1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 enum writeback_sync_modes sync_mode; 39 unsigned int for_kupdate:1; 40 unsigned int range_cyclic:1; 41 unsigned int for_background:1; 42 43 struct list_head list; /* pending work list */ 44 struct completion *done; /* set if the caller waits */ 45 }; 46 47 /* 48 * Include the creation of the trace points after defining the 49 * wb_writeback_work structure so that the definition remains local to this 50 * file. 51 */ 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/writeback.h> 54 55 /* 56 * We don't actually have pdflush, but this one is exported though /proc... 57 */ 58 int nr_pdflush_threads; 59 60 /** 61 * writeback_in_progress - determine whether there is writeback in progress 62 * @bdi: the device's backing_dev_info structure. 63 * 64 * Determine whether there is writeback waiting to be handled against a 65 * backing device. 66 */ 67 int writeback_in_progress(struct backing_dev_info *bdi) 68 { 69 return test_bit(BDI_writeback_running, &bdi->state); 70 } 71 72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 73 { 74 struct super_block *sb = inode->i_sb; 75 76 if (strcmp(sb->s_type->name, "bdev") == 0) 77 return inode->i_mapping->backing_dev_info; 78 79 return sb->s_bdi; 80 } 81 82 static inline struct inode *wb_inode(struct list_head *head) 83 { 84 return list_entry(head, struct inode, i_wb_list); 85 } 86 87 static void bdi_queue_work(struct backing_dev_info *bdi, 88 struct wb_writeback_work *work) 89 { 90 trace_writeback_queue(bdi, work); 91 92 spin_lock_bh(&bdi->wb_lock); 93 list_add_tail(&work->list, &bdi->work_list); 94 if (bdi->wb.task) { 95 wake_up_process(bdi->wb.task); 96 } else { 97 /* 98 * The bdi thread isn't there, wake up the forker thread which 99 * will create and run it. 100 */ 101 trace_writeback_nothread(bdi, work); 102 wake_up_process(default_backing_dev_info.wb.task); 103 } 104 spin_unlock_bh(&bdi->wb_lock); 105 } 106 107 static void 108 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 109 bool range_cyclic, bool for_background) 110 { 111 struct wb_writeback_work *work; 112 113 /* 114 * This is WB_SYNC_NONE writeback, so if allocation fails just 115 * wakeup the thread for old dirty data writeback 116 */ 117 work = kzalloc(sizeof(*work), GFP_ATOMIC); 118 if (!work) { 119 if (bdi->wb.task) { 120 trace_writeback_nowork(bdi); 121 wake_up_process(bdi->wb.task); 122 } 123 return; 124 } 125 126 work->sync_mode = WB_SYNC_NONE; 127 work->nr_pages = nr_pages; 128 work->range_cyclic = range_cyclic; 129 work->for_background = for_background; 130 131 bdi_queue_work(bdi, work); 132 } 133 134 /** 135 * bdi_start_writeback - start writeback 136 * @bdi: the backing device to write from 137 * @nr_pages: the number of pages to write 138 * 139 * Description: 140 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 141 * started when this function returns, we make no guarentees on 142 * completion. Caller need not hold sb s_umount semaphore. 143 * 144 */ 145 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 146 { 147 __bdi_start_writeback(bdi, nr_pages, true, false); 148 } 149 150 /** 151 * bdi_start_background_writeback - start background writeback 152 * @bdi: the backing device to write from 153 * 154 * Description: 155 * This does WB_SYNC_NONE background writeback. The IO is only 156 * started when this function returns, we make no guarentees on 157 * completion. Caller need not hold sb s_umount semaphore. 158 */ 159 void bdi_start_background_writeback(struct backing_dev_info *bdi) 160 { 161 __bdi_start_writeback(bdi, LONG_MAX, true, true); 162 } 163 164 /* 165 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 166 * furthest end of its superblock's dirty-inode list. 167 * 168 * Before stamping the inode's ->dirtied_when, we check to see whether it is 169 * already the most-recently-dirtied inode on the b_dirty list. If that is 170 * the case then the inode must have been redirtied while it was being written 171 * out and we don't reset its dirtied_when. 172 */ 173 static void redirty_tail(struct inode *inode) 174 { 175 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 176 177 if (!list_empty(&wb->b_dirty)) { 178 struct inode *tail; 179 180 tail = wb_inode(wb->b_dirty.next); 181 if (time_before(inode->dirtied_when, tail->dirtied_when)) 182 inode->dirtied_when = jiffies; 183 } 184 list_move(&inode->i_wb_list, &wb->b_dirty); 185 } 186 187 /* 188 * requeue inode for re-scanning after bdi->b_io list is exhausted. 189 */ 190 static void requeue_io(struct inode *inode) 191 { 192 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 193 194 list_move(&inode->i_wb_list, &wb->b_more_io); 195 } 196 197 static void inode_sync_complete(struct inode *inode) 198 { 199 /* 200 * Prevent speculative execution through spin_unlock(&inode_lock); 201 */ 202 smp_mb(); 203 wake_up_bit(&inode->i_state, __I_SYNC); 204 } 205 206 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 207 { 208 bool ret = time_after(inode->dirtied_when, t); 209 #ifndef CONFIG_64BIT 210 /* 211 * For inodes being constantly redirtied, dirtied_when can get stuck. 212 * It _appears_ to be in the future, but is actually in distant past. 213 * This test is necessary to prevent such wrapped-around relative times 214 * from permanently stopping the whole bdi writeback. 215 */ 216 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 217 #endif 218 return ret; 219 } 220 221 /* 222 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 223 */ 224 static void move_expired_inodes(struct list_head *delaying_queue, 225 struct list_head *dispatch_queue, 226 unsigned long *older_than_this) 227 { 228 LIST_HEAD(tmp); 229 struct list_head *pos, *node; 230 struct super_block *sb = NULL; 231 struct inode *inode; 232 int do_sb_sort = 0; 233 234 while (!list_empty(delaying_queue)) { 235 inode = wb_inode(delaying_queue->prev); 236 if (older_than_this && 237 inode_dirtied_after(inode, *older_than_this)) 238 break; 239 if (sb && sb != inode->i_sb) 240 do_sb_sort = 1; 241 sb = inode->i_sb; 242 list_move(&inode->i_wb_list, &tmp); 243 } 244 245 /* just one sb in list, splice to dispatch_queue and we're done */ 246 if (!do_sb_sort) { 247 list_splice(&tmp, dispatch_queue); 248 return; 249 } 250 251 /* Move inodes from one superblock together */ 252 while (!list_empty(&tmp)) { 253 sb = wb_inode(tmp.prev)->i_sb; 254 list_for_each_prev_safe(pos, node, &tmp) { 255 inode = wb_inode(pos); 256 if (inode->i_sb == sb) 257 list_move(&inode->i_wb_list, dispatch_queue); 258 } 259 } 260 } 261 262 /* 263 * Queue all expired dirty inodes for io, eldest first. 264 * Before 265 * newly dirtied b_dirty b_io b_more_io 266 * =============> gf edc BA 267 * After 268 * newly dirtied b_dirty b_io b_more_io 269 * =============> g fBAedc 270 * | 271 * +--> dequeue for IO 272 */ 273 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 274 { 275 list_splice_init(&wb->b_more_io, &wb->b_io); 276 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 277 } 278 279 static int write_inode(struct inode *inode, struct writeback_control *wbc) 280 { 281 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 282 return inode->i_sb->s_op->write_inode(inode, wbc); 283 return 0; 284 } 285 286 /* 287 * Wait for writeback on an inode to complete. 288 */ 289 static void inode_wait_for_writeback(struct inode *inode) 290 { 291 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 292 wait_queue_head_t *wqh; 293 294 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 295 while (inode->i_state & I_SYNC) { 296 spin_unlock(&inode_lock); 297 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 298 spin_lock(&inode_lock); 299 } 300 } 301 302 /* 303 * Write out an inode's dirty pages. Called under inode_lock. Either the 304 * caller has ref on the inode (either via __iget or via syscall against an fd) 305 * or the inode has I_WILL_FREE set (via generic_forget_inode) 306 * 307 * If `wait' is set, wait on the writeout. 308 * 309 * The whole writeout design is quite complex and fragile. We want to avoid 310 * starvation of particular inodes when others are being redirtied, prevent 311 * livelocks, etc. 312 * 313 * Called under inode_lock. 314 */ 315 static int 316 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 317 { 318 struct address_space *mapping = inode->i_mapping; 319 unsigned dirty; 320 int ret; 321 322 if (!atomic_read(&inode->i_count)) 323 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 324 else 325 WARN_ON(inode->i_state & I_WILL_FREE); 326 327 if (inode->i_state & I_SYNC) { 328 /* 329 * If this inode is locked for writeback and we are not doing 330 * writeback-for-data-integrity, move it to b_more_io so that 331 * writeback can proceed with the other inodes on s_io. 332 * 333 * We'll have another go at writing back this inode when we 334 * completed a full scan of b_io. 335 */ 336 if (wbc->sync_mode != WB_SYNC_ALL) { 337 requeue_io(inode); 338 return 0; 339 } 340 341 /* 342 * It's a data-integrity sync. We must wait. 343 */ 344 inode_wait_for_writeback(inode); 345 } 346 347 BUG_ON(inode->i_state & I_SYNC); 348 349 /* Set I_SYNC, reset I_DIRTY_PAGES */ 350 inode->i_state |= I_SYNC; 351 inode->i_state &= ~I_DIRTY_PAGES; 352 spin_unlock(&inode_lock); 353 354 ret = do_writepages(mapping, wbc); 355 356 /* 357 * Make sure to wait on the data before writing out the metadata. 358 * This is important for filesystems that modify metadata on data 359 * I/O completion. 360 */ 361 if (wbc->sync_mode == WB_SYNC_ALL) { 362 int err = filemap_fdatawait(mapping); 363 if (ret == 0) 364 ret = err; 365 } 366 367 /* 368 * Some filesystems may redirty the inode during the writeback 369 * due to delalloc, clear dirty metadata flags right before 370 * write_inode() 371 */ 372 spin_lock(&inode_lock); 373 dirty = inode->i_state & I_DIRTY; 374 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 375 spin_unlock(&inode_lock); 376 /* Don't write the inode if only I_DIRTY_PAGES was set */ 377 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 378 int err = write_inode(inode, wbc); 379 if (ret == 0) 380 ret = err; 381 } 382 383 spin_lock(&inode_lock); 384 inode->i_state &= ~I_SYNC; 385 if (!(inode->i_state & I_FREEING)) { 386 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 387 /* 388 * We didn't write back all the pages. nfs_writepages() 389 * sometimes bales out without doing anything. 390 */ 391 inode->i_state |= I_DIRTY_PAGES; 392 if (wbc->nr_to_write <= 0) { 393 /* 394 * slice used up: queue for next turn 395 */ 396 requeue_io(inode); 397 } else { 398 /* 399 * Writeback blocked by something other than 400 * congestion. Delay the inode for some time to 401 * avoid spinning on the CPU (100% iowait) 402 * retrying writeback of the dirty page/inode 403 * that cannot be performed immediately. 404 */ 405 redirty_tail(inode); 406 } 407 } else if (inode->i_state & I_DIRTY) { 408 /* 409 * Filesystems can dirty the inode during writeback 410 * operations, such as delayed allocation during 411 * submission or metadata updates after data IO 412 * completion. 413 */ 414 redirty_tail(inode); 415 } else { 416 /* 417 * The inode is clean. At this point we either have 418 * a reference to the inode or it's on it's way out. 419 * No need to add it back to the LRU. 420 */ 421 list_del_init(&inode->i_wb_list); 422 } 423 } 424 inode_sync_complete(inode); 425 return ret; 426 } 427 428 /* 429 * For background writeback the caller does not have the sb pinned 430 * before calling writeback. So make sure that we do pin it, so it doesn't 431 * go away while we are writing inodes from it. 432 */ 433 static bool pin_sb_for_writeback(struct super_block *sb) 434 { 435 spin_lock(&sb_lock); 436 if (list_empty(&sb->s_instances)) { 437 spin_unlock(&sb_lock); 438 return false; 439 } 440 441 sb->s_count++; 442 spin_unlock(&sb_lock); 443 444 if (down_read_trylock(&sb->s_umount)) { 445 if (sb->s_root) 446 return true; 447 up_read(&sb->s_umount); 448 } 449 450 put_super(sb); 451 return false; 452 } 453 454 /* 455 * Write a portion of b_io inodes which belong to @sb. 456 * 457 * If @only_this_sb is true, then find and write all such 458 * inodes. Otherwise write only ones which go sequentially 459 * in reverse order. 460 * 461 * Return 1, if the caller writeback routine should be 462 * interrupted. Otherwise return 0. 463 */ 464 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, 465 struct writeback_control *wbc, bool only_this_sb) 466 { 467 while (!list_empty(&wb->b_io)) { 468 long pages_skipped; 469 struct inode *inode = wb_inode(wb->b_io.prev); 470 471 if (inode->i_sb != sb) { 472 if (only_this_sb) { 473 /* 474 * We only want to write back data for this 475 * superblock, move all inodes not belonging 476 * to it back onto the dirty list. 477 */ 478 redirty_tail(inode); 479 continue; 480 } 481 482 /* 483 * The inode belongs to a different superblock. 484 * Bounce back to the caller to unpin this and 485 * pin the next superblock. 486 */ 487 return 0; 488 } 489 490 /* 491 * Don't bother with new inodes or inodes beeing freed, first 492 * kind does not need peridic writeout yet, and for the latter 493 * kind writeout is handled by the freer. 494 */ 495 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 496 requeue_io(inode); 497 continue; 498 } 499 500 /* 501 * Was this inode dirtied after sync_sb_inodes was called? 502 * This keeps sync from extra jobs and livelock. 503 */ 504 if (inode_dirtied_after(inode, wbc->wb_start)) 505 return 1; 506 507 __iget(inode); 508 pages_skipped = wbc->pages_skipped; 509 writeback_single_inode(inode, wbc); 510 if (wbc->pages_skipped != pages_skipped) { 511 /* 512 * writeback is not making progress due to locked 513 * buffers. Skip this inode for now. 514 */ 515 redirty_tail(inode); 516 } 517 spin_unlock(&inode_lock); 518 iput(inode); 519 cond_resched(); 520 spin_lock(&inode_lock); 521 if (wbc->nr_to_write <= 0) { 522 wbc->more_io = 1; 523 return 1; 524 } 525 if (!list_empty(&wb->b_more_io)) 526 wbc->more_io = 1; 527 } 528 /* b_io is empty */ 529 return 1; 530 } 531 532 void writeback_inodes_wb(struct bdi_writeback *wb, 533 struct writeback_control *wbc) 534 { 535 int ret = 0; 536 537 if (!wbc->wb_start) 538 wbc->wb_start = jiffies; /* livelock avoidance */ 539 spin_lock(&inode_lock); 540 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 541 queue_io(wb, wbc->older_than_this); 542 543 while (!list_empty(&wb->b_io)) { 544 struct inode *inode = wb_inode(wb->b_io.prev); 545 struct super_block *sb = inode->i_sb; 546 547 if (!pin_sb_for_writeback(sb)) { 548 requeue_io(inode); 549 continue; 550 } 551 ret = writeback_sb_inodes(sb, wb, wbc, false); 552 drop_super(sb); 553 554 if (ret) 555 break; 556 } 557 spin_unlock(&inode_lock); 558 /* Leave any unwritten inodes on b_io */ 559 } 560 561 static void __writeback_inodes_sb(struct super_block *sb, 562 struct bdi_writeback *wb, struct writeback_control *wbc) 563 { 564 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 565 566 spin_lock(&inode_lock); 567 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 568 queue_io(wb, wbc->older_than_this); 569 writeback_sb_inodes(sb, wb, wbc, true); 570 spin_unlock(&inode_lock); 571 } 572 573 /* 574 * The maximum number of pages to writeout in a single bdi flush/kupdate 575 * operation. We do this so we don't hold I_SYNC against an inode for 576 * enormous amounts of time, which would block a userspace task which has 577 * been forced to throttle against that inode. Also, the code reevaluates 578 * the dirty each time it has written this many pages. 579 */ 580 #define MAX_WRITEBACK_PAGES 1024 581 582 static inline bool over_bground_thresh(void) 583 { 584 unsigned long background_thresh, dirty_thresh; 585 586 global_dirty_limits(&background_thresh, &dirty_thresh); 587 588 return (global_page_state(NR_FILE_DIRTY) + 589 global_page_state(NR_UNSTABLE_NFS) > background_thresh); 590 } 591 592 /* 593 * Explicit flushing or periodic writeback of "old" data. 594 * 595 * Define "old": the first time one of an inode's pages is dirtied, we mark the 596 * dirtying-time in the inode's address_space. So this periodic writeback code 597 * just walks the superblock inode list, writing back any inodes which are 598 * older than a specific point in time. 599 * 600 * Try to run once per dirty_writeback_interval. But if a writeback event 601 * takes longer than a dirty_writeback_interval interval, then leave a 602 * one-second gap. 603 * 604 * older_than_this takes precedence over nr_to_write. So we'll only write back 605 * all dirty pages if they are all attached to "old" mappings. 606 */ 607 static long wb_writeback(struct bdi_writeback *wb, 608 struct wb_writeback_work *work) 609 { 610 struct writeback_control wbc = { 611 .sync_mode = work->sync_mode, 612 .older_than_this = NULL, 613 .for_kupdate = work->for_kupdate, 614 .for_background = work->for_background, 615 .range_cyclic = work->range_cyclic, 616 }; 617 unsigned long oldest_jif; 618 long wrote = 0; 619 struct inode *inode; 620 621 if (wbc.for_kupdate) { 622 wbc.older_than_this = &oldest_jif; 623 oldest_jif = jiffies - 624 msecs_to_jiffies(dirty_expire_interval * 10); 625 } 626 if (!wbc.range_cyclic) { 627 wbc.range_start = 0; 628 wbc.range_end = LLONG_MAX; 629 } 630 631 wbc.wb_start = jiffies; /* livelock avoidance */ 632 for (;;) { 633 /* 634 * Stop writeback when nr_pages has been consumed 635 */ 636 if (work->nr_pages <= 0) 637 break; 638 639 /* 640 * For background writeout, stop when we are below the 641 * background dirty threshold 642 */ 643 if (work->for_background && !over_bground_thresh()) 644 break; 645 646 wbc.more_io = 0; 647 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 648 wbc.pages_skipped = 0; 649 650 trace_wbc_writeback_start(&wbc, wb->bdi); 651 if (work->sb) 652 __writeback_inodes_sb(work->sb, wb, &wbc); 653 else 654 writeback_inodes_wb(wb, &wbc); 655 trace_wbc_writeback_written(&wbc, wb->bdi); 656 657 work->nr_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 658 wrote += MAX_WRITEBACK_PAGES - wbc.nr_to_write; 659 660 /* 661 * If we consumed everything, see if we have more 662 */ 663 if (wbc.nr_to_write <= 0) 664 continue; 665 /* 666 * Didn't write everything and we don't have more IO, bail 667 */ 668 if (!wbc.more_io) 669 break; 670 /* 671 * Did we write something? Try for more 672 */ 673 if (wbc.nr_to_write < MAX_WRITEBACK_PAGES) 674 continue; 675 /* 676 * Nothing written. Wait for some inode to 677 * become available for writeback. Otherwise 678 * we'll just busyloop. 679 */ 680 spin_lock(&inode_lock); 681 if (!list_empty(&wb->b_more_io)) { 682 inode = wb_inode(wb->b_more_io.prev); 683 trace_wbc_writeback_wait(&wbc, wb->bdi); 684 inode_wait_for_writeback(inode); 685 } 686 spin_unlock(&inode_lock); 687 } 688 689 return wrote; 690 } 691 692 /* 693 * Return the next wb_writeback_work struct that hasn't been processed yet. 694 */ 695 static struct wb_writeback_work * 696 get_next_work_item(struct backing_dev_info *bdi) 697 { 698 struct wb_writeback_work *work = NULL; 699 700 spin_lock_bh(&bdi->wb_lock); 701 if (!list_empty(&bdi->work_list)) { 702 work = list_entry(bdi->work_list.next, 703 struct wb_writeback_work, list); 704 list_del_init(&work->list); 705 } 706 spin_unlock_bh(&bdi->wb_lock); 707 return work; 708 } 709 710 /* 711 * Add in the number of potentially dirty inodes, because each inode 712 * write can dirty pagecache in the underlying blockdev. 713 */ 714 static unsigned long get_nr_dirty_pages(void) 715 { 716 return global_page_state(NR_FILE_DIRTY) + 717 global_page_state(NR_UNSTABLE_NFS) + 718 get_nr_dirty_inodes(); 719 } 720 721 static long wb_check_old_data_flush(struct bdi_writeback *wb) 722 { 723 unsigned long expired; 724 long nr_pages; 725 726 /* 727 * When set to zero, disable periodic writeback 728 */ 729 if (!dirty_writeback_interval) 730 return 0; 731 732 expired = wb->last_old_flush + 733 msecs_to_jiffies(dirty_writeback_interval * 10); 734 if (time_before(jiffies, expired)) 735 return 0; 736 737 wb->last_old_flush = jiffies; 738 nr_pages = get_nr_dirty_pages(); 739 740 if (nr_pages) { 741 struct wb_writeback_work work = { 742 .nr_pages = nr_pages, 743 .sync_mode = WB_SYNC_NONE, 744 .for_kupdate = 1, 745 .range_cyclic = 1, 746 }; 747 748 return wb_writeback(wb, &work); 749 } 750 751 return 0; 752 } 753 754 /* 755 * Retrieve work items and do the writeback they describe 756 */ 757 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 758 { 759 struct backing_dev_info *bdi = wb->bdi; 760 struct wb_writeback_work *work; 761 long wrote = 0; 762 763 set_bit(BDI_writeback_running, &wb->bdi->state); 764 while ((work = get_next_work_item(bdi)) != NULL) { 765 /* 766 * Override sync mode, in case we must wait for completion 767 * because this thread is exiting now. 768 */ 769 if (force_wait) 770 work->sync_mode = WB_SYNC_ALL; 771 772 trace_writeback_exec(bdi, work); 773 774 wrote += wb_writeback(wb, work); 775 776 /* 777 * Notify the caller of completion if this is a synchronous 778 * work item, otherwise just free it. 779 */ 780 if (work->done) 781 complete(work->done); 782 else 783 kfree(work); 784 } 785 786 /* 787 * Check for periodic writeback, kupdated() style 788 */ 789 wrote += wb_check_old_data_flush(wb); 790 clear_bit(BDI_writeback_running, &wb->bdi->state); 791 792 return wrote; 793 } 794 795 /* 796 * Handle writeback of dirty data for the device backed by this bdi. Also 797 * wakes up periodically and does kupdated style flushing. 798 */ 799 int bdi_writeback_thread(void *data) 800 { 801 struct bdi_writeback *wb = data; 802 struct backing_dev_info *bdi = wb->bdi; 803 long pages_written; 804 805 current->flags |= PF_SWAPWRITE; 806 set_freezable(); 807 wb->last_active = jiffies; 808 809 /* 810 * Our parent may run at a different priority, just set us to normal 811 */ 812 set_user_nice(current, 0); 813 814 trace_writeback_thread_start(bdi); 815 816 while (!kthread_should_stop()) { 817 /* 818 * Remove own delayed wake-up timer, since we are already awake 819 * and we'll take care of the preriodic write-back. 820 */ 821 del_timer(&wb->wakeup_timer); 822 823 pages_written = wb_do_writeback(wb, 0); 824 825 trace_writeback_pages_written(pages_written); 826 827 if (pages_written) 828 wb->last_active = jiffies; 829 830 set_current_state(TASK_INTERRUPTIBLE); 831 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 832 __set_current_state(TASK_RUNNING); 833 continue; 834 } 835 836 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 837 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 838 else { 839 /* 840 * We have nothing to do, so can go sleep without any 841 * timeout and save power. When a work is queued or 842 * something is made dirty - we will be woken up. 843 */ 844 schedule(); 845 } 846 847 try_to_freeze(); 848 } 849 850 /* Flush any work that raced with us exiting */ 851 if (!list_empty(&bdi->work_list)) 852 wb_do_writeback(wb, 1); 853 854 trace_writeback_thread_stop(bdi); 855 return 0; 856 } 857 858 859 /* 860 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 861 * the whole world. 862 */ 863 void wakeup_flusher_threads(long nr_pages) 864 { 865 struct backing_dev_info *bdi; 866 867 if (!nr_pages) { 868 nr_pages = global_page_state(NR_FILE_DIRTY) + 869 global_page_state(NR_UNSTABLE_NFS); 870 } 871 872 rcu_read_lock(); 873 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 874 if (!bdi_has_dirty_io(bdi)) 875 continue; 876 __bdi_start_writeback(bdi, nr_pages, false, false); 877 } 878 rcu_read_unlock(); 879 } 880 881 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 882 { 883 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 884 struct dentry *dentry; 885 const char *name = "?"; 886 887 dentry = d_find_alias(inode); 888 if (dentry) { 889 spin_lock(&dentry->d_lock); 890 name = (const char *) dentry->d_name.name; 891 } 892 printk(KERN_DEBUG 893 "%s(%d): dirtied inode %lu (%s) on %s\n", 894 current->comm, task_pid_nr(current), inode->i_ino, 895 name, inode->i_sb->s_id); 896 if (dentry) { 897 spin_unlock(&dentry->d_lock); 898 dput(dentry); 899 } 900 } 901 } 902 903 /** 904 * __mark_inode_dirty - internal function 905 * @inode: inode to mark 906 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 907 * Mark an inode as dirty. Callers should use mark_inode_dirty or 908 * mark_inode_dirty_sync. 909 * 910 * Put the inode on the super block's dirty list. 911 * 912 * CAREFUL! We mark it dirty unconditionally, but move it onto the 913 * dirty list only if it is hashed or if it refers to a blockdev. 914 * If it was not hashed, it will never be added to the dirty list 915 * even if it is later hashed, as it will have been marked dirty already. 916 * 917 * In short, make sure you hash any inodes _before_ you start marking 918 * them dirty. 919 * 920 * This function *must* be atomic for the I_DIRTY_PAGES case - 921 * set_page_dirty() is called under spinlock in several places. 922 * 923 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 924 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 925 * the kernel-internal blockdev inode represents the dirtying time of the 926 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 927 * page->mapping->host, so the page-dirtying time is recorded in the internal 928 * blockdev inode. 929 */ 930 void __mark_inode_dirty(struct inode *inode, int flags) 931 { 932 struct super_block *sb = inode->i_sb; 933 struct backing_dev_info *bdi = NULL; 934 bool wakeup_bdi = false; 935 936 /* 937 * Don't do this for I_DIRTY_PAGES - that doesn't actually 938 * dirty the inode itself 939 */ 940 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 941 if (sb->s_op->dirty_inode) 942 sb->s_op->dirty_inode(inode); 943 } 944 945 /* 946 * make sure that changes are seen by all cpus before we test i_state 947 * -- mikulas 948 */ 949 smp_mb(); 950 951 /* avoid the locking if we can */ 952 if ((inode->i_state & flags) == flags) 953 return; 954 955 if (unlikely(block_dump)) 956 block_dump___mark_inode_dirty(inode); 957 958 spin_lock(&inode_lock); 959 if ((inode->i_state & flags) != flags) { 960 const int was_dirty = inode->i_state & I_DIRTY; 961 962 inode->i_state |= flags; 963 964 /* 965 * If the inode is being synced, just update its dirty state. 966 * The unlocker will place the inode on the appropriate 967 * superblock list, based upon its state. 968 */ 969 if (inode->i_state & I_SYNC) 970 goto out; 971 972 /* 973 * Only add valid (hashed) inodes to the superblock's 974 * dirty list. Add blockdev inodes as well. 975 */ 976 if (!S_ISBLK(inode->i_mode)) { 977 if (inode_unhashed(inode)) 978 goto out; 979 } 980 if (inode->i_state & I_FREEING) 981 goto out; 982 983 /* 984 * If the inode was already on b_dirty/b_io/b_more_io, don't 985 * reposition it (that would break b_dirty time-ordering). 986 */ 987 if (!was_dirty) { 988 bdi = inode_to_bdi(inode); 989 990 if (bdi_cap_writeback_dirty(bdi)) { 991 WARN(!test_bit(BDI_registered, &bdi->state), 992 "bdi-%s not registered\n", bdi->name); 993 994 /* 995 * If this is the first dirty inode for this 996 * bdi, we have to wake-up the corresponding 997 * bdi thread to make sure background 998 * write-back happens later. 999 */ 1000 if (!wb_has_dirty_io(&bdi->wb)) 1001 wakeup_bdi = true; 1002 } 1003 1004 inode->dirtied_when = jiffies; 1005 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1006 } 1007 } 1008 out: 1009 spin_unlock(&inode_lock); 1010 1011 if (wakeup_bdi) 1012 bdi_wakeup_thread_delayed(bdi); 1013 } 1014 EXPORT_SYMBOL(__mark_inode_dirty); 1015 1016 /* 1017 * Write out a superblock's list of dirty inodes. A wait will be performed 1018 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1019 * 1020 * If older_than_this is non-NULL, then only write out inodes which 1021 * had their first dirtying at a time earlier than *older_than_this. 1022 * 1023 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1024 * This function assumes that the blockdev superblock's inodes are backed by 1025 * a variety of queues, so all inodes are searched. For other superblocks, 1026 * assume that all inodes are backed by the same queue. 1027 * 1028 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1029 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1030 * on the writer throttling path, and we get decent balancing between many 1031 * throttled threads: we don't want them all piling up on inode_sync_wait. 1032 */ 1033 static void wait_sb_inodes(struct super_block *sb) 1034 { 1035 struct inode *inode, *old_inode = NULL; 1036 1037 /* 1038 * We need to be protected against the filesystem going from 1039 * r/o to r/w or vice versa. 1040 */ 1041 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1042 1043 spin_lock(&inode_lock); 1044 1045 /* 1046 * Data integrity sync. Must wait for all pages under writeback, 1047 * because there may have been pages dirtied before our sync 1048 * call, but which had writeout started before we write it out. 1049 * In which case, the inode may not be on the dirty list, but 1050 * we still have to wait for that writeout. 1051 */ 1052 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1053 struct address_space *mapping; 1054 1055 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) 1056 continue; 1057 mapping = inode->i_mapping; 1058 if (mapping->nrpages == 0) 1059 continue; 1060 __iget(inode); 1061 spin_unlock(&inode_lock); 1062 /* 1063 * We hold a reference to 'inode' so it couldn't have 1064 * been removed from s_inodes list while we dropped the 1065 * inode_lock. We cannot iput the inode now as we can 1066 * be holding the last reference and we cannot iput it 1067 * under inode_lock. So we keep the reference and iput 1068 * it later. 1069 */ 1070 iput(old_inode); 1071 old_inode = inode; 1072 1073 filemap_fdatawait(mapping); 1074 1075 cond_resched(); 1076 1077 spin_lock(&inode_lock); 1078 } 1079 spin_unlock(&inode_lock); 1080 iput(old_inode); 1081 } 1082 1083 /** 1084 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1085 * @sb: the superblock 1086 * @nr: the number of pages to write 1087 * 1088 * Start writeback on some inodes on this super_block. No guarantees are made 1089 * on how many (if any) will be written, and this function does not wait 1090 * for IO completion of submitted IO. 1091 */ 1092 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr) 1093 { 1094 DECLARE_COMPLETION_ONSTACK(done); 1095 struct wb_writeback_work work = { 1096 .sb = sb, 1097 .sync_mode = WB_SYNC_NONE, 1098 .done = &done, 1099 .nr_pages = nr, 1100 }; 1101 1102 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1103 bdi_queue_work(sb->s_bdi, &work); 1104 wait_for_completion(&done); 1105 } 1106 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1107 1108 /** 1109 * writeback_inodes_sb - writeback dirty inodes from given super_block 1110 * @sb: the superblock 1111 * 1112 * Start writeback on some inodes on this super_block. No guarantees are made 1113 * on how many (if any) will be written, and this function does not wait 1114 * for IO completion of submitted IO. 1115 */ 1116 void writeback_inodes_sb(struct super_block *sb) 1117 { 1118 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages()); 1119 } 1120 EXPORT_SYMBOL(writeback_inodes_sb); 1121 1122 /** 1123 * writeback_inodes_sb_if_idle - start writeback if none underway 1124 * @sb: the superblock 1125 * 1126 * Invoke writeback_inodes_sb if no writeback is currently underway. 1127 * Returns 1 if writeback was started, 0 if not. 1128 */ 1129 int writeback_inodes_sb_if_idle(struct super_block *sb) 1130 { 1131 if (!writeback_in_progress(sb->s_bdi)) { 1132 down_read(&sb->s_umount); 1133 writeback_inodes_sb(sb); 1134 up_read(&sb->s_umount); 1135 return 1; 1136 } else 1137 return 0; 1138 } 1139 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1140 1141 /** 1142 * writeback_inodes_sb_if_idle - start writeback if none underway 1143 * @sb: the superblock 1144 * @nr: the number of pages to write 1145 * 1146 * Invoke writeback_inodes_sb if no writeback is currently underway. 1147 * Returns 1 if writeback was started, 0 if not. 1148 */ 1149 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1150 unsigned long nr) 1151 { 1152 if (!writeback_in_progress(sb->s_bdi)) { 1153 down_read(&sb->s_umount); 1154 writeback_inodes_sb_nr(sb, nr); 1155 up_read(&sb->s_umount); 1156 return 1; 1157 } else 1158 return 0; 1159 } 1160 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1161 1162 /** 1163 * sync_inodes_sb - sync sb inode pages 1164 * @sb: the superblock 1165 * 1166 * This function writes and waits on any dirty inode belonging to this 1167 * super_block. The number of pages synced is returned. 1168 */ 1169 void sync_inodes_sb(struct super_block *sb) 1170 { 1171 DECLARE_COMPLETION_ONSTACK(done); 1172 struct wb_writeback_work work = { 1173 .sb = sb, 1174 .sync_mode = WB_SYNC_ALL, 1175 .nr_pages = LONG_MAX, 1176 .range_cyclic = 0, 1177 .done = &done, 1178 }; 1179 1180 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1181 1182 bdi_queue_work(sb->s_bdi, &work); 1183 wait_for_completion(&done); 1184 1185 wait_sb_inodes(sb); 1186 } 1187 EXPORT_SYMBOL(sync_inodes_sb); 1188 1189 /** 1190 * write_inode_now - write an inode to disk 1191 * @inode: inode to write to disk 1192 * @sync: whether the write should be synchronous or not 1193 * 1194 * This function commits an inode to disk immediately if it is dirty. This is 1195 * primarily needed by knfsd. 1196 * 1197 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1198 */ 1199 int write_inode_now(struct inode *inode, int sync) 1200 { 1201 int ret; 1202 struct writeback_control wbc = { 1203 .nr_to_write = LONG_MAX, 1204 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1205 .range_start = 0, 1206 .range_end = LLONG_MAX, 1207 }; 1208 1209 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1210 wbc.nr_to_write = 0; 1211 1212 might_sleep(); 1213 spin_lock(&inode_lock); 1214 ret = writeback_single_inode(inode, &wbc); 1215 spin_unlock(&inode_lock); 1216 if (sync) 1217 inode_sync_wait(inode); 1218 return ret; 1219 } 1220 EXPORT_SYMBOL(write_inode_now); 1221 1222 /** 1223 * sync_inode - write an inode and its pages to disk. 1224 * @inode: the inode to sync 1225 * @wbc: controls the writeback mode 1226 * 1227 * sync_inode() will write an inode and its pages to disk. It will also 1228 * correctly update the inode on its superblock's dirty inode lists and will 1229 * update inode->i_state. 1230 * 1231 * The caller must have a ref on the inode. 1232 */ 1233 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1234 { 1235 int ret; 1236 1237 spin_lock(&inode_lock); 1238 ret = writeback_single_inode(inode, wbc); 1239 spin_unlock(&inode_lock); 1240 return ret; 1241 } 1242 EXPORT_SYMBOL(sync_inode); 1243 1244 /** 1245 * sync_inode - write an inode to disk 1246 * @inode: the inode to sync 1247 * @wait: wait for I/O to complete. 1248 * 1249 * Write an inode to disk and adjust it's dirty state after completion. 1250 * 1251 * Note: only writes the actual inode, no associated data or other metadata. 1252 */ 1253 int sync_inode_metadata(struct inode *inode, int wait) 1254 { 1255 struct writeback_control wbc = { 1256 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1257 .nr_to_write = 0, /* metadata-only */ 1258 }; 1259 1260 return sync_inode(inode, &wbc); 1261 } 1262 EXPORT_SYMBOL(sync_inode_metadata); 1263