1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 akpm@zip.com.au 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/sched.h> 20 #include <linux/fs.h> 21 #include <linux/mm.h> 22 #include <linux/writeback.h> 23 #include <linux/blkdev.h> 24 #include <linux/backing-dev.h> 25 #include <linux/buffer_head.h> 26 #include "internal.h" 27 28 /** 29 * __mark_inode_dirty - internal function 30 * @inode: inode to mark 31 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 32 * Mark an inode as dirty. Callers should use mark_inode_dirty or 33 * mark_inode_dirty_sync. 34 * 35 * Put the inode on the super block's dirty list. 36 * 37 * CAREFUL! We mark it dirty unconditionally, but move it onto the 38 * dirty list only if it is hashed or if it refers to a blockdev. 39 * If it was not hashed, it will never be added to the dirty list 40 * even if it is later hashed, as it will have been marked dirty already. 41 * 42 * In short, make sure you hash any inodes _before_ you start marking 43 * them dirty. 44 * 45 * This function *must* be atomic for the I_DIRTY_PAGES case - 46 * set_page_dirty() is called under spinlock in several places. 47 * 48 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 49 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 50 * the kernel-internal blockdev inode represents the dirtying time of the 51 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 52 * page->mapping->host, so the page-dirtying time is recorded in the internal 53 * blockdev inode. 54 */ 55 void __mark_inode_dirty(struct inode *inode, int flags) 56 { 57 struct super_block *sb = inode->i_sb; 58 59 /* 60 * Don't do this for I_DIRTY_PAGES - that doesn't actually 61 * dirty the inode itself 62 */ 63 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 64 if (sb->s_op->dirty_inode) 65 sb->s_op->dirty_inode(inode); 66 } 67 68 /* 69 * make sure that changes are seen by all cpus before we test i_state 70 * -- mikulas 71 */ 72 smp_mb(); 73 74 /* avoid the locking if we can */ 75 if ((inode->i_state & flags) == flags) 76 return; 77 78 if (unlikely(block_dump)) { 79 struct dentry *dentry = NULL; 80 const char *name = "?"; 81 82 if (!list_empty(&inode->i_dentry)) { 83 dentry = list_entry(inode->i_dentry.next, 84 struct dentry, d_alias); 85 if (dentry && dentry->d_name.name) 86 name = (const char *) dentry->d_name.name; 87 } 88 89 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) 90 printk(KERN_DEBUG 91 "%s(%d): dirtied inode %lu (%s) on %s\n", 92 current->comm, task_pid_nr(current), inode->i_ino, 93 name, inode->i_sb->s_id); 94 } 95 96 spin_lock(&inode_lock); 97 if ((inode->i_state & flags) != flags) { 98 const int was_dirty = inode->i_state & I_DIRTY; 99 100 inode->i_state |= flags; 101 102 /* 103 * If the inode is being synced, just update its dirty state. 104 * The unlocker will place the inode on the appropriate 105 * superblock list, based upon its state. 106 */ 107 if (inode->i_state & I_SYNC) 108 goto out; 109 110 /* 111 * Only add valid (hashed) inodes to the superblock's 112 * dirty list. Add blockdev inodes as well. 113 */ 114 if (!S_ISBLK(inode->i_mode)) { 115 if (hlist_unhashed(&inode->i_hash)) 116 goto out; 117 } 118 if (inode->i_state & (I_FREEING|I_CLEAR)) 119 goto out; 120 121 /* 122 * If the inode was already on s_dirty/s_io/s_more_io, don't 123 * reposition it (that would break s_dirty time-ordering). 124 */ 125 if (!was_dirty) { 126 inode->dirtied_when = jiffies; 127 list_move(&inode->i_list, &sb->s_dirty); 128 } 129 } 130 out: 131 spin_unlock(&inode_lock); 132 } 133 134 EXPORT_SYMBOL(__mark_inode_dirty); 135 136 static int write_inode(struct inode *inode, int sync) 137 { 138 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 139 return inode->i_sb->s_op->write_inode(inode, sync); 140 return 0; 141 } 142 143 /* 144 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 145 * furthest end of its superblock's dirty-inode list. 146 * 147 * Before stamping the inode's ->dirtied_when, we check to see whether it is 148 * already the most-recently-dirtied inode on the s_dirty list. If that is 149 * the case then the inode must have been redirtied while it was being written 150 * out and we don't reset its dirtied_when. 151 */ 152 static void redirty_tail(struct inode *inode) 153 { 154 struct super_block *sb = inode->i_sb; 155 156 if (!list_empty(&sb->s_dirty)) { 157 struct inode *tail_inode; 158 159 tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list); 160 if (!time_after_eq(inode->dirtied_when, 161 tail_inode->dirtied_when)) 162 inode->dirtied_when = jiffies; 163 } 164 list_move(&inode->i_list, &sb->s_dirty); 165 } 166 167 /* 168 * requeue inode for re-scanning after sb->s_io list is exhausted. 169 */ 170 static void requeue_io(struct inode *inode) 171 { 172 list_move(&inode->i_list, &inode->i_sb->s_more_io); 173 } 174 175 static void inode_sync_complete(struct inode *inode) 176 { 177 /* 178 * Prevent speculative execution through spin_unlock(&inode_lock); 179 */ 180 smp_mb(); 181 wake_up_bit(&inode->i_state, __I_SYNC); 182 } 183 184 /* 185 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 186 */ 187 static void move_expired_inodes(struct list_head *delaying_queue, 188 struct list_head *dispatch_queue, 189 unsigned long *older_than_this) 190 { 191 while (!list_empty(delaying_queue)) { 192 struct inode *inode = list_entry(delaying_queue->prev, 193 struct inode, i_list); 194 if (older_than_this && 195 time_after(inode->dirtied_when, *older_than_this)) 196 break; 197 list_move(&inode->i_list, dispatch_queue); 198 } 199 } 200 201 /* 202 * Queue all expired dirty inodes for io, eldest first. 203 */ 204 static void queue_io(struct super_block *sb, 205 unsigned long *older_than_this) 206 { 207 list_splice_init(&sb->s_more_io, sb->s_io.prev); 208 move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this); 209 } 210 211 int sb_has_dirty_inodes(struct super_block *sb) 212 { 213 return !list_empty(&sb->s_dirty) || 214 !list_empty(&sb->s_io) || 215 !list_empty(&sb->s_more_io); 216 } 217 EXPORT_SYMBOL(sb_has_dirty_inodes); 218 219 /* 220 * Write a single inode's dirty pages and inode data out to disk. 221 * If `wait' is set, wait on the writeout. 222 * 223 * The whole writeout design is quite complex and fragile. We want to avoid 224 * starvation of particular inodes when others are being redirtied, prevent 225 * livelocks, etc. 226 * 227 * Called under inode_lock. 228 */ 229 static int 230 __sync_single_inode(struct inode *inode, struct writeback_control *wbc) 231 { 232 unsigned dirty; 233 struct address_space *mapping = inode->i_mapping; 234 int wait = wbc->sync_mode == WB_SYNC_ALL; 235 int ret; 236 237 BUG_ON(inode->i_state & I_SYNC); 238 239 /* Set I_SYNC, reset I_DIRTY */ 240 dirty = inode->i_state & I_DIRTY; 241 inode->i_state |= I_SYNC; 242 inode->i_state &= ~I_DIRTY; 243 244 spin_unlock(&inode_lock); 245 246 ret = do_writepages(mapping, wbc); 247 248 /* Don't write the inode if only I_DIRTY_PAGES was set */ 249 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 250 int err = write_inode(inode, wait); 251 if (ret == 0) 252 ret = err; 253 } 254 255 if (wait) { 256 int err = filemap_fdatawait(mapping); 257 if (ret == 0) 258 ret = err; 259 } 260 261 spin_lock(&inode_lock); 262 inode->i_state &= ~I_SYNC; 263 if (!(inode->i_state & I_FREEING)) { 264 if (!(inode->i_state & I_DIRTY) && 265 mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 266 /* 267 * We didn't write back all the pages. nfs_writepages() 268 * sometimes bales out without doing anything. Redirty 269 * the inode; Move it from s_io onto s_more_io/s_dirty. 270 */ 271 /* 272 * akpm: if the caller was the kupdate function we put 273 * this inode at the head of s_dirty so it gets first 274 * consideration. Otherwise, move it to the tail, for 275 * the reasons described there. I'm not really sure 276 * how much sense this makes. Presumably I had a good 277 * reasons for doing it this way, and I'd rather not 278 * muck with it at present. 279 */ 280 if (wbc->for_kupdate) { 281 /* 282 * For the kupdate function we move the inode 283 * to s_more_io so it will get more writeout as 284 * soon as the queue becomes uncongested. 285 */ 286 inode->i_state |= I_DIRTY_PAGES; 287 if (wbc->nr_to_write <= 0) { 288 /* 289 * slice used up: queue for next turn 290 */ 291 requeue_io(inode); 292 } else { 293 /* 294 * somehow blocked: retry later 295 */ 296 redirty_tail(inode); 297 } 298 } else { 299 /* 300 * Otherwise fully redirty the inode so that 301 * other inodes on this superblock will get some 302 * writeout. Otherwise heavy writing to one 303 * file would indefinitely suspend writeout of 304 * all the other files. 305 */ 306 inode->i_state |= I_DIRTY_PAGES; 307 redirty_tail(inode); 308 } 309 } else if (inode->i_state & I_DIRTY) { 310 /* 311 * Someone redirtied the inode while were writing back 312 * the pages. 313 */ 314 redirty_tail(inode); 315 } else if (atomic_read(&inode->i_count)) { 316 /* 317 * The inode is clean, inuse 318 */ 319 list_move(&inode->i_list, &inode_in_use); 320 } else { 321 /* 322 * The inode is clean, unused 323 */ 324 list_move(&inode->i_list, &inode_unused); 325 } 326 } 327 inode_sync_complete(inode); 328 return ret; 329 } 330 331 /* 332 * Write out an inode's dirty pages. Called under inode_lock. Either the 333 * caller has ref on the inode (either via __iget or via syscall against an fd) 334 * or the inode has I_WILL_FREE set (via generic_forget_inode) 335 */ 336 static int 337 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 338 { 339 wait_queue_head_t *wqh; 340 341 if (!atomic_read(&inode->i_count)) 342 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 343 else 344 WARN_ON(inode->i_state & I_WILL_FREE); 345 346 if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) { 347 /* 348 * We're skipping this inode because it's locked, and we're not 349 * doing writeback-for-data-integrity. Move it to s_more_io so 350 * that writeback can proceed with the other inodes on s_io. 351 * We'll have another go at writing back this inode when we 352 * completed a full scan of s_io. 353 */ 354 requeue_io(inode); 355 return 0; 356 } 357 358 /* 359 * It's a data-integrity sync. We must wait. 360 */ 361 if (inode->i_state & I_SYNC) { 362 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 363 364 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 365 do { 366 spin_unlock(&inode_lock); 367 __wait_on_bit(wqh, &wq, inode_wait, 368 TASK_UNINTERRUPTIBLE); 369 spin_lock(&inode_lock); 370 } while (inode->i_state & I_SYNC); 371 } 372 return __sync_single_inode(inode, wbc); 373 } 374 375 /* 376 * Write out a superblock's list of dirty inodes. A wait will be performed 377 * upon no inodes, all inodes or the final one, depending upon sync_mode. 378 * 379 * If older_than_this is non-NULL, then only write out inodes which 380 * had their first dirtying at a time earlier than *older_than_this. 381 * 382 * If we're a pdlfush thread, then implement pdflush collision avoidance 383 * against the entire list. 384 * 385 * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so 386 * that it can be located for waiting on in __writeback_single_inode(). 387 * 388 * Called under inode_lock. 389 * 390 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 391 * This function assumes that the blockdev superblock's inodes are backed by 392 * a variety of queues, so all inodes are searched. For other superblocks, 393 * assume that all inodes are backed by the same queue. 394 * 395 * FIXME: this linear search could get expensive with many fileystems. But 396 * how to fix? We need to go from an address_space to all inodes which share 397 * a queue with that address_space. (Easy: have a global "dirty superblocks" 398 * list). 399 * 400 * The inodes to be written are parked on sb->s_io. They are moved back onto 401 * sb->s_dirty as they are selected for writing. This way, none can be missed 402 * on the writer throttling path, and we get decent balancing between many 403 * throttled threads: we don't want them all piling up on inode_sync_wait. 404 */ 405 static void 406 sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc) 407 { 408 const unsigned long start = jiffies; /* livelock avoidance */ 409 410 if (!wbc->for_kupdate || list_empty(&sb->s_io)) 411 queue_io(sb, wbc->older_than_this); 412 413 while (!list_empty(&sb->s_io)) { 414 struct inode *inode = list_entry(sb->s_io.prev, 415 struct inode, i_list); 416 struct address_space *mapping = inode->i_mapping; 417 struct backing_dev_info *bdi = mapping->backing_dev_info; 418 long pages_skipped; 419 420 if (!bdi_cap_writeback_dirty(bdi)) { 421 redirty_tail(inode); 422 if (sb_is_blkdev_sb(sb)) { 423 /* 424 * Dirty memory-backed blockdev: the ramdisk 425 * driver does this. Skip just this inode 426 */ 427 continue; 428 } 429 /* 430 * Dirty memory-backed inode against a filesystem other 431 * than the kernel-internal bdev filesystem. Skip the 432 * entire superblock. 433 */ 434 break; 435 } 436 437 if (wbc->nonblocking && bdi_write_congested(bdi)) { 438 wbc->encountered_congestion = 1; 439 if (!sb_is_blkdev_sb(sb)) 440 break; /* Skip a congested fs */ 441 requeue_io(inode); 442 continue; /* Skip a congested blockdev */ 443 } 444 445 if (wbc->bdi && bdi != wbc->bdi) { 446 if (!sb_is_blkdev_sb(sb)) 447 break; /* fs has the wrong queue */ 448 requeue_io(inode); 449 continue; /* blockdev has wrong queue */ 450 } 451 452 /* Was this inode dirtied after sync_sb_inodes was called? */ 453 if (time_after(inode->dirtied_when, start)) 454 break; 455 456 /* Is another pdflush already flushing this queue? */ 457 if (current_is_pdflush() && !writeback_acquire(bdi)) 458 break; 459 460 BUG_ON(inode->i_state & I_FREEING); 461 __iget(inode); 462 pages_skipped = wbc->pages_skipped; 463 __writeback_single_inode(inode, wbc); 464 if (wbc->sync_mode == WB_SYNC_HOLD) { 465 inode->dirtied_when = jiffies; 466 list_move(&inode->i_list, &sb->s_dirty); 467 } 468 if (current_is_pdflush()) 469 writeback_release(bdi); 470 if (wbc->pages_skipped != pages_skipped) { 471 /* 472 * writeback is not making progress due to locked 473 * buffers. Skip this inode for now. 474 */ 475 redirty_tail(inode); 476 } 477 spin_unlock(&inode_lock); 478 iput(inode); 479 cond_resched(); 480 spin_lock(&inode_lock); 481 if (wbc->nr_to_write <= 0) { 482 wbc->more_io = 1; 483 break; 484 } 485 if (!list_empty(&sb->s_more_io)) 486 wbc->more_io = 1; 487 } 488 return; /* Leave any unwritten inodes on s_io */ 489 } 490 491 /* 492 * Start writeback of dirty pagecache data against all unlocked inodes. 493 * 494 * Note: 495 * We don't need to grab a reference to superblock here. If it has non-empty 496 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed 497 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all 498 * empty. Since __sync_single_inode() regains inode_lock before it finally moves 499 * inode from superblock lists we are OK. 500 * 501 * If `older_than_this' is non-zero then only flush inodes which have a 502 * flushtime older than *older_than_this. 503 * 504 * If `bdi' is non-zero then we will scan the first inode against each 505 * superblock until we find the matching ones. One group will be the dirty 506 * inodes against a filesystem. Then when we hit the dummy blockdev superblock, 507 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not 508 * super-efficient but we're about to do a ton of I/O... 509 */ 510 void 511 writeback_inodes(struct writeback_control *wbc) 512 { 513 struct super_block *sb; 514 515 might_sleep(); 516 spin_lock(&sb_lock); 517 restart: 518 list_for_each_entry_reverse(sb, &super_blocks, s_list) { 519 if (sb_has_dirty_inodes(sb)) { 520 /* we're making our own get_super here */ 521 sb->s_count++; 522 spin_unlock(&sb_lock); 523 /* 524 * If we can't get the readlock, there's no sense in 525 * waiting around, most of the time the FS is going to 526 * be unmounted by the time it is released. 527 */ 528 if (down_read_trylock(&sb->s_umount)) { 529 if (sb->s_root) { 530 spin_lock(&inode_lock); 531 sync_sb_inodes(sb, wbc); 532 spin_unlock(&inode_lock); 533 } 534 up_read(&sb->s_umount); 535 } 536 spin_lock(&sb_lock); 537 if (__put_super_and_need_restart(sb)) 538 goto restart; 539 } 540 if (wbc->nr_to_write <= 0) 541 break; 542 } 543 spin_unlock(&sb_lock); 544 } 545 546 /* 547 * writeback and wait upon the filesystem's dirty inodes. The caller will 548 * do this in two passes - one to write, and one to wait. WB_SYNC_HOLD is 549 * used to park the written inodes on sb->s_dirty for the wait pass. 550 * 551 * A finite limit is set on the number of pages which will be written. 552 * To prevent infinite livelock of sys_sync(). 553 * 554 * We add in the number of potentially dirty inodes, because each inode write 555 * can dirty pagecache in the underlying blockdev. 556 */ 557 void sync_inodes_sb(struct super_block *sb, int wait) 558 { 559 struct writeback_control wbc = { 560 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_HOLD, 561 .range_start = 0, 562 .range_end = LLONG_MAX, 563 }; 564 unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY); 565 unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS); 566 567 wbc.nr_to_write = nr_dirty + nr_unstable + 568 (inodes_stat.nr_inodes - inodes_stat.nr_unused) + 569 nr_dirty + nr_unstable; 570 wbc.nr_to_write += wbc.nr_to_write / 2; /* Bit more for luck */ 571 spin_lock(&inode_lock); 572 sync_sb_inodes(sb, &wbc); 573 spin_unlock(&inode_lock); 574 } 575 576 /* 577 * Rather lame livelock avoidance. 578 */ 579 static void set_sb_syncing(int val) 580 { 581 struct super_block *sb; 582 spin_lock(&sb_lock); 583 list_for_each_entry_reverse(sb, &super_blocks, s_list) 584 sb->s_syncing = val; 585 spin_unlock(&sb_lock); 586 } 587 588 /** 589 * sync_inodes - writes all inodes to disk 590 * @wait: wait for completion 591 * 592 * sync_inodes() goes through each super block's dirty inode list, writes the 593 * inodes out, waits on the writeout and puts the inodes back on the normal 594 * list. 595 * 596 * This is for sys_sync(). fsync_dev() uses the same algorithm. The subtle 597 * part of the sync functions is that the blockdev "superblock" is processed 598 * last. This is because the write_inode() function of a typical fs will 599 * perform no I/O, but will mark buffers in the blockdev mapping as dirty. 600 * What we want to do is to perform all that dirtying first, and then write 601 * back all those inode blocks via the blockdev mapping in one sweep. So the 602 * additional (somewhat redundant) sync_blockdev() calls here are to make 603 * sure that really happens. Because if we call sync_inodes_sb(wait=1) with 604 * outstanding dirty inodes, the writeback goes block-at-a-time within the 605 * filesystem's write_inode(). This is extremely slow. 606 */ 607 static void __sync_inodes(int wait) 608 { 609 struct super_block *sb; 610 611 spin_lock(&sb_lock); 612 restart: 613 list_for_each_entry(sb, &super_blocks, s_list) { 614 if (sb->s_syncing) 615 continue; 616 sb->s_syncing = 1; 617 sb->s_count++; 618 spin_unlock(&sb_lock); 619 down_read(&sb->s_umount); 620 if (sb->s_root) { 621 sync_inodes_sb(sb, wait); 622 sync_blockdev(sb->s_bdev); 623 } 624 up_read(&sb->s_umount); 625 spin_lock(&sb_lock); 626 if (__put_super_and_need_restart(sb)) 627 goto restart; 628 } 629 spin_unlock(&sb_lock); 630 } 631 632 void sync_inodes(int wait) 633 { 634 set_sb_syncing(0); 635 __sync_inodes(0); 636 637 if (wait) { 638 set_sb_syncing(0); 639 __sync_inodes(1); 640 } 641 } 642 643 /** 644 * write_inode_now - write an inode to disk 645 * @inode: inode to write to disk 646 * @sync: whether the write should be synchronous or not 647 * 648 * This function commits an inode to disk immediately if it is dirty. This is 649 * primarily needed by knfsd. 650 * 651 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 652 */ 653 int write_inode_now(struct inode *inode, int sync) 654 { 655 int ret; 656 struct writeback_control wbc = { 657 .nr_to_write = LONG_MAX, 658 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 659 .range_start = 0, 660 .range_end = LLONG_MAX, 661 }; 662 663 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 664 wbc.nr_to_write = 0; 665 666 might_sleep(); 667 spin_lock(&inode_lock); 668 ret = __writeback_single_inode(inode, &wbc); 669 spin_unlock(&inode_lock); 670 if (sync) 671 inode_sync_wait(inode); 672 return ret; 673 } 674 EXPORT_SYMBOL(write_inode_now); 675 676 /** 677 * sync_inode - write an inode and its pages to disk. 678 * @inode: the inode to sync 679 * @wbc: controls the writeback mode 680 * 681 * sync_inode() will write an inode and its pages to disk. It will also 682 * correctly update the inode on its superblock's dirty inode lists and will 683 * update inode->i_state. 684 * 685 * The caller must have a ref on the inode. 686 */ 687 int sync_inode(struct inode *inode, struct writeback_control *wbc) 688 { 689 int ret; 690 691 spin_lock(&inode_lock); 692 ret = __writeback_single_inode(inode, wbc); 693 spin_unlock(&inode_lock); 694 return ret; 695 } 696 EXPORT_SYMBOL(sync_inode); 697 698 /** 699 * generic_osync_inode - flush all dirty data for a given inode to disk 700 * @inode: inode to write 701 * @mapping: the address_space that should be flushed 702 * @what: what to write and wait upon 703 * 704 * This can be called by file_write functions for files which have the 705 * O_SYNC flag set, to flush dirty writes to disk. 706 * 707 * @what is a bitmask, specifying which part of the inode's data should be 708 * written and waited upon. 709 * 710 * OSYNC_DATA: i_mapping's dirty data 711 * OSYNC_METADATA: the buffers at i_mapping->private_list 712 * OSYNC_INODE: the inode itself 713 */ 714 715 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what) 716 { 717 int err = 0; 718 int need_write_inode_now = 0; 719 int err2; 720 721 if (what & OSYNC_DATA) 722 err = filemap_fdatawrite(mapping); 723 if (what & (OSYNC_METADATA|OSYNC_DATA)) { 724 err2 = sync_mapping_buffers(mapping); 725 if (!err) 726 err = err2; 727 } 728 if (what & OSYNC_DATA) { 729 err2 = filemap_fdatawait(mapping); 730 if (!err) 731 err = err2; 732 } 733 734 spin_lock(&inode_lock); 735 if ((inode->i_state & I_DIRTY) && 736 ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC))) 737 need_write_inode_now = 1; 738 spin_unlock(&inode_lock); 739 740 if (need_write_inode_now) { 741 err2 = write_inode_now(inode, 1); 742 if (!err) 743 err = err2; 744 } 745 else 746 inode_sync_wait(inode); 747 748 return err; 749 } 750 751 EXPORT_SYMBOL(generic_osync_inode); 752 753 /** 754 * writeback_acquire - attempt to get exclusive writeback access to a device 755 * @bdi: the device's backing_dev_info structure 756 * 757 * It is a waste of resources to have more than one pdflush thread blocked on 758 * a single request queue. Exclusion at the request_queue level is obtained 759 * via a flag in the request_queue's backing_dev_info.state. 760 * 761 * Non-request_queue-backed address_spaces will share default_backing_dev_info, 762 * unless they implement their own. Which is somewhat inefficient, as this 763 * may prevent concurrent writeback against multiple devices. 764 */ 765 int writeback_acquire(struct backing_dev_info *bdi) 766 { 767 return !test_and_set_bit(BDI_pdflush, &bdi->state); 768 } 769 770 /** 771 * writeback_in_progress - determine whether there is writeback in progress 772 * @bdi: the device's backing_dev_info structure. 773 * 774 * Determine whether there is writeback in progress against a backing device. 775 */ 776 int writeback_in_progress(struct backing_dev_info *bdi) 777 { 778 return test_bit(BDI_pdflush, &bdi->state); 779 } 780 781 /** 782 * writeback_release - relinquish exclusive writeback access against a device. 783 * @bdi: the device's backing_dev_info structure 784 */ 785 void writeback_release(struct backing_dev_info *bdi) 786 { 787 BUG_ON(!writeback_in_progress(bdi)); 788 clear_bit(BDI_pdflush, &bdi->state); 789 } 790