1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/writeback.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/buffer_head.h> 26 #include "internal.h" 27 28 29 /** 30 * writeback_acquire - attempt to get exclusive writeback access to a device 31 * @bdi: the device's backing_dev_info structure 32 * 33 * It is a waste of resources to have more than one pdflush thread blocked on 34 * a single request queue. Exclusion at the request_queue level is obtained 35 * via a flag in the request_queue's backing_dev_info.state. 36 * 37 * Non-request_queue-backed address_spaces will share default_backing_dev_info, 38 * unless they implement their own. Which is somewhat inefficient, as this 39 * may prevent concurrent writeback against multiple devices. 40 */ 41 static int writeback_acquire(struct backing_dev_info *bdi) 42 { 43 return !test_and_set_bit(BDI_pdflush, &bdi->state); 44 } 45 46 /** 47 * writeback_in_progress - determine whether there is writeback in progress 48 * @bdi: the device's backing_dev_info structure. 49 * 50 * Determine whether there is writeback in progress against a backing device. 51 */ 52 int writeback_in_progress(struct backing_dev_info *bdi) 53 { 54 return test_bit(BDI_pdflush, &bdi->state); 55 } 56 57 /** 58 * writeback_release - relinquish exclusive writeback access against a device. 59 * @bdi: the device's backing_dev_info structure 60 */ 61 static void writeback_release(struct backing_dev_info *bdi) 62 { 63 BUG_ON(!writeback_in_progress(bdi)); 64 clear_bit(BDI_pdflush, &bdi->state); 65 } 66 67 /** 68 * __mark_inode_dirty - internal function 69 * @inode: inode to mark 70 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 71 * Mark an inode as dirty. Callers should use mark_inode_dirty or 72 * mark_inode_dirty_sync. 73 * 74 * Put the inode on the super block's dirty list. 75 * 76 * CAREFUL! We mark it dirty unconditionally, but move it onto the 77 * dirty list only if it is hashed or if it refers to a blockdev. 78 * If it was not hashed, it will never be added to the dirty list 79 * even if it is later hashed, as it will have been marked dirty already. 80 * 81 * In short, make sure you hash any inodes _before_ you start marking 82 * them dirty. 83 * 84 * This function *must* be atomic for the I_DIRTY_PAGES case - 85 * set_page_dirty() is called under spinlock in several places. 86 * 87 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 88 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 89 * the kernel-internal blockdev inode represents the dirtying time of the 90 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 91 * page->mapping->host, so the page-dirtying time is recorded in the internal 92 * blockdev inode. 93 */ 94 void __mark_inode_dirty(struct inode *inode, int flags) 95 { 96 struct super_block *sb = inode->i_sb; 97 98 /* 99 * Don't do this for I_DIRTY_PAGES - that doesn't actually 100 * dirty the inode itself 101 */ 102 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 103 if (sb->s_op->dirty_inode) 104 sb->s_op->dirty_inode(inode); 105 } 106 107 /* 108 * make sure that changes are seen by all cpus before we test i_state 109 * -- mikulas 110 */ 111 smp_mb(); 112 113 /* avoid the locking if we can */ 114 if ((inode->i_state & flags) == flags) 115 return; 116 117 if (unlikely(block_dump)) { 118 struct dentry *dentry = NULL; 119 const char *name = "?"; 120 121 if (!list_empty(&inode->i_dentry)) { 122 dentry = list_entry(inode->i_dentry.next, 123 struct dentry, d_alias); 124 if (dentry && dentry->d_name.name) 125 name = (const char *) dentry->d_name.name; 126 } 127 128 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) 129 printk(KERN_DEBUG 130 "%s(%d): dirtied inode %lu (%s) on %s\n", 131 current->comm, task_pid_nr(current), inode->i_ino, 132 name, inode->i_sb->s_id); 133 } 134 135 spin_lock(&inode_lock); 136 if ((inode->i_state & flags) != flags) { 137 const int was_dirty = inode->i_state & I_DIRTY; 138 139 inode->i_state |= flags; 140 141 /* 142 * If the inode is being synced, just update its dirty state. 143 * The unlocker will place the inode on the appropriate 144 * superblock list, based upon its state. 145 */ 146 if (inode->i_state & I_SYNC) 147 goto out; 148 149 /* 150 * Only add valid (hashed) inodes to the superblock's 151 * dirty list. Add blockdev inodes as well. 152 */ 153 if (!S_ISBLK(inode->i_mode)) { 154 if (hlist_unhashed(&inode->i_hash)) 155 goto out; 156 } 157 if (inode->i_state & (I_FREEING|I_CLEAR)) 158 goto out; 159 160 /* 161 * If the inode was already on s_dirty/s_io/s_more_io, don't 162 * reposition it (that would break s_dirty time-ordering). 163 */ 164 if (!was_dirty) { 165 inode->dirtied_when = jiffies; 166 list_move(&inode->i_list, &sb->s_dirty); 167 } 168 } 169 out: 170 spin_unlock(&inode_lock); 171 } 172 173 EXPORT_SYMBOL(__mark_inode_dirty); 174 175 static int write_inode(struct inode *inode, int sync) 176 { 177 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 178 return inode->i_sb->s_op->write_inode(inode, sync); 179 return 0; 180 } 181 182 /* 183 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 184 * furthest end of its superblock's dirty-inode list. 185 * 186 * Before stamping the inode's ->dirtied_when, we check to see whether it is 187 * already the most-recently-dirtied inode on the s_dirty list. If that is 188 * the case then the inode must have been redirtied while it was being written 189 * out and we don't reset its dirtied_when. 190 */ 191 static void redirty_tail(struct inode *inode) 192 { 193 struct super_block *sb = inode->i_sb; 194 195 if (!list_empty(&sb->s_dirty)) { 196 struct inode *tail_inode; 197 198 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list); 199 if (time_before(inode->dirtied_when, 200 tail_inode->dirtied_when)) 201 inode->dirtied_when = jiffies; 202 } 203 list_move(&inode->i_list, &sb->s_dirty); 204 } 205 206 /* 207 * requeue inode for re-scanning after sb->s_io list is exhausted. 208 */ 209 static void requeue_io(struct inode *inode) 210 { 211 list_move(&inode->i_list, &inode->i_sb->s_more_io); 212 } 213 214 static void inode_sync_complete(struct inode *inode) 215 { 216 /* 217 * Prevent speculative execution through spin_unlock(&inode_lock); 218 */ 219 smp_mb(); 220 wake_up_bit(&inode->i_state, __I_SYNC); 221 } 222 223 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 224 { 225 bool ret = time_after(inode->dirtied_when, t); 226 #ifndef CONFIG_64BIT 227 /* 228 * For inodes being constantly redirtied, dirtied_when can get stuck. 229 * It _appears_ to be in the future, but is actually in distant past. 230 * This test is necessary to prevent such wrapped-around relative times 231 * from permanently stopping the whole pdflush writeback. 232 */ 233 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 234 #endif 235 return ret; 236 } 237 238 /* 239 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 240 */ 241 static void move_expired_inodes(struct list_head *delaying_queue, 242 struct list_head *dispatch_queue, 243 unsigned long *older_than_this) 244 { 245 while (!list_empty(delaying_queue)) { 246 struct inode *inode = list_entry(delaying_queue->prev, 247 struct inode, i_list); 248 if (older_than_this && 249 inode_dirtied_after(inode, *older_than_this)) 250 break; 251 list_move(&inode->i_list, dispatch_queue); 252 } 253 } 254 255 /* 256 * Queue all expired dirty inodes for io, eldest first. 257 */ 258 static void queue_io(struct super_block *sb, 259 unsigned long *older_than_this) 260 { 261 list_splice_init(&sb->s_more_io, sb->s_io.prev); 262 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this); 263 } 264 265 int sb_has_dirty_inodes(struct super_block *sb) 266 { 267 return !list_empty(&sb->s_dirty) || 268 !list_empty(&sb->s_io) || 269 !list_empty(&sb->s_more_io); 270 } 271 EXPORT_SYMBOL(sb_has_dirty_inodes); 272 273 /* 274 * Write a single inode's dirty pages and inode data out to disk. 275 * If `wait' is set, wait on the writeout. 276 * 277 * The whole writeout design is quite complex and fragile. We want to avoid 278 * starvation of particular inodes when others are being redirtied, prevent 279 * livelocks, etc. 280 * 281 * Called under inode_lock. 282 */ 283 static int 284 __sync_single_inode(struct inode *inode, struct writeback_control *wbc) 285 { 286 unsigned dirty; 287 struct address_space *mapping = inode->i_mapping; 288 int wait = wbc->sync_mode == WB_SYNC_ALL; 289 int ret; 290 291 BUG_ON(inode->i_state & I_SYNC); 292 WARN_ON(inode->i_state & I_NEW); 293 294 /* Set I_SYNC, reset I_DIRTY */ 295 dirty = inode->i_state & I_DIRTY; 296 inode->i_state |= I_SYNC; 297 inode->i_state &= ~I_DIRTY; 298 299 spin_unlock(&inode_lock); 300 301 ret = do_writepages(mapping, wbc); 302 303 /* Don't write the inode if only I_DIRTY_PAGES was set */ 304 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 305 int err = write_inode(inode, wait); 306 if (ret == 0) 307 ret = err; 308 } 309 310 if (wait) { 311 int err = filemap_fdatawait(mapping); 312 if (ret == 0) 313 ret = err; 314 } 315 316 spin_lock(&inode_lock); 317 WARN_ON(inode->i_state & I_NEW); 318 inode->i_state &= ~I_SYNC; 319 if (!(inode->i_state & I_FREEING)) { 320 if (!(inode->i_state & I_DIRTY) && 321 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 322 /* 323 * We didn't write back all the pages. nfs_writepages() 324 * sometimes bales out without doing anything. Redirty 325 * the inode; Move it from s_io onto s_more_io/s_dirty. 326 */ 327 /* 328 * akpm: if the caller was the kupdate function we put 329 * this inode at the head of s_dirty so it gets first 330 * consideration. Otherwise, move it to the tail, for 331 * the reasons described there. I'm not really sure 332 * how much sense this makes. Presumably I had a good 333 * reasons for doing it this way, and I'd rather not 334 * muck with it at present. 335 */ 336 if (wbc->for_kupdate) { 337 /* 338 * For the kupdate function we move the inode 339 * to s_more_io so it will get more writeout as 340 * soon as the queue becomes uncongested. 341 */ 342 inode->i_state |= I_DIRTY_PAGES; 343 if (wbc->nr_to_write <= 0) { 344 /* 345 * slice used up: queue for next turn 346 */ 347 requeue_io(inode); 348 } else { 349 /* 350 * somehow blocked: retry later 351 */ 352 redirty_tail(inode); 353 } 354 } else { 355 /* 356 * Otherwise fully redirty the inode so that 357 * other inodes on this superblock will get some 358 * writeout. Otherwise heavy writing to one 359 * file would indefinitely suspend writeout of 360 * all the other files. 361 */ 362 inode->i_state |= I_DIRTY_PAGES; 363 redirty_tail(inode); 364 } 365 } else if (inode->i_state & I_DIRTY) { 366 /* 367 * Someone redirtied the inode while were writing back 368 * the pages. 369 */ 370 redirty_tail(inode); 371 } else if (atomic_read(&inode->i_count)) { 372 /* 373 * The inode is clean, inuse 374 */ 375 list_move(&inode->i_list, &inode_in_use); 376 } else { 377 /* 378 * The inode is clean, unused 379 */ 380 list_move(&inode->i_list, &inode_unused); 381 } 382 } 383 inode_sync_complete(inode); 384 return ret; 385 } 386 387 /* 388 * Write out an inode's dirty pages. Called under inode_lock. Either the 389 * caller has ref on the inode (either via __iget or via syscall against an fd) 390 * or the inode has I_WILL_FREE set (via generic_forget_inode) 391 */ 392 static int 393 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 394 { 395 wait_queue_head_t *wqh; 396 397 if (!atomic_read(&inode->i_count)) 398 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 399 else 400 WARN_ON(inode->i_state & I_WILL_FREE); 401 402 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) { 403 /* 404 * We're skipping this inode because it's locked, and we're not 405 * doing writeback-for-data-integrity. Move it to s_more_io so 406 * that writeback can proceed with the other inodes on s_io. 407 * We'll have another go at writing back this inode when we 408 * completed a full scan of s_io. 409 */ 410 requeue_io(inode); 411 return 0; 412 } 413 414 /* 415 * It's a data-integrity sync. We must wait. 416 */ 417 if (inode->i_state & I_SYNC) { 418 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 419 420 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 421 do { 422 spin_unlock(&inode_lock); 423 __wait_on_bit(wqh, &wq, inode_wait, 424 TASK_UNINTERRUPTIBLE); 425 spin_lock(&inode_lock); 426 } while (inode->i_state & I_SYNC); 427 } 428 return __sync_single_inode(inode, wbc); 429 } 430 431 /* 432 * Write out a superblock's list of dirty inodes. A wait will be performed 433 * upon no inodes, all inodes or the final one, depending upon sync_mode. 434 * 435 * If older_than_this is non-NULL, then only write out inodes which 436 * had their first dirtying at a time earlier than *older_than_this. 437 * 438 * If we're a pdflush thread, then implement pdflush collision avoidance 439 * against the entire list. 440 * 441 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 442 * This function assumes that the blockdev superblock's inodes are backed by 443 * a variety of queues, so all inodes are searched. For other superblocks, 444 * assume that all inodes are backed by the same queue. 445 * 446 * FIXME: this linear search could get expensive with many fileystems. But 447 * how to fix? We need to go from an address_space to all inodes which share 448 * a queue with that address_space. (Easy: have a global "dirty superblocks" 449 * list). 450 * 451 * The inodes to be written are parked on sb->s_io. They are moved back onto 452 * sb->s_dirty as they are selected for writing. This way, none can be missed 453 * on the writer throttling path, and we get decent balancing between many 454 * throttled threads: we don't want them all piling up on inode_sync_wait. 455 */ 456 void generic_sync_sb_inodes(struct super_block *sb, 457 struct writeback_control *wbc) 458 { 459 const unsigned long start = jiffies; /* livelock avoidance */ 460 int sync = wbc->sync_mode == WB_SYNC_ALL; 461 462 spin_lock(&inode_lock); 463 if (!wbc->for_kupdate || list_empty(&sb->s_io)) 464 queue_io(sb, wbc->older_than_this); 465 466 while (!list_empty(&sb->s_io)) { 467 struct inode *inode = list_entry(sb->s_io.prev, 468 struct inode, i_list); 469 struct address_space *mapping = inode->i_mapping; 470 struct backing_dev_info *bdi = mapping->backing_dev_info; 471 long pages_skipped; 472 473 if (!bdi_cap_writeback_dirty(bdi)) { 474 redirty_tail(inode); 475 if (sb_is_blkdev_sb(sb)) { 476 /* 477 * Dirty memory-backed blockdev: the ramdisk 478 * driver does this. Skip just this inode 479 */ 480 continue; 481 } 482 /* 483 * Dirty memory-backed inode against a filesystem other 484 * than the kernel-internal bdev filesystem. Skip the 485 * entire superblock. 486 */ 487 break; 488 } 489 490 if (inode->i_state & I_NEW) { 491 requeue_io(inode); 492 continue; 493 } 494 495 if (wbc->nonblocking && bdi_write_congested(bdi)) { 496 wbc->encountered_congestion = 1; 497 if (!sb_is_blkdev_sb(sb)) 498 break; /* Skip a congested fs */ 499 requeue_io(inode); 500 continue; /* Skip a congested blockdev */ 501 } 502 503 if (wbc->bdi && bdi != wbc->bdi) { 504 if (!sb_is_blkdev_sb(sb)) 505 break; /* fs has the wrong queue */ 506 requeue_io(inode); 507 continue; /* blockdev has wrong queue */ 508 } 509 510 /* 511 * Was this inode dirtied after sync_sb_inodes was called? 512 * This keeps sync from extra jobs and livelock. 513 */ 514 if (inode_dirtied_after(inode, start)) 515 break; 516 517 /* Is another pdflush already flushing this queue? */ 518 if (current_is_pdflush() && !writeback_acquire(bdi)) 519 break; 520 521 BUG_ON(inode->i_state & I_FREEING); 522 __iget(inode); 523 pages_skipped = wbc->pages_skipped; 524 __writeback_single_inode(inode, wbc); 525 if (current_is_pdflush()) 526 writeback_release(bdi); 527 if (wbc->pages_skipped != pages_skipped) { 528 /* 529 * writeback is not making progress due to locked 530 * buffers. Skip this inode for now. 531 */ 532 redirty_tail(inode); 533 } 534 spin_unlock(&inode_lock); 535 iput(inode); 536 cond_resched(); 537 spin_lock(&inode_lock); 538 if (wbc->nr_to_write <= 0) { 539 wbc->more_io = 1; 540 break; 541 } 542 if (!list_empty(&sb->s_more_io)) 543 wbc->more_io = 1; 544 } 545 546 if (sync) { 547 struct inode *inode, *old_inode = NULL; 548 549 /* 550 * Data integrity sync. Must wait for all pages under writeback, 551 * because there may have been pages dirtied before our sync 552 * call, but which had writeout started before we write it out. 553 * In which case, the inode may not be on the dirty list, but 554 * we still have to wait for that writeout. 555 */ 556 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 557 struct address_space *mapping; 558 559 if (inode->i_state & 560 (I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW)) 561 continue; 562 mapping = inode->i_mapping; 563 if (mapping->nrpages == 0) 564 continue; 565 __iget(inode); 566 spin_unlock(&inode_lock); 567 /* 568 * We hold a reference to 'inode' so it couldn't have 569 * been removed from s_inodes list while we dropped the 570 * inode_lock. We cannot iput the inode now as we can 571 * be holding the last reference and we cannot iput it 572 * under inode_lock. So we keep the reference and iput 573 * it later. 574 */ 575 iput(old_inode); 576 old_inode = inode; 577 578 filemap_fdatawait(mapping); 579 580 cond_resched(); 581 582 spin_lock(&inode_lock); 583 } 584 spin_unlock(&inode_lock); 585 iput(old_inode); 586 } else 587 spin_unlock(&inode_lock); 588 589 return; /* Leave any unwritten inodes on s_io */ 590 } 591 EXPORT_SYMBOL_GPL(generic_sync_sb_inodes); 592 593 static void sync_sb_inodes(struct super_block *sb, 594 struct writeback_control *wbc) 595 { 596 generic_sync_sb_inodes(sb, wbc); 597 } 598 599 /* 600 * Start writeback of dirty pagecache data against all unlocked inodes. 601 * 602 * Note: 603 * We don't need to grab a reference to superblock here. If it has non-empty 604 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed 605 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all 606 * empty. Since __sync_single_inode() regains inode_lock before it finally moves 607 * inode from superblock lists we are OK. 608 * 609 * If `older_than_this' is non-zero then only flush inodes which have a 610 * flushtime older than *older_than_this. 611 * 612 * If `bdi' is non-zero then we will scan the first inode against each 613 * superblock until we find the matching ones. One group will be the dirty 614 * inodes against a filesystem. Then when we hit the dummy blockdev superblock, 615 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not 616 * super-efficient but we're about to do a ton of I/O... 617 */ 618 void 619 writeback_inodes(struct writeback_control *wbc) 620 { 621 struct super_block *sb; 622 623 might_sleep(); 624 spin_lock(&sb_lock); 625 restart: 626 list_for_each_entry_reverse(sb, &super_blocks, s_list) { 627 if (sb_has_dirty_inodes(sb)) { 628 /* we're making our own get_super here */ 629 sb->s_count++; 630 spin_unlock(&sb_lock); 631 /* 632 * If we can't get the readlock, there's no sense in 633 * waiting around, most of the time the FS is going to 634 * be unmounted by the time it is released. 635 */ 636 if (down_read_trylock(&sb->s_umount)) { 637 if (sb->s_root) 638 sync_sb_inodes(sb, wbc); 639 up_read(&sb->s_umount); 640 } 641 spin_lock(&sb_lock); 642 if (__put_super_and_need_restart(sb)) 643 goto restart; 644 } 645 if (wbc->nr_to_write <= 0) 646 break; 647 } 648 spin_unlock(&sb_lock); 649 } 650 651 /* 652 * writeback and wait upon the filesystem's dirty inodes. The caller will 653 * do this in two passes - one to write, and one to wait. 654 * 655 * A finite limit is set on the number of pages which will be written. 656 * To prevent infinite livelock of sys_sync(). 657 * 658 * We add in the number of potentially dirty inodes, because each inode write 659 * can dirty pagecache in the underlying blockdev. 660 */ 661 void sync_inodes_sb(struct super_block *sb, int wait) 662 { 663 struct writeback_control wbc = { 664 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 665 .range_start = 0, 666 .range_end = LLONG_MAX, 667 }; 668 669 if (!wait) { 670 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 671 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 672 673 wbc.nr_to_write = nr_dirty + nr_unstable + 674 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 675 } else 676 wbc.nr_to_write = LONG_MAX; /* doesn't actually matter */ 677 678 sync_sb_inodes(sb, &wbc); 679 } 680 681 /** 682 * sync_inodes - writes all inodes to disk 683 * @wait: wait for completion 684 * 685 * sync_inodes() goes through each super block's dirty inode list, writes the 686 * inodes out, waits on the writeout and puts the inodes back on the normal 687 * list. 688 * 689 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle 690 * part of the sync functions is that the blockdev "superblock" is processed 691 * last. This is because the write_inode() function of a typical fs will 692 * perform no I/O, but will mark buffers in the blockdev mapping as dirty. 693 * What we want to do is to perform all that dirtying first, and then write 694 * back all those inode blocks via the blockdev mapping in one sweep. So the 695 * additional (somewhat redundant) sync_blockdev() calls here are to make 696 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with 697 * outstanding dirty inodes, the writeback goes block-at-a-time within the 698 * filesystem's write_inode(). This is extremely slow. 699 */ 700 static void __sync_inodes(int wait) 701 { 702 struct super_block *sb; 703 704 spin_lock(&sb_lock); 705 restart: 706 list_for_each_entry(sb, &super_blocks, s_list) { 707 sb->s_count++; 708 spin_unlock(&sb_lock); 709 down_read(&sb->s_umount); 710 if (sb->s_root) { 711 sync_inodes_sb(sb, wait); 712 sync_blockdev(sb->s_bdev); 713 } 714 up_read(&sb->s_umount); 715 spin_lock(&sb_lock); 716 if (__put_super_and_need_restart(sb)) 717 goto restart; 718 } 719 spin_unlock(&sb_lock); 720 } 721 722 void sync_inodes(int wait) 723 { 724 __sync_inodes(0); 725 726 if (wait) 727 __sync_inodes(1); 728 } 729 730 /** 731 * write_inode_now - write an inode to disk 732 * @inode: inode to write to disk 733 * @sync: whether the write should be synchronous or not 734 * 735 * This function commits an inode to disk immediately if it is dirty. This is 736 * primarily needed by knfsd. 737 * 738 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 739 */ 740 int write_inode_now(struct inode *inode, int sync) 741 { 742 int ret; 743 struct writeback_control wbc = { 744 .nr_to_write = LONG_MAX, 745 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 746 .range_start = 0, 747 .range_end = LLONG_MAX, 748 }; 749 750 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 751 wbc.nr_to_write = 0; 752 753 might_sleep(); 754 spin_lock(&inode_lock); 755 ret = __writeback_single_inode(inode, &wbc); 756 spin_unlock(&inode_lock); 757 if (sync) 758 inode_sync_wait(inode); 759 return ret; 760 } 761 EXPORT_SYMBOL(write_inode_now); 762 763 /** 764 * sync_inode - write an inode and its pages to disk. 765 * @inode: the inode to sync 766 * @wbc: controls the writeback mode 767 * 768 * sync_inode() will write an inode and its pages to disk. It will also 769 * correctly update the inode on its superblock's dirty inode lists and will 770 * update inode->i_state. 771 * 772 * The caller must have a ref on the inode. 773 */ 774 int sync_inode(struct inode *inode, struct writeback_control *wbc) 775 { 776 int ret; 777 778 spin_lock(&inode_lock); 779 ret = __writeback_single_inode(inode, wbc); 780 spin_unlock(&inode_lock); 781 return ret; 782 } 783 EXPORT_SYMBOL(sync_inode); 784 785 /** 786 * generic_osync_inode - flush all dirty data for a given inode to disk 787 * @inode: inode to write 788 * @mapping: the address_space that should be flushed 789 * @what: what to write and wait upon 790 * 791 * This can be called by file_write functions for files which have the 792 * O_SYNC flag set, to flush dirty writes to disk. 793 * 794 * @what is a bitmask, specifying which part of the inode's data should be 795 * written and waited upon. 796 * 797 * OSYNC_DATA: i_mapping's dirty data 798 * OSYNC_METADATA: the buffers at i_mapping->private_list 799 * OSYNC_INODE: the inode itself 800 */ 801 802 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what) 803 { 804 int err = 0; 805 int need_write_inode_now = 0; 806 int err2; 807 808 if (what & OSYNC_DATA) 809 err = filemap_fdatawrite(mapping); 810 if (what & (OSYNC_METADATA|OSYNC_DATA)) { 811 err2 = sync_mapping_buffers(mapping); 812 if (!err) 813 err = err2; 814 } 815 if (what & OSYNC_DATA) { 816 err2 = filemap_fdatawait(mapping); 817 if (!err) 818 err = err2; 819 } 820 821 spin_lock(&inode_lock); 822 if ((inode->i_state & I_DIRTY) && 823 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC))) 824 need_write_inode_now = 1; 825 spin_unlock(&inode_lock); 826 827 if (need_write_inode_now) { 828 err2 = write_inode_now(inode, 1); 829 if (!err) 830 err = err2; 831 } 832 else 833 inode_sync_wait(inode); 834 835 return err; 836 } 837 EXPORT_SYMBOL(generic_osync_inode); 838