xref: /openbmc/linux/fs/fs-writeback.c (revision aac5987a)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void wb_queue_work(struct bdi_writeback *wb,
177 			  struct wb_writeback_work *work)
178 {
179 	trace_writeback_queue(wb, work);
180 
181 	spin_lock_bh(&wb->work_lock);
182 	if (!test_bit(WB_registered, &wb->state))
183 		goto out_unlock;
184 	if (work->done)
185 		atomic_inc(&work->done->cnt);
186 	list_add_tail(&work->list, &wb->work_list);
187 	mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 	spin_unlock_bh(&wb->work_lock);
190 }
191 
192 /**
193  * wb_wait_for_completion - wait for completion of bdi_writeback_works
194  * @bdi: bdi work items were issued to
195  * @done: target wb_completion
196  *
197  * Wait for one or more work items issued to @bdi with their ->done field
198  * set to @done, which should have been defined with
199  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
200  * work items are completed.  Work items which are waited upon aren't freed
201  * automatically on completion.
202  */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 				   struct wb_completion *done)
205 {
206 	atomic_dec(&done->cnt);		/* put down the initial count */
207 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209 
210 #ifdef CONFIG_CGROUP_WRITEBACK
211 
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
217 
218 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 					/* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
222 					/* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 					/* one round can affect upto 5 slots */
225 
226 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
227 static struct workqueue_struct *isw_wq;
228 
229 void __inode_attach_wb(struct inode *inode, struct page *page)
230 {
231 	struct backing_dev_info *bdi = inode_to_bdi(inode);
232 	struct bdi_writeback *wb = NULL;
233 
234 	if (inode_cgwb_enabled(inode)) {
235 		struct cgroup_subsys_state *memcg_css;
236 
237 		if (page) {
238 			memcg_css = mem_cgroup_css_from_page(page);
239 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
240 		} else {
241 			/* must pin memcg_css, see wb_get_create() */
242 			memcg_css = task_get_css(current, memory_cgrp_id);
243 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
244 			css_put(memcg_css);
245 		}
246 	}
247 
248 	if (!wb)
249 		wb = &bdi->wb;
250 
251 	/*
252 	 * There may be multiple instances of this function racing to
253 	 * update the same inode.  Use cmpxchg() to tell the winner.
254 	 */
255 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
256 		wb_put(wb);
257 }
258 
259 /**
260  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
261  * @inode: inode of interest with i_lock held
262  *
263  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
264  * held on entry and is released on return.  The returned wb is guaranteed
265  * to stay @inode's associated wb until its list_lock is released.
266  */
267 static struct bdi_writeback *
268 locked_inode_to_wb_and_lock_list(struct inode *inode)
269 	__releases(&inode->i_lock)
270 	__acquires(&wb->list_lock)
271 {
272 	while (true) {
273 		struct bdi_writeback *wb = inode_to_wb(inode);
274 
275 		/*
276 		 * inode_to_wb() association is protected by both
277 		 * @inode->i_lock and @wb->list_lock but list_lock nests
278 		 * outside i_lock.  Drop i_lock and verify that the
279 		 * association hasn't changed after acquiring list_lock.
280 		 */
281 		wb_get(wb);
282 		spin_unlock(&inode->i_lock);
283 		spin_lock(&wb->list_lock);
284 
285 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
286 		if (likely(wb == inode->i_wb)) {
287 			wb_put(wb);	/* @inode already has ref */
288 			return wb;
289 		}
290 
291 		spin_unlock(&wb->list_lock);
292 		wb_put(wb);
293 		cpu_relax();
294 		spin_lock(&inode->i_lock);
295 	}
296 }
297 
298 /**
299  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300  * @inode: inode of interest
301  *
302  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303  * on entry.
304  */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 	__acquires(&wb->list_lock)
307 {
308 	spin_lock(&inode->i_lock);
309 	return locked_inode_to_wb_and_lock_list(inode);
310 }
311 
312 struct inode_switch_wbs_context {
313 	struct inode		*inode;
314 	struct bdi_writeback	*new_wb;
315 
316 	struct rcu_head		rcu_head;
317 	struct work_struct	work;
318 };
319 
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322 	struct inode_switch_wbs_context *isw =
323 		container_of(work, struct inode_switch_wbs_context, work);
324 	struct inode *inode = isw->inode;
325 	struct address_space *mapping = inode->i_mapping;
326 	struct bdi_writeback *old_wb = inode->i_wb;
327 	struct bdi_writeback *new_wb = isw->new_wb;
328 	struct radix_tree_iter iter;
329 	bool switched = false;
330 	void **slot;
331 
332 	/*
333 	 * By the time control reaches here, RCU grace period has passed
334 	 * since I_WB_SWITCH assertion and all wb stat update transactions
335 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 	 * synchronizing against mapping->tree_lock.
337 	 *
338 	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 	 * gives us exclusion against all wb related operations on @inode
340 	 * including IO list manipulations and stat updates.
341 	 */
342 	if (old_wb < new_wb) {
343 		spin_lock(&old_wb->list_lock);
344 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 	} else {
346 		spin_lock(&new_wb->list_lock);
347 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 	}
349 	spin_lock(&inode->i_lock);
350 	spin_lock_irq(&mapping->tree_lock);
351 
352 	/*
353 	 * Once I_FREEING is visible under i_lock, the eviction path owns
354 	 * the inode and we shouldn't modify ->i_io_list.
355 	 */
356 	if (unlikely(inode->i_state & I_FREEING))
357 		goto skip_switch;
358 
359 	/*
360 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
361 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 	 * pages actually under underwriteback.
363 	 */
364 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 				   PAGECACHE_TAG_DIRTY) {
366 		struct page *page = radix_tree_deref_slot_protected(slot,
367 							&mapping->tree_lock);
368 		if (likely(page) && PageDirty(page)) {
369 			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 		}
372 	}
373 
374 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 				   PAGECACHE_TAG_WRITEBACK) {
376 		struct page *page = radix_tree_deref_slot_protected(slot,
377 							&mapping->tree_lock);
378 		if (likely(page)) {
379 			WARN_ON_ONCE(!PageWriteback(page));
380 			__dec_wb_stat(old_wb, WB_WRITEBACK);
381 			__inc_wb_stat(new_wb, WB_WRITEBACK);
382 		}
383 	}
384 
385 	wb_get(new_wb);
386 
387 	/*
388 	 * Transfer to @new_wb's IO list if necessary.  The specific list
389 	 * @inode was on is ignored and the inode is put on ->b_dirty which
390 	 * is always correct including from ->b_dirty_time.  The transfer
391 	 * preserves @inode->dirtied_when ordering.
392 	 */
393 	if (!list_empty(&inode->i_io_list)) {
394 		struct inode *pos;
395 
396 		inode_io_list_del_locked(inode, old_wb);
397 		inode->i_wb = new_wb;
398 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
399 			if (time_after_eq(inode->dirtied_when,
400 					  pos->dirtied_when))
401 				break;
402 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
403 	} else {
404 		inode->i_wb = new_wb;
405 	}
406 
407 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 	inode->i_wb_frn_winner = 0;
409 	inode->i_wb_frn_avg_time = 0;
410 	inode->i_wb_frn_history = 0;
411 	switched = true;
412 skip_switch:
413 	/*
414 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 	 */
417 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418 
419 	spin_unlock_irq(&mapping->tree_lock);
420 	spin_unlock(&inode->i_lock);
421 	spin_unlock(&new_wb->list_lock);
422 	spin_unlock(&old_wb->list_lock);
423 
424 	if (switched) {
425 		wb_wakeup(new_wb);
426 		wb_put(old_wb);
427 	}
428 	wb_put(new_wb);
429 
430 	iput(inode);
431 	kfree(isw);
432 
433 	atomic_dec(&isw_nr_in_flight);
434 }
435 
436 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
437 {
438 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
439 				struct inode_switch_wbs_context, rcu_head);
440 
441 	/* needs to grab bh-unsafe locks, bounce to work item */
442 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
443 	queue_work(isw_wq, &isw->work);
444 }
445 
446 /**
447  * inode_switch_wbs - change the wb association of an inode
448  * @inode: target inode
449  * @new_wb_id: ID of the new wb
450  *
451  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
452  * switching is performed asynchronously and may fail silently.
453  */
454 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
455 {
456 	struct backing_dev_info *bdi = inode_to_bdi(inode);
457 	struct cgroup_subsys_state *memcg_css;
458 	struct inode_switch_wbs_context *isw;
459 
460 	/* noop if seems to be already in progress */
461 	if (inode->i_state & I_WB_SWITCH)
462 		return;
463 
464 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
465 	if (!isw)
466 		return;
467 
468 	/* find and pin the new wb */
469 	rcu_read_lock();
470 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
471 	if (memcg_css)
472 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
473 	rcu_read_unlock();
474 	if (!isw->new_wb)
475 		goto out_free;
476 
477 	/* while holding I_WB_SWITCH, no one else can update the association */
478 	spin_lock(&inode->i_lock);
479 	if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
480 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
481 	    inode_to_wb(inode) == isw->new_wb) {
482 		spin_unlock(&inode->i_lock);
483 		goto out_free;
484 	}
485 	inode->i_state |= I_WB_SWITCH;
486 	__iget(inode);
487 	spin_unlock(&inode->i_lock);
488 
489 	isw->inode = inode;
490 
491 	atomic_inc(&isw_nr_in_flight);
492 
493 	/*
494 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
495 	 * the RCU protected stat update paths to grab the mapping's
496 	 * tree_lock so that stat transfer can synchronize against them.
497 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
498 	 */
499 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
500 	return;
501 
502 out_free:
503 	if (isw->new_wb)
504 		wb_put(isw->new_wb);
505 	kfree(isw);
506 }
507 
508 /**
509  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
510  * @wbc: writeback_control of interest
511  * @inode: target inode
512  *
513  * @inode is locked and about to be written back under the control of @wbc.
514  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
515  * writeback completion, wbc_detach_inode() should be called.  This is used
516  * to track the cgroup writeback context.
517  */
518 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
519 				 struct inode *inode)
520 {
521 	if (!inode_cgwb_enabled(inode)) {
522 		spin_unlock(&inode->i_lock);
523 		return;
524 	}
525 
526 	wbc->wb = inode_to_wb(inode);
527 	wbc->inode = inode;
528 
529 	wbc->wb_id = wbc->wb->memcg_css->id;
530 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
531 	wbc->wb_tcand_id = 0;
532 	wbc->wb_bytes = 0;
533 	wbc->wb_lcand_bytes = 0;
534 	wbc->wb_tcand_bytes = 0;
535 
536 	wb_get(wbc->wb);
537 	spin_unlock(&inode->i_lock);
538 
539 	/*
540 	 * A dying wb indicates that the memcg-blkcg mapping has changed
541 	 * and a new wb is already serving the memcg.  Switch immediately.
542 	 */
543 	if (unlikely(wb_dying(wbc->wb)))
544 		inode_switch_wbs(inode, wbc->wb_id);
545 }
546 
547 /**
548  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
549  * @wbc: writeback_control of the just finished writeback
550  *
551  * To be called after a writeback attempt of an inode finishes and undoes
552  * wbc_attach_and_unlock_inode().  Can be called under any context.
553  *
554  * As concurrent write sharing of an inode is expected to be very rare and
555  * memcg only tracks page ownership on first-use basis severely confining
556  * the usefulness of such sharing, cgroup writeback tracks ownership
557  * per-inode.  While the support for concurrent write sharing of an inode
558  * is deemed unnecessary, an inode being written to by different cgroups at
559  * different points in time is a lot more common, and, more importantly,
560  * charging only by first-use can too readily lead to grossly incorrect
561  * behaviors (single foreign page can lead to gigabytes of writeback to be
562  * incorrectly attributed).
563  *
564  * To resolve this issue, cgroup writeback detects the majority dirtier of
565  * an inode and transfers the ownership to it.  To avoid unnnecessary
566  * oscillation, the detection mechanism keeps track of history and gives
567  * out the switch verdict only if the foreign usage pattern is stable over
568  * a certain amount of time and/or writeback attempts.
569  *
570  * On each writeback attempt, @wbc tries to detect the majority writer
571  * using Boyer-Moore majority vote algorithm.  In addition to the byte
572  * count from the majority voting, it also counts the bytes written for the
573  * current wb and the last round's winner wb (max of last round's current
574  * wb, the winner from two rounds ago, and the last round's majority
575  * candidate).  Keeping track of the historical winner helps the algorithm
576  * to semi-reliably detect the most active writer even when it's not the
577  * absolute majority.
578  *
579  * Once the winner of the round is determined, whether the winner is
580  * foreign or not and how much IO time the round consumed is recorded in
581  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
582  * over a certain threshold, the switch verdict is given.
583  */
584 void wbc_detach_inode(struct writeback_control *wbc)
585 {
586 	struct bdi_writeback *wb = wbc->wb;
587 	struct inode *inode = wbc->inode;
588 	unsigned long avg_time, max_bytes, max_time;
589 	u16 history;
590 	int max_id;
591 
592 	if (!wb)
593 		return;
594 
595 	history = inode->i_wb_frn_history;
596 	avg_time = inode->i_wb_frn_avg_time;
597 
598 	/* pick the winner of this round */
599 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
600 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
601 		max_id = wbc->wb_id;
602 		max_bytes = wbc->wb_bytes;
603 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
604 		max_id = wbc->wb_lcand_id;
605 		max_bytes = wbc->wb_lcand_bytes;
606 	} else {
607 		max_id = wbc->wb_tcand_id;
608 		max_bytes = wbc->wb_tcand_bytes;
609 	}
610 
611 	/*
612 	 * Calculate the amount of IO time the winner consumed and fold it
613 	 * into the running average kept per inode.  If the consumed IO
614 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
615 	 * deciding whether to switch or not.  This is to prevent one-off
616 	 * small dirtiers from skewing the verdict.
617 	 */
618 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
619 				wb->avg_write_bandwidth);
620 	if (avg_time)
621 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
622 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
623 	else
624 		avg_time = max_time;	/* immediate catch up on first run */
625 
626 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
627 		int slots;
628 
629 		/*
630 		 * The switch verdict is reached if foreign wb's consume
631 		 * more than a certain proportion of IO time in a
632 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
633 		 * history mask where each bit represents one sixteenth of
634 		 * the period.  Determine the number of slots to shift into
635 		 * history from @max_time.
636 		 */
637 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
638 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
639 		history <<= slots;
640 		if (wbc->wb_id != max_id)
641 			history |= (1U << slots) - 1;
642 
643 		/*
644 		 * Switch if the current wb isn't the consistent winner.
645 		 * If there are multiple closely competing dirtiers, the
646 		 * inode may switch across them repeatedly over time, which
647 		 * is okay.  The main goal is avoiding keeping an inode on
648 		 * the wrong wb for an extended period of time.
649 		 */
650 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
651 			inode_switch_wbs(inode, max_id);
652 	}
653 
654 	/*
655 	 * Multiple instances of this function may race to update the
656 	 * following fields but we don't mind occassional inaccuracies.
657 	 */
658 	inode->i_wb_frn_winner = max_id;
659 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
660 	inode->i_wb_frn_history = history;
661 
662 	wb_put(wbc->wb);
663 	wbc->wb = NULL;
664 }
665 
666 /**
667  * wbc_account_io - account IO issued during writeback
668  * @wbc: writeback_control of the writeback in progress
669  * @page: page being written out
670  * @bytes: number of bytes being written out
671  *
672  * @bytes from @page are about to written out during the writeback
673  * controlled by @wbc.  Keep the book for foreign inode detection.  See
674  * wbc_detach_inode().
675  */
676 void wbc_account_io(struct writeback_control *wbc, struct page *page,
677 		    size_t bytes)
678 {
679 	int id;
680 
681 	/*
682 	 * pageout() path doesn't attach @wbc to the inode being written
683 	 * out.  This is intentional as we don't want the function to block
684 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
685 	 * regular writeback instead of writing things out itself.
686 	 */
687 	if (!wbc->wb)
688 		return;
689 
690 	id = mem_cgroup_css_from_page(page)->id;
691 
692 	if (id == wbc->wb_id) {
693 		wbc->wb_bytes += bytes;
694 		return;
695 	}
696 
697 	if (id == wbc->wb_lcand_id)
698 		wbc->wb_lcand_bytes += bytes;
699 
700 	/* Boyer-Moore majority vote algorithm */
701 	if (!wbc->wb_tcand_bytes)
702 		wbc->wb_tcand_id = id;
703 	if (id == wbc->wb_tcand_id)
704 		wbc->wb_tcand_bytes += bytes;
705 	else
706 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
707 }
708 EXPORT_SYMBOL_GPL(wbc_account_io);
709 
710 /**
711  * inode_congested - test whether an inode is congested
712  * @inode: inode to test for congestion (may be NULL)
713  * @cong_bits: mask of WB_[a]sync_congested bits to test
714  *
715  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
716  * bits to test and the return value is the mask of set bits.
717  *
718  * If cgroup writeback is enabled for @inode, the congestion state is
719  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
720  * associated with @inode is congested; otherwise, the root wb's congestion
721  * state is used.
722  *
723  * @inode is allowed to be NULL as this function is often called on
724  * mapping->host which is NULL for the swapper space.
725  */
726 int inode_congested(struct inode *inode, int cong_bits)
727 {
728 	/*
729 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
730 	 * Start transaction iff ->i_wb is visible.
731 	 */
732 	if (inode && inode_to_wb_is_valid(inode)) {
733 		struct bdi_writeback *wb;
734 		bool locked, congested;
735 
736 		wb = unlocked_inode_to_wb_begin(inode, &locked);
737 		congested = wb_congested(wb, cong_bits);
738 		unlocked_inode_to_wb_end(inode, locked);
739 		return congested;
740 	}
741 
742 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
743 }
744 EXPORT_SYMBOL_GPL(inode_congested);
745 
746 /**
747  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
748  * @wb: target bdi_writeback to split @nr_pages to
749  * @nr_pages: number of pages to write for the whole bdi
750  *
751  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
752  * relation to the total write bandwidth of all wb's w/ dirty inodes on
753  * @wb->bdi.
754  */
755 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
756 {
757 	unsigned long this_bw = wb->avg_write_bandwidth;
758 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
759 
760 	if (nr_pages == LONG_MAX)
761 		return LONG_MAX;
762 
763 	/*
764 	 * This may be called on clean wb's and proportional distribution
765 	 * may not make sense, just use the original @nr_pages in those
766 	 * cases.  In general, we wanna err on the side of writing more.
767 	 */
768 	if (!tot_bw || this_bw >= tot_bw)
769 		return nr_pages;
770 	else
771 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
772 }
773 
774 /**
775  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
776  * @bdi: target backing_dev_info
777  * @base_work: wb_writeback_work to issue
778  * @skip_if_busy: skip wb's which already have writeback in progress
779  *
780  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
781  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
782  * distributed to the busy wbs according to each wb's proportion in the
783  * total active write bandwidth of @bdi.
784  */
785 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
786 				  struct wb_writeback_work *base_work,
787 				  bool skip_if_busy)
788 {
789 	struct bdi_writeback *last_wb = NULL;
790 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
791 					      struct bdi_writeback, bdi_node);
792 
793 	might_sleep();
794 restart:
795 	rcu_read_lock();
796 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
797 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
798 		struct wb_writeback_work fallback_work;
799 		struct wb_writeback_work *work;
800 		long nr_pages;
801 
802 		if (last_wb) {
803 			wb_put(last_wb);
804 			last_wb = NULL;
805 		}
806 
807 		/* SYNC_ALL writes out I_DIRTY_TIME too */
808 		if (!wb_has_dirty_io(wb) &&
809 		    (base_work->sync_mode == WB_SYNC_NONE ||
810 		     list_empty(&wb->b_dirty_time)))
811 			continue;
812 		if (skip_if_busy && writeback_in_progress(wb))
813 			continue;
814 
815 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
816 
817 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
818 		if (work) {
819 			*work = *base_work;
820 			work->nr_pages = nr_pages;
821 			work->auto_free = 1;
822 			wb_queue_work(wb, work);
823 			continue;
824 		}
825 
826 		/* alloc failed, execute synchronously using on-stack fallback */
827 		work = &fallback_work;
828 		*work = *base_work;
829 		work->nr_pages = nr_pages;
830 		work->auto_free = 0;
831 		work->done = &fallback_work_done;
832 
833 		wb_queue_work(wb, work);
834 
835 		/*
836 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
837 		 * continuing iteration from @wb after dropping and
838 		 * regrabbing rcu read lock.
839 		 */
840 		wb_get(wb);
841 		last_wb = wb;
842 
843 		rcu_read_unlock();
844 		wb_wait_for_completion(bdi, &fallback_work_done);
845 		goto restart;
846 	}
847 	rcu_read_unlock();
848 
849 	if (last_wb)
850 		wb_put(last_wb);
851 }
852 
853 /**
854  * cgroup_writeback_umount - flush inode wb switches for umount
855  *
856  * This function is called when a super_block is about to be destroyed and
857  * flushes in-flight inode wb switches.  An inode wb switch goes through
858  * RCU and then workqueue, so the two need to be flushed in order to ensure
859  * that all previously scheduled switches are finished.  As wb switches are
860  * rare occurrences and synchronize_rcu() can take a while, perform
861  * flushing iff wb switches are in flight.
862  */
863 void cgroup_writeback_umount(void)
864 {
865 	if (atomic_read(&isw_nr_in_flight)) {
866 		synchronize_rcu();
867 		flush_workqueue(isw_wq);
868 	}
869 }
870 
871 static int __init cgroup_writeback_init(void)
872 {
873 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
874 	if (!isw_wq)
875 		return -ENOMEM;
876 	return 0;
877 }
878 fs_initcall(cgroup_writeback_init);
879 
880 #else	/* CONFIG_CGROUP_WRITEBACK */
881 
882 static struct bdi_writeback *
883 locked_inode_to_wb_and_lock_list(struct inode *inode)
884 	__releases(&inode->i_lock)
885 	__acquires(&wb->list_lock)
886 {
887 	struct bdi_writeback *wb = inode_to_wb(inode);
888 
889 	spin_unlock(&inode->i_lock);
890 	spin_lock(&wb->list_lock);
891 	return wb;
892 }
893 
894 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
895 	__acquires(&wb->list_lock)
896 {
897 	struct bdi_writeback *wb = inode_to_wb(inode);
898 
899 	spin_lock(&wb->list_lock);
900 	return wb;
901 }
902 
903 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
904 {
905 	return nr_pages;
906 }
907 
908 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
909 				  struct wb_writeback_work *base_work,
910 				  bool skip_if_busy)
911 {
912 	might_sleep();
913 
914 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
915 		base_work->auto_free = 0;
916 		wb_queue_work(&bdi->wb, base_work);
917 	}
918 }
919 
920 #endif	/* CONFIG_CGROUP_WRITEBACK */
921 
922 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
923 			bool range_cyclic, enum wb_reason reason)
924 {
925 	struct wb_writeback_work *work;
926 
927 	if (!wb_has_dirty_io(wb))
928 		return;
929 
930 	/*
931 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
932 	 * wakeup the thread for old dirty data writeback
933 	 */
934 	work = kzalloc(sizeof(*work),
935 		       GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
936 	if (!work) {
937 		trace_writeback_nowork(wb);
938 		wb_wakeup(wb);
939 		return;
940 	}
941 
942 	work->sync_mode	= WB_SYNC_NONE;
943 	work->nr_pages	= nr_pages;
944 	work->range_cyclic = range_cyclic;
945 	work->reason	= reason;
946 	work->auto_free	= 1;
947 
948 	wb_queue_work(wb, work);
949 }
950 
951 /**
952  * wb_start_background_writeback - start background writeback
953  * @wb: bdi_writback to write from
954  *
955  * Description:
956  *   This makes sure WB_SYNC_NONE background writeback happens. When
957  *   this function returns, it is only guaranteed that for given wb
958  *   some IO is happening if we are over background dirty threshold.
959  *   Caller need not hold sb s_umount semaphore.
960  */
961 void wb_start_background_writeback(struct bdi_writeback *wb)
962 {
963 	/*
964 	 * We just wake up the flusher thread. It will perform background
965 	 * writeback as soon as there is no other work to do.
966 	 */
967 	trace_writeback_wake_background(wb);
968 	wb_wakeup(wb);
969 }
970 
971 /*
972  * Remove the inode from the writeback list it is on.
973  */
974 void inode_io_list_del(struct inode *inode)
975 {
976 	struct bdi_writeback *wb;
977 
978 	wb = inode_to_wb_and_lock_list(inode);
979 	inode_io_list_del_locked(inode, wb);
980 	spin_unlock(&wb->list_lock);
981 }
982 
983 /*
984  * mark an inode as under writeback on the sb
985  */
986 void sb_mark_inode_writeback(struct inode *inode)
987 {
988 	struct super_block *sb = inode->i_sb;
989 	unsigned long flags;
990 
991 	if (list_empty(&inode->i_wb_list)) {
992 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
993 		if (list_empty(&inode->i_wb_list)) {
994 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
995 			trace_sb_mark_inode_writeback(inode);
996 		}
997 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
998 	}
999 }
1000 
1001 /*
1002  * clear an inode as under writeback on the sb
1003  */
1004 void sb_clear_inode_writeback(struct inode *inode)
1005 {
1006 	struct super_block *sb = inode->i_sb;
1007 	unsigned long flags;
1008 
1009 	if (!list_empty(&inode->i_wb_list)) {
1010 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1011 		if (!list_empty(&inode->i_wb_list)) {
1012 			list_del_init(&inode->i_wb_list);
1013 			trace_sb_clear_inode_writeback(inode);
1014 		}
1015 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1016 	}
1017 }
1018 
1019 /*
1020  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1021  * furthest end of its superblock's dirty-inode list.
1022  *
1023  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1024  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1025  * the case then the inode must have been redirtied while it was being written
1026  * out and we don't reset its dirtied_when.
1027  */
1028 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1029 {
1030 	if (!list_empty(&wb->b_dirty)) {
1031 		struct inode *tail;
1032 
1033 		tail = wb_inode(wb->b_dirty.next);
1034 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1035 			inode->dirtied_when = jiffies;
1036 	}
1037 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1038 }
1039 
1040 /*
1041  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1042  */
1043 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1044 {
1045 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1046 }
1047 
1048 static void inode_sync_complete(struct inode *inode)
1049 {
1050 	inode->i_state &= ~I_SYNC;
1051 	/* If inode is clean an unused, put it into LRU now... */
1052 	inode_add_lru(inode);
1053 	/* Waiters must see I_SYNC cleared before being woken up */
1054 	smp_mb();
1055 	wake_up_bit(&inode->i_state, __I_SYNC);
1056 }
1057 
1058 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1059 {
1060 	bool ret = time_after(inode->dirtied_when, t);
1061 #ifndef CONFIG_64BIT
1062 	/*
1063 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1064 	 * It _appears_ to be in the future, but is actually in distant past.
1065 	 * This test is necessary to prevent such wrapped-around relative times
1066 	 * from permanently stopping the whole bdi writeback.
1067 	 */
1068 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1069 #endif
1070 	return ret;
1071 }
1072 
1073 #define EXPIRE_DIRTY_ATIME 0x0001
1074 
1075 /*
1076  * Move expired (dirtied before work->older_than_this) dirty inodes from
1077  * @delaying_queue to @dispatch_queue.
1078  */
1079 static int move_expired_inodes(struct list_head *delaying_queue,
1080 			       struct list_head *dispatch_queue,
1081 			       int flags,
1082 			       struct wb_writeback_work *work)
1083 {
1084 	unsigned long *older_than_this = NULL;
1085 	unsigned long expire_time;
1086 	LIST_HEAD(tmp);
1087 	struct list_head *pos, *node;
1088 	struct super_block *sb = NULL;
1089 	struct inode *inode;
1090 	int do_sb_sort = 0;
1091 	int moved = 0;
1092 
1093 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1094 		older_than_this = work->older_than_this;
1095 	else if (!work->for_sync) {
1096 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1097 		older_than_this = &expire_time;
1098 	}
1099 	while (!list_empty(delaying_queue)) {
1100 		inode = wb_inode(delaying_queue->prev);
1101 		if (older_than_this &&
1102 		    inode_dirtied_after(inode, *older_than_this))
1103 			break;
1104 		list_move(&inode->i_io_list, &tmp);
1105 		moved++;
1106 		if (flags & EXPIRE_DIRTY_ATIME)
1107 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1108 		if (sb_is_blkdev_sb(inode->i_sb))
1109 			continue;
1110 		if (sb && sb != inode->i_sb)
1111 			do_sb_sort = 1;
1112 		sb = inode->i_sb;
1113 	}
1114 
1115 	/* just one sb in list, splice to dispatch_queue and we're done */
1116 	if (!do_sb_sort) {
1117 		list_splice(&tmp, dispatch_queue);
1118 		goto out;
1119 	}
1120 
1121 	/* Move inodes from one superblock together */
1122 	while (!list_empty(&tmp)) {
1123 		sb = wb_inode(tmp.prev)->i_sb;
1124 		list_for_each_prev_safe(pos, node, &tmp) {
1125 			inode = wb_inode(pos);
1126 			if (inode->i_sb == sb)
1127 				list_move(&inode->i_io_list, dispatch_queue);
1128 		}
1129 	}
1130 out:
1131 	return moved;
1132 }
1133 
1134 /*
1135  * Queue all expired dirty inodes for io, eldest first.
1136  * Before
1137  *         newly dirtied     b_dirty    b_io    b_more_io
1138  *         =============>    gf         edc     BA
1139  * After
1140  *         newly dirtied     b_dirty    b_io    b_more_io
1141  *         =============>    g          fBAedc
1142  *                                           |
1143  *                                           +--> dequeue for IO
1144  */
1145 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1146 {
1147 	int moved;
1148 
1149 	assert_spin_locked(&wb->list_lock);
1150 	list_splice_init(&wb->b_more_io, &wb->b_io);
1151 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1152 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1153 				     EXPIRE_DIRTY_ATIME, work);
1154 	if (moved)
1155 		wb_io_lists_populated(wb);
1156 	trace_writeback_queue_io(wb, work, moved);
1157 }
1158 
1159 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1160 {
1161 	int ret;
1162 
1163 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1164 		trace_writeback_write_inode_start(inode, wbc);
1165 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1166 		trace_writeback_write_inode(inode, wbc);
1167 		return ret;
1168 	}
1169 	return 0;
1170 }
1171 
1172 /*
1173  * Wait for writeback on an inode to complete. Called with i_lock held.
1174  * Caller must make sure inode cannot go away when we drop i_lock.
1175  */
1176 static void __inode_wait_for_writeback(struct inode *inode)
1177 	__releases(inode->i_lock)
1178 	__acquires(inode->i_lock)
1179 {
1180 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1181 	wait_queue_head_t *wqh;
1182 
1183 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1184 	while (inode->i_state & I_SYNC) {
1185 		spin_unlock(&inode->i_lock);
1186 		__wait_on_bit(wqh, &wq, bit_wait,
1187 			      TASK_UNINTERRUPTIBLE);
1188 		spin_lock(&inode->i_lock);
1189 	}
1190 }
1191 
1192 /*
1193  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1194  */
1195 void inode_wait_for_writeback(struct inode *inode)
1196 {
1197 	spin_lock(&inode->i_lock);
1198 	__inode_wait_for_writeback(inode);
1199 	spin_unlock(&inode->i_lock);
1200 }
1201 
1202 /*
1203  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1204  * held and drops it. It is aimed for callers not holding any inode reference
1205  * so once i_lock is dropped, inode can go away.
1206  */
1207 static void inode_sleep_on_writeback(struct inode *inode)
1208 	__releases(inode->i_lock)
1209 {
1210 	DEFINE_WAIT(wait);
1211 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1212 	int sleep;
1213 
1214 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1215 	sleep = inode->i_state & I_SYNC;
1216 	spin_unlock(&inode->i_lock);
1217 	if (sleep)
1218 		schedule();
1219 	finish_wait(wqh, &wait);
1220 }
1221 
1222 /*
1223  * Find proper writeback list for the inode depending on its current state and
1224  * possibly also change of its state while we were doing writeback.  Here we
1225  * handle things such as livelock prevention or fairness of writeback among
1226  * inodes. This function can be called only by flusher thread - noone else
1227  * processes all inodes in writeback lists and requeueing inodes behind flusher
1228  * thread's back can have unexpected consequences.
1229  */
1230 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1231 			  struct writeback_control *wbc)
1232 {
1233 	if (inode->i_state & I_FREEING)
1234 		return;
1235 
1236 	/*
1237 	 * Sync livelock prevention. Each inode is tagged and synced in one
1238 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1239 	 * the dirty time to prevent enqueue and sync it again.
1240 	 */
1241 	if ((inode->i_state & I_DIRTY) &&
1242 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1243 		inode->dirtied_when = jiffies;
1244 
1245 	if (wbc->pages_skipped) {
1246 		/*
1247 		 * writeback is not making progress due to locked
1248 		 * buffers. Skip this inode for now.
1249 		 */
1250 		redirty_tail(inode, wb);
1251 		return;
1252 	}
1253 
1254 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1255 		/*
1256 		 * We didn't write back all the pages.  nfs_writepages()
1257 		 * sometimes bales out without doing anything.
1258 		 */
1259 		if (wbc->nr_to_write <= 0) {
1260 			/* Slice used up. Queue for next turn. */
1261 			requeue_io(inode, wb);
1262 		} else {
1263 			/*
1264 			 * Writeback blocked by something other than
1265 			 * congestion. Delay the inode for some time to
1266 			 * avoid spinning on the CPU (100% iowait)
1267 			 * retrying writeback of the dirty page/inode
1268 			 * that cannot be performed immediately.
1269 			 */
1270 			redirty_tail(inode, wb);
1271 		}
1272 	} else if (inode->i_state & I_DIRTY) {
1273 		/*
1274 		 * Filesystems can dirty the inode during writeback operations,
1275 		 * such as delayed allocation during submission or metadata
1276 		 * updates after data IO completion.
1277 		 */
1278 		redirty_tail(inode, wb);
1279 	} else if (inode->i_state & I_DIRTY_TIME) {
1280 		inode->dirtied_when = jiffies;
1281 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1282 	} else {
1283 		/* The inode is clean. Remove from writeback lists. */
1284 		inode_io_list_del_locked(inode, wb);
1285 	}
1286 }
1287 
1288 /*
1289  * Write out an inode and its dirty pages. Do not update the writeback list
1290  * linkage. That is left to the caller. The caller is also responsible for
1291  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1292  */
1293 static int
1294 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1295 {
1296 	struct address_space *mapping = inode->i_mapping;
1297 	long nr_to_write = wbc->nr_to_write;
1298 	unsigned dirty;
1299 	int ret;
1300 
1301 	WARN_ON(!(inode->i_state & I_SYNC));
1302 
1303 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1304 
1305 	ret = do_writepages(mapping, wbc);
1306 
1307 	/*
1308 	 * Make sure to wait on the data before writing out the metadata.
1309 	 * This is important for filesystems that modify metadata on data
1310 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1311 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1312 	 * inode metadata is written back correctly.
1313 	 */
1314 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1315 		int err = filemap_fdatawait(mapping);
1316 		if (ret == 0)
1317 			ret = err;
1318 	}
1319 
1320 	/*
1321 	 * Some filesystems may redirty the inode during the writeback
1322 	 * due to delalloc, clear dirty metadata flags right before
1323 	 * write_inode()
1324 	 */
1325 	spin_lock(&inode->i_lock);
1326 
1327 	dirty = inode->i_state & I_DIRTY;
1328 	if (inode->i_state & I_DIRTY_TIME) {
1329 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1330 		    wbc->sync_mode == WB_SYNC_ALL ||
1331 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1332 		    unlikely(time_after(jiffies,
1333 					(inode->dirtied_time_when +
1334 					 dirtytime_expire_interval * HZ)))) {
1335 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1336 			trace_writeback_lazytime(inode);
1337 		}
1338 	} else
1339 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1340 	inode->i_state &= ~dirty;
1341 
1342 	/*
1343 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1344 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1345 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1346 	 * inode.
1347 	 *
1348 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1349 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1350 	 * necessary.  This guarantees that either __mark_inode_dirty()
1351 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1352 	 */
1353 	smp_mb();
1354 
1355 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1356 		inode->i_state |= I_DIRTY_PAGES;
1357 
1358 	spin_unlock(&inode->i_lock);
1359 
1360 	if (dirty & I_DIRTY_TIME)
1361 		mark_inode_dirty_sync(inode);
1362 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1363 	if (dirty & ~I_DIRTY_PAGES) {
1364 		int err = write_inode(inode, wbc);
1365 		if (ret == 0)
1366 			ret = err;
1367 	}
1368 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1369 	return ret;
1370 }
1371 
1372 /*
1373  * Write out an inode's dirty pages. Either the caller has an active reference
1374  * on the inode or the inode has I_WILL_FREE set.
1375  *
1376  * This function is designed to be called for writing back one inode which
1377  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1378  * and does more profound writeback list handling in writeback_sb_inodes().
1379  */
1380 static int writeback_single_inode(struct inode *inode,
1381 				  struct writeback_control *wbc)
1382 {
1383 	struct bdi_writeback *wb;
1384 	int ret = 0;
1385 
1386 	spin_lock(&inode->i_lock);
1387 	if (!atomic_read(&inode->i_count))
1388 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1389 	else
1390 		WARN_ON(inode->i_state & I_WILL_FREE);
1391 
1392 	if (inode->i_state & I_SYNC) {
1393 		if (wbc->sync_mode != WB_SYNC_ALL)
1394 			goto out;
1395 		/*
1396 		 * It's a data-integrity sync. We must wait. Since callers hold
1397 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1398 		 * away under us.
1399 		 */
1400 		__inode_wait_for_writeback(inode);
1401 	}
1402 	WARN_ON(inode->i_state & I_SYNC);
1403 	/*
1404 	 * Skip inode if it is clean and we have no outstanding writeback in
1405 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1406 	 * function since flusher thread may be doing for example sync in
1407 	 * parallel and if we move the inode, it could get skipped. So here we
1408 	 * make sure inode is on some writeback list and leave it there unless
1409 	 * we have completely cleaned the inode.
1410 	 */
1411 	if (!(inode->i_state & I_DIRTY_ALL) &&
1412 	    (wbc->sync_mode != WB_SYNC_ALL ||
1413 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1414 		goto out;
1415 	inode->i_state |= I_SYNC;
1416 	wbc_attach_and_unlock_inode(wbc, inode);
1417 
1418 	ret = __writeback_single_inode(inode, wbc);
1419 
1420 	wbc_detach_inode(wbc);
1421 
1422 	wb = inode_to_wb_and_lock_list(inode);
1423 	spin_lock(&inode->i_lock);
1424 	/*
1425 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1426 	 * touch it. See comment above for explanation.
1427 	 */
1428 	if (!(inode->i_state & I_DIRTY_ALL))
1429 		inode_io_list_del_locked(inode, wb);
1430 	spin_unlock(&wb->list_lock);
1431 	inode_sync_complete(inode);
1432 out:
1433 	spin_unlock(&inode->i_lock);
1434 	return ret;
1435 }
1436 
1437 static long writeback_chunk_size(struct bdi_writeback *wb,
1438 				 struct wb_writeback_work *work)
1439 {
1440 	long pages;
1441 
1442 	/*
1443 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1444 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1445 	 * here avoids calling into writeback_inodes_wb() more than once.
1446 	 *
1447 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1448 	 *
1449 	 *      wb_writeback()
1450 	 *          writeback_sb_inodes()       <== called only once
1451 	 *              write_cache_pages()     <== called once for each inode
1452 	 *                   (quickly) tag currently dirty pages
1453 	 *                   (maybe slowly) sync all tagged pages
1454 	 */
1455 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1456 		pages = LONG_MAX;
1457 	else {
1458 		pages = min(wb->avg_write_bandwidth / 2,
1459 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1460 		pages = min(pages, work->nr_pages);
1461 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1462 				   MIN_WRITEBACK_PAGES);
1463 	}
1464 
1465 	return pages;
1466 }
1467 
1468 /*
1469  * Write a portion of b_io inodes which belong to @sb.
1470  *
1471  * Return the number of pages and/or inodes written.
1472  *
1473  * NOTE! This is called with wb->list_lock held, and will
1474  * unlock and relock that for each inode it ends up doing
1475  * IO for.
1476  */
1477 static long writeback_sb_inodes(struct super_block *sb,
1478 				struct bdi_writeback *wb,
1479 				struct wb_writeback_work *work)
1480 {
1481 	struct writeback_control wbc = {
1482 		.sync_mode		= work->sync_mode,
1483 		.tagged_writepages	= work->tagged_writepages,
1484 		.for_kupdate		= work->for_kupdate,
1485 		.for_background		= work->for_background,
1486 		.for_sync		= work->for_sync,
1487 		.range_cyclic		= work->range_cyclic,
1488 		.range_start		= 0,
1489 		.range_end		= LLONG_MAX,
1490 	};
1491 	unsigned long start_time = jiffies;
1492 	long write_chunk;
1493 	long wrote = 0;  /* count both pages and inodes */
1494 
1495 	while (!list_empty(&wb->b_io)) {
1496 		struct inode *inode = wb_inode(wb->b_io.prev);
1497 		struct bdi_writeback *tmp_wb;
1498 
1499 		if (inode->i_sb != sb) {
1500 			if (work->sb) {
1501 				/*
1502 				 * We only want to write back data for this
1503 				 * superblock, move all inodes not belonging
1504 				 * to it back onto the dirty list.
1505 				 */
1506 				redirty_tail(inode, wb);
1507 				continue;
1508 			}
1509 
1510 			/*
1511 			 * The inode belongs to a different superblock.
1512 			 * Bounce back to the caller to unpin this and
1513 			 * pin the next superblock.
1514 			 */
1515 			break;
1516 		}
1517 
1518 		/*
1519 		 * Don't bother with new inodes or inodes being freed, first
1520 		 * kind does not need periodic writeout yet, and for the latter
1521 		 * kind writeout is handled by the freer.
1522 		 */
1523 		spin_lock(&inode->i_lock);
1524 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1525 			spin_unlock(&inode->i_lock);
1526 			redirty_tail(inode, wb);
1527 			continue;
1528 		}
1529 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1530 			/*
1531 			 * If this inode is locked for writeback and we are not
1532 			 * doing writeback-for-data-integrity, move it to
1533 			 * b_more_io so that writeback can proceed with the
1534 			 * other inodes on s_io.
1535 			 *
1536 			 * We'll have another go at writing back this inode
1537 			 * when we completed a full scan of b_io.
1538 			 */
1539 			spin_unlock(&inode->i_lock);
1540 			requeue_io(inode, wb);
1541 			trace_writeback_sb_inodes_requeue(inode);
1542 			continue;
1543 		}
1544 		spin_unlock(&wb->list_lock);
1545 
1546 		/*
1547 		 * We already requeued the inode if it had I_SYNC set and we
1548 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1549 		 * WB_SYNC_ALL case.
1550 		 */
1551 		if (inode->i_state & I_SYNC) {
1552 			/* Wait for I_SYNC. This function drops i_lock... */
1553 			inode_sleep_on_writeback(inode);
1554 			/* Inode may be gone, start again */
1555 			spin_lock(&wb->list_lock);
1556 			continue;
1557 		}
1558 		inode->i_state |= I_SYNC;
1559 		wbc_attach_and_unlock_inode(&wbc, inode);
1560 
1561 		write_chunk = writeback_chunk_size(wb, work);
1562 		wbc.nr_to_write = write_chunk;
1563 		wbc.pages_skipped = 0;
1564 
1565 		/*
1566 		 * We use I_SYNC to pin the inode in memory. While it is set
1567 		 * evict_inode() will wait so the inode cannot be freed.
1568 		 */
1569 		__writeback_single_inode(inode, &wbc);
1570 
1571 		wbc_detach_inode(&wbc);
1572 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1573 		wrote += write_chunk - wbc.nr_to_write;
1574 
1575 		if (need_resched()) {
1576 			/*
1577 			 * We're trying to balance between building up a nice
1578 			 * long list of IOs to improve our merge rate, and
1579 			 * getting those IOs out quickly for anyone throttling
1580 			 * in balance_dirty_pages().  cond_resched() doesn't
1581 			 * unplug, so get our IOs out the door before we
1582 			 * give up the CPU.
1583 			 */
1584 			blk_flush_plug(current);
1585 			cond_resched();
1586 		}
1587 
1588 		/*
1589 		 * Requeue @inode if still dirty.  Be careful as @inode may
1590 		 * have been switched to another wb in the meantime.
1591 		 */
1592 		tmp_wb = inode_to_wb_and_lock_list(inode);
1593 		spin_lock(&inode->i_lock);
1594 		if (!(inode->i_state & I_DIRTY_ALL))
1595 			wrote++;
1596 		requeue_inode(inode, tmp_wb, &wbc);
1597 		inode_sync_complete(inode);
1598 		spin_unlock(&inode->i_lock);
1599 
1600 		if (unlikely(tmp_wb != wb)) {
1601 			spin_unlock(&tmp_wb->list_lock);
1602 			spin_lock(&wb->list_lock);
1603 		}
1604 
1605 		/*
1606 		 * bail out to wb_writeback() often enough to check
1607 		 * background threshold and other termination conditions.
1608 		 */
1609 		if (wrote) {
1610 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1611 				break;
1612 			if (work->nr_pages <= 0)
1613 				break;
1614 		}
1615 	}
1616 	return wrote;
1617 }
1618 
1619 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1620 				  struct wb_writeback_work *work)
1621 {
1622 	unsigned long start_time = jiffies;
1623 	long wrote = 0;
1624 
1625 	while (!list_empty(&wb->b_io)) {
1626 		struct inode *inode = wb_inode(wb->b_io.prev);
1627 		struct super_block *sb = inode->i_sb;
1628 
1629 		if (!trylock_super(sb)) {
1630 			/*
1631 			 * trylock_super() may fail consistently due to
1632 			 * s_umount being grabbed by someone else. Don't use
1633 			 * requeue_io() to avoid busy retrying the inode/sb.
1634 			 */
1635 			redirty_tail(inode, wb);
1636 			continue;
1637 		}
1638 		wrote += writeback_sb_inodes(sb, wb, work);
1639 		up_read(&sb->s_umount);
1640 
1641 		/* refer to the same tests at the end of writeback_sb_inodes */
1642 		if (wrote) {
1643 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1644 				break;
1645 			if (work->nr_pages <= 0)
1646 				break;
1647 		}
1648 	}
1649 	/* Leave any unwritten inodes on b_io */
1650 	return wrote;
1651 }
1652 
1653 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1654 				enum wb_reason reason)
1655 {
1656 	struct wb_writeback_work work = {
1657 		.nr_pages	= nr_pages,
1658 		.sync_mode	= WB_SYNC_NONE,
1659 		.range_cyclic	= 1,
1660 		.reason		= reason,
1661 	};
1662 	struct blk_plug plug;
1663 
1664 	blk_start_plug(&plug);
1665 	spin_lock(&wb->list_lock);
1666 	if (list_empty(&wb->b_io))
1667 		queue_io(wb, &work);
1668 	__writeback_inodes_wb(wb, &work);
1669 	spin_unlock(&wb->list_lock);
1670 	blk_finish_plug(&plug);
1671 
1672 	return nr_pages - work.nr_pages;
1673 }
1674 
1675 /*
1676  * Explicit flushing or periodic writeback of "old" data.
1677  *
1678  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1679  * dirtying-time in the inode's address_space.  So this periodic writeback code
1680  * just walks the superblock inode list, writing back any inodes which are
1681  * older than a specific point in time.
1682  *
1683  * Try to run once per dirty_writeback_interval.  But if a writeback event
1684  * takes longer than a dirty_writeback_interval interval, then leave a
1685  * one-second gap.
1686  *
1687  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1688  * all dirty pages if they are all attached to "old" mappings.
1689  */
1690 static long wb_writeback(struct bdi_writeback *wb,
1691 			 struct wb_writeback_work *work)
1692 {
1693 	unsigned long wb_start = jiffies;
1694 	long nr_pages = work->nr_pages;
1695 	unsigned long oldest_jif;
1696 	struct inode *inode;
1697 	long progress;
1698 	struct blk_plug plug;
1699 
1700 	oldest_jif = jiffies;
1701 	work->older_than_this = &oldest_jif;
1702 
1703 	blk_start_plug(&plug);
1704 	spin_lock(&wb->list_lock);
1705 	for (;;) {
1706 		/*
1707 		 * Stop writeback when nr_pages has been consumed
1708 		 */
1709 		if (work->nr_pages <= 0)
1710 			break;
1711 
1712 		/*
1713 		 * Background writeout and kupdate-style writeback may
1714 		 * run forever. Stop them if there is other work to do
1715 		 * so that e.g. sync can proceed. They'll be restarted
1716 		 * after the other works are all done.
1717 		 */
1718 		if ((work->for_background || work->for_kupdate) &&
1719 		    !list_empty(&wb->work_list))
1720 			break;
1721 
1722 		/*
1723 		 * For background writeout, stop when we are below the
1724 		 * background dirty threshold
1725 		 */
1726 		if (work->for_background && !wb_over_bg_thresh(wb))
1727 			break;
1728 
1729 		/*
1730 		 * Kupdate and background works are special and we want to
1731 		 * include all inodes that need writing. Livelock avoidance is
1732 		 * handled by these works yielding to any other work so we are
1733 		 * safe.
1734 		 */
1735 		if (work->for_kupdate) {
1736 			oldest_jif = jiffies -
1737 				msecs_to_jiffies(dirty_expire_interval * 10);
1738 		} else if (work->for_background)
1739 			oldest_jif = jiffies;
1740 
1741 		trace_writeback_start(wb, work);
1742 		if (list_empty(&wb->b_io))
1743 			queue_io(wb, work);
1744 		if (work->sb)
1745 			progress = writeback_sb_inodes(work->sb, wb, work);
1746 		else
1747 			progress = __writeback_inodes_wb(wb, work);
1748 		trace_writeback_written(wb, work);
1749 
1750 		wb_update_bandwidth(wb, wb_start);
1751 
1752 		/*
1753 		 * Did we write something? Try for more
1754 		 *
1755 		 * Dirty inodes are moved to b_io for writeback in batches.
1756 		 * The completion of the current batch does not necessarily
1757 		 * mean the overall work is done. So we keep looping as long
1758 		 * as made some progress on cleaning pages or inodes.
1759 		 */
1760 		if (progress)
1761 			continue;
1762 		/*
1763 		 * No more inodes for IO, bail
1764 		 */
1765 		if (list_empty(&wb->b_more_io))
1766 			break;
1767 		/*
1768 		 * Nothing written. Wait for some inode to
1769 		 * become available for writeback. Otherwise
1770 		 * we'll just busyloop.
1771 		 */
1772 		trace_writeback_wait(wb, work);
1773 		inode = wb_inode(wb->b_more_io.prev);
1774 		spin_lock(&inode->i_lock);
1775 		spin_unlock(&wb->list_lock);
1776 		/* This function drops i_lock... */
1777 		inode_sleep_on_writeback(inode);
1778 		spin_lock(&wb->list_lock);
1779 	}
1780 	spin_unlock(&wb->list_lock);
1781 	blk_finish_plug(&plug);
1782 
1783 	return nr_pages - work->nr_pages;
1784 }
1785 
1786 /*
1787  * Return the next wb_writeback_work struct that hasn't been processed yet.
1788  */
1789 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1790 {
1791 	struct wb_writeback_work *work = NULL;
1792 
1793 	spin_lock_bh(&wb->work_lock);
1794 	if (!list_empty(&wb->work_list)) {
1795 		work = list_entry(wb->work_list.next,
1796 				  struct wb_writeback_work, list);
1797 		list_del_init(&work->list);
1798 	}
1799 	spin_unlock_bh(&wb->work_lock);
1800 	return work;
1801 }
1802 
1803 /*
1804  * Add in the number of potentially dirty inodes, because each inode
1805  * write can dirty pagecache in the underlying blockdev.
1806  */
1807 static unsigned long get_nr_dirty_pages(void)
1808 {
1809 	return global_node_page_state(NR_FILE_DIRTY) +
1810 		global_node_page_state(NR_UNSTABLE_NFS) +
1811 		get_nr_dirty_inodes();
1812 }
1813 
1814 static long wb_check_background_flush(struct bdi_writeback *wb)
1815 {
1816 	if (wb_over_bg_thresh(wb)) {
1817 
1818 		struct wb_writeback_work work = {
1819 			.nr_pages	= LONG_MAX,
1820 			.sync_mode	= WB_SYNC_NONE,
1821 			.for_background	= 1,
1822 			.range_cyclic	= 1,
1823 			.reason		= WB_REASON_BACKGROUND,
1824 		};
1825 
1826 		return wb_writeback(wb, &work);
1827 	}
1828 
1829 	return 0;
1830 }
1831 
1832 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1833 {
1834 	unsigned long expired;
1835 	long nr_pages;
1836 
1837 	/*
1838 	 * When set to zero, disable periodic writeback
1839 	 */
1840 	if (!dirty_writeback_interval)
1841 		return 0;
1842 
1843 	expired = wb->last_old_flush +
1844 			msecs_to_jiffies(dirty_writeback_interval * 10);
1845 	if (time_before(jiffies, expired))
1846 		return 0;
1847 
1848 	wb->last_old_flush = jiffies;
1849 	nr_pages = get_nr_dirty_pages();
1850 
1851 	if (nr_pages) {
1852 		struct wb_writeback_work work = {
1853 			.nr_pages	= nr_pages,
1854 			.sync_mode	= WB_SYNC_NONE,
1855 			.for_kupdate	= 1,
1856 			.range_cyclic	= 1,
1857 			.reason		= WB_REASON_PERIODIC,
1858 		};
1859 
1860 		return wb_writeback(wb, &work);
1861 	}
1862 
1863 	return 0;
1864 }
1865 
1866 /*
1867  * Retrieve work items and do the writeback they describe
1868  */
1869 static long wb_do_writeback(struct bdi_writeback *wb)
1870 {
1871 	struct wb_writeback_work *work;
1872 	long wrote = 0;
1873 
1874 	set_bit(WB_writeback_running, &wb->state);
1875 	while ((work = get_next_work_item(wb)) != NULL) {
1876 		struct wb_completion *done = work->done;
1877 
1878 		trace_writeback_exec(wb, work);
1879 
1880 		wrote += wb_writeback(wb, work);
1881 
1882 		if (work->auto_free)
1883 			kfree(work);
1884 		if (done && atomic_dec_and_test(&done->cnt))
1885 			wake_up_all(&wb->bdi->wb_waitq);
1886 	}
1887 
1888 	/*
1889 	 * Check for periodic writeback, kupdated() style
1890 	 */
1891 	wrote += wb_check_old_data_flush(wb);
1892 	wrote += wb_check_background_flush(wb);
1893 	clear_bit(WB_writeback_running, &wb->state);
1894 
1895 	return wrote;
1896 }
1897 
1898 /*
1899  * Handle writeback of dirty data for the device backed by this bdi. Also
1900  * reschedules periodically and does kupdated style flushing.
1901  */
1902 void wb_workfn(struct work_struct *work)
1903 {
1904 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1905 						struct bdi_writeback, dwork);
1906 	long pages_written;
1907 
1908 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1909 	current->flags |= PF_SWAPWRITE;
1910 
1911 	if (likely(!current_is_workqueue_rescuer() ||
1912 		   !test_bit(WB_registered, &wb->state))) {
1913 		/*
1914 		 * The normal path.  Keep writing back @wb until its
1915 		 * work_list is empty.  Note that this path is also taken
1916 		 * if @wb is shutting down even when we're running off the
1917 		 * rescuer as work_list needs to be drained.
1918 		 */
1919 		do {
1920 			pages_written = wb_do_writeback(wb);
1921 			trace_writeback_pages_written(pages_written);
1922 		} while (!list_empty(&wb->work_list));
1923 	} else {
1924 		/*
1925 		 * bdi_wq can't get enough workers and we're running off
1926 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1927 		 * enough for efficient IO.
1928 		 */
1929 		pages_written = writeback_inodes_wb(wb, 1024,
1930 						    WB_REASON_FORKER_THREAD);
1931 		trace_writeback_pages_written(pages_written);
1932 	}
1933 
1934 	if (!list_empty(&wb->work_list))
1935 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1936 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1937 		wb_wakeup_delayed(wb);
1938 
1939 	current->flags &= ~PF_SWAPWRITE;
1940 }
1941 
1942 /*
1943  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1944  * the whole world.
1945  */
1946 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1947 {
1948 	struct backing_dev_info *bdi;
1949 
1950 	/*
1951 	 * If we are expecting writeback progress we must submit plugged IO.
1952 	 */
1953 	if (blk_needs_flush_plug(current))
1954 		blk_schedule_flush_plug(current);
1955 
1956 	if (!nr_pages)
1957 		nr_pages = get_nr_dirty_pages();
1958 
1959 	rcu_read_lock();
1960 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1961 		struct bdi_writeback *wb;
1962 
1963 		if (!bdi_has_dirty_io(bdi))
1964 			continue;
1965 
1966 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1967 			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1968 					   false, reason);
1969 	}
1970 	rcu_read_unlock();
1971 }
1972 
1973 /*
1974  * Wake up bdi's periodically to make sure dirtytime inodes gets
1975  * written back periodically.  We deliberately do *not* check the
1976  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1977  * kernel to be constantly waking up once there are any dirtytime
1978  * inodes on the system.  So instead we define a separate delayed work
1979  * function which gets called much more rarely.  (By default, only
1980  * once every 12 hours.)
1981  *
1982  * If there is any other write activity going on in the file system,
1983  * this function won't be necessary.  But if the only thing that has
1984  * happened on the file system is a dirtytime inode caused by an atime
1985  * update, we need this infrastructure below to make sure that inode
1986  * eventually gets pushed out to disk.
1987  */
1988 static void wakeup_dirtytime_writeback(struct work_struct *w);
1989 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1990 
1991 static void wakeup_dirtytime_writeback(struct work_struct *w)
1992 {
1993 	struct backing_dev_info *bdi;
1994 
1995 	rcu_read_lock();
1996 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1997 		struct bdi_writeback *wb;
1998 
1999 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2000 			if (!list_empty(&wb->b_dirty_time))
2001 				wb_wakeup(wb);
2002 	}
2003 	rcu_read_unlock();
2004 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2005 }
2006 
2007 static int __init start_dirtytime_writeback(void)
2008 {
2009 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2010 	return 0;
2011 }
2012 __initcall(start_dirtytime_writeback);
2013 
2014 int dirtytime_interval_handler(struct ctl_table *table, int write,
2015 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2016 {
2017 	int ret;
2018 
2019 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2020 	if (ret == 0 && write)
2021 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2022 	return ret;
2023 }
2024 
2025 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2026 {
2027 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2028 		struct dentry *dentry;
2029 		const char *name = "?";
2030 
2031 		dentry = d_find_alias(inode);
2032 		if (dentry) {
2033 			spin_lock(&dentry->d_lock);
2034 			name = (const char *) dentry->d_name.name;
2035 		}
2036 		printk(KERN_DEBUG
2037 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2038 		       current->comm, task_pid_nr(current), inode->i_ino,
2039 		       name, inode->i_sb->s_id);
2040 		if (dentry) {
2041 			spin_unlock(&dentry->d_lock);
2042 			dput(dentry);
2043 		}
2044 	}
2045 }
2046 
2047 /**
2048  *	__mark_inode_dirty -	internal function
2049  *	@inode: inode to mark
2050  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2051  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
2052  *  	mark_inode_dirty_sync.
2053  *
2054  * Put the inode on the super block's dirty list.
2055  *
2056  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2057  * dirty list only if it is hashed or if it refers to a blockdev.
2058  * If it was not hashed, it will never be added to the dirty list
2059  * even if it is later hashed, as it will have been marked dirty already.
2060  *
2061  * In short, make sure you hash any inodes _before_ you start marking
2062  * them dirty.
2063  *
2064  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2065  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2066  * the kernel-internal blockdev inode represents the dirtying time of the
2067  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2068  * page->mapping->host, so the page-dirtying time is recorded in the internal
2069  * blockdev inode.
2070  */
2071 void __mark_inode_dirty(struct inode *inode, int flags)
2072 {
2073 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2074 	struct super_block *sb = inode->i_sb;
2075 	int dirtytime;
2076 
2077 	trace_writeback_mark_inode_dirty(inode, flags);
2078 
2079 	/*
2080 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2081 	 * dirty the inode itself
2082 	 */
2083 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2084 		trace_writeback_dirty_inode_start(inode, flags);
2085 
2086 		if (sb->s_op->dirty_inode)
2087 			sb->s_op->dirty_inode(inode, flags);
2088 
2089 		trace_writeback_dirty_inode(inode, flags);
2090 	}
2091 	if (flags & I_DIRTY_INODE)
2092 		flags &= ~I_DIRTY_TIME;
2093 	dirtytime = flags & I_DIRTY_TIME;
2094 
2095 	/*
2096 	 * Paired with smp_mb() in __writeback_single_inode() for the
2097 	 * following lockless i_state test.  See there for details.
2098 	 */
2099 	smp_mb();
2100 
2101 	if (((inode->i_state & flags) == flags) ||
2102 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2103 		return;
2104 
2105 	if (unlikely(block_dump))
2106 		block_dump___mark_inode_dirty(inode);
2107 
2108 	spin_lock(&inode->i_lock);
2109 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2110 		goto out_unlock_inode;
2111 	if ((inode->i_state & flags) != flags) {
2112 		const int was_dirty = inode->i_state & I_DIRTY;
2113 
2114 		inode_attach_wb(inode, NULL);
2115 
2116 		if (flags & I_DIRTY_INODE)
2117 			inode->i_state &= ~I_DIRTY_TIME;
2118 		inode->i_state |= flags;
2119 
2120 		/*
2121 		 * If the inode is being synced, just update its dirty state.
2122 		 * The unlocker will place the inode on the appropriate
2123 		 * superblock list, based upon its state.
2124 		 */
2125 		if (inode->i_state & I_SYNC)
2126 			goto out_unlock_inode;
2127 
2128 		/*
2129 		 * Only add valid (hashed) inodes to the superblock's
2130 		 * dirty list.  Add blockdev inodes as well.
2131 		 */
2132 		if (!S_ISBLK(inode->i_mode)) {
2133 			if (inode_unhashed(inode))
2134 				goto out_unlock_inode;
2135 		}
2136 		if (inode->i_state & I_FREEING)
2137 			goto out_unlock_inode;
2138 
2139 		/*
2140 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2141 		 * reposition it (that would break b_dirty time-ordering).
2142 		 */
2143 		if (!was_dirty) {
2144 			struct bdi_writeback *wb;
2145 			struct list_head *dirty_list;
2146 			bool wakeup_bdi = false;
2147 
2148 			wb = locked_inode_to_wb_and_lock_list(inode);
2149 
2150 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2151 			     !test_bit(WB_registered, &wb->state),
2152 			     "bdi-%s not registered\n", wb->bdi->name);
2153 
2154 			inode->dirtied_when = jiffies;
2155 			if (dirtytime)
2156 				inode->dirtied_time_when = jiffies;
2157 
2158 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2159 				dirty_list = &wb->b_dirty;
2160 			else
2161 				dirty_list = &wb->b_dirty_time;
2162 
2163 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2164 							       dirty_list);
2165 
2166 			spin_unlock(&wb->list_lock);
2167 			trace_writeback_dirty_inode_enqueue(inode);
2168 
2169 			/*
2170 			 * If this is the first dirty inode for this bdi,
2171 			 * we have to wake-up the corresponding bdi thread
2172 			 * to make sure background write-back happens
2173 			 * later.
2174 			 */
2175 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2176 				wb_wakeup_delayed(wb);
2177 			return;
2178 		}
2179 	}
2180 out_unlock_inode:
2181 	spin_unlock(&inode->i_lock);
2182 
2183 #undef I_DIRTY_INODE
2184 }
2185 EXPORT_SYMBOL(__mark_inode_dirty);
2186 
2187 /*
2188  * The @s_sync_lock is used to serialise concurrent sync operations
2189  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2190  * Concurrent callers will block on the s_sync_lock rather than doing contending
2191  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2192  * has been issued up to the time this function is enter is guaranteed to be
2193  * completed by the time we have gained the lock and waited for all IO that is
2194  * in progress regardless of the order callers are granted the lock.
2195  */
2196 static void wait_sb_inodes(struct super_block *sb)
2197 {
2198 	LIST_HEAD(sync_list);
2199 
2200 	/*
2201 	 * We need to be protected against the filesystem going from
2202 	 * r/o to r/w or vice versa.
2203 	 */
2204 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2205 
2206 	mutex_lock(&sb->s_sync_lock);
2207 
2208 	/*
2209 	 * Splice the writeback list onto a temporary list to avoid waiting on
2210 	 * inodes that have started writeback after this point.
2211 	 *
2212 	 * Use rcu_read_lock() to keep the inodes around until we have a
2213 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2214 	 * the local list because inodes can be dropped from either by writeback
2215 	 * completion.
2216 	 */
2217 	rcu_read_lock();
2218 	spin_lock_irq(&sb->s_inode_wblist_lock);
2219 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2220 
2221 	/*
2222 	 * Data integrity sync. Must wait for all pages under writeback, because
2223 	 * there may have been pages dirtied before our sync call, but which had
2224 	 * writeout started before we write it out.  In which case, the inode
2225 	 * may not be on the dirty list, but we still have to wait for that
2226 	 * writeout.
2227 	 */
2228 	while (!list_empty(&sync_list)) {
2229 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2230 						       i_wb_list);
2231 		struct address_space *mapping = inode->i_mapping;
2232 
2233 		/*
2234 		 * Move each inode back to the wb list before we drop the lock
2235 		 * to preserve consistency between i_wb_list and the mapping
2236 		 * writeback tag. Writeback completion is responsible to remove
2237 		 * the inode from either list once the writeback tag is cleared.
2238 		 */
2239 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2240 
2241 		/*
2242 		 * The mapping can appear untagged while still on-list since we
2243 		 * do not have the mapping lock. Skip it here, wb completion
2244 		 * will remove it.
2245 		 */
2246 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2247 			continue;
2248 
2249 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2250 
2251 		spin_lock(&inode->i_lock);
2252 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2253 			spin_unlock(&inode->i_lock);
2254 
2255 			spin_lock_irq(&sb->s_inode_wblist_lock);
2256 			continue;
2257 		}
2258 		__iget(inode);
2259 		spin_unlock(&inode->i_lock);
2260 		rcu_read_unlock();
2261 
2262 		/*
2263 		 * We keep the error status of individual mapping so that
2264 		 * applications can catch the writeback error using fsync(2).
2265 		 * See filemap_fdatawait_keep_errors() for details.
2266 		 */
2267 		filemap_fdatawait_keep_errors(mapping);
2268 
2269 		cond_resched();
2270 
2271 		iput(inode);
2272 
2273 		rcu_read_lock();
2274 		spin_lock_irq(&sb->s_inode_wblist_lock);
2275 	}
2276 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2277 	rcu_read_unlock();
2278 	mutex_unlock(&sb->s_sync_lock);
2279 }
2280 
2281 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2282 				     enum wb_reason reason, bool skip_if_busy)
2283 {
2284 	DEFINE_WB_COMPLETION_ONSTACK(done);
2285 	struct wb_writeback_work work = {
2286 		.sb			= sb,
2287 		.sync_mode		= WB_SYNC_NONE,
2288 		.tagged_writepages	= 1,
2289 		.done			= &done,
2290 		.nr_pages		= nr,
2291 		.reason			= reason,
2292 	};
2293 	struct backing_dev_info *bdi = sb->s_bdi;
2294 
2295 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2296 		return;
2297 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2298 
2299 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2300 	wb_wait_for_completion(bdi, &done);
2301 }
2302 
2303 /**
2304  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2305  * @sb: the superblock
2306  * @nr: the number of pages to write
2307  * @reason: reason why some writeback work initiated
2308  *
2309  * Start writeback on some inodes on this super_block. No guarantees are made
2310  * on how many (if any) will be written, and this function does not wait
2311  * for IO completion of submitted IO.
2312  */
2313 void writeback_inodes_sb_nr(struct super_block *sb,
2314 			    unsigned long nr,
2315 			    enum wb_reason reason)
2316 {
2317 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2318 }
2319 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2320 
2321 /**
2322  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2323  * @sb: the superblock
2324  * @reason: reason why some writeback work was initiated
2325  *
2326  * Start writeback on some inodes on this super_block. No guarantees are made
2327  * on how many (if any) will be written, and this function does not wait
2328  * for IO completion of submitted IO.
2329  */
2330 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2331 {
2332 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2333 }
2334 EXPORT_SYMBOL(writeback_inodes_sb);
2335 
2336 /**
2337  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2338  * @sb: the superblock
2339  * @nr: the number of pages to write
2340  * @reason: the reason of writeback
2341  *
2342  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2343  * Returns 1 if writeback was started, 0 if not.
2344  */
2345 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2346 				   enum wb_reason reason)
2347 {
2348 	if (!down_read_trylock(&sb->s_umount))
2349 		return false;
2350 
2351 	__writeback_inodes_sb_nr(sb, nr, reason, true);
2352 	up_read(&sb->s_umount);
2353 	return true;
2354 }
2355 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2356 
2357 /**
2358  * try_to_writeback_inodes_sb - try to start writeback if none underway
2359  * @sb: the superblock
2360  * @reason: reason why some writeback work was initiated
2361  *
2362  * Implement by try_to_writeback_inodes_sb_nr()
2363  * Returns 1 if writeback was started, 0 if not.
2364  */
2365 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2366 {
2367 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2368 }
2369 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2370 
2371 /**
2372  * sync_inodes_sb	-	sync sb inode pages
2373  * @sb: the superblock
2374  *
2375  * This function writes and waits on any dirty inode belonging to this
2376  * super_block.
2377  */
2378 void sync_inodes_sb(struct super_block *sb)
2379 {
2380 	DEFINE_WB_COMPLETION_ONSTACK(done);
2381 	struct wb_writeback_work work = {
2382 		.sb		= sb,
2383 		.sync_mode	= WB_SYNC_ALL,
2384 		.nr_pages	= LONG_MAX,
2385 		.range_cyclic	= 0,
2386 		.done		= &done,
2387 		.reason		= WB_REASON_SYNC,
2388 		.for_sync	= 1,
2389 	};
2390 	struct backing_dev_info *bdi = sb->s_bdi;
2391 
2392 	/*
2393 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2394 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2395 	 * bdi_has_dirty() need to be written out too.
2396 	 */
2397 	if (bdi == &noop_backing_dev_info)
2398 		return;
2399 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2400 
2401 	bdi_split_work_to_wbs(bdi, &work, false);
2402 	wb_wait_for_completion(bdi, &done);
2403 
2404 	wait_sb_inodes(sb);
2405 }
2406 EXPORT_SYMBOL(sync_inodes_sb);
2407 
2408 /**
2409  * write_inode_now	-	write an inode to disk
2410  * @inode: inode to write to disk
2411  * @sync: whether the write should be synchronous or not
2412  *
2413  * This function commits an inode to disk immediately if it is dirty. This is
2414  * primarily needed by knfsd.
2415  *
2416  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2417  */
2418 int write_inode_now(struct inode *inode, int sync)
2419 {
2420 	struct writeback_control wbc = {
2421 		.nr_to_write = LONG_MAX,
2422 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2423 		.range_start = 0,
2424 		.range_end = LLONG_MAX,
2425 	};
2426 
2427 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2428 		wbc.nr_to_write = 0;
2429 
2430 	might_sleep();
2431 	return writeback_single_inode(inode, &wbc);
2432 }
2433 EXPORT_SYMBOL(write_inode_now);
2434 
2435 /**
2436  * sync_inode - write an inode and its pages to disk.
2437  * @inode: the inode to sync
2438  * @wbc: controls the writeback mode
2439  *
2440  * sync_inode() will write an inode and its pages to disk.  It will also
2441  * correctly update the inode on its superblock's dirty inode lists and will
2442  * update inode->i_state.
2443  *
2444  * The caller must have a ref on the inode.
2445  */
2446 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2447 {
2448 	return writeback_single_inode(inode, wbc);
2449 }
2450 EXPORT_SYMBOL(sync_inode);
2451 
2452 /**
2453  * sync_inode_metadata - write an inode to disk
2454  * @inode: the inode to sync
2455  * @wait: wait for I/O to complete.
2456  *
2457  * Write an inode to disk and adjust its dirty state after completion.
2458  *
2459  * Note: only writes the actual inode, no associated data or other metadata.
2460  */
2461 int sync_inode_metadata(struct inode *inode, int wait)
2462 {
2463 	struct writeback_control wbc = {
2464 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2465 		.nr_to_write = 0, /* metadata-only */
2466 	};
2467 
2468 	return sync_inode(inode, &wbc);
2469 }
2470 EXPORT_SYMBOL(sync_inode_metadata);
2471