1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 124 list_move(&inode->i_io_list, head); 125 126 /* dirty_time doesn't count as dirty_io until expiration */ 127 if (head != &wb->b_dirty_time) 128 return wb_io_lists_populated(wb); 129 130 wb_io_lists_depopulated(wb); 131 return false; 132 } 133 134 static void wb_wakeup(struct bdi_writeback *wb) 135 { 136 spin_lock_bh(&wb->work_lock); 137 if (test_bit(WB_registered, &wb->state)) 138 mod_delayed_work(bdi_wq, &wb->dwork, 0); 139 spin_unlock_bh(&wb->work_lock); 140 } 141 142 static void finish_writeback_work(struct bdi_writeback *wb, 143 struct wb_writeback_work *work) 144 { 145 struct wb_completion *done = work->done; 146 147 if (work->auto_free) 148 kfree(work); 149 if (done) { 150 wait_queue_head_t *waitq = done->waitq; 151 152 /* @done can't be accessed after the following dec */ 153 if (atomic_dec_and_test(&done->cnt)) 154 wake_up_all(waitq); 155 } 156 } 157 158 static void wb_queue_work(struct bdi_writeback *wb, 159 struct wb_writeback_work *work) 160 { 161 trace_writeback_queue(wb, work); 162 163 if (work->done) 164 atomic_inc(&work->done->cnt); 165 166 spin_lock_bh(&wb->work_lock); 167 168 if (test_bit(WB_registered, &wb->state)) { 169 list_add_tail(&work->list, &wb->work_list); 170 mod_delayed_work(bdi_wq, &wb->dwork, 0); 171 } else 172 finish_writeback_work(wb, work); 173 174 spin_unlock_bh(&wb->work_lock); 175 } 176 177 /** 178 * wb_wait_for_completion - wait for completion of bdi_writeback_works 179 * @done: target wb_completion 180 * 181 * Wait for one or more work items issued to @bdi with their ->done field 182 * set to @done, which should have been initialized with 183 * DEFINE_WB_COMPLETION(). This function returns after all such work items 184 * are completed. Work items which are waited upon aren't freed 185 * automatically on completion. 186 */ 187 void wb_wait_for_completion(struct wb_completion *done) 188 { 189 atomic_dec(&done->cnt); /* put down the initial count */ 190 wait_event(*done->waitq, !atomic_read(&done->cnt)); 191 } 192 193 #ifdef CONFIG_CGROUP_WRITEBACK 194 195 /* 196 * Parameters for foreign inode detection, see wbc_detach_inode() to see 197 * how they're used. 198 * 199 * These paramters are inherently heuristical as the detection target 200 * itself is fuzzy. All we want to do is detaching an inode from the 201 * current owner if it's being written to by some other cgroups too much. 202 * 203 * The current cgroup writeback is built on the assumption that multiple 204 * cgroups writing to the same inode concurrently is very rare and a mode 205 * of operation which isn't well supported. As such, the goal is not 206 * taking too long when a different cgroup takes over an inode while 207 * avoiding too aggressive flip-flops from occasional foreign writes. 208 * 209 * We record, very roughly, 2s worth of IO time history and if more than 210 * half of that is foreign, trigger the switch. The recording is quantized 211 * to 16 slots. To avoid tiny writes from swinging the decision too much, 212 * writes smaller than 1/8 of avg size are ignored. 213 */ 214 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 215 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 216 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 217 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 218 219 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 220 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 221 /* each slot's duration is 2s / 16 */ 222 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 223 /* if foreign slots >= 8, switch */ 224 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 225 /* one round can affect upto 5 slots */ 226 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 227 228 /* 229 * Maximum inodes per isw. A specific value has been chosen to make 230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 231 */ 232 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 233 / sizeof(struct inode *)) 234 235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 236 static struct workqueue_struct *isw_wq; 237 238 void __inode_attach_wb(struct inode *inode, struct page *page) 239 { 240 struct backing_dev_info *bdi = inode_to_bdi(inode); 241 struct bdi_writeback *wb = NULL; 242 243 if (inode_cgwb_enabled(inode)) { 244 struct cgroup_subsys_state *memcg_css; 245 246 if (page) { 247 memcg_css = mem_cgroup_css_from_page(page); 248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 249 } else { 250 /* must pin memcg_css, see wb_get_create() */ 251 memcg_css = task_get_css(current, memory_cgrp_id); 252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 253 css_put(memcg_css); 254 } 255 } 256 257 if (!wb) 258 wb = &bdi->wb; 259 260 /* 261 * There may be multiple instances of this function racing to 262 * update the same inode. Use cmpxchg() to tell the winner. 263 */ 264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 265 wb_put(wb); 266 } 267 EXPORT_SYMBOL_GPL(__inode_attach_wb); 268 269 /** 270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 271 * @inode: inode of interest with i_lock held 272 * @wb: target bdi_writeback 273 * 274 * Remove the inode from wb's io lists and if necessarily put onto b_attached 275 * list. Only inodes attached to cgwb's are kept on this list. 276 */ 277 static void inode_cgwb_move_to_attached(struct inode *inode, 278 struct bdi_writeback *wb) 279 { 280 assert_spin_locked(&wb->list_lock); 281 assert_spin_locked(&inode->i_lock); 282 283 inode->i_state &= ~I_SYNC_QUEUED; 284 if (wb != &wb->bdi->wb) 285 list_move(&inode->i_io_list, &wb->b_attached); 286 else 287 list_del_init(&inode->i_io_list); 288 wb_io_lists_depopulated(wb); 289 } 290 291 /** 292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 293 * @inode: inode of interest with i_lock held 294 * 295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 296 * held on entry and is released on return. The returned wb is guaranteed 297 * to stay @inode's associated wb until its list_lock is released. 298 */ 299 static struct bdi_writeback * 300 locked_inode_to_wb_and_lock_list(struct inode *inode) 301 __releases(&inode->i_lock) 302 __acquires(&wb->list_lock) 303 { 304 while (true) { 305 struct bdi_writeback *wb = inode_to_wb(inode); 306 307 /* 308 * inode_to_wb() association is protected by both 309 * @inode->i_lock and @wb->list_lock but list_lock nests 310 * outside i_lock. Drop i_lock and verify that the 311 * association hasn't changed after acquiring list_lock. 312 */ 313 wb_get(wb); 314 spin_unlock(&inode->i_lock); 315 spin_lock(&wb->list_lock); 316 317 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 318 if (likely(wb == inode->i_wb)) { 319 wb_put(wb); /* @inode already has ref */ 320 return wb; 321 } 322 323 spin_unlock(&wb->list_lock); 324 wb_put(wb); 325 cpu_relax(); 326 spin_lock(&inode->i_lock); 327 } 328 } 329 330 /** 331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 332 * @inode: inode of interest 333 * 334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 335 * on entry. 336 */ 337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 338 __acquires(&wb->list_lock) 339 { 340 spin_lock(&inode->i_lock); 341 return locked_inode_to_wb_and_lock_list(inode); 342 } 343 344 struct inode_switch_wbs_context { 345 struct rcu_work work; 346 347 /* 348 * Multiple inodes can be switched at once. The switching procedure 349 * consists of two parts, separated by a RCU grace period. To make 350 * sure that the second part is executed for each inode gone through 351 * the first part, all inode pointers are placed into a NULL-terminated 352 * array embedded into struct inode_switch_wbs_context. Otherwise 353 * an inode could be left in a non-consistent state. 354 */ 355 struct bdi_writeback *new_wb; 356 struct inode *inodes[]; 357 }; 358 359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 360 { 361 down_write(&bdi->wb_switch_rwsem); 362 } 363 364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 365 { 366 up_write(&bdi->wb_switch_rwsem); 367 } 368 369 static bool inode_do_switch_wbs(struct inode *inode, 370 struct bdi_writeback *old_wb, 371 struct bdi_writeback *new_wb) 372 { 373 struct address_space *mapping = inode->i_mapping; 374 XA_STATE(xas, &mapping->i_pages, 0); 375 struct page *page; 376 bool switched = false; 377 378 spin_lock(&inode->i_lock); 379 xa_lock_irq(&mapping->i_pages); 380 381 /* 382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 383 * path owns the inode and we shouldn't modify ->i_io_list. 384 */ 385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 386 goto skip_switch; 387 388 trace_inode_switch_wbs(inode, old_wb, new_wb); 389 390 /* 391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 393 * pages actually under writeback. 394 */ 395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 396 if (PageDirty(page)) { 397 dec_wb_stat(old_wb, WB_RECLAIMABLE); 398 inc_wb_stat(new_wb, WB_RECLAIMABLE); 399 } 400 } 401 402 xas_set(&xas, 0); 403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 404 WARN_ON_ONCE(!PageWriteback(page)); 405 dec_wb_stat(old_wb, WB_WRITEBACK); 406 inc_wb_stat(new_wb, WB_WRITEBACK); 407 } 408 409 wb_get(new_wb); 410 411 /* 412 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 413 * the specific list @inode was on is ignored and the @inode is put on 414 * ->b_dirty which is always correct including from ->b_dirty_time. 415 * The transfer preserves @inode->dirtied_when ordering. If the @inode 416 * was clean, it means it was on the b_attached list, so move it onto 417 * the b_attached list of @new_wb. 418 */ 419 if (!list_empty(&inode->i_io_list)) { 420 inode->i_wb = new_wb; 421 422 if (inode->i_state & I_DIRTY_ALL) { 423 struct inode *pos; 424 425 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 426 if (time_after_eq(inode->dirtied_when, 427 pos->dirtied_when)) 428 break; 429 inode_io_list_move_locked(inode, new_wb, 430 pos->i_io_list.prev); 431 } else { 432 inode_cgwb_move_to_attached(inode, new_wb); 433 } 434 } else { 435 inode->i_wb = new_wb; 436 } 437 438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 439 inode->i_wb_frn_winner = 0; 440 inode->i_wb_frn_avg_time = 0; 441 inode->i_wb_frn_history = 0; 442 switched = true; 443 skip_switch: 444 /* 445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 446 * ensures that the new wb is visible if they see !I_WB_SWITCH. 447 */ 448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 449 450 xa_unlock_irq(&mapping->i_pages); 451 spin_unlock(&inode->i_lock); 452 453 return switched; 454 } 455 456 static void inode_switch_wbs_work_fn(struct work_struct *work) 457 { 458 struct inode_switch_wbs_context *isw = 459 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 460 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 461 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 462 struct bdi_writeback *new_wb = isw->new_wb; 463 unsigned long nr_switched = 0; 464 struct inode **inodep; 465 466 /* 467 * If @inode switches cgwb membership while sync_inodes_sb() is 468 * being issued, sync_inodes_sb() might miss it. Synchronize. 469 */ 470 down_read(&bdi->wb_switch_rwsem); 471 472 /* 473 * By the time control reaches here, RCU grace period has passed 474 * since I_WB_SWITCH assertion and all wb stat update transactions 475 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 476 * synchronizing against the i_pages lock. 477 * 478 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 479 * gives us exclusion against all wb related operations on @inode 480 * including IO list manipulations and stat updates. 481 */ 482 if (old_wb < new_wb) { 483 spin_lock(&old_wb->list_lock); 484 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 485 } else { 486 spin_lock(&new_wb->list_lock); 487 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 488 } 489 490 for (inodep = isw->inodes; *inodep; inodep++) { 491 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 492 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 493 nr_switched++; 494 } 495 496 spin_unlock(&new_wb->list_lock); 497 spin_unlock(&old_wb->list_lock); 498 499 up_read(&bdi->wb_switch_rwsem); 500 501 if (nr_switched) { 502 wb_wakeup(new_wb); 503 wb_put_many(old_wb, nr_switched); 504 } 505 506 for (inodep = isw->inodes; *inodep; inodep++) 507 iput(*inodep); 508 wb_put(new_wb); 509 kfree(isw); 510 atomic_dec(&isw_nr_in_flight); 511 } 512 513 static bool inode_prepare_wbs_switch(struct inode *inode, 514 struct bdi_writeback *new_wb) 515 { 516 /* 517 * Paired with smp_mb() in cgroup_writeback_umount(). 518 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 519 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 520 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 521 */ 522 smp_mb(); 523 524 /* while holding I_WB_SWITCH, no one else can update the association */ 525 spin_lock(&inode->i_lock); 526 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 527 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 528 inode_to_wb(inode) == new_wb) { 529 spin_unlock(&inode->i_lock); 530 return false; 531 } 532 inode->i_state |= I_WB_SWITCH; 533 __iget(inode); 534 spin_unlock(&inode->i_lock); 535 536 return true; 537 } 538 539 /** 540 * inode_switch_wbs - change the wb association of an inode 541 * @inode: target inode 542 * @new_wb_id: ID of the new wb 543 * 544 * Switch @inode's wb association to the wb identified by @new_wb_id. The 545 * switching is performed asynchronously and may fail silently. 546 */ 547 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 548 { 549 struct backing_dev_info *bdi = inode_to_bdi(inode); 550 struct cgroup_subsys_state *memcg_css; 551 struct inode_switch_wbs_context *isw; 552 553 /* noop if seems to be already in progress */ 554 if (inode->i_state & I_WB_SWITCH) 555 return; 556 557 /* avoid queueing a new switch if too many are already in flight */ 558 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 559 return; 560 561 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC); 562 if (!isw) 563 return; 564 565 atomic_inc(&isw_nr_in_flight); 566 567 /* find and pin the new wb */ 568 rcu_read_lock(); 569 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 570 if (memcg_css && !css_tryget(memcg_css)) 571 memcg_css = NULL; 572 rcu_read_unlock(); 573 if (!memcg_css) 574 goto out_free; 575 576 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 577 css_put(memcg_css); 578 if (!isw->new_wb) 579 goto out_free; 580 581 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 582 goto out_free; 583 584 isw->inodes[0] = inode; 585 586 /* 587 * In addition to synchronizing among switchers, I_WB_SWITCH tells 588 * the RCU protected stat update paths to grab the i_page 589 * lock so that stat transfer can synchronize against them. 590 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 591 */ 592 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 593 queue_rcu_work(isw_wq, &isw->work); 594 return; 595 596 out_free: 597 atomic_dec(&isw_nr_in_flight); 598 if (isw->new_wb) 599 wb_put(isw->new_wb); 600 kfree(isw); 601 } 602 603 /** 604 * cleanup_offline_cgwb - detach associated inodes 605 * @wb: target wb 606 * 607 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 608 * to eventually release the dying @wb. Returns %true if not all inodes were 609 * switched and the function has to be restarted. 610 */ 611 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 612 { 613 struct cgroup_subsys_state *memcg_css; 614 struct inode_switch_wbs_context *isw; 615 struct inode *inode; 616 int nr; 617 bool restart = false; 618 619 isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW * 620 sizeof(struct inode *), GFP_KERNEL); 621 if (!isw) 622 return restart; 623 624 atomic_inc(&isw_nr_in_flight); 625 626 for (memcg_css = wb->memcg_css->parent; memcg_css; 627 memcg_css = memcg_css->parent) { 628 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 629 if (isw->new_wb) 630 break; 631 } 632 if (unlikely(!isw->new_wb)) 633 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 634 635 nr = 0; 636 spin_lock(&wb->list_lock); 637 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 638 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 639 continue; 640 641 isw->inodes[nr++] = inode; 642 643 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 644 restart = true; 645 break; 646 } 647 } 648 spin_unlock(&wb->list_lock); 649 650 /* no attached inodes? bail out */ 651 if (nr == 0) { 652 atomic_dec(&isw_nr_in_flight); 653 wb_put(isw->new_wb); 654 kfree(isw); 655 return restart; 656 } 657 658 /* 659 * In addition to synchronizing among switchers, I_WB_SWITCH tells 660 * the RCU protected stat update paths to grab the i_page 661 * lock so that stat transfer can synchronize against them. 662 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 663 */ 664 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 665 queue_rcu_work(isw_wq, &isw->work); 666 667 return restart; 668 } 669 670 /** 671 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 672 * @wbc: writeback_control of interest 673 * @inode: target inode 674 * 675 * @inode is locked and about to be written back under the control of @wbc. 676 * Record @inode's writeback context into @wbc and unlock the i_lock. On 677 * writeback completion, wbc_detach_inode() should be called. This is used 678 * to track the cgroup writeback context. 679 */ 680 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 681 struct inode *inode) 682 { 683 if (!inode_cgwb_enabled(inode)) { 684 spin_unlock(&inode->i_lock); 685 return; 686 } 687 688 wbc->wb = inode_to_wb(inode); 689 wbc->inode = inode; 690 691 wbc->wb_id = wbc->wb->memcg_css->id; 692 wbc->wb_lcand_id = inode->i_wb_frn_winner; 693 wbc->wb_tcand_id = 0; 694 wbc->wb_bytes = 0; 695 wbc->wb_lcand_bytes = 0; 696 wbc->wb_tcand_bytes = 0; 697 698 wb_get(wbc->wb); 699 spin_unlock(&inode->i_lock); 700 701 /* 702 * A dying wb indicates that either the blkcg associated with the 703 * memcg changed or the associated memcg is dying. In the first 704 * case, a replacement wb should already be available and we should 705 * refresh the wb immediately. In the second case, trying to 706 * refresh will keep failing. 707 */ 708 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 709 inode_switch_wbs(inode, wbc->wb_id); 710 } 711 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 712 713 /** 714 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 715 * @wbc: writeback_control of the just finished writeback 716 * 717 * To be called after a writeback attempt of an inode finishes and undoes 718 * wbc_attach_and_unlock_inode(). Can be called under any context. 719 * 720 * As concurrent write sharing of an inode is expected to be very rare and 721 * memcg only tracks page ownership on first-use basis severely confining 722 * the usefulness of such sharing, cgroup writeback tracks ownership 723 * per-inode. While the support for concurrent write sharing of an inode 724 * is deemed unnecessary, an inode being written to by different cgroups at 725 * different points in time is a lot more common, and, more importantly, 726 * charging only by first-use can too readily lead to grossly incorrect 727 * behaviors (single foreign page can lead to gigabytes of writeback to be 728 * incorrectly attributed). 729 * 730 * To resolve this issue, cgroup writeback detects the majority dirtier of 731 * an inode and transfers the ownership to it. To avoid unnnecessary 732 * oscillation, the detection mechanism keeps track of history and gives 733 * out the switch verdict only if the foreign usage pattern is stable over 734 * a certain amount of time and/or writeback attempts. 735 * 736 * On each writeback attempt, @wbc tries to detect the majority writer 737 * using Boyer-Moore majority vote algorithm. In addition to the byte 738 * count from the majority voting, it also counts the bytes written for the 739 * current wb and the last round's winner wb (max of last round's current 740 * wb, the winner from two rounds ago, and the last round's majority 741 * candidate). Keeping track of the historical winner helps the algorithm 742 * to semi-reliably detect the most active writer even when it's not the 743 * absolute majority. 744 * 745 * Once the winner of the round is determined, whether the winner is 746 * foreign or not and how much IO time the round consumed is recorded in 747 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 748 * over a certain threshold, the switch verdict is given. 749 */ 750 void wbc_detach_inode(struct writeback_control *wbc) 751 { 752 struct bdi_writeback *wb = wbc->wb; 753 struct inode *inode = wbc->inode; 754 unsigned long avg_time, max_bytes, max_time; 755 u16 history; 756 int max_id; 757 758 if (!wb) 759 return; 760 761 history = inode->i_wb_frn_history; 762 avg_time = inode->i_wb_frn_avg_time; 763 764 /* pick the winner of this round */ 765 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 766 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 767 max_id = wbc->wb_id; 768 max_bytes = wbc->wb_bytes; 769 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 770 max_id = wbc->wb_lcand_id; 771 max_bytes = wbc->wb_lcand_bytes; 772 } else { 773 max_id = wbc->wb_tcand_id; 774 max_bytes = wbc->wb_tcand_bytes; 775 } 776 777 /* 778 * Calculate the amount of IO time the winner consumed and fold it 779 * into the running average kept per inode. If the consumed IO 780 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 781 * deciding whether to switch or not. This is to prevent one-off 782 * small dirtiers from skewing the verdict. 783 */ 784 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 785 wb->avg_write_bandwidth); 786 if (avg_time) 787 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 788 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 789 else 790 avg_time = max_time; /* immediate catch up on first run */ 791 792 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 793 int slots; 794 795 /* 796 * The switch verdict is reached if foreign wb's consume 797 * more than a certain proportion of IO time in a 798 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 799 * history mask where each bit represents one sixteenth of 800 * the period. Determine the number of slots to shift into 801 * history from @max_time. 802 */ 803 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 804 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 805 history <<= slots; 806 if (wbc->wb_id != max_id) 807 history |= (1U << slots) - 1; 808 809 if (history) 810 trace_inode_foreign_history(inode, wbc, history); 811 812 /* 813 * Switch if the current wb isn't the consistent winner. 814 * If there are multiple closely competing dirtiers, the 815 * inode may switch across them repeatedly over time, which 816 * is okay. The main goal is avoiding keeping an inode on 817 * the wrong wb for an extended period of time. 818 */ 819 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 820 inode_switch_wbs(inode, max_id); 821 } 822 823 /* 824 * Multiple instances of this function may race to update the 825 * following fields but we don't mind occassional inaccuracies. 826 */ 827 inode->i_wb_frn_winner = max_id; 828 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 829 inode->i_wb_frn_history = history; 830 831 wb_put(wbc->wb); 832 wbc->wb = NULL; 833 } 834 EXPORT_SYMBOL_GPL(wbc_detach_inode); 835 836 /** 837 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 838 * @wbc: writeback_control of the writeback in progress 839 * @page: page being written out 840 * @bytes: number of bytes being written out 841 * 842 * @bytes from @page are about to written out during the writeback 843 * controlled by @wbc. Keep the book for foreign inode detection. See 844 * wbc_detach_inode(). 845 */ 846 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 847 size_t bytes) 848 { 849 struct cgroup_subsys_state *css; 850 int id; 851 852 /* 853 * pageout() path doesn't attach @wbc to the inode being written 854 * out. This is intentional as we don't want the function to block 855 * behind a slow cgroup. Ultimately, we want pageout() to kick off 856 * regular writeback instead of writing things out itself. 857 */ 858 if (!wbc->wb || wbc->no_cgroup_owner) 859 return; 860 861 css = mem_cgroup_css_from_page(page); 862 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 863 if (!(css->flags & CSS_ONLINE)) 864 return; 865 866 id = css->id; 867 868 if (id == wbc->wb_id) { 869 wbc->wb_bytes += bytes; 870 return; 871 } 872 873 if (id == wbc->wb_lcand_id) 874 wbc->wb_lcand_bytes += bytes; 875 876 /* Boyer-Moore majority vote algorithm */ 877 if (!wbc->wb_tcand_bytes) 878 wbc->wb_tcand_id = id; 879 if (id == wbc->wb_tcand_id) 880 wbc->wb_tcand_bytes += bytes; 881 else 882 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 883 } 884 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 885 886 /** 887 * inode_congested - test whether an inode is congested 888 * @inode: inode to test for congestion (may be NULL) 889 * @cong_bits: mask of WB_[a]sync_congested bits to test 890 * 891 * Tests whether @inode is congested. @cong_bits is the mask of congestion 892 * bits to test and the return value is the mask of set bits. 893 * 894 * If cgroup writeback is enabled for @inode, the congestion state is 895 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 896 * associated with @inode is congested; otherwise, the root wb's congestion 897 * state is used. 898 * 899 * @inode is allowed to be NULL as this function is often called on 900 * mapping->host which is NULL for the swapper space. 901 */ 902 int inode_congested(struct inode *inode, int cong_bits) 903 { 904 /* 905 * Once set, ->i_wb never becomes NULL while the inode is alive. 906 * Start transaction iff ->i_wb is visible. 907 */ 908 if (inode && inode_to_wb_is_valid(inode)) { 909 struct bdi_writeback *wb; 910 struct wb_lock_cookie lock_cookie = {}; 911 bool congested; 912 913 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 914 congested = wb_congested(wb, cong_bits); 915 unlocked_inode_to_wb_end(inode, &lock_cookie); 916 return congested; 917 } 918 919 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 920 } 921 EXPORT_SYMBOL_GPL(inode_congested); 922 923 /** 924 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 925 * @wb: target bdi_writeback to split @nr_pages to 926 * @nr_pages: number of pages to write for the whole bdi 927 * 928 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 929 * relation to the total write bandwidth of all wb's w/ dirty inodes on 930 * @wb->bdi. 931 */ 932 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 933 { 934 unsigned long this_bw = wb->avg_write_bandwidth; 935 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 936 937 if (nr_pages == LONG_MAX) 938 return LONG_MAX; 939 940 /* 941 * This may be called on clean wb's and proportional distribution 942 * may not make sense, just use the original @nr_pages in those 943 * cases. In general, we wanna err on the side of writing more. 944 */ 945 if (!tot_bw || this_bw >= tot_bw) 946 return nr_pages; 947 else 948 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 949 } 950 951 /** 952 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 953 * @bdi: target backing_dev_info 954 * @base_work: wb_writeback_work to issue 955 * @skip_if_busy: skip wb's which already have writeback in progress 956 * 957 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 958 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 959 * distributed to the busy wbs according to each wb's proportion in the 960 * total active write bandwidth of @bdi. 961 */ 962 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 963 struct wb_writeback_work *base_work, 964 bool skip_if_busy) 965 { 966 struct bdi_writeback *last_wb = NULL; 967 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 968 struct bdi_writeback, bdi_node); 969 970 might_sleep(); 971 restart: 972 rcu_read_lock(); 973 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 974 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 975 struct wb_writeback_work fallback_work; 976 struct wb_writeback_work *work; 977 long nr_pages; 978 979 if (last_wb) { 980 wb_put(last_wb); 981 last_wb = NULL; 982 } 983 984 /* SYNC_ALL writes out I_DIRTY_TIME too */ 985 if (!wb_has_dirty_io(wb) && 986 (base_work->sync_mode == WB_SYNC_NONE || 987 list_empty(&wb->b_dirty_time))) 988 continue; 989 if (skip_if_busy && writeback_in_progress(wb)) 990 continue; 991 992 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 993 994 work = kmalloc(sizeof(*work), GFP_ATOMIC); 995 if (work) { 996 *work = *base_work; 997 work->nr_pages = nr_pages; 998 work->auto_free = 1; 999 wb_queue_work(wb, work); 1000 continue; 1001 } 1002 1003 /* alloc failed, execute synchronously using on-stack fallback */ 1004 work = &fallback_work; 1005 *work = *base_work; 1006 work->nr_pages = nr_pages; 1007 work->auto_free = 0; 1008 work->done = &fallback_work_done; 1009 1010 wb_queue_work(wb, work); 1011 1012 /* 1013 * Pin @wb so that it stays on @bdi->wb_list. This allows 1014 * continuing iteration from @wb after dropping and 1015 * regrabbing rcu read lock. 1016 */ 1017 wb_get(wb); 1018 last_wb = wb; 1019 1020 rcu_read_unlock(); 1021 wb_wait_for_completion(&fallback_work_done); 1022 goto restart; 1023 } 1024 rcu_read_unlock(); 1025 1026 if (last_wb) 1027 wb_put(last_wb); 1028 } 1029 1030 /** 1031 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1032 * @bdi_id: target bdi id 1033 * @memcg_id: target memcg css id 1034 * @nr: number of pages to write, 0 for best-effort dirty flushing 1035 * @reason: reason why some writeback work initiated 1036 * @done: target wb_completion 1037 * 1038 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1039 * with the specified parameters. 1040 */ 1041 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, 1042 enum wb_reason reason, struct wb_completion *done) 1043 { 1044 struct backing_dev_info *bdi; 1045 struct cgroup_subsys_state *memcg_css; 1046 struct bdi_writeback *wb; 1047 struct wb_writeback_work *work; 1048 int ret; 1049 1050 /* lookup bdi and memcg */ 1051 bdi = bdi_get_by_id(bdi_id); 1052 if (!bdi) 1053 return -ENOENT; 1054 1055 rcu_read_lock(); 1056 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1057 if (memcg_css && !css_tryget(memcg_css)) 1058 memcg_css = NULL; 1059 rcu_read_unlock(); 1060 if (!memcg_css) { 1061 ret = -ENOENT; 1062 goto out_bdi_put; 1063 } 1064 1065 /* 1066 * And find the associated wb. If the wb isn't there already 1067 * there's nothing to flush, don't create one. 1068 */ 1069 wb = wb_get_lookup(bdi, memcg_css); 1070 if (!wb) { 1071 ret = -ENOENT; 1072 goto out_css_put; 1073 } 1074 1075 /* 1076 * If @nr is zero, the caller is attempting to write out most of 1077 * the currently dirty pages. Let's take the current dirty page 1078 * count and inflate it by 25% which should be large enough to 1079 * flush out most dirty pages while avoiding getting livelocked by 1080 * concurrent dirtiers. 1081 */ 1082 if (!nr) { 1083 unsigned long filepages, headroom, dirty, writeback; 1084 1085 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, 1086 &writeback); 1087 nr = dirty * 10 / 8; 1088 } 1089 1090 /* issue the writeback work */ 1091 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1092 if (work) { 1093 work->nr_pages = nr; 1094 work->sync_mode = WB_SYNC_NONE; 1095 work->range_cyclic = 1; 1096 work->reason = reason; 1097 work->done = done; 1098 work->auto_free = 1; 1099 wb_queue_work(wb, work); 1100 ret = 0; 1101 } else { 1102 ret = -ENOMEM; 1103 } 1104 1105 wb_put(wb); 1106 out_css_put: 1107 css_put(memcg_css); 1108 out_bdi_put: 1109 bdi_put(bdi); 1110 return ret; 1111 } 1112 1113 /** 1114 * cgroup_writeback_umount - flush inode wb switches for umount 1115 * 1116 * This function is called when a super_block is about to be destroyed and 1117 * flushes in-flight inode wb switches. An inode wb switch goes through 1118 * RCU and then workqueue, so the two need to be flushed in order to ensure 1119 * that all previously scheduled switches are finished. As wb switches are 1120 * rare occurrences and synchronize_rcu() can take a while, perform 1121 * flushing iff wb switches are in flight. 1122 */ 1123 void cgroup_writeback_umount(void) 1124 { 1125 /* 1126 * SB_ACTIVE should be reliably cleared before checking 1127 * isw_nr_in_flight, see generic_shutdown_super(). 1128 */ 1129 smp_mb(); 1130 1131 if (atomic_read(&isw_nr_in_flight)) { 1132 /* 1133 * Use rcu_barrier() to wait for all pending callbacks to 1134 * ensure that all in-flight wb switches are in the workqueue. 1135 */ 1136 rcu_barrier(); 1137 flush_workqueue(isw_wq); 1138 } 1139 } 1140 1141 static int __init cgroup_writeback_init(void) 1142 { 1143 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1144 if (!isw_wq) 1145 return -ENOMEM; 1146 return 0; 1147 } 1148 fs_initcall(cgroup_writeback_init); 1149 1150 #else /* CONFIG_CGROUP_WRITEBACK */ 1151 1152 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1153 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1154 1155 static void inode_cgwb_move_to_attached(struct inode *inode, 1156 struct bdi_writeback *wb) 1157 { 1158 assert_spin_locked(&wb->list_lock); 1159 assert_spin_locked(&inode->i_lock); 1160 1161 inode->i_state &= ~I_SYNC_QUEUED; 1162 list_del_init(&inode->i_io_list); 1163 wb_io_lists_depopulated(wb); 1164 } 1165 1166 static struct bdi_writeback * 1167 locked_inode_to_wb_and_lock_list(struct inode *inode) 1168 __releases(&inode->i_lock) 1169 __acquires(&wb->list_lock) 1170 { 1171 struct bdi_writeback *wb = inode_to_wb(inode); 1172 1173 spin_unlock(&inode->i_lock); 1174 spin_lock(&wb->list_lock); 1175 return wb; 1176 } 1177 1178 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1179 __acquires(&wb->list_lock) 1180 { 1181 struct bdi_writeback *wb = inode_to_wb(inode); 1182 1183 spin_lock(&wb->list_lock); 1184 return wb; 1185 } 1186 1187 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1188 { 1189 return nr_pages; 1190 } 1191 1192 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1193 struct wb_writeback_work *base_work, 1194 bool skip_if_busy) 1195 { 1196 might_sleep(); 1197 1198 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1199 base_work->auto_free = 0; 1200 wb_queue_work(&bdi->wb, base_work); 1201 } 1202 } 1203 1204 #endif /* CONFIG_CGROUP_WRITEBACK */ 1205 1206 /* 1207 * Add in the number of potentially dirty inodes, because each inode 1208 * write can dirty pagecache in the underlying blockdev. 1209 */ 1210 static unsigned long get_nr_dirty_pages(void) 1211 { 1212 return global_node_page_state(NR_FILE_DIRTY) + 1213 get_nr_dirty_inodes(); 1214 } 1215 1216 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1217 { 1218 if (!wb_has_dirty_io(wb)) 1219 return; 1220 1221 /* 1222 * All callers of this function want to start writeback of all 1223 * dirty pages. Places like vmscan can call this at a very 1224 * high frequency, causing pointless allocations of tons of 1225 * work items and keeping the flusher threads busy retrieving 1226 * that work. Ensure that we only allow one of them pending and 1227 * inflight at the time. 1228 */ 1229 if (test_bit(WB_start_all, &wb->state) || 1230 test_and_set_bit(WB_start_all, &wb->state)) 1231 return; 1232 1233 wb->start_all_reason = reason; 1234 wb_wakeup(wb); 1235 } 1236 1237 /** 1238 * wb_start_background_writeback - start background writeback 1239 * @wb: bdi_writback to write from 1240 * 1241 * Description: 1242 * This makes sure WB_SYNC_NONE background writeback happens. When 1243 * this function returns, it is only guaranteed that for given wb 1244 * some IO is happening if we are over background dirty threshold. 1245 * Caller need not hold sb s_umount semaphore. 1246 */ 1247 void wb_start_background_writeback(struct bdi_writeback *wb) 1248 { 1249 /* 1250 * We just wake up the flusher thread. It will perform background 1251 * writeback as soon as there is no other work to do. 1252 */ 1253 trace_writeback_wake_background(wb); 1254 wb_wakeup(wb); 1255 } 1256 1257 /* 1258 * Remove the inode from the writeback list it is on. 1259 */ 1260 void inode_io_list_del(struct inode *inode) 1261 { 1262 struct bdi_writeback *wb; 1263 1264 wb = inode_to_wb_and_lock_list(inode); 1265 spin_lock(&inode->i_lock); 1266 1267 inode->i_state &= ~I_SYNC_QUEUED; 1268 list_del_init(&inode->i_io_list); 1269 wb_io_lists_depopulated(wb); 1270 1271 spin_unlock(&inode->i_lock); 1272 spin_unlock(&wb->list_lock); 1273 } 1274 EXPORT_SYMBOL(inode_io_list_del); 1275 1276 /* 1277 * mark an inode as under writeback on the sb 1278 */ 1279 void sb_mark_inode_writeback(struct inode *inode) 1280 { 1281 struct super_block *sb = inode->i_sb; 1282 unsigned long flags; 1283 1284 if (list_empty(&inode->i_wb_list)) { 1285 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1286 if (list_empty(&inode->i_wb_list)) { 1287 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1288 trace_sb_mark_inode_writeback(inode); 1289 } 1290 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1291 } 1292 } 1293 1294 /* 1295 * clear an inode as under writeback on the sb 1296 */ 1297 void sb_clear_inode_writeback(struct inode *inode) 1298 { 1299 struct super_block *sb = inode->i_sb; 1300 unsigned long flags; 1301 1302 if (!list_empty(&inode->i_wb_list)) { 1303 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1304 if (!list_empty(&inode->i_wb_list)) { 1305 list_del_init(&inode->i_wb_list); 1306 trace_sb_clear_inode_writeback(inode); 1307 } 1308 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1309 } 1310 } 1311 1312 /* 1313 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1314 * furthest end of its superblock's dirty-inode list. 1315 * 1316 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1317 * already the most-recently-dirtied inode on the b_dirty list. If that is 1318 * the case then the inode must have been redirtied while it was being written 1319 * out and we don't reset its dirtied_when. 1320 */ 1321 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1322 { 1323 assert_spin_locked(&inode->i_lock); 1324 1325 if (!list_empty(&wb->b_dirty)) { 1326 struct inode *tail; 1327 1328 tail = wb_inode(wb->b_dirty.next); 1329 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1330 inode->dirtied_when = jiffies; 1331 } 1332 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1333 inode->i_state &= ~I_SYNC_QUEUED; 1334 } 1335 1336 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1337 { 1338 spin_lock(&inode->i_lock); 1339 redirty_tail_locked(inode, wb); 1340 spin_unlock(&inode->i_lock); 1341 } 1342 1343 /* 1344 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1345 */ 1346 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1347 { 1348 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1349 } 1350 1351 static void inode_sync_complete(struct inode *inode) 1352 { 1353 inode->i_state &= ~I_SYNC; 1354 /* If inode is clean an unused, put it into LRU now... */ 1355 inode_add_lru(inode); 1356 /* Waiters must see I_SYNC cleared before being woken up */ 1357 smp_mb(); 1358 wake_up_bit(&inode->i_state, __I_SYNC); 1359 } 1360 1361 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1362 { 1363 bool ret = time_after(inode->dirtied_when, t); 1364 #ifndef CONFIG_64BIT 1365 /* 1366 * For inodes being constantly redirtied, dirtied_when can get stuck. 1367 * It _appears_ to be in the future, but is actually in distant past. 1368 * This test is necessary to prevent such wrapped-around relative times 1369 * from permanently stopping the whole bdi writeback. 1370 */ 1371 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1372 #endif 1373 return ret; 1374 } 1375 1376 #define EXPIRE_DIRTY_ATIME 0x0001 1377 1378 /* 1379 * Move expired (dirtied before dirtied_before) dirty inodes from 1380 * @delaying_queue to @dispatch_queue. 1381 */ 1382 static int move_expired_inodes(struct list_head *delaying_queue, 1383 struct list_head *dispatch_queue, 1384 unsigned long dirtied_before) 1385 { 1386 LIST_HEAD(tmp); 1387 struct list_head *pos, *node; 1388 struct super_block *sb = NULL; 1389 struct inode *inode; 1390 int do_sb_sort = 0; 1391 int moved = 0; 1392 1393 while (!list_empty(delaying_queue)) { 1394 inode = wb_inode(delaying_queue->prev); 1395 if (inode_dirtied_after(inode, dirtied_before)) 1396 break; 1397 list_move(&inode->i_io_list, &tmp); 1398 moved++; 1399 spin_lock(&inode->i_lock); 1400 inode->i_state |= I_SYNC_QUEUED; 1401 spin_unlock(&inode->i_lock); 1402 if (sb_is_blkdev_sb(inode->i_sb)) 1403 continue; 1404 if (sb && sb != inode->i_sb) 1405 do_sb_sort = 1; 1406 sb = inode->i_sb; 1407 } 1408 1409 /* just one sb in list, splice to dispatch_queue and we're done */ 1410 if (!do_sb_sort) { 1411 list_splice(&tmp, dispatch_queue); 1412 goto out; 1413 } 1414 1415 /* Move inodes from one superblock together */ 1416 while (!list_empty(&tmp)) { 1417 sb = wb_inode(tmp.prev)->i_sb; 1418 list_for_each_prev_safe(pos, node, &tmp) { 1419 inode = wb_inode(pos); 1420 if (inode->i_sb == sb) 1421 list_move(&inode->i_io_list, dispatch_queue); 1422 } 1423 } 1424 out: 1425 return moved; 1426 } 1427 1428 /* 1429 * Queue all expired dirty inodes for io, eldest first. 1430 * Before 1431 * newly dirtied b_dirty b_io b_more_io 1432 * =============> gf edc BA 1433 * After 1434 * newly dirtied b_dirty b_io b_more_io 1435 * =============> g fBAedc 1436 * | 1437 * +--> dequeue for IO 1438 */ 1439 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1440 unsigned long dirtied_before) 1441 { 1442 int moved; 1443 unsigned long time_expire_jif = dirtied_before; 1444 1445 assert_spin_locked(&wb->list_lock); 1446 list_splice_init(&wb->b_more_io, &wb->b_io); 1447 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1448 if (!work->for_sync) 1449 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1450 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1451 time_expire_jif); 1452 if (moved) 1453 wb_io_lists_populated(wb); 1454 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1455 } 1456 1457 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1458 { 1459 int ret; 1460 1461 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1462 trace_writeback_write_inode_start(inode, wbc); 1463 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1464 trace_writeback_write_inode(inode, wbc); 1465 return ret; 1466 } 1467 return 0; 1468 } 1469 1470 /* 1471 * Wait for writeback on an inode to complete. Called with i_lock held. 1472 * Caller must make sure inode cannot go away when we drop i_lock. 1473 */ 1474 static void __inode_wait_for_writeback(struct inode *inode) 1475 __releases(inode->i_lock) 1476 __acquires(inode->i_lock) 1477 { 1478 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1479 wait_queue_head_t *wqh; 1480 1481 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1482 while (inode->i_state & I_SYNC) { 1483 spin_unlock(&inode->i_lock); 1484 __wait_on_bit(wqh, &wq, bit_wait, 1485 TASK_UNINTERRUPTIBLE); 1486 spin_lock(&inode->i_lock); 1487 } 1488 } 1489 1490 /* 1491 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1492 */ 1493 void inode_wait_for_writeback(struct inode *inode) 1494 { 1495 spin_lock(&inode->i_lock); 1496 __inode_wait_for_writeback(inode); 1497 spin_unlock(&inode->i_lock); 1498 } 1499 1500 /* 1501 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1502 * held and drops it. It is aimed for callers not holding any inode reference 1503 * so once i_lock is dropped, inode can go away. 1504 */ 1505 static void inode_sleep_on_writeback(struct inode *inode) 1506 __releases(inode->i_lock) 1507 { 1508 DEFINE_WAIT(wait); 1509 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1510 int sleep; 1511 1512 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1513 sleep = inode->i_state & I_SYNC; 1514 spin_unlock(&inode->i_lock); 1515 if (sleep) 1516 schedule(); 1517 finish_wait(wqh, &wait); 1518 } 1519 1520 /* 1521 * Find proper writeback list for the inode depending on its current state and 1522 * possibly also change of its state while we were doing writeback. Here we 1523 * handle things such as livelock prevention or fairness of writeback among 1524 * inodes. This function can be called only by flusher thread - noone else 1525 * processes all inodes in writeback lists and requeueing inodes behind flusher 1526 * thread's back can have unexpected consequences. 1527 */ 1528 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1529 struct writeback_control *wbc) 1530 { 1531 if (inode->i_state & I_FREEING) 1532 return; 1533 1534 /* 1535 * Sync livelock prevention. Each inode is tagged and synced in one 1536 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1537 * the dirty time to prevent enqueue and sync it again. 1538 */ 1539 if ((inode->i_state & I_DIRTY) && 1540 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1541 inode->dirtied_when = jiffies; 1542 1543 if (wbc->pages_skipped) { 1544 /* 1545 * writeback is not making progress due to locked 1546 * buffers. Skip this inode for now. 1547 */ 1548 redirty_tail_locked(inode, wb); 1549 return; 1550 } 1551 1552 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1553 /* 1554 * We didn't write back all the pages. nfs_writepages() 1555 * sometimes bales out without doing anything. 1556 */ 1557 if (wbc->nr_to_write <= 0) { 1558 /* Slice used up. Queue for next turn. */ 1559 requeue_io(inode, wb); 1560 } else { 1561 /* 1562 * Writeback blocked by something other than 1563 * congestion. Delay the inode for some time to 1564 * avoid spinning on the CPU (100% iowait) 1565 * retrying writeback of the dirty page/inode 1566 * that cannot be performed immediately. 1567 */ 1568 redirty_tail_locked(inode, wb); 1569 } 1570 } else if (inode->i_state & I_DIRTY) { 1571 /* 1572 * Filesystems can dirty the inode during writeback operations, 1573 * such as delayed allocation during submission or metadata 1574 * updates after data IO completion. 1575 */ 1576 redirty_tail_locked(inode, wb); 1577 } else if (inode->i_state & I_DIRTY_TIME) { 1578 inode->dirtied_when = jiffies; 1579 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1580 inode->i_state &= ~I_SYNC_QUEUED; 1581 } else { 1582 /* The inode is clean. Remove from writeback lists. */ 1583 inode_cgwb_move_to_attached(inode, wb); 1584 } 1585 } 1586 1587 /* 1588 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1589 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1590 * 1591 * This doesn't remove the inode from the writeback list it is on, except 1592 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1593 * expiration. The caller is otherwise responsible for writeback list handling. 1594 * 1595 * The caller is also responsible for setting the I_SYNC flag beforehand and 1596 * calling inode_sync_complete() to clear it afterwards. 1597 */ 1598 static int 1599 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1600 { 1601 struct address_space *mapping = inode->i_mapping; 1602 long nr_to_write = wbc->nr_to_write; 1603 unsigned dirty; 1604 int ret; 1605 1606 WARN_ON(!(inode->i_state & I_SYNC)); 1607 1608 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1609 1610 ret = do_writepages(mapping, wbc); 1611 1612 /* 1613 * Make sure to wait on the data before writing out the metadata. 1614 * This is important for filesystems that modify metadata on data 1615 * I/O completion. We don't do it for sync(2) writeback because it has a 1616 * separate, external IO completion path and ->sync_fs for guaranteeing 1617 * inode metadata is written back correctly. 1618 */ 1619 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1620 int err = filemap_fdatawait(mapping); 1621 if (ret == 0) 1622 ret = err; 1623 } 1624 1625 /* 1626 * If the inode has dirty timestamps and we need to write them, call 1627 * mark_inode_dirty_sync() to notify the filesystem about it and to 1628 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1629 */ 1630 if ((inode->i_state & I_DIRTY_TIME) && 1631 (wbc->sync_mode == WB_SYNC_ALL || 1632 time_after(jiffies, inode->dirtied_time_when + 1633 dirtytime_expire_interval * HZ))) { 1634 trace_writeback_lazytime(inode); 1635 mark_inode_dirty_sync(inode); 1636 } 1637 1638 /* 1639 * Get and clear the dirty flags from i_state. This needs to be done 1640 * after calling writepages because some filesystems may redirty the 1641 * inode during writepages due to delalloc. It also needs to be done 1642 * after handling timestamp expiration, as that may dirty the inode too. 1643 */ 1644 spin_lock(&inode->i_lock); 1645 dirty = inode->i_state & I_DIRTY; 1646 inode->i_state &= ~dirty; 1647 1648 /* 1649 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1650 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1651 * either they see the I_DIRTY bits cleared or we see the dirtied 1652 * inode. 1653 * 1654 * I_DIRTY_PAGES is always cleared together above even if @mapping 1655 * still has dirty pages. The flag is reinstated after smp_mb() if 1656 * necessary. This guarantees that either __mark_inode_dirty() 1657 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1658 */ 1659 smp_mb(); 1660 1661 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1662 inode->i_state |= I_DIRTY_PAGES; 1663 1664 spin_unlock(&inode->i_lock); 1665 1666 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1667 if (dirty & ~I_DIRTY_PAGES) { 1668 int err = write_inode(inode, wbc); 1669 if (ret == 0) 1670 ret = err; 1671 } 1672 trace_writeback_single_inode(inode, wbc, nr_to_write); 1673 return ret; 1674 } 1675 1676 /* 1677 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1678 * the regular batched writeback done by the flusher threads in 1679 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1680 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1681 * 1682 * To prevent the inode from going away, either the caller must have a reference 1683 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1684 */ 1685 static int writeback_single_inode(struct inode *inode, 1686 struct writeback_control *wbc) 1687 { 1688 struct bdi_writeback *wb; 1689 int ret = 0; 1690 1691 spin_lock(&inode->i_lock); 1692 if (!atomic_read(&inode->i_count)) 1693 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1694 else 1695 WARN_ON(inode->i_state & I_WILL_FREE); 1696 1697 if (inode->i_state & I_SYNC) { 1698 /* 1699 * Writeback is already running on the inode. For WB_SYNC_NONE, 1700 * that's enough and we can just return. For WB_SYNC_ALL, we 1701 * must wait for the existing writeback to complete, then do 1702 * writeback again if there's anything left. 1703 */ 1704 if (wbc->sync_mode != WB_SYNC_ALL) 1705 goto out; 1706 __inode_wait_for_writeback(inode); 1707 } 1708 WARN_ON(inode->i_state & I_SYNC); 1709 /* 1710 * If the inode is already fully clean, then there's nothing to do. 1711 * 1712 * For data-integrity syncs we also need to check whether any pages are 1713 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1714 * there are any such pages, we'll need to wait for them. 1715 */ 1716 if (!(inode->i_state & I_DIRTY_ALL) && 1717 (wbc->sync_mode != WB_SYNC_ALL || 1718 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1719 goto out; 1720 inode->i_state |= I_SYNC; 1721 wbc_attach_and_unlock_inode(wbc, inode); 1722 1723 ret = __writeback_single_inode(inode, wbc); 1724 1725 wbc_detach_inode(wbc); 1726 1727 wb = inode_to_wb_and_lock_list(inode); 1728 spin_lock(&inode->i_lock); 1729 /* 1730 * If the inode is now fully clean, then it can be safely removed from 1731 * its writeback list (if any). Otherwise the flusher threads are 1732 * responsible for the writeback lists. 1733 */ 1734 if (!(inode->i_state & I_DIRTY_ALL)) 1735 inode_cgwb_move_to_attached(inode, wb); 1736 spin_unlock(&wb->list_lock); 1737 inode_sync_complete(inode); 1738 out: 1739 spin_unlock(&inode->i_lock); 1740 return ret; 1741 } 1742 1743 static long writeback_chunk_size(struct bdi_writeback *wb, 1744 struct wb_writeback_work *work) 1745 { 1746 long pages; 1747 1748 /* 1749 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1750 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1751 * here avoids calling into writeback_inodes_wb() more than once. 1752 * 1753 * The intended call sequence for WB_SYNC_ALL writeback is: 1754 * 1755 * wb_writeback() 1756 * writeback_sb_inodes() <== called only once 1757 * write_cache_pages() <== called once for each inode 1758 * (quickly) tag currently dirty pages 1759 * (maybe slowly) sync all tagged pages 1760 */ 1761 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1762 pages = LONG_MAX; 1763 else { 1764 pages = min(wb->avg_write_bandwidth / 2, 1765 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1766 pages = min(pages, work->nr_pages); 1767 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1768 MIN_WRITEBACK_PAGES); 1769 } 1770 1771 return pages; 1772 } 1773 1774 /* 1775 * Write a portion of b_io inodes which belong to @sb. 1776 * 1777 * Return the number of pages and/or inodes written. 1778 * 1779 * NOTE! This is called with wb->list_lock held, and will 1780 * unlock and relock that for each inode it ends up doing 1781 * IO for. 1782 */ 1783 static long writeback_sb_inodes(struct super_block *sb, 1784 struct bdi_writeback *wb, 1785 struct wb_writeback_work *work) 1786 { 1787 struct writeback_control wbc = { 1788 .sync_mode = work->sync_mode, 1789 .tagged_writepages = work->tagged_writepages, 1790 .for_kupdate = work->for_kupdate, 1791 .for_background = work->for_background, 1792 .for_sync = work->for_sync, 1793 .range_cyclic = work->range_cyclic, 1794 .range_start = 0, 1795 .range_end = LLONG_MAX, 1796 }; 1797 unsigned long start_time = jiffies; 1798 long write_chunk; 1799 long wrote = 0; /* count both pages and inodes */ 1800 1801 while (!list_empty(&wb->b_io)) { 1802 struct inode *inode = wb_inode(wb->b_io.prev); 1803 struct bdi_writeback *tmp_wb; 1804 1805 if (inode->i_sb != sb) { 1806 if (work->sb) { 1807 /* 1808 * We only want to write back data for this 1809 * superblock, move all inodes not belonging 1810 * to it back onto the dirty list. 1811 */ 1812 redirty_tail(inode, wb); 1813 continue; 1814 } 1815 1816 /* 1817 * The inode belongs to a different superblock. 1818 * Bounce back to the caller to unpin this and 1819 * pin the next superblock. 1820 */ 1821 break; 1822 } 1823 1824 /* 1825 * Don't bother with new inodes or inodes being freed, first 1826 * kind does not need periodic writeout yet, and for the latter 1827 * kind writeout is handled by the freer. 1828 */ 1829 spin_lock(&inode->i_lock); 1830 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1831 redirty_tail_locked(inode, wb); 1832 spin_unlock(&inode->i_lock); 1833 continue; 1834 } 1835 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1836 /* 1837 * If this inode is locked for writeback and we are not 1838 * doing writeback-for-data-integrity, move it to 1839 * b_more_io so that writeback can proceed with the 1840 * other inodes on s_io. 1841 * 1842 * We'll have another go at writing back this inode 1843 * when we completed a full scan of b_io. 1844 */ 1845 spin_unlock(&inode->i_lock); 1846 requeue_io(inode, wb); 1847 trace_writeback_sb_inodes_requeue(inode); 1848 continue; 1849 } 1850 spin_unlock(&wb->list_lock); 1851 1852 /* 1853 * We already requeued the inode if it had I_SYNC set and we 1854 * are doing WB_SYNC_NONE writeback. So this catches only the 1855 * WB_SYNC_ALL case. 1856 */ 1857 if (inode->i_state & I_SYNC) { 1858 /* Wait for I_SYNC. This function drops i_lock... */ 1859 inode_sleep_on_writeback(inode); 1860 /* Inode may be gone, start again */ 1861 spin_lock(&wb->list_lock); 1862 continue; 1863 } 1864 inode->i_state |= I_SYNC; 1865 wbc_attach_and_unlock_inode(&wbc, inode); 1866 1867 write_chunk = writeback_chunk_size(wb, work); 1868 wbc.nr_to_write = write_chunk; 1869 wbc.pages_skipped = 0; 1870 1871 /* 1872 * We use I_SYNC to pin the inode in memory. While it is set 1873 * evict_inode() will wait so the inode cannot be freed. 1874 */ 1875 __writeback_single_inode(inode, &wbc); 1876 1877 wbc_detach_inode(&wbc); 1878 work->nr_pages -= write_chunk - wbc.nr_to_write; 1879 wrote += write_chunk - wbc.nr_to_write; 1880 1881 if (need_resched()) { 1882 /* 1883 * We're trying to balance between building up a nice 1884 * long list of IOs to improve our merge rate, and 1885 * getting those IOs out quickly for anyone throttling 1886 * in balance_dirty_pages(). cond_resched() doesn't 1887 * unplug, so get our IOs out the door before we 1888 * give up the CPU. 1889 */ 1890 blk_flush_plug(current); 1891 cond_resched(); 1892 } 1893 1894 /* 1895 * Requeue @inode if still dirty. Be careful as @inode may 1896 * have been switched to another wb in the meantime. 1897 */ 1898 tmp_wb = inode_to_wb_and_lock_list(inode); 1899 spin_lock(&inode->i_lock); 1900 if (!(inode->i_state & I_DIRTY_ALL)) 1901 wrote++; 1902 requeue_inode(inode, tmp_wb, &wbc); 1903 inode_sync_complete(inode); 1904 spin_unlock(&inode->i_lock); 1905 1906 if (unlikely(tmp_wb != wb)) { 1907 spin_unlock(&tmp_wb->list_lock); 1908 spin_lock(&wb->list_lock); 1909 } 1910 1911 /* 1912 * bail out to wb_writeback() often enough to check 1913 * background threshold and other termination conditions. 1914 */ 1915 if (wrote) { 1916 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1917 break; 1918 if (work->nr_pages <= 0) 1919 break; 1920 } 1921 } 1922 return wrote; 1923 } 1924 1925 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1926 struct wb_writeback_work *work) 1927 { 1928 unsigned long start_time = jiffies; 1929 long wrote = 0; 1930 1931 while (!list_empty(&wb->b_io)) { 1932 struct inode *inode = wb_inode(wb->b_io.prev); 1933 struct super_block *sb = inode->i_sb; 1934 1935 if (!trylock_super(sb)) { 1936 /* 1937 * trylock_super() may fail consistently due to 1938 * s_umount being grabbed by someone else. Don't use 1939 * requeue_io() to avoid busy retrying the inode/sb. 1940 */ 1941 redirty_tail(inode, wb); 1942 continue; 1943 } 1944 wrote += writeback_sb_inodes(sb, wb, work); 1945 up_read(&sb->s_umount); 1946 1947 /* refer to the same tests at the end of writeback_sb_inodes */ 1948 if (wrote) { 1949 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1950 break; 1951 if (work->nr_pages <= 0) 1952 break; 1953 } 1954 } 1955 /* Leave any unwritten inodes on b_io */ 1956 return wrote; 1957 } 1958 1959 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1960 enum wb_reason reason) 1961 { 1962 struct wb_writeback_work work = { 1963 .nr_pages = nr_pages, 1964 .sync_mode = WB_SYNC_NONE, 1965 .range_cyclic = 1, 1966 .reason = reason, 1967 }; 1968 struct blk_plug plug; 1969 1970 blk_start_plug(&plug); 1971 spin_lock(&wb->list_lock); 1972 if (list_empty(&wb->b_io)) 1973 queue_io(wb, &work, jiffies); 1974 __writeback_inodes_wb(wb, &work); 1975 spin_unlock(&wb->list_lock); 1976 blk_finish_plug(&plug); 1977 1978 return nr_pages - work.nr_pages; 1979 } 1980 1981 /* 1982 * Explicit flushing or periodic writeback of "old" data. 1983 * 1984 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1985 * dirtying-time in the inode's address_space. So this periodic writeback code 1986 * just walks the superblock inode list, writing back any inodes which are 1987 * older than a specific point in time. 1988 * 1989 * Try to run once per dirty_writeback_interval. But if a writeback event 1990 * takes longer than a dirty_writeback_interval interval, then leave a 1991 * one-second gap. 1992 * 1993 * dirtied_before takes precedence over nr_to_write. So we'll only write back 1994 * all dirty pages if they are all attached to "old" mappings. 1995 */ 1996 static long wb_writeback(struct bdi_writeback *wb, 1997 struct wb_writeback_work *work) 1998 { 1999 unsigned long wb_start = jiffies; 2000 long nr_pages = work->nr_pages; 2001 unsigned long dirtied_before = jiffies; 2002 struct inode *inode; 2003 long progress; 2004 struct blk_plug plug; 2005 2006 blk_start_plug(&plug); 2007 spin_lock(&wb->list_lock); 2008 for (;;) { 2009 /* 2010 * Stop writeback when nr_pages has been consumed 2011 */ 2012 if (work->nr_pages <= 0) 2013 break; 2014 2015 /* 2016 * Background writeout and kupdate-style writeback may 2017 * run forever. Stop them if there is other work to do 2018 * so that e.g. sync can proceed. They'll be restarted 2019 * after the other works are all done. 2020 */ 2021 if ((work->for_background || work->for_kupdate) && 2022 !list_empty(&wb->work_list)) 2023 break; 2024 2025 /* 2026 * For background writeout, stop when we are below the 2027 * background dirty threshold 2028 */ 2029 if (work->for_background && !wb_over_bg_thresh(wb)) 2030 break; 2031 2032 /* 2033 * Kupdate and background works are special and we want to 2034 * include all inodes that need writing. Livelock avoidance is 2035 * handled by these works yielding to any other work so we are 2036 * safe. 2037 */ 2038 if (work->for_kupdate) { 2039 dirtied_before = jiffies - 2040 msecs_to_jiffies(dirty_expire_interval * 10); 2041 } else if (work->for_background) 2042 dirtied_before = jiffies; 2043 2044 trace_writeback_start(wb, work); 2045 if (list_empty(&wb->b_io)) 2046 queue_io(wb, work, dirtied_before); 2047 if (work->sb) 2048 progress = writeback_sb_inodes(work->sb, wb, work); 2049 else 2050 progress = __writeback_inodes_wb(wb, work); 2051 trace_writeback_written(wb, work); 2052 2053 wb_update_bandwidth(wb, wb_start); 2054 2055 /* 2056 * Did we write something? Try for more 2057 * 2058 * Dirty inodes are moved to b_io for writeback in batches. 2059 * The completion of the current batch does not necessarily 2060 * mean the overall work is done. So we keep looping as long 2061 * as made some progress on cleaning pages or inodes. 2062 */ 2063 if (progress) 2064 continue; 2065 /* 2066 * No more inodes for IO, bail 2067 */ 2068 if (list_empty(&wb->b_more_io)) 2069 break; 2070 /* 2071 * Nothing written. Wait for some inode to 2072 * become available for writeback. Otherwise 2073 * we'll just busyloop. 2074 */ 2075 trace_writeback_wait(wb, work); 2076 inode = wb_inode(wb->b_more_io.prev); 2077 spin_lock(&inode->i_lock); 2078 spin_unlock(&wb->list_lock); 2079 /* This function drops i_lock... */ 2080 inode_sleep_on_writeback(inode); 2081 spin_lock(&wb->list_lock); 2082 } 2083 spin_unlock(&wb->list_lock); 2084 blk_finish_plug(&plug); 2085 2086 return nr_pages - work->nr_pages; 2087 } 2088 2089 /* 2090 * Return the next wb_writeback_work struct that hasn't been processed yet. 2091 */ 2092 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2093 { 2094 struct wb_writeback_work *work = NULL; 2095 2096 spin_lock_bh(&wb->work_lock); 2097 if (!list_empty(&wb->work_list)) { 2098 work = list_entry(wb->work_list.next, 2099 struct wb_writeback_work, list); 2100 list_del_init(&work->list); 2101 } 2102 spin_unlock_bh(&wb->work_lock); 2103 return work; 2104 } 2105 2106 static long wb_check_background_flush(struct bdi_writeback *wb) 2107 { 2108 if (wb_over_bg_thresh(wb)) { 2109 2110 struct wb_writeback_work work = { 2111 .nr_pages = LONG_MAX, 2112 .sync_mode = WB_SYNC_NONE, 2113 .for_background = 1, 2114 .range_cyclic = 1, 2115 .reason = WB_REASON_BACKGROUND, 2116 }; 2117 2118 return wb_writeback(wb, &work); 2119 } 2120 2121 return 0; 2122 } 2123 2124 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2125 { 2126 unsigned long expired; 2127 long nr_pages; 2128 2129 /* 2130 * When set to zero, disable periodic writeback 2131 */ 2132 if (!dirty_writeback_interval) 2133 return 0; 2134 2135 expired = wb->last_old_flush + 2136 msecs_to_jiffies(dirty_writeback_interval * 10); 2137 if (time_before(jiffies, expired)) 2138 return 0; 2139 2140 wb->last_old_flush = jiffies; 2141 nr_pages = get_nr_dirty_pages(); 2142 2143 if (nr_pages) { 2144 struct wb_writeback_work work = { 2145 .nr_pages = nr_pages, 2146 .sync_mode = WB_SYNC_NONE, 2147 .for_kupdate = 1, 2148 .range_cyclic = 1, 2149 .reason = WB_REASON_PERIODIC, 2150 }; 2151 2152 return wb_writeback(wb, &work); 2153 } 2154 2155 return 0; 2156 } 2157 2158 static long wb_check_start_all(struct bdi_writeback *wb) 2159 { 2160 long nr_pages; 2161 2162 if (!test_bit(WB_start_all, &wb->state)) 2163 return 0; 2164 2165 nr_pages = get_nr_dirty_pages(); 2166 if (nr_pages) { 2167 struct wb_writeback_work work = { 2168 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2169 .sync_mode = WB_SYNC_NONE, 2170 .range_cyclic = 1, 2171 .reason = wb->start_all_reason, 2172 }; 2173 2174 nr_pages = wb_writeback(wb, &work); 2175 } 2176 2177 clear_bit(WB_start_all, &wb->state); 2178 return nr_pages; 2179 } 2180 2181 2182 /* 2183 * Retrieve work items and do the writeback they describe 2184 */ 2185 static long wb_do_writeback(struct bdi_writeback *wb) 2186 { 2187 struct wb_writeback_work *work; 2188 long wrote = 0; 2189 2190 set_bit(WB_writeback_running, &wb->state); 2191 while ((work = get_next_work_item(wb)) != NULL) { 2192 trace_writeback_exec(wb, work); 2193 wrote += wb_writeback(wb, work); 2194 finish_writeback_work(wb, work); 2195 } 2196 2197 /* 2198 * Check for a flush-everything request 2199 */ 2200 wrote += wb_check_start_all(wb); 2201 2202 /* 2203 * Check for periodic writeback, kupdated() style 2204 */ 2205 wrote += wb_check_old_data_flush(wb); 2206 wrote += wb_check_background_flush(wb); 2207 clear_bit(WB_writeback_running, &wb->state); 2208 2209 return wrote; 2210 } 2211 2212 /* 2213 * Handle writeback of dirty data for the device backed by this bdi. Also 2214 * reschedules periodically and does kupdated style flushing. 2215 */ 2216 void wb_workfn(struct work_struct *work) 2217 { 2218 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2219 struct bdi_writeback, dwork); 2220 long pages_written; 2221 2222 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2223 current->flags |= PF_SWAPWRITE; 2224 2225 if (likely(!current_is_workqueue_rescuer() || 2226 !test_bit(WB_registered, &wb->state))) { 2227 /* 2228 * The normal path. Keep writing back @wb until its 2229 * work_list is empty. Note that this path is also taken 2230 * if @wb is shutting down even when we're running off the 2231 * rescuer as work_list needs to be drained. 2232 */ 2233 do { 2234 pages_written = wb_do_writeback(wb); 2235 trace_writeback_pages_written(pages_written); 2236 } while (!list_empty(&wb->work_list)); 2237 } else { 2238 /* 2239 * bdi_wq can't get enough workers and we're running off 2240 * the emergency worker. Don't hog it. Hopefully, 1024 is 2241 * enough for efficient IO. 2242 */ 2243 pages_written = writeback_inodes_wb(wb, 1024, 2244 WB_REASON_FORKER_THREAD); 2245 trace_writeback_pages_written(pages_written); 2246 } 2247 2248 if (!list_empty(&wb->work_list)) 2249 wb_wakeup(wb); 2250 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2251 wb_wakeup_delayed(wb); 2252 2253 current->flags &= ~PF_SWAPWRITE; 2254 } 2255 2256 /* 2257 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2258 * write back the whole world. 2259 */ 2260 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2261 enum wb_reason reason) 2262 { 2263 struct bdi_writeback *wb; 2264 2265 if (!bdi_has_dirty_io(bdi)) 2266 return; 2267 2268 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2269 wb_start_writeback(wb, reason); 2270 } 2271 2272 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2273 enum wb_reason reason) 2274 { 2275 rcu_read_lock(); 2276 __wakeup_flusher_threads_bdi(bdi, reason); 2277 rcu_read_unlock(); 2278 } 2279 2280 /* 2281 * Wakeup the flusher threads to start writeback of all currently dirty pages 2282 */ 2283 void wakeup_flusher_threads(enum wb_reason reason) 2284 { 2285 struct backing_dev_info *bdi; 2286 2287 /* 2288 * If we are expecting writeback progress we must submit plugged IO. 2289 */ 2290 if (blk_needs_flush_plug(current)) 2291 blk_schedule_flush_plug(current); 2292 2293 rcu_read_lock(); 2294 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2295 __wakeup_flusher_threads_bdi(bdi, reason); 2296 rcu_read_unlock(); 2297 } 2298 2299 /* 2300 * Wake up bdi's periodically to make sure dirtytime inodes gets 2301 * written back periodically. We deliberately do *not* check the 2302 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2303 * kernel to be constantly waking up once there are any dirtytime 2304 * inodes on the system. So instead we define a separate delayed work 2305 * function which gets called much more rarely. (By default, only 2306 * once every 12 hours.) 2307 * 2308 * If there is any other write activity going on in the file system, 2309 * this function won't be necessary. But if the only thing that has 2310 * happened on the file system is a dirtytime inode caused by an atime 2311 * update, we need this infrastructure below to make sure that inode 2312 * eventually gets pushed out to disk. 2313 */ 2314 static void wakeup_dirtytime_writeback(struct work_struct *w); 2315 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2316 2317 static void wakeup_dirtytime_writeback(struct work_struct *w) 2318 { 2319 struct backing_dev_info *bdi; 2320 2321 rcu_read_lock(); 2322 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2323 struct bdi_writeback *wb; 2324 2325 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2326 if (!list_empty(&wb->b_dirty_time)) 2327 wb_wakeup(wb); 2328 } 2329 rcu_read_unlock(); 2330 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2331 } 2332 2333 static int __init start_dirtytime_writeback(void) 2334 { 2335 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2336 return 0; 2337 } 2338 __initcall(start_dirtytime_writeback); 2339 2340 int dirtytime_interval_handler(struct ctl_table *table, int write, 2341 void *buffer, size_t *lenp, loff_t *ppos) 2342 { 2343 int ret; 2344 2345 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2346 if (ret == 0 && write) 2347 mod_delayed_work(system_wq, &dirtytime_work, 0); 2348 return ret; 2349 } 2350 2351 /** 2352 * __mark_inode_dirty - internal function to mark an inode dirty 2353 * 2354 * @inode: inode to mark 2355 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2356 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2357 * with I_DIRTY_PAGES. 2358 * 2359 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2360 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2361 * 2362 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2363 * instead of calling this directly. 2364 * 2365 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2366 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2367 * even if they are later hashed, as they will have been marked dirty already. 2368 * 2369 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2370 * 2371 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2372 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2373 * the kernel-internal blockdev inode represents the dirtying time of the 2374 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2375 * page->mapping->host, so the page-dirtying time is recorded in the internal 2376 * blockdev inode. 2377 */ 2378 void __mark_inode_dirty(struct inode *inode, int flags) 2379 { 2380 struct super_block *sb = inode->i_sb; 2381 int dirtytime = 0; 2382 2383 trace_writeback_mark_inode_dirty(inode, flags); 2384 2385 if (flags & I_DIRTY_INODE) { 2386 /* 2387 * Notify the filesystem about the inode being dirtied, so that 2388 * (if needed) it can update on-disk fields and journal the 2389 * inode. This is only needed when the inode itself is being 2390 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2391 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2392 */ 2393 trace_writeback_dirty_inode_start(inode, flags); 2394 if (sb->s_op->dirty_inode) 2395 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE); 2396 trace_writeback_dirty_inode(inode, flags); 2397 2398 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2399 flags &= ~I_DIRTY_TIME; 2400 } else { 2401 /* 2402 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2403 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2404 * in one call to __mark_inode_dirty().) 2405 */ 2406 dirtytime = flags & I_DIRTY_TIME; 2407 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2408 } 2409 2410 /* 2411 * Paired with smp_mb() in __writeback_single_inode() for the 2412 * following lockless i_state test. See there for details. 2413 */ 2414 smp_mb(); 2415 2416 if (((inode->i_state & flags) == flags) || 2417 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2418 return; 2419 2420 spin_lock(&inode->i_lock); 2421 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2422 goto out_unlock_inode; 2423 if ((inode->i_state & flags) != flags) { 2424 const int was_dirty = inode->i_state & I_DIRTY; 2425 2426 inode_attach_wb(inode, NULL); 2427 2428 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2429 if (flags & I_DIRTY_INODE) 2430 inode->i_state &= ~I_DIRTY_TIME; 2431 inode->i_state |= flags; 2432 2433 /* 2434 * If the inode is queued for writeback by flush worker, just 2435 * update its dirty state. Once the flush worker is done with 2436 * the inode it will place it on the appropriate superblock 2437 * list, based upon its state. 2438 */ 2439 if (inode->i_state & I_SYNC_QUEUED) 2440 goto out_unlock_inode; 2441 2442 /* 2443 * Only add valid (hashed) inodes to the superblock's 2444 * dirty list. Add blockdev inodes as well. 2445 */ 2446 if (!S_ISBLK(inode->i_mode)) { 2447 if (inode_unhashed(inode)) 2448 goto out_unlock_inode; 2449 } 2450 if (inode->i_state & I_FREEING) 2451 goto out_unlock_inode; 2452 2453 /* 2454 * If the inode was already on b_dirty/b_io/b_more_io, don't 2455 * reposition it (that would break b_dirty time-ordering). 2456 */ 2457 if (!was_dirty) { 2458 struct bdi_writeback *wb; 2459 struct list_head *dirty_list; 2460 bool wakeup_bdi = false; 2461 2462 wb = locked_inode_to_wb_and_lock_list(inode); 2463 2464 inode->dirtied_when = jiffies; 2465 if (dirtytime) 2466 inode->dirtied_time_when = jiffies; 2467 2468 if (inode->i_state & I_DIRTY) 2469 dirty_list = &wb->b_dirty; 2470 else 2471 dirty_list = &wb->b_dirty_time; 2472 2473 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2474 dirty_list); 2475 2476 spin_unlock(&wb->list_lock); 2477 trace_writeback_dirty_inode_enqueue(inode); 2478 2479 /* 2480 * If this is the first dirty inode for this bdi, 2481 * we have to wake-up the corresponding bdi thread 2482 * to make sure background write-back happens 2483 * later. 2484 */ 2485 if (wakeup_bdi && 2486 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2487 wb_wakeup_delayed(wb); 2488 return; 2489 } 2490 } 2491 out_unlock_inode: 2492 spin_unlock(&inode->i_lock); 2493 } 2494 EXPORT_SYMBOL(__mark_inode_dirty); 2495 2496 /* 2497 * The @s_sync_lock is used to serialise concurrent sync operations 2498 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2499 * Concurrent callers will block on the s_sync_lock rather than doing contending 2500 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2501 * has been issued up to the time this function is enter is guaranteed to be 2502 * completed by the time we have gained the lock and waited for all IO that is 2503 * in progress regardless of the order callers are granted the lock. 2504 */ 2505 static void wait_sb_inodes(struct super_block *sb) 2506 { 2507 LIST_HEAD(sync_list); 2508 2509 /* 2510 * We need to be protected against the filesystem going from 2511 * r/o to r/w or vice versa. 2512 */ 2513 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2514 2515 mutex_lock(&sb->s_sync_lock); 2516 2517 /* 2518 * Splice the writeback list onto a temporary list to avoid waiting on 2519 * inodes that have started writeback after this point. 2520 * 2521 * Use rcu_read_lock() to keep the inodes around until we have a 2522 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2523 * the local list because inodes can be dropped from either by writeback 2524 * completion. 2525 */ 2526 rcu_read_lock(); 2527 spin_lock_irq(&sb->s_inode_wblist_lock); 2528 list_splice_init(&sb->s_inodes_wb, &sync_list); 2529 2530 /* 2531 * Data integrity sync. Must wait for all pages under writeback, because 2532 * there may have been pages dirtied before our sync call, but which had 2533 * writeout started before we write it out. In which case, the inode 2534 * may not be on the dirty list, but we still have to wait for that 2535 * writeout. 2536 */ 2537 while (!list_empty(&sync_list)) { 2538 struct inode *inode = list_first_entry(&sync_list, struct inode, 2539 i_wb_list); 2540 struct address_space *mapping = inode->i_mapping; 2541 2542 /* 2543 * Move each inode back to the wb list before we drop the lock 2544 * to preserve consistency between i_wb_list and the mapping 2545 * writeback tag. Writeback completion is responsible to remove 2546 * the inode from either list once the writeback tag is cleared. 2547 */ 2548 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2549 2550 /* 2551 * The mapping can appear untagged while still on-list since we 2552 * do not have the mapping lock. Skip it here, wb completion 2553 * will remove it. 2554 */ 2555 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2556 continue; 2557 2558 spin_unlock_irq(&sb->s_inode_wblist_lock); 2559 2560 spin_lock(&inode->i_lock); 2561 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2562 spin_unlock(&inode->i_lock); 2563 2564 spin_lock_irq(&sb->s_inode_wblist_lock); 2565 continue; 2566 } 2567 __iget(inode); 2568 spin_unlock(&inode->i_lock); 2569 rcu_read_unlock(); 2570 2571 /* 2572 * We keep the error status of individual mapping so that 2573 * applications can catch the writeback error using fsync(2). 2574 * See filemap_fdatawait_keep_errors() for details. 2575 */ 2576 filemap_fdatawait_keep_errors(mapping); 2577 2578 cond_resched(); 2579 2580 iput(inode); 2581 2582 rcu_read_lock(); 2583 spin_lock_irq(&sb->s_inode_wblist_lock); 2584 } 2585 spin_unlock_irq(&sb->s_inode_wblist_lock); 2586 rcu_read_unlock(); 2587 mutex_unlock(&sb->s_sync_lock); 2588 } 2589 2590 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2591 enum wb_reason reason, bool skip_if_busy) 2592 { 2593 struct backing_dev_info *bdi = sb->s_bdi; 2594 DEFINE_WB_COMPLETION(done, bdi); 2595 struct wb_writeback_work work = { 2596 .sb = sb, 2597 .sync_mode = WB_SYNC_NONE, 2598 .tagged_writepages = 1, 2599 .done = &done, 2600 .nr_pages = nr, 2601 .reason = reason, 2602 }; 2603 2604 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2605 return; 2606 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2607 2608 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2609 wb_wait_for_completion(&done); 2610 } 2611 2612 /** 2613 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2614 * @sb: the superblock 2615 * @nr: the number of pages to write 2616 * @reason: reason why some writeback work initiated 2617 * 2618 * Start writeback on some inodes on this super_block. No guarantees are made 2619 * on how many (if any) will be written, and this function does not wait 2620 * for IO completion of submitted IO. 2621 */ 2622 void writeback_inodes_sb_nr(struct super_block *sb, 2623 unsigned long nr, 2624 enum wb_reason reason) 2625 { 2626 __writeback_inodes_sb_nr(sb, nr, reason, false); 2627 } 2628 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2629 2630 /** 2631 * writeback_inodes_sb - writeback dirty inodes from given super_block 2632 * @sb: the superblock 2633 * @reason: reason why some writeback work was initiated 2634 * 2635 * Start writeback on some inodes on this super_block. No guarantees are made 2636 * on how many (if any) will be written, and this function does not wait 2637 * for IO completion of submitted IO. 2638 */ 2639 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2640 { 2641 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2642 } 2643 EXPORT_SYMBOL(writeback_inodes_sb); 2644 2645 /** 2646 * try_to_writeback_inodes_sb - try to start writeback if none underway 2647 * @sb: the superblock 2648 * @reason: reason why some writeback work was initiated 2649 * 2650 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2651 */ 2652 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2653 { 2654 if (!down_read_trylock(&sb->s_umount)) 2655 return; 2656 2657 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2658 up_read(&sb->s_umount); 2659 } 2660 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2661 2662 /** 2663 * sync_inodes_sb - sync sb inode pages 2664 * @sb: the superblock 2665 * 2666 * This function writes and waits on any dirty inode belonging to this 2667 * super_block. 2668 */ 2669 void sync_inodes_sb(struct super_block *sb) 2670 { 2671 struct backing_dev_info *bdi = sb->s_bdi; 2672 DEFINE_WB_COMPLETION(done, bdi); 2673 struct wb_writeback_work work = { 2674 .sb = sb, 2675 .sync_mode = WB_SYNC_ALL, 2676 .nr_pages = LONG_MAX, 2677 .range_cyclic = 0, 2678 .done = &done, 2679 .reason = WB_REASON_SYNC, 2680 .for_sync = 1, 2681 }; 2682 2683 /* 2684 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2685 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2686 * bdi_has_dirty() need to be written out too. 2687 */ 2688 if (bdi == &noop_backing_dev_info) 2689 return; 2690 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2691 2692 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2693 bdi_down_write_wb_switch_rwsem(bdi); 2694 bdi_split_work_to_wbs(bdi, &work, false); 2695 wb_wait_for_completion(&done); 2696 bdi_up_write_wb_switch_rwsem(bdi); 2697 2698 wait_sb_inodes(sb); 2699 } 2700 EXPORT_SYMBOL(sync_inodes_sb); 2701 2702 /** 2703 * write_inode_now - write an inode to disk 2704 * @inode: inode to write to disk 2705 * @sync: whether the write should be synchronous or not 2706 * 2707 * This function commits an inode to disk immediately if it is dirty. This is 2708 * primarily needed by knfsd. 2709 * 2710 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2711 */ 2712 int write_inode_now(struct inode *inode, int sync) 2713 { 2714 struct writeback_control wbc = { 2715 .nr_to_write = LONG_MAX, 2716 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2717 .range_start = 0, 2718 .range_end = LLONG_MAX, 2719 }; 2720 2721 if (!mapping_can_writeback(inode->i_mapping)) 2722 wbc.nr_to_write = 0; 2723 2724 might_sleep(); 2725 return writeback_single_inode(inode, &wbc); 2726 } 2727 EXPORT_SYMBOL(write_inode_now); 2728 2729 /** 2730 * sync_inode - write an inode and its pages to disk. 2731 * @inode: the inode to sync 2732 * @wbc: controls the writeback mode 2733 * 2734 * sync_inode() will write an inode and its pages to disk. It will also 2735 * correctly update the inode on its superblock's dirty inode lists and will 2736 * update inode->i_state. 2737 * 2738 * The caller must have a ref on the inode. 2739 */ 2740 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2741 { 2742 return writeback_single_inode(inode, wbc); 2743 } 2744 EXPORT_SYMBOL(sync_inode); 2745 2746 /** 2747 * sync_inode_metadata - write an inode to disk 2748 * @inode: the inode to sync 2749 * @wait: wait for I/O to complete. 2750 * 2751 * Write an inode to disk and adjust its dirty state after completion. 2752 * 2753 * Note: only writes the actual inode, no associated data or other metadata. 2754 */ 2755 int sync_inode_metadata(struct inode *inode, int wait) 2756 { 2757 struct writeback_control wbc = { 2758 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2759 .nr_to_write = 0, /* metadata-only */ 2760 }; 2761 2762 return sync_inode(inode, &wbc); 2763 } 2764 EXPORT_SYMBOL(sync_inode_metadata); 2765