xref: /openbmc/linux/fs/fs-writeback.c (revision ba61bb17496d1664bf7c5c2fd650d5fd78bd0a92)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 				  struct wb_writeback_work *work)
178 {
179 	struct wb_completion *done = work->done;
180 
181 	if (work->auto_free)
182 		kfree(work);
183 	if (done && atomic_dec_and_test(&done->cnt))
184 		wake_up_all(&wb->bdi->wb_waitq);
185 }
186 
187 static void wb_queue_work(struct bdi_writeback *wb,
188 			  struct wb_writeback_work *work)
189 {
190 	trace_writeback_queue(wb, work);
191 
192 	if (work->done)
193 		atomic_inc(&work->done->cnt);
194 
195 	spin_lock_bh(&wb->work_lock);
196 
197 	if (test_bit(WB_registered, &wb->state)) {
198 		list_add_tail(&work->list, &wb->work_list);
199 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 	} else
201 		finish_writeback_work(wb, work);
202 
203 	spin_unlock_bh(&wb->work_lock);
204 }
205 
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 				   struct wb_completion *done)
219 {
220 	atomic_dec(&done->cnt);		/* put down the initial count */
221 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223 
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
231 
232 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 					/* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
236 					/* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 					/* one round can affect upto 5 slots */
239 
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242 
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 	struct backing_dev_info *bdi = inode_to_bdi(inode);
246 	struct bdi_writeback *wb = NULL;
247 
248 	if (inode_cgwb_enabled(inode)) {
249 		struct cgroup_subsys_state *memcg_css;
250 
251 		if (page) {
252 			memcg_css = mem_cgroup_css_from_page(page);
253 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 		} else {
255 			/* must pin memcg_css, see wb_get_create() */
256 			memcg_css = task_get_css(current, memory_cgrp_id);
257 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 			css_put(memcg_css);
259 		}
260 	}
261 
262 	if (!wb)
263 		wb = &bdi->wb;
264 
265 	/*
266 	 * There may be multiple instances of this function racing to
267 	 * update the same inode.  Use cmpxchg() to tell the winner.
268 	 */
269 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 		wb_put(wb);
271 }
272 
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 	__releases(&inode->i_lock)
284 	__acquires(&wb->list_lock)
285 {
286 	while (true) {
287 		struct bdi_writeback *wb = inode_to_wb(inode);
288 
289 		/*
290 		 * inode_to_wb() association is protected by both
291 		 * @inode->i_lock and @wb->list_lock but list_lock nests
292 		 * outside i_lock.  Drop i_lock and verify that the
293 		 * association hasn't changed after acquiring list_lock.
294 		 */
295 		wb_get(wb);
296 		spin_unlock(&inode->i_lock);
297 		spin_lock(&wb->list_lock);
298 
299 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
300 		if (likely(wb == inode->i_wb)) {
301 			wb_put(wb);	/* @inode already has ref */
302 			return wb;
303 		}
304 
305 		spin_unlock(&wb->list_lock);
306 		wb_put(wb);
307 		cpu_relax();
308 		spin_lock(&inode->i_lock);
309 	}
310 }
311 
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 	__acquires(&wb->list_lock)
321 {
322 	spin_lock(&inode->i_lock);
323 	return locked_inode_to_wb_and_lock_list(inode);
324 }
325 
326 struct inode_switch_wbs_context {
327 	struct inode		*inode;
328 	struct bdi_writeback	*new_wb;
329 
330 	struct rcu_head		rcu_head;
331 	struct work_struct	work;
332 };
333 
334 static void inode_switch_wbs_work_fn(struct work_struct *work)
335 {
336 	struct inode_switch_wbs_context *isw =
337 		container_of(work, struct inode_switch_wbs_context, work);
338 	struct inode *inode = isw->inode;
339 	struct address_space *mapping = inode->i_mapping;
340 	struct bdi_writeback *old_wb = inode->i_wb;
341 	struct bdi_writeback *new_wb = isw->new_wb;
342 	struct radix_tree_iter iter;
343 	bool switched = false;
344 	void **slot;
345 
346 	/*
347 	 * By the time control reaches here, RCU grace period has passed
348 	 * since I_WB_SWITCH assertion and all wb stat update transactions
349 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
350 	 * synchronizing against the i_pages lock.
351 	 *
352 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
353 	 * gives us exclusion against all wb related operations on @inode
354 	 * including IO list manipulations and stat updates.
355 	 */
356 	if (old_wb < new_wb) {
357 		spin_lock(&old_wb->list_lock);
358 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
359 	} else {
360 		spin_lock(&new_wb->list_lock);
361 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
362 	}
363 	spin_lock(&inode->i_lock);
364 	xa_lock_irq(&mapping->i_pages);
365 
366 	/*
367 	 * Once I_FREEING is visible under i_lock, the eviction path owns
368 	 * the inode and we shouldn't modify ->i_io_list.
369 	 */
370 	if (unlikely(inode->i_state & I_FREEING))
371 		goto skip_switch;
372 
373 	/*
374 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
375 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
376 	 * pages actually under writeback.
377 	 */
378 	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
379 				   PAGECACHE_TAG_DIRTY) {
380 		struct page *page = radix_tree_deref_slot_protected(slot,
381 						&mapping->i_pages.xa_lock);
382 		if (likely(page) && PageDirty(page)) {
383 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
384 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
385 		}
386 	}
387 
388 	radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, 0,
389 				   PAGECACHE_TAG_WRITEBACK) {
390 		struct page *page = radix_tree_deref_slot_protected(slot,
391 						&mapping->i_pages.xa_lock);
392 		if (likely(page)) {
393 			WARN_ON_ONCE(!PageWriteback(page));
394 			dec_wb_stat(old_wb, WB_WRITEBACK);
395 			inc_wb_stat(new_wb, WB_WRITEBACK);
396 		}
397 	}
398 
399 	wb_get(new_wb);
400 
401 	/*
402 	 * Transfer to @new_wb's IO list if necessary.  The specific list
403 	 * @inode was on is ignored and the inode is put on ->b_dirty which
404 	 * is always correct including from ->b_dirty_time.  The transfer
405 	 * preserves @inode->dirtied_when ordering.
406 	 */
407 	if (!list_empty(&inode->i_io_list)) {
408 		struct inode *pos;
409 
410 		inode_io_list_del_locked(inode, old_wb);
411 		inode->i_wb = new_wb;
412 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
413 			if (time_after_eq(inode->dirtied_when,
414 					  pos->dirtied_when))
415 				break;
416 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
417 	} else {
418 		inode->i_wb = new_wb;
419 	}
420 
421 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
422 	inode->i_wb_frn_winner = 0;
423 	inode->i_wb_frn_avg_time = 0;
424 	inode->i_wb_frn_history = 0;
425 	switched = true;
426 skip_switch:
427 	/*
428 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
429 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
430 	 */
431 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
432 
433 	xa_unlock_irq(&mapping->i_pages);
434 	spin_unlock(&inode->i_lock);
435 	spin_unlock(&new_wb->list_lock);
436 	spin_unlock(&old_wb->list_lock);
437 
438 	if (switched) {
439 		wb_wakeup(new_wb);
440 		wb_put(old_wb);
441 	}
442 	wb_put(new_wb);
443 
444 	iput(inode);
445 	kfree(isw);
446 
447 	atomic_dec(&isw_nr_in_flight);
448 }
449 
450 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
451 {
452 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
453 				struct inode_switch_wbs_context, rcu_head);
454 
455 	/* needs to grab bh-unsafe locks, bounce to work item */
456 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
457 	queue_work(isw_wq, &isw->work);
458 }
459 
460 /**
461  * inode_switch_wbs - change the wb association of an inode
462  * @inode: target inode
463  * @new_wb_id: ID of the new wb
464  *
465  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
466  * switching is performed asynchronously and may fail silently.
467  */
468 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
469 {
470 	struct backing_dev_info *bdi = inode_to_bdi(inode);
471 	struct cgroup_subsys_state *memcg_css;
472 	struct inode_switch_wbs_context *isw;
473 
474 	/* noop if seems to be already in progress */
475 	if (inode->i_state & I_WB_SWITCH)
476 		return;
477 
478 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
479 	if (!isw)
480 		return;
481 
482 	/* find and pin the new wb */
483 	rcu_read_lock();
484 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
485 	if (memcg_css)
486 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
487 	rcu_read_unlock();
488 	if (!isw->new_wb)
489 		goto out_free;
490 
491 	/* while holding I_WB_SWITCH, no one else can update the association */
492 	spin_lock(&inode->i_lock);
493 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
494 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
495 	    inode_to_wb(inode) == isw->new_wb) {
496 		spin_unlock(&inode->i_lock);
497 		goto out_free;
498 	}
499 	inode->i_state |= I_WB_SWITCH;
500 	__iget(inode);
501 	spin_unlock(&inode->i_lock);
502 
503 	isw->inode = inode;
504 
505 	atomic_inc(&isw_nr_in_flight);
506 
507 	/*
508 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
509 	 * the RCU protected stat update paths to grab the i_page
510 	 * lock so that stat transfer can synchronize against them.
511 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
512 	 */
513 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
514 	return;
515 
516 out_free:
517 	if (isw->new_wb)
518 		wb_put(isw->new_wb);
519 	kfree(isw);
520 }
521 
522 /**
523  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
524  * @wbc: writeback_control of interest
525  * @inode: target inode
526  *
527  * @inode is locked and about to be written back under the control of @wbc.
528  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
529  * writeback completion, wbc_detach_inode() should be called.  This is used
530  * to track the cgroup writeback context.
531  */
532 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
533 				 struct inode *inode)
534 {
535 	if (!inode_cgwb_enabled(inode)) {
536 		spin_unlock(&inode->i_lock);
537 		return;
538 	}
539 
540 	wbc->wb = inode_to_wb(inode);
541 	wbc->inode = inode;
542 
543 	wbc->wb_id = wbc->wb->memcg_css->id;
544 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
545 	wbc->wb_tcand_id = 0;
546 	wbc->wb_bytes = 0;
547 	wbc->wb_lcand_bytes = 0;
548 	wbc->wb_tcand_bytes = 0;
549 
550 	wb_get(wbc->wb);
551 	spin_unlock(&inode->i_lock);
552 
553 	/*
554 	 * A dying wb indicates that the memcg-blkcg mapping has changed
555 	 * and a new wb is already serving the memcg.  Switch immediately.
556 	 */
557 	if (unlikely(wb_dying(wbc->wb)))
558 		inode_switch_wbs(inode, wbc->wb_id);
559 }
560 
561 /**
562  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
563  * @wbc: writeback_control of the just finished writeback
564  *
565  * To be called after a writeback attempt of an inode finishes and undoes
566  * wbc_attach_and_unlock_inode().  Can be called under any context.
567  *
568  * As concurrent write sharing of an inode is expected to be very rare and
569  * memcg only tracks page ownership on first-use basis severely confining
570  * the usefulness of such sharing, cgroup writeback tracks ownership
571  * per-inode.  While the support for concurrent write sharing of an inode
572  * is deemed unnecessary, an inode being written to by different cgroups at
573  * different points in time is a lot more common, and, more importantly,
574  * charging only by first-use can too readily lead to grossly incorrect
575  * behaviors (single foreign page can lead to gigabytes of writeback to be
576  * incorrectly attributed).
577  *
578  * To resolve this issue, cgroup writeback detects the majority dirtier of
579  * an inode and transfers the ownership to it.  To avoid unnnecessary
580  * oscillation, the detection mechanism keeps track of history and gives
581  * out the switch verdict only if the foreign usage pattern is stable over
582  * a certain amount of time and/or writeback attempts.
583  *
584  * On each writeback attempt, @wbc tries to detect the majority writer
585  * using Boyer-Moore majority vote algorithm.  In addition to the byte
586  * count from the majority voting, it also counts the bytes written for the
587  * current wb and the last round's winner wb (max of last round's current
588  * wb, the winner from two rounds ago, and the last round's majority
589  * candidate).  Keeping track of the historical winner helps the algorithm
590  * to semi-reliably detect the most active writer even when it's not the
591  * absolute majority.
592  *
593  * Once the winner of the round is determined, whether the winner is
594  * foreign or not and how much IO time the round consumed is recorded in
595  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
596  * over a certain threshold, the switch verdict is given.
597  */
598 void wbc_detach_inode(struct writeback_control *wbc)
599 {
600 	struct bdi_writeback *wb = wbc->wb;
601 	struct inode *inode = wbc->inode;
602 	unsigned long avg_time, max_bytes, max_time;
603 	u16 history;
604 	int max_id;
605 
606 	if (!wb)
607 		return;
608 
609 	history = inode->i_wb_frn_history;
610 	avg_time = inode->i_wb_frn_avg_time;
611 
612 	/* pick the winner of this round */
613 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
614 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
615 		max_id = wbc->wb_id;
616 		max_bytes = wbc->wb_bytes;
617 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
618 		max_id = wbc->wb_lcand_id;
619 		max_bytes = wbc->wb_lcand_bytes;
620 	} else {
621 		max_id = wbc->wb_tcand_id;
622 		max_bytes = wbc->wb_tcand_bytes;
623 	}
624 
625 	/*
626 	 * Calculate the amount of IO time the winner consumed and fold it
627 	 * into the running average kept per inode.  If the consumed IO
628 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
629 	 * deciding whether to switch or not.  This is to prevent one-off
630 	 * small dirtiers from skewing the verdict.
631 	 */
632 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
633 				wb->avg_write_bandwidth);
634 	if (avg_time)
635 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
636 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
637 	else
638 		avg_time = max_time;	/* immediate catch up on first run */
639 
640 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
641 		int slots;
642 
643 		/*
644 		 * The switch verdict is reached if foreign wb's consume
645 		 * more than a certain proportion of IO time in a
646 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
647 		 * history mask where each bit represents one sixteenth of
648 		 * the period.  Determine the number of slots to shift into
649 		 * history from @max_time.
650 		 */
651 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
652 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
653 		history <<= slots;
654 		if (wbc->wb_id != max_id)
655 			history |= (1U << slots) - 1;
656 
657 		/*
658 		 * Switch if the current wb isn't the consistent winner.
659 		 * If there are multiple closely competing dirtiers, the
660 		 * inode may switch across them repeatedly over time, which
661 		 * is okay.  The main goal is avoiding keeping an inode on
662 		 * the wrong wb for an extended period of time.
663 		 */
664 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
665 			inode_switch_wbs(inode, max_id);
666 	}
667 
668 	/*
669 	 * Multiple instances of this function may race to update the
670 	 * following fields but we don't mind occassional inaccuracies.
671 	 */
672 	inode->i_wb_frn_winner = max_id;
673 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
674 	inode->i_wb_frn_history = history;
675 
676 	wb_put(wbc->wb);
677 	wbc->wb = NULL;
678 }
679 
680 /**
681  * wbc_account_io - account IO issued during writeback
682  * @wbc: writeback_control of the writeback in progress
683  * @page: page being written out
684  * @bytes: number of bytes being written out
685  *
686  * @bytes from @page are about to written out during the writeback
687  * controlled by @wbc.  Keep the book for foreign inode detection.  See
688  * wbc_detach_inode().
689  */
690 void wbc_account_io(struct writeback_control *wbc, struct page *page,
691 		    size_t bytes)
692 {
693 	int id;
694 
695 	/*
696 	 * pageout() path doesn't attach @wbc to the inode being written
697 	 * out.  This is intentional as we don't want the function to block
698 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
699 	 * regular writeback instead of writing things out itself.
700 	 */
701 	if (!wbc->wb)
702 		return;
703 
704 	id = mem_cgroup_css_from_page(page)->id;
705 
706 	if (id == wbc->wb_id) {
707 		wbc->wb_bytes += bytes;
708 		return;
709 	}
710 
711 	if (id == wbc->wb_lcand_id)
712 		wbc->wb_lcand_bytes += bytes;
713 
714 	/* Boyer-Moore majority vote algorithm */
715 	if (!wbc->wb_tcand_bytes)
716 		wbc->wb_tcand_id = id;
717 	if (id == wbc->wb_tcand_id)
718 		wbc->wb_tcand_bytes += bytes;
719 	else
720 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
721 }
722 EXPORT_SYMBOL_GPL(wbc_account_io);
723 
724 /**
725  * inode_congested - test whether an inode is congested
726  * @inode: inode to test for congestion (may be NULL)
727  * @cong_bits: mask of WB_[a]sync_congested bits to test
728  *
729  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
730  * bits to test and the return value is the mask of set bits.
731  *
732  * If cgroup writeback is enabled for @inode, the congestion state is
733  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
734  * associated with @inode is congested; otherwise, the root wb's congestion
735  * state is used.
736  *
737  * @inode is allowed to be NULL as this function is often called on
738  * mapping->host which is NULL for the swapper space.
739  */
740 int inode_congested(struct inode *inode, int cong_bits)
741 {
742 	/*
743 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
744 	 * Start transaction iff ->i_wb is visible.
745 	 */
746 	if (inode && inode_to_wb_is_valid(inode)) {
747 		struct bdi_writeback *wb;
748 		struct wb_lock_cookie lock_cookie = {};
749 		bool congested;
750 
751 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
752 		congested = wb_congested(wb, cong_bits);
753 		unlocked_inode_to_wb_end(inode, &lock_cookie);
754 		return congested;
755 	}
756 
757 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
758 }
759 EXPORT_SYMBOL_GPL(inode_congested);
760 
761 /**
762  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
763  * @wb: target bdi_writeback to split @nr_pages to
764  * @nr_pages: number of pages to write for the whole bdi
765  *
766  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
767  * relation to the total write bandwidth of all wb's w/ dirty inodes on
768  * @wb->bdi.
769  */
770 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
771 {
772 	unsigned long this_bw = wb->avg_write_bandwidth;
773 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
774 
775 	if (nr_pages == LONG_MAX)
776 		return LONG_MAX;
777 
778 	/*
779 	 * This may be called on clean wb's and proportional distribution
780 	 * may not make sense, just use the original @nr_pages in those
781 	 * cases.  In general, we wanna err on the side of writing more.
782 	 */
783 	if (!tot_bw || this_bw >= tot_bw)
784 		return nr_pages;
785 	else
786 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
787 }
788 
789 /**
790  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
791  * @bdi: target backing_dev_info
792  * @base_work: wb_writeback_work to issue
793  * @skip_if_busy: skip wb's which already have writeback in progress
794  *
795  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
796  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
797  * distributed to the busy wbs according to each wb's proportion in the
798  * total active write bandwidth of @bdi.
799  */
800 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
801 				  struct wb_writeback_work *base_work,
802 				  bool skip_if_busy)
803 {
804 	struct bdi_writeback *last_wb = NULL;
805 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
806 					      struct bdi_writeback, bdi_node);
807 
808 	might_sleep();
809 restart:
810 	rcu_read_lock();
811 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
812 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
813 		struct wb_writeback_work fallback_work;
814 		struct wb_writeback_work *work;
815 		long nr_pages;
816 
817 		if (last_wb) {
818 			wb_put(last_wb);
819 			last_wb = NULL;
820 		}
821 
822 		/* SYNC_ALL writes out I_DIRTY_TIME too */
823 		if (!wb_has_dirty_io(wb) &&
824 		    (base_work->sync_mode == WB_SYNC_NONE ||
825 		     list_empty(&wb->b_dirty_time)))
826 			continue;
827 		if (skip_if_busy && writeback_in_progress(wb))
828 			continue;
829 
830 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
831 
832 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
833 		if (work) {
834 			*work = *base_work;
835 			work->nr_pages = nr_pages;
836 			work->auto_free = 1;
837 			wb_queue_work(wb, work);
838 			continue;
839 		}
840 
841 		/* alloc failed, execute synchronously using on-stack fallback */
842 		work = &fallback_work;
843 		*work = *base_work;
844 		work->nr_pages = nr_pages;
845 		work->auto_free = 0;
846 		work->done = &fallback_work_done;
847 
848 		wb_queue_work(wb, work);
849 
850 		/*
851 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
852 		 * continuing iteration from @wb after dropping and
853 		 * regrabbing rcu read lock.
854 		 */
855 		wb_get(wb);
856 		last_wb = wb;
857 
858 		rcu_read_unlock();
859 		wb_wait_for_completion(bdi, &fallback_work_done);
860 		goto restart;
861 	}
862 	rcu_read_unlock();
863 
864 	if (last_wb)
865 		wb_put(last_wb);
866 }
867 
868 /**
869  * cgroup_writeback_umount - flush inode wb switches for umount
870  *
871  * This function is called when a super_block is about to be destroyed and
872  * flushes in-flight inode wb switches.  An inode wb switch goes through
873  * RCU and then workqueue, so the two need to be flushed in order to ensure
874  * that all previously scheduled switches are finished.  As wb switches are
875  * rare occurrences and synchronize_rcu() can take a while, perform
876  * flushing iff wb switches are in flight.
877  */
878 void cgroup_writeback_umount(void)
879 {
880 	if (atomic_read(&isw_nr_in_flight)) {
881 		synchronize_rcu();
882 		flush_workqueue(isw_wq);
883 	}
884 }
885 
886 static int __init cgroup_writeback_init(void)
887 {
888 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
889 	if (!isw_wq)
890 		return -ENOMEM;
891 	return 0;
892 }
893 fs_initcall(cgroup_writeback_init);
894 
895 #else	/* CONFIG_CGROUP_WRITEBACK */
896 
897 static struct bdi_writeback *
898 locked_inode_to_wb_and_lock_list(struct inode *inode)
899 	__releases(&inode->i_lock)
900 	__acquires(&wb->list_lock)
901 {
902 	struct bdi_writeback *wb = inode_to_wb(inode);
903 
904 	spin_unlock(&inode->i_lock);
905 	spin_lock(&wb->list_lock);
906 	return wb;
907 }
908 
909 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
910 	__acquires(&wb->list_lock)
911 {
912 	struct bdi_writeback *wb = inode_to_wb(inode);
913 
914 	spin_lock(&wb->list_lock);
915 	return wb;
916 }
917 
918 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
919 {
920 	return nr_pages;
921 }
922 
923 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
924 				  struct wb_writeback_work *base_work,
925 				  bool skip_if_busy)
926 {
927 	might_sleep();
928 
929 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
930 		base_work->auto_free = 0;
931 		wb_queue_work(&bdi->wb, base_work);
932 	}
933 }
934 
935 #endif	/* CONFIG_CGROUP_WRITEBACK */
936 
937 /*
938  * Add in the number of potentially dirty inodes, because each inode
939  * write can dirty pagecache in the underlying blockdev.
940  */
941 static unsigned long get_nr_dirty_pages(void)
942 {
943 	return global_node_page_state(NR_FILE_DIRTY) +
944 		global_node_page_state(NR_UNSTABLE_NFS) +
945 		get_nr_dirty_inodes();
946 }
947 
948 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
949 {
950 	if (!wb_has_dirty_io(wb))
951 		return;
952 
953 	/*
954 	 * All callers of this function want to start writeback of all
955 	 * dirty pages. Places like vmscan can call this at a very
956 	 * high frequency, causing pointless allocations of tons of
957 	 * work items and keeping the flusher threads busy retrieving
958 	 * that work. Ensure that we only allow one of them pending and
959 	 * inflight at the time.
960 	 */
961 	if (test_bit(WB_start_all, &wb->state) ||
962 	    test_and_set_bit(WB_start_all, &wb->state))
963 		return;
964 
965 	wb->start_all_reason = reason;
966 	wb_wakeup(wb);
967 }
968 
969 /**
970  * wb_start_background_writeback - start background writeback
971  * @wb: bdi_writback to write from
972  *
973  * Description:
974  *   This makes sure WB_SYNC_NONE background writeback happens. When
975  *   this function returns, it is only guaranteed that for given wb
976  *   some IO is happening if we are over background dirty threshold.
977  *   Caller need not hold sb s_umount semaphore.
978  */
979 void wb_start_background_writeback(struct bdi_writeback *wb)
980 {
981 	/*
982 	 * We just wake up the flusher thread. It will perform background
983 	 * writeback as soon as there is no other work to do.
984 	 */
985 	trace_writeback_wake_background(wb);
986 	wb_wakeup(wb);
987 }
988 
989 /*
990  * Remove the inode from the writeback list it is on.
991  */
992 void inode_io_list_del(struct inode *inode)
993 {
994 	struct bdi_writeback *wb;
995 
996 	wb = inode_to_wb_and_lock_list(inode);
997 	inode_io_list_del_locked(inode, wb);
998 	spin_unlock(&wb->list_lock);
999 }
1000 
1001 /*
1002  * mark an inode as under writeback on the sb
1003  */
1004 void sb_mark_inode_writeback(struct inode *inode)
1005 {
1006 	struct super_block *sb = inode->i_sb;
1007 	unsigned long flags;
1008 
1009 	if (list_empty(&inode->i_wb_list)) {
1010 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011 		if (list_empty(&inode->i_wb_list)) {
1012 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1013 			trace_sb_mark_inode_writeback(inode);
1014 		}
1015 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016 	}
1017 }
1018 
1019 /*
1020  * clear an inode as under writeback on the sb
1021  */
1022 void sb_clear_inode_writeback(struct inode *inode)
1023 {
1024 	struct super_block *sb = inode->i_sb;
1025 	unsigned long flags;
1026 
1027 	if (!list_empty(&inode->i_wb_list)) {
1028 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1029 		if (!list_empty(&inode->i_wb_list)) {
1030 			list_del_init(&inode->i_wb_list);
1031 			trace_sb_clear_inode_writeback(inode);
1032 		}
1033 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1034 	}
1035 }
1036 
1037 /*
1038  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1039  * furthest end of its superblock's dirty-inode list.
1040  *
1041  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1042  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1043  * the case then the inode must have been redirtied while it was being written
1044  * out and we don't reset its dirtied_when.
1045  */
1046 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1047 {
1048 	if (!list_empty(&wb->b_dirty)) {
1049 		struct inode *tail;
1050 
1051 		tail = wb_inode(wb->b_dirty.next);
1052 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1053 			inode->dirtied_when = jiffies;
1054 	}
1055 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1056 }
1057 
1058 /*
1059  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1060  */
1061 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1062 {
1063 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1064 }
1065 
1066 static void inode_sync_complete(struct inode *inode)
1067 {
1068 	inode->i_state &= ~I_SYNC;
1069 	/* If inode is clean an unused, put it into LRU now... */
1070 	inode_add_lru(inode);
1071 	/* Waiters must see I_SYNC cleared before being woken up */
1072 	smp_mb();
1073 	wake_up_bit(&inode->i_state, __I_SYNC);
1074 }
1075 
1076 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1077 {
1078 	bool ret = time_after(inode->dirtied_when, t);
1079 #ifndef CONFIG_64BIT
1080 	/*
1081 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1082 	 * It _appears_ to be in the future, but is actually in distant past.
1083 	 * This test is necessary to prevent such wrapped-around relative times
1084 	 * from permanently stopping the whole bdi writeback.
1085 	 */
1086 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1087 #endif
1088 	return ret;
1089 }
1090 
1091 #define EXPIRE_DIRTY_ATIME 0x0001
1092 
1093 /*
1094  * Move expired (dirtied before work->older_than_this) dirty inodes from
1095  * @delaying_queue to @dispatch_queue.
1096  */
1097 static int move_expired_inodes(struct list_head *delaying_queue,
1098 			       struct list_head *dispatch_queue,
1099 			       int flags,
1100 			       struct wb_writeback_work *work)
1101 {
1102 	unsigned long *older_than_this = NULL;
1103 	unsigned long expire_time;
1104 	LIST_HEAD(tmp);
1105 	struct list_head *pos, *node;
1106 	struct super_block *sb = NULL;
1107 	struct inode *inode;
1108 	int do_sb_sort = 0;
1109 	int moved = 0;
1110 
1111 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1112 		older_than_this = work->older_than_this;
1113 	else if (!work->for_sync) {
1114 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1115 		older_than_this = &expire_time;
1116 	}
1117 	while (!list_empty(delaying_queue)) {
1118 		inode = wb_inode(delaying_queue->prev);
1119 		if (older_than_this &&
1120 		    inode_dirtied_after(inode, *older_than_this))
1121 			break;
1122 		list_move(&inode->i_io_list, &tmp);
1123 		moved++;
1124 		if (flags & EXPIRE_DIRTY_ATIME)
1125 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1126 		if (sb_is_blkdev_sb(inode->i_sb))
1127 			continue;
1128 		if (sb && sb != inode->i_sb)
1129 			do_sb_sort = 1;
1130 		sb = inode->i_sb;
1131 	}
1132 
1133 	/* just one sb in list, splice to dispatch_queue and we're done */
1134 	if (!do_sb_sort) {
1135 		list_splice(&tmp, dispatch_queue);
1136 		goto out;
1137 	}
1138 
1139 	/* Move inodes from one superblock together */
1140 	while (!list_empty(&tmp)) {
1141 		sb = wb_inode(tmp.prev)->i_sb;
1142 		list_for_each_prev_safe(pos, node, &tmp) {
1143 			inode = wb_inode(pos);
1144 			if (inode->i_sb == sb)
1145 				list_move(&inode->i_io_list, dispatch_queue);
1146 		}
1147 	}
1148 out:
1149 	return moved;
1150 }
1151 
1152 /*
1153  * Queue all expired dirty inodes for io, eldest first.
1154  * Before
1155  *         newly dirtied     b_dirty    b_io    b_more_io
1156  *         =============>    gf         edc     BA
1157  * After
1158  *         newly dirtied     b_dirty    b_io    b_more_io
1159  *         =============>    g          fBAedc
1160  *                                           |
1161  *                                           +--> dequeue for IO
1162  */
1163 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1164 {
1165 	int moved;
1166 
1167 	assert_spin_locked(&wb->list_lock);
1168 	list_splice_init(&wb->b_more_io, &wb->b_io);
1169 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1170 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1171 				     EXPIRE_DIRTY_ATIME, work);
1172 	if (moved)
1173 		wb_io_lists_populated(wb);
1174 	trace_writeback_queue_io(wb, work, moved);
1175 }
1176 
1177 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1178 {
1179 	int ret;
1180 
1181 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1182 		trace_writeback_write_inode_start(inode, wbc);
1183 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1184 		trace_writeback_write_inode(inode, wbc);
1185 		return ret;
1186 	}
1187 	return 0;
1188 }
1189 
1190 /*
1191  * Wait for writeback on an inode to complete. Called with i_lock held.
1192  * Caller must make sure inode cannot go away when we drop i_lock.
1193  */
1194 static void __inode_wait_for_writeback(struct inode *inode)
1195 	__releases(inode->i_lock)
1196 	__acquires(inode->i_lock)
1197 {
1198 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1199 	wait_queue_head_t *wqh;
1200 
1201 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1202 	while (inode->i_state & I_SYNC) {
1203 		spin_unlock(&inode->i_lock);
1204 		__wait_on_bit(wqh, &wq, bit_wait,
1205 			      TASK_UNINTERRUPTIBLE);
1206 		spin_lock(&inode->i_lock);
1207 	}
1208 }
1209 
1210 /*
1211  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1212  */
1213 void inode_wait_for_writeback(struct inode *inode)
1214 {
1215 	spin_lock(&inode->i_lock);
1216 	__inode_wait_for_writeback(inode);
1217 	spin_unlock(&inode->i_lock);
1218 }
1219 
1220 /*
1221  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1222  * held and drops it. It is aimed for callers not holding any inode reference
1223  * so once i_lock is dropped, inode can go away.
1224  */
1225 static void inode_sleep_on_writeback(struct inode *inode)
1226 	__releases(inode->i_lock)
1227 {
1228 	DEFINE_WAIT(wait);
1229 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1230 	int sleep;
1231 
1232 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1233 	sleep = inode->i_state & I_SYNC;
1234 	spin_unlock(&inode->i_lock);
1235 	if (sleep)
1236 		schedule();
1237 	finish_wait(wqh, &wait);
1238 }
1239 
1240 /*
1241  * Find proper writeback list for the inode depending on its current state and
1242  * possibly also change of its state while we were doing writeback.  Here we
1243  * handle things such as livelock prevention or fairness of writeback among
1244  * inodes. This function can be called only by flusher thread - noone else
1245  * processes all inodes in writeback lists and requeueing inodes behind flusher
1246  * thread's back can have unexpected consequences.
1247  */
1248 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1249 			  struct writeback_control *wbc)
1250 {
1251 	if (inode->i_state & I_FREEING)
1252 		return;
1253 
1254 	/*
1255 	 * Sync livelock prevention. Each inode is tagged and synced in one
1256 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1257 	 * the dirty time to prevent enqueue and sync it again.
1258 	 */
1259 	if ((inode->i_state & I_DIRTY) &&
1260 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1261 		inode->dirtied_when = jiffies;
1262 
1263 	if (wbc->pages_skipped) {
1264 		/*
1265 		 * writeback is not making progress due to locked
1266 		 * buffers. Skip this inode for now.
1267 		 */
1268 		redirty_tail(inode, wb);
1269 		return;
1270 	}
1271 
1272 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1273 		/*
1274 		 * We didn't write back all the pages.  nfs_writepages()
1275 		 * sometimes bales out without doing anything.
1276 		 */
1277 		if (wbc->nr_to_write <= 0) {
1278 			/* Slice used up. Queue for next turn. */
1279 			requeue_io(inode, wb);
1280 		} else {
1281 			/*
1282 			 * Writeback blocked by something other than
1283 			 * congestion. Delay the inode for some time to
1284 			 * avoid spinning on the CPU (100% iowait)
1285 			 * retrying writeback of the dirty page/inode
1286 			 * that cannot be performed immediately.
1287 			 */
1288 			redirty_tail(inode, wb);
1289 		}
1290 	} else if (inode->i_state & I_DIRTY) {
1291 		/*
1292 		 * Filesystems can dirty the inode during writeback operations,
1293 		 * such as delayed allocation during submission or metadata
1294 		 * updates after data IO completion.
1295 		 */
1296 		redirty_tail(inode, wb);
1297 	} else if (inode->i_state & I_DIRTY_TIME) {
1298 		inode->dirtied_when = jiffies;
1299 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1300 	} else {
1301 		/* The inode is clean. Remove from writeback lists. */
1302 		inode_io_list_del_locked(inode, wb);
1303 	}
1304 }
1305 
1306 /*
1307  * Write out an inode and its dirty pages. Do not update the writeback list
1308  * linkage. That is left to the caller. The caller is also responsible for
1309  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1310  */
1311 static int
1312 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1313 {
1314 	struct address_space *mapping = inode->i_mapping;
1315 	long nr_to_write = wbc->nr_to_write;
1316 	unsigned dirty;
1317 	int ret;
1318 
1319 	WARN_ON(!(inode->i_state & I_SYNC));
1320 
1321 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1322 
1323 	ret = do_writepages(mapping, wbc);
1324 
1325 	/*
1326 	 * Make sure to wait on the data before writing out the metadata.
1327 	 * This is important for filesystems that modify metadata on data
1328 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1329 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1330 	 * inode metadata is written back correctly.
1331 	 */
1332 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1333 		int err = filemap_fdatawait(mapping);
1334 		if (ret == 0)
1335 			ret = err;
1336 	}
1337 
1338 	/*
1339 	 * Some filesystems may redirty the inode during the writeback
1340 	 * due to delalloc, clear dirty metadata flags right before
1341 	 * write_inode()
1342 	 */
1343 	spin_lock(&inode->i_lock);
1344 
1345 	dirty = inode->i_state & I_DIRTY;
1346 	if (inode->i_state & I_DIRTY_TIME) {
1347 		if ((dirty & I_DIRTY_INODE) ||
1348 		    wbc->sync_mode == WB_SYNC_ALL ||
1349 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1350 		    unlikely(time_after(jiffies,
1351 					(inode->dirtied_time_when +
1352 					 dirtytime_expire_interval * HZ)))) {
1353 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1354 			trace_writeback_lazytime(inode);
1355 		}
1356 	} else
1357 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1358 	inode->i_state &= ~dirty;
1359 
1360 	/*
1361 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1362 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1363 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1364 	 * inode.
1365 	 *
1366 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1367 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1368 	 * necessary.  This guarantees that either __mark_inode_dirty()
1369 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1370 	 */
1371 	smp_mb();
1372 
1373 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1374 		inode->i_state |= I_DIRTY_PAGES;
1375 
1376 	spin_unlock(&inode->i_lock);
1377 
1378 	if (dirty & I_DIRTY_TIME)
1379 		mark_inode_dirty_sync(inode);
1380 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1381 	if (dirty & ~I_DIRTY_PAGES) {
1382 		int err = write_inode(inode, wbc);
1383 		if (ret == 0)
1384 			ret = err;
1385 	}
1386 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1387 	return ret;
1388 }
1389 
1390 /*
1391  * Write out an inode's dirty pages. Either the caller has an active reference
1392  * on the inode or the inode has I_WILL_FREE set.
1393  *
1394  * This function is designed to be called for writing back one inode which
1395  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1396  * and does more profound writeback list handling in writeback_sb_inodes().
1397  */
1398 static int writeback_single_inode(struct inode *inode,
1399 				  struct writeback_control *wbc)
1400 {
1401 	struct bdi_writeback *wb;
1402 	int ret = 0;
1403 
1404 	spin_lock(&inode->i_lock);
1405 	if (!atomic_read(&inode->i_count))
1406 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1407 	else
1408 		WARN_ON(inode->i_state & I_WILL_FREE);
1409 
1410 	if (inode->i_state & I_SYNC) {
1411 		if (wbc->sync_mode != WB_SYNC_ALL)
1412 			goto out;
1413 		/*
1414 		 * It's a data-integrity sync. We must wait. Since callers hold
1415 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1416 		 * away under us.
1417 		 */
1418 		__inode_wait_for_writeback(inode);
1419 	}
1420 	WARN_ON(inode->i_state & I_SYNC);
1421 	/*
1422 	 * Skip inode if it is clean and we have no outstanding writeback in
1423 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1424 	 * function since flusher thread may be doing for example sync in
1425 	 * parallel and if we move the inode, it could get skipped. So here we
1426 	 * make sure inode is on some writeback list and leave it there unless
1427 	 * we have completely cleaned the inode.
1428 	 */
1429 	if (!(inode->i_state & I_DIRTY_ALL) &&
1430 	    (wbc->sync_mode != WB_SYNC_ALL ||
1431 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1432 		goto out;
1433 	inode->i_state |= I_SYNC;
1434 	wbc_attach_and_unlock_inode(wbc, inode);
1435 
1436 	ret = __writeback_single_inode(inode, wbc);
1437 
1438 	wbc_detach_inode(wbc);
1439 
1440 	wb = inode_to_wb_and_lock_list(inode);
1441 	spin_lock(&inode->i_lock);
1442 	/*
1443 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1444 	 * touch it. See comment above for explanation.
1445 	 */
1446 	if (!(inode->i_state & I_DIRTY_ALL))
1447 		inode_io_list_del_locked(inode, wb);
1448 	spin_unlock(&wb->list_lock);
1449 	inode_sync_complete(inode);
1450 out:
1451 	spin_unlock(&inode->i_lock);
1452 	return ret;
1453 }
1454 
1455 static long writeback_chunk_size(struct bdi_writeback *wb,
1456 				 struct wb_writeback_work *work)
1457 {
1458 	long pages;
1459 
1460 	/*
1461 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1462 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1463 	 * here avoids calling into writeback_inodes_wb() more than once.
1464 	 *
1465 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1466 	 *
1467 	 *      wb_writeback()
1468 	 *          writeback_sb_inodes()       <== called only once
1469 	 *              write_cache_pages()     <== called once for each inode
1470 	 *                   (quickly) tag currently dirty pages
1471 	 *                   (maybe slowly) sync all tagged pages
1472 	 */
1473 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1474 		pages = LONG_MAX;
1475 	else {
1476 		pages = min(wb->avg_write_bandwidth / 2,
1477 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1478 		pages = min(pages, work->nr_pages);
1479 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1480 				   MIN_WRITEBACK_PAGES);
1481 	}
1482 
1483 	return pages;
1484 }
1485 
1486 /*
1487  * Write a portion of b_io inodes which belong to @sb.
1488  *
1489  * Return the number of pages and/or inodes written.
1490  *
1491  * NOTE! This is called with wb->list_lock held, and will
1492  * unlock and relock that for each inode it ends up doing
1493  * IO for.
1494  */
1495 static long writeback_sb_inodes(struct super_block *sb,
1496 				struct bdi_writeback *wb,
1497 				struct wb_writeback_work *work)
1498 {
1499 	struct writeback_control wbc = {
1500 		.sync_mode		= work->sync_mode,
1501 		.tagged_writepages	= work->tagged_writepages,
1502 		.for_kupdate		= work->for_kupdate,
1503 		.for_background		= work->for_background,
1504 		.for_sync		= work->for_sync,
1505 		.range_cyclic		= work->range_cyclic,
1506 		.range_start		= 0,
1507 		.range_end		= LLONG_MAX,
1508 	};
1509 	unsigned long start_time = jiffies;
1510 	long write_chunk;
1511 	long wrote = 0;  /* count both pages and inodes */
1512 
1513 	while (!list_empty(&wb->b_io)) {
1514 		struct inode *inode = wb_inode(wb->b_io.prev);
1515 		struct bdi_writeback *tmp_wb;
1516 
1517 		if (inode->i_sb != sb) {
1518 			if (work->sb) {
1519 				/*
1520 				 * We only want to write back data for this
1521 				 * superblock, move all inodes not belonging
1522 				 * to it back onto the dirty list.
1523 				 */
1524 				redirty_tail(inode, wb);
1525 				continue;
1526 			}
1527 
1528 			/*
1529 			 * The inode belongs to a different superblock.
1530 			 * Bounce back to the caller to unpin this and
1531 			 * pin the next superblock.
1532 			 */
1533 			break;
1534 		}
1535 
1536 		/*
1537 		 * Don't bother with new inodes or inodes being freed, first
1538 		 * kind does not need periodic writeout yet, and for the latter
1539 		 * kind writeout is handled by the freer.
1540 		 */
1541 		spin_lock(&inode->i_lock);
1542 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1543 			spin_unlock(&inode->i_lock);
1544 			redirty_tail(inode, wb);
1545 			continue;
1546 		}
1547 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1548 			/*
1549 			 * If this inode is locked for writeback and we are not
1550 			 * doing writeback-for-data-integrity, move it to
1551 			 * b_more_io so that writeback can proceed with the
1552 			 * other inodes on s_io.
1553 			 *
1554 			 * We'll have another go at writing back this inode
1555 			 * when we completed a full scan of b_io.
1556 			 */
1557 			spin_unlock(&inode->i_lock);
1558 			requeue_io(inode, wb);
1559 			trace_writeback_sb_inodes_requeue(inode);
1560 			continue;
1561 		}
1562 		spin_unlock(&wb->list_lock);
1563 
1564 		/*
1565 		 * We already requeued the inode if it had I_SYNC set and we
1566 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1567 		 * WB_SYNC_ALL case.
1568 		 */
1569 		if (inode->i_state & I_SYNC) {
1570 			/* Wait for I_SYNC. This function drops i_lock... */
1571 			inode_sleep_on_writeback(inode);
1572 			/* Inode may be gone, start again */
1573 			spin_lock(&wb->list_lock);
1574 			continue;
1575 		}
1576 		inode->i_state |= I_SYNC;
1577 		wbc_attach_and_unlock_inode(&wbc, inode);
1578 
1579 		write_chunk = writeback_chunk_size(wb, work);
1580 		wbc.nr_to_write = write_chunk;
1581 		wbc.pages_skipped = 0;
1582 
1583 		/*
1584 		 * We use I_SYNC to pin the inode in memory. While it is set
1585 		 * evict_inode() will wait so the inode cannot be freed.
1586 		 */
1587 		__writeback_single_inode(inode, &wbc);
1588 
1589 		wbc_detach_inode(&wbc);
1590 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1591 		wrote += write_chunk - wbc.nr_to_write;
1592 
1593 		if (need_resched()) {
1594 			/*
1595 			 * We're trying to balance between building up a nice
1596 			 * long list of IOs to improve our merge rate, and
1597 			 * getting those IOs out quickly for anyone throttling
1598 			 * in balance_dirty_pages().  cond_resched() doesn't
1599 			 * unplug, so get our IOs out the door before we
1600 			 * give up the CPU.
1601 			 */
1602 			blk_flush_plug(current);
1603 			cond_resched();
1604 		}
1605 
1606 		/*
1607 		 * Requeue @inode if still dirty.  Be careful as @inode may
1608 		 * have been switched to another wb in the meantime.
1609 		 */
1610 		tmp_wb = inode_to_wb_and_lock_list(inode);
1611 		spin_lock(&inode->i_lock);
1612 		if (!(inode->i_state & I_DIRTY_ALL))
1613 			wrote++;
1614 		requeue_inode(inode, tmp_wb, &wbc);
1615 		inode_sync_complete(inode);
1616 		spin_unlock(&inode->i_lock);
1617 
1618 		if (unlikely(tmp_wb != wb)) {
1619 			spin_unlock(&tmp_wb->list_lock);
1620 			spin_lock(&wb->list_lock);
1621 		}
1622 
1623 		/*
1624 		 * bail out to wb_writeback() often enough to check
1625 		 * background threshold and other termination conditions.
1626 		 */
1627 		if (wrote) {
1628 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1629 				break;
1630 			if (work->nr_pages <= 0)
1631 				break;
1632 		}
1633 	}
1634 	return wrote;
1635 }
1636 
1637 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1638 				  struct wb_writeback_work *work)
1639 {
1640 	unsigned long start_time = jiffies;
1641 	long wrote = 0;
1642 
1643 	while (!list_empty(&wb->b_io)) {
1644 		struct inode *inode = wb_inode(wb->b_io.prev);
1645 		struct super_block *sb = inode->i_sb;
1646 
1647 		if (!trylock_super(sb)) {
1648 			/*
1649 			 * trylock_super() may fail consistently due to
1650 			 * s_umount being grabbed by someone else. Don't use
1651 			 * requeue_io() to avoid busy retrying the inode/sb.
1652 			 */
1653 			redirty_tail(inode, wb);
1654 			continue;
1655 		}
1656 		wrote += writeback_sb_inodes(sb, wb, work);
1657 		up_read(&sb->s_umount);
1658 
1659 		/* refer to the same tests at the end of writeback_sb_inodes */
1660 		if (wrote) {
1661 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1662 				break;
1663 			if (work->nr_pages <= 0)
1664 				break;
1665 		}
1666 	}
1667 	/* Leave any unwritten inodes on b_io */
1668 	return wrote;
1669 }
1670 
1671 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1672 				enum wb_reason reason)
1673 {
1674 	struct wb_writeback_work work = {
1675 		.nr_pages	= nr_pages,
1676 		.sync_mode	= WB_SYNC_NONE,
1677 		.range_cyclic	= 1,
1678 		.reason		= reason,
1679 	};
1680 	struct blk_plug plug;
1681 
1682 	blk_start_plug(&plug);
1683 	spin_lock(&wb->list_lock);
1684 	if (list_empty(&wb->b_io))
1685 		queue_io(wb, &work);
1686 	__writeback_inodes_wb(wb, &work);
1687 	spin_unlock(&wb->list_lock);
1688 	blk_finish_plug(&plug);
1689 
1690 	return nr_pages - work.nr_pages;
1691 }
1692 
1693 /*
1694  * Explicit flushing or periodic writeback of "old" data.
1695  *
1696  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1697  * dirtying-time in the inode's address_space.  So this periodic writeback code
1698  * just walks the superblock inode list, writing back any inodes which are
1699  * older than a specific point in time.
1700  *
1701  * Try to run once per dirty_writeback_interval.  But if a writeback event
1702  * takes longer than a dirty_writeback_interval interval, then leave a
1703  * one-second gap.
1704  *
1705  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1706  * all dirty pages if they are all attached to "old" mappings.
1707  */
1708 static long wb_writeback(struct bdi_writeback *wb,
1709 			 struct wb_writeback_work *work)
1710 {
1711 	unsigned long wb_start = jiffies;
1712 	long nr_pages = work->nr_pages;
1713 	unsigned long oldest_jif;
1714 	struct inode *inode;
1715 	long progress;
1716 	struct blk_plug plug;
1717 
1718 	oldest_jif = jiffies;
1719 	work->older_than_this = &oldest_jif;
1720 
1721 	blk_start_plug(&plug);
1722 	spin_lock(&wb->list_lock);
1723 	for (;;) {
1724 		/*
1725 		 * Stop writeback when nr_pages has been consumed
1726 		 */
1727 		if (work->nr_pages <= 0)
1728 			break;
1729 
1730 		/*
1731 		 * Background writeout and kupdate-style writeback may
1732 		 * run forever. Stop them if there is other work to do
1733 		 * so that e.g. sync can proceed. They'll be restarted
1734 		 * after the other works are all done.
1735 		 */
1736 		if ((work->for_background || work->for_kupdate) &&
1737 		    !list_empty(&wb->work_list))
1738 			break;
1739 
1740 		/*
1741 		 * For background writeout, stop when we are below the
1742 		 * background dirty threshold
1743 		 */
1744 		if (work->for_background && !wb_over_bg_thresh(wb))
1745 			break;
1746 
1747 		/*
1748 		 * Kupdate and background works are special and we want to
1749 		 * include all inodes that need writing. Livelock avoidance is
1750 		 * handled by these works yielding to any other work so we are
1751 		 * safe.
1752 		 */
1753 		if (work->for_kupdate) {
1754 			oldest_jif = jiffies -
1755 				msecs_to_jiffies(dirty_expire_interval * 10);
1756 		} else if (work->for_background)
1757 			oldest_jif = jiffies;
1758 
1759 		trace_writeback_start(wb, work);
1760 		if (list_empty(&wb->b_io))
1761 			queue_io(wb, work);
1762 		if (work->sb)
1763 			progress = writeback_sb_inodes(work->sb, wb, work);
1764 		else
1765 			progress = __writeback_inodes_wb(wb, work);
1766 		trace_writeback_written(wb, work);
1767 
1768 		wb_update_bandwidth(wb, wb_start);
1769 
1770 		/*
1771 		 * Did we write something? Try for more
1772 		 *
1773 		 * Dirty inodes are moved to b_io for writeback in batches.
1774 		 * The completion of the current batch does not necessarily
1775 		 * mean the overall work is done. So we keep looping as long
1776 		 * as made some progress on cleaning pages or inodes.
1777 		 */
1778 		if (progress)
1779 			continue;
1780 		/*
1781 		 * No more inodes for IO, bail
1782 		 */
1783 		if (list_empty(&wb->b_more_io))
1784 			break;
1785 		/*
1786 		 * Nothing written. Wait for some inode to
1787 		 * become available for writeback. Otherwise
1788 		 * we'll just busyloop.
1789 		 */
1790 		trace_writeback_wait(wb, work);
1791 		inode = wb_inode(wb->b_more_io.prev);
1792 		spin_lock(&inode->i_lock);
1793 		spin_unlock(&wb->list_lock);
1794 		/* This function drops i_lock... */
1795 		inode_sleep_on_writeback(inode);
1796 		spin_lock(&wb->list_lock);
1797 	}
1798 	spin_unlock(&wb->list_lock);
1799 	blk_finish_plug(&plug);
1800 
1801 	return nr_pages - work->nr_pages;
1802 }
1803 
1804 /*
1805  * Return the next wb_writeback_work struct that hasn't been processed yet.
1806  */
1807 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1808 {
1809 	struct wb_writeback_work *work = NULL;
1810 
1811 	spin_lock_bh(&wb->work_lock);
1812 	if (!list_empty(&wb->work_list)) {
1813 		work = list_entry(wb->work_list.next,
1814 				  struct wb_writeback_work, list);
1815 		list_del_init(&work->list);
1816 	}
1817 	spin_unlock_bh(&wb->work_lock);
1818 	return work;
1819 }
1820 
1821 static long wb_check_background_flush(struct bdi_writeback *wb)
1822 {
1823 	if (wb_over_bg_thresh(wb)) {
1824 
1825 		struct wb_writeback_work work = {
1826 			.nr_pages	= LONG_MAX,
1827 			.sync_mode	= WB_SYNC_NONE,
1828 			.for_background	= 1,
1829 			.range_cyclic	= 1,
1830 			.reason		= WB_REASON_BACKGROUND,
1831 		};
1832 
1833 		return wb_writeback(wb, &work);
1834 	}
1835 
1836 	return 0;
1837 }
1838 
1839 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1840 {
1841 	unsigned long expired;
1842 	long nr_pages;
1843 
1844 	/*
1845 	 * When set to zero, disable periodic writeback
1846 	 */
1847 	if (!dirty_writeback_interval)
1848 		return 0;
1849 
1850 	expired = wb->last_old_flush +
1851 			msecs_to_jiffies(dirty_writeback_interval * 10);
1852 	if (time_before(jiffies, expired))
1853 		return 0;
1854 
1855 	wb->last_old_flush = jiffies;
1856 	nr_pages = get_nr_dirty_pages();
1857 
1858 	if (nr_pages) {
1859 		struct wb_writeback_work work = {
1860 			.nr_pages	= nr_pages,
1861 			.sync_mode	= WB_SYNC_NONE,
1862 			.for_kupdate	= 1,
1863 			.range_cyclic	= 1,
1864 			.reason		= WB_REASON_PERIODIC,
1865 		};
1866 
1867 		return wb_writeback(wb, &work);
1868 	}
1869 
1870 	return 0;
1871 }
1872 
1873 static long wb_check_start_all(struct bdi_writeback *wb)
1874 {
1875 	long nr_pages;
1876 
1877 	if (!test_bit(WB_start_all, &wb->state))
1878 		return 0;
1879 
1880 	nr_pages = get_nr_dirty_pages();
1881 	if (nr_pages) {
1882 		struct wb_writeback_work work = {
1883 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1884 			.sync_mode	= WB_SYNC_NONE,
1885 			.range_cyclic	= 1,
1886 			.reason		= wb->start_all_reason,
1887 		};
1888 
1889 		nr_pages = wb_writeback(wb, &work);
1890 	}
1891 
1892 	clear_bit(WB_start_all, &wb->state);
1893 	return nr_pages;
1894 }
1895 
1896 
1897 /*
1898  * Retrieve work items and do the writeback they describe
1899  */
1900 static long wb_do_writeback(struct bdi_writeback *wb)
1901 {
1902 	struct wb_writeback_work *work;
1903 	long wrote = 0;
1904 
1905 	set_bit(WB_writeback_running, &wb->state);
1906 	while ((work = get_next_work_item(wb)) != NULL) {
1907 		trace_writeback_exec(wb, work);
1908 		wrote += wb_writeback(wb, work);
1909 		finish_writeback_work(wb, work);
1910 	}
1911 
1912 	/*
1913 	 * Check for a flush-everything request
1914 	 */
1915 	wrote += wb_check_start_all(wb);
1916 
1917 	/*
1918 	 * Check for periodic writeback, kupdated() style
1919 	 */
1920 	wrote += wb_check_old_data_flush(wb);
1921 	wrote += wb_check_background_flush(wb);
1922 	clear_bit(WB_writeback_running, &wb->state);
1923 
1924 	return wrote;
1925 }
1926 
1927 /*
1928  * Handle writeback of dirty data for the device backed by this bdi. Also
1929  * reschedules periodically and does kupdated style flushing.
1930  */
1931 void wb_workfn(struct work_struct *work)
1932 {
1933 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1934 						struct bdi_writeback, dwork);
1935 	long pages_written;
1936 
1937 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1938 	current->flags |= PF_SWAPWRITE;
1939 
1940 	if (likely(!current_is_workqueue_rescuer() ||
1941 		   !test_bit(WB_registered, &wb->state))) {
1942 		/*
1943 		 * The normal path.  Keep writing back @wb until its
1944 		 * work_list is empty.  Note that this path is also taken
1945 		 * if @wb is shutting down even when we're running off the
1946 		 * rescuer as work_list needs to be drained.
1947 		 */
1948 		do {
1949 			pages_written = wb_do_writeback(wb);
1950 			trace_writeback_pages_written(pages_written);
1951 		} while (!list_empty(&wb->work_list));
1952 	} else {
1953 		/*
1954 		 * bdi_wq can't get enough workers and we're running off
1955 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1956 		 * enough for efficient IO.
1957 		 */
1958 		pages_written = writeback_inodes_wb(wb, 1024,
1959 						    WB_REASON_FORKER_THREAD);
1960 		trace_writeback_pages_written(pages_written);
1961 	}
1962 
1963 	if (!list_empty(&wb->work_list))
1964 		wb_wakeup(wb);
1965 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1966 		wb_wakeup_delayed(wb);
1967 
1968 	current->flags &= ~PF_SWAPWRITE;
1969 }
1970 
1971 /*
1972  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
1973  * write back the whole world.
1974  */
1975 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1976 					 enum wb_reason reason)
1977 {
1978 	struct bdi_writeback *wb;
1979 
1980 	if (!bdi_has_dirty_io(bdi))
1981 		return;
1982 
1983 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1984 		wb_start_writeback(wb, reason);
1985 }
1986 
1987 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
1988 				enum wb_reason reason)
1989 {
1990 	rcu_read_lock();
1991 	__wakeup_flusher_threads_bdi(bdi, reason);
1992 	rcu_read_unlock();
1993 }
1994 
1995 /*
1996  * Wakeup the flusher threads to start writeback of all currently dirty pages
1997  */
1998 void wakeup_flusher_threads(enum wb_reason reason)
1999 {
2000 	struct backing_dev_info *bdi;
2001 
2002 	/*
2003 	 * If we are expecting writeback progress we must submit plugged IO.
2004 	 */
2005 	if (blk_needs_flush_plug(current))
2006 		blk_schedule_flush_plug(current);
2007 
2008 	rcu_read_lock();
2009 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2010 		__wakeup_flusher_threads_bdi(bdi, reason);
2011 	rcu_read_unlock();
2012 }
2013 
2014 /*
2015  * Wake up bdi's periodically to make sure dirtytime inodes gets
2016  * written back periodically.  We deliberately do *not* check the
2017  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2018  * kernel to be constantly waking up once there are any dirtytime
2019  * inodes on the system.  So instead we define a separate delayed work
2020  * function which gets called much more rarely.  (By default, only
2021  * once every 12 hours.)
2022  *
2023  * If there is any other write activity going on in the file system,
2024  * this function won't be necessary.  But if the only thing that has
2025  * happened on the file system is a dirtytime inode caused by an atime
2026  * update, we need this infrastructure below to make sure that inode
2027  * eventually gets pushed out to disk.
2028  */
2029 static void wakeup_dirtytime_writeback(struct work_struct *w);
2030 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2031 
2032 static void wakeup_dirtytime_writeback(struct work_struct *w)
2033 {
2034 	struct backing_dev_info *bdi;
2035 
2036 	rcu_read_lock();
2037 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2038 		struct bdi_writeback *wb;
2039 
2040 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2041 			if (!list_empty(&wb->b_dirty_time))
2042 				wb_wakeup(wb);
2043 	}
2044 	rcu_read_unlock();
2045 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2046 }
2047 
2048 static int __init start_dirtytime_writeback(void)
2049 {
2050 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2051 	return 0;
2052 }
2053 __initcall(start_dirtytime_writeback);
2054 
2055 int dirtytime_interval_handler(struct ctl_table *table, int write,
2056 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2057 {
2058 	int ret;
2059 
2060 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2061 	if (ret == 0 && write)
2062 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2063 	return ret;
2064 }
2065 
2066 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2067 {
2068 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2069 		struct dentry *dentry;
2070 		const char *name = "?";
2071 
2072 		dentry = d_find_alias(inode);
2073 		if (dentry) {
2074 			spin_lock(&dentry->d_lock);
2075 			name = (const char *) dentry->d_name.name;
2076 		}
2077 		printk(KERN_DEBUG
2078 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2079 		       current->comm, task_pid_nr(current), inode->i_ino,
2080 		       name, inode->i_sb->s_id);
2081 		if (dentry) {
2082 			spin_unlock(&dentry->d_lock);
2083 			dput(dentry);
2084 		}
2085 	}
2086 }
2087 
2088 /**
2089  * __mark_inode_dirty -	internal function
2090  *
2091  * @inode: inode to mark
2092  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2093  *
2094  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2095  * mark_inode_dirty_sync.
2096  *
2097  * Put the inode on the super block's dirty list.
2098  *
2099  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2100  * dirty list only if it is hashed or if it refers to a blockdev.
2101  * If it was not hashed, it will never be added to the dirty list
2102  * even if it is later hashed, as it will have been marked dirty already.
2103  *
2104  * In short, make sure you hash any inodes _before_ you start marking
2105  * them dirty.
2106  *
2107  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2108  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2109  * the kernel-internal blockdev inode represents the dirtying time of the
2110  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2111  * page->mapping->host, so the page-dirtying time is recorded in the internal
2112  * blockdev inode.
2113  */
2114 void __mark_inode_dirty(struct inode *inode, int flags)
2115 {
2116 	struct super_block *sb = inode->i_sb;
2117 	int dirtytime;
2118 
2119 	trace_writeback_mark_inode_dirty(inode, flags);
2120 
2121 	/*
2122 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2123 	 * dirty the inode itself
2124 	 */
2125 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2126 		trace_writeback_dirty_inode_start(inode, flags);
2127 
2128 		if (sb->s_op->dirty_inode)
2129 			sb->s_op->dirty_inode(inode, flags);
2130 
2131 		trace_writeback_dirty_inode(inode, flags);
2132 	}
2133 	if (flags & I_DIRTY_INODE)
2134 		flags &= ~I_DIRTY_TIME;
2135 	dirtytime = flags & I_DIRTY_TIME;
2136 
2137 	/*
2138 	 * Paired with smp_mb() in __writeback_single_inode() for the
2139 	 * following lockless i_state test.  See there for details.
2140 	 */
2141 	smp_mb();
2142 
2143 	if (((inode->i_state & flags) == flags) ||
2144 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2145 		return;
2146 
2147 	if (unlikely(block_dump))
2148 		block_dump___mark_inode_dirty(inode);
2149 
2150 	spin_lock(&inode->i_lock);
2151 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2152 		goto out_unlock_inode;
2153 	if ((inode->i_state & flags) != flags) {
2154 		const int was_dirty = inode->i_state & I_DIRTY;
2155 
2156 		inode_attach_wb(inode, NULL);
2157 
2158 		if (flags & I_DIRTY_INODE)
2159 			inode->i_state &= ~I_DIRTY_TIME;
2160 		inode->i_state |= flags;
2161 
2162 		/*
2163 		 * If the inode is being synced, just update its dirty state.
2164 		 * The unlocker will place the inode on the appropriate
2165 		 * superblock list, based upon its state.
2166 		 */
2167 		if (inode->i_state & I_SYNC)
2168 			goto out_unlock_inode;
2169 
2170 		/*
2171 		 * Only add valid (hashed) inodes to the superblock's
2172 		 * dirty list.  Add blockdev inodes as well.
2173 		 */
2174 		if (!S_ISBLK(inode->i_mode)) {
2175 			if (inode_unhashed(inode))
2176 				goto out_unlock_inode;
2177 		}
2178 		if (inode->i_state & I_FREEING)
2179 			goto out_unlock_inode;
2180 
2181 		/*
2182 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2183 		 * reposition it (that would break b_dirty time-ordering).
2184 		 */
2185 		if (!was_dirty) {
2186 			struct bdi_writeback *wb;
2187 			struct list_head *dirty_list;
2188 			bool wakeup_bdi = false;
2189 
2190 			wb = locked_inode_to_wb_and_lock_list(inode);
2191 
2192 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2193 			     !test_bit(WB_registered, &wb->state),
2194 			     "bdi-%s not registered\n", wb->bdi->name);
2195 
2196 			inode->dirtied_when = jiffies;
2197 			if (dirtytime)
2198 				inode->dirtied_time_when = jiffies;
2199 
2200 			if (inode->i_state & I_DIRTY)
2201 				dirty_list = &wb->b_dirty;
2202 			else
2203 				dirty_list = &wb->b_dirty_time;
2204 
2205 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2206 							       dirty_list);
2207 
2208 			spin_unlock(&wb->list_lock);
2209 			trace_writeback_dirty_inode_enqueue(inode);
2210 
2211 			/*
2212 			 * If this is the first dirty inode for this bdi,
2213 			 * we have to wake-up the corresponding bdi thread
2214 			 * to make sure background write-back happens
2215 			 * later.
2216 			 */
2217 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2218 				wb_wakeup_delayed(wb);
2219 			return;
2220 		}
2221 	}
2222 out_unlock_inode:
2223 	spin_unlock(&inode->i_lock);
2224 }
2225 EXPORT_SYMBOL(__mark_inode_dirty);
2226 
2227 /*
2228  * The @s_sync_lock is used to serialise concurrent sync operations
2229  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2230  * Concurrent callers will block on the s_sync_lock rather than doing contending
2231  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2232  * has been issued up to the time this function is enter is guaranteed to be
2233  * completed by the time we have gained the lock and waited for all IO that is
2234  * in progress regardless of the order callers are granted the lock.
2235  */
2236 static void wait_sb_inodes(struct super_block *sb)
2237 {
2238 	LIST_HEAD(sync_list);
2239 
2240 	/*
2241 	 * We need to be protected against the filesystem going from
2242 	 * r/o to r/w or vice versa.
2243 	 */
2244 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2245 
2246 	mutex_lock(&sb->s_sync_lock);
2247 
2248 	/*
2249 	 * Splice the writeback list onto a temporary list to avoid waiting on
2250 	 * inodes that have started writeback after this point.
2251 	 *
2252 	 * Use rcu_read_lock() to keep the inodes around until we have a
2253 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2254 	 * the local list because inodes can be dropped from either by writeback
2255 	 * completion.
2256 	 */
2257 	rcu_read_lock();
2258 	spin_lock_irq(&sb->s_inode_wblist_lock);
2259 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2260 
2261 	/*
2262 	 * Data integrity sync. Must wait for all pages under writeback, because
2263 	 * there may have been pages dirtied before our sync call, but which had
2264 	 * writeout started before we write it out.  In which case, the inode
2265 	 * may not be on the dirty list, but we still have to wait for that
2266 	 * writeout.
2267 	 */
2268 	while (!list_empty(&sync_list)) {
2269 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2270 						       i_wb_list);
2271 		struct address_space *mapping = inode->i_mapping;
2272 
2273 		/*
2274 		 * Move each inode back to the wb list before we drop the lock
2275 		 * to preserve consistency between i_wb_list and the mapping
2276 		 * writeback tag. Writeback completion is responsible to remove
2277 		 * the inode from either list once the writeback tag is cleared.
2278 		 */
2279 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2280 
2281 		/*
2282 		 * The mapping can appear untagged while still on-list since we
2283 		 * do not have the mapping lock. Skip it here, wb completion
2284 		 * will remove it.
2285 		 */
2286 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2287 			continue;
2288 
2289 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2290 
2291 		spin_lock(&inode->i_lock);
2292 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2293 			spin_unlock(&inode->i_lock);
2294 
2295 			spin_lock_irq(&sb->s_inode_wblist_lock);
2296 			continue;
2297 		}
2298 		__iget(inode);
2299 		spin_unlock(&inode->i_lock);
2300 		rcu_read_unlock();
2301 
2302 		/*
2303 		 * We keep the error status of individual mapping so that
2304 		 * applications can catch the writeback error using fsync(2).
2305 		 * See filemap_fdatawait_keep_errors() for details.
2306 		 */
2307 		filemap_fdatawait_keep_errors(mapping);
2308 
2309 		cond_resched();
2310 
2311 		iput(inode);
2312 
2313 		rcu_read_lock();
2314 		spin_lock_irq(&sb->s_inode_wblist_lock);
2315 	}
2316 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2317 	rcu_read_unlock();
2318 	mutex_unlock(&sb->s_sync_lock);
2319 }
2320 
2321 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2322 				     enum wb_reason reason, bool skip_if_busy)
2323 {
2324 	DEFINE_WB_COMPLETION_ONSTACK(done);
2325 	struct wb_writeback_work work = {
2326 		.sb			= sb,
2327 		.sync_mode		= WB_SYNC_NONE,
2328 		.tagged_writepages	= 1,
2329 		.done			= &done,
2330 		.nr_pages		= nr,
2331 		.reason			= reason,
2332 	};
2333 	struct backing_dev_info *bdi = sb->s_bdi;
2334 
2335 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2336 		return;
2337 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2338 
2339 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2340 	wb_wait_for_completion(bdi, &done);
2341 }
2342 
2343 /**
2344  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2345  * @sb: the superblock
2346  * @nr: the number of pages to write
2347  * @reason: reason why some writeback work initiated
2348  *
2349  * Start writeback on some inodes on this super_block. No guarantees are made
2350  * on how many (if any) will be written, and this function does not wait
2351  * for IO completion of submitted IO.
2352  */
2353 void writeback_inodes_sb_nr(struct super_block *sb,
2354 			    unsigned long nr,
2355 			    enum wb_reason reason)
2356 {
2357 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2358 }
2359 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2360 
2361 /**
2362  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2363  * @sb: the superblock
2364  * @reason: reason why some writeback work was initiated
2365  *
2366  * Start writeback on some inodes on this super_block. No guarantees are made
2367  * on how many (if any) will be written, and this function does not wait
2368  * for IO completion of submitted IO.
2369  */
2370 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2371 {
2372 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2373 }
2374 EXPORT_SYMBOL(writeback_inodes_sb);
2375 
2376 /**
2377  * try_to_writeback_inodes_sb - try to start writeback if none underway
2378  * @sb: the superblock
2379  * @reason: reason why some writeback work was initiated
2380  *
2381  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2382  */
2383 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2384 {
2385 	if (!down_read_trylock(&sb->s_umount))
2386 		return;
2387 
2388 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2389 	up_read(&sb->s_umount);
2390 }
2391 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2392 
2393 /**
2394  * sync_inodes_sb	-	sync sb inode pages
2395  * @sb: the superblock
2396  *
2397  * This function writes and waits on any dirty inode belonging to this
2398  * super_block.
2399  */
2400 void sync_inodes_sb(struct super_block *sb)
2401 {
2402 	DEFINE_WB_COMPLETION_ONSTACK(done);
2403 	struct wb_writeback_work work = {
2404 		.sb		= sb,
2405 		.sync_mode	= WB_SYNC_ALL,
2406 		.nr_pages	= LONG_MAX,
2407 		.range_cyclic	= 0,
2408 		.done		= &done,
2409 		.reason		= WB_REASON_SYNC,
2410 		.for_sync	= 1,
2411 	};
2412 	struct backing_dev_info *bdi = sb->s_bdi;
2413 
2414 	/*
2415 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2416 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2417 	 * bdi_has_dirty() need to be written out too.
2418 	 */
2419 	if (bdi == &noop_backing_dev_info)
2420 		return;
2421 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2422 
2423 	bdi_split_work_to_wbs(bdi, &work, false);
2424 	wb_wait_for_completion(bdi, &done);
2425 
2426 	wait_sb_inodes(sb);
2427 }
2428 EXPORT_SYMBOL(sync_inodes_sb);
2429 
2430 /**
2431  * write_inode_now	-	write an inode to disk
2432  * @inode: inode to write to disk
2433  * @sync: whether the write should be synchronous or not
2434  *
2435  * This function commits an inode to disk immediately if it is dirty. This is
2436  * primarily needed by knfsd.
2437  *
2438  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2439  */
2440 int write_inode_now(struct inode *inode, int sync)
2441 {
2442 	struct writeback_control wbc = {
2443 		.nr_to_write = LONG_MAX,
2444 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2445 		.range_start = 0,
2446 		.range_end = LLONG_MAX,
2447 	};
2448 
2449 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2450 		wbc.nr_to_write = 0;
2451 
2452 	might_sleep();
2453 	return writeback_single_inode(inode, &wbc);
2454 }
2455 EXPORT_SYMBOL(write_inode_now);
2456 
2457 /**
2458  * sync_inode - write an inode and its pages to disk.
2459  * @inode: the inode to sync
2460  * @wbc: controls the writeback mode
2461  *
2462  * sync_inode() will write an inode and its pages to disk.  It will also
2463  * correctly update the inode on its superblock's dirty inode lists and will
2464  * update inode->i_state.
2465  *
2466  * The caller must have a ref on the inode.
2467  */
2468 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2469 {
2470 	return writeback_single_inode(inode, wbc);
2471 }
2472 EXPORT_SYMBOL(sync_inode);
2473 
2474 /**
2475  * sync_inode_metadata - write an inode to disk
2476  * @inode: the inode to sync
2477  * @wait: wait for I/O to complete.
2478  *
2479  * Write an inode to disk and adjust its dirty state after completion.
2480  *
2481  * Note: only writes the actual inode, no associated data or other metadata.
2482  */
2483 int sync_inode_metadata(struct inode *inode, int wait)
2484 {
2485 	struct writeback_control wbc = {
2486 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2487 		.nr_to_write = 0, /* metadata-only */
2488 	};
2489 
2490 	return sync_inode(inode, &wbc);
2491 }
2492 EXPORT_SYMBOL(sync_inode_metadata);
2493