1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/freezer.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * 4MB minimal write chunk size 34 */ 35 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_CACHE_SHIFT - 10)) 36 37 /* 38 * Passed into wb_writeback(), essentially a subset of writeback_control 39 */ 40 struct wb_writeback_work { 41 long nr_pages; 42 struct super_block *sb; 43 unsigned long *older_than_this; 44 enum writeback_sync_modes sync_mode; 45 unsigned int tagged_writepages:1; 46 unsigned int for_kupdate:1; 47 unsigned int range_cyclic:1; 48 unsigned int for_background:1; 49 enum wb_reason reason; /* why was writeback initiated? */ 50 51 struct list_head list; /* pending work list */ 52 struct completion *done; /* set if the caller waits */ 53 }; 54 55 /** 56 * writeback_in_progress - determine whether there is writeback in progress 57 * @bdi: the device's backing_dev_info structure. 58 * 59 * Determine whether there is writeback waiting to be handled against a 60 * backing device. 61 */ 62 int writeback_in_progress(struct backing_dev_info *bdi) 63 { 64 return test_bit(BDI_writeback_running, &bdi->state); 65 } 66 EXPORT_SYMBOL(writeback_in_progress); 67 68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 69 { 70 struct super_block *sb = inode->i_sb; 71 72 if (strcmp(sb->s_type->name, "bdev") == 0) 73 return inode->i_mapping->backing_dev_info; 74 75 return sb->s_bdi; 76 } 77 78 static inline struct inode *wb_inode(struct list_head *head) 79 { 80 return list_entry(head, struct inode, i_wb_list); 81 } 82 83 /* 84 * Include the creation of the trace points after defining the 85 * wb_writeback_work structure and inline functions so that the definition 86 * remains local to this file. 87 */ 88 #define CREATE_TRACE_POINTS 89 #include <trace/events/writeback.h> 90 91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 93 { 94 if (bdi->wb.task) { 95 wake_up_process(bdi->wb.task); 96 } else { 97 /* 98 * The bdi thread isn't there, wake up the forker thread which 99 * will create and run it. 100 */ 101 wake_up_process(default_backing_dev_info.wb.task); 102 } 103 } 104 105 static void bdi_queue_work(struct backing_dev_info *bdi, 106 struct wb_writeback_work *work) 107 { 108 trace_writeback_queue(bdi, work); 109 110 spin_lock_bh(&bdi->wb_lock); 111 list_add_tail(&work->list, &bdi->work_list); 112 if (!bdi->wb.task) 113 trace_writeback_nothread(bdi, work); 114 bdi_wakeup_flusher(bdi); 115 spin_unlock_bh(&bdi->wb_lock); 116 } 117 118 static void 119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 120 bool range_cyclic, enum wb_reason reason) 121 { 122 struct wb_writeback_work *work; 123 124 /* 125 * This is WB_SYNC_NONE writeback, so if allocation fails just 126 * wakeup the thread for old dirty data writeback 127 */ 128 work = kzalloc(sizeof(*work), GFP_ATOMIC); 129 if (!work) { 130 if (bdi->wb.task) { 131 trace_writeback_nowork(bdi); 132 wake_up_process(bdi->wb.task); 133 } 134 return; 135 } 136 137 work->sync_mode = WB_SYNC_NONE; 138 work->nr_pages = nr_pages; 139 work->range_cyclic = range_cyclic; 140 work->reason = reason; 141 142 bdi_queue_work(bdi, work); 143 } 144 145 /** 146 * bdi_start_writeback - start writeback 147 * @bdi: the backing device to write from 148 * @nr_pages: the number of pages to write 149 * @reason: reason why some writeback work was initiated 150 * 151 * Description: 152 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 153 * started when this function returns, we make no guarantees on 154 * completion. Caller need not hold sb s_umount semaphore. 155 * 156 */ 157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 158 enum wb_reason reason) 159 { 160 __bdi_start_writeback(bdi, nr_pages, true, reason); 161 } 162 163 /** 164 * bdi_start_background_writeback - start background writeback 165 * @bdi: the backing device to write from 166 * 167 * Description: 168 * This makes sure WB_SYNC_NONE background writeback happens. When 169 * this function returns, it is only guaranteed that for given BDI 170 * some IO is happening if we are over background dirty threshold. 171 * Caller need not hold sb s_umount semaphore. 172 */ 173 void bdi_start_background_writeback(struct backing_dev_info *bdi) 174 { 175 /* 176 * We just wake up the flusher thread. It will perform background 177 * writeback as soon as there is no other work to do. 178 */ 179 trace_writeback_wake_background(bdi); 180 spin_lock_bh(&bdi->wb_lock); 181 bdi_wakeup_flusher(bdi); 182 spin_unlock_bh(&bdi->wb_lock); 183 } 184 185 /* 186 * Remove the inode from the writeback list it is on. 187 */ 188 void inode_wb_list_del(struct inode *inode) 189 { 190 struct backing_dev_info *bdi = inode_to_bdi(inode); 191 192 spin_lock(&bdi->wb.list_lock); 193 list_del_init(&inode->i_wb_list); 194 spin_unlock(&bdi->wb.list_lock); 195 } 196 197 /* 198 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 199 * furthest end of its superblock's dirty-inode list. 200 * 201 * Before stamping the inode's ->dirtied_when, we check to see whether it is 202 * already the most-recently-dirtied inode on the b_dirty list. If that is 203 * the case then the inode must have been redirtied while it was being written 204 * out and we don't reset its dirtied_when. 205 */ 206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 207 { 208 assert_spin_locked(&wb->list_lock); 209 if (!list_empty(&wb->b_dirty)) { 210 struct inode *tail; 211 212 tail = wb_inode(wb->b_dirty.next); 213 if (time_before(inode->dirtied_when, tail->dirtied_when)) 214 inode->dirtied_when = jiffies; 215 } 216 list_move(&inode->i_wb_list, &wb->b_dirty); 217 } 218 219 /* 220 * requeue inode for re-scanning after bdi->b_io list is exhausted. 221 */ 222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 223 { 224 assert_spin_locked(&wb->list_lock); 225 list_move(&inode->i_wb_list, &wb->b_more_io); 226 } 227 228 static void inode_sync_complete(struct inode *inode) 229 { 230 inode->i_state &= ~I_SYNC; 231 /* If inode is clean an unused, put it into LRU now... */ 232 inode_add_lru(inode); 233 /* Waiters must see I_SYNC cleared before being woken up */ 234 smp_mb(); 235 wake_up_bit(&inode->i_state, __I_SYNC); 236 } 237 238 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 239 { 240 bool ret = time_after(inode->dirtied_when, t); 241 #ifndef CONFIG_64BIT 242 /* 243 * For inodes being constantly redirtied, dirtied_when can get stuck. 244 * It _appears_ to be in the future, but is actually in distant past. 245 * This test is necessary to prevent such wrapped-around relative times 246 * from permanently stopping the whole bdi writeback. 247 */ 248 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 249 #endif 250 return ret; 251 } 252 253 /* 254 * Move expired (dirtied before work->older_than_this) dirty inodes from 255 * @delaying_queue to @dispatch_queue. 256 */ 257 static int move_expired_inodes(struct list_head *delaying_queue, 258 struct list_head *dispatch_queue, 259 struct wb_writeback_work *work) 260 { 261 LIST_HEAD(tmp); 262 struct list_head *pos, *node; 263 struct super_block *sb = NULL; 264 struct inode *inode; 265 int do_sb_sort = 0; 266 int moved = 0; 267 268 while (!list_empty(delaying_queue)) { 269 inode = wb_inode(delaying_queue->prev); 270 if (work->older_than_this && 271 inode_dirtied_after(inode, *work->older_than_this)) 272 break; 273 if (sb && sb != inode->i_sb) 274 do_sb_sort = 1; 275 sb = inode->i_sb; 276 list_move(&inode->i_wb_list, &tmp); 277 moved++; 278 } 279 280 /* just one sb in list, splice to dispatch_queue and we're done */ 281 if (!do_sb_sort) { 282 list_splice(&tmp, dispatch_queue); 283 goto out; 284 } 285 286 /* Move inodes from one superblock together */ 287 while (!list_empty(&tmp)) { 288 sb = wb_inode(tmp.prev)->i_sb; 289 list_for_each_prev_safe(pos, node, &tmp) { 290 inode = wb_inode(pos); 291 if (inode->i_sb == sb) 292 list_move(&inode->i_wb_list, dispatch_queue); 293 } 294 } 295 out: 296 return moved; 297 } 298 299 /* 300 * Queue all expired dirty inodes for io, eldest first. 301 * Before 302 * newly dirtied b_dirty b_io b_more_io 303 * =============> gf edc BA 304 * After 305 * newly dirtied b_dirty b_io b_more_io 306 * =============> g fBAedc 307 * | 308 * +--> dequeue for IO 309 */ 310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 311 { 312 int moved; 313 assert_spin_locked(&wb->list_lock); 314 list_splice_init(&wb->b_more_io, &wb->b_io); 315 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work); 316 trace_writeback_queue_io(wb, work, moved); 317 } 318 319 static int write_inode(struct inode *inode, struct writeback_control *wbc) 320 { 321 int ret; 322 323 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 324 trace_writeback_write_inode_start(inode, wbc); 325 ret = inode->i_sb->s_op->write_inode(inode, wbc); 326 trace_writeback_write_inode(inode, wbc); 327 return ret; 328 } 329 return 0; 330 } 331 332 /* 333 * Wait for writeback on an inode to complete. Called with i_lock held. 334 * Caller must make sure inode cannot go away when we drop i_lock. 335 */ 336 static void __inode_wait_for_writeback(struct inode *inode) 337 __releases(inode->i_lock) 338 __acquires(inode->i_lock) 339 { 340 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 341 wait_queue_head_t *wqh; 342 343 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 344 while (inode->i_state & I_SYNC) { 345 spin_unlock(&inode->i_lock); 346 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 347 spin_lock(&inode->i_lock); 348 } 349 } 350 351 /* 352 * Wait for writeback on an inode to complete. Caller must have inode pinned. 353 */ 354 void inode_wait_for_writeback(struct inode *inode) 355 { 356 spin_lock(&inode->i_lock); 357 __inode_wait_for_writeback(inode); 358 spin_unlock(&inode->i_lock); 359 } 360 361 /* 362 * Sleep until I_SYNC is cleared. This function must be called with i_lock 363 * held and drops it. It is aimed for callers not holding any inode reference 364 * so once i_lock is dropped, inode can go away. 365 */ 366 static void inode_sleep_on_writeback(struct inode *inode) 367 __releases(inode->i_lock) 368 { 369 DEFINE_WAIT(wait); 370 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 371 int sleep; 372 373 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 374 sleep = inode->i_state & I_SYNC; 375 spin_unlock(&inode->i_lock); 376 if (sleep) 377 schedule(); 378 finish_wait(wqh, &wait); 379 } 380 381 /* 382 * Find proper writeback list for the inode depending on its current state and 383 * possibly also change of its state while we were doing writeback. Here we 384 * handle things such as livelock prevention or fairness of writeback among 385 * inodes. This function can be called only by flusher thread - noone else 386 * processes all inodes in writeback lists and requeueing inodes behind flusher 387 * thread's back can have unexpected consequences. 388 */ 389 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 390 struct writeback_control *wbc) 391 { 392 if (inode->i_state & I_FREEING) 393 return; 394 395 /* 396 * Sync livelock prevention. Each inode is tagged and synced in one 397 * shot. If still dirty, it will be redirty_tail()'ed below. Update 398 * the dirty time to prevent enqueue and sync it again. 399 */ 400 if ((inode->i_state & I_DIRTY) && 401 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 402 inode->dirtied_when = jiffies; 403 404 if (wbc->pages_skipped) { 405 /* 406 * writeback is not making progress due to locked 407 * buffers. Skip this inode for now. 408 */ 409 redirty_tail(inode, wb); 410 return; 411 } 412 413 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 414 /* 415 * We didn't write back all the pages. nfs_writepages() 416 * sometimes bales out without doing anything. 417 */ 418 if (wbc->nr_to_write <= 0) { 419 /* Slice used up. Queue for next turn. */ 420 requeue_io(inode, wb); 421 } else { 422 /* 423 * Writeback blocked by something other than 424 * congestion. Delay the inode for some time to 425 * avoid spinning on the CPU (100% iowait) 426 * retrying writeback of the dirty page/inode 427 * that cannot be performed immediately. 428 */ 429 redirty_tail(inode, wb); 430 } 431 } else if (inode->i_state & I_DIRTY) { 432 /* 433 * Filesystems can dirty the inode during writeback operations, 434 * such as delayed allocation during submission or metadata 435 * updates after data IO completion. 436 */ 437 redirty_tail(inode, wb); 438 } else { 439 /* The inode is clean. Remove from writeback lists. */ 440 list_del_init(&inode->i_wb_list); 441 } 442 } 443 444 /* 445 * Write out an inode and its dirty pages. Do not update the writeback list 446 * linkage. That is left to the caller. The caller is also responsible for 447 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 448 */ 449 static int 450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 451 { 452 struct address_space *mapping = inode->i_mapping; 453 long nr_to_write = wbc->nr_to_write; 454 unsigned dirty; 455 int ret; 456 457 WARN_ON(!(inode->i_state & I_SYNC)); 458 459 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 460 461 ret = do_writepages(mapping, wbc); 462 463 /* 464 * Make sure to wait on the data before writing out the metadata. 465 * This is important for filesystems that modify metadata on data 466 * I/O completion. 467 */ 468 if (wbc->sync_mode == WB_SYNC_ALL) { 469 int err = filemap_fdatawait(mapping); 470 if (ret == 0) 471 ret = err; 472 } 473 474 /* 475 * Some filesystems may redirty the inode during the writeback 476 * due to delalloc, clear dirty metadata flags right before 477 * write_inode() 478 */ 479 spin_lock(&inode->i_lock); 480 /* Clear I_DIRTY_PAGES if we've written out all dirty pages */ 481 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 482 inode->i_state &= ~I_DIRTY_PAGES; 483 dirty = inode->i_state & I_DIRTY; 484 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 485 spin_unlock(&inode->i_lock); 486 /* Don't write the inode if only I_DIRTY_PAGES was set */ 487 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 488 int err = write_inode(inode, wbc); 489 if (ret == 0) 490 ret = err; 491 } 492 trace_writeback_single_inode(inode, wbc, nr_to_write); 493 return ret; 494 } 495 496 /* 497 * Write out an inode's dirty pages. Either the caller has an active reference 498 * on the inode or the inode has I_WILL_FREE set. 499 * 500 * This function is designed to be called for writing back one inode which 501 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 502 * and does more profound writeback list handling in writeback_sb_inodes(). 503 */ 504 static int 505 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb, 506 struct writeback_control *wbc) 507 { 508 int ret = 0; 509 510 spin_lock(&inode->i_lock); 511 if (!atomic_read(&inode->i_count)) 512 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 513 else 514 WARN_ON(inode->i_state & I_WILL_FREE); 515 516 if (inode->i_state & I_SYNC) { 517 if (wbc->sync_mode != WB_SYNC_ALL) 518 goto out; 519 /* 520 * It's a data-integrity sync. We must wait. Since callers hold 521 * inode reference or inode has I_WILL_FREE set, it cannot go 522 * away under us. 523 */ 524 __inode_wait_for_writeback(inode); 525 } 526 WARN_ON(inode->i_state & I_SYNC); 527 /* 528 * Skip inode if it is clean. We don't want to mess with writeback 529 * lists in this function since flusher thread may be doing for example 530 * sync in parallel and if we move the inode, it could get skipped. So 531 * here we make sure inode is on some writeback list and leave it there 532 * unless we have completely cleaned the inode. 533 */ 534 if (!(inode->i_state & I_DIRTY)) 535 goto out; 536 inode->i_state |= I_SYNC; 537 spin_unlock(&inode->i_lock); 538 539 ret = __writeback_single_inode(inode, wbc); 540 541 spin_lock(&wb->list_lock); 542 spin_lock(&inode->i_lock); 543 /* 544 * If inode is clean, remove it from writeback lists. Otherwise don't 545 * touch it. See comment above for explanation. 546 */ 547 if (!(inode->i_state & I_DIRTY)) 548 list_del_init(&inode->i_wb_list); 549 spin_unlock(&wb->list_lock); 550 inode_sync_complete(inode); 551 out: 552 spin_unlock(&inode->i_lock); 553 return ret; 554 } 555 556 static long writeback_chunk_size(struct backing_dev_info *bdi, 557 struct wb_writeback_work *work) 558 { 559 long pages; 560 561 /* 562 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 563 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 564 * here avoids calling into writeback_inodes_wb() more than once. 565 * 566 * The intended call sequence for WB_SYNC_ALL writeback is: 567 * 568 * wb_writeback() 569 * writeback_sb_inodes() <== called only once 570 * write_cache_pages() <== called once for each inode 571 * (quickly) tag currently dirty pages 572 * (maybe slowly) sync all tagged pages 573 */ 574 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 575 pages = LONG_MAX; 576 else { 577 pages = min(bdi->avg_write_bandwidth / 2, 578 global_dirty_limit / DIRTY_SCOPE); 579 pages = min(pages, work->nr_pages); 580 pages = round_down(pages + MIN_WRITEBACK_PAGES, 581 MIN_WRITEBACK_PAGES); 582 } 583 584 return pages; 585 } 586 587 /* 588 * Write a portion of b_io inodes which belong to @sb. 589 * 590 * Return the number of pages and/or inodes written. 591 */ 592 static long writeback_sb_inodes(struct super_block *sb, 593 struct bdi_writeback *wb, 594 struct wb_writeback_work *work) 595 { 596 struct writeback_control wbc = { 597 .sync_mode = work->sync_mode, 598 .tagged_writepages = work->tagged_writepages, 599 .for_kupdate = work->for_kupdate, 600 .for_background = work->for_background, 601 .range_cyclic = work->range_cyclic, 602 .range_start = 0, 603 .range_end = LLONG_MAX, 604 }; 605 unsigned long start_time = jiffies; 606 long write_chunk; 607 long wrote = 0; /* count both pages and inodes */ 608 609 while (!list_empty(&wb->b_io)) { 610 struct inode *inode = wb_inode(wb->b_io.prev); 611 612 if (inode->i_sb != sb) { 613 if (work->sb) { 614 /* 615 * We only want to write back data for this 616 * superblock, move all inodes not belonging 617 * to it back onto the dirty list. 618 */ 619 redirty_tail(inode, wb); 620 continue; 621 } 622 623 /* 624 * The inode belongs to a different superblock. 625 * Bounce back to the caller to unpin this and 626 * pin the next superblock. 627 */ 628 break; 629 } 630 631 /* 632 * Don't bother with new inodes or inodes being freed, first 633 * kind does not need periodic writeout yet, and for the latter 634 * kind writeout is handled by the freer. 635 */ 636 spin_lock(&inode->i_lock); 637 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 638 spin_unlock(&inode->i_lock); 639 redirty_tail(inode, wb); 640 continue; 641 } 642 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 643 /* 644 * If this inode is locked for writeback and we are not 645 * doing writeback-for-data-integrity, move it to 646 * b_more_io so that writeback can proceed with the 647 * other inodes on s_io. 648 * 649 * We'll have another go at writing back this inode 650 * when we completed a full scan of b_io. 651 */ 652 spin_unlock(&inode->i_lock); 653 requeue_io(inode, wb); 654 trace_writeback_sb_inodes_requeue(inode); 655 continue; 656 } 657 spin_unlock(&wb->list_lock); 658 659 /* 660 * We already requeued the inode if it had I_SYNC set and we 661 * are doing WB_SYNC_NONE writeback. So this catches only the 662 * WB_SYNC_ALL case. 663 */ 664 if (inode->i_state & I_SYNC) { 665 /* Wait for I_SYNC. This function drops i_lock... */ 666 inode_sleep_on_writeback(inode); 667 /* Inode may be gone, start again */ 668 spin_lock(&wb->list_lock); 669 continue; 670 } 671 inode->i_state |= I_SYNC; 672 spin_unlock(&inode->i_lock); 673 674 write_chunk = writeback_chunk_size(wb->bdi, work); 675 wbc.nr_to_write = write_chunk; 676 wbc.pages_skipped = 0; 677 678 /* 679 * We use I_SYNC to pin the inode in memory. While it is set 680 * evict_inode() will wait so the inode cannot be freed. 681 */ 682 __writeback_single_inode(inode, &wbc); 683 684 work->nr_pages -= write_chunk - wbc.nr_to_write; 685 wrote += write_chunk - wbc.nr_to_write; 686 spin_lock(&wb->list_lock); 687 spin_lock(&inode->i_lock); 688 if (!(inode->i_state & I_DIRTY)) 689 wrote++; 690 requeue_inode(inode, wb, &wbc); 691 inode_sync_complete(inode); 692 spin_unlock(&inode->i_lock); 693 cond_resched_lock(&wb->list_lock); 694 /* 695 * bail out to wb_writeback() often enough to check 696 * background threshold and other termination conditions. 697 */ 698 if (wrote) { 699 if (time_is_before_jiffies(start_time + HZ / 10UL)) 700 break; 701 if (work->nr_pages <= 0) 702 break; 703 } 704 } 705 return wrote; 706 } 707 708 static long __writeback_inodes_wb(struct bdi_writeback *wb, 709 struct wb_writeback_work *work) 710 { 711 unsigned long start_time = jiffies; 712 long wrote = 0; 713 714 while (!list_empty(&wb->b_io)) { 715 struct inode *inode = wb_inode(wb->b_io.prev); 716 struct super_block *sb = inode->i_sb; 717 718 if (!grab_super_passive(sb)) { 719 /* 720 * grab_super_passive() may fail consistently due to 721 * s_umount being grabbed by someone else. Don't use 722 * requeue_io() to avoid busy retrying the inode/sb. 723 */ 724 redirty_tail(inode, wb); 725 continue; 726 } 727 wrote += writeback_sb_inodes(sb, wb, work); 728 drop_super(sb); 729 730 /* refer to the same tests at the end of writeback_sb_inodes */ 731 if (wrote) { 732 if (time_is_before_jiffies(start_time + HZ / 10UL)) 733 break; 734 if (work->nr_pages <= 0) 735 break; 736 } 737 } 738 /* Leave any unwritten inodes on b_io */ 739 return wrote; 740 } 741 742 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 743 enum wb_reason reason) 744 { 745 struct wb_writeback_work work = { 746 .nr_pages = nr_pages, 747 .sync_mode = WB_SYNC_NONE, 748 .range_cyclic = 1, 749 .reason = reason, 750 }; 751 752 spin_lock(&wb->list_lock); 753 if (list_empty(&wb->b_io)) 754 queue_io(wb, &work); 755 __writeback_inodes_wb(wb, &work); 756 spin_unlock(&wb->list_lock); 757 758 return nr_pages - work.nr_pages; 759 } 760 761 static bool over_bground_thresh(struct backing_dev_info *bdi) 762 { 763 unsigned long background_thresh, dirty_thresh; 764 765 global_dirty_limits(&background_thresh, &dirty_thresh); 766 767 if (global_page_state(NR_FILE_DIRTY) + 768 global_page_state(NR_UNSTABLE_NFS) > background_thresh) 769 return true; 770 771 if (bdi_stat(bdi, BDI_RECLAIMABLE) > 772 bdi_dirty_limit(bdi, background_thresh)) 773 return true; 774 775 return false; 776 } 777 778 /* 779 * Called under wb->list_lock. If there are multiple wb per bdi, 780 * only the flusher working on the first wb should do it. 781 */ 782 static void wb_update_bandwidth(struct bdi_writeback *wb, 783 unsigned long start_time) 784 { 785 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time); 786 } 787 788 /* 789 * Explicit flushing or periodic writeback of "old" data. 790 * 791 * Define "old": the first time one of an inode's pages is dirtied, we mark the 792 * dirtying-time in the inode's address_space. So this periodic writeback code 793 * just walks the superblock inode list, writing back any inodes which are 794 * older than a specific point in time. 795 * 796 * Try to run once per dirty_writeback_interval. But if a writeback event 797 * takes longer than a dirty_writeback_interval interval, then leave a 798 * one-second gap. 799 * 800 * older_than_this takes precedence over nr_to_write. So we'll only write back 801 * all dirty pages if they are all attached to "old" mappings. 802 */ 803 static long wb_writeback(struct bdi_writeback *wb, 804 struct wb_writeback_work *work) 805 { 806 unsigned long wb_start = jiffies; 807 long nr_pages = work->nr_pages; 808 unsigned long oldest_jif; 809 struct inode *inode; 810 long progress; 811 812 oldest_jif = jiffies; 813 work->older_than_this = &oldest_jif; 814 815 spin_lock(&wb->list_lock); 816 for (;;) { 817 /* 818 * Stop writeback when nr_pages has been consumed 819 */ 820 if (work->nr_pages <= 0) 821 break; 822 823 /* 824 * Background writeout and kupdate-style writeback may 825 * run forever. Stop them if there is other work to do 826 * so that e.g. sync can proceed. They'll be restarted 827 * after the other works are all done. 828 */ 829 if ((work->for_background || work->for_kupdate) && 830 !list_empty(&wb->bdi->work_list)) 831 break; 832 833 /* 834 * For background writeout, stop when we are below the 835 * background dirty threshold 836 */ 837 if (work->for_background && !over_bground_thresh(wb->bdi)) 838 break; 839 840 /* 841 * Kupdate and background works are special and we want to 842 * include all inodes that need writing. Livelock avoidance is 843 * handled by these works yielding to any other work so we are 844 * safe. 845 */ 846 if (work->for_kupdate) { 847 oldest_jif = jiffies - 848 msecs_to_jiffies(dirty_expire_interval * 10); 849 } else if (work->for_background) 850 oldest_jif = jiffies; 851 852 trace_writeback_start(wb->bdi, work); 853 if (list_empty(&wb->b_io)) 854 queue_io(wb, work); 855 if (work->sb) 856 progress = writeback_sb_inodes(work->sb, wb, work); 857 else 858 progress = __writeback_inodes_wb(wb, work); 859 trace_writeback_written(wb->bdi, work); 860 861 wb_update_bandwidth(wb, wb_start); 862 863 /* 864 * Did we write something? Try for more 865 * 866 * Dirty inodes are moved to b_io for writeback in batches. 867 * The completion of the current batch does not necessarily 868 * mean the overall work is done. So we keep looping as long 869 * as made some progress on cleaning pages or inodes. 870 */ 871 if (progress) 872 continue; 873 /* 874 * No more inodes for IO, bail 875 */ 876 if (list_empty(&wb->b_more_io)) 877 break; 878 /* 879 * Nothing written. Wait for some inode to 880 * become available for writeback. Otherwise 881 * we'll just busyloop. 882 */ 883 if (!list_empty(&wb->b_more_io)) { 884 trace_writeback_wait(wb->bdi, work); 885 inode = wb_inode(wb->b_more_io.prev); 886 spin_lock(&inode->i_lock); 887 spin_unlock(&wb->list_lock); 888 /* This function drops i_lock... */ 889 inode_sleep_on_writeback(inode); 890 spin_lock(&wb->list_lock); 891 } 892 } 893 spin_unlock(&wb->list_lock); 894 895 return nr_pages - work->nr_pages; 896 } 897 898 /* 899 * Return the next wb_writeback_work struct that hasn't been processed yet. 900 */ 901 static struct wb_writeback_work * 902 get_next_work_item(struct backing_dev_info *bdi) 903 { 904 struct wb_writeback_work *work = NULL; 905 906 spin_lock_bh(&bdi->wb_lock); 907 if (!list_empty(&bdi->work_list)) { 908 work = list_entry(bdi->work_list.next, 909 struct wb_writeback_work, list); 910 list_del_init(&work->list); 911 } 912 spin_unlock_bh(&bdi->wb_lock); 913 return work; 914 } 915 916 /* 917 * Add in the number of potentially dirty inodes, because each inode 918 * write can dirty pagecache in the underlying blockdev. 919 */ 920 static unsigned long get_nr_dirty_pages(void) 921 { 922 return global_page_state(NR_FILE_DIRTY) + 923 global_page_state(NR_UNSTABLE_NFS) + 924 get_nr_dirty_inodes(); 925 } 926 927 static long wb_check_background_flush(struct bdi_writeback *wb) 928 { 929 if (over_bground_thresh(wb->bdi)) { 930 931 struct wb_writeback_work work = { 932 .nr_pages = LONG_MAX, 933 .sync_mode = WB_SYNC_NONE, 934 .for_background = 1, 935 .range_cyclic = 1, 936 .reason = WB_REASON_BACKGROUND, 937 }; 938 939 return wb_writeback(wb, &work); 940 } 941 942 return 0; 943 } 944 945 static long wb_check_old_data_flush(struct bdi_writeback *wb) 946 { 947 unsigned long expired; 948 long nr_pages; 949 950 /* 951 * When set to zero, disable periodic writeback 952 */ 953 if (!dirty_writeback_interval) 954 return 0; 955 956 expired = wb->last_old_flush + 957 msecs_to_jiffies(dirty_writeback_interval * 10); 958 if (time_before(jiffies, expired)) 959 return 0; 960 961 wb->last_old_flush = jiffies; 962 nr_pages = get_nr_dirty_pages(); 963 964 if (nr_pages) { 965 struct wb_writeback_work work = { 966 .nr_pages = nr_pages, 967 .sync_mode = WB_SYNC_NONE, 968 .for_kupdate = 1, 969 .range_cyclic = 1, 970 .reason = WB_REASON_PERIODIC, 971 }; 972 973 return wb_writeback(wb, &work); 974 } 975 976 return 0; 977 } 978 979 /* 980 * Retrieve work items and do the writeback they describe 981 */ 982 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 983 { 984 struct backing_dev_info *bdi = wb->bdi; 985 struct wb_writeback_work *work; 986 long wrote = 0; 987 988 set_bit(BDI_writeback_running, &wb->bdi->state); 989 while ((work = get_next_work_item(bdi)) != NULL) { 990 /* 991 * Override sync mode, in case we must wait for completion 992 * because this thread is exiting now. 993 */ 994 if (force_wait) 995 work->sync_mode = WB_SYNC_ALL; 996 997 trace_writeback_exec(bdi, work); 998 999 wrote += wb_writeback(wb, work); 1000 1001 /* 1002 * Notify the caller of completion if this is a synchronous 1003 * work item, otherwise just free it. 1004 */ 1005 if (work->done) 1006 complete(work->done); 1007 else 1008 kfree(work); 1009 } 1010 1011 /* 1012 * Check for periodic writeback, kupdated() style 1013 */ 1014 wrote += wb_check_old_data_flush(wb); 1015 wrote += wb_check_background_flush(wb); 1016 clear_bit(BDI_writeback_running, &wb->bdi->state); 1017 1018 return wrote; 1019 } 1020 1021 /* 1022 * Handle writeback of dirty data for the device backed by this bdi. Also 1023 * wakes up periodically and does kupdated style flushing. 1024 */ 1025 int bdi_writeback_thread(void *data) 1026 { 1027 struct bdi_writeback *wb = data; 1028 struct backing_dev_info *bdi = wb->bdi; 1029 long pages_written; 1030 1031 current->flags |= PF_SWAPWRITE; 1032 set_freezable(); 1033 wb->last_active = jiffies; 1034 1035 /* 1036 * Our parent may run at a different priority, just set us to normal 1037 */ 1038 set_user_nice(current, 0); 1039 1040 trace_writeback_thread_start(bdi); 1041 1042 while (!kthread_freezable_should_stop(NULL)) { 1043 /* 1044 * Remove own delayed wake-up timer, since we are already awake 1045 * and we'll take care of the periodic write-back. 1046 */ 1047 del_timer(&wb->wakeup_timer); 1048 1049 pages_written = wb_do_writeback(wb, 0); 1050 1051 trace_writeback_pages_written(pages_written); 1052 1053 if (pages_written) 1054 wb->last_active = jiffies; 1055 1056 set_current_state(TASK_INTERRUPTIBLE); 1057 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 1058 __set_current_state(TASK_RUNNING); 1059 continue; 1060 } 1061 1062 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1063 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 1064 else { 1065 /* 1066 * We have nothing to do, so can go sleep without any 1067 * timeout and save power. When a work is queued or 1068 * something is made dirty - we will be woken up. 1069 */ 1070 schedule(); 1071 } 1072 } 1073 1074 /* Flush any work that raced with us exiting */ 1075 if (!list_empty(&bdi->work_list)) 1076 wb_do_writeback(wb, 1); 1077 1078 trace_writeback_thread_stop(bdi); 1079 return 0; 1080 } 1081 1082 1083 /* 1084 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 1085 * the whole world. 1086 */ 1087 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason) 1088 { 1089 struct backing_dev_info *bdi; 1090 1091 if (!nr_pages) { 1092 nr_pages = global_page_state(NR_FILE_DIRTY) + 1093 global_page_state(NR_UNSTABLE_NFS); 1094 } 1095 1096 rcu_read_lock(); 1097 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 1098 if (!bdi_has_dirty_io(bdi)) 1099 continue; 1100 __bdi_start_writeback(bdi, nr_pages, false, reason); 1101 } 1102 rcu_read_unlock(); 1103 } 1104 1105 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 1106 { 1107 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 1108 struct dentry *dentry; 1109 const char *name = "?"; 1110 1111 dentry = d_find_alias(inode); 1112 if (dentry) { 1113 spin_lock(&dentry->d_lock); 1114 name = (const char *) dentry->d_name.name; 1115 } 1116 printk(KERN_DEBUG 1117 "%s(%d): dirtied inode %lu (%s) on %s\n", 1118 current->comm, task_pid_nr(current), inode->i_ino, 1119 name, inode->i_sb->s_id); 1120 if (dentry) { 1121 spin_unlock(&dentry->d_lock); 1122 dput(dentry); 1123 } 1124 } 1125 } 1126 1127 /** 1128 * __mark_inode_dirty - internal function 1129 * @inode: inode to mark 1130 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 1131 * Mark an inode as dirty. Callers should use mark_inode_dirty or 1132 * mark_inode_dirty_sync. 1133 * 1134 * Put the inode on the super block's dirty list. 1135 * 1136 * CAREFUL! We mark it dirty unconditionally, but move it onto the 1137 * dirty list only if it is hashed or if it refers to a blockdev. 1138 * If it was not hashed, it will never be added to the dirty list 1139 * even if it is later hashed, as it will have been marked dirty already. 1140 * 1141 * In short, make sure you hash any inodes _before_ you start marking 1142 * them dirty. 1143 * 1144 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 1145 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 1146 * the kernel-internal blockdev inode represents the dirtying time of the 1147 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 1148 * page->mapping->host, so the page-dirtying time is recorded in the internal 1149 * blockdev inode. 1150 */ 1151 void __mark_inode_dirty(struct inode *inode, int flags) 1152 { 1153 struct super_block *sb = inode->i_sb; 1154 struct backing_dev_info *bdi = NULL; 1155 1156 /* 1157 * Don't do this for I_DIRTY_PAGES - that doesn't actually 1158 * dirty the inode itself 1159 */ 1160 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1161 trace_writeback_dirty_inode_start(inode, flags); 1162 1163 if (sb->s_op->dirty_inode) 1164 sb->s_op->dirty_inode(inode, flags); 1165 1166 trace_writeback_dirty_inode(inode, flags); 1167 } 1168 1169 /* 1170 * make sure that changes are seen by all cpus before we test i_state 1171 * -- mikulas 1172 */ 1173 smp_mb(); 1174 1175 /* avoid the locking if we can */ 1176 if ((inode->i_state & flags) == flags) 1177 return; 1178 1179 if (unlikely(block_dump)) 1180 block_dump___mark_inode_dirty(inode); 1181 1182 spin_lock(&inode->i_lock); 1183 if ((inode->i_state & flags) != flags) { 1184 const int was_dirty = inode->i_state & I_DIRTY; 1185 1186 inode->i_state |= flags; 1187 1188 /* 1189 * If the inode is being synced, just update its dirty state. 1190 * The unlocker will place the inode on the appropriate 1191 * superblock list, based upon its state. 1192 */ 1193 if (inode->i_state & I_SYNC) 1194 goto out_unlock_inode; 1195 1196 /* 1197 * Only add valid (hashed) inodes to the superblock's 1198 * dirty list. Add blockdev inodes as well. 1199 */ 1200 if (!S_ISBLK(inode->i_mode)) { 1201 if (inode_unhashed(inode)) 1202 goto out_unlock_inode; 1203 } 1204 if (inode->i_state & I_FREEING) 1205 goto out_unlock_inode; 1206 1207 /* 1208 * If the inode was already on b_dirty/b_io/b_more_io, don't 1209 * reposition it (that would break b_dirty time-ordering). 1210 */ 1211 if (!was_dirty) { 1212 bool wakeup_bdi = false; 1213 bdi = inode_to_bdi(inode); 1214 1215 if (bdi_cap_writeback_dirty(bdi)) { 1216 WARN(!test_bit(BDI_registered, &bdi->state), 1217 "bdi-%s not registered\n", bdi->name); 1218 1219 /* 1220 * If this is the first dirty inode for this 1221 * bdi, we have to wake-up the corresponding 1222 * bdi thread to make sure background 1223 * write-back happens later. 1224 */ 1225 if (!wb_has_dirty_io(&bdi->wb)) 1226 wakeup_bdi = true; 1227 } 1228 1229 spin_unlock(&inode->i_lock); 1230 spin_lock(&bdi->wb.list_lock); 1231 inode->dirtied_when = jiffies; 1232 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1233 spin_unlock(&bdi->wb.list_lock); 1234 1235 if (wakeup_bdi) 1236 bdi_wakeup_thread_delayed(bdi); 1237 return; 1238 } 1239 } 1240 out_unlock_inode: 1241 spin_unlock(&inode->i_lock); 1242 1243 } 1244 EXPORT_SYMBOL(__mark_inode_dirty); 1245 1246 static void wait_sb_inodes(struct super_block *sb) 1247 { 1248 struct inode *inode, *old_inode = NULL; 1249 1250 /* 1251 * We need to be protected against the filesystem going from 1252 * r/o to r/w or vice versa. 1253 */ 1254 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1255 1256 spin_lock(&inode_sb_list_lock); 1257 1258 /* 1259 * Data integrity sync. Must wait for all pages under writeback, 1260 * because there may have been pages dirtied before our sync 1261 * call, but which had writeout started before we write it out. 1262 * In which case, the inode may not be on the dirty list, but 1263 * we still have to wait for that writeout. 1264 */ 1265 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1266 struct address_space *mapping = inode->i_mapping; 1267 1268 spin_lock(&inode->i_lock); 1269 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1270 (mapping->nrpages == 0)) { 1271 spin_unlock(&inode->i_lock); 1272 continue; 1273 } 1274 __iget(inode); 1275 spin_unlock(&inode->i_lock); 1276 spin_unlock(&inode_sb_list_lock); 1277 1278 /* 1279 * We hold a reference to 'inode' so it couldn't have been 1280 * removed from s_inodes list while we dropped the 1281 * inode_sb_list_lock. We cannot iput the inode now as we can 1282 * be holding the last reference and we cannot iput it under 1283 * inode_sb_list_lock. So we keep the reference and iput it 1284 * later. 1285 */ 1286 iput(old_inode); 1287 old_inode = inode; 1288 1289 filemap_fdatawait(mapping); 1290 1291 cond_resched(); 1292 1293 spin_lock(&inode_sb_list_lock); 1294 } 1295 spin_unlock(&inode_sb_list_lock); 1296 iput(old_inode); 1297 } 1298 1299 /** 1300 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1301 * @sb: the superblock 1302 * @nr: the number of pages to write 1303 * @reason: reason why some writeback work initiated 1304 * 1305 * Start writeback on some inodes on this super_block. No guarantees are made 1306 * on how many (if any) will be written, and this function does not wait 1307 * for IO completion of submitted IO. 1308 */ 1309 void writeback_inodes_sb_nr(struct super_block *sb, 1310 unsigned long nr, 1311 enum wb_reason reason) 1312 { 1313 DECLARE_COMPLETION_ONSTACK(done); 1314 struct wb_writeback_work work = { 1315 .sb = sb, 1316 .sync_mode = WB_SYNC_NONE, 1317 .tagged_writepages = 1, 1318 .done = &done, 1319 .nr_pages = nr, 1320 .reason = reason, 1321 }; 1322 1323 if (sb->s_bdi == &noop_backing_dev_info) 1324 return; 1325 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1326 bdi_queue_work(sb->s_bdi, &work); 1327 wait_for_completion(&done); 1328 } 1329 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1330 1331 /** 1332 * writeback_inodes_sb - writeback dirty inodes from given super_block 1333 * @sb: the superblock 1334 * @reason: reason why some writeback work was initiated 1335 * 1336 * Start writeback on some inodes on this super_block. No guarantees are made 1337 * on how many (if any) will be written, and this function does not wait 1338 * for IO completion of submitted IO. 1339 */ 1340 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1341 { 1342 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1343 } 1344 EXPORT_SYMBOL(writeback_inodes_sb); 1345 1346 /** 1347 * try_to_writeback_inodes_sb_nr - try to start writeback if none underway 1348 * @sb: the superblock 1349 * @nr: the number of pages to write 1350 * @reason: the reason of writeback 1351 * 1352 * Invoke writeback_inodes_sb_nr if no writeback is currently underway. 1353 * Returns 1 if writeback was started, 0 if not. 1354 */ 1355 int try_to_writeback_inodes_sb_nr(struct super_block *sb, 1356 unsigned long nr, 1357 enum wb_reason reason) 1358 { 1359 if (writeback_in_progress(sb->s_bdi)) 1360 return 1; 1361 1362 if (!down_read_trylock(&sb->s_umount)) 1363 return 0; 1364 1365 writeback_inodes_sb_nr(sb, nr, reason); 1366 up_read(&sb->s_umount); 1367 return 1; 1368 } 1369 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr); 1370 1371 /** 1372 * try_to_writeback_inodes_sb - try to start writeback if none underway 1373 * @sb: the superblock 1374 * @reason: reason why some writeback work was initiated 1375 * 1376 * Implement by try_to_writeback_inodes_sb_nr() 1377 * Returns 1 if writeback was started, 0 if not. 1378 */ 1379 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 1380 { 1381 return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 1382 } 1383 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 1384 1385 /** 1386 * sync_inodes_sb - sync sb inode pages 1387 * @sb: the superblock 1388 * 1389 * This function writes and waits on any dirty inode belonging to this 1390 * super_block. 1391 */ 1392 void sync_inodes_sb(struct super_block *sb) 1393 { 1394 DECLARE_COMPLETION_ONSTACK(done); 1395 struct wb_writeback_work work = { 1396 .sb = sb, 1397 .sync_mode = WB_SYNC_ALL, 1398 .nr_pages = LONG_MAX, 1399 .range_cyclic = 0, 1400 .done = &done, 1401 .reason = WB_REASON_SYNC, 1402 }; 1403 1404 /* Nothing to do? */ 1405 if (sb->s_bdi == &noop_backing_dev_info) 1406 return; 1407 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1408 1409 bdi_queue_work(sb->s_bdi, &work); 1410 wait_for_completion(&done); 1411 1412 wait_sb_inodes(sb); 1413 } 1414 EXPORT_SYMBOL(sync_inodes_sb); 1415 1416 /** 1417 * write_inode_now - write an inode to disk 1418 * @inode: inode to write to disk 1419 * @sync: whether the write should be synchronous or not 1420 * 1421 * This function commits an inode to disk immediately if it is dirty. This is 1422 * primarily needed by knfsd. 1423 * 1424 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1425 */ 1426 int write_inode_now(struct inode *inode, int sync) 1427 { 1428 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 1429 struct writeback_control wbc = { 1430 .nr_to_write = LONG_MAX, 1431 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1432 .range_start = 0, 1433 .range_end = LLONG_MAX, 1434 }; 1435 1436 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1437 wbc.nr_to_write = 0; 1438 1439 might_sleep(); 1440 return writeback_single_inode(inode, wb, &wbc); 1441 } 1442 EXPORT_SYMBOL(write_inode_now); 1443 1444 /** 1445 * sync_inode - write an inode and its pages to disk. 1446 * @inode: the inode to sync 1447 * @wbc: controls the writeback mode 1448 * 1449 * sync_inode() will write an inode and its pages to disk. It will also 1450 * correctly update the inode on its superblock's dirty inode lists and will 1451 * update inode->i_state. 1452 * 1453 * The caller must have a ref on the inode. 1454 */ 1455 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1456 { 1457 return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc); 1458 } 1459 EXPORT_SYMBOL(sync_inode); 1460 1461 /** 1462 * sync_inode_metadata - write an inode to disk 1463 * @inode: the inode to sync 1464 * @wait: wait for I/O to complete. 1465 * 1466 * Write an inode to disk and adjust its dirty state after completion. 1467 * 1468 * Note: only writes the actual inode, no associated data or other metadata. 1469 */ 1470 int sync_inode_metadata(struct inode *inode, int wait) 1471 { 1472 struct writeback_control wbc = { 1473 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1474 .nr_to_write = 0, /* metadata-only */ 1475 }; 1476 1477 return sync_inode(inode, &wbc); 1478 } 1479 EXPORT_SYMBOL(sync_inode_metadata); 1480