xref: /openbmc/linux/fs/fs-writeback.c (revision 97da55fc)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 	return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67 
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70 	struct super_block *sb = inode->i_sb;
71 
72 	if (strcmp(sb->s_type->name, "bdev") == 0)
73 		return inode->i_mapping->backing_dev_info;
74 
75 	return sb->s_bdi;
76 }
77 
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80 	return list_entry(head, struct inode, i_wb_list);
81 }
82 
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90 
91 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
92 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 {
94 	if (bdi->wb.task) {
95 		wake_up_process(bdi->wb.task);
96 	} else {
97 		/*
98 		 * The bdi thread isn't there, wake up the forker thread which
99 		 * will create and run it.
100 		 */
101 		wake_up_process(default_backing_dev_info.wb.task);
102 	}
103 }
104 
105 static void bdi_queue_work(struct backing_dev_info *bdi,
106 			   struct wb_writeback_work *work)
107 {
108 	trace_writeback_queue(bdi, work);
109 
110 	spin_lock_bh(&bdi->wb_lock);
111 	list_add_tail(&work->list, &bdi->work_list);
112 	if (!bdi->wb.task)
113 		trace_writeback_nothread(bdi, work);
114 	bdi_wakeup_flusher(bdi);
115 	spin_unlock_bh(&bdi->wb_lock);
116 }
117 
118 static void
119 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
120 		      bool range_cyclic, enum wb_reason reason)
121 {
122 	struct wb_writeback_work *work;
123 
124 	/*
125 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
126 	 * wakeup the thread for old dirty data writeback
127 	 */
128 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
129 	if (!work) {
130 		if (bdi->wb.task) {
131 			trace_writeback_nowork(bdi);
132 			wake_up_process(bdi->wb.task);
133 		}
134 		return;
135 	}
136 
137 	work->sync_mode	= WB_SYNC_NONE;
138 	work->nr_pages	= nr_pages;
139 	work->range_cyclic = range_cyclic;
140 	work->reason	= reason;
141 
142 	bdi_queue_work(bdi, work);
143 }
144 
145 /**
146  * bdi_start_writeback - start writeback
147  * @bdi: the backing device to write from
148  * @nr_pages: the number of pages to write
149  * @reason: reason why some writeback work was initiated
150  *
151  * Description:
152  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
153  *   started when this function returns, we make no guarantees on
154  *   completion. Caller need not hold sb s_umount semaphore.
155  *
156  */
157 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
158 			enum wb_reason reason)
159 {
160 	__bdi_start_writeback(bdi, nr_pages, true, reason);
161 }
162 
163 /**
164  * bdi_start_background_writeback - start background writeback
165  * @bdi: the backing device to write from
166  *
167  * Description:
168  *   This makes sure WB_SYNC_NONE background writeback happens. When
169  *   this function returns, it is only guaranteed that for given BDI
170  *   some IO is happening if we are over background dirty threshold.
171  *   Caller need not hold sb s_umount semaphore.
172  */
173 void bdi_start_background_writeback(struct backing_dev_info *bdi)
174 {
175 	/*
176 	 * We just wake up the flusher thread. It will perform background
177 	 * writeback as soon as there is no other work to do.
178 	 */
179 	trace_writeback_wake_background(bdi);
180 	spin_lock_bh(&bdi->wb_lock);
181 	bdi_wakeup_flusher(bdi);
182 	spin_unlock_bh(&bdi->wb_lock);
183 }
184 
185 /*
186  * Remove the inode from the writeback list it is on.
187  */
188 void inode_wb_list_del(struct inode *inode)
189 {
190 	struct backing_dev_info *bdi = inode_to_bdi(inode);
191 
192 	spin_lock(&bdi->wb.list_lock);
193 	list_del_init(&inode->i_wb_list);
194 	spin_unlock(&bdi->wb.list_lock);
195 }
196 
197 /*
198  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
199  * furthest end of its superblock's dirty-inode list.
200  *
201  * Before stamping the inode's ->dirtied_when, we check to see whether it is
202  * already the most-recently-dirtied inode on the b_dirty list.  If that is
203  * the case then the inode must have been redirtied while it was being written
204  * out and we don't reset its dirtied_when.
205  */
206 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 {
208 	assert_spin_locked(&wb->list_lock);
209 	if (!list_empty(&wb->b_dirty)) {
210 		struct inode *tail;
211 
212 		tail = wb_inode(wb->b_dirty.next);
213 		if (time_before(inode->dirtied_when, tail->dirtied_when))
214 			inode->dirtied_when = jiffies;
215 	}
216 	list_move(&inode->i_wb_list, &wb->b_dirty);
217 }
218 
219 /*
220  * requeue inode for re-scanning after bdi->b_io list is exhausted.
221  */
222 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 {
224 	assert_spin_locked(&wb->list_lock);
225 	list_move(&inode->i_wb_list, &wb->b_more_io);
226 }
227 
228 static void inode_sync_complete(struct inode *inode)
229 {
230 	inode->i_state &= ~I_SYNC;
231 	/* If inode is clean an unused, put it into LRU now... */
232 	inode_add_lru(inode);
233 	/* Waiters must see I_SYNC cleared before being woken up */
234 	smp_mb();
235 	wake_up_bit(&inode->i_state, __I_SYNC);
236 }
237 
238 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
239 {
240 	bool ret = time_after(inode->dirtied_when, t);
241 #ifndef CONFIG_64BIT
242 	/*
243 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
244 	 * It _appears_ to be in the future, but is actually in distant past.
245 	 * This test is necessary to prevent such wrapped-around relative times
246 	 * from permanently stopping the whole bdi writeback.
247 	 */
248 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
249 #endif
250 	return ret;
251 }
252 
253 /*
254  * Move expired (dirtied before work->older_than_this) dirty inodes from
255  * @delaying_queue to @dispatch_queue.
256  */
257 static int move_expired_inodes(struct list_head *delaying_queue,
258 			       struct list_head *dispatch_queue,
259 			       struct wb_writeback_work *work)
260 {
261 	LIST_HEAD(tmp);
262 	struct list_head *pos, *node;
263 	struct super_block *sb = NULL;
264 	struct inode *inode;
265 	int do_sb_sort = 0;
266 	int moved = 0;
267 
268 	while (!list_empty(delaying_queue)) {
269 		inode = wb_inode(delaying_queue->prev);
270 		if (work->older_than_this &&
271 		    inode_dirtied_after(inode, *work->older_than_this))
272 			break;
273 		if (sb && sb != inode->i_sb)
274 			do_sb_sort = 1;
275 		sb = inode->i_sb;
276 		list_move(&inode->i_wb_list, &tmp);
277 		moved++;
278 	}
279 
280 	/* just one sb in list, splice to dispatch_queue and we're done */
281 	if (!do_sb_sort) {
282 		list_splice(&tmp, dispatch_queue);
283 		goto out;
284 	}
285 
286 	/* Move inodes from one superblock together */
287 	while (!list_empty(&tmp)) {
288 		sb = wb_inode(tmp.prev)->i_sb;
289 		list_for_each_prev_safe(pos, node, &tmp) {
290 			inode = wb_inode(pos);
291 			if (inode->i_sb == sb)
292 				list_move(&inode->i_wb_list, dispatch_queue);
293 		}
294 	}
295 out:
296 	return moved;
297 }
298 
299 /*
300  * Queue all expired dirty inodes for io, eldest first.
301  * Before
302  *         newly dirtied     b_dirty    b_io    b_more_io
303  *         =============>    gf         edc     BA
304  * After
305  *         newly dirtied     b_dirty    b_io    b_more_io
306  *         =============>    g          fBAedc
307  *                                           |
308  *                                           +--> dequeue for IO
309  */
310 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
311 {
312 	int moved;
313 	assert_spin_locked(&wb->list_lock);
314 	list_splice_init(&wb->b_more_io, &wb->b_io);
315 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
316 	trace_writeback_queue_io(wb, work, moved);
317 }
318 
319 static int write_inode(struct inode *inode, struct writeback_control *wbc)
320 {
321 	int ret;
322 
323 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
324 		trace_writeback_write_inode_start(inode, wbc);
325 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
326 		trace_writeback_write_inode(inode, wbc);
327 		return ret;
328 	}
329 	return 0;
330 }
331 
332 /*
333  * Wait for writeback on an inode to complete. Called with i_lock held.
334  * Caller must make sure inode cannot go away when we drop i_lock.
335  */
336 static void __inode_wait_for_writeback(struct inode *inode)
337 	__releases(inode->i_lock)
338 	__acquires(inode->i_lock)
339 {
340 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
341 	wait_queue_head_t *wqh;
342 
343 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
344 	while (inode->i_state & I_SYNC) {
345 		spin_unlock(&inode->i_lock);
346 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
347 		spin_lock(&inode->i_lock);
348 	}
349 }
350 
351 /*
352  * Wait for writeback on an inode to complete. Caller must have inode pinned.
353  */
354 void inode_wait_for_writeback(struct inode *inode)
355 {
356 	spin_lock(&inode->i_lock);
357 	__inode_wait_for_writeback(inode);
358 	spin_unlock(&inode->i_lock);
359 }
360 
361 /*
362  * Sleep until I_SYNC is cleared. This function must be called with i_lock
363  * held and drops it. It is aimed for callers not holding any inode reference
364  * so once i_lock is dropped, inode can go away.
365  */
366 static void inode_sleep_on_writeback(struct inode *inode)
367 	__releases(inode->i_lock)
368 {
369 	DEFINE_WAIT(wait);
370 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
371 	int sleep;
372 
373 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
374 	sleep = inode->i_state & I_SYNC;
375 	spin_unlock(&inode->i_lock);
376 	if (sleep)
377 		schedule();
378 	finish_wait(wqh, &wait);
379 }
380 
381 /*
382  * Find proper writeback list for the inode depending on its current state and
383  * possibly also change of its state while we were doing writeback.  Here we
384  * handle things such as livelock prevention or fairness of writeback among
385  * inodes. This function can be called only by flusher thread - noone else
386  * processes all inodes in writeback lists and requeueing inodes behind flusher
387  * thread's back can have unexpected consequences.
388  */
389 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
390 			  struct writeback_control *wbc)
391 {
392 	if (inode->i_state & I_FREEING)
393 		return;
394 
395 	/*
396 	 * Sync livelock prevention. Each inode is tagged and synced in one
397 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
398 	 * the dirty time to prevent enqueue and sync it again.
399 	 */
400 	if ((inode->i_state & I_DIRTY) &&
401 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
402 		inode->dirtied_when = jiffies;
403 
404 	if (wbc->pages_skipped) {
405 		/*
406 		 * writeback is not making progress due to locked
407 		 * buffers. Skip this inode for now.
408 		 */
409 		redirty_tail(inode, wb);
410 		return;
411 	}
412 
413 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
414 		/*
415 		 * We didn't write back all the pages.  nfs_writepages()
416 		 * sometimes bales out without doing anything.
417 		 */
418 		if (wbc->nr_to_write <= 0) {
419 			/* Slice used up. Queue for next turn. */
420 			requeue_io(inode, wb);
421 		} else {
422 			/*
423 			 * Writeback blocked by something other than
424 			 * congestion. Delay the inode for some time to
425 			 * avoid spinning on the CPU (100% iowait)
426 			 * retrying writeback of the dirty page/inode
427 			 * that cannot be performed immediately.
428 			 */
429 			redirty_tail(inode, wb);
430 		}
431 	} else if (inode->i_state & I_DIRTY) {
432 		/*
433 		 * Filesystems can dirty the inode during writeback operations,
434 		 * such as delayed allocation during submission or metadata
435 		 * updates after data IO completion.
436 		 */
437 		redirty_tail(inode, wb);
438 	} else {
439 		/* The inode is clean. Remove from writeback lists. */
440 		list_del_init(&inode->i_wb_list);
441 	}
442 }
443 
444 /*
445  * Write out an inode and its dirty pages. Do not update the writeback list
446  * linkage. That is left to the caller. The caller is also responsible for
447  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
448  */
449 static int
450 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
451 {
452 	struct address_space *mapping = inode->i_mapping;
453 	long nr_to_write = wbc->nr_to_write;
454 	unsigned dirty;
455 	int ret;
456 
457 	WARN_ON(!(inode->i_state & I_SYNC));
458 
459 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
460 
461 	ret = do_writepages(mapping, wbc);
462 
463 	/*
464 	 * Make sure to wait on the data before writing out the metadata.
465 	 * This is important for filesystems that modify metadata on data
466 	 * I/O completion.
467 	 */
468 	if (wbc->sync_mode == WB_SYNC_ALL) {
469 		int err = filemap_fdatawait(mapping);
470 		if (ret == 0)
471 			ret = err;
472 	}
473 
474 	/*
475 	 * Some filesystems may redirty the inode during the writeback
476 	 * due to delalloc, clear dirty metadata flags right before
477 	 * write_inode()
478 	 */
479 	spin_lock(&inode->i_lock);
480 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
481 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
482 		inode->i_state &= ~I_DIRTY_PAGES;
483 	dirty = inode->i_state & I_DIRTY;
484 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
485 	spin_unlock(&inode->i_lock);
486 	/* Don't write the inode if only I_DIRTY_PAGES was set */
487 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
488 		int err = write_inode(inode, wbc);
489 		if (ret == 0)
490 			ret = err;
491 	}
492 	trace_writeback_single_inode(inode, wbc, nr_to_write);
493 	return ret;
494 }
495 
496 /*
497  * Write out an inode's dirty pages. Either the caller has an active reference
498  * on the inode or the inode has I_WILL_FREE set.
499  *
500  * This function is designed to be called for writing back one inode which
501  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
502  * and does more profound writeback list handling in writeback_sb_inodes().
503  */
504 static int
505 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
506 		       struct writeback_control *wbc)
507 {
508 	int ret = 0;
509 
510 	spin_lock(&inode->i_lock);
511 	if (!atomic_read(&inode->i_count))
512 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
513 	else
514 		WARN_ON(inode->i_state & I_WILL_FREE);
515 
516 	if (inode->i_state & I_SYNC) {
517 		if (wbc->sync_mode != WB_SYNC_ALL)
518 			goto out;
519 		/*
520 		 * It's a data-integrity sync. We must wait. Since callers hold
521 		 * inode reference or inode has I_WILL_FREE set, it cannot go
522 		 * away under us.
523 		 */
524 		__inode_wait_for_writeback(inode);
525 	}
526 	WARN_ON(inode->i_state & I_SYNC);
527 	/*
528 	 * Skip inode if it is clean. We don't want to mess with writeback
529 	 * lists in this function since flusher thread may be doing for example
530 	 * sync in parallel and if we move the inode, it could get skipped. So
531 	 * here we make sure inode is on some writeback list and leave it there
532 	 * unless we have completely cleaned the inode.
533 	 */
534 	if (!(inode->i_state & I_DIRTY))
535 		goto out;
536 	inode->i_state |= I_SYNC;
537 	spin_unlock(&inode->i_lock);
538 
539 	ret = __writeback_single_inode(inode, wbc);
540 
541 	spin_lock(&wb->list_lock);
542 	spin_lock(&inode->i_lock);
543 	/*
544 	 * If inode is clean, remove it from writeback lists. Otherwise don't
545 	 * touch it. See comment above for explanation.
546 	 */
547 	if (!(inode->i_state & I_DIRTY))
548 		list_del_init(&inode->i_wb_list);
549 	spin_unlock(&wb->list_lock);
550 	inode_sync_complete(inode);
551 out:
552 	spin_unlock(&inode->i_lock);
553 	return ret;
554 }
555 
556 static long writeback_chunk_size(struct backing_dev_info *bdi,
557 				 struct wb_writeback_work *work)
558 {
559 	long pages;
560 
561 	/*
562 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
563 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
564 	 * here avoids calling into writeback_inodes_wb() more than once.
565 	 *
566 	 * The intended call sequence for WB_SYNC_ALL writeback is:
567 	 *
568 	 *      wb_writeback()
569 	 *          writeback_sb_inodes()       <== called only once
570 	 *              write_cache_pages()     <== called once for each inode
571 	 *                   (quickly) tag currently dirty pages
572 	 *                   (maybe slowly) sync all tagged pages
573 	 */
574 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
575 		pages = LONG_MAX;
576 	else {
577 		pages = min(bdi->avg_write_bandwidth / 2,
578 			    global_dirty_limit / DIRTY_SCOPE);
579 		pages = min(pages, work->nr_pages);
580 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
581 				   MIN_WRITEBACK_PAGES);
582 	}
583 
584 	return pages;
585 }
586 
587 /*
588  * Write a portion of b_io inodes which belong to @sb.
589  *
590  * Return the number of pages and/or inodes written.
591  */
592 static long writeback_sb_inodes(struct super_block *sb,
593 				struct bdi_writeback *wb,
594 				struct wb_writeback_work *work)
595 {
596 	struct writeback_control wbc = {
597 		.sync_mode		= work->sync_mode,
598 		.tagged_writepages	= work->tagged_writepages,
599 		.for_kupdate		= work->for_kupdate,
600 		.for_background		= work->for_background,
601 		.range_cyclic		= work->range_cyclic,
602 		.range_start		= 0,
603 		.range_end		= LLONG_MAX,
604 	};
605 	unsigned long start_time = jiffies;
606 	long write_chunk;
607 	long wrote = 0;  /* count both pages and inodes */
608 
609 	while (!list_empty(&wb->b_io)) {
610 		struct inode *inode = wb_inode(wb->b_io.prev);
611 
612 		if (inode->i_sb != sb) {
613 			if (work->sb) {
614 				/*
615 				 * We only want to write back data for this
616 				 * superblock, move all inodes not belonging
617 				 * to it back onto the dirty list.
618 				 */
619 				redirty_tail(inode, wb);
620 				continue;
621 			}
622 
623 			/*
624 			 * The inode belongs to a different superblock.
625 			 * Bounce back to the caller to unpin this and
626 			 * pin the next superblock.
627 			 */
628 			break;
629 		}
630 
631 		/*
632 		 * Don't bother with new inodes or inodes being freed, first
633 		 * kind does not need periodic writeout yet, and for the latter
634 		 * kind writeout is handled by the freer.
635 		 */
636 		spin_lock(&inode->i_lock);
637 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
638 			spin_unlock(&inode->i_lock);
639 			redirty_tail(inode, wb);
640 			continue;
641 		}
642 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
643 			/*
644 			 * If this inode is locked for writeback and we are not
645 			 * doing writeback-for-data-integrity, move it to
646 			 * b_more_io so that writeback can proceed with the
647 			 * other inodes on s_io.
648 			 *
649 			 * We'll have another go at writing back this inode
650 			 * when we completed a full scan of b_io.
651 			 */
652 			spin_unlock(&inode->i_lock);
653 			requeue_io(inode, wb);
654 			trace_writeback_sb_inodes_requeue(inode);
655 			continue;
656 		}
657 		spin_unlock(&wb->list_lock);
658 
659 		/*
660 		 * We already requeued the inode if it had I_SYNC set and we
661 		 * are doing WB_SYNC_NONE writeback. So this catches only the
662 		 * WB_SYNC_ALL case.
663 		 */
664 		if (inode->i_state & I_SYNC) {
665 			/* Wait for I_SYNC. This function drops i_lock... */
666 			inode_sleep_on_writeback(inode);
667 			/* Inode may be gone, start again */
668 			spin_lock(&wb->list_lock);
669 			continue;
670 		}
671 		inode->i_state |= I_SYNC;
672 		spin_unlock(&inode->i_lock);
673 
674 		write_chunk = writeback_chunk_size(wb->bdi, work);
675 		wbc.nr_to_write = write_chunk;
676 		wbc.pages_skipped = 0;
677 
678 		/*
679 		 * We use I_SYNC to pin the inode in memory. While it is set
680 		 * evict_inode() will wait so the inode cannot be freed.
681 		 */
682 		__writeback_single_inode(inode, &wbc);
683 
684 		work->nr_pages -= write_chunk - wbc.nr_to_write;
685 		wrote += write_chunk - wbc.nr_to_write;
686 		spin_lock(&wb->list_lock);
687 		spin_lock(&inode->i_lock);
688 		if (!(inode->i_state & I_DIRTY))
689 			wrote++;
690 		requeue_inode(inode, wb, &wbc);
691 		inode_sync_complete(inode);
692 		spin_unlock(&inode->i_lock);
693 		cond_resched_lock(&wb->list_lock);
694 		/*
695 		 * bail out to wb_writeback() often enough to check
696 		 * background threshold and other termination conditions.
697 		 */
698 		if (wrote) {
699 			if (time_is_before_jiffies(start_time + HZ / 10UL))
700 				break;
701 			if (work->nr_pages <= 0)
702 				break;
703 		}
704 	}
705 	return wrote;
706 }
707 
708 static long __writeback_inodes_wb(struct bdi_writeback *wb,
709 				  struct wb_writeback_work *work)
710 {
711 	unsigned long start_time = jiffies;
712 	long wrote = 0;
713 
714 	while (!list_empty(&wb->b_io)) {
715 		struct inode *inode = wb_inode(wb->b_io.prev);
716 		struct super_block *sb = inode->i_sb;
717 
718 		if (!grab_super_passive(sb)) {
719 			/*
720 			 * grab_super_passive() may fail consistently due to
721 			 * s_umount being grabbed by someone else. Don't use
722 			 * requeue_io() to avoid busy retrying the inode/sb.
723 			 */
724 			redirty_tail(inode, wb);
725 			continue;
726 		}
727 		wrote += writeback_sb_inodes(sb, wb, work);
728 		drop_super(sb);
729 
730 		/* refer to the same tests at the end of writeback_sb_inodes */
731 		if (wrote) {
732 			if (time_is_before_jiffies(start_time + HZ / 10UL))
733 				break;
734 			if (work->nr_pages <= 0)
735 				break;
736 		}
737 	}
738 	/* Leave any unwritten inodes on b_io */
739 	return wrote;
740 }
741 
742 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
743 				enum wb_reason reason)
744 {
745 	struct wb_writeback_work work = {
746 		.nr_pages	= nr_pages,
747 		.sync_mode	= WB_SYNC_NONE,
748 		.range_cyclic	= 1,
749 		.reason		= reason,
750 	};
751 
752 	spin_lock(&wb->list_lock);
753 	if (list_empty(&wb->b_io))
754 		queue_io(wb, &work);
755 	__writeback_inodes_wb(wb, &work);
756 	spin_unlock(&wb->list_lock);
757 
758 	return nr_pages - work.nr_pages;
759 }
760 
761 static bool over_bground_thresh(struct backing_dev_info *bdi)
762 {
763 	unsigned long background_thresh, dirty_thresh;
764 
765 	global_dirty_limits(&background_thresh, &dirty_thresh);
766 
767 	if (global_page_state(NR_FILE_DIRTY) +
768 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
769 		return true;
770 
771 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
772 				bdi_dirty_limit(bdi, background_thresh))
773 		return true;
774 
775 	return false;
776 }
777 
778 /*
779  * Called under wb->list_lock. If there are multiple wb per bdi,
780  * only the flusher working on the first wb should do it.
781  */
782 static void wb_update_bandwidth(struct bdi_writeback *wb,
783 				unsigned long start_time)
784 {
785 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
786 }
787 
788 /*
789  * Explicit flushing or periodic writeback of "old" data.
790  *
791  * Define "old": the first time one of an inode's pages is dirtied, we mark the
792  * dirtying-time in the inode's address_space.  So this periodic writeback code
793  * just walks the superblock inode list, writing back any inodes which are
794  * older than a specific point in time.
795  *
796  * Try to run once per dirty_writeback_interval.  But if a writeback event
797  * takes longer than a dirty_writeback_interval interval, then leave a
798  * one-second gap.
799  *
800  * older_than_this takes precedence over nr_to_write.  So we'll only write back
801  * all dirty pages if they are all attached to "old" mappings.
802  */
803 static long wb_writeback(struct bdi_writeback *wb,
804 			 struct wb_writeback_work *work)
805 {
806 	unsigned long wb_start = jiffies;
807 	long nr_pages = work->nr_pages;
808 	unsigned long oldest_jif;
809 	struct inode *inode;
810 	long progress;
811 
812 	oldest_jif = jiffies;
813 	work->older_than_this = &oldest_jif;
814 
815 	spin_lock(&wb->list_lock);
816 	for (;;) {
817 		/*
818 		 * Stop writeback when nr_pages has been consumed
819 		 */
820 		if (work->nr_pages <= 0)
821 			break;
822 
823 		/*
824 		 * Background writeout and kupdate-style writeback may
825 		 * run forever. Stop them if there is other work to do
826 		 * so that e.g. sync can proceed. They'll be restarted
827 		 * after the other works are all done.
828 		 */
829 		if ((work->for_background || work->for_kupdate) &&
830 		    !list_empty(&wb->bdi->work_list))
831 			break;
832 
833 		/*
834 		 * For background writeout, stop when we are below the
835 		 * background dirty threshold
836 		 */
837 		if (work->for_background && !over_bground_thresh(wb->bdi))
838 			break;
839 
840 		/*
841 		 * Kupdate and background works are special and we want to
842 		 * include all inodes that need writing. Livelock avoidance is
843 		 * handled by these works yielding to any other work so we are
844 		 * safe.
845 		 */
846 		if (work->for_kupdate) {
847 			oldest_jif = jiffies -
848 				msecs_to_jiffies(dirty_expire_interval * 10);
849 		} else if (work->for_background)
850 			oldest_jif = jiffies;
851 
852 		trace_writeback_start(wb->bdi, work);
853 		if (list_empty(&wb->b_io))
854 			queue_io(wb, work);
855 		if (work->sb)
856 			progress = writeback_sb_inodes(work->sb, wb, work);
857 		else
858 			progress = __writeback_inodes_wb(wb, work);
859 		trace_writeback_written(wb->bdi, work);
860 
861 		wb_update_bandwidth(wb, wb_start);
862 
863 		/*
864 		 * Did we write something? Try for more
865 		 *
866 		 * Dirty inodes are moved to b_io for writeback in batches.
867 		 * The completion of the current batch does not necessarily
868 		 * mean the overall work is done. So we keep looping as long
869 		 * as made some progress on cleaning pages or inodes.
870 		 */
871 		if (progress)
872 			continue;
873 		/*
874 		 * No more inodes for IO, bail
875 		 */
876 		if (list_empty(&wb->b_more_io))
877 			break;
878 		/*
879 		 * Nothing written. Wait for some inode to
880 		 * become available for writeback. Otherwise
881 		 * we'll just busyloop.
882 		 */
883 		if (!list_empty(&wb->b_more_io))  {
884 			trace_writeback_wait(wb->bdi, work);
885 			inode = wb_inode(wb->b_more_io.prev);
886 			spin_lock(&inode->i_lock);
887 			spin_unlock(&wb->list_lock);
888 			/* This function drops i_lock... */
889 			inode_sleep_on_writeback(inode);
890 			spin_lock(&wb->list_lock);
891 		}
892 	}
893 	spin_unlock(&wb->list_lock);
894 
895 	return nr_pages - work->nr_pages;
896 }
897 
898 /*
899  * Return the next wb_writeback_work struct that hasn't been processed yet.
900  */
901 static struct wb_writeback_work *
902 get_next_work_item(struct backing_dev_info *bdi)
903 {
904 	struct wb_writeback_work *work = NULL;
905 
906 	spin_lock_bh(&bdi->wb_lock);
907 	if (!list_empty(&bdi->work_list)) {
908 		work = list_entry(bdi->work_list.next,
909 				  struct wb_writeback_work, list);
910 		list_del_init(&work->list);
911 	}
912 	spin_unlock_bh(&bdi->wb_lock);
913 	return work;
914 }
915 
916 /*
917  * Add in the number of potentially dirty inodes, because each inode
918  * write can dirty pagecache in the underlying blockdev.
919  */
920 static unsigned long get_nr_dirty_pages(void)
921 {
922 	return global_page_state(NR_FILE_DIRTY) +
923 		global_page_state(NR_UNSTABLE_NFS) +
924 		get_nr_dirty_inodes();
925 }
926 
927 static long wb_check_background_flush(struct bdi_writeback *wb)
928 {
929 	if (over_bground_thresh(wb->bdi)) {
930 
931 		struct wb_writeback_work work = {
932 			.nr_pages	= LONG_MAX,
933 			.sync_mode	= WB_SYNC_NONE,
934 			.for_background	= 1,
935 			.range_cyclic	= 1,
936 			.reason		= WB_REASON_BACKGROUND,
937 		};
938 
939 		return wb_writeback(wb, &work);
940 	}
941 
942 	return 0;
943 }
944 
945 static long wb_check_old_data_flush(struct bdi_writeback *wb)
946 {
947 	unsigned long expired;
948 	long nr_pages;
949 
950 	/*
951 	 * When set to zero, disable periodic writeback
952 	 */
953 	if (!dirty_writeback_interval)
954 		return 0;
955 
956 	expired = wb->last_old_flush +
957 			msecs_to_jiffies(dirty_writeback_interval * 10);
958 	if (time_before(jiffies, expired))
959 		return 0;
960 
961 	wb->last_old_flush = jiffies;
962 	nr_pages = get_nr_dirty_pages();
963 
964 	if (nr_pages) {
965 		struct wb_writeback_work work = {
966 			.nr_pages	= nr_pages,
967 			.sync_mode	= WB_SYNC_NONE,
968 			.for_kupdate	= 1,
969 			.range_cyclic	= 1,
970 			.reason		= WB_REASON_PERIODIC,
971 		};
972 
973 		return wb_writeback(wb, &work);
974 	}
975 
976 	return 0;
977 }
978 
979 /*
980  * Retrieve work items and do the writeback they describe
981  */
982 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
983 {
984 	struct backing_dev_info *bdi = wb->bdi;
985 	struct wb_writeback_work *work;
986 	long wrote = 0;
987 
988 	set_bit(BDI_writeback_running, &wb->bdi->state);
989 	while ((work = get_next_work_item(bdi)) != NULL) {
990 		/*
991 		 * Override sync mode, in case we must wait for completion
992 		 * because this thread is exiting now.
993 		 */
994 		if (force_wait)
995 			work->sync_mode = WB_SYNC_ALL;
996 
997 		trace_writeback_exec(bdi, work);
998 
999 		wrote += wb_writeback(wb, work);
1000 
1001 		/*
1002 		 * Notify the caller of completion if this is a synchronous
1003 		 * work item, otherwise just free it.
1004 		 */
1005 		if (work->done)
1006 			complete(work->done);
1007 		else
1008 			kfree(work);
1009 	}
1010 
1011 	/*
1012 	 * Check for periodic writeback, kupdated() style
1013 	 */
1014 	wrote += wb_check_old_data_flush(wb);
1015 	wrote += wb_check_background_flush(wb);
1016 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1017 
1018 	return wrote;
1019 }
1020 
1021 /*
1022  * Handle writeback of dirty data for the device backed by this bdi. Also
1023  * wakes up periodically and does kupdated style flushing.
1024  */
1025 int bdi_writeback_thread(void *data)
1026 {
1027 	struct bdi_writeback *wb = data;
1028 	struct backing_dev_info *bdi = wb->bdi;
1029 	long pages_written;
1030 
1031 	current->flags |= PF_SWAPWRITE;
1032 	set_freezable();
1033 	wb->last_active = jiffies;
1034 
1035 	/*
1036 	 * Our parent may run at a different priority, just set us to normal
1037 	 */
1038 	set_user_nice(current, 0);
1039 
1040 	trace_writeback_thread_start(bdi);
1041 
1042 	while (!kthread_freezable_should_stop(NULL)) {
1043 		/*
1044 		 * Remove own delayed wake-up timer, since we are already awake
1045 		 * and we'll take care of the periodic write-back.
1046 		 */
1047 		del_timer(&wb->wakeup_timer);
1048 
1049 		pages_written = wb_do_writeback(wb, 0);
1050 
1051 		trace_writeback_pages_written(pages_written);
1052 
1053 		if (pages_written)
1054 			wb->last_active = jiffies;
1055 
1056 		set_current_state(TASK_INTERRUPTIBLE);
1057 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1058 			__set_current_state(TASK_RUNNING);
1059 			continue;
1060 		}
1061 
1062 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1063 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1064 		else {
1065 			/*
1066 			 * We have nothing to do, so can go sleep without any
1067 			 * timeout and save power. When a work is queued or
1068 			 * something is made dirty - we will be woken up.
1069 			 */
1070 			schedule();
1071 		}
1072 	}
1073 
1074 	/* Flush any work that raced with us exiting */
1075 	if (!list_empty(&bdi->work_list))
1076 		wb_do_writeback(wb, 1);
1077 
1078 	trace_writeback_thread_stop(bdi);
1079 	return 0;
1080 }
1081 
1082 
1083 /*
1084  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1085  * the whole world.
1086  */
1087 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1088 {
1089 	struct backing_dev_info *bdi;
1090 
1091 	if (!nr_pages) {
1092 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1093 				global_page_state(NR_UNSTABLE_NFS);
1094 	}
1095 
1096 	rcu_read_lock();
1097 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1098 		if (!bdi_has_dirty_io(bdi))
1099 			continue;
1100 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1101 	}
1102 	rcu_read_unlock();
1103 }
1104 
1105 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1106 {
1107 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1108 		struct dentry *dentry;
1109 		const char *name = "?";
1110 
1111 		dentry = d_find_alias(inode);
1112 		if (dentry) {
1113 			spin_lock(&dentry->d_lock);
1114 			name = (const char *) dentry->d_name.name;
1115 		}
1116 		printk(KERN_DEBUG
1117 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1118 		       current->comm, task_pid_nr(current), inode->i_ino,
1119 		       name, inode->i_sb->s_id);
1120 		if (dentry) {
1121 			spin_unlock(&dentry->d_lock);
1122 			dput(dentry);
1123 		}
1124 	}
1125 }
1126 
1127 /**
1128  *	__mark_inode_dirty -	internal function
1129  *	@inode: inode to mark
1130  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1131  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1132  *  	mark_inode_dirty_sync.
1133  *
1134  * Put the inode on the super block's dirty list.
1135  *
1136  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1137  * dirty list only if it is hashed or if it refers to a blockdev.
1138  * If it was not hashed, it will never be added to the dirty list
1139  * even if it is later hashed, as it will have been marked dirty already.
1140  *
1141  * In short, make sure you hash any inodes _before_ you start marking
1142  * them dirty.
1143  *
1144  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1145  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1146  * the kernel-internal blockdev inode represents the dirtying time of the
1147  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1148  * page->mapping->host, so the page-dirtying time is recorded in the internal
1149  * blockdev inode.
1150  */
1151 void __mark_inode_dirty(struct inode *inode, int flags)
1152 {
1153 	struct super_block *sb = inode->i_sb;
1154 	struct backing_dev_info *bdi = NULL;
1155 
1156 	/*
1157 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1158 	 * dirty the inode itself
1159 	 */
1160 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1161 		trace_writeback_dirty_inode_start(inode, flags);
1162 
1163 		if (sb->s_op->dirty_inode)
1164 			sb->s_op->dirty_inode(inode, flags);
1165 
1166 		trace_writeback_dirty_inode(inode, flags);
1167 	}
1168 
1169 	/*
1170 	 * make sure that changes are seen by all cpus before we test i_state
1171 	 * -- mikulas
1172 	 */
1173 	smp_mb();
1174 
1175 	/* avoid the locking if we can */
1176 	if ((inode->i_state & flags) == flags)
1177 		return;
1178 
1179 	if (unlikely(block_dump))
1180 		block_dump___mark_inode_dirty(inode);
1181 
1182 	spin_lock(&inode->i_lock);
1183 	if ((inode->i_state & flags) != flags) {
1184 		const int was_dirty = inode->i_state & I_DIRTY;
1185 
1186 		inode->i_state |= flags;
1187 
1188 		/*
1189 		 * If the inode is being synced, just update its dirty state.
1190 		 * The unlocker will place the inode on the appropriate
1191 		 * superblock list, based upon its state.
1192 		 */
1193 		if (inode->i_state & I_SYNC)
1194 			goto out_unlock_inode;
1195 
1196 		/*
1197 		 * Only add valid (hashed) inodes to the superblock's
1198 		 * dirty list.  Add blockdev inodes as well.
1199 		 */
1200 		if (!S_ISBLK(inode->i_mode)) {
1201 			if (inode_unhashed(inode))
1202 				goto out_unlock_inode;
1203 		}
1204 		if (inode->i_state & I_FREEING)
1205 			goto out_unlock_inode;
1206 
1207 		/*
1208 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1209 		 * reposition it (that would break b_dirty time-ordering).
1210 		 */
1211 		if (!was_dirty) {
1212 			bool wakeup_bdi = false;
1213 			bdi = inode_to_bdi(inode);
1214 
1215 			if (bdi_cap_writeback_dirty(bdi)) {
1216 				WARN(!test_bit(BDI_registered, &bdi->state),
1217 				     "bdi-%s not registered\n", bdi->name);
1218 
1219 				/*
1220 				 * If this is the first dirty inode for this
1221 				 * bdi, we have to wake-up the corresponding
1222 				 * bdi thread to make sure background
1223 				 * write-back happens later.
1224 				 */
1225 				if (!wb_has_dirty_io(&bdi->wb))
1226 					wakeup_bdi = true;
1227 			}
1228 
1229 			spin_unlock(&inode->i_lock);
1230 			spin_lock(&bdi->wb.list_lock);
1231 			inode->dirtied_when = jiffies;
1232 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1233 			spin_unlock(&bdi->wb.list_lock);
1234 
1235 			if (wakeup_bdi)
1236 				bdi_wakeup_thread_delayed(bdi);
1237 			return;
1238 		}
1239 	}
1240 out_unlock_inode:
1241 	spin_unlock(&inode->i_lock);
1242 
1243 }
1244 EXPORT_SYMBOL(__mark_inode_dirty);
1245 
1246 static void wait_sb_inodes(struct super_block *sb)
1247 {
1248 	struct inode *inode, *old_inode = NULL;
1249 
1250 	/*
1251 	 * We need to be protected against the filesystem going from
1252 	 * r/o to r/w or vice versa.
1253 	 */
1254 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1255 
1256 	spin_lock(&inode_sb_list_lock);
1257 
1258 	/*
1259 	 * Data integrity sync. Must wait for all pages under writeback,
1260 	 * because there may have been pages dirtied before our sync
1261 	 * call, but which had writeout started before we write it out.
1262 	 * In which case, the inode may not be on the dirty list, but
1263 	 * we still have to wait for that writeout.
1264 	 */
1265 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1266 		struct address_space *mapping = inode->i_mapping;
1267 
1268 		spin_lock(&inode->i_lock);
1269 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1270 		    (mapping->nrpages == 0)) {
1271 			spin_unlock(&inode->i_lock);
1272 			continue;
1273 		}
1274 		__iget(inode);
1275 		spin_unlock(&inode->i_lock);
1276 		spin_unlock(&inode_sb_list_lock);
1277 
1278 		/*
1279 		 * We hold a reference to 'inode' so it couldn't have been
1280 		 * removed from s_inodes list while we dropped the
1281 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1282 		 * be holding the last reference and we cannot iput it under
1283 		 * inode_sb_list_lock. So we keep the reference and iput it
1284 		 * later.
1285 		 */
1286 		iput(old_inode);
1287 		old_inode = inode;
1288 
1289 		filemap_fdatawait(mapping);
1290 
1291 		cond_resched();
1292 
1293 		spin_lock(&inode_sb_list_lock);
1294 	}
1295 	spin_unlock(&inode_sb_list_lock);
1296 	iput(old_inode);
1297 }
1298 
1299 /**
1300  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1301  * @sb: the superblock
1302  * @nr: the number of pages to write
1303  * @reason: reason why some writeback work initiated
1304  *
1305  * Start writeback on some inodes on this super_block. No guarantees are made
1306  * on how many (if any) will be written, and this function does not wait
1307  * for IO completion of submitted IO.
1308  */
1309 void writeback_inodes_sb_nr(struct super_block *sb,
1310 			    unsigned long nr,
1311 			    enum wb_reason reason)
1312 {
1313 	DECLARE_COMPLETION_ONSTACK(done);
1314 	struct wb_writeback_work work = {
1315 		.sb			= sb,
1316 		.sync_mode		= WB_SYNC_NONE,
1317 		.tagged_writepages	= 1,
1318 		.done			= &done,
1319 		.nr_pages		= nr,
1320 		.reason			= reason,
1321 	};
1322 
1323 	if (sb->s_bdi == &noop_backing_dev_info)
1324 		return;
1325 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1326 	bdi_queue_work(sb->s_bdi, &work);
1327 	wait_for_completion(&done);
1328 }
1329 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1330 
1331 /**
1332  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1333  * @sb: the superblock
1334  * @reason: reason why some writeback work was initiated
1335  *
1336  * Start writeback on some inodes on this super_block. No guarantees are made
1337  * on how many (if any) will be written, and this function does not wait
1338  * for IO completion of submitted IO.
1339  */
1340 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1341 {
1342 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1343 }
1344 EXPORT_SYMBOL(writeback_inodes_sb);
1345 
1346 /**
1347  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1348  * @sb: the superblock
1349  * @nr: the number of pages to write
1350  * @reason: the reason of writeback
1351  *
1352  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1353  * Returns 1 if writeback was started, 0 if not.
1354  */
1355 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1356 				  unsigned long nr,
1357 				  enum wb_reason reason)
1358 {
1359 	if (writeback_in_progress(sb->s_bdi))
1360 		return 1;
1361 
1362 	if (!down_read_trylock(&sb->s_umount))
1363 		return 0;
1364 
1365 	writeback_inodes_sb_nr(sb, nr, reason);
1366 	up_read(&sb->s_umount);
1367 	return 1;
1368 }
1369 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1370 
1371 /**
1372  * try_to_writeback_inodes_sb - try to start writeback if none underway
1373  * @sb: the superblock
1374  * @reason: reason why some writeback work was initiated
1375  *
1376  * Implement by try_to_writeback_inodes_sb_nr()
1377  * Returns 1 if writeback was started, 0 if not.
1378  */
1379 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1380 {
1381 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1382 }
1383 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1384 
1385 /**
1386  * sync_inodes_sb	-	sync sb inode pages
1387  * @sb: the superblock
1388  *
1389  * This function writes and waits on any dirty inode belonging to this
1390  * super_block.
1391  */
1392 void sync_inodes_sb(struct super_block *sb)
1393 {
1394 	DECLARE_COMPLETION_ONSTACK(done);
1395 	struct wb_writeback_work work = {
1396 		.sb		= sb,
1397 		.sync_mode	= WB_SYNC_ALL,
1398 		.nr_pages	= LONG_MAX,
1399 		.range_cyclic	= 0,
1400 		.done		= &done,
1401 		.reason		= WB_REASON_SYNC,
1402 	};
1403 
1404 	/* Nothing to do? */
1405 	if (sb->s_bdi == &noop_backing_dev_info)
1406 		return;
1407 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1408 
1409 	bdi_queue_work(sb->s_bdi, &work);
1410 	wait_for_completion(&done);
1411 
1412 	wait_sb_inodes(sb);
1413 }
1414 EXPORT_SYMBOL(sync_inodes_sb);
1415 
1416 /**
1417  * write_inode_now	-	write an inode to disk
1418  * @inode: inode to write to disk
1419  * @sync: whether the write should be synchronous or not
1420  *
1421  * This function commits an inode to disk immediately if it is dirty. This is
1422  * primarily needed by knfsd.
1423  *
1424  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1425  */
1426 int write_inode_now(struct inode *inode, int sync)
1427 {
1428 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1429 	struct writeback_control wbc = {
1430 		.nr_to_write = LONG_MAX,
1431 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1432 		.range_start = 0,
1433 		.range_end = LLONG_MAX,
1434 	};
1435 
1436 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1437 		wbc.nr_to_write = 0;
1438 
1439 	might_sleep();
1440 	return writeback_single_inode(inode, wb, &wbc);
1441 }
1442 EXPORT_SYMBOL(write_inode_now);
1443 
1444 /**
1445  * sync_inode - write an inode and its pages to disk.
1446  * @inode: the inode to sync
1447  * @wbc: controls the writeback mode
1448  *
1449  * sync_inode() will write an inode and its pages to disk.  It will also
1450  * correctly update the inode on its superblock's dirty inode lists and will
1451  * update inode->i_state.
1452  *
1453  * The caller must have a ref on the inode.
1454  */
1455 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1456 {
1457 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1458 }
1459 EXPORT_SYMBOL(sync_inode);
1460 
1461 /**
1462  * sync_inode_metadata - write an inode to disk
1463  * @inode: the inode to sync
1464  * @wait: wait for I/O to complete.
1465  *
1466  * Write an inode to disk and adjust its dirty state after completion.
1467  *
1468  * Note: only writes the actual inode, no associated data or other metadata.
1469  */
1470 int sync_inode_metadata(struct inode *inode, int wait)
1471 {
1472 	struct writeback_control wbc = {
1473 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1474 		.nr_to_write = 0, /* metadata-only */
1475 	};
1476 
1477 	return sync_inode(inode, &wbc);
1478 }
1479 EXPORT_SYMBOL(sync_inode_metadata);
1480