xref: /openbmc/linux/fs/fs-writeback.c (revision b9ccfda2)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 	return list_entry(head, struct inode, i_wb_list);
85 }
86 
87 /*
88  * Include the creation of the trace points after defining the
89  * wb_writeback_work structure and inline functions so that the definition
90  * remains local to this file.
91  */
92 #define CREATE_TRACE_POINTS
93 #include <trace/events/writeback.h>
94 
95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
97 {
98 	if (bdi->wb.task) {
99 		wake_up_process(bdi->wb.task);
100 	} else {
101 		/*
102 		 * The bdi thread isn't there, wake up the forker thread which
103 		 * will create and run it.
104 		 */
105 		wake_up_process(default_backing_dev_info.wb.task);
106 	}
107 }
108 
109 static void bdi_queue_work(struct backing_dev_info *bdi,
110 			   struct wb_writeback_work *work)
111 {
112 	trace_writeback_queue(bdi, work);
113 
114 	spin_lock_bh(&bdi->wb_lock);
115 	list_add_tail(&work->list, &bdi->work_list);
116 	if (!bdi->wb.task)
117 		trace_writeback_nothread(bdi, work);
118 	bdi_wakeup_flusher(bdi);
119 	spin_unlock_bh(&bdi->wb_lock);
120 }
121 
122 static void
123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
124 		      bool range_cyclic, enum wb_reason reason)
125 {
126 	struct wb_writeback_work *work;
127 
128 	/*
129 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
130 	 * wakeup the thread for old dirty data writeback
131 	 */
132 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
133 	if (!work) {
134 		if (bdi->wb.task) {
135 			trace_writeback_nowork(bdi);
136 			wake_up_process(bdi->wb.task);
137 		}
138 		return;
139 	}
140 
141 	work->sync_mode	= WB_SYNC_NONE;
142 	work->nr_pages	= nr_pages;
143 	work->range_cyclic = range_cyclic;
144 	work->reason	= reason;
145 
146 	bdi_queue_work(bdi, work);
147 }
148 
149 /**
150  * bdi_start_writeback - start writeback
151  * @bdi: the backing device to write from
152  * @nr_pages: the number of pages to write
153  * @reason: reason why some writeback work was initiated
154  *
155  * Description:
156  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
157  *   started when this function returns, we make no guarantees on
158  *   completion. Caller need not hold sb s_umount semaphore.
159  *
160  */
161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
162 			enum wb_reason reason)
163 {
164 	__bdi_start_writeback(bdi, nr_pages, true, reason);
165 }
166 
167 /**
168  * bdi_start_background_writeback - start background writeback
169  * @bdi: the backing device to write from
170  *
171  * Description:
172  *   This makes sure WB_SYNC_NONE background writeback happens. When
173  *   this function returns, it is only guaranteed that for given BDI
174  *   some IO is happening if we are over background dirty threshold.
175  *   Caller need not hold sb s_umount semaphore.
176  */
177 void bdi_start_background_writeback(struct backing_dev_info *bdi)
178 {
179 	/*
180 	 * We just wake up the flusher thread. It will perform background
181 	 * writeback as soon as there is no other work to do.
182 	 */
183 	trace_writeback_wake_background(bdi);
184 	spin_lock_bh(&bdi->wb_lock);
185 	bdi_wakeup_flusher(bdi);
186 	spin_unlock_bh(&bdi->wb_lock);
187 }
188 
189 /*
190  * Remove the inode from the writeback list it is on.
191  */
192 void inode_wb_list_del(struct inode *inode)
193 {
194 	struct backing_dev_info *bdi = inode_to_bdi(inode);
195 
196 	spin_lock(&bdi->wb.list_lock);
197 	list_del_init(&inode->i_wb_list);
198 	spin_unlock(&bdi->wb.list_lock);
199 }
200 
201 /*
202  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
203  * furthest end of its superblock's dirty-inode list.
204  *
205  * Before stamping the inode's ->dirtied_when, we check to see whether it is
206  * already the most-recently-dirtied inode on the b_dirty list.  If that is
207  * the case then the inode must have been redirtied while it was being written
208  * out and we don't reset its dirtied_when.
209  */
210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
211 {
212 	assert_spin_locked(&wb->list_lock);
213 	if (!list_empty(&wb->b_dirty)) {
214 		struct inode *tail;
215 
216 		tail = wb_inode(wb->b_dirty.next);
217 		if (time_before(inode->dirtied_when, tail->dirtied_when))
218 			inode->dirtied_when = jiffies;
219 	}
220 	list_move(&inode->i_wb_list, &wb->b_dirty);
221 }
222 
223 /*
224  * requeue inode for re-scanning after bdi->b_io list is exhausted.
225  */
226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
227 {
228 	assert_spin_locked(&wb->list_lock);
229 	list_move(&inode->i_wb_list, &wb->b_more_io);
230 }
231 
232 static void inode_sync_complete(struct inode *inode)
233 {
234 	inode->i_state &= ~I_SYNC;
235 	/* Waiters must see I_SYNC cleared before being woken up */
236 	smp_mb();
237 	wake_up_bit(&inode->i_state, __I_SYNC);
238 }
239 
240 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
241 {
242 	bool ret = time_after(inode->dirtied_when, t);
243 #ifndef CONFIG_64BIT
244 	/*
245 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
246 	 * It _appears_ to be in the future, but is actually in distant past.
247 	 * This test is necessary to prevent such wrapped-around relative times
248 	 * from permanently stopping the whole bdi writeback.
249 	 */
250 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
251 #endif
252 	return ret;
253 }
254 
255 /*
256  * Move expired (dirtied after work->older_than_this) dirty inodes from
257  * @delaying_queue to @dispatch_queue.
258  */
259 static int move_expired_inodes(struct list_head *delaying_queue,
260 			       struct list_head *dispatch_queue,
261 			       struct wb_writeback_work *work)
262 {
263 	LIST_HEAD(tmp);
264 	struct list_head *pos, *node;
265 	struct super_block *sb = NULL;
266 	struct inode *inode;
267 	int do_sb_sort = 0;
268 	int moved = 0;
269 
270 	while (!list_empty(delaying_queue)) {
271 		inode = wb_inode(delaying_queue->prev);
272 		if (work->older_than_this &&
273 		    inode_dirtied_after(inode, *work->older_than_this))
274 			break;
275 		if (sb && sb != inode->i_sb)
276 			do_sb_sort = 1;
277 		sb = inode->i_sb;
278 		list_move(&inode->i_wb_list, &tmp);
279 		moved++;
280 	}
281 
282 	/* just one sb in list, splice to dispatch_queue and we're done */
283 	if (!do_sb_sort) {
284 		list_splice(&tmp, dispatch_queue);
285 		goto out;
286 	}
287 
288 	/* Move inodes from one superblock together */
289 	while (!list_empty(&tmp)) {
290 		sb = wb_inode(tmp.prev)->i_sb;
291 		list_for_each_prev_safe(pos, node, &tmp) {
292 			inode = wb_inode(pos);
293 			if (inode->i_sb == sb)
294 				list_move(&inode->i_wb_list, dispatch_queue);
295 		}
296 	}
297 out:
298 	return moved;
299 }
300 
301 /*
302  * Queue all expired dirty inodes for io, eldest first.
303  * Before
304  *         newly dirtied     b_dirty    b_io    b_more_io
305  *         =============>    gf         edc     BA
306  * After
307  *         newly dirtied     b_dirty    b_io    b_more_io
308  *         =============>    g          fBAedc
309  *                                           |
310  *                                           +--> dequeue for IO
311  */
312 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
313 {
314 	int moved;
315 	assert_spin_locked(&wb->list_lock);
316 	list_splice_init(&wb->b_more_io, &wb->b_io);
317 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
318 	trace_writeback_queue_io(wb, work, moved);
319 }
320 
321 static int write_inode(struct inode *inode, struct writeback_control *wbc)
322 {
323 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
324 		return inode->i_sb->s_op->write_inode(inode, wbc);
325 	return 0;
326 }
327 
328 /*
329  * Wait for writeback on an inode to complete. Called with i_lock held.
330  * Caller must make sure inode cannot go away when we drop i_lock.
331  */
332 static void __inode_wait_for_writeback(struct inode *inode)
333 	__releases(inode->i_lock)
334 	__acquires(inode->i_lock)
335 {
336 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
337 	wait_queue_head_t *wqh;
338 
339 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
340 	while (inode->i_state & I_SYNC) {
341 		spin_unlock(&inode->i_lock);
342 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
343 		spin_lock(&inode->i_lock);
344 	}
345 }
346 
347 /*
348  * Wait for writeback on an inode to complete. Caller must have inode pinned.
349  */
350 void inode_wait_for_writeback(struct inode *inode)
351 {
352 	spin_lock(&inode->i_lock);
353 	__inode_wait_for_writeback(inode);
354 	spin_unlock(&inode->i_lock);
355 }
356 
357 /*
358  * Sleep until I_SYNC is cleared. This function must be called with i_lock
359  * held and drops it. It is aimed for callers not holding any inode reference
360  * so once i_lock is dropped, inode can go away.
361  */
362 static void inode_sleep_on_writeback(struct inode *inode)
363 	__releases(inode->i_lock)
364 {
365 	DEFINE_WAIT(wait);
366 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
367 	int sleep;
368 
369 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
370 	sleep = inode->i_state & I_SYNC;
371 	spin_unlock(&inode->i_lock);
372 	if (sleep)
373 		schedule();
374 	finish_wait(wqh, &wait);
375 }
376 
377 /*
378  * Find proper writeback list for the inode depending on its current state and
379  * possibly also change of its state while we were doing writeback.  Here we
380  * handle things such as livelock prevention or fairness of writeback among
381  * inodes. This function can be called only by flusher thread - noone else
382  * processes all inodes in writeback lists and requeueing inodes behind flusher
383  * thread's back can have unexpected consequences.
384  */
385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
386 			  struct writeback_control *wbc)
387 {
388 	if (inode->i_state & I_FREEING)
389 		return;
390 
391 	/*
392 	 * Sync livelock prevention. Each inode is tagged and synced in one
393 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
394 	 * the dirty time to prevent enqueue and sync it again.
395 	 */
396 	if ((inode->i_state & I_DIRTY) &&
397 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
398 		inode->dirtied_when = jiffies;
399 
400 	if (wbc->pages_skipped) {
401 		/*
402 		 * writeback is not making progress due to locked
403 		 * buffers. Skip this inode for now.
404 		 */
405 		redirty_tail(inode, wb);
406 		return;
407 	}
408 
409 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
410 		/*
411 		 * We didn't write back all the pages.  nfs_writepages()
412 		 * sometimes bales out without doing anything.
413 		 */
414 		if (wbc->nr_to_write <= 0) {
415 			/* Slice used up. Queue for next turn. */
416 			requeue_io(inode, wb);
417 		} else {
418 			/*
419 			 * Writeback blocked by something other than
420 			 * congestion. Delay the inode for some time to
421 			 * avoid spinning on the CPU (100% iowait)
422 			 * retrying writeback of the dirty page/inode
423 			 * that cannot be performed immediately.
424 			 */
425 			redirty_tail(inode, wb);
426 		}
427 	} else if (inode->i_state & I_DIRTY) {
428 		/*
429 		 * Filesystems can dirty the inode during writeback operations,
430 		 * such as delayed allocation during submission or metadata
431 		 * updates after data IO completion.
432 		 */
433 		redirty_tail(inode, wb);
434 	} else {
435 		/* The inode is clean. Remove from writeback lists. */
436 		list_del_init(&inode->i_wb_list);
437 	}
438 }
439 
440 /*
441  * Write out an inode and its dirty pages. Do not update the writeback list
442  * linkage. That is left to the caller. The caller is also responsible for
443  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
444  */
445 static int
446 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
447 			 struct writeback_control *wbc)
448 {
449 	struct address_space *mapping = inode->i_mapping;
450 	long nr_to_write = wbc->nr_to_write;
451 	unsigned dirty;
452 	int ret;
453 
454 	WARN_ON(!(inode->i_state & I_SYNC));
455 
456 	ret = do_writepages(mapping, wbc);
457 
458 	/*
459 	 * Make sure to wait on the data before writing out the metadata.
460 	 * This is important for filesystems that modify metadata on data
461 	 * I/O completion.
462 	 */
463 	if (wbc->sync_mode == WB_SYNC_ALL) {
464 		int err = filemap_fdatawait(mapping);
465 		if (ret == 0)
466 			ret = err;
467 	}
468 
469 	/*
470 	 * Some filesystems may redirty the inode during the writeback
471 	 * due to delalloc, clear dirty metadata flags right before
472 	 * write_inode()
473 	 */
474 	spin_lock(&inode->i_lock);
475 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
476 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
477 		inode->i_state &= ~I_DIRTY_PAGES;
478 	dirty = inode->i_state & I_DIRTY;
479 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
480 	spin_unlock(&inode->i_lock);
481 	/* Don't write the inode if only I_DIRTY_PAGES was set */
482 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
483 		int err = write_inode(inode, wbc);
484 		if (ret == 0)
485 			ret = err;
486 	}
487 	trace_writeback_single_inode(inode, wbc, nr_to_write);
488 	return ret;
489 }
490 
491 /*
492  * Write out an inode's dirty pages. Either the caller has an active reference
493  * on the inode or the inode has I_WILL_FREE set.
494  *
495  * This function is designed to be called for writing back one inode which
496  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
497  * and does more profound writeback list handling in writeback_sb_inodes().
498  */
499 static int
500 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
501 		       struct writeback_control *wbc)
502 {
503 	int ret = 0;
504 
505 	spin_lock(&inode->i_lock);
506 	if (!atomic_read(&inode->i_count))
507 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
508 	else
509 		WARN_ON(inode->i_state & I_WILL_FREE);
510 
511 	if (inode->i_state & I_SYNC) {
512 		if (wbc->sync_mode != WB_SYNC_ALL)
513 			goto out;
514 		/*
515 		 * It's a data-integrity sync. We must wait. Since callers hold
516 		 * inode reference or inode has I_WILL_FREE set, it cannot go
517 		 * away under us.
518 		 */
519 		__inode_wait_for_writeback(inode);
520 	}
521 	WARN_ON(inode->i_state & I_SYNC);
522 	/*
523 	 * Skip inode if it is clean. We don't want to mess with writeback
524 	 * lists in this function since flusher thread may be doing for example
525 	 * sync in parallel and if we move the inode, it could get skipped. So
526 	 * here we make sure inode is on some writeback list and leave it there
527 	 * unless we have completely cleaned the inode.
528 	 */
529 	if (!(inode->i_state & I_DIRTY))
530 		goto out;
531 	inode->i_state |= I_SYNC;
532 	spin_unlock(&inode->i_lock);
533 
534 	ret = __writeback_single_inode(inode, wb, wbc);
535 
536 	spin_lock(&wb->list_lock);
537 	spin_lock(&inode->i_lock);
538 	/*
539 	 * If inode is clean, remove it from writeback lists. Otherwise don't
540 	 * touch it. See comment above for explanation.
541 	 */
542 	if (!(inode->i_state & I_DIRTY))
543 		list_del_init(&inode->i_wb_list);
544 	spin_unlock(&wb->list_lock);
545 	inode_sync_complete(inode);
546 out:
547 	spin_unlock(&inode->i_lock);
548 	return ret;
549 }
550 
551 static long writeback_chunk_size(struct backing_dev_info *bdi,
552 				 struct wb_writeback_work *work)
553 {
554 	long pages;
555 
556 	/*
557 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
558 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
559 	 * here avoids calling into writeback_inodes_wb() more than once.
560 	 *
561 	 * The intended call sequence for WB_SYNC_ALL writeback is:
562 	 *
563 	 *      wb_writeback()
564 	 *          writeback_sb_inodes()       <== called only once
565 	 *              write_cache_pages()     <== called once for each inode
566 	 *                   (quickly) tag currently dirty pages
567 	 *                   (maybe slowly) sync all tagged pages
568 	 */
569 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
570 		pages = LONG_MAX;
571 	else {
572 		pages = min(bdi->avg_write_bandwidth / 2,
573 			    global_dirty_limit / DIRTY_SCOPE);
574 		pages = min(pages, work->nr_pages);
575 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
576 				   MIN_WRITEBACK_PAGES);
577 	}
578 
579 	return pages;
580 }
581 
582 /*
583  * Write a portion of b_io inodes which belong to @sb.
584  *
585  * If @only_this_sb is true, then find and write all such
586  * inodes. Otherwise write only ones which go sequentially
587  * in reverse order.
588  *
589  * Return the number of pages and/or inodes written.
590  */
591 static long writeback_sb_inodes(struct super_block *sb,
592 				struct bdi_writeback *wb,
593 				struct wb_writeback_work *work)
594 {
595 	struct writeback_control wbc = {
596 		.sync_mode		= work->sync_mode,
597 		.tagged_writepages	= work->tagged_writepages,
598 		.for_kupdate		= work->for_kupdate,
599 		.for_background		= work->for_background,
600 		.range_cyclic		= work->range_cyclic,
601 		.range_start		= 0,
602 		.range_end		= LLONG_MAX,
603 	};
604 	unsigned long start_time = jiffies;
605 	long write_chunk;
606 	long wrote = 0;  /* count both pages and inodes */
607 
608 	while (!list_empty(&wb->b_io)) {
609 		struct inode *inode = wb_inode(wb->b_io.prev);
610 
611 		if (inode->i_sb != sb) {
612 			if (work->sb) {
613 				/*
614 				 * We only want to write back data for this
615 				 * superblock, move all inodes not belonging
616 				 * to it back onto the dirty list.
617 				 */
618 				redirty_tail(inode, wb);
619 				continue;
620 			}
621 
622 			/*
623 			 * The inode belongs to a different superblock.
624 			 * Bounce back to the caller to unpin this and
625 			 * pin the next superblock.
626 			 */
627 			break;
628 		}
629 
630 		/*
631 		 * Don't bother with new inodes or inodes beeing freed, first
632 		 * kind does not need peridic writeout yet, and for the latter
633 		 * kind writeout is handled by the freer.
634 		 */
635 		spin_lock(&inode->i_lock);
636 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
637 			spin_unlock(&inode->i_lock);
638 			redirty_tail(inode, wb);
639 			continue;
640 		}
641 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
642 			/*
643 			 * If this inode is locked for writeback and we are not
644 			 * doing writeback-for-data-integrity, move it to
645 			 * b_more_io so that writeback can proceed with the
646 			 * other inodes on s_io.
647 			 *
648 			 * We'll have another go at writing back this inode
649 			 * when we completed a full scan of b_io.
650 			 */
651 			spin_unlock(&inode->i_lock);
652 			requeue_io(inode, wb);
653 			trace_writeback_sb_inodes_requeue(inode);
654 			continue;
655 		}
656 		spin_unlock(&wb->list_lock);
657 
658 		/*
659 		 * We already requeued the inode if it had I_SYNC set and we
660 		 * are doing WB_SYNC_NONE writeback. So this catches only the
661 		 * WB_SYNC_ALL case.
662 		 */
663 		if (inode->i_state & I_SYNC) {
664 			/* Wait for I_SYNC. This function drops i_lock... */
665 			inode_sleep_on_writeback(inode);
666 			/* Inode may be gone, start again */
667 			spin_lock(&wb->list_lock);
668 			continue;
669 		}
670 		inode->i_state |= I_SYNC;
671 		spin_unlock(&inode->i_lock);
672 
673 		write_chunk = writeback_chunk_size(wb->bdi, work);
674 		wbc.nr_to_write = write_chunk;
675 		wbc.pages_skipped = 0;
676 
677 		/*
678 		 * We use I_SYNC to pin the inode in memory. While it is set
679 		 * evict_inode() will wait so the inode cannot be freed.
680 		 */
681 		__writeback_single_inode(inode, wb, &wbc);
682 
683 		work->nr_pages -= write_chunk - wbc.nr_to_write;
684 		wrote += write_chunk - wbc.nr_to_write;
685 		spin_lock(&wb->list_lock);
686 		spin_lock(&inode->i_lock);
687 		if (!(inode->i_state & I_DIRTY))
688 			wrote++;
689 		requeue_inode(inode, wb, &wbc);
690 		inode_sync_complete(inode);
691 		spin_unlock(&inode->i_lock);
692 		cond_resched_lock(&wb->list_lock);
693 		/*
694 		 * bail out to wb_writeback() often enough to check
695 		 * background threshold and other termination conditions.
696 		 */
697 		if (wrote) {
698 			if (time_is_before_jiffies(start_time + HZ / 10UL))
699 				break;
700 			if (work->nr_pages <= 0)
701 				break;
702 		}
703 	}
704 	return wrote;
705 }
706 
707 static long __writeback_inodes_wb(struct bdi_writeback *wb,
708 				  struct wb_writeback_work *work)
709 {
710 	unsigned long start_time = jiffies;
711 	long wrote = 0;
712 
713 	while (!list_empty(&wb->b_io)) {
714 		struct inode *inode = wb_inode(wb->b_io.prev);
715 		struct super_block *sb = inode->i_sb;
716 
717 		if (!grab_super_passive(sb)) {
718 			/*
719 			 * grab_super_passive() may fail consistently due to
720 			 * s_umount being grabbed by someone else. Don't use
721 			 * requeue_io() to avoid busy retrying the inode/sb.
722 			 */
723 			redirty_tail(inode, wb);
724 			continue;
725 		}
726 		wrote += writeback_sb_inodes(sb, wb, work);
727 		drop_super(sb);
728 
729 		/* refer to the same tests at the end of writeback_sb_inodes */
730 		if (wrote) {
731 			if (time_is_before_jiffies(start_time + HZ / 10UL))
732 				break;
733 			if (work->nr_pages <= 0)
734 				break;
735 		}
736 	}
737 	/* Leave any unwritten inodes on b_io */
738 	return wrote;
739 }
740 
741 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
742 				enum wb_reason reason)
743 {
744 	struct wb_writeback_work work = {
745 		.nr_pages	= nr_pages,
746 		.sync_mode	= WB_SYNC_NONE,
747 		.range_cyclic	= 1,
748 		.reason		= reason,
749 	};
750 
751 	spin_lock(&wb->list_lock);
752 	if (list_empty(&wb->b_io))
753 		queue_io(wb, &work);
754 	__writeback_inodes_wb(wb, &work);
755 	spin_unlock(&wb->list_lock);
756 
757 	return nr_pages - work.nr_pages;
758 }
759 
760 static bool over_bground_thresh(struct backing_dev_info *bdi)
761 {
762 	unsigned long background_thresh, dirty_thresh;
763 
764 	global_dirty_limits(&background_thresh, &dirty_thresh);
765 
766 	if (global_page_state(NR_FILE_DIRTY) +
767 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
768 		return true;
769 
770 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
771 				bdi_dirty_limit(bdi, background_thresh))
772 		return true;
773 
774 	return false;
775 }
776 
777 /*
778  * Called under wb->list_lock. If there are multiple wb per bdi,
779  * only the flusher working on the first wb should do it.
780  */
781 static void wb_update_bandwidth(struct bdi_writeback *wb,
782 				unsigned long start_time)
783 {
784 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
785 }
786 
787 /*
788  * Explicit flushing or periodic writeback of "old" data.
789  *
790  * Define "old": the first time one of an inode's pages is dirtied, we mark the
791  * dirtying-time in the inode's address_space.  So this periodic writeback code
792  * just walks the superblock inode list, writing back any inodes which are
793  * older than a specific point in time.
794  *
795  * Try to run once per dirty_writeback_interval.  But if a writeback event
796  * takes longer than a dirty_writeback_interval interval, then leave a
797  * one-second gap.
798  *
799  * older_than_this takes precedence over nr_to_write.  So we'll only write back
800  * all dirty pages if they are all attached to "old" mappings.
801  */
802 static long wb_writeback(struct bdi_writeback *wb,
803 			 struct wb_writeback_work *work)
804 {
805 	unsigned long wb_start = jiffies;
806 	long nr_pages = work->nr_pages;
807 	unsigned long oldest_jif;
808 	struct inode *inode;
809 	long progress;
810 
811 	oldest_jif = jiffies;
812 	work->older_than_this = &oldest_jif;
813 
814 	spin_lock(&wb->list_lock);
815 	for (;;) {
816 		/*
817 		 * Stop writeback when nr_pages has been consumed
818 		 */
819 		if (work->nr_pages <= 0)
820 			break;
821 
822 		/*
823 		 * Background writeout and kupdate-style writeback may
824 		 * run forever. Stop them if there is other work to do
825 		 * so that e.g. sync can proceed. They'll be restarted
826 		 * after the other works are all done.
827 		 */
828 		if ((work->for_background || work->for_kupdate) &&
829 		    !list_empty(&wb->bdi->work_list))
830 			break;
831 
832 		/*
833 		 * For background writeout, stop when we are below the
834 		 * background dirty threshold
835 		 */
836 		if (work->for_background && !over_bground_thresh(wb->bdi))
837 			break;
838 
839 		/*
840 		 * Kupdate and background works are special and we want to
841 		 * include all inodes that need writing. Livelock avoidance is
842 		 * handled by these works yielding to any other work so we are
843 		 * safe.
844 		 */
845 		if (work->for_kupdate) {
846 			oldest_jif = jiffies -
847 				msecs_to_jiffies(dirty_expire_interval * 10);
848 		} else if (work->for_background)
849 			oldest_jif = jiffies;
850 
851 		trace_writeback_start(wb->bdi, work);
852 		if (list_empty(&wb->b_io))
853 			queue_io(wb, work);
854 		if (work->sb)
855 			progress = writeback_sb_inodes(work->sb, wb, work);
856 		else
857 			progress = __writeback_inodes_wb(wb, work);
858 		trace_writeback_written(wb->bdi, work);
859 
860 		wb_update_bandwidth(wb, wb_start);
861 
862 		/*
863 		 * Did we write something? Try for more
864 		 *
865 		 * Dirty inodes are moved to b_io for writeback in batches.
866 		 * The completion of the current batch does not necessarily
867 		 * mean the overall work is done. So we keep looping as long
868 		 * as made some progress on cleaning pages or inodes.
869 		 */
870 		if (progress)
871 			continue;
872 		/*
873 		 * No more inodes for IO, bail
874 		 */
875 		if (list_empty(&wb->b_more_io))
876 			break;
877 		/*
878 		 * Nothing written. Wait for some inode to
879 		 * become available for writeback. Otherwise
880 		 * we'll just busyloop.
881 		 */
882 		if (!list_empty(&wb->b_more_io))  {
883 			trace_writeback_wait(wb->bdi, work);
884 			inode = wb_inode(wb->b_more_io.prev);
885 			spin_lock(&inode->i_lock);
886 			spin_unlock(&wb->list_lock);
887 			/* This function drops i_lock... */
888 			inode_sleep_on_writeback(inode);
889 			spin_lock(&wb->list_lock);
890 		}
891 	}
892 	spin_unlock(&wb->list_lock);
893 
894 	return nr_pages - work->nr_pages;
895 }
896 
897 /*
898  * Return the next wb_writeback_work struct that hasn't been processed yet.
899  */
900 static struct wb_writeback_work *
901 get_next_work_item(struct backing_dev_info *bdi)
902 {
903 	struct wb_writeback_work *work = NULL;
904 
905 	spin_lock_bh(&bdi->wb_lock);
906 	if (!list_empty(&bdi->work_list)) {
907 		work = list_entry(bdi->work_list.next,
908 				  struct wb_writeback_work, list);
909 		list_del_init(&work->list);
910 	}
911 	spin_unlock_bh(&bdi->wb_lock);
912 	return work;
913 }
914 
915 /*
916  * Add in the number of potentially dirty inodes, because each inode
917  * write can dirty pagecache in the underlying blockdev.
918  */
919 static unsigned long get_nr_dirty_pages(void)
920 {
921 	return global_page_state(NR_FILE_DIRTY) +
922 		global_page_state(NR_UNSTABLE_NFS) +
923 		get_nr_dirty_inodes();
924 }
925 
926 static long wb_check_background_flush(struct bdi_writeback *wb)
927 {
928 	if (over_bground_thresh(wb->bdi)) {
929 
930 		struct wb_writeback_work work = {
931 			.nr_pages	= LONG_MAX,
932 			.sync_mode	= WB_SYNC_NONE,
933 			.for_background	= 1,
934 			.range_cyclic	= 1,
935 			.reason		= WB_REASON_BACKGROUND,
936 		};
937 
938 		return wb_writeback(wb, &work);
939 	}
940 
941 	return 0;
942 }
943 
944 static long wb_check_old_data_flush(struct bdi_writeback *wb)
945 {
946 	unsigned long expired;
947 	long nr_pages;
948 
949 	/*
950 	 * When set to zero, disable periodic writeback
951 	 */
952 	if (!dirty_writeback_interval)
953 		return 0;
954 
955 	expired = wb->last_old_flush +
956 			msecs_to_jiffies(dirty_writeback_interval * 10);
957 	if (time_before(jiffies, expired))
958 		return 0;
959 
960 	wb->last_old_flush = jiffies;
961 	nr_pages = get_nr_dirty_pages();
962 
963 	if (nr_pages) {
964 		struct wb_writeback_work work = {
965 			.nr_pages	= nr_pages,
966 			.sync_mode	= WB_SYNC_NONE,
967 			.for_kupdate	= 1,
968 			.range_cyclic	= 1,
969 			.reason		= WB_REASON_PERIODIC,
970 		};
971 
972 		return wb_writeback(wb, &work);
973 	}
974 
975 	return 0;
976 }
977 
978 /*
979  * Retrieve work items and do the writeback they describe
980  */
981 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
982 {
983 	struct backing_dev_info *bdi = wb->bdi;
984 	struct wb_writeback_work *work;
985 	long wrote = 0;
986 
987 	set_bit(BDI_writeback_running, &wb->bdi->state);
988 	while ((work = get_next_work_item(bdi)) != NULL) {
989 		/*
990 		 * Override sync mode, in case we must wait for completion
991 		 * because this thread is exiting now.
992 		 */
993 		if (force_wait)
994 			work->sync_mode = WB_SYNC_ALL;
995 
996 		trace_writeback_exec(bdi, work);
997 
998 		wrote += wb_writeback(wb, work);
999 
1000 		/*
1001 		 * Notify the caller of completion if this is a synchronous
1002 		 * work item, otherwise just free it.
1003 		 */
1004 		if (work->done)
1005 			complete(work->done);
1006 		else
1007 			kfree(work);
1008 	}
1009 
1010 	/*
1011 	 * Check for periodic writeback, kupdated() style
1012 	 */
1013 	wrote += wb_check_old_data_flush(wb);
1014 	wrote += wb_check_background_flush(wb);
1015 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1016 
1017 	return wrote;
1018 }
1019 
1020 /*
1021  * Handle writeback of dirty data for the device backed by this bdi. Also
1022  * wakes up periodically and does kupdated style flushing.
1023  */
1024 int bdi_writeback_thread(void *data)
1025 {
1026 	struct bdi_writeback *wb = data;
1027 	struct backing_dev_info *bdi = wb->bdi;
1028 	long pages_written;
1029 
1030 	current->flags |= PF_SWAPWRITE;
1031 	set_freezable();
1032 	wb->last_active = jiffies;
1033 
1034 	/*
1035 	 * Our parent may run at a different priority, just set us to normal
1036 	 */
1037 	set_user_nice(current, 0);
1038 
1039 	trace_writeback_thread_start(bdi);
1040 
1041 	while (!kthread_freezable_should_stop(NULL)) {
1042 		/*
1043 		 * Remove own delayed wake-up timer, since we are already awake
1044 		 * and we'll take care of the preriodic write-back.
1045 		 */
1046 		del_timer(&wb->wakeup_timer);
1047 
1048 		pages_written = wb_do_writeback(wb, 0);
1049 
1050 		trace_writeback_pages_written(pages_written);
1051 
1052 		if (pages_written)
1053 			wb->last_active = jiffies;
1054 
1055 		set_current_state(TASK_INTERRUPTIBLE);
1056 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1057 			__set_current_state(TASK_RUNNING);
1058 			continue;
1059 		}
1060 
1061 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1062 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1063 		else {
1064 			/*
1065 			 * We have nothing to do, so can go sleep without any
1066 			 * timeout and save power. When a work is queued or
1067 			 * something is made dirty - we will be woken up.
1068 			 */
1069 			schedule();
1070 		}
1071 	}
1072 
1073 	/* Flush any work that raced with us exiting */
1074 	if (!list_empty(&bdi->work_list))
1075 		wb_do_writeback(wb, 1);
1076 
1077 	trace_writeback_thread_stop(bdi);
1078 	return 0;
1079 }
1080 
1081 
1082 /*
1083  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1084  * the whole world.
1085  */
1086 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1087 {
1088 	struct backing_dev_info *bdi;
1089 
1090 	if (!nr_pages) {
1091 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1092 				global_page_state(NR_UNSTABLE_NFS);
1093 	}
1094 
1095 	rcu_read_lock();
1096 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1097 		if (!bdi_has_dirty_io(bdi))
1098 			continue;
1099 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1100 	}
1101 	rcu_read_unlock();
1102 }
1103 
1104 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1105 {
1106 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1107 		struct dentry *dentry;
1108 		const char *name = "?";
1109 
1110 		dentry = d_find_alias(inode);
1111 		if (dentry) {
1112 			spin_lock(&dentry->d_lock);
1113 			name = (const char *) dentry->d_name.name;
1114 		}
1115 		printk(KERN_DEBUG
1116 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1117 		       current->comm, task_pid_nr(current), inode->i_ino,
1118 		       name, inode->i_sb->s_id);
1119 		if (dentry) {
1120 			spin_unlock(&dentry->d_lock);
1121 			dput(dentry);
1122 		}
1123 	}
1124 }
1125 
1126 /**
1127  *	__mark_inode_dirty -	internal function
1128  *	@inode: inode to mark
1129  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1130  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1131  *  	mark_inode_dirty_sync.
1132  *
1133  * Put the inode on the super block's dirty list.
1134  *
1135  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1136  * dirty list only if it is hashed or if it refers to a blockdev.
1137  * If it was not hashed, it will never be added to the dirty list
1138  * even if it is later hashed, as it will have been marked dirty already.
1139  *
1140  * In short, make sure you hash any inodes _before_ you start marking
1141  * them dirty.
1142  *
1143  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1144  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1145  * the kernel-internal blockdev inode represents the dirtying time of the
1146  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1147  * page->mapping->host, so the page-dirtying time is recorded in the internal
1148  * blockdev inode.
1149  */
1150 void __mark_inode_dirty(struct inode *inode, int flags)
1151 {
1152 	struct super_block *sb = inode->i_sb;
1153 	struct backing_dev_info *bdi = NULL;
1154 
1155 	/*
1156 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1157 	 * dirty the inode itself
1158 	 */
1159 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1160 		if (sb->s_op->dirty_inode)
1161 			sb->s_op->dirty_inode(inode, flags);
1162 	}
1163 
1164 	/*
1165 	 * make sure that changes are seen by all cpus before we test i_state
1166 	 * -- mikulas
1167 	 */
1168 	smp_mb();
1169 
1170 	/* avoid the locking if we can */
1171 	if ((inode->i_state & flags) == flags)
1172 		return;
1173 
1174 	if (unlikely(block_dump))
1175 		block_dump___mark_inode_dirty(inode);
1176 
1177 	spin_lock(&inode->i_lock);
1178 	if ((inode->i_state & flags) != flags) {
1179 		const int was_dirty = inode->i_state & I_DIRTY;
1180 
1181 		inode->i_state |= flags;
1182 
1183 		/*
1184 		 * If the inode is being synced, just update its dirty state.
1185 		 * The unlocker will place the inode on the appropriate
1186 		 * superblock list, based upon its state.
1187 		 */
1188 		if (inode->i_state & I_SYNC)
1189 			goto out_unlock_inode;
1190 
1191 		/*
1192 		 * Only add valid (hashed) inodes to the superblock's
1193 		 * dirty list.  Add blockdev inodes as well.
1194 		 */
1195 		if (!S_ISBLK(inode->i_mode)) {
1196 			if (inode_unhashed(inode))
1197 				goto out_unlock_inode;
1198 		}
1199 		if (inode->i_state & I_FREEING)
1200 			goto out_unlock_inode;
1201 
1202 		/*
1203 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1204 		 * reposition it (that would break b_dirty time-ordering).
1205 		 */
1206 		if (!was_dirty) {
1207 			bool wakeup_bdi = false;
1208 			bdi = inode_to_bdi(inode);
1209 
1210 			if (bdi_cap_writeback_dirty(bdi)) {
1211 				WARN(!test_bit(BDI_registered, &bdi->state),
1212 				     "bdi-%s not registered\n", bdi->name);
1213 
1214 				/*
1215 				 * If this is the first dirty inode for this
1216 				 * bdi, we have to wake-up the corresponding
1217 				 * bdi thread to make sure background
1218 				 * write-back happens later.
1219 				 */
1220 				if (!wb_has_dirty_io(&bdi->wb))
1221 					wakeup_bdi = true;
1222 			}
1223 
1224 			spin_unlock(&inode->i_lock);
1225 			spin_lock(&bdi->wb.list_lock);
1226 			inode->dirtied_when = jiffies;
1227 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1228 			spin_unlock(&bdi->wb.list_lock);
1229 
1230 			if (wakeup_bdi)
1231 				bdi_wakeup_thread_delayed(bdi);
1232 			return;
1233 		}
1234 	}
1235 out_unlock_inode:
1236 	spin_unlock(&inode->i_lock);
1237 
1238 }
1239 EXPORT_SYMBOL(__mark_inode_dirty);
1240 
1241 static void wait_sb_inodes(struct super_block *sb)
1242 {
1243 	struct inode *inode, *old_inode = NULL;
1244 
1245 	/*
1246 	 * We need to be protected against the filesystem going from
1247 	 * r/o to r/w or vice versa.
1248 	 */
1249 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1250 
1251 	spin_lock(&inode_sb_list_lock);
1252 
1253 	/*
1254 	 * Data integrity sync. Must wait for all pages under writeback,
1255 	 * because there may have been pages dirtied before our sync
1256 	 * call, but which had writeout started before we write it out.
1257 	 * In which case, the inode may not be on the dirty list, but
1258 	 * we still have to wait for that writeout.
1259 	 */
1260 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1261 		struct address_space *mapping = inode->i_mapping;
1262 
1263 		spin_lock(&inode->i_lock);
1264 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1265 		    (mapping->nrpages == 0)) {
1266 			spin_unlock(&inode->i_lock);
1267 			continue;
1268 		}
1269 		__iget(inode);
1270 		spin_unlock(&inode->i_lock);
1271 		spin_unlock(&inode_sb_list_lock);
1272 
1273 		/*
1274 		 * We hold a reference to 'inode' so it couldn't have been
1275 		 * removed from s_inodes list while we dropped the
1276 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1277 		 * be holding the last reference and we cannot iput it under
1278 		 * inode_sb_list_lock. So we keep the reference and iput it
1279 		 * later.
1280 		 */
1281 		iput(old_inode);
1282 		old_inode = inode;
1283 
1284 		filemap_fdatawait(mapping);
1285 
1286 		cond_resched();
1287 
1288 		spin_lock(&inode_sb_list_lock);
1289 	}
1290 	spin_unlock(&inode_sb_list_lock);
1291 	iput(old_inode);
1292 }
1293 
1294 /**
1295  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1296  * @sb: the superblock
1297  * @nr: the number of pages to write
1298  * @reason: reason why some writeback work initiated
1299  *
1300  * Start writeback on some inodes on this super_block. No guarantees are made
1301  * on how many (if any) will be written, and this function does not wait
1302  * for IO completion of submitted IO.
1303  */
1304 void writeback_inodes_sb_nr(struct super_block *sb,
1305 			    unsigned long nr,
1306 			    enum wb_reason reason)
1307 {
1308 	DECLARE_COMPLETION_ONSTACK(done);
1309 	struct wb_writeback_work work = {
1310 		.sb			= sb,
1311 		.sync_mode		= WB_SYNC_NONE,
1312 		.tagged_writepages	= 1,
1313 		.done			= &done,
1314 		.nr_pages		= nr,
1315 		.reason			= reason,
1316 	};
1317 
1318 	if (sb->s_bdi == &noop_backing_dev_info)
1319 		return;
1320 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1321 	bdi_queue_work(sb->s_bdi, &work);
1322 	wait_for_completion(&done);
1323 }
1324 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1325 
1326 /**
1327  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1328  * @sb: the superblock
1329  * @reason: reason why some writeback work was initiated
1330  *
1331  * Start writeback on some inodes on this super_block. No guarantees are made
1332  * on how many (if any) will be written, and this function does not wait
1333  * for IO completion of submitted IO.
1334  */
1335 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1336 {
1337 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1338 }
1339 EXPORT_SYMBOL(writeback_inodes_sb);
1340 
1341 /**
1342  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1343  * @sb: the superblock
1344  * @reason: reason why some writeback work was initiated
1345  *
1346  * Invoke writeback_inodes_sb if no writeback is currently underway.
1347  * Returns 1 if writeback was started, 0 if not.
1348  */
1349 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1350 {
1351 	if (!writeback_in_progress(sb->s_bdi)) {
1352 		down_read(&sb->s_umount);
1353 		writeback_inodes_sb(sb, reason);
1354 		up_read(&sb->s_umount);
1355 		return 1;
1356 	} else
1357 		return 0;
1358 }
1359 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1360 
1361 /**
1362  * writeback_inodes_sb_nr_if_idle	-	start writeback if none underway
1363  * @sb: the superblock
1364  * @nr: the number of pages to write
1365  * @reason: reason why some writeback work was initiated
1366  *
1367  * Invoke writeback_inodes_sb if no writeback is currently underway.
1368  * Returns 1 if writeback was started, 0 if not.
1369  */
1370 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1371 				   unsigned long nr,
1372 				   enum wb_reason reason)
1373 {
1374 	if (!writeback_in_progress(sb->s_bdi)) {
1375 		down_read(&sb->s_umount);
1376 		writeback_inodes_sb_nr(sb, nr, reason);
1377 		up_read(&sb->s_umount);
1378 		return 1;
1379 	} else
1380 		return 0;
1381 }
1382 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1383 
1384 /**
1385  * sync_inodes_sb	-	sync sb inode pages
1386  * @sb: the superblock
1387  *
1388  * This function writes and waits on any dirty inode belonging to this
1389  * super_block.
1390  */
1391 void sync_inodes_sb(struct super_block *sb)
1392 {
1393 	DECLARE_COMPLETION_ONSTACK(done);
1394 	struct wb_writeback_work work = {
1395 		.sb		= sb,
1396 		.sync_mode	= WB_SYNC_ALL,
1397 		.nr_pages	= LONG_MAX,
1398 		.range_cyclic	= 0,
1399 		.done		= &done,
1400 		.reason		= WB_REASON_SYNC,
1401 	};
1402 
1403 	/* Nothing to do? */
1404 	if (sb->s_bdi == &noop_backing_dev_info)
1405 		return;
1406 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1407 
1408 	bdi_queue_work(sb->s_bdi, &work);
1409 	wait_for_completion(&done);
1410 
1411 	wait_sb_inodes(sb);
1412 }
1413 EXPORT_SYMBOL(sync_inodes_sb);
1414 
1415 /**
1416  * write_inode_now	-	write an inode to disk
1417  * @inode: inode to write to disk
1418  * @sync: whether the write should be synchronous or not
1419  *
1420  * This function commits an inode to disk immediately if it is dirty. This is
1421  * primarily needed by knfsd.
1422  *
1423  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1424  */
1425 int write_inode_now(struct inode *inode, int sync)
1426 {
1427 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1428 	struct writeback_control wbc = {
1429 		.nr_to_write = LONG_MAX,
1430 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1431 		.range_start = 0,
1432 		.range_end = LLONG_MAX,
1433 	};
1434 
1435 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1436 		wbc.nr_to_write = 0;
1437 
1438 	might_sleep();
1439 	return writeback_single_inode(inode, wb, &wbc);
1440 }
1441 EXPORT_SYMBOL(write_inode_now);
1442 
1443 /**
1444  * sync_inode - write an inode and its pages to disk.
1445  * @inode: the inode to sync
1446  * @wbc: controls the writeback mode
1447  *
1448  * sync_inode() will write an inode and its pages to disk.  It will also
1449  * correctly update the inode on its superblock's dirty inode lists and will
1450  * update inode->i_state.
1451  *
1452  * The caller must have a ref on the inode.
1453  */
1454 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1455 {
1456 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1457 }
1458 EXPORT_SYMBOL(sync_inode);
1459 
1460 /**
1461  * sync_inode_metadata - write an inode to disk
1462  * @inode: the inode to sync
1463  * @wait: wait for I/O to complete.
1464  *
1465  * Write an inode to disk and adjust its dirty state after completion.
1466  *
1467  * Note: only writes the actual inode, no associated data or other metadata.
1468  */
1469 int sync_inode_metadata(struct inode *inode, int wait)
1470 {
1471 	struct writeback_control wbc = {
1472 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1473 		.nr_to_write = 0, /* metadata-only */
1474 	};
1475 
1476 	return sync_inode(inode, &wbc);
1477 }
1478 EXPORT_SYMBOL(sync_inode_metadata);
1479