xref: /openbmc/linux/fs/fs-writeback.c (revision aa0dc6a7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 
124 	list_move(&inode->i_io_list, head);
125 
126 	/* dirty_time doesn't count as dirty_io until expiration */
127 	if (head != &wb->b_dirty_time)
128 		return wb_io_lists_populated(wb);
129 
130 	wb_io_lists_depopulated(wb);
131 	return false;
132 }
133 
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136 	spin_lock_bh(&wb->work_lock);
137 	if (test_bit(WB_registered, &wb->state))
138 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 	spin_unlock_bh(&wb->work_lock);
140 }
141 
142 static void finish_writeback_work(struct bdi_writeback *wb,
143 				  struct wb_writeback_work *work)
144 {
145 	struct wb_completion *done = work->done;
146 
147 	if (work->auto_free)
148 		kfree(work);
149 	if (done) {
150 		wait_queue_head_t *waitq = done->waitq;
151 
152 		/* @done can't be accessed after the following dec */
153 		if (atomic_dec_and_test(&done->cnt))
154 			wake_up_all(waitq);
155 	}
156 }
157 
158 static void wb_queue_work(struct bdi_writeback *wb,
159 			  struct wb_writeback_work *work)
160 {
161 	trace_writeback_queue(wb, work);
162 
163 	if (work->done)
164 		atomic_inc(&work->done->cnt);
165 
166 	spin_lock_bh(&wb->work_lock);
167 
168 	if (test_bit(WB_registered, &wb->state)) {
169 		list_add_tail(&work->list, &wb->work_list);
170 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 	} else
172 		finish_writeback_work(wb, work);
173 
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189 	atomic_dec(&done->cnt);		/* put down the initial count */
190 	wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192 
193 #ifdef CONFIG_CGROUP_WRITEBACK
194 
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
218 
219 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 					/* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
223 					/* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 					/* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
227 
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234 
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237 
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240 	struct backing_dev_info *bdi = inode_to_bdi(inode);
241 	struct bdi_writeback *wb = NULL;
242 
243 	if (inode_cgwb_enabled(inode)) {
244 		struct cgroup_subsys_state *memcg_css;
245 
246 		if (page) {
247 			memcg_css = mem_cgroup_css_from_page(page);
248 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249 		} else {
250 			/* must pin memcg_css, see wb_get_create() */
251 			memcg_css = task_get_css(current, memory_cgrp_id);
252 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253 			css_put(memcg_css);
254 		}
255 	}
256 
257 	if (!wb)
258 		wb = &bdi->wb;
259 
260 	/*
261 	 * There may be multiple instances of this function racing to
262 	 * update the same inode.  Use cmpxchg() to tell the winner.
263 	 */
264 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265 		wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268 
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278 					struct bdi_writeback *wb)
279 {
280 	assert_spin_locked(&wb->list_lock);
281 	assert_spin_locked(&inode->i_lock);
282 
283 	inode->i_state &= ~I_SYNC_QUEUED;
284 	if (wb != &wb->bdi->wb)
285 		list_move(&inode->i_io_list, &wb->b_attached);
286 	else
287 		list_del_init(&inode->i_io_list);
288 	wb_io_lists_depopulated(wb);
289 }
290 
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301 	__releases(&inode->i_lock)
302 	__acquires(&wb->list_lock)
303 {
304 	while (true) {
305 		struct bdi_writeback *wb = inode_to_wb(inode);
306 
307 		/*
308 		 * inode_to_wb() association is protected by both
309 		 * @inode->i_lock and @wb->list_lock but list_lock nests
310 		 * outside i_lock.  Drop i_lock and verify that the
311 		 * association hasn't changed after acquiring list_lock.
312 		 */
313 		wb_get(wb);
314 		spin_unlock(&inode->i_lock);
315 		spin_lock(&wb->list_lock);
316 
317 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
318 		if (likely(wb == inode->i_wb)) {
319 			wb_put(wb);	/* @inode already has ref */
320 			return wb;
321 		}
322 
323 		spin_unlock(&wb->list_lock);
324 		wb_put(wb);
325 		cpu_relax();
326 		spin_lock(&inode->i_lock);
327 	}
328 }
329 
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 	__acquires(&wb->list_lock)
339 {
340 	spin_lock(&inode->i_lock);
341 	return locked_inode_to_wb_and_lock_list(inode);
342 }
343 
344 struct inode_switch_wbs_context {
345 	struct rcu_work		work;
346 
347 	/*
348 	 * Multiple inodes can be switched at once.  The switching procedure
349 	 * consists of two parts, separated by a RCU grace period.  To make
350 	 * sure that the second part is executed for each inode gone through
351 	 * the first part, all inode pointers are placed into a NULL-terminated
352 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
353 	 * an inode could be left in a non-consistent state.
354 	 */
355 	struct bdi_writeback	*new_wb;
356 	struct inode		*inodes[];
357 };
358 
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361 	down_write(&bdi->wb_switch_rwsem);
362 }
363 
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366 	up_write(&bdi->wb_switch_rwsem);
367 }
368 
369 static bool inode_do_switch_wbs(struct inode *inode,
370 				struct bdi_writeback *old_wb,
371 				struct bdi_writeback *new_wb)
372 {
373 	struct address_space *mapping = inode->i_mapping;
374 	XA_STATE(xas, &mapping->i_pages, 0);
375 	struct page *page;
376 	bool switched = false;
377 
378 	spin_lock(&inode->i_lock);
379 	xa_lock_irq(&mapping->i_pages);
380 
381 	/*
382 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 	 * path owns the inode and we shouldn't modify ->i_io_list.
384 	 */
385 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386 		goto skip_switch;
387 
388 	trace_inode_switch_wbs(inode, old_wb, new_wb);
389 
390 	/*
391 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 	 * pages actually under writeback.
394 	 */
395 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 		if (PageDirty(page)) {
397 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 		}
400 	}
401 
402 	xas_set(&xas, 0);
403 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 		WARN_ON_ONCE(!PageWriteback(page));
405 		dec_wb_stat(old_wb, WB_WRITEBACK);
406 		inc_wb_stat(new_wb, WB_WRITEBACK);
407 	}
408 
409 	wb_get(new_wb);
410 
411 	/*
412 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
413 	 * the specific list @inode was on is ignored and the @inode is put on
414 	 * ->b_dirty which is always correct including from ->b_dirty_time.
415 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
416 	 * was clean, it means it was on the b_attached list, so move it onto
417 	 * the b_attached list of @new_wb.
418 	 */
419 	if (!list_empty(&inode->i_io_list)) {
420 		inode->i_wb = new_wb;
421 
422 		if (inode->i_state & I_DIRTY_ALL) {
423 			struct inode *pos;
424 
425 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
426 				if (time_after_eq(inode->dirtied_when,
427 						  pos->dirtied_when))
428 					break;
429 			inode_io_list_move_locked(inode, new_wb,
430 						  pos->i_io_list.prev);
431 		} else {
432 			inode_cgwb_move_to_attached(inode, new_wb);
433 		}
434 	} else {
435 		inode->i_wb = new_wb;
436 	}
437 
438 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 	inode->i_wb_frn_winner = 0;
440 	inode->i_wb_frn_avg_time = 0;
441 	inode->i_wb_frn_history = 0;
442 	switched = true;
443 skip_switch:
444 	/*
445 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 	 */
448 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449 
450 	xa_unlock_irq(&mapping->i_pages);
451 	spin_unlock(&inode->i_lock);
452 
453 	return switched;
454 }
455 
456 static void inode_switch_wbs_work_fn(struct work_struct *work)
457 {
458 	struct inode_switch_wbs_context *isw =
459 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
460 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
461 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
462 	struct bdi_writeback *new_wb = isw->new_wb;
463 	unsigned long nr_switched = 0;
464 	struct inode **inodep;
465 
466 	/*
467 	 * If @inode switches cgwb membership while sync_inodes_sb() is
468 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
469 	 */
470 	down_read(&bdi->wb_switch_rwsem);
471 
472 	/*
473 	 * By the time control reaches here, RCU grace period has passed
474 	 * since I_WB_SWITCH assertion and all wb stat update transactions
475 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
476 	 * synchronizing against the i_pages lock.
477 	 *
478 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
479 	 * gives us exclusion against all wb related operations on @inode
480 	 * including IO list manipulations and stat updates.
481 	 */
482 	if (old_wb < new_wb) {
483 		spin_lock(&old_wb->list_lock);
484 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
485 	} else {
486 		spin_lock(&new_wb->list_lock);
487 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
488 	}
489 
490 	for (inodep = isw->inodes; *inodep; inodep++) {
491 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
492 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
493 			nr_switched++;
494 	}
495 
496 	spin_unlock(&new_wb->list_lock);
497 	spin_unlock(&old_wb->list_lock);
498 
499 	up_read(&bdi->wb_switch_rwsem);
500 
501 	if (nr_switched) {
502 		wb_wakeup(new_wb);
503 		wb_put_many(old_wb, nr_switched);
504 	}
505 
506 	for (inodep = isw->inodes; *inodep; inodep++)
507 		iput(*inodep);
508 	wb_put(new_wb);
509 	kfree(isw);
510 	atomic_dec(&isw_nr_in_flight);
511 }
512 
513 static bool inode_prepare_wbs_switch(struct inode *inode,
514 				     struct bdi_writeback *new_wb)
515 {
516 	/*
517 	 * Paired with smp_mb() in cgroup_writeback_umount().
518 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
519 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
520 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
521 	 */
522 	smp_mb();
523 
524 	/* while holding I_WB_SWITCH, no one else can update the association */
525 	spin_lock(&inode->i_lock);
526 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
528 	    inode_to_wb(inode) == new_wb) {
529 		spin_unlock(&inode->i_lock);
530 		return false;
531 	}
532 	inode->i_state |= I_WB_SWITCH;
533 	__iget(inode);
534 	spin_unlock(&inode->i_lock);
535 
536 	return true;
537 }
538 
539 /**
540  * inode_switch_wbs - change the wb association of an inode
541  * @inode: target inode
542  * @new_wb_id: ID of the new wb
543  *
544  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
545  * switching is performed asynchronously and may fail silently.
546  */
547 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
548 {
549 	struct backing_dev_info *bdi = inode_to_bdi(inode);
550 	struct cgroup_subsys_state *memcg_css;
551 	struct inode_switch_wbs_context *isw;
552 
553 	/* noop if seems to be already in progress */
554 	if (inode->i_state & I_WB_SWITCH)
555 		return;
556 
557 	/* avoid queueing a new switch if too many are already in flight */
558 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
559 		return;
560 
561 	isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
562 	if (!isw)
563 		return;
564 
565 	atomic_inc(&isw_nr_in_flight);
566 
567 	/* find and pin the new wb */
568 	rcu_read_lock();
569 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
570 	if (memcg_css && !css_tryget(memcg_css))
571 		memcg_css = NULL;
572 	rcu_read_unlock();
573 	if (!memcg_css)
574 		goto out_free;
575 
576 	isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
577 	css_put(memcg_css);
578 	if (!isw->new_wb)
579 		goto out_free;
580 
581 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
582 		goto out_free;
583 
584 	isw->inodes[0] = inode;
585 
586 	/*
587 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
588 	 * the RCU protected stat update paths to grab the i_page
589 	 * lock so that stat transfer can synchronize against them.
590 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
591 	 */
592 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
593 	queue_rcu_work(isw_wq, &isw->work);
594 	return;
595 
596 out_free:
597 	atomic_dec(&isw_nr_in_flight);
598 	if (isw->new_wb)
599 		wb_put(isw->new_wb);
600 	kfree(isw);
601 }
602 
603 /**
604  * cleanup_offline_cgwb - detach associated inodes
605  * @wb: target wb
606  *
607  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
608  * to eventually release the dying @wb.  Returns %true if not all inodes were
609  * switched and the function has to be restarted.
610  */
611 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
612 {
613 	struct cgroup_subsys_state *memcg_css;
614 	struct inode_switch_wbs_context *isw;
615 	struct inode *inode;
616 	int nr;
617 	bool restart = false;
618 
619 	isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
620 		      sizeof(struct inode *), GFP_KERNEL);
621 	if (!isw)
622 		return restart;
623 
624 	atomic_inc(&isw_nr_in_flight);
625 
626 	for (memcg_css = wb->memcg_css->parent; memcg_css;
627 	     memcg_css = memcg_css->parent) {
628 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
629 		if (isw->new_wb)
630 			break;
631 	}
632 	if (unlikely(!isw->new_wb))
633 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
634 
635 	nr = 0;
636 	spin_lock(&wb->list_lock);
637 	list_for_each_entry(inode, &wb->b_attached, i_io_list) {
638 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
639 			continue;
640 
641 		isw->inodes[nr++] = inode;
642 
643 		if (nr >= WB_MAX_INODES_PER_ISW - 1) {
644 			restart = true;
645 			break;
646 		}
647 	}
648 	spin_unlock(&wb->list_lock);
649 
650 	/* no attached inodes? bail out */
651 	if (nr == 0) {
652 		atomic_dec(&isw_nr_in_flight);
653 		wb_put(isw->new_wb);
654 		kfree(isw);
655 		return restart;
656 	}
657 
658 	/*
659 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
660 	 * the RCU protected stat update paths to grab the i_page
661 	 * lock so that stat transfer can synchronize against them.
662 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
663 	 */
664 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
665 	queue_rcu_work(isw_wq, &isw->work);
666 
667 	return restart;
668 }
669 
670 /**
671  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
672  * @wbc: writeback_control of interest
673  * @inode: target inode
674  *
675  * @inode is locked and about to be written back under the control of @wbc.
676  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
677  * writeback completion, wbc_detach_inode() should be called.  This is used
678  * to track the cgroup writeback context.
679  */
680 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
681 				 struct inode *inode)
682 {
683 	if (!inode_cgwb_enabled(inode)) {
684 		spin_unlock(&inode->i_lock);
685 		return;
686 	}
687 
688 	wbc->wb = inode_to_wb(inode);
689 	wbc->inode = inode;
690 
691 	wbc->wb_id = wbc->wb->memcg_css->id;
692 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
693 	wbc->wb_tcand_id = 0;
694 	wbc->wb_bytes = 0;
695 	wbc->wb_lcand_bytes = 0;
696 	wbc->wb_tcand_bytes = 0;
697 
698 	wb_get(wbc->wb);
699 	spin_unlock(&inode->i_lock);
700 
701 	/*
702 	 * A dying wb indicates that either the blkcg associated with the
703 	 * memcg changed or the associated memcg is dying.  In the first
704 	 * case, a replacement wb should already be available and we should
705 	 * refresh the wb immediately.  In the second case, trying to
706 	 * refresh will keep failing.
707 	 */
708 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
709 		inode_switch_wbs(inode, wbc->wb_id);
710 }
711 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
712 
713 /**
714  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
715  * @wbc: writeback_control of the just finished writeback
716  *
717  * To be called after a writeback attempt of an inode finishes and undoes
718  * wbc_attach_and_unlock_inode().  Can be called under any context.
719  *
720  * As concurrent write sharing of an inode is expected to be very rare and
721  * memcg only tracks page ownership on first-use basis severely confining
722  * the usefulness of such sharing, cgroup writeback tracks ownership
723  * per-inode.  While the support for concurrent write sharing of an inode
724  * is deemed unnecessary, an inode being written to by different cgroups at
725  * different points in time is a lot more common, and, more importantly,
726  * charging only by first-use can too readily lead to grossly incorrect
727  * behaviors (single foreign page can lead to gigabytes of writeback to be
728  * incorrectly attributed).
729  *
730  * To resolve this issue, cgroup writeback detects the majority dirtier of
731  * an inode and transfers the ownership to it.  To avoid unnnecessary
732  * oscillation, the detection mechanism keeps track of history and gives
733  * out the switch verdict only if the foreign usage pattern is stable over
734  * a certain amount of time and/or writeback attempts.
735  *
736  * On each writeback attempt, @wbc tries to detect the majority writer
737  * using Boyer-Moore majority vote algorithm.  In addition to the byte
738  * count from the majority voting, it also counts the bytes written for the
739  * current wb and the last round's winner wb (max of last round's current
740  * wb, the winner from two rounds ago, and the last round's majority
741  * candidate).  Keeping track of the historical winner helps the algorithm
742  * to semi-reliably detect the most active writer even when it's not the
743  * absolute majority.
744  *
745  * Once the winner of the round is determined, whether the winner is
746  * foreign or not and how much IO time the round consumed is recorded in
747  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
748  * over a certain threshold, the switch verdict is given.
749  */
750 void wbc_detach_inode(struct writeback_control *wbc)
751 {
752 	struct bdi_writeback *wb = wbc->wb;
753 	struct inode *inode = wbc->inode;
754 	unsigned long avg_time, max_bytes, max_time;
755 	u16 history;
756 	int max_id;
757 
758 	if (!wb)
759 		return;
760 
761 	history = inode->i_wb_frn_history;
762 	avg_time = inode->i_wb_frn_avg_time;
763 
764 	/* pick the winner of this round */
765 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
766 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
767 		max_id = wbc->wb_id;
768 		max_bytes = wbc->wb_bytes;
769 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
770 		max_id = wbc->wb_lcand_id;
771 		max_bytes = wbc->wb_lcand_bytes;
772 	} else {
773 		max_id = wbc->wb_tcand_id;
774 		max_bytes = wbc->wb_tcand_bytes;
775 	}
776 
777 	/*
778 	 * Calculate the amount of IO time the winner consumed and fold it
779 	 * into the running average kept per inode.  If the consumed IO
780 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
781 	 * deciding whether to switch or not.  This is to prevent one-off
782 	 * small dirtiers from skewing the verdict.
783 	 */
784 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
785 				wb->avg_write_bandwidth);
786 	if (avg_time)
787 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
788 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
789 	else
790 		avg_time = max_time;	/* immediate catch up on first run */
791 
792 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
793 		int slots;
794 
795 		/*
796 		 * The switch verdict is reached if foreign wb's consume
797 		 * more than a certain proportion of IO time in a
798 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
799 		 * history mask where each bit represents one sixteenth of
800 		 * the period.  Determine the number of slots to shift into
801 		 * history from @max_time.
802 		 */
803 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
804 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
805 		history <<= slots;
806 		if (wbc->wb_id != max_id)
807 			history |= (1U << slots) - 1;
808 
809 		if (history)
810 			trace_inode_foreign_history(inode, wbc, history);
811 
812 		/*
813 		 * Switch if the current wb isn't the consistent winner.
814 		 * If there are multiple closely competing dirtiers, the
815 		 * inode may switch across them repeatedly over time, which
816 		 * is okay.  The main goal is avoiding keeping an inode on
817 		 * the wrong wb for an extended period of time.
818 		 */
819 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
820 			inode_switch_wbs(inode, max_id);
821 	}
822 
823 	/*
824 	 * Multiple instances of this function may race to update the
825 	 * following fields but we don't mind occassional inaccuracies.
826 	 */
827 	inode->i_wb_frn_winner = max_id;
828 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
829 	inode->i_wb_frn_history = history;
830 
831 	wb_put(wbc->wb);
832 	wbc->wb = NULL;
833 }
834 EXPORT_SYMBOL_GPL(wbc_detach_inode);
835 
836 /**
837  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
838  * @wbc: writeback_control of the writeback in progress
839  * @page: page being written out
840  * @bytes: number of bytes being written out
841  *
842  * @bytes from @page are about to written out during the writeback
843  * controlled by @wbc.  Keep the book for foreign inode detection.  See
844  * wbc_detach_inode().
845  */
846 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
847 			      size_t bytes)
848 {
849 	struct cgroup_subsys_state *css;
850 	int id;
851 
852 	/*
853 	 * pageout() path doesn't attach @wbc to the inode being written
854 	 * out.  This is intentional as we don't want the function to block
855 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
856 	 * regular writeback instead of writing things out itself.
857 	 */
858 	if (!wbc->wb || wbc->no_cgroup_owner)
859 		return;
860 
861 	css = mem_cgroup_css_from_page(page);
862 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
863 	if (!(css->flags & CSS_ONLINE))
864 		return;
865 
866 	id = css->id;
867 
868 	if (id == wbc->wb_id) {
869 		wbc->wb_bytes += bytes;
870 		return;
871 	}
872 
873 	if (id == wbc->wb_lcand_id)
874 		wbc->wb_lcand_bytes += bytes;
875 
876 	/* Boyer-Moore majority vote algorithm */
877 	if (!wbc->wb_tcand_bytes)
878 		wbc->wb_tcand_id = id;
879 	if (id == wbc->wb_tcand_id)
880 		wbc->wb_tcand_bytes += bytes;
881 	else
882 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
883 }
884 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
885 
886 /**
887  * inode_congested - test whether an inode is congested
888  * @inode: inode to test for congestion (may be NULL)
889  * @cong_bits: mask of WB_[a]sync_congested bits to test
890  *
891  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
892  * bits to test and the return value is the mask of set bits.
893  *
894  * If cgroup writeback is enabled for @inode, the congestion state is
895  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
896  * associated with @inode is congested; otherwise, the root wb's congestion
897  * state is used.
898  *
899  * @inode is allowed to be NULL as this function is often called on
900  * mapping->host which is NULL for the swapper space.
901  */
902 int inode_congested(struct inode *inode, int cong_bits)
903 {
904 	/*
905 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
906 	 * Start transaction iff ->i_wb is visible.
907 	 */
908 	if (inode && inode_to_wb_is_valid(inode)) {
909 		struct bdi_writeback *wb;
910 		struct wb_lock_cookie lock_cookie = {};
911 		bool congested;
912 
913 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
914 		congested = wb_congested(wb, cong_bits);
915 		unlocked_inode_to_wb_end(inode, &lock_cookie);
916 		return congested;
917 	}
918 
919 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
920 }
921 EXPORT_SYMBOL_GPL(inode_congested);
922 
923 /**
924  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
925  * @wb: target bdi_writeback to split @nr_pages to
926  * @nr_pages: number of pages to write for the whole bdi
927  *
928  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
929  * relation to the total write bandwidth of all wb's w/ dirty inodes on
930  * @wb->bdi.
931  */
932 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
933 {
934 	unsigned long this_bw = wb->avg_write_bandwidth;
935 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
936 
937 	if (nr_pages == LONG_MAX)
938 		return LONG_MAX;
939 
940 	/*
941 	 * This may be called on clean wb's and proportional distribution
942 	 * may not make sense, just use the original @nr_pages in those
943 	 * cases.  In general, we wanna err on the side of writing more.
944 	 */
945 	if (!tot_bw || this_bw >= tot_bw)
946 		return nr_pages;
947 	else
948 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
949 }
950 
951 /**
952  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
953  * @bdi: target backing_dev_info
954  * @base_work: wb_writeback_work to issue
955  * @skip_if_busy: skip wb's which already have writeback in progress
956  *
957  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
958  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
959  * distributed to the busy wbs according to each wb's proportion in the
960  * total active write bandwidth of @bdi.
961  */
962 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
963 				  struct wb_writeback_work *base_work,
964 				  bool skip_if_busy)
965 {
966 	struct bdi_writeback *last_wb = NULL;
967 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
968 					      struct bdi_writeback, bdi_node);
969 
970 	might_sleep();
971 restart:
972 	rcu_read_lock();
973 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
974 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
975 		struct wb_writeback_work fallback_work;
976 		struct wb_writeback_work *work;
977 		long nr_pages;
978 
979 		if (last_wb) {
980 			wb_put(last_wb);
981 			last_wb = NULL;
982 		}
983 
984 		/* SYNC_ALL writes out I_DIRTY_TIME too */
985 		if (!wb_has_dirty_io(wb) &&
986 		    (base_work->sync_mode == WB_SYNC_NONE ||
987 		     list_empty(&wb->b_dirty_time)))
988 			continue;
989 		if (skip_if_busy && writeback_in_progress(wb))
990 			continue;
991 
992 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
993 
994 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
995 		if (work) {
996 			*work = *base_work;
997 			work->nr_pages = nr_pages;
998 			work->auto_free = 1;
999 			wb_queue_work(wb, work);
1000 			continue;
1001 		}
1002 
1003 		/* alloc failed, execute synchronously using on-stack fallback */
1004 		work = &fallback_work;
1005 		*work = *base_work;
1006 		work->nr_pages = nr_pages;
1007 		work->auto_free = 0;
1008 		work->done = &fallback_work_done;
1009 
1010 		wb_queue_work(wb, work);
1011 
1012 		/*
1013 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1014 		 * continuing iteration from @wb after dropping and
1015 		 * regrabbing rcu read lock.
1016 		 */
1017 		wb_get(wb);
1018 		last_wb = wb;
1019 
1020 		rcu_read_unlock();
1021 		wb_wait_for_completion(&fallback_work_done);
1022 		goto restart;
1023 	}
1024 	rcu_read_unlock();
1025 
1026 	if (last_wb)
1027 		wb_put(last_wb);
1028 }
1029 
1030 /**
1031  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1032  * @bdi_id: target bdi id
1033  * @memcg_id: target memcg css id
1034  * @nr: number of pages to write, 0 for best-effort dirty flushing
1035  * @reason: reason why some writeback work initiated
1036  * @done: target wb_completion
1037  *
1038  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1039  * with the specified parameters.
1040  */
1041 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
1042 			   enum wb_reason reason, struct wb_completion *done)
1043 {
1044 	struct backing_dev_info *bdi;
1045 	struct cgroup_subsys_state *memcg_css;
1046 	struct bdi_writeback *wb;
1047 	struct wb_writeback_work *work;
1048 	int ret;
1049 
1050 	/* lookup bdi and memcg */
1051 	bdi = bdi_get_by_id(bdi_id);
1052 	if (!bdi)
1053 		return -ENOENT;
1054 
1055 	rcu_read_lock();
1056 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1057 	if (memcg_css && !css_tryget(memcg_css))
1058 		memcg_css = NULL;
1059 	rcu_read_unlock();
1060 	if (!memcg_css) {
1061 		ret = -ENOENT;
1062 		goto out_bdi_put;
1063 	}
1064 
1065 	/*
1066 	 * And find the associated wb.  If the wb isn't there already
1067 	 * there's nothing to flush, don't create one.
1068 	 */
1069 	wb = wb_get_lookup(bdi, memcg_css);
1070 	if (!wb) {
1071 		ret = -ENOENT;
1072 		goto out_css_put;
1073 	}
1074 
1075 	/*
1076 	 * If @nr is zero, the caller is attempting to write out most of
1077 	 * the currently dirty pages.  Let's take the current dirty page
1078 	 * count and inflate it by 25% which should be large enough to
1079 	 * flush out most dirty pages while avoiding getting livelocked by
1080 	 * concurrent dirtiers.
1081 	 */
1082 	if (!nr) {
1083 		unsigned long filepages, headroom, dirty, writeback;
1084 
1085 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
1086 				      &writeback);
1087 		nr = dirty * 10 / 8;
1088 	}
1089 
1090 	/* issue the writeback work */
1091 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1092 	if (work) {
1093 		work->nr_pages = nr;
1094 		work->sync_mode = WB_SYNC_NONE;
1095 		work->range_cyclic = 1;
1096 		work->reason = reason;
1097 		work->done = done;
1098 		work->auto_free = 1;
1099 		wb_queue_work(wb, work);
1100 		ret = 0;
1101 	} else {
1102 		ret = -ENOMEM;
1103 	}
1104 
1105 	wb_put(wb);
1106 out_css_put:
1107 	css_put(memcg_css);
1108 out_bdi_put:
1109 	bdi_put(bdi);
1110 	return ret;
1111 }
1112 
1113 /**
1114  * cgroup_writeback_umount - flush inode wb switches for umount
1115  *
1116  * This function is called when a super_block is about to be destroyed and
1117  * flushes in-flight inode wb switches.  An inode wb switch goes through
1118  * RCU and then workqueue, so the two need to be flushed in order to ensure
1119  * that all previously scheduled switches are finished.  As wb switches are
1120  * rare occurrences and synchronize_rcu() can take a while, perform
1121  * flushing iff wb switches are in flight.
1122  */
1123 void cgroup_writeback_umount(void)
1124 {
1125 	/*
1126 	 * SB_ACTIVE should be reliably cleared before checking
1127 	 * isw_nr_in_flight, see generic_shutdown_super().
1128 	 */
1129 	smp_mb();
1130 
1131 	if (atomic_read(&isw_nr_in_flight)) {
1132 		/*
1133 		 * Use rcu_barrier() to wait for all pending callbacks to
1134 		 * ensure that all in-flight wb switches are in the workqueue.
1135 		 */
1136 		rcu_barrier();
1137 		flush_workqueue(isw_wq);
1138 	}
1139 }
1140 
1141 static int __init cgroup_writeback_init(void)
1142 {
1143 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1144 	if (!isw_wq)
1145 		return -ENOMEM;
1146 	return 0;
1147 }
1148 fs_initcall(cgroup_writeback_init);
1149 
1150 #else	/* CONFIG_CGROUP_WRITEBACK */
1151 
1152 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1153 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1154 
1155 static void inode_cgwb_move_to_attached(struct inode *inode,
1156 					struct bdi_writeback *wb)
1157 {
1158 	assert_spin_locked(&wb->list_lock);
1159 	assert_spin_locked(&inode->i_lock);
1160 
1161 	inode->i_state &= ~I_SYNC_QUEUED;
1162 	list_del_init(&inode->i_io_list);
1163 	wb_io_lists_depopulated(wb);
1164 }
1165 
1166 static struct bdi_writeback *
1167 locked_inode_to_wb_and_lock_list(struct inode *inode)
1168 	__releases(&inode->i_lock)
1169 	__acquires(&wb->list_lock)
1170 {
1171 	struct bdi_writeback *wb = inode_to_wb(inode);
1172 
1173 	spin_unlock(&inode->i_lock);
1174 	spin_lock(&wb->list_lock);
1175 	return wb;
1176 }
1177 
1178 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1179 	__acquires(&wb->list_lock)
1180 {
1181 	struct bdi_writeback *wb = inode_to_wb(inode);
1182 
1183 	spin_lock(&wb->list_lock);
1184 	return wb;
1185 }
1186 
1187 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1188 {
1189 	return nr_pages;
1190 }
1191 
1192 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1193 				  struct wb_writeback_work *base_work,
1194 				  bool skip_if_busy)
1195 {
1196 	might_sleep();
1197 
1198 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1199 		base_work->auto_free = 0;
1200 		wb_queue_work(&bdi->wb, base_work);
1201 	}
1202 }
1203 
1204 #endif	/* CONFIG_CGROUP_WRITEBACK */
1205 
1206 /*
1207  * Add in the number of potentially dirty inodes, because each inode
1208  * write can dirty pagecache in the underlying blockdev.
1209  */
1210 static unsigned long get_nr_dirty_pages(void)
1211 {
1212 	return global_node_page_state(NR_FILE_DIRTY) +
1213 		get_nr_dirty_inodes();
1214 }
1215 
1216 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1217 {
1218 	if (!wb_has_dirty_io(wb))
1219 		return;
1220 
1221 	/*
1222 	 * All callers of this function want to start writeback of all
1223 	 * dirty pages. Places like vmscan can call this at a very
1224 	 * high frequency, causing pointless allocations of tons of
1225 	 * work items and keeping the flusher threads busy retrieving
1226 	 * that work. Ensure that we only allow one of them pending and
1227 	 * inflight at the time.
1228 	 */
1229 	if (test_bit(WB_start_all, &wb->state) ||
1230 	    test_and_set_bit(WB_start_all, &wb->state))
1231 		return;
1232 
1233 	wb->start_all_reason = reason;
1234 	wb_wakeup(wb);
1235 }
1236 
1237 /**
1238  * wb_start_background_writeback - start background writeback
1239  * @wb: bdi_writback to write from
1240  *
1241  * Description:
1242  *   This makes sure WB_SYNC_NONE background writeback happens. When
1243  *   this function returns, it is only guaranteed that for given wb
1244  *   some IO is happening if we are over background dirty threshold.
1245  *   Caller need not hold sb s_umount semaphore.
1246  */
1247 void wb_start_background_writeback(struct bdi_writeback *wb)
1248 {
1249 	/*
1250 	 * We just wake up the flusher thread. It will perform background
1251 	 * writeback as soon as there is no other work to do.
1252 	 */
1253 	trace_writeback_wake_background(wb);
1254 	wb_wakeup(wb);
1255 }
1256 
1257 /*
1258  * Remove the inode from the writeback list it is on.
1259  */
1260 void inode_io_list_del(struct inode *inode)
1261 {
1262 	struct bdi_writeback *wb;
1263 
1264 	wb = inode_to_wb_and_lock_list(inode);
1265 	spin_lock(&inode->i_lock);
1266 
1267 	inode->i_state &= ~I_SYNC_QUEUED;
1268 	list_del_init(&inode->i_io_list);
1269 	wb_io_lists_depopulated(wb);
1270 
1271 	spin_unlock(&inode->i_lock);
1272 	spin_unlock(&wb->list_lock);
1273 }
1274 EXPORT_SYMBOL(inode_io_list_del);
1275 
1276 /*
1277  * mark an inode as under writeback on the sb
1278  */
1279 void sb_mark_inode_writeback(struct inode *inode)
1280 {
1281 	struct super_block *sb = inode->i_sb;
1282 	unsigned long flags;
1283 
1284 	if (list_empty(&inode->i_wb_list)) {
1285 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1286 		if (list_empty(&inode->i_wb_list)) {
1287 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1288 			trace_sb_mark_inode_writeback(inode);
1289 		}
1290 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1291 	}
1292 }
1293 
1294 /*
1295  * clear an inode as under writeback on the sb
1296  */
1297 void sb_clear_inode_writeback(struct inode *inode)
1298 {
1299 	struct super_block *sb = inode->i_sb;
1300 	unsigned long flags;
1301 
1302 	if (!list_empty(&inode->i_wb_list)) {
1303 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1304 		if (!list_empty(&inode->i_wb_list)) {
1305 			list_del_init(&inode->i_wb_list);
1306 			trace_sb_clear_inode_writeback(inode);
1307 		}
1308 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1309 	}
1310 }
1311 
1312 /*
1313  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1314  * furthest end of its superblock's dirty-inode list.
1315  *
1316  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1317  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1318  * the case then the inode must have been redirtied while it was being written
1319  * out and we don't reset its dirtied_when.
1320  */
1321 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1322 {
1323 	assert_spin_locked(&inode->i_lock);
1324 
1325 	if (!list_empty(&wb->b_dirty)) {
1326 		struct inode *tail;
1327 
1328 		tail = wb_inode(wb->b_dirty.next);
1329 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1330 			inode->dirtied_when = jiffies;
1331 	}
1332 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1333 	inode->i_state &= ~I_SYNC_QUEUED;
1334 }
1335 
1336 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1337 {
1338 	spin_lock(&inode->i_lock);
1339 	redirty_tail_locked(inode, wb);
1340 	spin_unlock(&inode->i_lock);
1341 }
1342 
1343 /*
1344  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1345  */
1346 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1347 {
1348 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1349 }
1350 
1351 static void inode_sync_complete(struct inode *inode)
1352 {
1353 	inode->i_state &= ~I_SYNC;
1354 	/* If inode is clean an unused, put it into LRU now... */
1355 	inode_add_lru(inode);
1356 	/* Waiters must see I_SYNC cleared before being woken up */
1357 	smp_mb();
1358 	wake_up_bit(&inode->i_state, __I_SYNC);
1359 }
1360 
1361 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1362 {
1363 	bool ret = time_after(inode->dirtied_when, t);
1364 #ifndef CONFIG_64BIT
1365 	/*
1366 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1367 	 * It _appears_ to be in the future, but is actually in distant past.
1368 	 * This test is necessary to prevent such wrapped-around relative times
1369 	 * from permanently stopping the whole bdi writeback.
1370 	 */
1371 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1372 #endif
1373 	return ret;
1374 }
1375 
1376 #define EXPIRE_DIRTY_ATIME 0x0001
1377 
1378 /*
1379  * Move expired (dirtied before dirtied_before) dirty inodes from
1380  * @delaying_queue to @dispatch_queue.
1381  */
1382 static int move_expired_inodes(struct list_head *delaying_queue,
1383 			       struct list_head *dispatch_queue,
1384 			       unsigned long dirtied_before)
1385 {
1386 	LIST_HEAD(tmp);
1387 	struct list_head *pos, *node;
1388 	struct super_block *sb = NULL;
1389 	struct inode *inode;
1390 	int do_sb_sort = 0;
1391 	int moved = 0;
1392 
1393 	while (!list_empty(delaying_queue)) {
1394 		inode = wb_inode(delaying_queue->prev);
1395 		if (inode_dirtied_after(inode, dirtied_before))
1396 			break;
1397 		list_move(&inode->i_io_list, &tmp);
1398 		moved++;
1399 		spin_lock(&inode->i_lock);
1400 		inode->i_state |= I_SYNC_QUEUED;
1401 		spin_unlock(&inode->i_lock);
1402 		if (sb_is_blkdev_sb(inode->i_sb))
1403 			continue;
1404 		if (sb && sb != inode->i_sb)
1405 			do_sb_sort = 1;
1406 		sb = inode->i_sb;
1407 	}
1408 
1409 	/* just one sb in list, splice to dispatch_queue and we're done */
1410 	if (!do_sb_sort) {
1411 		list_splice(&tmp, dispatch_queue);
1412 		goto out;
1413 	}
1414 
1415 	/* Move inodes from one superblock together */
1416 	while (!list_empty(&tmp)) {
1417 		sb = wb_inode(tmp.prev)->i_sb;
1418 		list_for_each_prev_safe(pos, node, &tmp) {
1419 			inode = wb_inode(pos);
1420 			if (inode->i_sb == sb)
1421 				list_move(&inode->i_io_list, dispatch_queue);
1422 		}
1423 	}
1424 out:
1425 	return moved;
1426 }
1427 
1428 /*
1429  * Queue all expired dirty inodes for io, eldest first.
1430  * Before
1431  *         newly dirtied     b_dirty    b_io    b_more_io
1432  *         =============>    gf         edc     BA
1433  * After
1434  *         newly dirtied     b_dirty    b_io    b_more_io
1435  *         =============>    g          fBAedc
1436  *                                           |
1437  *                                           +--> dequeue for IO
1438  */
1439 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1440 		     unsigned long dirtied_before)
1441 {
1442 	int moved;
1443 	unsigned long time_expire_jif = dirtied_before;
1444 
1445 	assert_spin_locked(&wb->list_lock);
1446 	list_splice_init(&wb->b_more_io, &wb->b_io);
1447 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1448 	if (!work->for_sync)
1449 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1450 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1451 				     time_expire_jif);
1452 	if (moved)
1453 		wb_io_lists_populated(wb);
1454 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1455 }
1456 
1457 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1458 {
1459 	int ret;
1460 
1461 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1462 		trace_writeback_write_inode_start(inode, wbc);
1463 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1464 		trace_writeback_write_inode(inode, wbc);
1465 		return ret;
1466 	}
1467 	return 0;
1468 }
1469 
1470 /*
1471  * Wait for writeback on an inode to complete. Called with i_lock held.
1472  * Caller must make sure inode cannot go away when we drop i_lock.
1473  */
1474 static void __inode_wait_for_writeback(struct inode *inode)
1475 	__releases(inode->i_lock)
1476 	__acquires(inode->i_lock)
1477 {
1478 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1479 	wait_queue_head_t *wqh;
1480 
1481 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1482 	while (inode->i_state & I_SYNC) {
1483 		spin_unlock(&inode->i_lock);
1484 		__wait_on_bit(wqh, &wq, bit_wait,
1485 			      TASK_UNINTERRUPTIBLE);
1486 		spin_lock(&inode->i_lock);
1487 	}
1488 }
1489 
1490 /*
1491  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1492  */
1493 void inode_wait_for_writeback(struct inode *inode)
1494 {
1495 	spin_lock(&inode->i_lock);
1496 	__inode_wait_for_writeback(inode);
1497 	spin_unlock(&inode->i_lock);
1498 }
1499 
1500 /*
1501  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1502  * held and drops it. It is aimed for callers not holding any inode reference
1503  * so once i_lock is dropped, inode can go away.
1504  */
1505 static void inode_sleep_on_writeback(struct inode *inode)
1506 	__releases(inode->i_lock)
1507 {
1508 	DEFINE_WAIT(wait);
1509 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1510 	int sleep;
1511 
1512 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1513 	sleep = inode->i_state & I_SYNC;
1514 	spin_unlock(&inode->i_lock);
1515 	if (sleep)
1516 		schedule();
1517 	finish_wait(wqh, &wait);
1518 }
1519 
1520 /*
1521  * Find proper writeback list for the inode depending on its current state and
1522  * possibly also change of its state while we were doing writeback.  Here we
1523  * handle things such as livelock prevention or fairness of writeback among
1524  * inodes. This function can be called only by flusher thread - noone else
1525  * processes all inodes in writeback lists and requeueing inodes behind flusher
1526  * thread's back can have unexpected consequences.
1527  */
1528 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1529 			  struct writeback_control *wbc)
1530 {
1531 	if (inode->i_state & I_FREEING)
1532 		return;
1533 
1534 	/*
1535 	 * Sync livelock prevention. Each inode is tagged and synced in one
1536 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1537 	 * the dirty time to prevent enqueue and sync it again.
1538 	 */
1539 	if ((inode->i_state & I_DIRTY) &&
1540 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1541 		inode->dirtied_when = jiffies;
1542 
1543 	if (wbc->pages_skipped) {
1544 		/*
1545 		 * writeback is not making progress due to locked
1546 		 * buffers. Skip this inode for now.
1547 		 */
1548 		redirty_tail_locked(inode, wb);
1549 		return;
1550 	}
1551 
1552 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1553 		/*
1554 		 * We didn't write back all the pages.  nfs_writepages()
1555 		 * sometimes bales out without doing anything.
1556 		 */
1557 		if (wbc->nr_to_write <= 0) {
1558 			/* Slice used up. Queue for next turn. */
1559 			requeue_io(inode, wb);
1560 		} else {
1561 			/*
1562 			 * Writeback blocked by something other than
1563 			 * congestion. Delay the inode for some time to
1564 			 * avoid spinning on the CPU (100% iowait)
1565 			 * retrying writeback of the dirty page/inode
1566 			 * that cannot be performed immediately.
1567 			 */
1568 			redirty_tail_locked(inode, wb);
1569 		}
1570 	} else if (inode->i_state & I_DIRTY) {
1571 		/*
1572 		 * Filesystems can dirty the inode during writeback operations,
1573 		 * such as delayed allocation during submission or metadata
1574 		 * updates after data IO completion.
1575 		 */
1576 		redirty_tail_locked(inode, wb);
1577 	} else if (inode->i_state & I_DIRTY_TIME) {
1578 		inode->dirtied_when = jiffies;
1579 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1580 		inode->i_state &= ~I_SYNC_QUEUED;
1581 	} else {
1582 		/* The inode is clean. Remove from writeback lists. */
1583 		inode_cgwb_move_to_attached(inode, wb);
1584 	}
1585 }
1586 
1587 /*
1588  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1589  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1590  *
1591  * This doesn't remove the inode from the writeback list it is on, except
1592  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1593  * expiration.  The caller is otherwise responsible for writeback list handling.
1594  *
1595  * The caller is also responsible for setting the I_SYNC flag beforehand and
1596  * calling inode_sync_complete() to clear it afterwards.
1597  */
1598 static int
1599 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1600 {
1601 	struct address_space *mapping = inode->i_mapping;
1602 	long nr_to_write = wbc->nr_to_write;
1603 	unsigned dirty;
1604 	int ret;
1605 
1606 	WARN_ON(!(inode->i_state & I_SYNC));
1607 
1608 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1609 
1610 	ret = do_writepages(mapping, wbc);
1611 
1612 	/*
1613 	 * Make sure to wait on the data before writing out the metadata.
1614 	 * This is important for filesystems that modify metadata on data
1615 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1616 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1617 	 * inode metadata is written back correctly.
1618 	 */
1619 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1620 		int err = filemap_fdatawait(mapping);
1621 		if (ret == 0)
1622 			ret = err;
1623 	}
1624 
1625 	/*
1626 	 * If the inode has dirty timestamps and we need to write them, call
1627 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1628 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1629 	 */
1630 	if ((inode->i_state & I_DIRTY_TIME) &&
1631 	    (wbc->sync_mode == WB_SYNC_ALL ||
1632 	     time_after(jiffies, inode->dirtied_time_when +
1633 			dirtytime_expire_interval * HZ))) {
1634 		trace_writeback_lazytime(inode);
1635 		mark_inode_dirty_sync(inode);
1636 	}
1637 
1638 	/*
1639 	 * Get and clear the dirty flags from i_state.  This needs to be done
1640 	 * after calling writepages because some filesystems may redirty the
1641 	 * inode during writepages due to delalloc.  It also needs to be done
1642 	 * after handling timestamp expiration, as that may dirty the inode too.
1643 	 */
1644 	spin_lock(&inode->i_lock);
1645 	dirty = inode->i_state & I_DIRTY;
1646 	inode->i_state &= ~dirty;
1647 
1648 	/*
1649 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1650 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1651 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1652 	 * inode.
1653 	 *
1654 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1655 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1656 	 * necessary.  This guarantees that either __mark_inode_dirty()
1657 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1658 	 */
1659 	smp_mb();
1660 
1661 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1662 		inode->i_state |= I_DIRTY_PAGES;
1663 
1664 	spin_unlock(&inode->i_lock);
1665 
1666 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1667 	if (dirty & ~I_DIRTY_PAGES) {
1668 		int err = write_inode(inode, wbc);
1669 		if (ret == 0)
1670 			ret = err;
1671 	}
1672 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1673 	return ret;
1674 }
1675 
1676 /*
1677  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1678  * the regular batched writeback done by the flusher threads in
1679  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1680  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1681  *
1682  * To prevent the inode from going away, either the caller must have a reference
1683  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1684  */
1685 static int writeback_single_inode(struct inode *inode,
1686 				  struct writeback_control *wbc)
1687 {
1688 	struct bdi_writeback *wb;
1689 	int ret = 0;
1690 
1691 	spin_lock(&inode->i_lock);
1692 	if (!atomic_read(&inode->i_count))
1693 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1694 	else
1695 		WARN_ON(inode->i_state & I_WILL_FREE);
1696 
1697 	if (inode->i_state & I_SYNC) {
1698 		/*
1699 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1700 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1701 		 * must wait for the existing writeback to complete, then do
1702 		 * writeback again if there's anything left.
1703 		 */
1704 		if (wbc->sync_mode != WB_SYNC_ALL)
1705 			goto out;
1706 		__inode_wait_for_writeback(inode);
1707 	}
1708 	WARN_ON(inode->i_state & I_SYNC);
1709 	/*
1710 	 * If the inode is already fully clean, then there's nothing to do.
1711 	 *
1712 	 * For data-integrity syncs we also need to check whether any pages are
1713 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1714 	 * there are any such pages, we'll need to wait for them.
1715 	 */
1716 	if (!(inode->i_state & I_DIRTY_ALL) &&
1717 	    (wbc->sync_mode != WB_SYNC_ALL ||
1718 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1719 		goto out;
1720 	inode->i_state |= I_SYNC;
1721 	wbc_attach_and_unlock_inode(wbc, inode);
1722 
1723 	ret = __writeback_single_inode(inode, wbc);
1724 
1725 	wbc_detach_inode(wbc);
1726 
1727 	wb = inode_to_wb_and_lock_list(inode);
1728 	spin_lock(&inode->i_lock);
1729 	/*
1730 	 * If the inode is now fully clean, then it can be safely removed from
1731 	 * its writeback list (if any).  Otherwise the flusher threads are
1732 	 * responsible for the writeback lists.
1733 	 */
1734 	if (!(inode->i_state & I_DIRTY_ALL))
1735 		inode_cgwb_move_to_attached(inode, wb);
1736 	spin_unlock(&wb->list_lock);
1737 	inode_sync_complete(inode);
1738 out:
1739 	spin_unlock(&inode->i_lock);
1740 	return ret;
1741 }
1742 
1743 static long writeback_chunk_size(struct bdi_writeback *wb,
1744 				 struct wb_writeback_work *work)
1745 {
1746 	long pages;
1747 
1748 	/*
1749 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1750 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1751 	 * here avoids calling into writeback_inodes_wb() more than once.
1752 	 *
1753 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1754 	 *
1755 	 *      wb_writeback()
1756 	 *          writeback_sb_inodes()       <== called only once
1757 	 *              write_cache_pages()     <== called once for each inode
1758 	 *                   (quickly) tag currently dirty pages
1759 	 *                   (maybe slowly) sync all tagged pages
1760 	 */
1761 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1762 		pages = LONG_MAX;
1763 	else {
1764 		pages = min(wb->avg_write_bandwidth / 2,
1765 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1766 		pages = min(pages, work->nr_pages);
1767 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1768 				   MIN_WRITEBACK_PAGES);
1769 	}
1770 
1771 	return pages;
1772 }
1773 
1774 /*
1775  * Write a portion of b_io inodes which belong to @sb.
1776  *
1777  * Return the number of pages and/or inodes written.
1778  *
1779  * NOTE! This is called with wb->list_lock held, and will
1780  * unlock and relock that for each inode it ends up doing
1781  * IO for.
1782  */
1783 static long writeback_sb_inodes(struct super_block *sb,
1784 				struct bdi_writeback *wb,
1785 				struct wb_writeback_work *work)
1786 {
1787 	struct writeback_control wbc = {
1788 		.sync_mode		= work->sync_mode,
1789 		.tagged_writepages	= work->tagged_writepages,
1790 		.for_kupdate		= work->for_kupdate,
1791 		.for_background		= work->for_background,
1792 		.for_sync		= work->for_sync,
1793 		.range_cyclic		= work->range_cyclic,
1794 		.range_start		= 0,
1795 		.range_end		= LLONG_MAX,
1796 	};
1797 	unsigned long start_time = jiffies;
1798 	long write_chunk;
1799 	long wrote = 0;  /* count both pages and inodes */
1800 
1801 	while (!list_empty(&wb->b_io)) {
1802 		struct inode *inode = wb_inode(wb->b_io.prev);
1803 		struct bdi_writeback *tmp_wb;
1804 
1805 		if (inode->i_sb != sb) {
1806 			if (work->sb) {
1807 				/*
1808 				 * We only want to write back data for this
1809 				 * superblock, move all inodes not belonging
1810 				 * to it back onto the dirty list.
1811 				 */
1812 				redirty_tail(inode, wb);
1813 				continue;
1814 			}
1815 
1816 			/*
1817 			 * The inode belongs to a different superblock.
1818 			 * Bounce back to the caller to unpin this and
1819 			 * pin the next superblock.
1820 			 */
1821 			break;
1822 		}
1823 
1824 		/*
1825 		 * Don't bother with new inodes or inodes being freed, first
1826 		 * kind does not need periodic writeout yet, and for the latter
1827 		 * kind writeout is handled by the freer.
1828 		 */
1829 		spin_lock(&inode->i_lock);
1830 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1831 			redirty_tail_locked(inode, wb);
1832 			spin_unlock(&inode->i_lock);
1833 			continue;
1834 		}
1835 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1836 			/*
1837 			 * If this inode is locked for writeback and we are not
1838 			 * doing writeback-for-data-integrity, move it to
1839 			 * b_more_io so that writeback can proceed with the
1840 			 * other inodes on s_io.
1841 			 *
1842 			 * We'll have another go at writing back this inode
1843 			 * when we completed a full scan of b_io.
1844 			 */
1845 			spin_unlock(&inode->i_lock);
1846 			requeue_io(inode, wb);
1847 			trace_writeback_sb_inodes_requeue(inode);
1848 			continue;
1849 		}
1850 		spin_unlock(&wb->list_lock);
1851 
1852 		/*
1853 		 * We already requeued the inode if it had I_SYNC set and we
1854 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1855 		 * WB_SYNC_ALL case.
1856 		 */
1857 		if (inode->i_state & I_SYNC) {
1858 			/* Wait for I_SYNC. This function drops i_lock... */
1859 			inode_sleep_on_writeback(inode);
1860 			/* Inode may be gone, start again */
1861 			spin_lock(&wb->list_lock);
1862 			continue;
1863 		}
1864 		inode->i_state |= I_SYNC;
1865 		wbc_attach_and_unlock_inode(&wbc, inode);
1866 
1867 		write_chunk = writeback_chunk_size(wb, work);
1868 		wbc.nr_to_write = write_chunk;
1869 		wbc.pages_skipped = 0;
1870 
1871 		/*
1872 		 * We use I_SYNC to pin the inode in memory. While it is set
1873 		 * evict_inode() will wait so the inode cannot be freed.
1874 		 */
1875 		__writeback_single_inode(inode, &wbc);
1876 
1877 		wbc_detach_inode(&wbc);
1878 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1879 		wrote += write_chunk - wbc.nr_to_write;
1880 
1881 		if (need_resched()) {
1882 			/*
1883 			 * We're trying to balance between building up a nice
1884 			 * long list of IOs to improve our merge rate, and
1885 			 * getting those IOs out quickly for anyone throttling
1886 			 * in balance_dirty_pages().  cond_resched() doesn't
1887 			 * unplug, so get our IOs out the door before we
1888 			 * give up the CPU.
1889 			 */
1890 			blk_flush_plug(current);
1891 			cond_resched();
1892 		}
1893 
1894 		/*
1895 		 * Requeue @inode if still dirty.  Be careful as @inode may
1896 		 * have been switched to another wb in the meantime.
1897 		 */
1898 		tmp_wb = inode_to_wb_and_lock_list(inode);
1899 		spin_lock(&inode->i_lock);
1900 		if (!(inode->i_state & I_DIRTY_ALL))
1901 			wrote++;
1902 		requeue_inode(inode, tmp_wb, &wbc);
1903 		inode_sync_complete(inode);
1904 		spin_unlock(&inode->i_lock);
1905 
1906 		if (unlikely(tmp_wb != wb)) {
1907 			spin_unlock(&tmp_wb->list_lock);
1908 			spin_lock(&wb->list_lock);
1909 		}
1910 
1911 		/*
1912 		 * bail out to wb_writeback() often enough to check
1913 		 * background threshold and other termination conditions.
1914 		 */
1915 		if (wrote) {
1916 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1917 				break;
1918 			if (work->nr_pages <= 0)
1919 				break;
1920 		}
1921 	}
1922 	return wrote;
1923 }
1924 
1925 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1926 				  struct wb_writeback_work *work)
1927 {
1928 	unsigned long start_time = jiffies;
1929 	long wrote = 0;
1930 
1931 	while (!list_empty(&wb->b_io)) {
1932 		struct inode *inode = wb_inode(wb->b_io.prev);
1933 		struct super_block *sb = inode->i_sb;
1934 
1935 		if (!trylock_super(sb)) {
1936 			/*
1937 			 * trylock_super() may fail consistently due to
1938 			 * s_umount being grabbed by someone else. Don't use
1939 			 * requeue_io() to avoid busy retrying the inode/sb.
1940 			 */
1941 			redirty_tail(inode, wb);
1942 			continue;
1943 		}
1944 		wrote += writeback_sb_inodes(sb, wb, work);
1945 		up_read(&sb->s_umount);
1946 
1947 		/* refer to the same tests at the end of writeback_sb_inodes */
1948 		if (wrote) {
1949 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1950 				break;
1951 			if (work->nr_pages <= 0)
1952 				break;
1953 		}
1954 	}
1955 	/* Leave any unwritten inodes on b_io */
1956 	return wrote;
1957 }
1958 
1959 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1960 				enum wb_reason reason)
1961 {
1962 	struct wb_writeback_work work = {
1963 		.nr_pages	= nr_pages,
1964 		.sync_mode	= WB_SYNC_NONE,
1965 		.range_cyclic	= 1,
1966 		.reason		= reason,
1967 	};
1968 	struct blk_plug plug;
1969 
1970 	blk_start_plug(&plug);
1971 	spin_lock(&wb->list_lock);
1972 	if (list_empty(&wb->b_io))
1973 		queue_io(wb, &work, jiffies);
1974 	__writeback_inodes_wb(wb, &work);
1975 	spin_unlock(&wb->list_lock);
1976 	blk_finish_plug(&plug);
1977 
1978 	return nr_pages - work.nr_pages;
1979 }
1980 
1981 /*
1982  * Explicit flushing or periodic writeback of "old" data.
1983  *
1984  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1985  * dirtying-time in the inode's address_space.  So this periodic writeback code
1986  * just walks the superblock inode list, writing back any inodes which are
1987  * older than a specific point in time.
1988  *
1989  * Try to run once per dirty_writeback_interval.  But if a writeback event
1990  * takes longer than a dirty_writeback_interval interval, then leave a
1991  * one-second gap.
1992  *
1993  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1994  * all dirty pages if they are all attached to "old" mappings.
1995  */
1996 static long wb_writeback(struct bdi_writeback *wb,
1997 			 struct wb_writeback_work *work)
1998 {
1999 	unsigned long wb_start = jiffies;
2000 	long nr_pages = work->nr_pages;
2001 	unsigned long dirtied_before = jiffies;
2002 	struct inode *inode;
2003 	long progress;
2004 	struct blk_plug plug;
2005 
2006 	blk_start_plug(&plug);
2007 	spin_lock(&wb->list_lock);
2008 	for (;;) {
2009 		/*
2010 		 * Stop writeback when nr_pages has been consumed
2011 		 */
2012 		if (work->nr_pages <= 0)
2013 			break;
2014 
2015 		/*
2016 		 * Background writeout and kupdate-style writeback may
2017 		 * run forever. Stop them if there is other work to do
2018 		 * so that e.g. sync can proceed. They'll be restarted
2019 		 * after the other works are all done.
2020 		 */
2021 		if ((work->for_background || work->for_kupdate) &&
2022 		    !list_empty(&wb->work_list))
2023 			break;
2024 
2025 		/*
2026 		 * For background writeout, stop when we are below the
2027 		 * background dirty threshold
2028 		 */
2029 		if (work->for_background && !wb_over_bg_thresh(wb))
2030 			break;
2031 
2032 		/*
2033 		 * Kupdate and background works are special and we want to
2034 		 * include all inodes that need writing. Livelock avoidance is
2035 		 * handled by these works yielding to any other work so we are
2036 		 * safe.
2037 		 */
2038 		if (work->for_kupdate) {
2039 			dirtied_before = jiffies -
2040 				msecs_to_jiffies(dirty_expire_interval * 10);
2041 		} else if (work->for_background)
2042 			dirtied_before = jiffies;
2043 
2044 		trace_writeback_start(wb, work);
2045 		if (list_empty(&wb->b_io))
2046 			queue_io(wb, work, dirtied_before);
2047 		if (work->sb)
2048 			progress = writeback_sb_inodes(work->sb, wb, work);
2049 		else
2050 			progress = __writeback_inodes_wb(wb, work);
2051 		trace_writeback_written(wb, work);
2052 
2053 		wb_update_bandwidth(wb, wb_start);
2054 
2055 		/*
2056 		 * Did we write something? Try for more
2057 		 *
2058 		 * Dirty inodes are moved to b_io for writeback in batches.
2059 		 * The completion of the current batch does not necessarily
2060 		 * mean the overall work is done. So we keep looping as long
2061 		 * as made some progress on cleaning pages or inodes.
2062 		 */
2063 		if (progress)
2064 			continue;
2065 		/*
2066 		 * No more inodes for IO, bail
2067 		 */
2068 		if (list_empty(&wb->b_more_io))
2069 			break;
2070 		/*
2071 		 * Nothing written. Wait for some inode to
2072 		 * become available for writeback. Otherwise
2073 		 * we'll just busyloop.
2074 		 */
2075 		trace_writeback_wait(wb, work);
2076 		inode = wb_inode(wb->b_more_io.prev);
2077 		spin_lock(&inode->i_lock);
2078 		spin_unlock(&wb->list_lock);
2079 		/* This function drops i_lock... */
2080 		inode_sleep_on_writeback(inode);
2081 		spin_lock(&wb->list_lock);
2082 	}
2083 	spin_unlock(&wb->list_lock);
2084 	blk_finish_plug(&plug);
2085 
2086 	return nr_pages - work->nr_pages;
2087 }
2088 
2089 /*
2090  * Return the next wb_writeback_work struct that hasn't been processed yet.
2091  */
2092 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2093 {
2094 	struct wb_writeback_work *work = NULL;
2095 
2096 	spin_lock_bh(&wb->work_lock);
2097 	if (!list_empty(&wb->work_list)) {
2098 		work = list_entry(wb->work_list.next,
2099 				  struct wb_writeback_work, list);
2100 		list_del_init(&work->list);
2101 	}
2102 	spin_unlock_bh(&wb->work_lock);
2103 	return work;
2104 }
2105 
2106 static long wb_check_background_flush(struct bdi_writeback *wb)
2107 {
2108 	if (wb_over_bg_thresh(wb)) {
2109 
2110 		struct wb_writeback_work work = {
2111 			.nr_pages	= LONG_MAX,
2112 			.sync_mode	= WB_SYNC_NONE,
2113 			.for_background	= 1,
2114 			.range_cyclic	= 1,
2115 			.reason		= WB_REASON_BACKGROUND,
2116 		};
2117 
2118 		return wb_writeback(wb, &work);
2119 	}
2120 
2121 	return 0;
2122 }
2123 
2124 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2125 {
2126 	unsigned long expired;
2127 	long nr_pages;
2128 
2129 	/*
2130 	 * When set to zero, disable periodic writeback
2131 	 */
2132 	if (!dirty_writeback_interval)
2133 		return 0;
2134 
2135 	expired = wb->last_old_flush +
2136 			msecs_to_jiffies(dirty_writeback_interval * 10);
2137 	if (time_before(jiffies, expired))
2138 		return 0;
2139 
2140 	wb->last_old_flush = jiffies;
2141 	nr_pages = get_nr_dirty_pages();
2142 
2143 	if (nr_pages) {
2144 		struct wb_writeback_work work = {
2145 			.nr_pages	= nr_pages,
2146 			.sync_mode	= WB_SYNC_NONE,
2147 			.for_kupdate	= 1,
2148 			.range_cyclic	= 1,
2149 			.reason		= WB_REASON_PERIODIC,
2150 		};
2151 
2152 		return wb_writeback(wb, &work);
2153 	}
2154 
2155 	return 0;
2156 }
2157 
2158 static long wb_check_start_all(struct bdi_writeback *wb)
2159 {
2160 	long nr_pages;
2161 
2162 	if (!test_bit(WB_start_all, &wb->state))
2163 		return 0;
2164 
2165 	nr_pages = get_nr_dirty_pages();
2166 	if (nr_pages) {
2167 		struct wb_writeback_work work = {
2168 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2169 			.sync_mode	= WB_SYNC_NONE,
2170 			.range_cyclic	= 1,
2171 			.reason		= wb->start_all_reason,
2172 		};
2173 
2174 		nr_pages = wb_writeback(wb, &work);
2175 	}
2176 
2177 	clear_bit(WB_start_all, &wb->state);
2178 	return nr_pages;
2179 }
2180 
2181 
2182 /*
2183  * Retrieve work items and do the writeback they describe
2184  */
2185 static long wb_do_writeback(struct bdi_writeback *wb)
2186 {
2187 	struct wb_writeback_work *work;
2188 	long wrote = 0;
2189 
2190 	set_bit(WB_writeback_running, &wb->state);
2191 	while ((work = get_next_work_item(wb)) != NULL) {
2192 		trace_writeback_exec(wb, work);
2193 		wrote += wb_writeback(wb, work);
2194 		finish_writeback_work(wb, work);
2195 	}
2196 
2197 	/*
2198 	 * Check for a flush-everything request
2199 	 */
2200 	wrote += wb_check_start_all(wb);
2201 
2202 	/*
2203 	 * Check for periodic writeback, kupdated() style
2204 	 */
2205 	wrote += wb_check_old_data_flush(wb);
2206 	wrote += wb_check_background_flush(wb);
2207 	clear_bit(WB_writeback_running, &wb->state);
2208 
2209 	return wrote;
2210 }
2211 
2212 /*
2213  * Handle writeback of dirty data for the device backed by this bdi. Also
2214  * reschedules periodically and does kupdated style flushing.
2215  */
2216 void wb_workfn(struct work_struct *work)
2217 {
2218 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2219 						struct bdi_writeback, dwork);
2220 	long pages_written;
2221 
2222 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2223 	current->flags |= PF_SWAPWRITE;
2224 
2225 	if (likely(!current_is_workqueue_rescuer() ||
2226 		   !test_bit(WB_registered, &wb->state))) {
2227 		/*
2228 		 * The normal path.  Keep writing back @wb until its
2229 		 * work_list is empty.  Note that this path is also taken
2230 		 * if @wb is shutting down even when we're running off the
2231 		 * rescuer as work_list needs to be drained.
2232 		 */
2233 		do {
2234 			pages_written = wb_do_writeback(wb);
2235 			trace_writeback_pages_written(pages_written);
2236 		} while (!list_empty(&wb->work_list));
2237 	} else {
2238 		/*
2239 		 * bdi_wq can't get enough workers and we're running off
2240 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2241 		 * enough for efficient IO.
2242 		 */
2243 		pages_written = writeback_inodes_wb(wb, 1024,
2244 						    WB_REASON_FORKER_THREAD);
2245 		trace_writeback_pages_written(pages_written);
2246 	}
2247 
2248 	if (!list_empty(&wb->work_list))
2249 		wb_wakeup(wb);
2250 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2251 		wb_wakeup_delayed(wb);
2252 
2253 	current->flags &= ~PF_SWAPWRITE;
2254 }
2255 
2256 /*
2257  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2258  * write back the whole world.
2259  */
2260 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2261 					 enum wb_reason reason)
2262 {
2263 	struct bdi_writeback *wb;
2264 
2265 	if (!bdi_has_dirty_io(bdi))
2266 		return;
2267 
2268 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2269 		wb_start_writeback(wb, reason);
2270 }
2271 
2272 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2273 				enum wb_reason reason)
2274 {
2275 	rcu_read_lock();
2276 	__wakeup_flusher_threads_bdi(bdi, reason);
2277 	rcu_read_unlock();
2278 }
2279 
2280 /*
2281  * Wakeup the flusher threads to start writeback of all currently dirty pages
2282  */
2283 void wakeup_flusher_threads(enum wb_reason reason)
2284 {
2285 	struct backing_dev_info *bdi;
2286 
2287 	/*
2288 	 * If we are expecting writeback progress we must submit plugged IO.
2289 	 */
2290 	if (blk_needs_flush_plug(current))
2291 		blk_schedule_flush_plug(current);
2292 
2293 	rcu_read_lock();
2294 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2295 		__wakeup_flusher_threads_bdi(bdi, reason);
2296 	rcu_read_unlock();
2297 }
2298 
2299 /*
2300  * Wake up bdi's periodically to make sure dirtytime inodes gets
2301  * written back periodically.  We deliberately do *not* check the
2302  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2303  * kernel to be constantly waking up once there are any dirtytime
2304  * inodes on the system.  So instead we define a separate delayed work
2305  * function which gets called much more rarely.  (By default, only
2306  * once every 12 hours.)
2307  *
2308  * If there is any other write activity going on in the file system,
2309  * this function won't be necessary.  But if the only thing that has
2310  * happened on the file system is a dirtytime inode caused by an atime
2311  * update, we need this infrastructure below to make sure that inode
2312  * eventually gets pushed out to disk.
2313  */
2314 static void wakeup_dirtytime_writeback(struct work_struct *w);
2315 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2316 
2317 static void wakeup_dirtytime_writeback(struct work_struct *w)
2318 {
2319 	struct backing_dev_info *bdi;
2320 
2321 	rcu_read_lock();
2322 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2323 		struct bdi_writeback *wb;
2324 
2325 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2326 			if (!list_empty(&wb->b_dirty_time))
2327 				wb_wakeup(wb);
2328 	}
2329 	rcu_read_unlock();
2330 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2331 }
2332 
2333 static int __init start_dirtytime_writeback(void)
2334 {
2335 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2336 	return 0;
2337 }
2338 __initcall(start_dirtytime_writeback);
2339 
2340 int dirtytime_interval_handler(struct ctl_table *table, int write,
2341 			       void *buffer, size_t *lenp, loff_t *ppos)
2342 {
2343 	int ret;
2344 
2345 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2346 	if (ret == 0 && write)
2347 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2348 	return ret;
2349 }
2350 
2351 /**
2352  * __mark_inode_dirty -	internal function to mark an inode dirty
2353  *
2354  * @inode: inode to mark
2355  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2356  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2357  *	   with I_DIRTY_PAGES.
2358  *
2359  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2360  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2361  *
2362  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2363  * instead of calling this directly.
2364  *
2365  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2366  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2367  * even if they are later hashed, as they will have been marked dirty already.
2368  *
2369  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2370  *
2371  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2372  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2373  * the kernel-internal blockdev inode represents the dirtying time of the
2374  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2375  * page->mapping->host, so the page-dirtying time is recorded in the internal
2376  * blockdev inode.
2377  */
2378 void __mark_inode_dirty(struct inode *inode, int flags)
2379 {
2380 	struct super_block *sb = inode->i_sb;
2381 	int dirtytime = 0;
2382 
2383 	trace_writeback_mark_inode_dirty(inode, flags);
2384 
2385 	if (flags & I_DIRTY_INODE) {
2386 		/*
2387 		 * Notify the filesystem about the inode being dirtied, so that
2388 		 * (if needed) it can update on-disk fields and journal the
2389 		 * inode.  This is only needed when the inode itself is being
2390 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2391 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2392 		 */
2393 		trace_writeback_dirty_inode_start(inode, flags);
2394 		if (sb->s_op->dirty_inode)
2395 			sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2396 		trace_writeback_dirty_inode(inode, flags);
2397 
2398 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2399 		flags &= ~I_DIRTY_TIME;
2400 	} else {
2401 		/*
2402 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2403 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2404 		 * in one call to __mark_inode_dirty().)
2405 		 */
2406 		dirtytime = flags & I_DIRTY_TIME;
2407 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2408 	}
2409 
2410 	/*
2411 	 * Paired with smp_mb() in __writeback_single_inode() for the
2412 	 * following lockless i_state test.  See there for details.
2413 	 */
2414 	smp_mb();
2415 
2416 	if (((inode->i_state & flags) == flags) ||
2417 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2418 		return;
2419 
2420 	spin_lock(&inode->i_lock);
2421 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2422 		goto out_unlock_inode;
2423 	if ((inode->i_state & flags) != flags) {
2424 		const int was_dirty = inode->i_state & I_DIRTY;
2425 
2426 		inode_attach_wb(inode, NULL);
2427 
2428 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2429 		if (flags & I_DIRTY_INODE)
2430 			inode->i_state &= ~I_DIRTY_TIME;
2431 		inode->i_state |= flags;
2432 
2433 		/*
2434 		 * If the inode is queued for writeback by flush worker, just
2435 		 * update its dirty state. Once the flush worker is done with
2436 		 * the inode it will place it on the appropriate superblock
2437 		 * list, based upon its state.
2438 		 */
2439 		if (inode->i_state & I_SYNC_QUEUED)
2440 			goto out_unlock_inode;
2441 
2442 		/*
2443 		 * Only add valid (hashed) inodes to the superblock's
2444 		 * dirty list.  Add blockdev inodes as well.
2445 		 */
2446 		if (!S_ISBLK(inode->i_mode)) {
2447 			if (inode_unhashed(inode))
2448 				goto out_unlock_inode;
2449 		}
2450 		if (inode->i_state & I_FREEING)
2451 			goto out_unlock_inode;
2452 
2453 		/*
2454 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2455 		 * reposition it (that would break b_dirty time-ordering).
2456 		 */
2457 		if (!was_dirty) {
2458 			struct bdi_writeback *wb;
2459 			struct list_head *dirty_list;
2460 			bool wakeup_bdi = false;
2461 
2462 			wb = locked_inode_to_wb_and_lock_list(inode);
2463 
2464 			inode->dirtied_when = jiffies;
2465 			if (dirtytime)
2466 				inode->dirtied_time_when = jiffies;
2467 
2468 			if (inode->i_state & I_DIRTY)
2469 				dirty_list = &wb->b_dirty;
2470 			else
2471 				dirty_list = &wb->b_dirty_time;
2472 
2473 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2474 							       dirty_list);
2475 
2476 			spin_unlock(&wb->list_lock);
2477 			trace_writeback_dirty_inode_enqueue(inode);
2478 
2479 			/*
2480 			 * If this is the first dirty inode for this bdi,
2481 			 * we have to wake-up the corresponding bdi thread
2482 			 * to make sure background write-back happens
2483 			 * later.
2484 			 */
2485 			if (wakeup_bdi &&
2486 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2487 				wb_wakeup_delayed(wb);
2488 			return;
2489 		}
2490 	}
2491 out_unlock_inode:
2492 	spin_unlock(&inode->i_lock);
2493 }
2494 EXPORT_SYMBOL(__mark_inode_dirty);
2495 
2496 /*
2497  * The @s_sync_lock is used to serialise concurrent sync operations
2498  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2499  * Concurrent callers will block on the s_sync_lock rather than doing contending
2500  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2501  * has been issued up to the time this function is enter is guaranteed to be
2502  * completed by the time we have gained the lock and waited for all IO that is
2503  * in progress regardless of the order callers are granted the lock.
2504  */
2505 static void wait_sb_inodes(struct super_block *sb)
2506 {
2507 	LIST_HEAD(sync_list);
2508 
2509 	/*
2510 	 * We need to be protected against the filesystem going from
2511 	 * r/o to r/w or vice versa.
2512 	 */
2513 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2514 
2515 	mutex_lock(&sb->s_sync_lock);
2516 
2517 	/*
2518 	 * Splice the writeback list onto a temporary list to avoid waiting on
2519 	 * inodes that have started writeback after this point.
2520 	 *
2521 	 * Use rcu_read_lock() to keep the inodes around until we have a
2522 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2523 	 * the local list because inodes can be dropped from either by writeback
2524 	 * completion.
2525 	 */
2526 	rcu_read_lock();
2527 	spin_lock_irq(&sb->s_inode_wblist_lock);
2528 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2529 
2530 	/*
2531 	 * Data integrity sync. Must wait for all pages under writeback, because
2532 	 * there may have been pages dirtied before our sync call, but which had
2533 	 * writeout started before we write it out.  In which case, the inode
2534 	 * may not be on the dirty list, but we still have to wait for that
2535 	 * writeout.
2536 	 */
2537 	while (!list_empty(&sync_list)) {
2538 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2539 						       i_wb_list);
2540 		struct address_space *mapping = inode->i_mapping;
2541 
2542 		/*
2543 		 * Move each inode back to the wb list before we drop the lock
2544 		 * to preserve consistency between i_wb_list and the mapping
2545 		 * writeback tag. Writeback completion is responsible to remove
2546 		 * the inode from either list once the writeback tag is cleared.
2547 		 */
2548 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2549 
2550 		/*
2551 		 * The mapping can appear untagged while still on-list since we
2552 		 * do not have the mapping lock. Skip it here, wb completion
2553 		 * will remove it.
2554 		 */
2555 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2556 			continue;
2557 
2558 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2559 
2560 		spin_lock(&inode->i_lock);
2561 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2562 			spin_unlock(&inode->i_lock);
2563 
2564 			spin_lock_irq(&sb->s_inode_wblist_lock);
2565 			continue;
2566 		}
2567 		__iget(inode);
2568 		spin_unlock(&inode->i_lock);
2569 		rcu_read_unlock();
2570 
2571 		/*
2572 		 * We keep the error status of individual mapping so that
2573 		 * applications can catch the writeback error using fsync(2).
2574 		 * See filemap_fdatawait_keep_errors() for details.
2575 		 */
2576 		filemap_fdatawait_keep_errors(mapping);
2577 
2578 		cond_resched();
2579 
2580 		iput(inode);
2581 
2582 		rcu_read_lock();
2583 		spin_lock_irq(&sb->s_inode_wblist_lock);
2584 	}
2585 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2586 	rcu_read_unlock();
2587 	mutex_unlock(&sb->s_sync_lock);
2588 }
2589 
2590 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2591 				     enum wb_reason reason, bool skip_if_busy)
2592 {
2593 	struct backing_dev_info *bdi = sb->s_bdi;
2594 	DEFINE_WB_COMPLETION(done, bdi);
2595 	struct wb_writeback_work work = {
2596 		.sb			= sb,
2597 		.sync_mode		= WB_SYNC_NONE,
2598 		.tagged_writepages	= 1,
2599 		.done			= &done,
2600 		.nr_pages		= nr,
2601 		.reason			= reason,
2602 	};
2603 
2604 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2605 		return;
2606 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2607 
2608 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2609 	wb_wait_for_completion(&done);
2610 }
2611 
2612 /**
2613  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2614  * @sb: the superblock
2615  * @nr: the number of pages to write
2616  * @reason: reason why some writeback work initiated
2617  *
2618  * Start writeback on some inodes on this super_block. No guarantees are made
2619  * on how many (if any) will be written, and this function does not wait
2620  * for IO completion of submitted IO.
2621  */
2622 void writeback_inodes_sb_nr(struct super_block *sb,
2623 			    unsigned long nr,
2624 			    enum wb_reason reason)
2625 {
2626 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2627 }
2628 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2629 
2630 /**
2631  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2632  * @sb: the superblock
2633  * @reason: reason why some writeback work was initiated
2634  *
2635  * Start writeback on some inodes on this super_block. No guarantees are made
2636  * on how many (if any) will be written, and this function does not wait
2637  * for IO completion of submitted IO.
2638  */
2639 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2640 {
2641 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2642 }
2643 EXPORT_SYMBOL(writeback_inodes_sb);
2644 
2645 /**
2646  * try_to_writeback_inodes_sb - try to start writeback if none underway
2647  * @sb: the superblock
2648  * @reason: reason why some writeback work was initiated
2649  *
2650  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2651  */
2652 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2653 {
2654 	if (!down_read_trylock(&sb->s_umount))
2655 		return;
2656 
2657 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2658 	up_read(&sb->s_umount);
2659 }
2660 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2661 
2662 /**
2663  * sync_inodes_sb	-	sync sb inode pages
2664  * @sb: the superblock
2665  *
2666  * This function writes and waits on any dirty inode belonging to this
2667  * super_block.
2668  */
2669 void sync_inodes_sb(struct super_block *sb)
2670 {
2671 	struct backing_dev_info *bdi = sb->s_bdi;
2672 	DEFINE_WB_COMPLETION(done, bdi);
2673 	struct wb_writeback_work work = {
2674 		.sb		= sb,
2675 		.sync_mode	= WB_SYNC_ALL,
2676 		.nr_pages	= LONG_MAX,
2677 		.range_cyclic	= 0,
2678 		.done		= &done,
2679 		.reason		= WB_REASON_SYNC,
2680 		.for_sync	= 1,
2681 	};
2682 
2683 	/*
2684 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2685 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2686 	 * bdi_has_dirty() need to be written out too.
2687 	 */
2688 	if (bdi == &noop_backing_dev_info)
2689 		return;
2690 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2691 
2692 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2693 	bdi_down_write_wb_switch_rwsem(bdi);
2694 	bdi_split_work_to_wbs(bdi, &work, false);
2695 	wb_wait_for_completion(&done);
2696 	bdi_up_write_wb_switch_rwsem(bdi);
2697 
2698 	wait_sb_inodes(sb);
2699 }
2700 EXPORT_SYMBOL(sync_inodes_sb);
2701 
2702 /**
2703  * write_inode_now	-	write an inode to disk
2704  * @inode: inode to write to disk
2705  * @sync: whether the write should be synchronous or not
2706  *
2707  * This function commits an inode to disk immediately if it is dirty. This is
2708  * primarily needed by knfsd.
2709  *
2710  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2711  */
2712 int write_inode_now(struct inode *inode, int sync)
2713 {
2714 	struct writeback_control wbc = {
2715 		.nr_to_write = LONG_MAX,
2716 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2717 		.range_start = 0,
2718 		.range_end = LLONG_MAX,
2719 	};
2720 
2721 	if (!mapping_can_writeback(inode->i_mapping))
2722 		wbc.nr_to_write = 0;
2723 
2724 	might_sleep();
2725 	return writeback_single_inode(inode, &wbc);
2726 }
2727 EXPORT_SYMBOL(write_inode_now);
2728 
2729 /**
2730  * sync_inode - write an inode and its pages to disk.
2731  * @inode: the inode to sync
2732  * @wbc: controls the writeback mode
2733  *
2734  * sync_inode() will write an inode and its pages to disk.  It will also
2735  * correctly update the inode on its superblock's dirty inode lists and will
2736  * update inode->i_state.
2737  *
2738  * The caller must have a ref on the inode.
2739  */
2740 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2741 {
2742 	return writeback_single_inode(inode, wbc);
2743 }
2744 EXPORT_SYMBOL(sync_inode);
2745 
2746 /**
2747  * sync_inode_metadata - write an inode to disk
2748  * @inode: the inode to sync
2749  * @wait: wait for I/O to complete.
2750  *
2751  * Write an inode to disk and adjust its dirty state after completion.
2752  *
2753  * Note: only writes the actual inode, no associated data or other metadata.
2754  */
2755 int sync_inode_metadata(struct inode *inode, int wait)
2756 {
2757 	struct writeback_control wbc = {
2758 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2759 		.nr_to_write = 0, /* metadata-only */
2760 	};
2761 
2762 	return sync_inode(inode, &wbc);
2763 }
2764 EXPORT_SYMBOL(sync_inode_metadata);
2765