1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/freezer.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 enum wb_reason reason; /* why was writeback initiated? */ 50 51 struct list_head list; /* pending work list */ 52 struct completion *done; /* set if the caller waits */ 53 }; 54 55 /* 56 * We don't actually have pdflush, but this one is exported though /proc... 57 */ 58 int nr_pdflush_threads; 59 60 /** 61 * writeback_in_progress - determine whether there is writeback in progress 62 * @bdi: the device's backing_dev_info structure. 63 * 64 * Determine whether there is writeback waiting to be handled against a 65 * backing device. 66 */ 67 int writeback_in_progress(struct backing_dev_info *bdi) 68 { 69 return test_bit(BDI_writeback_running, &bdi->state); 70 } 71 72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 73 { 74 struct super_block *sb = inode->i_sb; 75 76 if (strcmp(sb->s_type->name, "bdev") == 0) 77 return inode->i_mapping->backing_dev_info; 78 79 return sb->s_bdi; 80 } 81 82 static inline struct inode *wb_inode(struct list_head *head) 83 { 84 return list_entry(head, struct inode, i_wb_list); 85 } 86 87 /* 88 * Include the creation of the trace points after defining the 89 * wb_writeback_work structure and inline functions so that the definition 90 * remains local to this file. 91 */ 92 #define CREATE_TRACE_POINTS 93 #include <trace/events/writeback.h> 94 95 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 96 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 97 { 98 if (bdi->wb.task) { 99 wake_up_process(bdi->wb.task); 100 } else { 101 /* 102 * The bdi thread isn't there, wake up the forker thread which 103 * will create and run it. 104 */ 105 wake_up_process(default_backing_dev_info.wb.task); 106 } 107 } 108 109 static void bdi_queue_work(struct backing_dev_info *bdi, 110 struct wb_writeback_work *work) 111 { 112 trace_writeback_queue(bdi, work); 113 114 spin_lock_bh(&bdi->wb_lock); 115 list_add_tail(&work->list, &bdi->work_list); 116 if (!bdi->wb.task) 117 trace_writeback_nothread(bdi, work); 118 bdi_wakeup_flusher(bdi); 119 spin_unlock_bh(&bdi->wb_lock); 120 } 121 122 static void 123 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 124 bool range_cyclic, enum wb_reason reason) 125 { 126 struct wb_writeback_work *work; 127 128 /* 129 * This is WB_SYNC_NONE writeback, so if allocation fails just 130 * wakeup the thread for old dirty data writeback 131 */ 132 work = kzalloc(sizeof(*work), GFP_ATOMIC); 133 if (!work) { 134 if (bdi->wb.task) { 135 trace_writeback_nowork(bdi); 136 wake_up_process(bdi->wb.task); 137 } 138 return; 139 } 140 141 work->sync_mode = WB_SYNC_NONE; 142 work->nr_pages = nr_pages; 143 work->range_cyclic = range_cyclic; 144 work->reason = reason; 145 146 bdi_queue_work(bdi, work); 147 } 148 149 /** 150 * bdi_start_writeback - start writeback 151 * @bdi: the backing device to write from 152 * @nr_pages: the number of pages to write 153 * @reason: reason why some writeback work was initiated 154 * 155 * Description: 156 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 157 * started when this function returns, we make no guarantees on 158 * completion. Caller need not hold sb s_umount semaphore. 159 * 160 */ 161 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 162 enum wb_reason reason) 163 { 164 __bdi_start_writeback(bdi, nr_pages, true, reason); 165 } 166 167 /** 168 * bdi_start_background_writeback - start background writeback 169 * @bdi: the backing device to write from 170 * 171 * Description: 172 * This makes sure WB_SYNC_NONE background writeback happens. When 173 * this function returns, it is only guaranteed that for given BDI 174 * some IO is happening if we are over background dirty threshold. 175 * Caller need not hold sb s_umount semaphore. 176 */ 177 void bdi_start_background_writeback(struct backing_dev_info *bdi) 178 { 179 /* 180 * We just wake up the flusher thread. It will perform background 181 * writeback as soon as there is no other work to do. 182 */ 183 trace_writeback_wake_background(bdi); 184 spin_lock_bh(&bdi->wb_lock); 185 bdi_wakeup_flusher(bdi); 186 spin_unlock_bh(&bdi->wb_lock); 187 } 188 189 /* 190 * Remove the inode from the writeback list it is on. 191 */ 192 void inode_wb_list_del(struct inode *inode) 193 { 194 struct backing_dev_info *bdi = inode_to_bdi(inode); 195 196 spin_lock(&bdi->wb.list_lock); 197 list_del_init(&inode->i_wb_list); 198 spin_unlock(&bdi->wb.list_lock); 199 } 200 201 /* 202 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 203 * furthest end of its superblock's dirty-inode list. 204 * 205 * Before stamping the inode's ->dirtied_when, we check to see whether it is 206 * already the most-recently-dirtied inode on the b_dirty list. If that is 207 * the case then the inode must have been redirtied while it was being written 208 * out and we don't reset its dirtied_when. 209 */ 210 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 211 { 212 assert_spin_locked(&wb->list_lock); 213 if (!list_empty(&wb->b_dirty)) { 214 struct inode *tail; 215 216 tail = wb_inode(wb->b_dirty.next); 217 if (time_before(inode->dirtied_when, tail->dirtied_when)) 218 inode->dirtied_when = jiffies; 219 } 220 list_move(&inode->i_wb_list, &wb->b_dirty); 221 } 222 223 /* 224 * requeue inode for re-scanning after bdi->b_io list is exhausted. 225 */ 226 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 227 { 228 assert_spin_locked(&wb->list_lock); 229 list_move(&inode->i_wb_list, &wb->b_more_io); 230 } 231 232 static void inode_sync_complete(struct inode *inode) 233 { 234 inode->i_state &= ~I_SYNC; 235 /* Waiters must see I_SYNC cleared before being woken up */ 236 smp_mb(); 237 wake_up_bit(&inode->i_state, __I_SYNC); 238 } 239 240 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 241 { 242 bool ret = time_after(inode->dirtied_when, t); 243 #ifndef CONFIG_64BIT 244 /* 245 * For inodes being constantly redirtied, dirtied_when can get stuck. 246 * It _appears_ to be in the future, but is actually in distant past. 247 * This test is necessary to prevent such wrapped-around relative times 248 * from permanently stopping the whole bdi writeback. 249 */ 250 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 251 #endif 252 return ret; 253 } 254 255 /* 256 * Move expired (dirtied after work->older_than_this) dirty inodes from 257 * @delaying_queue to @dispatch_queue. 258 */ 259 static int move_expired_inodes(struct list_head *delaying_queue, 260 struct list_head *dispatch_queue, 261 struct wb_writeback_work *work) 262 { 263 LIST_HEAD(tmp); 264 struct list_head *pos, *node; 265 struct super_block *sb = NULL; 266 struct inode *inode; 267 int do_sb_sort = 0; 268 int moved = 0; 269 270 while (!list_empty(delaying_queue)) { 271 inode = wb_inode(delaying_queue->prev); 272 if (work->older_than_this && 273 inode_dirtied_after(inode, *work->older_than_this)) 274 break; 275 if (sb && sb != inode->i_sb) 276 do_sb_sort = 1; 277 sb = inode->i_sb; 278 list_move(&inode->i_wb_list, &tmp); 279 moved++; 280 } 281 282 /* just one sb in list, splice to dispatch_queue and we're done */ 283 if (!do_sb_sort) { 284 list_splice(&tmp, dispatch_queue); 285 goto out; 286 } 287 288 /* Move inodes from one superblock together */ 289 while (!list_empty(&tmp)) { 290 sb = wb_inode(tmp.prev)->i_sb; 291 list_for_each_prev_safe(pos, node, &tmp) { 292 inode = wb_inode(pos); 293 if (inode->i_sb == sb) 294 list_move(&inode->i_wb_list, dispatch_queue); 295 } 296 } 297 out: 298 return moved; 299 } 300 301 /* 302 * Queue all expired dirty inodes for io, eldest first. 303 * Before 304 * newly dirtied b_dirty b_io b_more_io 305 * =============> gf edc BA 306 * After 307 * newly dirtied b_dirty b_io b_more_io 308 * =============> g fBAedc 309 * | 310 * +--> dequeue for IO 311 */ 312 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 313 { 314 int moved; 315 assert_spin_locked(&wb->list_lock); 316 list_splice_init(&wb->b_more_io, &wb->b_io); 317 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 318 trace_writeback_queue_io(wb, work, moved); 319 } 320 321 static int write_inode(struct inode *inode, struct writeback_control *wbc) 322 { 323 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 324 return inode->i_sb->s_op->write_inode(inode, wbc); 325 return 0; 326 } 327 328 /* 329 * Wait for writeback on an inode to complete. Called with i_lock held. 330 * Caller must make sure inode cannot go away when we drop i_lock. 331 */ 332 static void __inode_wait_for_writeback(struct inode *inode) 333 __releases(inode->i_lock) 334 __acquires(inode->i_lock) 335 { 336 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 337 wait_queue_head_t *wqh; 338 339 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 340 while (inode->i_state & I_SYNC) { 341 spin_unlock(&inode->i_lock); 342 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 343 spin_lock(&inode->i_lock); 344 } 345 } 346 347 /* 348 * Wait for writeback on an inode to complete. Caller must have inode pinned. 349 */ 350 void inode_wait_for_writeback(struct inode *inode) 351 { 352 spin_lock(&inode->i_lock); 353 __inode_wait_for_writeback(inode); 354 spin_unlock(&inode->i_lock); 355 } 356 357 /* 358 * Sleep until I_SYNC is cleared. This function must be called with i_lock 359 * held and drops it. It is aimed for callers not holding any inode reference 360 * so once i_lock is dropped, inode can go away. 361 */ 362 static void inode_sleep_on_writeback(struct inode *inode) 363 __releases(inode->i_lock) 364 { 365 DEFINE_WAIT(wait); 366 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 367 int sleep; 368 369 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 370 sleep = inode->i_state & I_SYNC; 371 spin_unlock(&inode->i_lock); 372 if (sleep) 373 schedule(); 374 finish_wait(wqh, &wait); 375 } 376 377 /* 378 * Find proper writeback list for the inode depending on its current state and 379 * possibly also change of its state while we were doing writeback. Here we 380 * handle things such as livelock prevention or fairness of writeback among 381 * inodes. This function can be called only by flusher thread - noone else 382 * processes all inodes in writeback lists and requeueing inodes behind flusher 383 * thread's back can have unexpected consequences. 384 */ 385 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 386 struct writeback_control *wbc) 387 { 388 if (inode->i_state & I_FREEING) 389 return; 390 391 /* 392 * Sync livelock prevention. Each inode is tagged and synced in one 393 * shot. If still dirty, it will be redirty_tail()'ed below. Update 394 * the dirty time to prevent enqueue and sync it again. 395 */ 396 if ((inode->i_state & I_DIRTY) && 397 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 398 inode->dirtied_when = jiffies; 399 400 if (wbc->pages_skipped) { 401 /* 402 * writeback is not making progress due to locked 403 * buffers. Skip this inode for now. 404 */ 405 redirty_tail(inode, wb); 406 return; 407 } 408 409 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 410 /* 411 * We didn't write back all the pages. nfs_writepages() 412 * sometimes bales out without doing anything. 413 */ 414 if (wbc->nr_to_write <= 0) { 415 /* Slice used up. Queue for next turn. */ 416 requeue_io(inode, wb); 417 } else { 418 /* 419 * Writeback blocked by something other than 420 * congestion. Delay the inode for some time to 421 * avoid spinning on the CPU (100% iowait) 422 * retrying writeback of the dirty page/inode 423 * that cannot be performed immediately. 424 */ 425 redirty_tail(inode, wb); 426 } 427 } else if (inode->i_state & I_DIRTY) { 428 /* 429 * Filesystems can dirty the inode during writeback operations, 430 * such as delayed allocation during submission or metadata 431 * updates after data IO completion. 432 */ 433 redirty_tail(inode, wb); 434 } else { 435 /* The inode is clean. Remove from writeback lists. */ 436 list_del_init(&inode->i_wb_list); 437 } 438 } 439 440 /* 441 * Write out an inode and its dirty pages. Do not update the writeback list 442 * linkage. That is left to the caller. The caller is also responsible for 443 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 444 */ 445 static int 446 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 447 struct writeback_control *wbc) 448 { 449 struct address_space *mapping = inode->i_mapping; 450 long nr_to_write = wbc->nr_to_write; 451 unsigned dirty; 452 int ret; 453 454 WARN_ON(!(inode->i_state & I_SYNC)); 455 456 ret = do_writepages(mapping, wbc); 457 458 /* 459 * Make sure to wait on the data before writing out the metadata. 460 * This is important for filesystems that modify metadata on data 461 * I/O completion. 462 */ 463 if (wbc->sync_mode == WB_SYNC_ALL) { 464 int err = filemap_fdatawait(mapping); 465 if (ret == 0) 466 ret = err; 467 } 468 469 /* 470 * Some filesystems may redirty the inode during the writeback 471 * due to delalloc, clear dirty metadata flags right before 472 * write_inode() 473 */ 474 spin_lock(&inode->i_lock); 475 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */ 476 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 477 inode->i_state &= ~I_DIRTY_PAGES; 478 dirty = inode->i_state & I_DIRTY; 479 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 480 spin_unlock(&inode->i_lock); 481 /* Don't write the inode if only I_DIRTY_PAGES was set */ 482 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 483 int err = write_inode(inode, wbc); 484 if (ret == 0) 485 ret = err; 486 } 487 trace_writeback_single_inode(inode, wbc, nr_to_write); 488 return ret; 489 } 490 491 /* 492 * Write out an inode's dirty pages. Either the caller has an active reference 493 * on the inode or the inode has I_WILL_FREE set. 494 * 495 * This function is designed to be called for writing back one inode which 496 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 497 * and does more profound writeback list handling in writeback_sb_inodes(). 498 */ 499 static int 500 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 501 struct writeback_control *wbc) 502 { 503 int ret = 0; 504 505 spin_lock(&inode->i_lock); 506 if (!atomic_read(&inode->i_count)) 507 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 508 else 509 WARN_ON(inode->i_state & I_WILL_FREE); 510 511 if (inode->i_state & I_SYNC) { 512 if (wbc->sync_mode != WB_SYNC_ALL) 513 goto out; 514 /* 515 * It's a data-integrity sync. We must wait. Since callers hold 516 * inode reference or inode has I_WILL_FREE set, it cannot go 517 * away under us. 518 */ 519 __inode_wait_for_writeback(inode); 520 } 521 WARN_ON(inode->i_state & I_SYNC); 522 /* 523 * Skip inode if it is clean. We don't want to mess with writeback 524 * lists in this function since flusher thread may be doing for example 525 * sync in parallel and if we move the inode, it could get skipped. So 526 * here we make sure inode is on some writeback list and leave it there 527 * unless we have completely cleaned the inode. 528 */ 529 if (!(inode->i_state & I_DIRTY)) 530 goto out; 531 inode->i_state |= I_SYNC; 532 spin_unlock(&inode->i_lock); 533 534 ret = __writeback_single_inode(inode, wb, wbc); 535 536 spin_lock(&wb->list_lock); 537 spin_lock(&inode->i_lock); 538 /* 539 * If inode is clean, remove it from writeback lists. Otherwise don't 540 * touch it. See comment above for explanation. 541 */ 542 if (!(inode->i_state & I_DIRTY)) 543 list_del_init(&inode->i_wb_list); 544 spin_unlock(&wb->list_lock); 545 inode_sync_complete(inode); 546 out: 547 spin_unlock(&inode->i_lock); 548 return ret; 549 } 550 551 static long writeback_chunk_size(struct backing_dev_info *bdi, 552 struct wb_writeback_work *work) 553 { 554 long pages; 555 556 /* 557 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 558 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 559 * here avoids calling into writeback_inodes_wb() more than once. 560 * 561 * The intended call sequence for WB_SYNC_ALL writeback is: 562 * 563 * wb_writeback() 564 * writeback_sb_inodes() <== called only once 565 * write_cache_pages() <== called once for each inode 566 * (quickly) tag currently dirty pages 567 * (maybe slowly) sync all tagged pages 568 */ 569 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 570 pages = LONG_MAX; 571 else { 572 pages = min(bdi->avg_write_bandwidth / 2, 573 global_dirty_limit / DIRTY_SCOPE); 574 pages = min(pages, work->nr_pages); 575 pages = round_down(pages + MIN_WRITEBACK_PAGES, 576 MIN_WRITEBACK_PAGES); 577 } 578 579 return pages; 580 } 581 582 /* 583 * Write a portion of b_io inodes which belong to @sb. 584 * 585 * If @only_this_sb is true, then find and write all such 586 * inodes. Otherwise write only ones which go sequentially 587 * in reverse order. 588 * 589 * Return the number of pages and/or inodes written. 590 */ 591 static long writeback_sb_inodes(struct super_block *sb, 592 struct bdi_writeback *wb, 593 struct wb_writeback_work *work) 594 { 595 struct writeback_control wbc = { 596 .sync_mode = work->sync_mode, 597 .tagged_writepages = work->tagged_writepages, 598 .for_kupdate = work->for_kupdate, 599 .for_background = work->for_background, 600 .range_cyclic = work->range_cyclic, 601 .range_start = 0, 602 .range_end = LLONG_MAX, 603 }; 604 unsigned long start_time = jiffies; 605 long write_chunk; 606 long wrote = 0; /* count both pages and inodes */ 607 608 while (!list_empty(&wb->b_io)) { 609 struct inode *inode = wb_inode(wb->b_io.prev); 610 611 if (inode->i_sb != sb) { 612 if (work->sb) { 613 /* 614 * We only want to write back data for this 615 * superblock, move all inodes not belonging 616 * to it back onto the dirty list. 617 */ 618 redirty_tail(inode, wb); 619 continue; 620 } 621 622 /* 623 * The inode belongs to a different superblock. 624 * Bounce back to the caller to unpin this and 625 * pin the next superblock. 626 */ 627 break; 628 } 629 630 /* 631 * Don't bother with new inodes or inodes beeing freed, first 632 * kind does not need peridic writeout yet, and for the latter 633 * kind writeout is handled by the freer. 634 */ 635 spin_lock(&inode->i_lock); 636 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 637 spin_unlock(&inode->i_lock); 638 redirty_tail(inode, wb); 639 continue; 640 } 641 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 642 /* 643 * If this inode is locked for writeback and we are not 644 * doing writeback-for-data-integrity, move it to 645 * b_more_io so that writeback can proceed with the 646 * other inodes on s_io. 647 * 648 * We'll have another go at writing back this inode 649 * when we completed a full scan of b_io. 650 */ 651 spin_unlock(&inode->i_lock); 652 requeue_io(inode, wb); 653 trace_writeback_sb_inodes_requeue(inode); 654 continue; 655 } 656 spin_unlock(&wb->list_lock); 657 658 /* 659 * We already requeued the inode if it had I_SYNC set and we 660 * are doing WB_SYNC_NONE writeback. So this catches only the 661 * WB_SYNC_ALL case. 662 */ 663 if (inode->i_state & I_SYNC) { 664 /* Wait for I_SYNC. This function drops i_lock... */ 665 inode_sleep_on_writeback(inode); 666 /* Inode may be gone, start again */ 667 spin_lock(&wb->list_lock); 668 continue; 669 } 670 inode->i_state |= I_SYNC; 671 spin_unlock(&inode->i_lock); 672 673 write_chunk = writeback_chunk_size(wb->bdi, work); 674 wbc.nr_to_write = write_chunk; 675 wbc.pages_skipped = 0; 676 677 /* 678 * We use I_SYNC to pin the inode in memory. While it is set 679 * evict_inode() will wait so the inode cannot be freed. 680 */ 681 __writeback_single_inode(inode, wb, &wbc); 682 683 work->nr_pages -= write_chunk - wbc.nr_to_write; 684 wrote += write_chunk - wbc.nr_to_write; 685 spin_lock(&wb->list_lock); 686 spin_lock(&inode->i_lock); 687 if (!(inode->i_state & I_DIRTY)) 688 wrote++; 689 requeue_inode(inode, wb, &wbc); 690 inode_sync_complete(inode); 691 spin_unlock(&inode->i_lock); 692 cond_resched_lock(&wb->list_lock); 693 /* 694 * bail out to wb_writeback() often enough to check 695 * background threshold and other termination conditions. 696 */ 697 if (wrote) { 698 if (time_is_before_jiffies(start_time + HZ / 10UL)) 699 break; 700 if (work->nr_pages <= 0) 701 break; 702 } 703 } 704 return wrote; 705 } 706 707 static long __writeback_inodes_wb(struct bdi_writeback *wb, 708 struct wb_writeback_work *work) 709 { 710 unsigned long start_time = jiffies; 711 long wrote = 0; 712 713 while (!list_empty(&wb->b_io)) { 714 struct inode *inode = wb_inode(wb->b_io.prev); 715 struct super_block *sb = inode->i_sb; 716 717 if (!grab_super_passive(sb)) { 718 /* 719 * grab_super_passive() may fail consistently due to 720 * s_umount being grabbed by someone else. Don't use 721 * requeue_io() to avoid busy retrying the inode/sb. 722 */ 723 redirty_tail(inode, wb); 724 continue; 725 } 726 wrote += writeback_sb_inodes(sb, wb, work); 727 drop_super(sb); 728 729 /* refer to the same tests at the end of writeback_sb_inodes */ 730 if (wrote) { 731 if (time_is_before_jiffies(start_time + HZ / 10UL)) 732 break; 733 if (work->nr_pages <= 0) 734 break; 735 } 736 } 737 /* Leave any unwritten inodes on b_io */ 738 return wrote; 739 } 740 741 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 742 enum wb_reason reason) 743 { 744 struct wb_writeback_work work = { 745 .nr_pages = nr_pages, 746 .sync_mode = WB_SYNC_NONE, 747 .range_cyclic = 1, 748 .reason = reason, 749 }; 750 751 spin_lock(&wb->list_lock); 752 if (list_empty(&wb->b_io)) 753 queue_io(wb, &work); 754 __writeback_inodes_wb(wb, &work); 755 spin_unlock(&wb->list_lock); 756 757 return nr_pages - work.nr_pages; 758 } 759 760 static bool over_bground_thresh(struct backing_dev_info *bdi) 761 { 762 unsigned long background_thresh, dirty_thresh; 763 764 global_dirty_limits(&background_thresh, &dirty_thresh); 765 766 if (global_page_state(NR_FILE_DIRTY) + 767 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 768 return true; 769 770 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 771 bdi_dirty_limit(bdi, background_thresh)) 772 return true; 773 774 return false; 775 } 776 777 /* 778 * Called under wb->list_lock. If there are multiple wb per bdi, 779 * only the flusher working on the first wb should do it. 780 */ 781 static void wb_update_bandwidth(struct bdi_writeback *wb, 782 unsigned long start_time) 783 { 784 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 785 } 786 787 /* 788 * Explicit flushing or periodic writeback of "old" data. 789 * 790 * Define "old": the first time one of an inode's pages is dirtied, we mark the 791 * dirtying-time in the inode's address_space. So this periodic writeback code 792 * just walks the superblock inode list, writing back any inodes which are 793 * older than a specific point in time. 794 * 795 * Try to run once per dirty_writeback_interval. But if a writeback event 796 * takes longer than a dirty_writeback_interval interval, then leave a 797 * one-second gap. 798 * 799 * older_than_this takes precedence over nr_to_write. So we'll only write back 800 * all dirty pages if they are all attached to "old" mappings. 801 */ 802 static long wb_writeback(struct bdi_writeback *wb, 803 struct wb_writeback_work *work) 804 { 805 unsigned long wb_start = jiffies; 806 long nr_pages = work->nr_pages; 807 unsigned long oldest_jif; 808 struct inode *inode; 809 long progress; 810 811 oldest_jif = jiffies; 812 work->older_than_this = &oldest_jif; 813 814 spin_lock(&wb->list_lock); 815 for (;;) { 816 /* 817 * Stop writeback when nr_pages has been consumed 818 */ 819 if (work->nr_pages <= 0) 820 break; 821 822 /* 823 * Background writeout and kupdate-style writeback may 824 * run forever. Stop them if there is other work to do 825 * so that e.g. sync can proceed. They'll be restarted 826 * after the other works are all done. 827 */ 828 if ((work->for_background || work->for_kupdate) && 829 !list_empty(&wb->bdi->work_list)) 830 break; 831 832 /* 833 * For background writeout, stop when we are below the 834 * background dirty threshold 835 */ 836 if (work->for_background && !over_bground_thresh(wb->bdi)) 837 break; 838 839 /* 840 * Kupdate and background works are special and we want to 841 * include all inodes that need writing. Livelock avoidance is 842 * handled by these works yielding to any other work so we are 843 * safe. 844 */ 845 if (work->for_kupdate) { 846 oldest_jif = jiffies - 847 msecs_to_jiffies(dirty_expire_interval * 10); 848 } else if (work->for_background) 849 oldest_jif = jiffies; 850 851 trace_writeback_start(wb->bdi, work); 852 if (list_empty(&wb->b_io)) 853 queue_io(wb, work); 854 if (work->sb) 855 progress = writeback_sb_inodes(work->sb, wb, work); 856 else 857 progress = __writeback_inodes_wb(wb, work); 858 trace_writeback_written(wb->bdi, work); 859 860 wb_update_bandwidth(wb, wb_start); 861 862 /* 863 * Did we write something? Try for more 864 * 865 * Dirty inodes are moved to b_io for writeback in batches. 866 * The completion of the current batch does not necessarily 867 * mean the overall work is done. So we keep looping as long 868 * as made some progress on cleaning pages or inodes. 869 */ 870 if (progress) 871 continue; 872 /* 873 * No more inodes for IO, bail 874 */ 875 if (list_empty(&wb->b_more_io)) 876 break; 877 /* 878 * Nothing written. Wait for some inode to 879 * become available for writeback. Otherwise 880 * we'll just busyloop. 881 */ 882 if (!list_empty(&wb->b_more_io)) { 883 trace_writeback_wait(wb->bdi, work); 884 inode = wb_inode(wb->b_more_io.prev); 885 spin_lock(&inode->i_lock); 886 spin_unlock(&wb->list_lock); 887 /* This function drops i_lock... */ 888 inode_sleep_on_writeback(inode); 889 spin_lock(&wb->list_lock); 890 } 891 } 892 spin_unlock(&wb->list_lock); 893 894 return nr_pages - work->nr_pages; 895 } 896 897 /* 898 * Return the next wb_writeback_work struct that hasn't been processed yet. 899 */ 900 static struct wb_writeback_work * 901 get_next_work_item(struct backing_dev_info *bdi) 902 { 903 struct wb_writeback_work *work = NULL; 904 905 spin_lock_bh(&bdi->wb_lock); 906 if (!list_empty(&bdi->work_list)) { 907 work = list_entry(bdi->work_list.next, 908 struct wb_writeback_work, list); 909 list_del_init(&work->list); 910 } 911 spin_unlock_bh(&bdi->wb_lock); 912 return work; 913 } 914 915 /* 916 * Add in the number of potentially dirty inodes, because each inode 917 * write can dirty pagecache in the underlying blockdev. 918 */ 919 static unsigned long get_nr_dirty_pages(void) 920 { 921 return global_page_state(NR_FILE_DIRTY) + 922 global_page_state(NR_UNSTABLE_NFS) + 923 get_nr_dirty_inodes(); 924 } 925 926 static long wb_check_background_flush(struct bdi_writeback *wb) 927 { 928 if (over_bground_thresh(wb->bdi)) { 929 930 struct wb_writeback_work work = { 931 .nr_pages = LONG_MAX, 932 .sync_mode = WB_SYNC_NONE, 933 .for_background = 1, 934 .range_cyclic = 1, 935 .reason = WB_REASON_BACKGROUND, 936 }; 937 938 return wb_writeback(wb, &work); 939 } 940 941 return 0; 942 } 943 944 static long wb_check_old_data_flush(struct bdi_writeback *wb) 945 { 946 unsigned long expired; 947 long nr_pages; 948 949 /* 950 * When set to zero, disable periodic writeback 951 */ 952 if (!dirty_writeback_interval) 953 return 0; 954 955 expired = wb->last_old_flush + 956 msecs_to_jiffies(dirty_writeback_interval * 10); 957 if (time_before(jiffies, expired)) 958 return 0; 959 960 wb->last_old_flush = jiffies; 961 nr_pages = get_nr_dirty_pages(); 962 963 if (nr_pages) { 964 struct wb_writeback_work work = { 965 .nr_pages = nr_pages, 966 .sync_mode = WB_SYNC_NONE, 967 .for_kupdate = 1, 968 .range_cyclic = 1, 969 .reason = WB_REASON_PERIODIC, 970 }; 971 972 return wb_writeback(wb, &work); 973 } 974 975 return 0; 976 } 977 978 /* 979 * Retrieve work items and do the writeback they describe 980 */ 981 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 982 { 983 struct backing_dev_info *bdi = wb->bdi; 984 struct wb_writeback_work *work; 985 long wrote = 0; 986 987 set_bit(BDI_writeback_running, &wb->bdi->state); 988 while ((work = get_next_work_item(bdi)) != NULL) { 989 /* 990 * Override sync mode, in case we must wait for completion 991 * because this thread is exiting now. 992 */ 993 if (force_wait) 994 work->sync_mode = WB_SYNC_ALL; 995 996 trace_writeback_exec(bdi, work); 997 998 wrote += wb_writeback(wb, work); 999 1000 /* 1001 * Notify the caller of completion if this is a synchronous 1002 * work item, otherwise just free it. 1003 */ 1004 if (work->done) 1005 complete(work->done); 1006 else 1007 kfree(work); 1008 } 1009 1010 /* 1011 * Check for periodic writeback, kupdated() style 1012 */ 1013 wrote += wb_check_old_data_flush(wb); 1014 wrote += wb_check_background_flush(wb); 1015 clear_bit(BDI_writeback_running, &wb->bdi->state); 1016 1017 return wrote; 1018 } 1019 1020 /* 1021 * Handle writeback of dirty data for the device backed by this bdi. Also 1022 * wakes up periodically and does kupdated style flushing. 1023 */ 1024 int bdi_writeback_thread(void *data) 1025 { 1026 struct bdi_writeback *wb = data; 1027 struct backing_dev_info *bdi = wb->bdi; 1028 long pages_written; 1029 1030 current->flags |= PF_SWAPWRITE; 1031 set_freezable(); 1032 wb->last_active = jiffies; 1033 1034 /* 1035 * Our parent may run at a different priority, just set us to normal 1036 */ 1037 set_user_nice(current, 0); 1038 1039 trace_writeback_thread_start(bdi); 1040 1041 while (!kthread_freezable_should_stop(NULL)) { 1042 /* 1043 * Remove own delayed wake-up timer, since we are already awake 1044 * and we'll take care of the preriodic write-back. 1045 */ 1046 del_timer(&wb->wakeup_timer); 1047 1048 pages_written = wb_do_writeback(wb, 0); 1049 1050 trace_writeback_pages_written(pages_written); 1051 1052 if (pages_written) 1053 wb->last_active = jiffies; 1054 1055 set_current_state(TASK_INTERRUPTIBLE); 1056 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 1057 __set_current_state(TASK_RUNNING); 1058 continue; 1059 } 1060 1061 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1062 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 1063 else { 1064 /* 1065 * We have nothing to do, so can go sleep without any 1066 * timeout and save power. When a work is queued or 1067 * something is made dirty - we will be woken up. 1068 */ 1069 schedule(); 1070 } 1071 } 1072 1073 /* Flush any work that raced with us exiting */ 1074 if (!list_empty(&bdi->work_list)) 1075 wb_do_writeback(wb, 1); 1076 1077 trace_writeback_thread_stop(bdi); 1078 return 0; 1079 } 1080 1081 1082 /* 1083 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1084 * the whole world. 1085 */ 1086 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1087 { 1088 struct backing_dev_info *bdi; 1089 1090 if (!nr_pages) { 1091 nr_pages = global_page_state(NR_FILE_DIRTY) + 1092 global_page_state(NR_UNSTABLE_NFS); 1093 } 1094 1095 rcu_read_lock(); 1096 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1097 if (!bdi_has_dirty_io(bdi)) 1098 continue; 1099 __bdi_start_writeback(bdi, nr_pages, false, reason); 1100 } 1101 rcu_read_unlock(); 1102 } 1103 1104 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1105 { 1106 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1107 struct dentry *dentry; 1108 const char *name = "?"; 1109 1110 dentry = d_find_alias(inode); 1111 if (dentry) { 1112 spin_lock(&dentry->d_lock); 1113 name = (const char *) dentry->d_name.name; 1114 } 1115 printk(KERN_DEBUG 1116 "%s(%d): dirtied inode %lu (%s) on %s\n", 1117 current->comm, task_pid_nr(current), inode->i_ino, 1118 name, inode->i_sb->s_id); 1119 if (dentry) { 1120 spin_unlock(&dentry->d_lock); 1121 dput(dentry); 1122 } 1123 } 1124 } 1125 1126 /** 1127 * __mark_inode_dirty - internal function 1128 * @inode: inode to mark 1129 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1130 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1131 * mark_inode_dirty_sync. 1132 * 1133 * Put the inode on the super block's dirty list. 1134 * 1135 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1136 * dirty list only if it is hashed or if it refers to a blockdev. 1137 * If it was not hashed, it will never be added to the dirty list 1138 * even if it is later hashed, as it will have been marked dirty already. 1139 * 1140 * In short, make sure you hash any inodes _before_ you start marking 1141 * them dirty. 1142 * 1143 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1144 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1145 * the kernel-internal blockdev inode represents the dirtying time of the 1146 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1147 * page->mapping->host, so the page-dirtying time is recorded in the internal 1148 * blockdev inode. 1149 */ 1150 void __mark_inode_dirty(struct inode *inode, int flags) 1151 { 1152 struct super_block *sb = inode->i_sb; 1153 struct backing_dev_info *bdi = NULL; 1154 1155 /* 1156 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1157 * dirty the inode itself 1158 */ 1159 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1160 if (sb->s_op->dirty_inode) 1161 sb->s_op->dirty_inode(inode, flags); 1162 } 1163 1164 /* 1165 * make sure that changes are seen by all cpus before we test i_state 1166 * -- mikulas 1167 */ 1168 smp_mb(); 1169 1170 /* avoid the locking if we can */ 1171 if ((inode->i_state & flags) == flags) 1172 return; 1173 1174 if (unlikely(block_dump)) 1175 block_dump___mark_inode_dirty(inode); 1176 1177 spin_lock(&inode->i_lock); 1178 if ((inode->i_state & flags) != flags) { 1179 const int was_dirty = inode->i_state & I_DIRTY; 1180 1181 inode->i_state |= flags; 1182 1183 /* 1184 * If the inode is being synced, just update its dirty state. 1185 * The unlocker will place the inode on the appropriate 1186 * superblock list, based upon its state. 1187 */ 1188 if (inode->i_state & I_SYNC) 1189 goto out_unlock_inode; 1190 1191 /* 1192 * Only add valid (hashed) inodes to the superblock's 1193 * dirty list. Add blockdev inodes as well. 1194 */ 1195 if (!S_ISBLK(inode->i_mode)) { 1196 if (inode_unhashed(inode)) 1197 goto out_unlock_inode; 1198 } 1199 if (inode->i_state & I_FREEING) 1200 goto out_unlock_inode; 1201 1202 /* 1203 * If the inode was already on b_dirty/b_io/b_more_io, don't 1204 * reposition it (that would break b_dirty time-ordering). 1205 */ 1206 if (!was_dirty) { 1207 bool wakeup_bdi = false; 1208 bdi = inode_to_bdi(inode); 1209 1210 if (bdi_cap_writeback_dirty(bdi)) { 1211 WARN(!test_bit(BDI_registered, &bdi->state), 1212 "bdi-%s not registered\n", bdi->name); 1213 1214 /* 1215 * If this is the first dirty inode for this 1216 * bdi, we have to wake-up the corresponding 1217 * bdi thread to make sure background 1218 * write-back happens later. 1219 */ 1220 if (!wb_has_dirty_io(&bdi->wb)) 1221 wakeup_bdi = true; 1222 } 1223 1224 spin_unlock(&inode->i_lock); 1225 spin_lock(&bdi->wb.list_lock); 1226 inode->dirtied_when = jiffies; 1227 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1228 spin_unlock(&bdi->wb.list_lock); 1229 1230 if (wakeup_bdi) 1231 bdi_wakeup_thread_delayed(bdi); 1232 return; 1233 } 1234 } 1235 out_unlock_inode: 1236 spin_unlock(&inode->i_lock); 1237 1238 } 1239 EXPORT_SYMBOL(__mark_inode_dirty); 1240 1241 static void wait_sb_inodes(struct super_block *sb) 1242 { 1243 struct inode *inode, *old_inode = NULL; 1244 1245 /* 1246 * We need to be protected against the filesystem going from 1247 * r/o to r/w or vice versa. 1248 */ 1249 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1250 1251 spin_lock(&inode_sb_list_lock); 1252 1253 /* 1254 * Data integrity sync. Must wait for all pages under writeback, 1255 * because there may have been pages dirtied before our sync 1256 * call, but which had writeout started before we write it out. 1257 * In which case, the inode may not be on the dirty list, but 1258 * we still have to wait for that writeout. 1259 */ 1260 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1261 struct address_space *mapping = inode->i_mapping; 1262 1263 spin_lock(&inode->i_lock); 1264 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1265 (mapping->nrpages == 0)) { 1266 spin_unlock(&inode->i_lock); 1267 continue; 1268 } 1269 __iget(inode); 1270 spin_unlock(&inode->i_lock); 1271 spin_unlock(&inode_sb_list_lock); 1272 1273 /* 1274 * We hold a reference to 'inode' so it couldn't have been 1275 * removed from s_inodes list while we dropped the 1276 * inode_sb_list_lock. We cannot iput the inode now as we can 1277 * be holding the last reference and we cannot iput it under 1278 * inode_sb_list_lock. So we keep the reference and iput it 1279 * later. 1280 */ 1281 iput(old_inode); 1282 old_inode = inode; 1283 1284 filemap_fdatawait(mapping); 1285 1286 cond_resched(); 1287 1288 spin_lock(&inode_sb_list_lock); 1289 } 1290 spin_unlock(&inode_sb_list_lock); 1291 iput(old_inode); 1292 } 1293 1294 /** 1295 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1296 * @sb: the superblock 1297 * @nr: the number of pages to write 1298 * @reason: reason why some writeback work initiated 1299 * 1300 * Start writeback on some inodes on this super_block. No guarantees are made 1301 * on how many (if any) will be written, and this function does not wait 1302 * for IO completion of submitted IO. 1303 */ 1304 void writeback_inodes_sb_nr(struct super_block *sb, 1305 unsigned long nr, 1306 enum wb_reason reason) 1307 { 1308 DECLARE_COMPLETION_ONSTACK(done); 1309 struct wb_writeback_work work = { 1310 .sb = sb, 1311 .sync_mode = WB_SYNC_NONE, 1312 .tagged_writepages = 1, 1313 .done = &done, 1314 .nr_pages = nr, 1315 .reason = reason, 1316 }; 1317 1318 if (sb->s_bdi == &noop_backing_dev_info) 1319 return; 1320 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1321 bdi_queue_work(sb->s_bdi, &work); 1322 wait_for_completion(&done); 1323 } 1324 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1325 1326 /** 1327 * writeback_inodes_sb - writeback dirty inodes from given super_block 1328 * @sb: the superblock 1329 * @reason: reason why some writeback work was initiated 1330 * 1331 * Start writeback on some inodes on this super_block. No guarantees are made 1332 * on how many (if any) will be written, and this function does not wait 1333 * for IO completion of submitted IO. 1334 */ 1335 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1336 { 1337 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1338 } 1339 EXPORT_SYMBOL(writeback_inodes_sb); 1340 1341 /** 1342 * writeback_inodes_sb_if_idle - start writeback if none underway 1343 * @sb: the superblock 1344 * @reason: reason why some writeback work was initiated 1345 * 1346 * Invoke writeback_inodes_sb if no writeback is currently underway. 1347 * Returns 1 if writeback was started, 0 if not. 1348 */ 1349 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason) 1350 { 1351 if (!writeback_in_progress(sb->s_bdi)) { 1352 down_read(&sb->s_umount); 1353 writeback_inodes_sb(sb, reason); 1354 up_read(&sb->s_umount); 1355 return 1; 1356 } else 1357 return 0; 1358 } 1359 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1360 1361 /** 1362 * writeback_inodes_sb_nr_if_idle - start writeback if none underway 1363 * @sb: the superblock 1364 * @nr: the number of pages to write 1365 * @reason: reason why some writeback work was initiated 1366 * 1367 * Invoke writeback_inodes_sb if no writeback is currently underway. 1368 * Returns 1 if writeback was started, 0 if not. 1369 */ 1370 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1371 unsigned long nr, 1372 enum wb_reason reason) 1373 { 1374 if (!writeback_in_progress(sb->s_bdi)) { 1375 down_read(&sb->s_umount); 1376 writeback_inodes_sb_nr(sb, nr, reason); 1377 up_read(&sb->s_umount); 1378 return 1; 1379 } else 1380 return 0; 1381 } 1382 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1383 1384 /** 1385 * sync_inodes_sb - sync sb inode pages 1386 * @sb: the superblock 1387 * 1388 * This function writes and waits on any dirty inode belonging to this 1389 * super_block. 1390 */ 1391 void sync_inodes_sb(struct super_block *sb) 1392 { 1393 DECLARE_COMPLETION_ONSTACK(done); 1394 struct wb_writeback_work work = { 1395 .sb = sb, 1396 .sync_mode = WB_SYNC_ALL, 1397 .nr_pages = LONG_MAX, 1398 .range_cyclic = 0, 1399 .done = &done, 1400 .reason = WB_REASON_SYNC, 1401 }; 1402 1403 /* Nothing to do? */ 1404 if (sb->s_bdi == &noop_backing_dev_info) 1405 return; 1406 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1407 1408 bdi_queue_work(sb->s_bdi, &work); 1409 wait_for_completion(&done); 1410 1411 wait_sb_inodes(sb); 1412 } 1413 EXPORT_SYMBOL(sync_inodes_sb); 1414 1415 /** 1416 * write_inode_now - write an inode to disk 1417 * @inode: inode to write to disk 1418 * @sync: whether the write should be synchronous or not 1419 * 1420 * This function commits an inode to disk immediately if it is dirty. This is 1421 * primarily needed by knfsd. 1422 * 1423 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1424 */ 1425 int write_inode_now(struct inode *inode, int sync) 1426 { 1427 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1428 struct writeback_control wbc = { 1429 .nr_to_write = LONG_MAX, 1430 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1431 .range_start = 0, 1432 .range_end = LLONG_MAX, 1433 }; 1434 1435 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1436 wbc.nr_to_write = 0; 1437 1438 might_sleep(); 1439 return writeback_single_inode(inode, wb, &wbc); 1440 } 1441 EXPORT_SYMBOL(write_inode_now); 1442 1443 /** 1444 * sync_inode - write an inode and its pages to disk. 1445 * @inode: the inode to sync 1446 * @wbc: controls the writeback mode 1447 * 1448 * sync_inode() will write an inode and its pages to disk. It will also 1449 * correctly update the inode on its superblock's dirty inode lists and will 1450 * update inode->i_state. 1451 * 1452 * The caller must have a ref on the inode. 1453 */ 1454 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1455 { 1456 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1457 } 1458 EXPORT_SYMBOL(sync_inode); 1459 1460 /** 1461 * sync_inode_metadata - write an inode to disk 1462 * @inode: the inode to sync 1463 * @wait: wait for I/O to complete. 1464 * 1465 * Write an inode to disk and adjust its dirty state after completion. 1466 * 1467 * Note: only writes the actual inode, no associated data or other metadata. 1468 */ 1469 int sync_inode_metadata(struct inode *inode, int wait) 1470 { 1471 struct writeback_control wbc = { 1472 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1473 .nr_to_write = 0, /* metadata-only */ 1474 }; 1475 1476 return sync_inode(inode, &wbc); 1477 } 1478 EXPORT_SYMBOL(sync_inode_metadata); 1479