xref: /openbmc/linux/fs/fs-writeback.c (revision b6bec26c)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 	return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67 
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70 	struct super_block *sb = inode->i_sb;
71 
72 	if (strcmp(sb->s_type->name, "bdev") == 0)
73 		return inode->i_mapping->backing_dev_info;
74 
75 	return sb->s_bdi;
76 }
77 
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80 	return list_entry(head, struct inode, i_wb_list);
81 }
82 
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90 
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 {
94 	if (bdi->wb.task) {
95 		wake_up_process(bdi->wb.task);
96 	} else {
97 		/*
98 		 * The bdi thread isn't there, wake up the forker thread which
99 		 * will create and run it.
100 		 */
101 		wake_up_process(default_backing_dev_info.wb.task);
102 	}
103 }
104 
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106 			   struct wb_writeback_work *work)
107 {
108 	trace_writeback_queue(bdi, work);
109 
110 	spin_lock_bh(&bdi->wb_lock);
111 	list_add_tail(&work->list, &bdi->work_list);
112 	if (!bdi->wb.task)
113 		trace_writeback_nothread(bdi, work);
114 	bdi_wakeup_flusher(bdi);
115 	spin_unlock_bh(&bdi->wb_lock);
116 }
117 
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120 		      bool range_cyclic, enum wb_reason reason)
121 {
122 	struct wb_writeback_work *work;
123 
124 	/*
125 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
126 	 * wakeup the thread for old dirty data writeback
127 	 */
128 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
129 	if (!work) {
130 		if (bdi->wb.task) {
131 			trace_writeback_nowork(bdi);
132 			wake_up_process(bdi->wb.task);
133 		}
134 		return;
135 	}
136 
137 	work->sync_mode	= WB_SYNC_NONE;
138 	work->nr_pages	= nr_pages;
139 	work->range_cyclic = range_cyclic;
140 	work->reason	= reason;
141 
142 	bdi_queue_work(bdi, work);
143 }
144 
145 /**
146  * bdi_start_writeback - start writeback
147  * @bdi: the backing device to write from
148  * @nr_pages: the number of pages to write
149  * @reason: reason why some writeback work was initiated
150  *
151  * Description:
152  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
153  *   started when this function returns, we make no guarantees on
154  *   completion. Caller need not hold sb s_umount semaphore.
155  *
156  */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158 			enum wb_reason reason)
159 {
160 	__bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162 
163 /**
164  * bdi_start_background_writeback - start background writeback
165  * @bdi: the backing device to write from
166  *
167  * Description:
168  *   This makes sure WB_SYNC_NONE background writeback happens. When
169  *   this function returns, it is only guaranteed that for given BDI
170  *   some IO is happening if we are over background dirty threshold.
171  *   Caller need not hold sb s_umount semaphore.
172  */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175 	/*
176 	 * We just wake up the flusher thread. It will perform background
177 	 * writeback as soon as there is no other work to do.
178 	 */
179 	trace_writeback_wake_background(bdi);
180 	spin_lock_bh(&bdi->wb_lock);
181 	bdi_wakeup_flusher(bdi);
182 	spin_unlock_bh(&bdi->wb_lock);
183 }
184 
185 /*
186  * Remove the inode from the writeback list it is on.
187  */
188 void inode_wb_list_del(struct inode *inode)
189 {
190 	struct backing_dev_info *bdi = inode_to_bdi(inode);
191 
192 	spin_lock(&bdi->wb.list_lock);
193 	list_del_init(&inode->i_wb_list);
194 	spin_unlock(&bdi->wb.list_lock);
195 }
196 
197 /*
198  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199  * furthest end of its superblock's dirty-inode list.
200  *
201  * Before stamping the inode's ->dirtied_when, we check to see whether it is
202  * already the most-recently-dirtied inode on the b_dirty list.  If that is
203  * the case then the inode must have been redirtied while it was being written
204  * out and we don't reset its dirtied_when.
205  */
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 {
208 	assert_spin_locked(&wb->list_lock);
209 	if (!list_empty(&wb->b_dirty)) {
210 		struct inode *tail;
211 
212 		tail = wb_inode(wb->b_dirty.next);
213 		if (time_before(inode->dirtied_when, tail->dirtied_when))
214 			inode->dirtied_when = jiffies;
215 	}
216 	list_move(&inode->i_wb_list, &wb->b_dirty);
217 }
218 
219 /*
220  * requeue inode for re-scanning after bdi->b_io list is exhausted.
221  */
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 {
224 	assert_spin_locked(&wb->list_lock);
225 	list_move(&inode->i_wb_list, &wb->b_more_io);
226 }
227 
228 static void inode_sync_complete(struct inode *inode)
229 {
230 	inode->i_state &= ~I_SYNC;
231 	/* If inode is clean an unused, put it into LRU now... */
232 	inode_add_lru(inode);
233 	/* Waiters must see I_SYNC cleared before being woken up */
234 	smp_mb();
235 	wake_up_bit(&inode->i_state, __I_SYNC);
236 }
237 
238 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
239 {
240 	bool ret = time_after(inode->dirtied_when, t);
241 #ifndef CONFIG_64BIT
242 	/*
243 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
244 	 * It _appears_ to be in the future, but is actually in distant past.
245 	 * This test is necessary to prevent such wrapped-around relative times
246 	 * from permanently stopping the whole bdi writeback.
247 	 */
248 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
249 #endif
250 	return ret;
251 }
252 
253 /*
254  * Move expired (dirtied before work->older_than_this) dirty inodes from
255  * @delaying_queue to @dispatch_queue.
256  */
257 static int move_expired_inodes(struct list_head *delaying_queue,
258 			       struct list_head *dispatch_queue,
259 			       struct wb_writeback_work *work)
260 {
261 	LIST_HEAD(tmp);
262 	struct list_head *pos, *node;
263 	struct super_block *sb = NULL;
264 	struct inode *inode;
265 	int do_sb_sort = 0;
266 	int moved = 0;
267 
268 	while (!list_empty(delaying_queue)) {
269 		inode = wb_inode(delaying_queue->prev);
270 		if (work->older_than_this &&
271 		    inode_dirtied_after(inode, *work->older_than_this))
272 			break;
273 		if (sb && sb != inode->i_sb)
274 			do_sb_sort = 1;
275 		sb = inode->i_sb;
276 		list_move(&inode->i_wb_list, &tmp);
277 		moved++;
278 	}
279 
280 	/* just one sb in list, splice to dispatch_queue and we're done */
281 	if (!do_sb_sort) {
282 		list_splice(&tmp, dispatch_queue);
283 		goto out;
284 	}
285 
286 	/* Move inodes from one superblock together */
287 	while (!list_empty(&tmp)) {
288 		sb = wb_inode(tmp.prev)->i_sb;
289 		list_for_each_prev_safe(pos, node, &tmp) {
290 			inode = wb_inode(pos);
291 			if (inode->i_sb == sb)
292 				list_move(&inode->i_wb_list, dispatch_queue);
293 		}
294 	}
295 out:
296 	return moved;
297 }
298 
299 /*
300  * Queue all expired dirty inodes for io, eldest first.
301  * Before
302  *         newly dirtied     b_dirty    b_io    b_more_io
303  *         =============>    gf         edc     BA
304  * After
305  *         newly dirtied     b_dirty    b_io    b_more_io
306  *         =============>    g          fBAedc
307  *                                           |
308  *                                           +--> dequeue for IO
309  */
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
311 {
312 	int moved;
313 	assert_spin_locked(&wb->list_lock);
314 	list_splice_init(&wb->b_more_io, &wb->b_io);
315 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316 	trace_writeback_queue_io(wb, work, moved);
317 }
318 
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
320 {
321 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
322 		return inode->i_sb->s_op->write_inode(inode, wbc);
323 	return 0;
324 }
325 
326 /*
327  * Wait for writeback on an inode to complete. Called with i_lock held.
328  * Caller must make sure inode cannot go away when we drop i_lock.
329  */
330 static void __inode_wait_for_writeback(struct inode *inode)
331 	__releases(inode->i_lock)
332 	__acquires(inode->i_lock)
333 {
334 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
335 	wait_queue_head_t *wqh;
336 
337 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
338 	while (inode->i_state & I_SYNC) {
339 		spin_unlock(&inode->i_lock);
340 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
341 		spin_lock(&inode->i_lock);
342 	}
343 }
344 
345 /*
346  * Wait for writeback on an inode to complete. Caller must have inode pinned.
347  */
348 void inode_wait_for_writeback(struct inode *inode)
349 {
350 	spin_lock(&inode->i_lock);
351 	__inode_wait_for_writeback(inode);
352 	spin_unlock(&inode->i_lock);
353 }
354 
355 /*
356  * Sleep until I_SYNC is cleared. This function must be called with i_lock
357  * held and drops it. It is aimed for callers not holding any inode reference
358  * so once i_lock is dropped, inode can go away.
359  */
360 static void inode_sleep_on_writeback(struct inode *inode)
361 	__releases(inode->i_lock)
362 {
363 	DEFINE_WAIT(wait);
364 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
365 	int sleep;
366 
367 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
368 	sleep = inode->i_state & I_SYNC;
369 	spin_unlock(&inode->i_lock);
370 	if (sleep)
371 		schedule();
372 	finish_wait(wqh, &wait);
373 }
374 
375 /*
376  * Find proper writeback list for the inode depending on its current state and
377  * possibly also change of its state while we were doing writeback.  Here we
378  * handle things such as livelock prevention or fairness of writeback among
379  * inodes. This function can be called only by flusher thread - noone else
380  * processes all inodes in writeback lists and requeueing inodes behind flusher
381  * thread's back can have unexpected consequences.
382  */
383 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
384 			  struct writeback_control *wbc)
385 {
386 	if (inode->i_state & I_FREEING)
387 		return;
388 
389 	/*
390 	 * Sync livelock prevention. Each inode is tagged and synced in one
391 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
392 	 * the dirty time to prevent enqueue and sync it again.
393 	 */
394 	if ((inode->i_state & I_DIRTY) &&
395 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
396 		inode->dirtied_when = jiffies;
397 
398 	if (wbc->pages_skipped) {
399 		/*
400 		 * writeback is not making progress due to locked
401 		 * buffers. Skip this inode for now.
402 		 */
403 		redirty_tail(inode, wb);
404 		return;
405 	}
406 
407 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
408 		/*
409 		 * We didn't write back all the pages.  nfs_writepages()
410 		 * sometimes bales out without doing anything.
411 		 */
412 		if (wbc->nr_to_write <= 0) {
413 			/* Slice used up. Queue for next turn. */
414 			requeue_io(inode, wb);
415 		} else {
416 			/*
417 			 * Writeback blocked by something other than
418 			 * congestion. Delay the inode for some time to
419 			 * avoid spinning on the CPU (100% iowait)
420 			 * retrying writeback of the dirty page/inode
421 			 * that cannot be performed immediately.
422 			 */
423 			redirty_tail(inode, wb);
424 		}
425 	} else if (inode->i_state & I_DIRTY) {
426 		/*
427 		 * Filesystems can dirty the inode during writeback operations,
428 		 * such as delayed allocation during submission or metadata
429 		 * updates after data IO completion.
430 		 */
431 		redirty_tail(inode, wb);
432 	} else {
433 		/* The inode is clean. Remove from writeback lists. */
434 		list_del_init(&inode->i_wb_list);
435 	}
436 }
437 
438 /*
439  * Write out an inode and its dirty pages. Do not update the writeback list
440  * linkage. That is left to the caller. The caller is also responsible for
441  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
442  */
443 static int
444 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
445 {
446 	struct address_space *mapping = inode->i_mapping;
447 	long nr_to_write = wbc->nr_to_write;
448 	unsigned dirty;
449 	int ret;
450 
451 	WARN_ON(!(inode->i_state & I_SYNC));
452 
453 	ret = do_writepages(mapping, wbc);
454 
455 	/*
456 	 * Make sure to wait on the data before writing out the metadata.
457 	 * This is important for filesystems that modify metadata on data
458 	 * I/O completion.
459 	 */
460 	if (wbc->sync_mode == WB_SYNC_ALL) {
461 		int err = filemap_fdatawait(mapping);
462 		if (ret == 0)
463 			ret = err;
464 	}
465 
466 	/*
467 	 * Some filesystems may redirty the inode during the writeback
468 	 * due to delalloc, clear dirty metadata flags right before
469 	 * write_inode()
470 	 */
471 	spin_lock(&inode->i_lock);
472 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
473 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
474 		inode->i_state &= ~I_DIRTY_PAGES;
475 	dirty = inode->i_state & I_DIRTY;
476 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
477 	spin_unlock(&inode->i_lock);
478 	/* Don't write the inode if only I_DIRTY_PAGES was set */
479 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
480 		int err = write_inode(inode, wbc);
481 		if (ret == 0)
482 			ret = err;
483 	}
484 	trace_writeback_single_inode(inode, wbc, nr_to_write);
485 	return ret;
486 }
487 
488 /*
489  * Write out an inode's dirty pages. Either the caller has an active reference
490  * on the inode or the inode has I_WILL_FREE set.
491  *
492  * This function is designed to be called for writing back one inode which
493  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
494  * and does more profound writeback list handling in writeback_sb_inodes().
495  */
496 static int
497 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
498 		       struct writeback_control *wbc)
499 {
500 	int ret = 0;
501 
502 	spin_lock(&inode->i_lock);
503 	if (!atomic_read(&inode->i_count))
504 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
505 	else
506 		WARN_ON(inode->i_state & I_WILL_FREE);
507 
508 	if (inode->i_state & I_SYNC) {
509 		if (wbc->sync_mode != WB_SYNC_ALL)
510 			goto out;
511 		/*
512 		 * It's a data-integrity sync. We must wait. Since callers hold
513 		 * inode reference or inode has I_WILL_FREE set, it cannot go
514 		 * away under us.
515 		 */
516 		__inode_wait_for_writeback(inode);
517 	}
518 	WARN_ON(inode->i_state & I_SYNC);
519 	/*
520 	 * Skip inode if it is clean. We don't want to mess with writeback
521 	 * lists in this function since flusher thread may be doing for example
522 	 * sync in parallel and if we move the inode, it could get skipped. So
523 	 * here we make sure inode is on some writeback list and leave it there
524 	 * unless we have completely cleaned the inode.
525 	 */
526 	if (!(inode->i_state & I_DIRTY))
527 		goto out;
528 	inode->i_state |= I_SYNC;
529 	spin_unlock(&inode->i_lock);
530 
531 	ret = __writeback_single_inode(inode, wbc);
532 
533 	spin_lock(&wb->list_lock);
534 	spin_lock(&inode->i_lock);
535 	/*
536 	 * If inode is clean, remove it from writeback lists. Otherwise don't
537 	 * touch it. See comment above for explanation.
538 	 */
539 	if (!(inode->i_state & I_DIRTY))
540 		list_del_init(&inode->i_wb_list);
541 	spin_unlock(&wb->list_lock);
542 	inode_sync_complete(inode);
543 out:
544 	spin_unlock(&inode->i_lock);
545 	return ret;
546 }
547 
548 static long writeback_chunk_size(struct backing_dev_info *bdi,
549 				 struct wb_writeback_work *work)
550 {
551 	long pages;
552 
553 	/*
554 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
555 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
556 	 * here avoids calling into writeback_inodes_wb() more than once.
557 	 *
558 	 * The intended call sequence for WB_SYNC_ALL writeback is:
559 	 *
560 	 *      wb_writeback()
561 	 *          writeback_sb_inodes()       <== called only once
562 	 *              write_cache_pages()     <== called once for each inode
563 	 *                   (quickly) tag currently dirty pages
564 	 *                   (maybe slowly) sync all tagged pages
565 	 */
566 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
567 		pages = LONG_MAX;
568 	else {
569 		pages = min(bdi->avg_write_bandwidth / 2,
570 			    global_dirty_limit / DIRTY_SCOPE);
571 		pages = min(pages, work->nr_pages);
572 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
573 				   MIN_WRITEBACK_PAGES);
574 	}
575 
576 	return pages;
577 }
578 
579 /*
580  * Write a portion of b_io inodes which belong to @sb.
581  *
582  * Return the number of pages and/or inodes written.
583  */
584 static long writeback_sb_inodes(struct super_block *sb,
585 				struct bdi_writeback *wb,
586 				struct wb_writeback_work *work)
587 {
588 	struct writeback_control wbc = {
589 		.sync_mode		= work->sync_mode,
590 		.tagged_writepages	= work->tagged_writepages,
591 		.for_kupdate		= work->for_kupdate,
592 		.for_background		= work->for_background,
593 		.range_cyclic		= work->range_cyclic,
594 		.range_start		= 0,
595 		.range_end		= LLONG_MAX,
596 	};
597 	unsigned long start_time = jiffies;
598 	long write_chunk;
599 	long wrote = 0;  /* count both pages and inodes */
600 
601 	while (!list_empty(&wb->b_io)) {
602 		struct inode *inode = wb_inode(wb->b_io.prev);
603 
604 		if (inode->i_sb != sb) {
605 			if (work->sb) {
606 				/*
607 				 * We only want to write back data for this
608 				 * superblock, move all inodes not belonging
609 				 * to it back onto the dirty list.
610 				 */
611 				redirty_tail(inode, wb);
612 				continue;
613 			}
614 
615 			/*
616 			 * The inode belongs to a different superblock.
617 			 * Bounce back to the caller to unpin this and
618 			 * pin the next superblock.
619 			 */
620 			break;
621 		}
622 
623 		/*
624 		 * Don't bother with new inodes or inodes being freed, first
625 		 * kind does not need periodic writeout yet, and for the latter
626 		 * kind writeout is handled by the freer.
627 		 */
628 		spin_lock(&inode->i_lock);
629 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
630 			spin_unlock(&inode->i_lock);
631 			redirty_tail(inode, wb);
632 			continue;
633 		}
634 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
635 			/*
636 			 * If this inode is locked for writeback and we are not
637 			 * doing writeback-for-data-integrity, move it to
638 			 * b_more_io so that writeback can proceed with the
639 			 * other inodes on s_io.
640 			 *
641 			 * We'll have another go at writing back this inode
642 			 * when we completed a full scan of b_io.
643 			 */
644 			spin_unlock(&inode->i_lock);
645 			requeue_io(inode, wb);
646 			trace_writeback_sb_inodes_requeue(inode);
647 			continue;
648 		}
649 		spin_unlock(&wb->list_lock);
650 
651 		/*
652 		 * We already requeued the inode if it had I_SYNC set and we
653 		 * are doing WB_SYNC_NONE writeback. So this catches only the
654 		 * WB_SYNC_ALL case.
655 		 */
656 		if (inode->i_state & I_SYNC) {
657 			/* Wait for I_SYNC. This function drops i_lock... */
658 			inode_sleep_on_writeback(inode);
659 			/* Inode may be gone, start again */
660 			spin_lock(&wb->list_lock);
661 			continue;
662 		}
663 		inode->i_state |= I_SYNC;
664 		spin_unlock(&inode->i_lock);
665 
666 		write_chunk = writeback_chunk_size(wb->bdi, work);
667 		wbc.nr_to_write = write_chunk;
668 		wbc.pages_skipped = 0;
669 
670 		/*
671 		 * We use I_SYNC to pin the inode in memory. While it is set
672 		 * evict_inode() will wait so the inode cannot be freed.
673 		 */
674 		__writeback_single_inode(inode, &wbc);
675 
676 		work->nr_pages -= write_chunk - wbc.nr_to_write;
677 		wrote += write_chunk - wbc.nr_to_write;
678 		spin_lock(&wb->list_lock);
679 		spin_lock(&inode->i_lock);
680 		if (!(inode->i_state & I_DIRTY))
681 			wrote++;
682 		requeue_inode(inode, wb, &wbc);
683 		inode_sync_complete(inode);
684 		spin_unlock(&inode->i_lock);
685 		cond_resched_lock(&wb->list_lock);
686 		/*
687 		 * bail out to wb_writeback() often enough to check
688 		 * background threshold and other termination conditions.
689 		 */
690 		if (wrote) {
691 			if (time_is_before_jiffies(start_time + HZ / 10UL))
692 				break;
693 			if (work->nr_pages <= 0)
694 				break;
695 		}
696 	}
697 	return wrote;
698 }
699 
700 static long __writeback_inodes_wb(struct bdi_writeback *wb,
701 				  struct wb_writeback_work *work)
702 {
703 	unsigned long start_time = jiffies;
704 	long wrote = 0;
705 
706 	while (!list_empty(&wb->b_io)) {
707 		struct inode *inode = wb_inode(wb->b_io.prev);
708 		struct super_block *sb = inode->i_sb;
709 
710 		if (!grab_super_passive(sb)) {
711 			/*
712 			 * grab_super_passive() may fail consistently due to
713 			 * s_umount being grabbed by someone else. Don't use
714 			 * requeue_io() to avoid busy retrying the inode/sb.
715 			 */
716 			redirty_tail(inode, wb);
717 			continue;
718 		}
719 		wrote += writeback_sb_inodes(sb, wb, work);
720 		drop_super(sb);
721 
722 		/* refer to the same tests at the end of writeback_sb_inodes */
723 		if (wrote) {
724 			if (time_is_before_jiffies(start_time + HZ / 10UL))
725 				break;
726 			if (work->nr_pages <= 0)
727 				break;
728 		}
729 	}
730 	/* Leave any unwritten inodes on b_io */
731 	return wrote;
732 }
733 
734 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
735 				enum wb_reason reason)
736 {
737 	struct wb_writeback_work work = {
738 		.nr_pages	= nr_pages,
739 		.sync_mode	= WB_SYNC_NONE,
740 		.range_cyclic	= 1,
741 		.reason		= reason,
742 	};
743 
744 	spin_lock(&wb->list_lock);
745 	if (list_empty(&wb->b_io))
746 		queue_io(wb, &work);
747 	__writeback_inodes_wb(wb, &work);
748 	spin_unlock(&wb->list_lock);
749 
750 	return nr_pages - work.nr_pages;
751 }
752 
753 static bool over_bground_thresh(struct backing_dev_info *bdi)
754 {
755 	unsigned long background_thresh, dirty_thresh;
756 
757 	global_dirty_limits(&background_thresh, &dirty_thresh);
758 
759 	if (global_page_state(NR_FILE_DIRTY) +
760 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
761 		return true;
762 
763 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
764 				bdi_dirty_limit(bdi, background_thresh))
765 		return true;
766 
767 	return false;
768 }
769 
770 /*
771  * Called under wb->list_lock. If there are multiple wb per bdi,
772  * only the flusher working on the first wb should do it.
773  */
774 static void wb_update_bandwidth(struct bdi_writeback *wb,
775 				unsigned long start_time)
776 {
777 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
778 }
779 
780 /*
781  * Explicit flushing or periodic writeback of "old" data.
782  *
783  * Define "old": the first time one of an inode's pages is dirtied, we mark the
784  * dirtying-time in the inode's address_space.  So this periodic writeback code
785  * just walks the superblock inode list, writing back any inodes which are
786  * older than a specific point in time.
787  *
788  * Try to run once per dirty_writeback_interval.  But if a writeback event
789  * takes longer than a dirty_writeback_interval interval, then leave a
790  * one-second gap.
791  *
792  * older_than_this takes precedence over nr_to_write.  So we'll only write back
793  * all dirty pages if they are all attached to "old" mappings.
794  */
795 static long wb_writeback(struct bdi_writeback *wb,
796 			 struct wb_writeback_work *work)
797 {
798 	unsigned long wb_start = jiffies;
799 	long nr_pages = work->nr_pages;
800 	unsigned long oldest_jif;
801 	struct inode *inode;
802 	long progress;
803 
804 	oldest_jif = jiffies;
805 	work->older_than_this = &oldest_jif;
806 
807 	spin_lock(&wb->list_lock);
808 	for (;;) {
809 		/*
810 		 * Stop writeback when nr_pages has been consumed
811 		 */
812 		if (work->nr_pages <= 0)
813 			break;
814 
815 		/*
816 		 * Background writeout and kupdate-style writeback may
817 		 * run forever. Stop them if there is other work to do
818 		 * so that e.g. sync can proceed. They'll be restarted
819 		 * after the other works are all done.
820 		 */
821 		if ((work->for_background || work->for_kupdate) &&
822 		    !list_empty(&wb->bdi->work_list))
823 			break;
824 
825 		/*
826 		 * For background writeout, stop when we are below the
827 		 * background dirty threshold
828 		 */
829 		if (work->for_background && !over_bground_thresh(wb->bdi))
830 			break;
831 
832 		/*
833 		 * Kupdate and background works are special and we want to
834 		 * include all inodes that need writing. Livelock avoidance is
835 		 * handled by these works yielding to any other work so we are
836 		 * safe.
837 		 */
838 		if (work->for_kupdate) {
839 			oldest_jif = jiffies -
840 				msecs_to_jiffies(dirty_expire_interval * 10);
841 		} else if (work->for_background)
842 			oldest_jif = jiffies;
843 
844 		trace_writeback_start(wb->bdi, work);
845 		if (list_empty(&wb->b_io))
846 			queue_io(wb, work);
847 		if (work->sb)
848 			progress = writeback_sb_inodes(work->sb, wb, work);
849 		else
850 			progress = __writeback_inodes_wb(wb, work);
851 		trace_writeback_written(wb->bdi, work);
852 
853 		wb_update_bandwidth(wb, wb_start);
854 
855 		/*
856 		 * Did we write something? Try for more
857 		 *
858 		 * Dirty inodes are moved to b_io for writeback in batches.
859 		 * The completion of the current batch does not necessarily
860 		 * mean the overall work is done. So we keep looping as long
861 		 * as made some progress on cleaning pages or inodes.
862 		 */
863 		if (progress)
864 			continue;
865 		/*
866 		 * No more inodes for IO, bail
867 		 */
868 		if (list_empty(&wb->b_more_io))
869 			break;
870 		/*
871 		 * Nothing written. Wait for some inode to
872 		 * become available for writeback. Otherwise
873 		 * we'll just busyloop.
874 		 */
875 		if (!list_empty(&wb->b_more_io))  {
876 			trace_writeback_wait(wb->bdi, work);
877 			inode = wb_inode(wb->b_more_io.prev);
878 			spin_lock(&inode->i_lock);
879 			spin_unlock(&wb->list_lock);
880 			/* This function drops i_lock... */
881 			inode_sleep_on_writeback(inode);
882 			spin_lock(&wb->list_lock);
883 		}
884 	}
885 	spin_unlock(&wb->list_lock);
886 
887 	return nr_pages - work->nr_pages;
888 }
889 
890 /*
891  * Return the next wb_writeback_work struct that hasn't been processed yet.
892  */
893 static struct wb_writeback_work *
894 get_next_work_item(struct backing_dev_info *bdi)
895 {
896 	struct wb_writeback_work *work = NULL;
897 
898 	spin_lock_bh(&bdi->wb_lock);
899 	if (!list_empty(&bdi->work_list)) {
900 		work = list_entry(bdi->work_list.next,
901 				  struct wb_writeback_work, list);
902 		list_del_init(&work->list);
903 	}
904 	spin_unlock_bh(&bdi->wb_lock);
905 	return work;
906 }
907 
908 /*
909  * Add in the number of potentially dirty inodes, because each inode
910  * write can dirty pagecache in the underlying blockdev.
911  */
912 static unsigned long get_nr_dirty_pages(void)
913 {
914 	return global_page_state(NR_FILE_DIRTY) +
915 		global_page_state(NR_UNSTABLE_NFS) +
916 		get_nr_dirty_inodes();
917 }
918 
919 static long wb_check_background_flush(struct bdi_writeback *wb)
920 {
921 	if (over_bground_thresh(wb->bdi)) {
922 
923 		struct wb_writeback_work work = {
924 			.nr_pages	= LONG_MAX,
925 			.sync_mode	= WB_SYNC_NONE,
926 			.for_background	= 1,
927 			.range_cyclic	= 1,
928 			.reason		= WB_REASON_BACKGROUND,
929 		};
930 
931 		return wb_writeback(wb, &work);
932 	}
933 
934 	return 0;
935 }
936 
937 static long wb_check_old_data_flush(struct bdi_writeback *wb)
938 {
939 	unsigned long expired;
940 	long nr_pages;
941 
942 	/*
943 	 * When set to zero, disable periodic writeback
944 	 */
945 	if (!dirty_writeback_interval)
946 		return 0;
947 
948 	expired = wb->last_old_flush +
949 			msecs_to_jiffies(dirty_writeback_interval * 10);
950 	if (time_before(jiffies, expired))
951 		return 0;
952 
953 	wb->last_old_flush = jiffies;
954 	nr_pages = get_nr_dirty_pages();
955 
956 	if (nr_pages) {
957 		struct wb_writeback_work work = {
958 			.nr_pages	= nr_pages,
959 			.sync_mode	= WB_SYNC_NONE,
960 			.for_kupdate	= 1,
961 			.range_cyclic	= 1,
962 			.reason		= WB_REASON_PERIODIC,
963 		};
964 
965 		return wb_writeback(wb, &work);
966 	}
967 
968 	return 0;
969 }
970 
971 /*
972  * Retrieve work items and do the writeback they describe
973  */
974 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
975 {
976 	struct backing_dev_info *bdi = wb->bdi;
977 	struct wb_writeback_work *work;
978 	long wrote = 0;
979 
980 	set_bit(BDI_writeback_running, &wb->bdi->state);
981 	while ((work = get_next_work_item(bdi)) != NULL) {
982 		/*
983 		 * Override sync mode, in case we must wait for completion
984 		 * because this thread is exiting now.
985 		 */
986 		if (force_wait)
987 			work->sync_mode = WB_SYNC_ALL;
988 
989 		trace_writeback_exec(bdi, work);
990 
991 		wrote += wb_writeback(wb, work);
992 
993 		/*
994 		 * Notify the caller of completion if this is a synchronous
995 		 * work item, otherwise just free it.
996 		 */
997 		if (work->done)
998 			complete(work->done);
999 		else
1000 			kfree(work);
1001 	}
1002 
1003 	/*
1004 	 * Check for periodic writeback, kupdated() style
1005 	 */
1006 	wrote += wb_check_old_data_flush(wb);
1007 	wrote += wb_check_background_flush(wb);
1008 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1009 
1010 	return wrote;
1011 }
1012 
1013 /*
1014  * Handle writeback of dirty data for the device backed by this bdi. Also
1015  * wakes up periodically and does kupdated style flushing.
1016  */
1017 int bdi_writeback_thread(void *data)
1018 {
1019 	struct bdi_writeback *wb = data;
1020 	struct backing_dev_info *bdi = wb->bdi;
1021 	long pages_written;
1022 
1023 	current->flags |= PF_SWAPWRITE;
1024 	set_freezable();
1025 	wb->last_active = jiffies;
1026 
1027 	/*
1028 	 * Our parent may run at a different priority, just set us to normal
1029 	 */
1030 	set_user_nice(current, 0);
1031 
1032 	trace_writeback_thread_start(bdi);
1033 
1034 	while (!kthread_freezable_should_stop(NULL)) {
1035 		/*
1036 		 * Remove own delayed wake-up timer, since we are already awake
1037 		 * and we'll take care of the periodic write-back.
1038 		 */
1039 		del_timer(&wb->wakeup_timer);
1040 
1041 		pages_written = wb_do_writeback(wb, 0);
1042 
1043 		trace_writeback_pages_written(pages_written);
1044 
1045 		if (pages_written)
1046 			wb->last_active = jiffies;
1047 
1048 		set_current_state(TASK_INTERRUPTIBLE);
1049 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1050 			__set_current_state(TASK_RUNNING);
1051 			continue;
1052 		}
1053 
1054 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1055 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1056 		else {
1057 			/*
1058 			 * We have nothing to do, so can go sleep without any
1059 			 * timeout and save power. When a work is queued or
1060 			 * something is made dirty - we will be woken up.
1061 			 */
1062 			schedule();
1063 		}
1064 	}
1065 
1066 	/* Flush any work that raced with us exiting */
1067 	if (!list_empty(&bdi->work_list))
1068 		wb_do_writeback(wb, 1);
1069 
1070 	trace_writeback_thread_stop(bdi);
1071 	return 0;
1072 }
1073 
1074 
1075 /*
1076  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1077  * the whole world.
1078  */
1079 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1080 {
1081 	struct backing_dev_info *bdi;
1082 
1083 	if (!nr_pages) {
1084 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1085 				global_page_state(NR_UNSTABLE_NFS);
1086 	}
1087 
1088 	rcu_read_lock();
1089 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1090 		if (!bdi_has_dirty_io(bdi))
1091 			continue;
1092 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1093 	}
1094 	rcu_read_unlock();
1095 }
1096 
1097 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1098 {
1099 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1100 		struct dentry *dentry;
1101 		const char *name = "?";
1102 
1103 		dentry = d_find_alias(inode);
1104 		if (dentry) {
1105 			spin_lock(&dentry->d_lock);
1106 			name = (const char *) dentry->d_name.name;
1107 		}
1108 		printk(KERN_DEBUG
1109 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1110 		       current->comm, task_pid_nr(current), inode->i_ino,
1111 		       name, inode->i_sb->s_id);
1112 		if (dentry) {
1113 			spin_unlock(&dentry->d_lock);
1114 			dput(dentry);
1115 		}
1116 	}
1117 }
1118 
1119 /**
1120  *	__mark_inode_dirty -	internal function
1121  *	@inode: inode to mark
1122  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1123  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1124  *  	mark_inode_dirty_sync.
1125  *
1126  * Put the inode on the super block's dirty list.
1127  *
1128  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1129  * dirty list only if it is hashed or if it refers to a blockdev.
1130  * If it was not hashed, it will never be added to the dirty list
1131  * even if it is later hashed, as it will have been marked dirty already.
1132  *
1133  * In short, make sure you hash any inodes _before_ you start marking
1134  * them dirty.
1135  *
1136  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1137  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1138  * the kernel-internal blockdev inode represents the dirtying time of the
1139  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1140  * page->mapping->host, so the page-dirtying time is recorded in the internal
1141  * blockdev inode.
1142  */
1143 void __mark_inode_dirty(struct inode *inode, int flags)
1144 {
1145 	struct super_block *sb = inode->i_sb;
1146 	struct backing_dev_info *bdi = NULL;
1147 
1148 	/*
1149 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1150 	 * dirty the inode itself
1151 	 */
1152 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1153 		if (sb->s_op->dirty_inode)
1154 			sb->s_op->dirty_inode(inode, flags);
1155 	}
1156 
1157 	/*
1158 	 * make sure that changes are seen by all cpus before we test i_state
1159 	 * -- mikulas
1160 	 */
1161 	smp_mb();
1162 
1163 	/* avoid the locking if we can */
1164 	if ((inode->i_state & flags) == flags)
1165 		return;
1166 
1167 	if (unlikely(block_dump))
1168 		block_dump___mark_inode_dirty(inode);
1169 
1170 	spin_lock(&inode->i_lock);
1171 	if ((inode->i_state & flags) != flags) {
1172 		const int was_dirty = inode->i_state & I_DIRTY;
1173 
1174 		inode->i_state |= flags;
1175 
1176 		/*
1177 		 * If the inode is being synced, just update its dirty state.
1178 		 * The unlocker will place the inode on the appropriate
1179 		 * superblock list, based upon its state.
1180 		 */
1181 		if (inode->i_state & I_SYNC)
1182 			goto out_unlock_inode;
1183 
1184 		/*
1185 		 * Only add valid (hashed) inodes to the superblock's
1186 		 * dirty list.  Add blockdev inodes as well.
1187 		 */
1188 		if (!S_ISBLK(inode->i_mode)) {
1189 			if (inode_unhashed(inode))
1190 				goto out_unlock_inode;
1191 		}
1192 		if (inode->i_state & I_FREEING)
1193 			goto out_unlock_inode;
1194 
1195 		/*
1196 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1197 		 * reposition it (that would break b_dirty time-ordering).
1198 		 */
1199 		if (!was_dirty) {
1200 			bool wakeup_bdi = false;
1201 			bdi = inode_to_bdi(inode);
1202 
1203 			if (bdi_cap_writeback_dirty(bdi)) {
1204 				WARN(!test_bit(BDI_registered, &bdi->state),
1205 				     "bdi-%s not registered\n", bdi->name);
1206 
1207 				/*
1208 				 * If this is the first dirty inode for this
1209 				 * bdi, we have to wake-up the corresponding
1210 				 * bdi thread to make sure background
1211 				 * write-back happens later.
1212 				 */
1213 				if (!wb_has_dirty_io(&bdi->wb))
1214 					wakeup_bdi = true;
1215 			}
1216 
1217 			spin_unlock(&inode->i_lock);
1218 			spin_lock(&bdi->wb.list_lock);
1219 			inode->dirtied_when = jiffies;
1220 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1221 			spin_unlock(&bdi->wb.list_lock);
1222 
1223 			if (wakeup_bdi)
1224 				bdi_wakeup_thread_delayed(bdi);
1225 			return;
1226 		}
1227 	}
1228 out_unlock_inode:
1229 	spin_unlock(&inode->i_lock);
1230 
1231 }
1232 EXPORT_SYMBOL(__mark_inode_dirty);
1233 
1234 static void wait_sb_inodes(struct super_block *sb)
1235 {
1236 	struct inode *inode, *old_inode = NULL;
1237 
1238 	/*
1239 	 * We need to be protected against the filesystem going from
1240 	 * r/o to r/w or vice versa.
1241 	 */
1242 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1243 
1244 	spin_lock(&inode_sb_list_lock);
1245 
1246 	/*
1247 	 * Data integrity sync. Must wait for all pages under writeback,
1248 	 * because there may have been pages dirtied before our sync
1249 	 * call, but which had writeout started before we write it out.
1250 	 * In which case, the inode may not be on the dirty list, but
1251 	 * we still have to wait for that writeout.
1252 	 */
1253 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1254 		struct address_space *mapping = inode->i_mapping;
1255 
1256 		spin_lock(&inode->i_lock);
1257 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1258 		    (mapping->nrpages == 0)) {
1259 			spin_unlock(&inode->i_lock);
1260 			continue;
1261 		}
1262 		__iget(inode);
1263 		spin_unlock(&inode->i_lock);
1264 		spin_unlock(&inode_sb_list_lock);
1265 
1266 		/*
1267 		 * We hold a reference to 'inode' so it couldn't have been
1268 		 * removed from s_inodes list while we dropped the
1269 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1270 		 * be holding the last reference and we cannot iput it under
1271 		 * inode_sb_list_lock. So we keep the reference and iput it
1272 		 * later.
1273 		 */
1274 		iput(old_inode);
1275 		old_inode = inode;
1276 
1277 		filemap_fdatawait(mapping);
1278 
1279 		cond_resched();
1280 
1281 		spin_lock(&inode_sb_list_lock);
1282 	}
1283 	spin_unlock(&inode_sb_list_lock);
1284 	iput(old_inode);
1285 }
1286 
1287 /**
1288  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1289  * @sb: the superblock
1290  * @nr: the number of pages to write
1291  * @reason: reason why some writeback work initiated
1292  *
1293  * Start writeback on some inodes on this super_block. No guarantees are made
1294  * on how many (if any) will be written, and this function does not wait
1295  * for IO completion of submitted IO.
1296  */
1297 void writeback_inodes_sb_nr(struct super_block *sb,
1298 			    unsigned long nr,
1299 			    enum wb_reason reason)
1300 {
1301 	DECLARE_COMPLETION_ONSTACK(done);
1302 	struct wb_writeback_work work = {
1303 		.sb			= sb,
1304 		.sync_mode		= WB_SYNC_NONE,
1305 		.tagged_writepages	= 1,
1306 		.done			= &done,
1307 		.nr_pages		= nr,
1308 		.reason			= reason,
1309 	};
1310 
1311 	if (sb->s_bdi == &noop_backing_dev_info)
1312 		return;
1313 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1314 	bdi_queue_work(sb->s_bdi, &work);
1315 	wait_for_completion(&done);
1316 }
1317 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1318 
1319 /**
1320  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1321  * @sb: the superblock
1322  * @reason: reason why some writeback work was initiated
1323  *
1324  * Start writeback on some inodes on this super_block. No guarantees are made
1325  * on how many (if any) will be written, and this function does not wait
1326  * for IO completion of submitted IO.
1327  */
1328 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1329 {
1330 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1331 }
1332 EXPORT_SYMBOL(writeback_inodes_sb);
1333 
1334 /**
1335  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1336  * @sb: the superblock
1337  * @reason: reason why some writeback work was initiated
1338  *
1339  * Invoke writeback_inodes_sb if no writeback is currently underway.
1340  * Returns 1 if writeback was started, 0 if not.
1341  */
1342 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1343 {
1344 	if (!writeback_in_progress(sb->s_bdi)) {
1345 		down_read(&sb->s_umount);
1346 		writeback_inodes_sb(sb, reason);
1347 		up_read(&sb->s_umount);
1348 		return 1;
1349 	} else
1350 		return 0;
1351 }
1352 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1353 
1354 /**
1355  * writeback_inodes_sb_nr_if_idle	-	start writeback if none underway
1356  * @sb: the superblock
1357  * @nr: the number of pages to write
1358  * @reason: reason why some writeback work was initiated
1359  *
1360  * Invoke writeback_inodes_sb if no writeback is currently underway.
1361  * Returns 1 if writeback was started, 0 if not.
1362  */
1363 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1364 				   unsigned long nr,
1365 				   enum wb_reason reason)
1366 {
1367 	if (!writeback_in_progress(sb->s_bdi)) {
1368 		down_read(&sb->s_umount);
1369 		writeback_inodes_sb_nr(sb, nr, reason);
1370 		up_read(&sb->s_umount);
1371 		return 1;
1372 	} else
1373 		return 0;
1374 }
1375 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1376 
1377 /**
1378  * sync_inodes_sb	-	sync sb inode pages
1379  * @sb: the superblock
1380  *
1381  * This function writes and waits on any dirty inode belonging to this
1382  * super_block.
1383  */
1384 void sync_inodes_sb(struct super_block *sb)
1385 {
1386 	DECLARE_COMPLETION_ONSTACK(done);
1387 	struct wb_writeback_work work = {
1388 		.sb		= sb,
1389 		.sync_mode	= WB_SYNC_ALL,
1390 		.nr_pages	= LONG_MAX,
1391 		.range_cyclic	= 0,
1392 		.done		= &done,
1393 		.reason		= WB_REASON_SYNC,
1394 	};
1395 
1396 	/* Nothing to do? */
1397 	if (sb->s_bdi == &noop_backing_dev_info)
1398 		return;
1399 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1400 
1401 	bdi_queue_work(sb->s_bdi, &work);
1402 	wait_for_completion(&done);
1403 
1404 	wait_sb_inodes(sb);
1405 }
1406 EXPORT_SYMBOL(sync_inodes_sb);
1407 
1408 /**
1409  * write_inode_now	-	write an inode to disk
1410  * @inode: inode to write to disk
1411  * @sync: whether the write should be synchronous or not
1412  *
1413  * This function commits an inode to disk immediately if it is dirty. This is
1414  * primarily needed by knfsd.
1415  *
1416  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1417  */
1418 int write_inode_now(struct inode *inode, int sync)
1419 {
1420 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1421 	struct writeback_control wbc = {
1422 		.nr_to_write = LONG_MAX,
1423 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1424 		.range_start = 0,
1425 		.range_end = LLONG_MAX,
1426 	};
1427 
1428 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1429 		wbc.nr_to_write = 0;
1430 
1431 	might_sleep();
1432 	return writeback_single_inode(inode, wb, &wbc);
1433 }
1434 EXPORT_SYMBOL(write_inode_now);
1435 
1436 /**
1437  * sync_inode - write an inode and its pages to disk.
1438  * @inode: the inode to sync
1439  * @wbc: controls the writeback mode
1440  *
1441  * sync_inode() will write an inode and its pages to disk.  It will also
1442  * correctly update the inode on its superblock's dirty inode lists and will
1443  * update inode->i_state.
1444  *
1445  * The caller must have a ref on the inode.
1446  */
1447 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1448 {
1449 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1450 }
1451 EXPORT_SYMBOL(sync_inode);
1452 
1453 /**
1454  * sync_inode_metadata - write an inode to disk
1455  * @inode: the inode to sync
1456  * @wait: wait for I/O to complete.
1457  *
1458  * Write an inode to disk and adjust its dirty state after completion.
1459  *
1460  * Note: only writes the actual inode, no associated data or other metadata.
1461  */
1462 int sync_inode_metadata(struct inode *inode, int wait)
1463 {
1464 	struct writeback_control wbc = {
1465 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1466 		.nr_to_write = 0, /* metadata-only */
1467 	};
1468 
1469 	return sync_inode(inode, &wbc);
1470 }
1471 EXPORT_SYMBOL(sync_inode_metadata);
1472