 		/*
491 		 * Don't bother with new inodes or inodes beeing freed, first
492 		 * kind does not need peridic writeout yet, and for the latter
493 		 * kind writeout is handled by the freer.
494 		 */
495 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
496 			requeue_io(inode);
497 			continue;
498 		}
499 
500 		/*
501 		 * Was this inode dirtied after sync_sb_inodes was called?
502 		 * This keeps sync from extra jobs and livelock.
503 		 */
504 		if (inode_dirtied_after(inode, wbc->wb_start))
505 			return 1;
506 
507 		__iget(inode);
508 		pages_skipped = wbc->pages_skipped;
509 		writeback_single_inode(inode, wbc);
510 		if (wbc->pages_skipped != pages_skipped) {
511 			/*
512 			 * writeback is not making progress due to locked
513 			 * buffers.  Skip this inode for now.
514 			 */
515 			redirty_tail(inode);
516 		}
517 		spin_unlock(&inode_lock);
518 		iput(inode);
519 		cond_resched();
520 		spin_lock(&inode_lock);
521 		if (wbc->nr_to_write <= 0) {
522 			wbc->more_io = 1;
523 			return 1;
524 		}
525 		if (!list_empty(&wb->b_more_io))
526 			wbc->more_io = 1;
527 	}
528 	/* b_io is empty */
529 	return 1;
530 }
531 
532 void writeback_inodes_wb(struct bdi_writeback *wb,
533 		struct writeback_control *wbc)
534 {
535 	int ret = 0;
536 
537 	if (!wbc->wb_start)
538 		wbc->wb_start = jiffies; /* livelock avoidance */
539 	spin_lock(&inode_lock);
540 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
541 		queue_io(wb, wbc->older_than_this);
542 
543 	while (!list_empty(&wb->b_io)) {
544 		struct inode *inode = wb_inode(wb->b_io.prev);
545 		struct super_block *sb = inode->i_sb;
546 
547 		if (!pin_sb_for_writeback(sb)) {
548 			requeue_io(inode);
549 			continue;
550 		}
551 		ret = writeback_sb_inodes(sb, wb, wbc, false);
552 		drop_super(sb);
553 
554 		if (ret)
555 			break;
556 	}
557 	spin_unlock(&inode_lock);
558 	/* Leave any unwritten inodes on b_io */
559 }
560 
561 static void __writeback_inodes_sb(struct super_block *sb,
562 		struct bdi_writeback *wb, struct writeback_control *wbc)
563 {
564 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
565 
566 	spin_lock(&inode_lock);
567 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
568 		queue_io(wb, wbc->older_than_this);
569 	writeback_sb_inodes(sb, wb, wbc, true);
570 	spin_unlock(&inode_lock);
571 }
572 
573 /*
574  * The maximum number of pages to writeout in a single bdi flush/kupdate
575  * operation.  We do this so we don't hold I_SYNC against an inode for
576  * enormous amounts of time, which would block a userspace task which has
577  * been forced to throttle against that inode.  Also, the code reevaluates
578  * the dirty each time it has written this many pages.
579  */
580 #define MAX_WRITEBACK_PAGES     1024
581 
582 static inline bool over_bground_thresh(void)
583 {
584 	unsigned long background_thresh, dirty_thresh;
585 
586 	global_dirty_limits(&background_thresh, &dirty_thresh);
587 
588 	return (global_page_state(NR_FILE_DIRTY) +
589 		global_page_state(NR_UNSTABLE_NFS) > background_thresh);
590 }
591 
592 /*
593  * Explicit flushing or periodic writeback of "old" data.
594  *
595  * Define "old": the first time one of an inode's pages is dirtied, we mark the
596  * dirtying-time in the inode's address_space.  So this periodic writeback code
597  * just walks the superblock inode list, writing back any inodes which are
598  * older than a specific point in time.
599  *
600  * Try to run once per dirty_writeback_interval.  But if a writeback event
601  * takes longer than a dirty_writeback_interval interval, then leave a
602  * one-second gap.
603  *
604  * older_than_this takes precedence over nr_to_write.  So we'll only write back
605  * all dirty pages if they are all attached to "old" mappings.
606  */
607 static long wb_writeback(struct bdi_writeback *wb,
608 			 struct wb_writeback_work *work)
609 {
610 	struct writeback_control wbc = {
611 		.sync_mode		= work->sync_mode,
612 		.older_than_this	= NULL,
613 		.for_kupdate		= work->for_kupdate,
614 		.for_background		= work->for_background,
615 		.range_cyclic		= work->range_cyclic,
616 	};
617 	unsigned long oldest_jif;
618 	long wrote = 0;
619 	struct inode *inode;
620 
621 	if (wbc.for_kupdate) {
622 		wbc.older_than_this = &oldest_jif;
623 		oldest_jif = jiffies -
624 				msecs_to_jiffies(dirty_expire_interval * 10);
625 	}
626 	if (!wbc.range_cyclic) {
627 		wbc.range_start = 0;
628 		wbc.range_end = LLONG_MAX;
629 	}
630 
631 	wbc.wb_start = jiffies; /* livelock avoidance */
632 	for (;;) {
633 		/*
634 		 * Stop writeback when nr_pages has been consumed
635 		 */
636 		if (work->nr_pages <= 0)
637 			break;
638 
639 		/*
640 		 * For background writeout, stop when we are below the
641 		 * background dirty threshold
642 		 */
643 		if (work->for_background && !over_bground_thresh())
644 			break;
645 
646 		wbc.more_io = 0;
647 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
648 		wbc.pages_skipped = 0;
649 
650 		trace_wbc_writeback_start(&wbc, wb->bdi);
651 		if (work->sb)
652 			__writeback_inodes_sb(work->sb, wb, &wbc);
653 		else
654 			writeback_inodes_wb(wb, &wbc);
655 		trace_wbc_writeback_written(&wbc, wb->bdi);
656 
657 		work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
658 		wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write;
659 
660 		/*
661 		 * If we consumed everything, see if we have more
662 		 */
663 		if (wbc.nr_to_write <= 0)
664 			continue;
665 		/*
666 		 * Didn't write everything and we don't have more IO, bail
667 		 */
668 		if (!wbc.more_io)
669 			break;
670 		/*
671 		 * Did we write something? Try for more
672 		 */
673 		if (wbc.nr_to_write < MAX_WRITEBACK_PAGES)
674 			continue;
675 		/*
676 		 * Nothing written. Wait for some inode to
677 		 * become available for writeback. Otherwise
678 		 * we'll just busyloop.
679 		 */
680 		spin_lock(&inode_lock);
681 		if (!list_empty(&wb->b_more_io))  {
682 			inode = wb_inode(wb->b_more_io.prev);
683 			trace_wbc_writeback_wait(&wbc, wb->bdi);
684 			inode_wait_for_writeback(inode);
685 		}
686 		spin_unlock(&inode_lock);
687 	}
688 
689 	return wrote;
690 }
691 
692 /*
693  * Return the next wb_writeback_work struct that hasn't been processed yet.
694  */
695 static struct wb_writeback_work *
696 get_next_work_item(struct backing_dev_info *bdi)
697 {
698 	struct wb_writeback_work *work = NULL;
699 
700 	spin_lock_bh(&bdi->wb_lock);
701 	if (!list_empty(&bdi->work_list)) {
702 		work = list_entry(bdi->work_list.next,
703 				  struct wb_writeback_work, list);
704 		list_del_init(&work->list);
705 	}
706 	spin_unlock_bh(&bdi->wb_lock);
707 	return work;
708 }
709 
710 /*
711  * Add in the number of potentially dirty inodes, because each inode
712  * write can dirty pagecache in the underlying blockdev.
713  */
714 static unsigned long get_nr_dirty_pages(void)
715 {
716 	return global_page_state(NR_FILE_DIRTY) +
717 		global_page_state(NR_UNSTABLE_NFS) +
718 		get_nr_dirty_inodes();
719 }
720 
721 static long wb_check_old_data_flush(struct bdi_writeback *wb)
722 {
723 	unsigned long expired;
724 	long nr_pages;
725 
726 	/*
727 	 * When set to zero, disable periodic writeback
728 	 */
729 	if (!dirty_writeback_interval)
730 		return 0;
731 
732 	expired = wb->last_old_flush +
733 			msecs_to_jiffies(dirty_writeback_interval * 10);
734 	if (time_before(jiffies, expired))
735 		return 0;
736 
737 	wb->last_old_flush = jiffies;
738 	nr_pages = get_nr_dirty_pages();
739 
740 	if (nr_pages) {
741 		struct wb_writeback_work work = {
742 			.nr_pages	= nr_pages,
743 			.sync_mode	= WB_SYNC_NONE,
744 			.for_kupdate	= 1,
745 			.range_cyclic	= 1,
746 		};
747 
748 		return wb_writeback(wb, &work);
749 	}
750 
751 	return 0;
752 }
753 
754 /*
755  * Retrieve work items and do the writeback they describe
756  */
757 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
758 {
759 	struct backing_dev_info *bdi = wb->bdi;
760 	struct wb_writeback_work *work;
761 	long wrote = 0;
762 
763 	set_bit(BDI_writeback_running, &wb->bdi->state);
764 	while ((work = get_next_work_item(bdi)) != NULL) {
765 		/*
766 		 * Override sync mode, in case we must wait for completion
767 		 * because this thread is exiting now.
768 		 */
769 		if (force_wait)
770 			work->sync_mode = WB_SYNC_ALL;
771 
772 		trace_writeback_exec(bdi, work);
773 
774 		wrote += wb_writeback(wb, work);
775 
776 		/*
777 		 * Notify the caller of completion if this is a synchronous
778 		 * work item, otherwise just free it.
779 		 */
780 		if (work->done)
781 			complete(work->done);
782 		else
783 			kfree(work);
784 	}
785 
786 	/*
787 	 * Check for periodic writeback, kupdated() style
788 	 */
789 	wrote += wb_check_old_data_flush(wb);
790 	clear_bit(BDI_writeback_running, &wb->bdi->state);
791 
792 	return wrote;
793 }
794 
795 /*
796  * Handle writeback of dirty data for the device backed by this bdi. Also
797  * wakes up periodically and does kupdated style flushing.
798  */
799 int bdi_writeback_thread(void *data)
800 {
801 	struct bdi_writeback *wb = data;
802 	struct backing_dev_info *bdi = wb->bdi;
803 	long pages_written;
804 
805 	current->flags |= PF_SWAPWRITE;
806 	set_freezable();
807 	wb->last_active = jiffies;
808 
809 	/*
810 	 * Our parent may run at a different priority, just set us to normal
811 	 */
812 	set_user_nice(current, 0);
813 
814 	trace_writeback_thread_start(bdi);
815 
816 	while (!kthread_should_stop()) {
817 		/*
818 		 * Remove own delayed wake-up timer, since we are already awake
819 		 * and we'll take care of the preriodic write-back.
820 		 */
821 		del_timer(&wb->wakeup_timer);
822 
823 		pages_written = wb_do_writeback(wb, 0);
824 
825 		trace_writeback_pages_written(pages_written);
826 
827 		if (pages_written)
828 			wb->last_active = jiffies;
829 
830 		set_current_state(TASK_INTERRUPTIBLE);
831 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
832 			__set_current_state(TASK_RUNNING);
833 			continue;
834 		}
835 
836 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
837 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
838 		else {
839 			/*
840 			 * We have nothing to do, so can go sleep without any
841 			 * timeout and save power. When a work is queued or
842 			 * something is made dirty - we will be woken up.
843 			 */
844 			schedule();
845 		}
846 
847 		try_to_freeze();
848 	}
849 
850 	/* Flush any work that raced with us exiting */
851 	if (!list_empty(&bdi->work_list))
852 		wb_do_writeback(wb, 1);
853 
854 	trace_writeback_thread_stop(bdi);
855 	return 0;
856 }
857 
858 
859 /*
860  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
861  * the whole world.
862  */
863 void wakeup_flusher_threads(long nr_pages)
864 {
865 	struct backing_dev_info *bdi;
866 
867 	if (!nr_pages) {
868 		nr_pages = global_page_state(NR_FILE_DIRTY) +
869 				global_page_state(NR_UNSTABLE_NFS);
870 	}
871 
872 	rcu_read_lock();
873 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
874 		if (!bdi_has_dirty_io(bdi))
875 			continue;
876 		__bdi_start_writeback(bdi, nr_pages, false, false);
877 	}
878 	rcu_read_unlock();
879 }
880 
881 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
882 {
883 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
884 		struct dentry *dentry;
885 		const char *name = "?";
886 
887 		dentry = d_find_alias(inode);
888 		if (dentry) {
889 			spin_lock(&dentry->d_lock);
890 			name = (const char *) dentry->d_name.name;
891 		}
892 		printk(KERN_DEBUG
893 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
894 		       current->comm, task_pid_nr(current), inode->i_ino,
895 		       name, inode->i_sb->s_id);
896 		if (dentry) {
897 			spin_unlock(&dentry->d_lock);
898 			dput(dentry);
899 		}
900 	}
901 }
902 
903 /**
904  *	__mark_inode_dirty -	internal function
905  *	@inode: inode to mark
906  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
907  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
908  *  	mark_inode_dirty_sync.
909  *
910  * Put the inode on the super block's dirty list.
911  *
912  * CAREFUL! We mark it dirty unconditionally, but move it onto the
913  * dirty list only if it is hashed or if it refers to a blockdev.
914  * If it was not hashed, it will never be added to the dirty list
915  * even if it is later hashed, as it will have been marked dirty already.
916  *
917  * In short, make sure you hash any inodes _before_ you start marking
918  * them dirty.
919  *
920  * This function *must* be atomic for the I_DIRTY_PAGES case -
921  * set_page_dirty() is called under spinlock in several places.
922  *
923  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
924  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
925  * the kernel-internal blockdev inode represents the dirtying time of the
926  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
927  * page->mapping->host, so the page-dirtying time is recorded in the internal
928  * blockdev inode.
929  */
930 void __mark_inode_dirty(struct inode *inode, int flags)
931 {
932 	struct super_block *sb = inode->i_sb;
933 	struct backing_dev_info *bdi = NULL;
934 	bool wakeup_bdi = false;
935 
936 	/*
937 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
938 	 * dirty the inode itself
939 	 */
940 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
941 		if (sb->s_op->dirty_inode)
942 			sb->s_op->dirty_inode(inode);
943 	}
944 
945 	/*
946 	 * make sure that changes are seen by all cpus before we test i_state
947 	 * -- mikulas
948 	 */
949 	smp_mb();
950 
951 	/* avoid the locking if we can */
952 	if ((inode->i_state & flags) == flags)
953 		return;
954 
955 	if (unlikely(block_dump))
956 		block_dump___mark_inode_dirty(inode);
957 
958 	spin_lock(&inode_lock);
959 	if ((inode->i_state & flags) != flags) {
960 		const int was_dirty = inode->i_state & I_DIRTY;
961 
962 		inode->i_state |= flags;
963 
964 		/*
965 		 * If the inode is being synced, just update its dirty state.
966 		 * The unlocker will place the inode on the appropriate
967 		 * superblock list, based upon its state.
968 		 */
969 		if (inode->i_state & I_SYNC)
970 			goto out;
971 
972 		/*
973 		 * Only add valid (hashed) inodes to the superblock's
974 		 * dirty list.  Add blockdev inodes as well.
975 		 */
976 		if (!S_ISBLK(inode->i_mode)) {
977 			if (inode_unhashed(inode))
978 				goto out;
979 		}
980 		if (inode->i_state & I_FREEING)
981 			goto out;
982 
983 		/*
984 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
985 		 * reposition it (that would break b_dirty time-ordering).
986 		 */
987 		if (!was_dirty) {
988 			bdi = inode_to_bdi(inode);
989 
990 			if (bdi_cap_writeback_dirty(bdi)) {
991 				WARN(!test_bit(BDI_registered, &bdi->state),
992 				     "bdi-%s not registered\n", bdi->name);
993 
994 				/*
995 				 * If this is the first dirty inode for this
996 				 * bdi, we have to wake-up the corresponding
997 				 * bdi thread to make sure background
998 				 * write-back happens later.
999 				 */
1000 				if (!wb_has_dirty_io(&bdi->wb))
1001 					wakeup_bdi = true;
1002 			}
1003 
1004 			inode->dirtied_when = jiffies;
1005 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1006 		}
1007 	}
1008 out:
1009 	spin_unlock(&inode_lock);
1010 
1011 	if (wakeup_bdi)
1012 		bdi_wakeup_thread_delayed(bdi);
1013 }
1014 EXPORT_SYMBOL(__mark_inode_dirty);
1015 
1016 /*
1017  * Write out a superblock's list of dirty inodes.  A wait will be performed
1018  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1019  *
1020  * If older_than_this is non-NULL, then only write out inodes which
1021  * had their first dirtying at a time earlier than *older_than_this.
1022  *
1023  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1024  * This function assumes that the blockdev superblock's inodes are backed by
1025  * a variety of queues, so all inodes are searched.  For other superblocks,
1026  * assume that all inodes are backed by the same queue.
1027  *
1028  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1029  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1030  * on the writer throttling path, and we get decent balancing between many
1031  * throttled threads: we don't want them all piling up on inode_sync_wait.
1032  */
1033 static void wait_sb_inodes(struct super_block *sb)
1034 {
1035 	struct inode *inode, *old_inode = NULL;
1036 
1037 	/*
1038 	 * We need to be protected against the filesystem going from
1039 	 * r/o to r/w or vice versa.
1040 	 */
1041 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1042 
1043 	spin_lock(&inode_lock);
1044 
1045 	/*
1046 	 * Data integrity sync. Must wait for all pages under writeback,
1047 	 * because there may have been pages dirtied before our sync
1048 	 * call, but which had writeout started before we write it out.
1049 	 * In which case, the inode may not be on the dirty list, but
1050 	 * we still have to wait for that writeout.
1051 	 */
1052 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1053 		struct address_space *mapping;
1054 
1055 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1056 			continue;
1057 		mapping = inode->i_mapping;
1058 		if (mapping->nrpages == 0)
1059 			continue;
1060 		__iget(inode);
1061 		spin_unlock(&inode_lock);
1062 		/*
1063 		 * We hold a reference to 'inode' so it couldn't have
1064 		 * been removed from s_inodes list while we dropped the
1065 		 * inode_lock.  We cannot iput the inode now as we can
1066 		 * be holding the last reference and we cannot iput it
1067 		 * under inode_lock. So we keep the reference and iput
1068 		 * it later.
1069 		 */
1070 		iput(old_inode);
1071 		old_inode = inode;
1072 
1073 		filemap_fdatawait(mapping);
1074 
1075 		cond_resched();
1076 
1077 		spin_lock(&inode_lock);
1078 	}
1079 	spin_unlock(&inode_lock);
1080 	iput(old_inode);
1081 }
1082 
1083 /**
1084  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1085  * @sb: the superblock
1086  * @nr: the number of pages to write
1087  *
1088  * Start writeback on some inodes on this super_block. No guarantees are made
1089  * on how many (if any) will be written, and this function does not wait
1090  * for IO completion of submitted IO.
1091  */
1092 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1093 {
1094 	DECLARE_COMPLETION_ONSTACK(done);
1095 	struct wb_writeback_work work = {
1096 		.sb		= sb,
1097 		.sync_mode	= WB_SYNC_NONE,
1098 		.done		= &done,
1099 		.nr_pages	= nr,
1100 	};
1101 
1102 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1103 	bdi_queue_work(sb->s_bdi, &work);
1104 	wait_for_completion(&done);
1105 }
1106 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1107 
1108 /**
1109  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1110  * @sb: the superblock
1111  *
1112  * Start writeback on some inodes on this super_block. No guarantees are made
1113  * on how many (if any) will be written, and this function does not wait
1114  * for IO completion of submitted IO.
1115  */
1116 void writeback_inodes_sb(struct super_block *sb)
1117 {
1118 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1119 }
1120 EXPORT_SYMBOL(writeback_inodes_sb);
1121 
1122 /**
1123  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1124  * @sb: the superblock
1125  *
1126  * Invoke writeback_inodes_sb if no writeback is currently underway.
1127  * Returns 1 if writeback was started, 0 if not.
1128  */
1129 int writeback_inodes_sb_if_idle(struct super_block *sb)
1130 {
1131 	if (!writeback_in_progress(sb->s_bdi)) {
1132 		down_read(&sb->s_umount);
1133 		writeback_inodes_sb(sb);
1134 		up_read(&sb->s_umount);
1135 		return 1;
1136 	} else
1137 		return 0;
1138 }
1139 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1140 
1141 /**
1142  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1143  * @sb: the superblock
1144  * @nr: the number of pages to write
1145  *
1146  * Invoke writeback_inodes_sb if no writeback is currently underway.
1147  * Returns 1 if writeback was started, 0 if not.
1148  */
1149 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1150 				   unsigned long nr)
1151 {
1152 	if (!writeback_in_progress(sb->s_bdi)) {
1153 		down_read(&sb->s_umount);
1154 		writeback_inodes_sb_nr(sb, nr);
1155 		up_read(&sb->s_umount);
1156 		return 1;
1157 	} else
1158 		return 0;
1159 }
1160 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1161 
1162 /**
1163  * sync_inodes_sb	-	sync sb inode pages
1164  * @sb: the superblock
1165  *
1166  * This function writes and waits on any dirty inode belonging to this
1167  * super_block. The number of pages synced is returned.
1168  */
1169 void sync_inodes_sb(struct super_block *sb)
1170 {
1171 	DECLARE_COMPLETION_ONSTACK(done);
1172 	struct wb_writeback_work work = {
1173 		.sb		= sb,
1174 		.sync_mode	= WB_SYNC_ALL,
1175 		.nr_pages	= LONG_MAX,
1176 		.range_cyclic	= 0,
1177 		.done		= &done,
1178 	};
1179 
1180 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1181 
1182 	bdi_queue_work(sb->s_bdi, &work);
1183 	wait_for_completion(&done);
1184 
1185 	wait_sb_inodes(sb);
1186 }
1187 EXPORT_SYMBOL(sync_inodes_sb);
1188 
1189 /**
1190  * write_inode_now	-	write an inode to disk
1191  * @inode: inode to write to disk
1192  * @sync: whether the write should be synchronous or not
1193  *
1194  * This function commits an inode to disk immediately if it is dirty. This is
1195  * primarily needed by knfsd.
1196  *
1197  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1198  */
1199 int write_inode_now(struct inode *inode, int sync)
1200 {
1201 	int ret;
1202 	struct writeback_control wbc = {
1203 		.nr_to_write = LONG_MAX,
1204 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1205 		.range_start = 0,
1206 		.range_end = LLONG_MAX,
1207 	};
1208 
1209 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1210 		wbc.nr_to_write = 0;
1211 
1212 	might_sleep();
1213 	spin_lock(&inode_lock);
1214 	ret = writeback_single_inode(inode, &wbc);
1215 	spin_unlock(&inode_lock);
1216 	if (sync)
1217 		inode_sync_wait(inode);
1218 	return ret;
1219 }
1220 EXPORT_SYMBOL(write_inode_now);
1221 
1222 /**
1223  * sync_inode - write an inode and its pages to disk.
1224  * @inode: the inode to sync
1225  * @wbc: controls the writeback mode
1226  *
1227  * sync_inode() will write an inode and its pages to disk.  It will also
1228  * correctly update the inode on its superblock's dirty inode lists and will
1229  * update inode->i_state.
1230  *
1231  * The caller must have a ref on the inode.
1232  */
1233 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1234 {
1235 	int ret;
1236 
1237 	spin_lock(&inode_lock);
1238 	ret = writeback_single_inode(inode, wbc);
1239 	spin_unlock(&inode_lock);
1240 	return ret;
1241 }
1242 EXPORT_SYMBOL(sync_inode);
1243 
1244 /**
1245  * sync_inode - write an inode to disk
1246  * @inode: the inode to sync
1247  * @wait: wait for I/O to complete.
1248  *
1249  * Write an inode to disk and adjust it's dirty state after completion.
1250  *
1251  * Note: only writes the actual inode, no associated data or other metadata.
1252  */
1253 int sync_inode_metadata(struct inode *inode, int wait)
1254 {
1255 	struct writeback_control wbc = {
1256 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1257 		.nr_to_write = 0, /* metadata-only */
1258 	};
1259 
1260 	return sync_inode(inode, &wbc);
1261 }
1262 EXPORT_SYMBOL(sync_inode_metadata);
1263