1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/freezer.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 enum wb_reason reason; /* why was writeback initiated? */ 50 51 struct list_head list; /* pending work list */ 52 struct completion *done; /* set if the caller waits */ 53 }; 54 55 /** 56 * writeback_in_progress - determine whether there is writeback in progress 57 * @bdi: the device's backing_dev_info structure. 58 * 59 * Determine whether there is writeback waiting to be handled against a 60 * backing device. 61 */ 62 int writeback_in_progress(struct backing_dev_info *bdi) 63 { 64 return test_bit(BDI_writeback_running, &bdi->state); 65 } 66 EXPORT_SYMBOL(writeback_in_progress); 67 68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 69 { 70 struct super_block *sb = inode->i_sb; 71 72 if (strcmp(sb->s_type->name, "bdev") == 0) 73 return inode->i_mapping->backing_dev_info; 74 75 return sb->s_bdi; 76 } 77 78 static inline struct inode *wb_inode(struct list_head *head) 79 { 80 return list_entry(head, struct inode, i_wb_list); 81 } 82 83 /* 84 * Include the creation of the trace points after defining the 85 * wb_writeback_work structure and inline functions so that the definition 86 * remains local to this file. 87 */ 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/writeback.h> 90 91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 93 { 94 if (bdi->wb.task) { 95 wake_up_process(bdi->wb.task); 96 } else { 97 /* 98 * The bdi thread isn't there, wake up the forker thread which 99 * will create and run it. 100 */ 101 wake_up_process(default_backing_dev_info.wb.task); 102 } 103 } 104 105 static void bdi_queue_work(struct backing_dev_info *bdi, 106 struct wb_writeback_work *work) 107 { 108 trace_writeback_queue(bdi, work); 109 110 spin_lock_bh(&bdi->wb_lock); 111 list_add_tail(&work->list, &bdi->work_list); 112 if (!bdi->wb.task) 113 trace_writeback_nothread(bdi, work); 114 bdi_wakeup_flusher(bdi); 115 spin_unlock_bh(&bdi->wb_lock); 116 } 117 118 static void 119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 120 bool range_cyclic, enum wb_reason reason) 121 { 122 struct wb_writeback_work *work; 123 124 /* 125 * This is WB_SYNC_NONE writeback, so if allocation fails just 126 * wakeup the thread for old dirty data writeback 127 */ 128 work = kzalloc(sizeof(*work), GFP_ATOMIC); 129 if (!work) { 130 if (bdi->wb.task) { 131 trace_writeback_nowork(bdi); 132 wake_up_process(bdi->wb.task); 133 } 134 return; 135 } 136 137 work->sync_mode = WB_SYNC_NONE; 138 work->nr_pages = nr_pages; 139 work->range_cyclic = range_cyclic; 140 work->reason = reason; 141 142 bdi_queue_work(bdi, work); 143 } 144 145 /** 146 * bdi_start_writeback - start writeback 147 * @bdi: the backing device to write from 148 * @nr_pages: the number of pages to write 149 * @reason: reason why some writeback work was initiated 150 * 151 * Description: 152 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 153 * started when this function returns, we make no guarantees on 154 * completion. Caller need not hold sb s_umount semaphore. 155 * 156 */ 157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 158 enum wb_reason reason) 159 { 160 __bdi_start_writeback(bdi, nr_pages, true, reason); 161 } 162 163 /** 164 * bdi_start_background_writeback - start background writeback 165 * @bdi: the backing device to write from 166 * 167 * Description: 168 * This makes sure WB_SYNC_NONE background writeback happens. When 169 * this function returns, it is only guaranteed that for given BDI 170 * some IO is happening if we are over background dirty threshold. 171 * Caller need not hold sb s_umount semaphore. 172 */ 173 void bdi_start_background_writeback(struct backing_dev_info *bdi) 174 { 175 /* 176 * We just wake up the flusher thread. It will perform background 177 * writeback as soon as there is no other work to do. 178 */ 179 trace_writeback_wake_background(bdi); 180 spin_lock_bh(&bdi->wb_lock); 181 bdi_wakeup_flusher(bdi); 182 spin_unlock_bh(&bdi->wb_lock); 183 } 184 185 /* 186 * Remove the inode from the writeback list it is on. 187 */ 188 void inode_wb_list_del(struct inode *inode) 189 { 190 struct backing_dev_info *bdi = inode_to_bdi(inode); 191 192 spin_lock(&bdi->wb.list_lock); 193 list_del_init(&inode->i_wb_list); 194 spin_unlock(&bdi->wb.list_lock); 195 } 196 197 /* 198 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 199 * furthest end of its superblock's dirty-inode list. 200 * 201 * Before stamping the inode's ->dirtied_when, we check to see whether it is 202 * already the most-recently-dirtied inode on the b_dirty list. If that is 203 * the case then the inode must have been redirtied while it was being written 204 * out and we don't reset its dirtied_when. 205 */ 206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 207 { 208 assert_spin_locked(&wb->list_lock); 209 if (!list_empty(&wb->b_dirty)) { 210 struct inode *tail; 211 212 tail = wb_inode(wb->b_dirty.next); 213 if (time_before(inode->dirtied_when, tail->dirtied_when)) 214 inode->dirtied_when = jiffies; 215 } 216 list_move(&inode->i_wb_list, &wb->b_dirty); 217 } 218 219 /* 220 * requeue inode for re-scanning after bdi->b_io list is exhausted. 221 */ 222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 223 { 224 assert_spin_locked(&wb->list_lock); 225 list_move(&inode->i_wb_list, &wb->b_more_io); 226 } 227 228 static void inode_sync_complete(struct inode *inode) 229 { 230 inode->i_state &= ~I_SYNC; 231 /* If inode is clean an unused, put it into LRU now... */ 232 inode_add_lru(inode); 233 /* Waiters must see I_SYNC cleared before being woken up */ 234 smp_mb(); 235 wake_up_bit(&inode->i_state, __I_SYNC); 236 } 237 238 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 239 { 240 bool ret = time_after(inode->dirtied_when, t); 241 #ifndef CONFIG_64BIT 242 /* 243 * For inodes being constantly redirtied, dirtied_when can get stuck. 244 * It _appears_ to be in the future, but is actually in distant past. 245 * This test is necessary to prevent such wrapped-around relative times 246 * from permanently stopping the whole bdi writeback. 247 */ 248 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 249 #endif 250 return ret; 251 } 252 253 /* 254 * Move expired (dirtied before work->older_than_this) dirty inodes from 255 * @delaying_queue to @dispatch_queue. 256 */ 257 static int move_expired_inodes(struct list_head *delaying_queue, 258 struct list_head *dispatch_queue, 259 struct wb_writeback_work *work) 260 { 261 LIST_HEAD(tmp); 262 struct list_head *pos, *node; 263 struct super_block *sb = NULL; 264 struct inode *inode; 265 int do_sb_sort = 0; 266 int moved = 0; 267 268 while (!list_empty(delaying_queue)) { 269 inode = wb_inode(delaying_queue->prev); 270 if (work->older_than_this && 271 inode_dirtied_after(inode, *work->older_than_this)) 272 break; 273 if (sb && sb != inode->i_sb) 274 do_sb_sort = 1; 275 sb = inode->i_sb; 276 list_move(&inode->i_wb_list, &tmp); 277 moved++; 278 } 279 280 /* just one sb in list, splice to dispatch_queue and we're done */ 281 if (!do_sb_sort) { 282 list_splice(&tmp, dispatch_queue); 283 goto out; 284 } 285 286 /* Move inodes from one superblock together */ 287 while (!list_empty(&tmp)) { 288 sb = wb_inode(tmp.prev)->i_sb; 289 list_for_each_prev_safe(pos, node, &tmp) { 290 inode = wb_inode(pos); 291 if (inode->i_sb == sb) 292 list_move(&inode->i_wb_list, dispatch_queue); 293 } 294 } 295 out: 296 return moved; 297 } 298 299 /* 300 * Queue all expired dirty inodes for io, eldest first. 301 * Before 302 * newly dirtied b_dirty b_io b_more_io 303 * =============> gf edc BA 304 * After 305 * newly dirtied b_dirty b_io b_more_io 306 * =============> g fBAedc 307 * | 308 * +--> dequeue for IO 309 */ 310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 311 { 312 int moved; 313 assert_spin_locked(&wb->list_lock); 314 list_splice_init(&wb->b_more_io, &wb->b_io); 315 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 316 trace_writeback_queue_io(wb, work, moved); 317 } 318 319 static int write_inode(struct inode *inode, struct writeback_control *wbc) 320 { 321 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 322 return inode->i_sb->s_op->write_inode(inode, wbc); 323 return 0; 324 } 325 326 /* 327 * Wait for writeback on an inode to complete. Called with i_lock held. 328 * Caller must make sure inode cannot go away when we drop i_lock. 329 */ 330 static void __inode_wait_for_writeback(struct inode *inode) 331 __releases(inode->i_lock) 332 __acquires(inode->i_lock) 333 { 334 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 335 wait_queue_head_t *wqh; 336 337 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 338 while (inode->i_state & I_SYNC) { 339 spin_unlock(&inode->i_lock); 340 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 341 spin_lock(&inode->i_lock); 342 } 343 } 344 345 /* 346 * Wait for writeback on an inode to complete. Caller must have inode pinned. 347 */ 348 void inode_wait_for_writeback(struct inode *inode) 349 { 350 spin_lock(&inode->i_lock); 351 __inode_wait_for_writeback(inode); 352 spin_unlock(&inode->i_lock); 353 } 354 355 /* 356 * Sleep until I_SYNC is cleared. This function must be called with i_lock 357 * held and drops it. It is aimed for callers not holding any inode reference 358 * so once i_lock is dropped, inode can go away. 359 */ 360 static void inode_sleep_on_writeback(struct inode *inode) 361 __releases(inode->i_lock) 362 { 363 DEFINE_WAIT(wait); 364 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 365 int sleep; 366 367 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 368 sleep = inode->i_state & I_SYNC; 369 spin_unlock(&inode->i_lock); 370 if (sleep) 371 schedule(); 372 finish_wait(wqh, &wait); 373 } 374 375 /* 376 * Find proper writeback list for the inode depending on its current state and 377 * possibly also change of its state while we were doing writeback. Here we 378 * handle things such as livelock prevention or fairness of writeback among 379 * inodes. This function can be called only by flusher thread - noone else 380 * processes all inodes in writeback lists and requeueing inodes behind flusher 381 * thread's back can have unexpected consequences. 382 */ 383 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 384 struct writeback_control *wbc) 385 { 386 if (inode->i_state & I_FREEING) 387 return; 388 389 /* 390 * Sync livelock prevention. Each inode is tagged and synced in one 391 * shot. If still dirty, it will be redirty_tail()'ed below. Update 392 * the dirty time to prevent enqueue and sync it again. 393 */ 394 if ((inode->i_state & I_DIRTY) && 395 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 396 inode->dirtied_when = jiffies; 397 398 if (wbc->pages_skipped) { 399 /* 400 * writeback is not making progress due to locked 401 * buffers. Skip this inode for now. 402 */ 403 redirty_tail(inode, wb); 404 return; 405 } 406 407 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 408 /* 409 * We didn't write back all the pages. nfs_writepages() 410 * sometimes bales out without doing anything. 411 */ 412 if (wbc->nr_to_write <= 0) { 413 /* Slice used up. Queue for next turn. */ 414 requeue_io(inode, wb); 415 } else { 416 /* 417 * Writeback blocked by something other than 418 * congestion. Delay the inode for some time to 419 * avoid spinning on the CPU (100% iowait) 420 * retrying writeback of the dirty page/inode 421 * that cannot be performed immediately. 422 */ 423 redirty_tail(inode, wb); 424 } 425 } else if (inode->i_state & I_DIRTY) { 426 /* 427 * Filesystems can dirty the inode during writeback operations, 428 * such as delayed allocation during submission or metadata 429 * updates after data IO completion. 430 */ 431 redirty_tail(inode, wb); 432 } else { 433 /* The inode is clean. Remove from writeback lists. */ 434 list_del_init(&inode->i_wb_list); 435 } 436 } 437 438 /* 439 * Write out an inode and its dirty pages. Do not update the writeback list 440 * linkage. That is left to the caller. The caller is also responsible for 441 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 442 */ 443 static int 444 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 445 { 446 struct address_space *mapping = inode->i_mapping; 447 long nr_to_write = wbc->nr_to_write; 448 unsigned dirty; 449 int ret; 450 451 WARN_ON(!(inode->i_state & I_SYNC)); 452 453 ret = do_writepages(mapping, wbc); 454 455 /* 456 * Make sure to wait on the data before writing out the metadata. 457 * This is important for filesystems that modify metadata on data 458 * I/O completion. 459 */ 460 if (wbc->sync_mode == WB_SYNC_ALL) { 461 int err = filemap_fdatawait(mapping); 462 if (ret == 0) 463 ret = err; 464 } 465 466 /* 467 * Some filesystems may redirty the inode during the writeback 468 * due to delalloc, clear dirty metadata flags right before 469 * write_inode() 470 */ 471 spin_lock(&inode->i_lock); 472 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */ 473 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 474 inode->i_state &= ~I_DIRTY_PAGES; 475 dirty = inode->i_state & I_DIRTY; 476 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 477 spin_unlock(&inode->i_lock); 478 /* Don't write the inode if only I_DIRTY_PAGES was set */ 479 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 480 int err = write_inode(inode, wbc); 481 if (ret == 0) 482 ret = err; 483 } 484 trace_writeback_single_inode(inode, wbc, nr_to_write); 485 return ret; 486 } 487 488 /* 489 * Write out an inode's dirty pages. Either the caller has an active reference 490 * on the inode or the inode has I_WILL_FREE set. 491 * 492 * This function is designed to be called for writing back one inode which 493 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 494 * and does more profound writeback list handling in writeback_sb_inodes(). 495 */ 496 static int 497 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 498 struct writeback_control *wbc) 499 { 500 int ret = 0; 501 502 spin_lock(&inode->i_lock); 503 if (!atomic_read(&inode->i_count)) 504 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 505 else 506 WARN_ON(inode->i_state & I_WILL_FREE); 507 508 if (inode->i_state & I_SYNC) { 509 if (wbc->sync_mode != WB_SYNC_ALL) 510 goto out; 511 /* 512 * It's a data-integrity sync. We must wait. Since callers hold 513 * inode reference or inode has I_WILL_FREE set, it cannot go 514 * away under us. 515 */ 516 __inode_wait_for_writeback(inode); 517 } 518 WARN_ON(inode->i_state & I_SYNC); 519 /* 520 * Skip inode if it is clean. We don't want to mess with writeback 521 * lists in this function since flusher thread may be doing for example 522 * sync in parallel and if we move the inode, it could get skipped. So 523 * here we make sure inode is on some writeback list and leave it there 524 * unless we have completely cleaned the inode. 525 */ 526 if (!(inode->i_state & I_DIRTY)) 527 goto out; 528 inode->i_state |= I_SYNC; 529 spin_unlock(&inode->i_lock); 530 531 ret = __writeback_single_inode(inode, wbc); 532 533 spin_lock(&wb->list_lock); 534 spin_lock(&inode->i_lock); 535 /* 536 * If inode is clean, remove it from writeback lists. Otherwise don't 537 * touch it. See comment above for explanation. 538 */ 539 if (!(inode->i_state & I_DIRTY)) 540 list_del_init(&inode->i_wb_list); 541 spin_unlock(&wb->list_lock); 542 inode_sync_complete(inode); 543 out: 544 spin_unlock(&inode->i_lock); 545 return ret; 546 } 547 548 static long writeback_chunk_size(struct backing_dev_info *bdi, 549 struct wb_writeback_work *work) 550 { 551 long pages; 552 553 /* 554 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 555 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 556 * here avoids calling into writeback_inodes_wb() more than once. 557 * 558 * The intended call sequence for WB_SYNC_ALL writeback is: 559 * 560 * wb_writeback() 561 * writeback_sb_inodes() <== called only once 562 * write_cache_pages() <== called once for each inode 563 * (quickly) tag currently dirty pages 564 * (maybe slowly) sync all tagged pages 565 */ 566 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 567 pages = LONG_MAX; 568 else { 569 pages = min(bdi->avg_write_bandwidth / 2, 570 global_dirty_limit / DIRTY_SCOPE); 571 pages = min(pages, work->nr_pages); 572 pages = round_down(pages + MIN_WRITEBACK_PAGES, 573 MIN_WRITEBACK_PAGES); 574 } 575 576 return pages; 577 } 578 579 /* 580 * Write a portion of b_io inodes which belong to @sb. 581 * 582 * Return the number of pages and/or inodes written. 583 */ 584 static long writeback_sb_inodes(struct super_block *sb, 585 struct bdi_writeback *wb, 586 struct wb_writeback_work *work) 587 { 588 struct writeback_control wbc = { 589 .sync_mode = work->sync_mode, 590 .tagged_writepages = work->tagged_writepages, 591 .for_kupdate = work->for_kupdate, 592 .for_background = work->for_background, 593 .range_cyclic = work->range_cyclic, 594 .range_start = 0, 595 .range_end = LLONG_MAX, 596 }; 597 unsigned long start_time = jiffies; 598 long write_chunk; 599 long wrote = 0; /* count both pages and inodes */ 600 601 while (!list_empty(&wb->b_io)) { 602 struct inode *inode = wb_inode(wb->b_io.prev); 603 604 if (inode->i_sb != sb) { 605 if (work->sb) { 606 /* 607 * We only want to write back data for this 608 * superblock, move all inodes not belonging 609 * to it back onto the dirty list. 610 */ 611 redirty_tail(inode, wb); 612 continue; 613 } 614 615 /* 616 * The inode belongs to a different superblock. 617 * Bounce back to the caller to unpin this and 618 * pin the next superblock. 619 */ 620 break; 621 } 622 623 /* 624 * Don't bother with new inodes or inodes being freed, first 625 * kind does not need periodic writeout yet, and for the latter 626 * kind writeout is handled by the freer. 627 */ 628 spin_lock(&inode->i_lock); 629 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 630 spin_unlock(&inode->i_lock); 631 redirty_tail(inode, wb); 632 continue; 633 } 634 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 635 /* 636 * If this inode is locked for writeback and we are not 637 * doing writeback-for-data-integrity, move it to 638 * b_more_io so that writeback can proceed with the 639 * other inodes on s_io. 640 * 641 * We'll have another go at writing back this inode 642 * when we completed a full scan of b_io. 643 */ 644 spin_unlock(&inode->i_lock); 645 requeue_io(inode, wb); 646 trace_writeback_sb_inodes_requeue(inode); 647 continue; 648 } 649 spin_unlock(&wb->list_lock); 650 651 /* 652 * We already requeued the inode if it had I_SYNC set and we 653 * are doing WB_SYNC_NONE writeback. So this catches only the 654 * WB_SYNC_ALL case. 655 */ 656 if (inode->i_state & I_SYNC) { 657 /* Wait for I_SYNC. This function drops i_lock... */ 658 inode_sleep_on_writeback(inode); 659 /* Inode may be gone, start again */ 660 spin_lock(&wb->list_lock); 661 continue; 662 } 663 inode->i_state |= I_SYNC; 664 spin_unlock(&inode->i_lock); 665 666 write_chunk = writeback_chunk_size(wb->bdi, work); 667 wbc.nr_to_write = write_chunk; 668 wbc.pages_skipped = 0; 669 670 /* 671 * We use I_SYNC to pin the inode in memory. While it is set 672 * evict_inode() will wait so the inode cannot be freed. 673 */ 674 __writeback_single_inode(inode, &wbc); 675 676 work->nr_pages -= write_chunk - wbc.nr_to_write; 677 wrote += write_chunk - wbc.nr_to_write; 678 spin_lock(&wb->list_lock); 679 spin_lock(&inode->i_lock); 680 if (!(inode->i_state & I_DIRTY)) 681 wrote++; 682 requeue_inode(inode, wb, &wbc); 683 inode_sync_complete(inode); 684 spin_unlock(&inode->i_lock); 685 cond_resched_lock(&wb->list_lock); 686 /* 687 * bail out to wb_writeback() often enough to check 688 * background threshold and other termination conditions. 689 */ 690 if (wrote) { 691 if (time_is_before_jiffies(start_time + HZ / 10UL)) 692 break; 693 if (work->nr_pages <= 0) 694 break; 695 } 696 } 697 return wrote; 698 } 699 700 static long __writeback_inodes_wb(struct bdi_writeback *wb, 701 struct wb_writeback_work *work) 702 { 703 unsigned long start_time = jiffies; 704 long wrote = 0; 705 706 while (!list_empty(&wb->b_io)) { 707 struct inode *inode = wb_inode(wb->b_io.prev); 708 struct super_block *sb = inode->i_sb; 709 710 if (!grab_super_passive(sb)) { 711 /* 712 * grab_super_passive() may fail consistently due to 713 * s_umount being grabbed by someone else. Don't use 714 * requeue_io() to avoid busy retrying the inode/sb. 715 */ 716 redirty_tail(inode, wb); 717 continue; 718 } 719 wrote += writeback_sb_inodes(sb, wb, work); 720 drop_super(sb); 721 722 /* refer to the same tests at the end of writeback_sb_inodes */ 723 if (wrote) { 724 if (time_is_before_jiffies(start_time + HZ / 10UL)) 725 break; 726 if (work->nr_pages <= 0) 727 break; 728 } 729 } 730 /* Leave any unwritten inodes on b_io */ 731 return wrote; 732 } 733 734 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 735 enum wb_reason reason) 736 { 737 struct wb_writeback_work work = { 738 .nr_pages = nr_pages, 739 .sync_mode = WB_SYNC_NONE, 740 .range_cyclic = 1, 741 .reason = reason, 742 }; 743 744 spin_lock(&wb->list_lock); 745 if (list_empty(&wb->b_io)) 746 queue_io(wb, &work); 747 __writeback_inodes_wb(wb, &work); 748 spin_unlock(&wb->list_lock); 749 750 return nr_pages - work.nr_pages; 751 } 752 753 static bool over_bground_thresh(struct backing_dev_info *bdi) 754 { 755 unsigned long background_thresh, dirty_thresh; 756 757 global_dirty_limits(&background_thresh, &dirty_thresh); 758 759 if (global_page_state(NR_FILE_DIRTY) + 760 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 761 return true; 762 763 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 764 bdi_dirty_limit(bdi, background_thresh)) 765 return true; 766 767 return false; 768 } 769 770 /* 771 * Called under wb->list_lock. If there are multiple wb per bdi, 772 * only the flusher working on the first wb should do it. 773 */ 774 static void wb_update_bandwidth(struct bdi_writeback *wb, 775 unsigned long start_time) 776 { 777 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 778 } 779 780 /* 781 * Explicit flushing or periodic writeback of "old" data. 782 * 783 * Define "old": the first time one of an inode's pages is dirtied, we mark the 784 * dirtying-time in the inode's address_space. So this periodic writeback code 785 * just walks the superblock inode list, writing back any inodes which are 786 * older than a specific point in time. 787 * 788 * Try to run once per dirty_writeback_interval. But if a writeback event 789 * takes longer than a dirty_writeback_interval interval, then leave a 790 * one-second gap. 791 * 792 * older_than_this takes precedence over nr_to_write. So we'll only write back 793 * all dirty pages if they are all attached to "old" mappings. 794 */ 795 static long wb_writeback(struct bdi_writeback *wb, 796 struct wb_writeback_work *work) 797 { 798 unsigned long wb_start = jiffies; 799 long nr_pages = work->nr_pages; 800 unsigned long oldest_jif; 801 struct inode *inode; 802 long progress; 803 804 oldest_jif = jiffies; 805 work->older_than_this = &oldest_jif; 806 807 spin_lock(&wb->list_lock); 808 for (;;) { 809 /* 810 * Stop writeback when nr_pages has been consumed 811 */ 812 if (work->nr_pages <= 0) 813 break; 814 815 /* 816 * Background writeout and kupdate-style writeback may 817 * run forever. Stop them if there is other work to do 818 * so that e.g. sync can proceed. They'll be restarted 819 * after the other works are all done. 820 */ 821 if ((work->for_background || work->for_kupdate) && 822 !list_empty(&wb->bdi->work_list)) 823 break; 824 825 /* 826 * For background writeout, stop when we are below the 827 * background dirty threshold 828 */ 829 if (work->for_background && !over_bground_thresh(wb->bdi)) 830 break; 831 832 /* 833 * Kupdate and background works are special and we want to 834 * include all inodes that need writing. Livelock avoidance is 835 * handled by these works yielding to any other work so we are 836 * safe. 837 */ 838 if (work->for_kupdate) { 839 oldest_jif = jiffies - 840 msecs_to_jiffies(dirty_expire_interval * 10); 841 } else if (work->for_background) 842 oldest_jif = jiffies; 843 844 trace_writeback_start(wb->bdi, work); 845 if (list_empty(&wb->b_io)) 846 queue_io(wb, work); 847 if (work->sb) 848 progress = writeback_sb_inodes(work->sb, wb, work); 849 else 850 progress = __writeback_inodes_wb(wb, work); 851 trace_writeback_written(wb->bdi, work); 852 853 wb_update_bandwidth(wb, wb_start); 854 855 /* 856 * Did we write something? Try for more 857 * 858 * Dirty inodes are moved to b_io for writeback in batches. 859 * The completion of the current batch does not necessarily 860 * mean the overall work is done. So we keep looping as long 861 * as made some progress on cleaning pages or inodes. 862 */ 863 if (progress) 864 continue; 865 /* 866 * No more inodes for IO, bail 867 */ 868 if (list_empty(&wb->b_more_io)) 869 break; 870 /* 871 * Nothing written. Wait for some inode to 872 * become available for writeback. Otherwise 873 * we'll just busyloop. 874 */ 875 if (!list_empty(&wb->b_more_io)) { 876 trace_writeback_wait(wb->bdi, work); 877 inode = wb_inode(wb->b_more_io.prev); 878 spin_lock(&inode->i_lock); 879 spin_unlock(&wb->list_lock); 880 /* This function drops i_lock... */ 881 inode_sleep_on_writeback(inode); 882 spin_lock(&wb->list_lock); 883 } 884 } 885 spin_unlock(&wb->list_lock); 886 887 return nr_pages - work->nr_pages; 888 } 889 890 /* 891 * Return the next wb_writeback_work struct that hasn't been processed yet. 892 */ 893 static struct wb_writeback_work * 894 get_next_work_item(struct backing_dev_info *bdi) 895 { 896 struct wb_writeback_work *work = NULL; 897 898 spin_lock_bh(&bdi->wb_lock); 899 if (!list_empty(&bdi->work_list)) { 900 work = list_entry(bdi->work_list.next, 901 struct wb_writeback_work, list); 902 list_del_init(&work->list); 903 } 904 spin_unlock_bh(&bdi->wb_lock); 905 return work; 906 } 907 908 /* 909 * Add in the number of potentially dirty inodes, because each inode 910 * write can dirty pagecache in the underlying blockdev. 911 */ 912 static unsigned long get_nr_dirty_pages(void) 913 { 914 return global_page_state(NR_FILE_DIRTY) + 915 global_page_state(NR_UNSTABLE_NFS) + 916 get_nr_dirty_inodes(); 917 } 918 919 static long wb_check_background_flush(struct bdi_writeback *wb) 920 { 921 if (over_bground_thresh(wb->bdi)) { 922 923 struct wb_writeback_work work = { 924 .nr_pages = LONG_MAX, 925 .sync_mode = WB_SYNC_NONE, 926 .for_background = 1, 927 .range_cyclic = 1, 928 .reason = WB_REASON_BACKGROUND, 929 }; 930 931 return wb_writeback(wb, &work); 932 } 933 934 return 0; 935 } 936 937 static long wb_check_old_data_flush(struct bdi_writeback *wb) 938 { 939 unsigned long expired; 940 long nr_pages; 941 942 /* 943 * When set to zero, disable periodic writeback 944 */ 945 if (!dirty_writeback_interval) 946 return 0; 947 948 expired = wb->last_old_flush + 949 msecs_to_jiffies(dirty_writeback_interval * 10); 950 if (time_before(jiffies, expired)) 951 return 0; 952 953 wb->last_old_flush = jiffies; 954 nr_pages = get_nr_dirty_pages(); 955 956 if (nr_pages) { 957 struct wb_writeback_work work = { 958 .nr_pages = nr_pages, 959 .sync_mode = WB_SYNC_NONE, 960 .for_kupdate = 1, 961 .range_cyclic = 1, 962 .reason = WB_REASON_PERIODIC, 963 }; 964 965 return wb_writeback(wb, &work); 966 } 967 968 return 0; 969 } 970 971 /* 972 * Retrieve work items and do the writeback they describe 973 */ 974 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 975 { 976 struct backing_dev_info *bdi = wb->bdi; 977 struct wb_writeback_work *work; 978 long wrote = 0; 979 980 set_bit(BDI_writeback_running, &wb->bdi->state); 981 while ((work = get_next_work_item(bdi)) != NULL) { 982 /* 983 * Override sync mode, in case we must wait for completion 984 * because this thread is exiting now. 985 */ 986 if (force_wait) 987 work->sync_mode = WB_SYNC_ALL; 988 989 trace_writeback_exec(bdi, work); 990 991 wrote += wb_writeback(wb, work); 992 993 /* 994 * Notify the caller of completion if this is a synchronous 995 * work item, otherwise just free it. 996 */ 997 if (work->done) 998 complete(work->done); 999 else 1000 kfree(work); 1001 } 1002 1003 /* 1004 * Check for periodic writeback, kupdated() style 1005 */ 1006 wrote += wb_check_old_data_flush(wb); 1007 wrote += wb_check_background_flush(wb); 1008 clear_bit(BDI_writeback_running, &wb->bdi->state); 1009 1010 return wrote; 1011 } 1012 1013 /* 1014 * Handle writeback of dirty data for the device backed by this bdi. Also 1015 * wakes up periodically and does kupdated style flushing. 1016 */ 1017 int bdi_writeback_thread(void *data) 1018 { 1019 struct bdi_writeback *wb = data; 1020 struct backing_dev_info *bdi = wb->bdi; 1021 long pages_written; 1022 1023 current->flags |= PF_SWAPWRITE; 1024 set_freezable(); 1025 wb->last_active = jiffies; 1026 1027 /* 1028 * Our parent may run at a different priority, just set us to normal 1029 */ 1030 set_user_nice(current, 0); 1031 1032 trace_writeback_thread_start(bdi); 1033 1034 while (!kthread_freezable_should_stop(NULL)) { 1035 /* 1036 * Remove own delayed wake-up timer, since we are already awake 1037 * and we'll take care of the periodic write-back. 1038 */ 1039 del_timer(&wb->wakeup_timer); 1040 1041 pages_written = wb_do_writeback(wb, 0); 1042 1043 trace_writeback_pages_written(pages_written); 1044 1045 if (pages_written) 1046 wb->last_active = jiffies; 1047 1048 set_current_state(TASK_INTERRUPTIBLE); 1049 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 1050 __set_current_state(TASK_RUNNING); 1051 continue; 1052 } 1053 1054 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1055 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 1056 else { 1057 /* 1058 * We have nothing to do, so can go sleep without any 1059 * timeout and save power. When a work is queued or 1060 * something is made dirty - we will be woken up. 1061 */ 1062 schedule(); 1063 } 1064 } 1065 1066 /* Flush any work that raced with us exiting */ 1067 if (!list_empty(&bdi->work_list)) 1068 wb_do_writeback(wb, 1); 1069 1070 trace_writeback_thread_stop(bdi); 1071 return 0; 1072 } 1073 1074 1075 /* 1076 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1077 * the whole world. 1078 */ 1079 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1080 { 1081 struct backing_dev_info *bdi; 1082 1083 if (!nr_pages) { 1084 nr_pages = global_page_state(NR_FILE_DIRTY) + 1085 global_page_state(NR_UNSTABLE_NFS); 1086 } 1087 1088 rcu_read_lock(); 1089 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1090 if (!bdi_has_dirty_io(bdi)) 1091 continue; 1092 __bdi_start_writeback(bdi, nr_pages, false, reason); 1093 } 1094 rcu_read_unlock(); 1095 } 1096 1097 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1098 { 1099 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1100 struct dentry *dentry; 1101 const char *name = "?"; 1102 1103 dentry = d_find_alias(inode); 1104 if (dentry) { 1105 spin_lock(&dentry->d_lock); 1106 name = (const char *) dentry->d_name.name; 1107 } 1108 printk(KERN_DEBUG 1109 "%s(%d): dirtied inode %lu (%s) on %s\n", 1110 current->comm, task_pid_nr(current), inode->i_ino, 1111 name, inode->i_sb->s_id); 1112 if (dentry) { 1113 spin_unlock(&dentry->d_lock); 1114 dput(dentry); 1115 } 1116 } 1117 } 1118 1119 /** 1120 * __mark_inode_dirty - internal function 1121 * @inode: inode to mark 1122 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1123 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1124 * mark_inode_dirty_sync. 1125 * 1126 * Put the inode on the super block's dirty list. 1127 * 1128 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1129 * dirty list only if it is hashed or if it refers to a blockdev. 1130 * If it was not hashed, it will never be added to the dirty list 1131 * even if it is later hashed, as it will have been marked dirty already. 1132 * 1133 * In short, make sure you hash any inodes _before_ you start marking 1134 * them dirty. 1135 * 1136 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1137 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1138 * the kernel-internal blockdev inode represents the dirtying time of the 1139 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1140 * page->mapping->host, so the page-dirtying time is recorded in the internal 1141 * blockdev inode. 1142 */ 1143 void __mark_inode_dirty(struct inode *inode, int flags) 1144 { 1145 struct super_block *sb = inode->i_sb; 1146 struct backing_dev_info *bdi = NULL; 1147 1148 /* 1149 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1150 * dirty the inode itself 1151 */ 1152 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1153 if (sb->s_op->dirty_inode) 1154 sb->s_op->dirty_inode(inode, flags); 1155 } 1156 1157 /* 1158 * make sure that changes are seen by all cpus before we test i_state 1159 * -- mikulas 1160 */ 1161 smp_mb(); 1162 1163 /* avoid the locking if we can */ 1164 if ((inode->i_state & flags) == flags) 1165 return; 1166 1167 if (unlikely(block_dump)) 1168 block_dump___mark_inode_dirty(inode); 1169 1170 spin_lock(&inode->i_lock); 1171 if ((inode->i_state & flags) != flags) { 1172 const int was_dirty = inode->i_state & I_DIRTY; 1173 1174 inode->i_state |= flags; 1175 1176 /* 1177 * If the inode is being synced, just update its dirty state. 1178 * The unlocker will place the inode on the appropriate 1179 * superblock list, based upon its state. 1180 */ 1181 if (inode->i_state & I_SYNC) 1182 goto out_unlock_inode; 1183 1184 /* 1185 * Only add valid (hashed) inodes to the superblock's 1186 * dirty list. Add blockdev inodes as well. 1187 */ 1188 if (!S_ISBLK(inode->i_mode)) { 1189 if (inode_unhashed(inode)) 1190 goto out_unlock_inode; 1191 } 1192 if (inode->i_state & I_FREEING) 1193 goto out_unlock_inode; 1194 1195 /* 1196 * If the inode was already on b_dirty/b_io/b_more_io, don't 1197 * reposition it (that would break b_dirty time-ordering). 1198 */ 1199 if (!was_dirty) { 1200 bool wakeup_bdi = false; 1201 bdi = inode_to_bdi(inode); 1202 1203 if (bdi_cap_writeback_dirty(bdi)) { 1204 WARN(!test_bit(BDI_registered, &bdi->state), 1205 "bdi-%s not registered\n", bdi->name); 1206 1207 /* 1208 * If this is the first dirty inode for this 1209 * bdi, we have to wake-up the corresponding 1210 * bdi thread to make sure background 1211 * write-back happens later. 1212 */ 1213 if (!wb_has_dirty_io(&bdi->wb)) 1214 wakeup_bdi = true; 1215 } 1216 1217 spin_unlock(&inode->i_lock); 1218 spin_lock(&bdi->wb.list_lock); 1219 inode->dirtied_when = jiffies; 1220 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1221 spin_unlock(&bdi->wb.list_lock); 1222 1223 if (wakeup_bdi) 1224 bdi_wakeup_thread_delayed(bdi); 1225 return; 1226 } 1227 } 1228 out_unlock_inode: 1229 spin_unlock(&inode->i_lock); 1230 1231 } 1232 EXPORT_SYMBOL(__mark_inode_dirty); 1233 1234 static void wait_sb_inodes(struct super_block *sb) 1235 { 1236 struct inode *inode, *old_inode = NULL; 1237 1238 /* 1239 * We need to be protected against the filesystem going from 1240 * r/o to r/w or vice versa. 1241 */ 1242 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1243 1244 spin_lock(&inode_sb_list_lock); 1245 1246 /* 1247 * Data integrity sync. Must wait for all pages under writeback, 1248 * because there may have been pages dirtied before our sync 1249 * call, but which had writeout started before we write it out. 1250 * In which case, the inode may not be on the dirty list, but 1251 * we still have to wait for that writeout. 1252 */ 1253 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1254 struct address_space *mapping = inode->i_mapping; 1255 1256 spin_lock(&inode->i_lock); 1257 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1258 (mapping->nrpages == 0)) { 1259 spin_unlock(&inode->i_lock); 1260 continue; 1261 } 1262 __iget(inode); 1263 spin_unlock(&inode->i_lock); 1264 spin_unlock(&inode_sb_list_lock); 1265 1266 /* 1267 * We hold a reference to 'inode' so it couldn't have been 1268 * removed from s_inodes list while we dropped the 1269 * inode_sb_list_lock. We cannot iput the inode now as we can 1270 * be holding the last reference and we cannot iput it under 1271 * inode_sb_list_lock. So we keep the reference and iput it 1272 * later. 1273 */ 1274 iput(old_inode); 1275 old_inode = inode; 1276 1277 filemap_fdatawait(mapping); 1278 1279 cond_resched(); 1280 1281 spin_lock(&inode_sb_list_lock); 1282 } 1283 spin_unlock(&inode_sb_list_lock); 1284 iput(old_inode); 1285 } 1286 1287 /** 1288 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1289 * @sb: the superblock 1290 * @nr: the number of pages to write 1291 * @reason: reason why some writeback work initiated 1292 * 1293 * Start writeback on some inodes on this super_block. No guarantees are made 1294 * on how many (if any) will be written, and this function does not wait 1295 * for IO completion of submitted IO. 1296 */ 1297 void writeback_inodes_sb_nr(struct super_block *sb, 1298 unsigned long nr, 1299 enum wb_reason reason) 1300 { 1301 DECLARE_COMPLETION_ONSTACK(done); 1302 struct wb_writeback_work work = { 1303 .sb = sb, 1304 .sync_mode = WB_SYNC_NONE, 1305 .tagged_writepages = 1, 1306 .done = &done, 1307 .nr_pages = nr, 1308 .reason = reason, 1309 }; 1310 1311 if (sb->s_bdi == &noop_backing_dev_info) 1312 return; 1313 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1314 bdi_queue_work(sb->s_bdi, &work); 1315 wait_for_completion(&done); 1316 } 1317 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1318 1319 /** 1320 * writeback_inodes_sb - writeback dirty inodes from given super_block 1321 * @sb: the superblock 1322 * @reason: reason why some writeback work was initiated 1323 * 1324 * Start writeback on some inodes on this super_block. No guarantees are made 1325 * on how many (if any) will be written, and this function does not wait 1326 * for IO completion of submitted IO. 1327 */ 1328 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1329 { 1330 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1331 } 1332 EXPORT_SYMBOL(writeback_inodes_sb); 1333 1334 /** 1335 * writeback_inodes_sb_if_idle - start writeback if none underway 1336 * @sb: the superblock 1337 * @reason: reason why some writeback work was initiated 1338 * 1339 * Invoke writeback_inodes_sb if no writeback is currently underway. 1340 * Returns 1 if writeback was started, 0 if not. 1341 */ 1342 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason) 1343 { 1344 if (!writeback_in_progress(sb->s_bdi)) { 1345 down_read(&sb->s_umount); 1346 writeback_inodes_sb(sb, reason); 1347 up_read(&sb->s_umount); 1348 return 1; 1349 } else 1350 return 0; 1351 } 1352 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1353 1354 /** 1355 * writeback_inodes_sb_nr_if_idle - start writeback if none underway 1356 * @sb: the superblock 1357 * @nr: the number of pages to write 1358 * @reason: reason why some writeback work was initiated 1359 * 1360 * Invoke writeback_inodes_sb if no writeback is currently underway. 1361 * Returns 1 if writeback was started, 0 if not. 1362 */ 1363 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1364 unsigned long nr, 1365 enum wb_reason reason) 1366 { 1367 if (!writeback_in_progress(sb->s_bdi)) { 1368 down_read(&sb->s_umount); 1369 writeback_inodes_sb_nr(sb, nr, reason); 1370 up_read(&sb->s_umount); 1371 return 1; 1372 } else 1373 return 0; 1374 } 1375 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1376 1377 /** 1378 * sync_inodes_sb - sync sb inode pages 1379 * @sb: the superblock 1380 * 1381 * This function writes and waits on any dirty inode belonging to this 1382 * super_block. 1383 */ 1384 void sync_inodes_sb(struct super_block *sb) 1385 { 1386 DECLARE_COMPLETION_ONSTACK(done); 1387 struct wb_writeback_work work = { 1388 .sb = sb, 1389 .sync_mode = WB_SYNC_ALL, 1390 .nr_pages = LONG_MAX, 1391 .range_cyclic = 0, 1392 .done = &done, 1393 .reason = WB_REASON_SYNC, 1394 }; 1395 1396 /* Nothing to do? */ 1397 if (sb->s_bdi == &noop_backing_dev_info) 1398 return; 1399 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1400 1401 bdi_queue_work(sb->s_bdi, &work); 1402 wait_for_completion(&done); 1403 1404 wait_sb_inodes(sb); 1405 } 1406 EXPORT_SYMBOL(sync_inodes_sb); 1407 1408 /** 1409 * write_inode_now - write an inode to disk 1410 * @inode: inode to write to disk 1411 * @sync: whether the write should be synchronous or not 1412 * 1413 * This function commits an inode to disk immediately if it is dirty. This is 1414 * primarily needed by knfsd. 1415 * 1416 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1417 */ 1418 int write_inode_now(struct inode *inode, int sync) 1419 { 1420 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1421 struct writeback_control wbc = { 1422 .nr_to_write = LONG_MAX, 1423 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1424 .range_start = 0, 1425 .range_end = LLONG_MAX, 1426 }; 1427 1428 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1429 wbc.nr_to_write = 0; 1430 1431 might_sleep(); 1432 return writeback_single_inode(inode, wb, &wbc); 1433 } 1434 EXPORT_SYMBOL(write_inode_now); 1435 1436 /** 1437 * sync_inode - write an inode and its pages to disk. 1438 * @inode: the inode to sync 1439 * @wbc: controls the writeback mode 1440 * 1441 * sync_inode() will write an inode and its pages to disk. It will also 1442 * correctly update the inode on its superblock's dirty inode lists and will 1443 * update inode->i_state. 1444 * 1445 * The caller must have a ref on the inode. 1446 */ 1447 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1448 { 1449 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1450 } 1451 EXPORT_SYMBOL(sync_inode); 1452 1453 /** 1454 * sync_inode_metadata - write an inode to disk 1455 * @inode: the inode to sync 1456 * @wait: wait for I/O to complete. 1457 * 1458 * Write an inode to disk and adjust its dirty state after completion. 1459 * 1460 * Note: only writes the actual inode, no associated data or other metadata. 1461 */ 1462 int sync_inode_metadata(struct inode *inode, int wait) 1463 { 1464 struct writeback_control wbc = { 1465 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1466 .nr_to_write = 0, /* metadata-only */ 1467 }; 1468 1469 return sync_inode(inode, &wbc); 1470 } 1471 EXPORT_SYMBOL(sync_inode_metadata); 1472