xref: /openbmc/linux/fs/fs-writeback.c (revision b627b4ed)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/writeback.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/buffer_head.h>
26 #include "internal.h"
27 
28 
29 /**
30  * writeback_acquire - attempt to get exclusive writeback access to a device
31  * @bdi: the device's backing_dev_info structure
32  *
33  * It is a waste of resources to have more than one pdflush thread blocked on
34  * a single request queue.  Exclusion at the request_queue level is obtained
35  * via a flag in the request_queue's backing_dev_info.state.
36  *
37  * Non-request_queue-backed address_spaces will share default_backing_dev_info,
38  * unless they implement their own.  Which is somewhat inefficient, as this
39  * may prevent concurrent writeback against multiple devices.
40  */
41 static int writeback_acquire(struct backing_dev_info *bdi)
42 {
43 	return !test_and_set_bit(BDI_pdflush, &bdi->state);
44 }
45 
46 /**
47  * writeback_in_progress - determine whether there is writeback in progress
48  * @bdi: the device's backing_dev_info structure.
49  *
50  * Determine whether there is writeback in progress against a backing device.
51  */
52 int writeback_in_progress(struct backing_dev_info *bdi)
53 {
54 	return test_bit(BDI_pdflush, &bdi->state);
55 }
56 
57 /**
58  * writeback_release - relinquish exclusive writeback access against a device.
59  * @bdi: the device's backing_dev_info structure
60  */
61 static void writeback_release(struct backing_dev_info *bdi)
62 {
63 	BUG_ON(!writeback_in_progress(bdi));
64 	clear_bit(BDI_pdflush, &bdi->state);
65 }
66 
67 /**
68  *	__mark_inode_dirty -	internal function
69  *	@inode: inode to mark
70  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
71  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
72  *  	mark_inode_dirty_sync.
73  *
74  * Put the inode on the super block's dirty list.
75  *
76  * CAREFUL! We mark it dirty unconditionally, but move it onto the
77  * dirty list only if it is hashed or if it refers to a blockdev.
78  * If it was not hashed, it will never be added to the dirty list
79  * even if it is later hashed, as it will have been marked dirty already.
80  *
81  * In short, make sure you hash any inodes _before_ you start marking
82  * them dirty.
83  *
84  * This function *must* be atomic for the I_DIRTY_PAGES case -
85  * set_page_dirty() is called under spinlock in several places.
86  *
87  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
88  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
89  * the kernel-internal blockdev inode represents the dirtying time of the
90  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
91  * page->mapping->host, so the page-dirtying time is recorded in the internal
92  * blockdev inode.
93  */
94 void __mark_inode_dirty(struct inode *inode, int flags)
95 {
96 	struct super_block *sb = inode->i_sb;
97 
98 	/*
99 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
100 	 * dirty the inode itself
101 	 */
102 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
103 		if (sb->s_op->dirty_inode)
104 			sb->s_op->dirty_inode(inode);
105 	}
106 
107 	/*
108 	 * make sure that changes are seen by all cpus before we test i_state
109 	 * -- mikulas
110 	 */
111 	smp_mb();
112 
113 	/* avoid the locking if we can */
114 	if ((inode->i_state & flags) == flags)
115 		return;
116 
117 	if (unlikely(block_dump)) {
118 		struct dentry *dentry = NULL;
119 		const char *name = "?";
120 
121 		if (!list_empty(&inode->i_dentry)) {
122 			dentry = list_entry(inode->i_dentry.next,
123 					    struct dentry, d_alias);
124 			if (dentry && dentry->d_name.name)
125 				name = (const char *) dentry->d_name.name;
126 		}
127 
128 		if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
129 			printk(KERN_DEBUG
130 			       "%s(%d): dirtied inode %lu (%s) on %s\n",
131 			       current->comm, task_pid_nr(current), inode->i_ino,
132 			       name, inode->i_sb->s_id);
133 	}
134 
135 	spin_lock(&inode_lock);
136 	if ((inode->i_state & flags) != flags) {
137 		const int was_dirty = inode->i_state & I_DIRTY;
138 
139 		inode->i_state |= flags;
140 
141 		/*
142 		 * If the inode is being synced, just update its dirty state.
143 		 * The unlocker will place the inode on the appropriate
144 		 * superblock list, based upon its state.
145 		 */
146 		if (inode->i_state & I_SYNC)
147 			goto out;
148 
149 		/*
150 		 * Only add valid (hashed) inodes to the superblock's
151 		 * dirty list.  Add blockdev inodes as well.
152 		 */
153 		if (!S_ISBLK(inode->i_mode)) {
154 			if (hlist_unhashed(&inode->i_hash))
155 				goto out;
156 		}
157 		if (inode->i_state & (I_FREEING|I_CLEAR))
158 			goto out;
159 
160 		/*
161 		 * If the inode was already on s_dirty/s_io/s_more_io, don't
162 		 * reposition it (that would break s_dirty time-ordering).
163 		 */
164 		if (!was_dirty) {
165 			inode->dirtied_when = jiffies;
166 			list_move(&inode->i_list, &sb->s_dirty);
167 		}
168 	}
169 out:
170 	spin_unlock(&inode_lock);
171 }
172 
173 EXPORT_SYMBOL(__mark_inode_dirty);
174 
175 static int write_inode(struct inode *inode, int sync)
176 {
177 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
178 		return inode->i_sb->s_op->write_inode(inode, sync);
179 	return 0;
180 }
181 
182 /*
183  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
184  * furthest end of its superblock's dirty-inode list.
185  *
186  * Before stamping the inode's ->dirtied_when, we check to see whether it is
187  * already the most-recently-dirtied inode on the s_dirty list.  If that is
188  * the case then the inode must have been redirtied while it was being written
189  * out and we don't reset its dirtied_when.
190  */
191 static void redirty_tail(struct inode *inode)
192 {
193 	struct super_block *sb = inode->i_sb;
194 
195 	if (!list_empty(&sb->s_dirty)) {
196 		struct inode *tail_inode;
197 
198 		tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
199 		if (time_before(inode->dirtied_when,
200 				tail_inode->dirtied_when))
201 			inode->dirtied_when = jiffies;
202 	}
203 	list_move(&inode->i_list, &sb->s_dirty);
204 }
205 
206 /*
207  * requeue inode for re-scanning after sb->s_io list is exhausted.
208  */
209 static void requeue_io(struct inode *inode)
210 {
211 	list_move(&inode->i_list, &inode->i_sb->s_more_io);
212 }
213 
214 static void inode_sync_complete(struct inode *inode)
215 {
216 	/*
217 	 * Prevent speculative execution through spin_unlock(&inode_lock);
218 	 */
219 	smp_mb();
220 	wake_up_bit(&inode->i_state, __I_SYNC);
221 }
222 
223 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
224 {
225 	bool ret = time_after(inode->dirtied_when, t);
226 #ifndef CONFIG_64BIT
227 	/*
228 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
229 	 * It _appears_ to be in the future, but is actually in distant past.
230 	 * This test is necessary to prevent such wrapped-around relative times
231 	 * from permanently stopping the whole pdflush writeback.
232 	 */
233 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
234 #endif
235 	return ret;
236 }
237 
238 /*
239  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
240  */
241 static void move_expired_inodes(struct list_head *delaying_queue,
242 			       struct list_head *dispatch_queue,
243 				unsigned long *older_than_this)
244 {
245 	while (!list_empty(delaying_queue)) {
246 		struct inode *inode = list_entry(delaying_queue->prev,
247 						struct inode, i_list);
248 		if (older_than_this &&
249 		    inode_dirtied_after(inode, *older_than_this))
250 			break;
251 		list_move(&inode->i_list, dispatch_queue);
252 	}
253 }
254 
255 /*
256  * Queue all expired dirty inodes for io, eldest first.
257  */
258 static void queue_io(struct super_block *sb,
259 				unsigned long *older_than_this)
260 {
261 	list_splice_init(&sb->s_more_io, sb->s_io.prev);
262 	move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
263 }
264 
265 int sb_has_dirty_inodes(struct super_block *sb)
266 {
267 	return !list_empty(&sb->s_dirty) ||
268 	       !list_empty(&sb->s_io) ||
269 	       !list_empty(&sb->s_more_io);
270 }
271 EXPORT_SYMBOL(sb_has_dirty_inodes);
272 
273 /*
274  * Write a single inode's dirty pages and inode data out to disk.
275  * If `wait' is set, wait on the writeout.
276  *
277  * The whole writeout design is quite complex and fragile.  We want to avoid
278  * starvation of particular inodes when others are being redirtied, prevent
279  * livelocks, etc.
280  *
281  * Called under inode_lock.
282  */
283 static int
284 __sync_single_inode(struct inode *inode, struct writeback_control *wbc)
285 {
286 	unsigned dirty;
287 	struct address_space *mapping = inode->i_mapping;
288 	int wait = wbc->sync_mode == WB_SYNC_ALL;
289 	int ret;
290 
291 	BUG_ON(inode->i_state & I_SYNC);
292 	WARN_ON(inode->i_state & I_NEW);
293 
294 	/* Set I_SYNC, reset I_DIRTY */
295 	dirty = inode->i_state & I_DIRTY;
296 	inode->i_state |= I_SYNC;
297 	inode->i_state &= ~I_DIRTY;
298 
299 	spin_unlock(&inode_lock);
300 
301 	ret = do_writepages(mapping, wbc);
302 
303 	/* Don't write the inode if only I_DIRTY_PAGES was set */
304 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
305 		int err = write_inode(inode, wait);
306 		if (ret == 0)
307 			ret = err;
308 	}
309 
310 	if (wait) {
311 		int err = filemap_fdatawait(mapping);
312 		if (ret == 0)
313 			ret = err;
314 	}
315 
316 	spin_lock(&inode_lock);
317 	WARN_ON(inode->i_state & I_NEW);
318 	inode->i_state &= ~I_SYNC;
319 	if (!(inode->i_state & I_FREEING)) {
320 		if (!(inode->i_state & I_DIRTY) &&
321 		    mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
322 			/*
323 			 * We didn't write back all the pages.  nfs_writepages()
324 			 * sometimes bales out without doing anything. Redirty
325 			 * the inode; Move it from s_io onto s_more_io/s_dirty.
326 			 */
327 			/*
328 			 * akpm: if the caller was the kupdate function we put
329 			 * this inode at the head of s_dirty so it gets first
330 			 * consideration.  Otherwise, move it to the tail, for
331 			 * the reasons described there.  I'm not really sure
332 			 * how much sense this makes.  Presumably I had a good
333 			 * reasons for doing it this way, and I'd rather not
334 			 * muck with it at present.
335 			 */
336 			if (wbc->for_kupdate) {
337 				/*
338 				 * For the kupdate function we move the inode
339 				 * to s_more_io so it will get more writeout as
340 				 * soon as the queue becomes uncongested.
341 				 */
342 				inode->i_state |= I_DIRTY_PAGES;
343 				if (wbc->nr_to_write <= 0) {
344 					/*
345 					 * slice used up: queue for next turn
346 					 */
347 					requeue_io(inode);
348 				} else {
349 					/*
350 					 * somehow blocked: retry later
351 					 */
352 					redirty_tail(inode);
353 				}
354 			} else {
355 				/*
356 				 * Otherwise fully redirty the inode so that
357 				 * other inodes on this superblock will get some
358 				 * writeout.  Otherwise heavy writing to one
359 				 * file would indefinitely suspend writeout of
360 				 * all the other files.
361 				 */
362 				inode->i_state |= I_DIRTY_PAGES;
363 				redirty_tail(inode);
364 			}
365 		} else if (inode->i_state & I_DIRTY) {
366 			/*
367 			 * Someone redirtied the inode while were writing back
368 			 * the pages.
369 			 */
370 			redirty_tail(inode);
371 		} else if (atomic_read(&inode->i_count)) {
372 			/*
373 			 * The inode is clean, inuse
374 			 */
375 			list_move(&inode->i_list, &inode_in_use);
376 		} else {
377 			/*
378 			 * The inode is clean, unused
379 			 */
380 			list_move(&inode->i_list, &inode_unused);
381 		}
382 	}
383 	inode_sync_complete(inode);
384 	return ret;
385 }
386 
387 /*
388  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
389  * caller has ref on the inode (either via __iget or via syscall against an fd)
390  * or the inode has I_WILL_FREE set (via generic_forget_inode)
391  */
392 static int
393 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
394 {
395 	wait_queue_head_t *wqh;
396 
397 	if (!atomic_read(&inode->i_count))
398 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
399 	else
400 		WARN_ON(inode->i_state & I_WILL_FREE);
401 
402 	if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) {
403 		/*
404 		 * We're skipping this inode because it's locked, and we're not
405 		 * doing writeback-for-data-integrity.  Move it to s_more_io so
406 		 * that writeback can proceed with the other inodes on s_io.
407 		 * We'll have another go at writing back this inode when we
408 		 * completed a full scan of s_io.
409 		 */
410 		requeue_io(inode);
411 		return 0;
412 	}
413 
414 	/*
415 	 * It's a data-integrity sync.  We must wait.
416 	 */
417 	if (inode->i_state & I_SYNC) {
418 		DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
419 
420 		wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
421 		do {
422 			spin_unlock(&inode_lock);
423 			__wait_on_bit(wqh, &wq, inode_wait,
424 							TASK_UNINTERRUPTIBLE);
425 			spin_lock(&inode_lock);
426 		} while (inode->i_state & I_SYNC);
427 	}
428 	return __sync_single_inode(inode, wbc);
429 }
430 
431 /*
432  * Write out a superblock's list of dirty inodes.  A wait will be performed
433  * upon no inodes, all inodes or the final one, depending upon sync_mode.
434  *
435  * If older_than_this is non-NULL, then only write out inodes which
436  * had their first dirtying at a time earlier than *older_than_this.
437  *
438  * If we're a pdflush thread, then implement pdflush collision avoidance
439  * against the entire list.
440  *
441  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
442  * This function assumes that the blockdev superblock's inodes are backed by
443  * a variety of queues, so all inodes are searched.  For other superblocks,
444  * assume that all inodes are backed by the same queue.
445  *
446  * FIXME: this linear search could get expensive with many fileystems.  But
447  * how to fix?  We need to go from an address_space to all inodes which share
448  * a queue with that address_space.  (Easy: have a global "dirty superblocks"
449  * list).
450  *
451  * The inodes to be written are parked on sb->s_io.  They are moved back onto
452  * sb->s_dirty as they are selected for writing.  This way, none can be missed
453  * on the writer throttling path, and we get decent balancing between many
454  * throttled threads: we don't want them all piling up on inode_sync_wait.
455  */
456 void generic_sync_sb_inodes(struct super_block *sb,
457 				struct writeback_control *wbc)
458 {
459 	const unsigned long start = jiffies;	/* livelock avoidance */
460 	int sync = wbc->sync_mode == WB_SYNC_ALL;
461 
462 	spin_lock(&inode_lock);
463 	if (!wbc->for_kupdate || list_empty(&sb->s_io))
464 		queue_io(sb, wbc->older_than_this);
465 
466 	while (!list_empty(&sb->s_io)) {
467 		struct inode *inode = list_entry(sb->s_io.prev,
468 						struct inode, i_list);
469 		struct address_space *mapping = inode->i_mapping;
470 		struct backing_dev_info *bdi = mapping->backing_dev_info;
471 		long pages_skipped;
472 
473 		if (!bdi_cap_writeback_dirty(bdi)) {
474 			redirty_tail(inode);
475 			if (sb_is_blkdev_sb(sb)) {
476 				/*
477 				 * Dirty memory-backed blockdev: the ramdisk
478 				 * driver does this.  Skip just this inode
479 				 */
480 				continue;
481 			}
482 			/*
483 			 * Dirty memory-backed inode against a filesystem other
484 			 * than the kernel-internal bdev filesystem.  Skip the
485 			 * entire superblock.
486 			 */
487 			break;
488 		}
489 
490 		if (inode->i_state & I_NEW) {
491 			requeue_io(inode);
492 			continue;
493 		}
494 
495 		if (wbc->nonblocking && bdi_write_congested(bdi)) {
496 			wbc->encountered_congestion = 1;
497 			if (!sb_is_blkdev_sb(sb))
498 				break;		/* Skip a congested fs */
499 			requeue_io(inode);
500 			continue;		/* Skip a congested blockdev */
501 		}
502 
503 		if (wbc->bdi && bdi != wbc->bdi) {
504 			if (!sb_is_blkdev_sb(sb))
505 				break;		/* fs has the wrong queue */
506 			requeue_io(inode);
507 			continue;		/* blockdev has wrong queue */
508 		}
509 
510 		/*
511 		 * Was this inode dirtied after sync_sb_inodes was called?
512 		 * This keeps sync from extra jobs and livelock.
513 		 */
514 		if (inode_dirtied_after(inode, start))
515 			break;
516 
517 		/* Is another pdflush already flushing this queue? */
518 		if (current_is_pdflush() && !writeback_acquire(bdi))
519 			break;
520 
521 		BUG_ON(inode->i_state & I_FREEING);
522 		__iget(inode);
523 		pages_skipped = wbc->pages_skipped;
524 		__writeback_single_inode(inode, wbc);
525 		if (current_is_pdflush())
526 			writeback_release(bdi);
527 		if (wbc->pages_skipped != pages_skipped) {
528 			/*
529 			 * writeback is not making progress due to locked
530 			 * buffers.  Skip this inode for now.
531 			 */
532 			redirty_tail(inode);
533 		}
534 		spin_unlock(&inode_lock);
535 		iput(inode);
536 		cond_resched();
537 		spin_lock(&inode_lock);
538 		if (wbc->nr_to_write <= 0) {
539 			wbc->more_io = 1;
540 			break;
541 		}
542 		if (!list_empty(&sb->s_more_io))
543 			wbc->more_io = 1;
544 	}
545 
546 	if (sync) {
547 		struct inode *inode, *old_inode = NULL;
548 
549 		/*
550 		 * Data integrity sync. Must wait for all pages under writeback,
551 		 * because there may have been pages dirtied before our sync
552 		 * call, but which had writeout started before we write it out.
553 		 * In which case, the inode may not be on the dirty list, but
554 		 * we still have to wait for that writeout.
555 		 */
556 		list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
557 			struct address_space *mapping;
558 
559 			if (inode->i_state &
560 					(I_FREEING|I_CLEAR|I_WILL_FREE|I_NEW))
561 				continue;
562 			mapping = inode->i_mapping;
563 			if (mapping->nrpages == 0)
564 				continue;
565 			__iget(inode);
566 			spin_unlock(&inode_lock);
567 			/*
568 			 * We hold a reference to 'inode' so it couldn't have
569 			 * been removed from s_inodes list while we dropped the
570 			 * inode_lock.  We cannot iput the inode now as we can
571 			 * be holding the last reference and we cannot iput it
572 			 * under inode_lock. So we keep the reference and iput
573 			 * it later.
574 			 */
575 			iput(old_inode);
576 			old_inode = inode;
577 
578 			filemap_fdatawait(mapping);
579 
580 			cond_resched();
581 
582 			spin_lock(&inode_lock);
583 		}
584 		spin_unlock(&inode_lock);
585 		iput(old_inode);
586 	} else
587 		spin_unlock(&inode_lock);
588 
589 	return;		/* Leave any unwritten inodes on s_io */
590 }
591 EXPORT_SYMBOL_GPL(generic_sync_sb_inodes);
592 
593 static void sync_sb_inodes(struct super_block *sb,
594 				struct writeback_control *wbc)
595 {
596 	generic_sync_sb_inodes(sb, wbc);
597 }
598 
599 /*
600  * Start writeback of dirty pagecache data against all unlocked inodes.
601  *
602  * Note:
603  * We don't need to grab a reference to superblock here. If it has non-empty
604  * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
605  * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
606  * empty. Since __sync_single_inode() regains inode_lock before it finally moves
607  * inode from superblock lists we are OK.
608  *
609  * If `older_than_this' is non-zero then only flush inodes which have a
610  * flushtime older than *older_than_this.
611  *
612  * If `bdi' is non-zero then we will scan the first inode against each
613  * superblock until we find the matching ones.  One group will be the dirty
614  * inodes against a filesystem.  Then when we hit the dummy blockdev superblock,
615  * sync_sb_inodes will seekout the blockdev which matches `bdi'.  Maybe not
616  * super-efficient but we're about to do a ton of I/O...
617  */
618 void
619 writeback_inodes(struct writeback_control *wbc)
620 {
621 	struct super_block *sb;
622 
623 	might_sleep();
624 	spin_lock(&sb_lock);
625 restart:
626 	list_for_each_entry_reverse(sb, &super_blocks, s_list) {
627 		if (sb_has_dirty_inodes(sb)) {
628 			/* we're making our own get_super here */
629 			sb->s_count++;
630 			spin_unlock(&sb_lock);
631 			/*
632 			 * If we can't get the readlock, there's no sense in
633 			 * waiting around, most of the time the FS is going to
634 			 * be unmounted by the time it is released.
635 			 */
636 			if (down_read_trylock(&sb->s_umount)) {
637 				if (sb->s_root)
638 					sync_sb_inodes(sb, wbc);
639 				up_read(&sb->s_umount);
640 			}
641 			spin_lock(&sb_lock);
642 			if (__put_super_and_need_restart(sb))
643 				goto restart;
644 		}
645 		if (wbc->nr_to_write <= 0)
646 			break;
647 	}
648 	spin_unlock(&sb_lock);
649 }
650 
651 /*
652  * writeback and wait upon the filesystem's dirty inodes.  The caller will
653  * do this in two passes - one to write, and one to wait.
654  *
655  * A finite limit is set on the number of pages which will be written.
656  * To prevent infinite livelock of sys_sync().
657  *
658  * We add in the number of potentially dirty inodes, because each inode write
659  * can dirty pagecache in the underlying blockdev.
660  */
661 void sync_inodes_sb(struct super_block *sb, int wait)
662 {
663 	struct writeback_control wbc = {
664 		.sync_mode	= wait ? WB_SYNC_ALL : WB_SYNC_NONE,
665 		.range_start	= 0,
666 		.range_end	= LLONG_MAX,
667 	};
668 
669 	if (!wait) {
670 		unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
671 		unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
672 
673 		wbc.nr_to_write = nr_dirty + nr_unstable +
674 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
675 	} else
676 		wbc.nr_to_write = LONG_MAX; /* doesn't actually matter */
677 
678 	sync_sb_inodes(sb, &wbc);
679 }
680 
681 /**
682  * sync_inodes - writes all inodes to disk
683  * @wait: wait for completion
684  *
685  * sync_inodes() goes through each super block's dirty inode list, writes the
686  * inodes out, waits on the writeout and puts the inodes back on the normal
687  * list.
688  *
689  * This is for sys_sync().  fsync_dev() uses the same algorithm.  The subtle
690  * part of the sync functions is that the blockdev "superblock" is processed
691  * last.  This is because the write_inode() function of a typical fs will
692  * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
693  * What we want to do is to perform all that dirtying first, and then write
694  * back all those inode blocks via the blockdev mapping in one sweep.  So the
695  * additional (somewhat redundant) sync_blockdev() calls here are to make
696  * sure that really happens.  Because if we call sync_inodes_sb(wait=1) with
697  * outstanding dirty inodes, the writeback goes block-at-a-time within the
698  * filesystem's write_inode().  This is extremely slow.
699  */
700 static void __sync_inodes(int wait)
701 {
702 	struct super_block *sb;
703 
704 	spin_lock(&sb_lock);
705 restart:
706 	list_for_each_entry(sb, &super_blocks, s_list) {
707 		sb->s_count++;
708 		spin_unlock(&sb_lock);
709 		down_read(&sb->s_umount);
710 		if (sb->s_root) {
711 			sync_inodes_sb(sb, wait);
712 			sync_blockdev(sb->s_bdev);
713 		}
714 		up_read(&sb->s_umount);
715 		spin_lock(&sb_lock);
716 		if (__put_super_and_need_restart(sb))
717 			goto restart;
718 	}
719 	spin_unlock(&sb_lock);
720 }
721 
722 void sync_inodes(int wait)
723 {
724 	__sync_inodes(0);
725 
726 	if (wait)
727 		__sync_inodes(1);
728 }
729 
730 /**
731  * write_inode_now	-	write an inode to disk
732  * @inode: inode to write to disk
733  * @sync: whether the write should be synchronous or not
734  *
735  * This function commits an inode to disk immediately if it is dirty. This is
736  * primarily needed by knfsd.
737  *
738  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
739  */
740 int write_inode_now(struct inode *inode, int sync)
741 {
742 	int ret;
743 	struct writeback_control wbc = {
744 		.nr_to_write = LONG_MAX,
745 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
746 		.range_start = 0,
747 		.range_end = LLONG_MAX,
748 	};
749 
750 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
751 		wbc.nr_to_write = 0;
752 
753 	might_sleep();
754 	spin_lock(&inode_lock);
755 	ret = __writeback_single_inode(inode, &wbc);
756 	spin_unlock(&inode_lock);
757 	if (sync)
758 		inode_sync_wait(inode);
759 	return ret;
760 }
761 EXPORT_SYMBOL(write_inode_now);
762 
763 /**
764  * sync_inode - write an inode and its pages to disk.
765  * @inode: the inode to sync
766  * @wbc: controls the writeback mode
767  *
768  * sync_inode() will write an inode and its pages to disk.  It will also
769  * correctly update the inode on its superblock's dirty inode lists and will
770  * update inode->i_state.
771  *
772  * The caller must have a ref on the inode.
773  */
774 int sync_inode(struct inode *inode, struct writeback_control *wbc)
775 {
776 	int ret;
777 
778 	spin_lock(&inode_lock);
779 	ret = __writeback_single_inode(inode, wbc);
780 	spin_unlock(&inode_lock);
781 	return ret;
782 }
783 EXPORT_SYMBOL(sync_inode);
784 
785 /**
786  * generic_osync_inode - flush all dirty data for a given inode to disk
787  * @inode: inode to write
788  * @mapping: the address_space that should be flushed
789  * @what:  what to write and wait upon
790  *
791  * This can be called by file_write functions for files which have the
792  * O_SYNC flag set, to flush dirty writes to disk.
793  *
794  * @what is a bitmask, specifying which part of the inode's data should be
795  * written and waited upon.
796  *
797  *    OSYNC_DATA:     i_mapping's dirty data
798  *    OSYNC_METADATA: the buffers at i_mapping->private_list
799  *    OSYNC_INODE:    the inode itself
800  */
801 
802 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
803 {
804 	int err = 0;
805 	int need_write_inode_now = 0;
806 	int err2;
807 
808 	if (what & OSYNC_DATA)
809 		err = filemap_fdatawrite(mapping);
810 	if (what & (OSYNC_METADATA|OSYNC_DATA)) {
811 		err2 = sync_mapping_buffers(mapping);
812 		if (!err)
813 			err = err2;
814 	}
815 	if (what & OSYNC_DATA) {
816 		err2 = filemap_fdatawait(mapping);
817 		if (!err)
818 			err = err2;
819 	}
820 
821 	spin_lock(&inode_lock);
822 	if ((inode->i_state & I_DIRTY) &&
823 	    ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
824 		need_write_inode_now = 1;
825 	spin_unlock(&inode_lock);
826 
827 	if (need_write_inode_now) {
828 		err2 = write_inode_now(inode, 1);
829 		if (!err)
830 			err = err2;
831 	}
832 	else
833 		inode_sync_wait(inode);
834 
835 	return err;
836 }
837 EXPORT_SYMBOL(generic_osync_inode);
838