xref: /openbmc/linux/fs/fs-writeback.c (revision 96ac6d43)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 struct wb_completion {
40 	atomic_t		cnt;
41 };
42 
43 /*
44  * Passed into wb_writeback(), essentially a subset of writeback_control
45  */
46 struct wb_writeback_work {
47 	long nr_pages;
48 	struct super_block *sb;
49 	unsigned long *older_than_this;
50 	enum writeback_sync_modes sync_mode;
51 	unsigned int tagged_writepages:1;
52 	unsigned int for_kupdate:1;
53 	unsigned int range_cyclic:1;
54 	unsigned int for_background:1;
55 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
56 	unsigned int auto_free:1;	/* free on completion */
57 	enum wb_reason reason;		/* why was writeback initiated? */
58 
59 	struct list_head list;		/* pending work list */
60 	struct wb_completion *done;	/* set if the caller waits */
61 };
62 
63 /*
64  * If one wants to wait for one or more wb_writeback_works, each work's
65  * ->done should be set to a wb_completion defined using the following
66  * macro.  Once all work items are issued with wb_queue_work(), the caller
67  * can wait for the completion of all using wb_wait_for_completion().  Work
68  * items which are waited upon aren't freed automatically on completion.
69  */
70 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
71 	struct wb_completion cmpl = {					\
72 		.cnt		= ATOMIC_INIT(1),			\
73 	}
74 
75 
76 /*
77  * If an inode is constantly having its pages dirtied, but then the
78  * updates stop dirtytime_expire_interval seconds in the past, it's
79  * possible for the worst case time between when an inode has its
80  * timestamps updated and when they finally get written out to be two
81  * dirtytime_expire_intervals.  We set the default to 12 hours (in
82  * seconds), which means most of the time inodes will have their
83  * timestamps written to disk after 12 hours, but in the worst case a
84  * few inodes might not their timestamps updated for 24 hours.
85  */
86 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
87 
88 static inline struct inode *wb_inode(struct list_head *head)
89 {
90 	return list_entry(head, struct inode, i_io_list);
91 }
92 
93 /*
94  * Include the creation of the trace points after defining the
95  * wb_writeback_work structure and inline functions so that the definition
96  * remains local to this file.
97  */
98 #define CREATE_TRACE_POINTS
99 #include <trace/events/writeback.h>
100 
101 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
102 
103 static bool wb_io_lists_populated(struct bdi_writeback *wb)
104 {
105 	if (wb_has_dirty_io(wb)) {
106 		return false;
107 	} else {
108 		set_bit(WB_has_dirty_io, &wb->state);
109 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
110 		atomic_long_add(wb->avg_write_bandwidth,
111 				&wb->bdi->tot_write_bandwidth);
112 		return true;
113 	}
114 }
115 
116 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
117 {
118 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
119 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
120 		clear_bit(WB_has_dirty_io, &wb->state);
121 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
122 					&wb->bdi->tot_write_bandwidth) < 0);
123 	}
124 }
125 
126 /**
127  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
128  * @inode: inode to be moved
129  * @wb: target bdi_writeback
130  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
131  *
132  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
133  * Returns %true if @inode is the first occupant of the !dirty_time IO
134  * lists; otherwise, %false.
135  */
136 static bool inode_io_list_move_locked(struct inode *inode,
137 				      struct bdi_writeback *wb,
138 				      struct list_head *head)
139 {
140 	assert_spin_locked(&wb->list_lock);
141 
142 	list_move(&inode->i_io_list, head);
143 
144 	/* dirty_time doesn't count as dirty_io until expiration */
145 	if (head != &wb->b_dirty_time)
146 		return wb_io_lists_populated(wb);
147 
148 	wb_io_lists_depopulated(wb);
149 	return false;
150 }
151 
152 /**
153  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
154  * @inode: inode to be removed
155  * @wb: bdi_writeback @inode is being removed from
156  *
157  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
158  * clear %WB_has_dirty_io if all are empty afterwards.
159  */
160 static void inode_io_list_del_locked(struct inode *inode,
161 				     struct bdi_writeback *wb)
162 {
163 	assert_spin_locked(&wb->list_lock);
164 
165 	list_del_init(&inode->i_io_list);
166 	wb_io_lists_depopulated(wb);
167 }
168 
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171 	spin_lock_bh(&wb->work_lock);
172 	if (test_bit(WB_registered, &wb->state))
173 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
177 static void finish_writeback_work(struct bdi_writeback *wb,
178 				  struct wb_writeback_work *work)
179 {
180 	struct wb_completion *done = work->done;
181 
182 	if (work->auto_free)
183 		kfree(work);
184 	if (done && atomic_dec_and_test(&done->cnt))
185 		wake_up_all(&wb->bdi->wb_waitq);
186 }
187 
188 static void wb_queue_work(struct bdi_writeback *wb,
189 			  struct wb_writeback_work *work)
190 {
191 	trace_writeback_queue(wb, work);
192 
193 	if (work->done)
194 		atomic_inc(&work->done->cnt);
195 
196 	spin_lock_bh(&wb->work_lock);
197 
198 	if (test_bit(WB_registered, &wb->state)) {
199 		list_add_tail(&work->list, &wb->work_list);
200 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
201 	} else
202 		finish_writeback_work(wb, work);
203 
204 	spin_unlock_bh(&wb->work_lock);
205 }
206 
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219 				   struct wb_completion *done)
220 {
221 	atomic_dec(&done->cnt);		/* put down the initial count */
222 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224 
225 #ifdef CONFIG_CGROUP_WRITEBACK
226 
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
232 
233 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235 					/* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
237 					/* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
239 					/* one round can affect upto 5 slots */
240 
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243 
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246 	struct backing_dev_info *bdi = inode_to_bdi(inode);
247 	struct bdi_writeback *wb = NULL;
248 
249 	if (inode_cgwb_enabled(inode)) {
250 		struct cgroup_subsys_state *memcg_css;
251 
252 		if (page) {
253 			memcg_css = mem_cgroup_css_from_page(page);
254 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255 		} else {
256 			/* must pin memcg_css, see wb_get_create() */
257 			memcg_css = task_get_css(current, memory_cgrp_id);
258 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259 			css_put(memcg_css);
260 		}
261 	}
262 
263 	if (!wb)
264 		wb = &bdi->wb;
265 
266 	/*
267 	 * There may be multiple instances of this function racing to
268 	 * update the same inode.  Use cmpxchg() to tell the winner.
269 	 */
270 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271 		wb_put(wb);
272 }
273 
274 /**
275  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
276  * @inode: inode of interest with i_lock held
277  *
278  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
279  * held on entry and is released on return.  The returned wb is guaranteed
280  * to stay @inode's associated wb until its list_lock is released.
281  */
282 static struct bdi_writeback *
283 locked_inode_to_wb_and_lock_list(struct inode *inode)
284 	__releases(&inode->i_lock)
285 	__acquires(&wb->list_lock)
286 {
287 	while (true) {
288 		struct bdi_writeback *wb = inode_to_wb(inode);
289 
290 		/*
291 		 * inode_to_wb() association is protected by both
292 		 * @inode->i_lock and @wb->list_lock but list_lock nests
293 		 * outside i_lock.  Drop i_lock and verify that the
294 		 * association hasn't changed after acquiring list_lock.
295 		 */
296 		wb_get(wb);
297 		spin_unlock(&inode->i_lock);
298 		spin_lock(&wb->list_lock);
299 
300 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
301 		if (likely(wb == inode->i_wb)) {
302 			wb_put(wb);	/* @inode already has ref */
303 			return wb;
304 		}
305 
306 		spin_unlock(&wb->list_lock);
307 		wb_put(wb);
308 		cpu_relax();
309 		spin_lock(&inode->i_lock);
310 	}
311 }
312 
313 /**
314  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
315  * @inode: inode of interest
316  *
317  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
318  * on entry.
319  */
320 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
321 	__acquires(&wb->list_lock)
322 {
323 	spin_lock(&inode->i_lock);
324 	return locked_inode_to_wb_and_lock_list(inode);
325 }
326 
327 struct inode_switch_wbs_context {
328 	struct inode		*inode;
329 	struct bdi_writeback	*new_wb;
330 
331 	struct rcu_head		rcu_head;
332 	struct work_struct	work;
333 };
334 
335 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
336 {
337 	down_write(&bdi->wb_switch_rwsem);
338 }
339 
340 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
341 {
342 	up_write(&bdi->wb_switch_rwsem);
343 }
344 
345 static void inode_switch_wbs_work_fn(struct work_struct *work)
346 {
347 	struct inode_switch_wbs_context *isw =
348 		container_of(work, struct inode_switch_wbs_context, work);
349 	struct inode *inode = isw->inode;
350 	struct backing_dev_info *bdi = inode_to_bdi(inode);
351 	struct address_space *mapping = inode->i_mapping;
352 	struct bdi_writeback *old_wb = inode->i_wb;
353 	struct bdi_writeback *new_wb = isw->new_wb;
354 	XA_STATE(xas, &mapping->i_pages, 0);
355 	struct page *page;
356 	bool switched = false;
357 
358 	/*
359 	 * If @inode switches cgwb membership while sync_inodes_sb() is
360 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
361 	 */
362 	down_read(&bdi->wb_switch_rwsem);
363 
364 	/*
365 	 * By the time control reaches here, RCU grace period has passed
366 	 * since I_WB_SWITCH assertion and all wb stat update transactions
367 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
368 	 * synchronizing against the i_pages lock.
369 	 *
370 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
371 	 * gives us exclusion against all wb related operations on @inode
372 	 * including IO list manipulations and stat updates.
373 	 */
374 	if (old_wb < new_wb) {
375 		spin_lock(&old_wb->list_lock);
376 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
377 	} else {
378 		spin_lock(&new_wb->list_lock);
379 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
380 	}
381 	spin_lock(&inode->i_lock);
382 	xa_lock_irq(&mapping->i_pages);
383 
384 	/*
385 	 * Once I_FREEING is visible under i_lock, the eviction path owns
386 	 * the inode and we shouldn't modify ->i_io_list.
387 	 */
388 	if (unlikely(inode->i_state & I_FREEING))
389 		goto skip_switch;
390 
391 	/*
392 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
393 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
394 	 * pages actually under writeback.
395 	 */
396 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
397 		if (PageDirty(page)) {
398 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
399 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
400 		}
401 	}
402 
403 	xas_set(&xas, 0);
404 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
405 		WARN_ON_ONCE(!PageWriteback(page));
406 		dec_wb_stat(old_wb, WB_WRITEBACK);
407 		inc_wb_stat(new_wb, WB_WRITEBACK);
408 	}
409 
410 	wb_get(new_wb);
411 
412 	/*
413 	 * Transfer to @new_wb's IO list if necessary.  The specific list
414 	 * @inode was on is ignored and the inode is put on ->b_dirty which
415 	 * is always correct including from ->b_dirty_time.  The transfer
416 	 * preserves @inode->dirtied_when ordering.
417 	 */
418 	if (!list_empty(&inode->i_io_list)) {
419 		struct inode *pos;
420 
421 		inode_io_list_del_locked(inode, old_wb);
422 		inode->i_wb = new_wb;
423 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
424 			if (time_after_eq(inode->dirtied_when,
425 					  pos->dirtied_when))
426 				break;
427 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
428 	} else {
429 		inode->i_wb = new_wb;
430 	}
431 
432 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
433 	inode->i_wb_frn_winner = 0;
434 	inode->i_wb_frn_avg_time = 0;
435 	inode->i_wb_frn_history = 0;
436 	switched = true;
437 skip_switch:
438 	/*
439 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
440 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
441 	 */
442 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
443 
444 	xa_unlock_irq(&mapping->i_pages);
445 	spin_unlock(&inode->i_lock);
446 	spin_unlock(&new_wb->list_lock);
447 	spin_unlock(&old_wb->list_lock);
448 
449 	up_read(&bdi->wb_switch_rwsem);
450 
451 	if (switched) {
452 		wb_wakeup(new_wb);
453 		wb_put(old_wb);
454 	}
455 	wb_put(new_wb);
456 
457 	iput(inode);
458 	kfree(isw);
459 
460 	atomic_dec(&isw_nr_in_flight);
461 }
462 
463 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
464 {
465 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
466 				struct inode_switch_wbs_context, rcu_head);
467 
468 	/* needs to grab bh-unsafe locks, bounce to work item */
469 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
470 	queue_work(isw_wq, &isw->work);
471 }
472 
473 /**
474  * inode_switch_wbs - change the wb association of an inode
475  * @inode: target inode
476  * @new_wb_id: ID of the new wb
477  *
478  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
479  * switching is performed asynchronously and may fail silently.
480  */
481 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
482 {
483 	struct backing_dev_info *bdi = inode_to_bdi(inode);
484 	struct cgroup_subsys_state *memcg_css;
485 	struct inode_switch_wbs_context *isw;
486 
487 	/* noop if seems to be already in progress */
488 	if (inode->i_state & I_WB_SWITCH)
489 		return;
490 
491 	/*
492 	 * Avoid starting new switches while sync_inodes_sb() is in
493 	 * progress.  Otherwise, if the down_write protected issue path
494 	 * blocks heavily, we might end up starting a large number of
495 	 * switches which will block on the rwsem.
496 	 */
497 	if (!down_read_trylock(&bdi->wb_switch_rwsem))
498 		return;
499 
500 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
501 	if (!isw)
502 		goto out_unlock;
503 
504 	/* find and pin the new wb */
505 	rcu_read_lock();
506 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
507 	if (memcg_css)
508 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
509 	rcu_read_unlock();
510 	if (!isw->new_wb)
511 		goto out_free;
512 
513 	/* while holding I_WB_SWITCH, no one else can update the association */
514 	spin_lock(&inode->i_lock);
515 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
516 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
517 	    inode_to_wb(inode) == isw->new_wb) {
518 		spin_unlock(&inode->i_lock);
519 		goto out_free;
520 	}
521 	inode->i_state |= I_WB_SWITCH;
522 	__iget(inode);
523 	spin_unlock(&inode->i_lock);
524 
525 	isw->inode = inode;
526 
527 	/*
528 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
529 	 * the RCU protected stat update paths to grab the i_page
530 	 * lock so that stat transfer can synchronize against them.
531 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
532 	 */
533 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
534 
535 	atomic_inc(&isw_nr_in_flight);
536 
537 	goto out_unlock;
538 
539 out_free:
540 	if (isw->new_wb)
541 		wb_put(isw->new_wb);
542 	kfree(isw);
543 out_unlock:
544 	up_read(&bdi->wb_switch_rwsem);
545 }
546 
547 /**
548  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549  * @wbc: writeback_control of interest
550  * @inode: target inode
551  *
552  * @inode is locked and about to be written back under the control of @wbc.
553  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
554  * writeback completion, wbc_detach_inode() should be called.  This is used
555  * to track the cgroup writeback context.
556  */
557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558 				 struct inode *inode)
559 {
560 	if (!inode_cgwb_enabled(inode)) {
561 		spin_unlock(&inode->i_lock);
562 		return;
563 	}
564 
565 	wbc->wb = inode_to_wb(inode);
566 	wbc->inode = inode;
567 
568 	wbc->wb_id = wbc->wb->memcg_css->id;
569 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
570 	wbc->wb_tcand_id = 0;
571 	wbc->wb_bytes = 0;
572 	wbc->wb_lcand_bytes = 0;
573 	wbc->wb_tcand_bytes = 0;
574 
575 	wb_get(wbc->wb);
576 	spin_unlock(&inode->i_lock);
577 
578 	/*
579 	 * A dying wb indicates that the memcg-blkcg mapping has changed
580 	 * and a new wb is already serving the memcg.  Switch immediately.
581 	 */
582 	if (unlikely(wb_dying(wbc->wb)))
583 		inode_switch_wbs(inode, wbc->wb_id);
584 }
585 
586 /**
587  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
588  * @wbc: writeback_control of the just finished writeback
589  *
590  * To be called after a writeback attempt of an inode finishes and undoes
591  * wbc_attach_and_unlock_inode().  Can be called under any context.
592  *
593  * As concurrent write sharing of an inode is expected to be very rare and
594  * memcg only tracks page ownership on first-use basis severely confining
595  * the usefulness of such sharing, cgroup writeback tracks ownership
596  * per-inode.  While the support for concurrent write sharing of an inode
597  * is deemed unnecessary, an inode being written to by different cgroups at
598  * different points in time is a lot more common, and, more importantly,
599  * charging only by first-use can too readily lead to grossly incorrect
600  * behaviors (single foreign page can lead to gigabytes of writeback to be
601  * incorrectly attributed).
602  *
603  * To resolve this issue, cgroup writeback detects the majority dirtier of
604  * an inode and transfers the ownership to it.  To avoid unnnecessary
605  * oscillation, the detection mechanism keeps track of history and gives
606  * out the switch verdict only if the foreign usage pattern is stable over
607  * a certain amount of time and/or writeback attempts.
608  *
609  * On each writeback attempt, @wbc tries to detect the majority writer
610  * using Boyer-Moore majority vote algorithm.  In addition to the byte
611  * count from the majority voting, it also counts the bytes written for the
612  * current wb and the last round's winner wb (max of last round's current
613  * wb, the winner from two rounds ago, and the last round's majority
614  * candidate).  Keeping track of the historical winner helps the algorithm
615  * to semi-reliably detect the most active writer even when it's not the
616  * absolute majority.
617  *
618  * Once the winner of the round is determined, whether the winner is
619  * foreign or not and how much IO time the round consumed is recorded in
620  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
621  * over a certain threshold, the switch verdict is given.
622  */
623 void wbc_detach_inode(struct writeback_control *wbc)
624 {
625 	struct bdi_writeback *wb = wbc->wb;
626 	struct inode *inode = wbc->inode;
627 	unsigned long avg_time, max_bytes, max_time;
628 	u16 history;
629 	int max_id;
630 
631 	if (!wb)
632 		return;
633 
634 	history = inode->i_wb_frn_history;
635 	avg_time = inode->i_wb_frn_avg_time;
636 
637 	/* pick the winner of this round */
638 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
639 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
640 		max_id = wbc->wb_id;
641 		max_bytes = wbc->wb_bytes;
642 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
643 		max_id = wbc->wb_lcand_id;
644 		max_bytes = wbc->wb_lcand_bytes;
645 	} else {
646 		max_id = wbc->wb_tcand_id;
647 		max_bytes = wbc->wb_tcand_bytes;
648 	}
649 
650 	/*
651 	 * Calculate the amount of IO time the winner consumed and fold it
652 	 * into the running average kept per inode.  If the consumed IO
653 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
654 	 * deciding whether to switch or not.  This is to prevent one-off
655 	 * small dirtiers from skewing the verdict.
656 	 */
657 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
658 				wb->avg_write_bandwidth);
659 	if (avg_time)
660 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
661 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
662 	else
663 		avg_time = max_time;	/* immediate catch up on first run */
664 
665 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
666 		int slots;
667 
668 		/*
669 		 * The switch verdict is reached if foreign wb's consume
670 		 * more than a certain proportion of IO time in a
671 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
672 		 * history mask where each bit represents one sixteenth of
673 		 * the period.  Determine the number of slots to shift into
674 		 * history from @max_time.
675 		 */
676 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
677 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
678 		history <<= slots;
679 		if (wbc->wb_id != max_id)
680 			history |= (1U << slots) - 1;
681 
682 		/*
683 		 * Switch if the current wb isn't the consistent winner.
684 		 * If there are multiple closely competing dirtiers, the
685 		 * inode may switch across them repeatedly over time, which
686 		 * is okay.  The main goal is avoiding keeping an inode on
687 		 * the wrong wb for an extended period of time.
688 		 */
689 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
690 			inode_switch_wbs(inode, max_id);
691 	}
692 
693 	/*
694 	 * Multiple instances of this function may race to update the
695 	 * following fields but we don't mind occassional inaccuracies.
696 	 */
697 	inode->i_wb_frn_winner = max_id;
698 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
699 	inode->i_wb_frn_history = history;
700 
701 	wb_put(wbc->wb);
702 	wbc->wb = NULL;
703 }
704 
705 /**
706  * wbc_account_io - account IO issued during writeback
707  * @wbc: writeback_control of the writeback in progress
708  * @page: page being written out
709  * @bytes: number of bytes being written out
710  *
711  * @bytes from @page are about to written out during the writeback
712  * controlled by @wbc.  Keep the book for foreign inode detection.  See
713  * wbc_detach_inode().
714  */
715 void wbc_account_io(struct writeback_control *wbc, struct page *page,
716 		    size_t bytes)
717 {
718 	int id;
719 
720 	/*
721 	 * pageout() path doesn't attach @wbc to the inode being written
722 	 * out.  This is intentional as we don't want the function to block
723 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
724 	 * regular writeback instead of writing things out itself.
725 	 */
726 	if (!wbc->wb)
727 		return;
728 
729 	id = mem_cgroup_css_from_page(page)->id;
730 
731 	if (id == wbc->wb_id) {
732 		wbc->wb_bytes += bytes;
733 		return;
734 	}
735 
736 	if (id == wbc->wb_lcand_id)
737 		wbc->wb_lcand_bytes += bytes;
738 
739 	/* Boyer-Moore majority vote algorithm */
740 	if (!wbc->wb_tcand_bytes)
741 		wbc->wb_tcand_id = id;
742 	if (id == wbc->wb_tcand_id)
743 		wbc->wb_tcand_bytes += bytes;
744 	else
745 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
746 }
747 EXPORT_SYMBOL_GPL(wbc_account_io);
748 
749 /**
750  * inode_congested - test whether an inode is congested
751  * @inode: inode to test for congestion (may be NULL)
752  * @cong_bits: mask of WB_[a]sync_congested bits to test
753  *
754  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
755  * bits to test and the return value is the mask of set bits.
756  *
757  * If cgroup writeback is enabled for @inode, the congestion state is
758  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
759  * associated with @inode is congested; otherwise, the root wb's congestion
760  * state is used.
761  *
762  * @inode is allowed to be NULL as this function is often called on
763  * mapping->host which is NULL for the swapper space.
764  */
765 int inode_congested(struct inode *inode, int cong_bits)
766 {
767 	/*
768 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
769 	 * Start transaction iff ->i_wb is visible.
770 	 */
771 	if (inode && inode_to_wb_is_valid(inode)) {
772 		struct bdi_writeback *wb;
773 		struct wb_lock_cookie lock_cookie = {};
774 		bool congested;
775 
776 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
777 		congested = wb_congested(wb, cong_bits);
778 		unlocked_inode_to_wb_end(inode, &lock_cookie);
779 		return congested;
780 	}
781 
782 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
783 }
784 EXPORT_SYMBOL_GPL(inode_congested);
785 
786 /**
787  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
788  * @wb: target bdi_writeback to split @nr_pages to
789  * @nr_pages: number of pages to write for the whole bdi
790  *
791  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
792  * relation to the total write bandwidth of all wb's w/ dirty inodes on
793  * @wb->bdi.
794  */
795 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
796 {
797 	unsigned long this_bw = wb->avg_write_bandwidth;
798 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
799 
800 	if (nr_pages == LONG_MAX)
801 		return LONG_MAX;
802 
803 	/*
804 	 * This may be called on clean wb's and proportional distribution
805 	 * may not make sense, just use the original @nr_pages in those
806 	 * cases.  In general, we wanna err on the side of writing more.
807 	 */
808 	if (!tot_bw || this_bw >= tot_bw)
809 		return nr_pages;
810 	else
811 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
812 }
813 
814 /**
815  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
816  * @bdi: target backing_dev_info
817  * @base_work: wb_writeback_work to issue
818  * @skip_if_busy: skip wb's which already have writeback in progress
819  *
820  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
821  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
822  * distributed to the busy wbs according to each wb's proportion in the
823  * total active write bandwidth of @bdi.
824  */
825 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
826 				  struct wb_writeback_work *base_work,
827 				  bool skip_if_busy)
828 {
829 	struct bdi_writeback *last_wb = NULL;
830 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
831 					      struct bdi_writeback, bdi_node);
832 
833 	might_sleep();
834 restart:
835 	rcu_read_lock();
836 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
837 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
838 		struct wb_writeback_work fallback_work;
839 		struct wb_writeback_work *work;
840 		long nr_pages;
841 
842 		if (last_wb) {
843 			wb_put(last_wb);
844 			last_wb = NULL;
845 		}
846 
847 		/* SYNC_ALL writes out I_DIRTY_TIME too */
848 		if (!wb_has_dirty_io(wb) &&
849 		    (base_work->sync_mode == WB_SYNC_NONE ||
850 		     list_empty(&wb->b_dirty_time)))
851 			continue;
852 		if (skip_if_busy && writeback_in_progress(wb))
853 			continue;
854 
855 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
856 
857 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
858 		if (work) {
859 			*work = *base_work;
860 			work->nr_pages = nr_pages;
861 			work->auto_free = 1;
862 			wb_queue_work(wb, work);
863 			continue;
864 		}
865 
866 		/* alloc failed, execute synchronously using on-stack fallback */
867 		work = &fallback_work;
868 		*work = *base_work;
869 		work->nr_pages = nr_pages;
870 		work->auto_free = 0;
871 		work->done = &fallback_work_done;
872 
873 		wb_queue_work(wb, work);
874 
875 		/*
876 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
877 		 * continuing iteration from @wb after dropping and
878 		 * regrabbing rcu read lock.
879 		 */
880 		wb_get(wb);
881 		last_wb = wb;
882 
883 		rcu_read_unlock();
884 		wb_wait_for_completion(bdi, &fallback_work_done);
885 		goto restart;
886 	}
887 	rcu_read_unlock();
888 
889 	if (last_wb)
890 		wb_put(last_wb);
891 }
892 
893 /**
894  * cgroup_writeback_umount - flush inode wb switches for umount
895  *
896  * This function is called when a super_block is about to be destroyed and
897  * flushes in-flight inode wb switches.  An inode wb switch goes through
898  * RCU and then workqueue, so the two need to be flushed in order to ensure
899  * that all previously scheduled switches are finished.  As wb switches are
900  * rare occurrences and synchronize_rcu() can take a while, perform
901  * flushing iff wb switches are in flight.
902  */
903 void cgroup_writeback_umount(void)
904 {
905 	if (atomic_read(&isw_nr_in_flight)) {
906 		/*
907 		 * Use rcu_barrier() to wait for all pending callbacks to
908 		 * ensure that all in-flight wb switches are in the workqueue.
909 		 */
910 		rcu_barrier();
911 		flush_workqueue(isw_wq);
912 	}
913 }
914 
915 static int __init cgroup_writeback_init(void)
916 {
917 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
918 	if (!isw_wq)
919 		return -ENOMEM;
920 	return 0;
921 }
922 fs_initcall(cgroup_writeback_init);
923 
924 #else	/* CONFIG_CGROUP_WRITEBACK */
925 
926 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
927 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
928 
929 static struct bdi_writeback *
930 locked_inode_to_wb_and_lock_list(struct inode *inode)
931 	__releases(&inode->i_lock)
932 	__acquires(&wb->list_lock)
933 {
934 	struct bdi_writeback *wb = inode_to_wb(inode);
935 
936 	spin_unlock(&inode->i_lock);
937 	spin_lock(&wb->list_lock);
938 	return wb;
939 }
940 
941 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
942 	__acquires(&wb->list_lock)
943 {
944 	struct bdi_writeback *wb = inode_to_wb(inode);
945 
946 	spin_lock(&wb->list_lock);
947 	return wb;
948 }
949 
950 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
951 {
952 	return nr_pages;
953 }
954 
955 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
956 				  struct wb_writeback_work *base_work,
957 				  bool skip_if_busy)
958 {
959 	might_sleep();
960 
961 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
962 		base_work->auto_free = 0;
963 		wb_queue_work(&bdi->wb, base_work);
964 	}
965 }
966 
967 #endif	/* CONFIG_CGROUP_WRITEBACK */
968 
969 /*
970  * Add in the number of potentially dirty inodes, because each inode
971  * write can dirty pagecache in the underlying blockdev.
972  */
973 static unsigned long get_nr_dirty_pages(void)
974 {
975 	return global_node_page_state(NR_FILE_DIRTY) +
976 		global_node_page_state(NR_UNSTABLE_NFS) +
977 		get_nr_dirty_inodes();
978 }
979 
980 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
981 {
982 	if (!wb_has_dirty_io(wb))
983 		return;
984 
985 	/*
986 	 * All callers of this function want to start writeback of all
987 	 * dirty pages. Places like vmscan can call this at a very
988 	 * high frequency, causing pointless allocations of tons of
989 	 * work items and keeping the flusher threads busy retrieving
990 	 * that work. Ensure that we only allow one of them pending and
991 	 * inflight at the time.
992 	 */
993 	if (test_bit(WB_start_all, &wb->state) ||
994 	    test_and_set_bit(WB_start_all, &wb->state))
995 		return;
996 
997 	wb->start_all_reason = reason;
998 	wb_wakeup(wb);
999 }
1000 
1001 /**
1002  * wb_start_background_writeback - start background writeback
1003  * @wb: bdi_writback to write from
1004  *
1005  * Description:
1006  *   This makes sure WB_SYNC_NONE background writeback happens. When
1007  *   this function returns, it is only guaranteed that for given wb
1008  *   some IO is happening if we are over background dirty threshold.
1009  *   Caller need not hold sb s_umount semaphore.
1010  */
1011 void wb_start_background_writeback(struct bdi_writeback *wb)
1012 {
1013 	/*
1014 	 * We just wake up the flusher thread. It will perform background
1015 	 * writeback as soon as there is no other work to do.
1016 	 */
1017 	trace_writeback_wake_background(wb);
1018 	wb_wakeup(wb);
1019 }
1020 
1021 /*
1022  * Remove the inode from the writeback list it is on.
1023  */
1024 void inode_io_list_del(struct inode *inode)
1025 {
1026 	struct bdi_writeback *wb;
1027 
1028 	wb = inode_to_wb_and_lock_list(inode);
1029 	inode_io_list_del_locked(inode, wb);
1030 	spin_unlock(&wb->list_lock);
1031 }
1032 
1033 /*
1034  * mark an inode as under writeback on the sb
1035  */
1036 void sb_mark_inode_writeback(struct inode *inode)
1037 {
1038 	struct super_block *sb = inode->i_sb;
1039 	unsigned long flags;
1040 
1041 	if (list_empty(&inode->i_wb_list)) {
1042 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1043 		if (list_empty(&inode->i_wb_list)) {
1044 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1045 			trace_sb_mark_inode_writeback(inode);
1046 		}
1047 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1048 	}
1049 }
1050 
1051 /*
1052  * clear an inode as under writeback on the sb
1053  */
1054 void sb_clear_inode_writeback(struct inode *inode)
1055 {
1056 	struct super_block *sb = inode->i_sb;
1057 	unsigned long flags;
1058 
1059 	if (!list_empty(&inode->i_wb_list)) {
1060 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1061 		if (!list_empty(&inode->i_wb_list)) {
1062 			list_del_init(&inode->i_wb_list);
1063 			trace_sb_clear_inode_writeback(inode);
1064 		}
1065 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1066 	}
1067 }
1068 
1069 /*
1070  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1071  * furthest end of its superblock's dirty-inode list.
1072  *
1073  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1074  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1075  * the case then the inode must have been redirtied while it was being written
1076  * out and we don't reset its dirtied_when.
1077  */
1078 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1079 {
1080 	if (!list_empty(&wb->b_dirty)) {
1081 		struct inode *tail;
1082 
1083 		tail = wb_inode(wb->b_dirty.next);
1084 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1085 			inode->dirtied_when = jiffies;
1086 	}
1087 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1088 }
1089 
1090 /*
1091  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1092  */
1093 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1094 {
1095 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1096 }
1097 
1098 static void inode_sync_complete(struct inode *inode)
1099 {
1100 	inode->i_state &= ~I_SYNC;
1101 	/* If inode is clean an unused, put it into LRU now... */
1102 	inode_add_lru(inode);
1103 	/* Waiters must see I_SYNC cleared before being woken up */
1104 	smp_mb();
1105 	wake_up_bit(&inode->i_state, __I_SYNC);
1106 }
1107 
1108 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1109 {
1110 	bool ret = time_after(inode->dirtied_when, t);
1111 #ifndef CONFIG_64BIT
1112 	/*
1113 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1114 	 * It _appears_ to be in the future, but is actually in distant past.
1115 	 * This test is necessary to prevent such wrapped-around relative times
1116 	 * from permanently stopping the whole bdi writeback.
1117 	 */
1118 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1119 #endif
1120 	return ret;
1121 }
1122 
1123 #define EXPIRE_DIRTY_ATIME 0x0001
1124 
1125 /*
1126  * Move expired (dirtied before work->older_than_this) dirty inodes from
1127  * @delaying_queue to @dispatch_queue.
1128  */
1129 static int move_expired_inodes(struct list_head *delaying_queue,
1130 			       struct list_head *dispatch_queue,
1131 			       int flags,
1132 			       struct wb_writeback_work *work)
1133 {
1134 	unsigned long *older_than_this = NULL;
1135 	unsigned long expire_time;
1136 	LIST_HEAD(tmp);
1137 	struct list_head *pos, *node;
1138 	struct super_block *sb = NULL;
1139 	struct inode *inode;
1140 	int do_sb_sort = 0;
1141 	int moved = 0;
1142 
1143 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1144 		older_than_this = work->older_than_this;
1145 	else if (!work->for_sync) {
1146 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1147 		older_than_this = &expire_time;
1148 	}
1149 	while (!list_empty(delaying_queue)) {
1150 		inode = wb_inode(delaying_queue->prev);
1151 		if (older_than_this &&
1152 		    inode_dirtied_after(inode, *older_than_this))
1153 			break;
1154 		list_move(&inode->i_io_list, &tmp);
1155 		moved++;
1156 		if (flags & EXPIRE_DIRTY_ATIME)
1157 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1158 		if (sb_is_blkdev_sb(inode->i_sb))
1159 			continue;
1160 		if (sb && sb != inode->i_sb)
1161 			do_sb_sort = 1;
1162 		sb = inode->i_sb;
1163 	}
1164 
1165 	/* just one sb in list, splice to dispatch_queue and we're done */
1166 	if (!do_sb_sort) {
1167 		list_splice(&tmp, dispatch_queue);
1168 		goto out;
1169 	}
1170 
1171 	/* Move inodes from one superblock together */
1172 	while (!list_empty(&tmp)) {
1173 		sb = wb_inode(tmp.prev)->i_sb;
1174 		list_for_each_prev_safe(pos, node, &tmp) {
1175 			inode = wb_inode(pos);
1176 			if (inode->i_sb == sb)
1177 				list_move(&inode->i_io_list, dispatch_queue);
1178 		}
1179 	}
1180 out:
1181 	return moved;
1182 }
1183 
1184 /*
1185  * Queue all expired dirty inodes for io, eldest first.
1186  * Before
1187  *         newly dirtied     b_dirty    b_io    b_more_io
1188  *         =============>    gf         edc     BA
1189  * After
1190  *         newly dirtied     b_dirty    b_io    b_more_io
1191  *         =============>    g          fBAedc
1192  *                                           |
1193  *                                           +--> dequeue for IO
1194  */
1195 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1196 {
1197 	int moved;
1198 
1199 	assert_spin_locked(&wb->list_lock);
1200 	list_splice_init(&wb->b_more_io, &wb->b_io);
1201 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1202 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1203 				     EXPIRE_DIRTY_ATIME, work);
1204 	if (moved)
1205 		wb_io_lists_populated(wb);
1206 	trace_writeback_queue_io(wb, work, moved);
1207 }
1208 
1209 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1210 {
1211 	int ret;
1212 
1213 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1214 		trace_writeback_write_inode_start(inode, wbc);
1215 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1216 		trace_writeback_write_inode(inode, wbc);
1217 		return ret;
1218 	}
1219 	return 0;
1220 }
1221 
1222 /*
1223  * Wait for writeback on an inode to complete. Called with i_lock held.
1224  * Caller must make sure inode cannot go away when we drop i_lock.
1225  */
1226 static void __inode_wait_for_writeback(struct inode *inode)
1227 	__releases(inode->i_lock)
1228 	__acquires(inode->i_lock)
1229 {
1230 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1231 	wait_queue_head_t *wqh;
1232 
1233 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1234 	while (inode->i_state & I_SYNC) {
1235 		spin_unlock(&inode->i_lock);
1236 		__wait_on_bit(wqh, &wq, bit_wait,
1237 			      TASK_UNINTERRUPTIBLE);
1238 		spin_lock(&inode->i_lock);
1239 	}
1240 }
1241 
1242 /*
1243  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1244  */
1245 void inode_wait_for_writeback(struct inode *inode)
1246 {
1247 	spin_lock(&inode->i_lock);
1248 	__inode_wait_for_writeback(inode);
1249 	spin_unlock(&inode->i_lock);
1250 }
1251 
1252 /*
1253  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1254  * held and drops it. It is aimed for callers not holding any inode reference
1255  * so once i_lock is dropped, inode can go away.
1256  */
1257 static void inode_sleep_on_writeback(struct inode *inode)
1258 	__releases(inode->i_lock)
1259 {
1260 	DEFINE_WAIT(wait);
1261 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1262 	int sleep;
1263 
1264 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1265 	sleep = inode->i_state & I_SYNC;
1266 	spin_unlock(&inode->i_lock);
1267 	if (sleep)
1268 		schedule();
1269 	finish_wait(wqh, &wait);
1270 }
1271 
1272 /*
1273  * Find proper writeback list for the inode depending on its current state and
1274  * possibly also change of its state while we were doing writeback.  Here we
1275  * handle things such as livelock prevention or fairness of writeback among
1276  * inodes. This function can be called only by flusher thread - noone else
1277  * processes all inodes in writeback lists and requeueing inodes behind flusher
1278  * thread's back can have unexpected consequences.
1279  */
1280 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1281 			  struct writeback_control *wbc)
1282 {
1283 	if (inode->i_state & I_FREEING)
1284 		return;
1285 
1286 	/*
1287 	 * Sync livelock prevention. Each inode is tagged and synced in one
1288 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1289 	 * the dirty time to prevent enqueue and sync it again.
1290 	 */
1291 	if ((inode->i_state & I_DIRTY) &&
1292 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1293 		inode->dirtied_when = jiffies;
1294 
1295 	if (wbc->pages_skipped) {
1296 		/*
1297 		 * writeback is not making progress due to locked
1298 		 * buffers. Skip this inode for now.
1299 		 */
1300 		redirty_tail(inode, wb);
1301 		return;
1302 	}
1303 
1304 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1305 		/*
1306 		 * We didn't write back all the pages.  nfs_writepages()
1307 		 * sometimes bales out without doing anything.
1308 		 */
1309 		if (wbc->nr_to_write <= 0) {
1310 			/* Slice used up. Queue for next turn. */
1311 			requeue_io(inode, wb);
1312 		} else {
1313 			/*
1314 			 * Writeback blocked by something other than
1315 			 * congestion. Delay the inode for some time to
1316 			 * avoid spinning on the CPU (100% iowait)
1317 			 * retrying writeback of the dirty page/inode
1318 			 * that cannot be performed immediately.
1319 			 */
1320 			redirty_tail(inode, wb);
1321 		}
1322 	} else if (inode->i_state & I_DIRTY) {
1323 		/*
1324 		 * Filesystems can dirty the inode during writeback operations,
1325 		 * such as delayed allocation during submission or metadata
1326 		 * updates after data IO completion.
1327 		 */
1328 		redirty_tail(inode, wb);
1329 	} else if (inode->i_state & I_DIRTY_TIME) {
1330 		inode->dirtied_when = jiffies;
1331 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1332 	} else {
1333 		/* The inode is clean. Remove from writeback lists. */
1334 		inode_io_list_del_locked(inode, wb);
1335 	}
1336 }
1337 
1338 /*
1339  * Write out an inode and its dirty pages. Do not update the writeback list
1340  * linkage. That is left to the caller. The caller is also responsible for
1341  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1342  */
1343 static int
1344 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1345 {
1346 	struct address_space *mapping = inode->i_mapping;
1347 	long nr_to_write = wbc->nr_to_write;
1348 	unsigned dirty;
1349 	int ret;
1350 
1351 	WARN_ON(!(inode->i_state & I_SYNC));
1352 
1353 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1354 
1355 	ret = do_writepages(mapping, wbc);
1356 
1357 	/*
1358 	 * Make sure to wait on the data before writing out the metadata.
1359 	 * This is important for filesystems that modify metadata on data
1360 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1361 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1362 	 * inode metadata is written back correctly.
1363 	 */
1364 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1365 		int err = filemap_fdatawait(mapping);
1366 		if (ret == 0)
1367 			ret = err;
1368 	}
1369 
1370 	/*
1371 	 * Some filesystems may redirty the inode during the writeback
1372 	 * due to delalloc, clear dirty metadata flags right before
1373 	 * write_inode()
1374 	 */
1375 	spin_lock(&inode->i_lock);
1376 
1377 	dirty = inode->i_state & I_DIRTY;
1378 	if (inode->i_state & I_DIRTY_TIME) {
1379 		if ((dirty & I_DIRTY_INODE) ||
1380 		    wbc->sync_mode == WB_SYNC_ALL ||
1381 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1382 		    unlikely(time_after(jiffies,
1383 					(inode->dirtied_time_when +
1384 					 dirtytime_expire_interval * HZ)))) {
1385 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1386 			trace_writeback_lazytime(inode);
1387 		}
1388 	} else
1389 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1390 	inode->i_state &= ~dirty;
1391 
1392 	/*
1393 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1394 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1395 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1396 	 * inode.
1397 	 *
1398 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1399 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1400 	 * necessary.  This guarantees that either __mark_inode_dirty()
1401 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1402 	 */
1403 	smp_mb();
1404 
1405 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1406 		inode->i_state |= I_DIRTY_PAGES;
1407 
1408 	spin_unlock(&inode->i_lock);
1409 
1410 	if (dirty & I_DIRTY_TIME)
1411 		mark_inode_dirty_sync(inode);
1412 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1413 	if (dirty & ~I_DIRTY_PAGES) {
1414 		int err = write_inode(inode, wbc);
1415 		if (ret == 0)
1416 			ret = err;
1417 	}
1418 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1419 	return ret;
1420 }
1421 
1422 /*
1423  * Write out an inode's dirty pages. Either the caller has an active reference
1424  * on the inode or the inode has I_WILL_FREE set.
1425  *
1426  * This function is designed to be called for writing back one inode which
1427  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1428  * and does more profound writeback list handling in writeback_sb_inodes().
1429  */
1430 static int writeback_single_inode(struct inode *inode,
1431 				  struct writeback_control *wbc)
1432 {
1433 	struct bdi_writeback *wb;
1434 	int ret = 0;
1435 
1436 	spin_lock(&inode->i_lock);
1437 	if (!atomic_read(&inode->i_count))
1438 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1439 	else
1440 		WARN_ON(inode->i_state & I_WILL_FREE);
1441 
1442 	if (inode->i_state & I_SYNC) {
1443 		if (wbc->sync_mode != WB_SYNC_ALL)
1444 			goto out;
1445 		/*
1446 		 * It's a data-integrity sync. We must wait. Since callers hold
1447 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1448 		 * away under us.
1449 		 */
1450 		__inode_wait_for_writeback(inode);
1451 	}
1452 	WARN_ON(inode->i_state & I_SYNC);
1453 	/*
1454 	 * Skip inode if it is clean and we have no outstanding writeback in
1455 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1456 	 * function since flusher thread may be doing for example sync in
1457 	 * parallel and if we move the inode, it could get skipped. So here we
1458 	 * make sure inode is on some writeback list and leave it there unless
1459 	 * we have completely cleaned the inode.
1460 	 */
1461 	if (!(inode->i_state & I_DIRTY_ALL) &&
1462 	    (wbc->sync_mode != WB_SYNC_ALL ||
1463 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1464 		goto out;
1465 	inode->i_state |= I_SYNC;
1466 	wbc_attach_and_unlock_inode(wbc, inode);
1467 
1468 	ret = __writeback_single_inode(inode, wbc);
1469 
1470 	wbc_detach_inode(wbc);
1471 
1472 	wb = inode_to_wb_and_lock_list(inode);
1473 	spin_lock(&inode->i_lock);
1474 	/*
1475 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1476 	 * touch it. See comment above for explanation.
1477 	 */
1478 	if (!(inode->i_state & I_DIRTY_ALL))
1479 		inode_io_list_del_locked(inode, wb);
1480 	spin_unlock(&wb->list_lock);
1481 	inode_sync_complete(inode);
1482 out:
1483 	spin_unlock(&inode->i_lock);
1484 	return ret;
1485 }
1486 
1487 static long writeback_chunk_size(struct bdi_writeback *wb,
1488 				 struct wb_writeback_work *work)
1489 {
1490 	long pages;
1491 
1492 	/*
1493 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1494 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1495 	 * here avoids calling into writeback_inodes_wb() more than once.
1496 	 *
1497 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1498 	 *
1499 	 *      wb_writeback()
1500 	 *          writeback_sb_inodes()       <== called only once
1501 	 *              write_cache_pages()     <== called once for each inode
1502 	 *                   (quickly) tag currently dirty pages
1503 	 *                   (maybe slowly) sync all tagged pages
1504 	 */
1505 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1506 		pages = LONG_MAX;
1507 	else {
1508 		pages = min(wb->avg_write_bandwidth / 2,
1509 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1510 		pages = min(pages, work->nr_pages);
1511 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1512 				   MIN_WRITEBACK_PAGES);
1513 	}
1514 
1515 	return pages;
1516 }
1517 
1518 /*
1519  * Write a portion of b_io inodes which belong to @sb.
1520  *
1521  * Return the number of pages and/or inodes written.
1522  *
1523  * NOTE! This is called with wb->list_lock held, and will
1524  * unlock and relock that for each inode it ends up doing
1525  * IO for.
1526  */
1527 static long writeback_sb_inodes(struct super_block *sb,
1528 				struct bdi_writeback *wb,
1529 				struct wb_writeback_work *work)
1530 {
1531 	struct writeback_control wbc = {
1532 		.sync_mode		= work->sync_mode,
1533 		.tagged_writepages	= work->tagged_writepages,
1534 		.for_kupdate		= work->for_kupdate,
1535 		.for_background		= work->for_background,
1536 		.for_sync		= work->for_sync,
1537 		.range_cyclic		= work->range_cyclic,
1538 		.range_start		= 0,
1539 		.range_end		= LLONG_MAX,
1540 	};
1541 	unsigned long start_time = jiffies;
1542 	long write_chunk;
1543 	long wrote = 0;  /* count both pages and inodes */
1544 
1545 	while (!list_empty(&wb->b_io)) {
1546 		struct inode *inode = wb_inode(wb->b_io.prev);
1547 		struct bdi_writeback *tmp_wb;
1548 
1549 		if (inode->i_sb != sb) {
1550 			if (work->sb) {
1551 				/*
1552 				 * We only want to write back data for this
1553 				 * superblock, move all inodes not belonging
1554 				 * to it back onto the dirty list.
1555 				 */
1556 				redirty_tail(inode, wb);
1557 				continue;
1558 			}
1559 
1560 			/*
1561 			 * The inode belongs to a different superblock.
1562 			 * Bounce back to the caller to unpin this and
1563 			 * pin the next superblock.
1564 			 */
1565 			break;
1566 		}
1567 
1568 		/*
1569 		 * Don't bother with new inodes or inodes being freed, first
1570 		 * kind does not need periodic writeout yet, and for the latter
1571 		 * kind writeout is handled by the freer.
1572 		 */
1573 		spin_lock(&inode->i_lock);
1574 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1575 			spin_unlock(&inode->i_lock);
1576 			redirty_tail(inode, wb);
1577 			continue;
1578 		}
1579 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1580 			/*
1581 			 * If this inode is locked for writeback and we are not
1582 			 * doing writeback-for-data-integrity, move it to
1583 			 * b_more_io so that writeback can proceed with the
1584 			 * other inodes on s_io.
1585 			 *
1586 			 * We'll have another go at writing back this inode
1587 			 * when we completed a full scan of b_io.
1588 			 */
1589 			spin_unlock(&inode->i_lock);
1590 			requeue_io(inode, wb);
1591 			trace_writeback_sb_inodes_requeue(inode);
1592 			continue;
1593 		}
1594 		spin_unlock(&wb->list_lock);
1595 
1596 		/*
1597 		 * We already requeued the inode if it had I_SYNC set and we
1598 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1599 		 * WB_SYNC_ALL case.
1600 		 */
1601 		if (inode->i_state & I_SYNC) {
1602 			/* Wait for I_SYNC. This function drops i_lock... */
1603 			inode_sleep_on_writeback(inode);
1604 			/* Inode may be gone, start again */
1605 			spin_lock(&wb->list_lock);
1606 			continue;
1607 		}
1608 		inode->i_state |= I_SYNC;
1609 		wbc_attach_and_unlock_inode(&wbc, inode);
1610 
1611 		write_chunk = writeback_chunk_size(wb, work);
1612 		wbc.nr_to_write = write_chunk;
1613 		wbc.pages_skipped = 0;
1614 
1615 		/*
1616 		 * We use I_SYNC to pin the inode in memory. While it is set
1617 		 * evict_inode() will wait so the inode cannot be freed.
1618 		 */
1619 		__writeback_single_inode(inode, &wbc);
1620 
1621 		wbc_detach_inode(&wbc);
1622 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1623 		wrote += write_chunk - wbc.nr_to_write;
1624 
1625 		if (need_resched()) {
1626 			/*
1627 			 * We're trying to balance between building up a nice
1628 			 * long list of IOs to improve our merge rate, and
1629 			 * getting those IOs out quickly for anyone throttling
1630 			 * in balance_dirty_pages().  cond_resched() doesn't
1631 			 * unplug, so get our IOs out the door before we
1632 			 * give up the CPU.
1633 			 */
1634 			blk_flush_plug(current);
1635 			cond_resched();
1636 		}
1637 
1638 		/*
1639 		 * Requeue @inode if still dirty.  Be careful as @inode may
1640 		 * have been switched to another wb in the meantime.
1641 		 */
1642 		tmp_wb = inode_to_wb_and_lock_list(inode);
1643 		spin_lock(&inode->i_lock);
1644 		if (!(inode->i_state & I_DIRTY_ALL))
1645 			wrote++;
1646 		requeue_inode(inode, tmp_wb, &wbc);
1647 		inode_sync_complete(inode);
1648 		spin_unlock(&inode->i_lock);
1649 
1650 		if (unlikely(tmp_wb != wb)) {
1651 			spin_unlock(&tmp_wb->list_lock);
1652 			spin_lock(&wb->list_lock);
1653 		}
1654 
1655 		/*
1656 		 * bail out to wb_writeback() often enough to check
1657 		 * background threshold and other termination conditions.
1658 		 */
1659 		if (wrote) {
1660 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1661 				break;
1662 			if (work->nr_pages <= 0)
1663 				break;
1664 		}
1665 	}
1666 	return wrote;
1667 }
1668 
1669 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1670 				  struct wb_writeback_work *work)
1671 {
1672 	unsigned long start_time = jiffies;
1673 	long wrote = 0;
1674 
1675 	while (!list_empty(&wb->b_io)) {
1676 		struct inode *inode = wb_inode(wb->b_io.prev);
1677 		struct super_block *sb = inode->i_sb;
1678 
1679 		if (!trylock_super(sb)) {
1680 			/*
1681 			 * trylock_super() may fail consistently due to
1682 			 * s_umount being grabbed by someone else. Don't use
1683 			 * requeue_io() to avoid busy retrying the inode/sb.
1684 			 */
1685 			redirty_tail(inode, wb);
1686 			continue;
1687 		}
1688 		wrote += writeback_sb_inodes(sb, wb, work);
1689 		up_read(&sb->s_umount);
1690 
1691 		/* refer to the same tests at the end of writeback_sb_inodes */
1692 		if (wrote) {
1693 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1694 				break;
1695 			if (work->nr_pages <= 0)
1696 				break;
1697 		}
1698 	}
1699 	/* Leave any unwritten inodes on b_io */
1700 	return wrote;
1701 }
1702 
1703 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1704 				enum wb_reason reason)
1705 {
1706 	struct wb_writeback_work work = {
1707 		.nr_pages	= nr_pages,
1708 		.sync_mode	= WB_SYNC_NONE,
1709 		.range_cyclic	= 1,
1710 		.reason		= reason,
1711 	};
1712 	struct blk_plug plug;
1713 
1714 	blk_start_plug(&plug);
1715 	spin_lock(&wb->list_lock);
1716 	if (list_empty(&wb->b_io))
1717 		queue_io(wb, &work);
1718 	__writeback_inodes_wb(wb, &work);
1719 	spin_unlock(&wb->list_lock);
1720 	blk_finish_plug(&plug);
1721 
1722 	return nr_pages - work.nr_pages;
1723 }
1724 
1725 /*
1726  * Explicit flushing or periodic writeback of "old" data.
1727  *
1728  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1729  * dirtying-time in the inode's address_space.  So this periodic writeback code
1730  * just walks the superblock inode list, writing back any inodes which are
1731  * older than a specific point in time.
1732  *
1733  * Try to run once per dirty_writeback_interval.  But if a writeback event
1734  * takes longer than a dirty_writeback_interval interval, then leave a
1735  * one-second gap.
1736  *
1737  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1738  * all dirty pages if they are all attached to "old" mappings.
1739  */
1740 static long wb_writeback(struct bdi_writeback *wb,
1741 			 struct wb_writeback_work *work)
1742 {
1743 	unsigned long wb_start = jiffies;
1744 	long nr_pages = work->nr_pages;
1745 	unsigned long oldest_jif;
1746 	struct inode *inode;
1747 	long progress;
1748 	struct blk_plug plug;
1749 
1750 	oldest_jif = jiffies;
1751 	work->older_than_this = &oldest_jif;
1752 
1753 	blk_start_plug(&plug);
1754 	spin_lock(&wb->list_lock);
1755 	for (;;) {
1756 		/*
1757 		 * Stop writeback when nr_pages has been consumed
1758 		 */
1759 		if (work->nr_pages <= 0)
1760 			break;
1761 
1762 		/*
1763 		 * Background writeout and kupdate-style writeback may
1764 		 * run forever. Stop them if there is other work to do
1765 		 * so that e.g. sync can proceed. They'll be restarted
1766 		 * after the other works are all done.
1767 		 */
1768 		if ((work->for_background || work->for_kupdate) &&
1769 		    !list_empty(&wb->work_list))
1770 			break;
1771 
1772 		/*
1773 		 * For background writeout, stop when we are below the
1774 		 * background dirty threshold
1775 		 */
1776 		if (work->for_background && !wb_over_bg_thresh(wb))
1777 			break;
1778 
1779 		/*
1780 		 * Kupdate and background works are special and we want to
1781 		 * include all inodes that need writing. Livelock avoidance is
1782 		 * handled by these works yielding to any other work so we are
1783 		 * safe.
1784 		 */
1785 		if (work->for_kupdate) {
1786 			oldest_jif = jiffies -
1787 				msecs_to_jiffies(dirty_expire_interval * 10);
1788 		} else if (work->for_background)
1789 			oldest_jif = jiffies;
1790 
1791 		trace_writeback_start(wb, work);
1792 		if (list_empty(&wb->b_io))
1793 			queue_io(wb, work);
1794 		if (work->sb)
1795 			progress = writeback_sb_inodes(work->sb, wb, work);
1796 		else
1797 			progress = __writeback_inodes_wb(wb, work);
1798 		trace_writeback_written(wb, work);
1799 
1800 		wb_update_bandwidth(wb, wb_start);
1801 
1802 		/*
1803 		 * Did we write something? Try for more
1804 		 *
1805 		 * Dirty inodes are moved to b_io for writeback in batches.
1806 		 * The completion of the current batch does not necessarily
1807 		 * mean the overall work is done. So we keep looping as long
1808 		 * as made some progress on cleaning pages or inodes.
1809 		 */
1810 		if (progress)
1811 			continue;
1812 		/*
1813 		 * No more inodes for IO, bail
1814 		 */
1815 		if (list_empty(&wb->b_more_io))
1816 			break;
1817 		/*
1818 		 * Nothing written. Wait for some inode to
1819 		 * become available for writeback. Otherwise
1820 		 * we'll just busyloop.
1821 		 */
1822 		trace_writeback_wait(wb, work);
1823 		inode = wb_inode(wb->b_more_io.prev);
1824 		spin_lock(&inode->i_lock);
1825 		spin_unlock(&wb->list_lock);
1826 		/* This function drops i_lock... */
1827 		inode_sleep_on_writeback(inode);
1828 		spin_lock(&wb->list_lock);
1829 	}
1830 	spin_unlock(&wb->list_lock);
1831 	blk_finish_plug(&plug);
1832 
1833 	return nr_pages - work->nr_pages;
1834 }
1835 
1836 /*
1837  * Return the next wb_writeback_work struct that hasn't been processed yet.
1838  */
1839 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1840 {
1841 	struct wb_writeback_work *work = NULL;
1842 
1843 	spin_lock_bh(&wb->work_lock);
1844 	if (!list_empty(&wb->work_list)) {
1845 		work = list_entry(wb->work_list.next,
1846 				  struct wb_writeback_work, list);
1847 		list_del_init(&work->list);
1848 	}
1849 	spin_unlock_bh(&wb->work_lock);
1850 	return work;
1851 }
1852 
1853 static long wb_check_background_flush(struct bdi_writeback *wb)
1854 {
1855 	if (wb_over_bg_thresh(wb)) {
1856 
1857 		struct wb_writeback_work work = {
1858 			.nr_pages	= LONG_MAX,
1859 			.sync_mode	= WB_SYNC_NONE,
1860 			.for_background	= 1,
1861 			.range_cyclic	= 1,
1862 			.reason		= WB_REASON_BACKGROUND,
1863 		};
1864 
1865 		return wb_writeback(wb, &work);
1866 	}
1867 
1868 	return 0;
1869 }
1870 
1871 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1872 {
1873 	unsigned long expired;
1874 	long nr_pages;
1875 
1876 	/*
1877 	 * When set to zero, disable periodic writeback
1878 	 */
1879 	if (!dirty_writeback_interval)
1880 		return 0;
1881 
1882 	expired = wb->last_old_flush +
1883 			msecs_to_jiffies(dirty_writeback_interval * 10);
1884 	if (time_before(jiffies, expired))
1885 		return 0;
1886 
1887 	wb->last_old_flush = jiffies;
1888 	nr_pages = get_nr_dirty_pages();
1889 
1890 	if (nr_pages) {
1891 		struct wb_writeback_work work = {
1892 			.nr_pages	= nr_pages,
1893 			.sync_mode	= WB_SYNC_NONE,
1894 			.for_kupdate	= 1,
1895 			.range_cyclic	= 1,
1896 			.reason		= WB_REASON_PERIODIC,
1897 		};
1898 
1899 		return wb_writeback(wb, &work);
1900 	}
1901 
1902 	return 0;
1903 }
1904 
1905 static long wb_check_start_all(struct bdi_writeback *wb)
1906 {
1907 	long nr_pages;
1908 
1909 	if (!test_bit(WB_start_all, &wb->state))
1910 		return 0;
1911 
1912 	nr_pages = get_nr_dirty_pages();
1913 	if (nr_pages) {
1914 		struct wb_writeback_work work = {
1915 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1916 			.sync_mode	= WB_SYNC_NONE,
1917 			.range_cyclic	= 1,
1918 			.reason		= wb->start_all_reason,
1919 		};
1920 
1921 		nr_pages = wb_writeback(wb, &work);
1922 	}
1923 
1924 	clear_bit(WB_start_all, &wb->state);
1925 	return nr_pages;
1926 }
1927 
1928 
1929 /*
1930  * Retrieve work items and do the writeback they describe
1931  */
1932 static long wb_do_writeback(struct bdi_writeback *wb)
1933 {
1934 	struct wb_writeback_work *work;
1935 	long wrote = 0;
1936 
1937 	set_bit(WB_writeback_running, &wb->state);
1938 	while ((work = get_next_work_item(wb)) != NULL) {
1939 		trace_writeback_exec(wb, work);
1940 		wrote += wb_writeback(wb, work);
1941 		finish_writeback_work(wb, work);
1942 	}
1943 
1944 	/*
1945 	 * Check for a flush-everything request
1946 	 */
1947 	wrote += wb_check_start_all(wb);
1948 
1949 	/*
1950 	 * Check for periodic writeback, kupdated() style
1951 	 */
1952 	wrote += wb_check_old_data_flush(wb);
1953 	wrote += wb_check_background_flush(wb);
1954 	clear_bit(WB_writeback_running, &wb->state);
1955 
1956 	return wrote;
1957 }
1958 
1959 /*
1960  * Handle writeback of dirty data for the device backed by this bdi. Also
1961  * reschedules periodically and does kupdated style flushing.
1962  */
1963 void wb_workfn(struct work_struct *work)
1964 {
1965 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1966 						struct bdi_writeback, dwork);
1967 	long pages_written;
1968 
1969 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1970 	current->flags |= PF_SWAPWRITE;
1971 
1972 	if (likely(!current_is_workqueue_rescuer() ||
1973 		   !test_bit(WB_registered, &wb->state))) {
1974 		/*
1975 		 * The normal path.  Keep writing back @wb until its
1976 		 * work_list is empty.  Note that this path is also taken
1977 		 * if @wb is shutting down even when we're running off the
1978 		 * rescuer as work_list needs to be drained.
1979 		 */
1980 		do {
1981 			pages_written = wb_do_writeback(wb);
1982 			trace_writeback_pages_written(pages_written);
1983 		} while (!list_empty(&wb->work_list));
1984 	} else {
1985 		/*
1986 		 * bdi_wq can't get enough workers and we're running off
1987 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1988 		 * enough for efficient IO.
1989 		 */
1990 		pages_written = writeback_inodes_wb(wb, 1024,
1991 						    WB_REASON_FORKER_THREAD);
1992 		trace_writeback_pages_written(pages_written);
1993 	}
1994 
1995 	if (!list_empty(&wb->work_list))
1996 		wb_wakeup(wb);
1997 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1998 		wb_wakeup_delayed(wb);
1999 
2000 	current->flags &= ~PF_SWAPWRITE;
2001 }
2002 
2003 /*
2004  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2005  * write back the whole world.
2006  */
2007 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2008 					 enum wb_reason reason)
2009 {
2010 	struct bdi_writeback *wb;
2011 
2012 	if (!bdi_has_dirty_io(bdi))
2013 		return;
2014 
2015 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2016 		wb_start_writeback(wb, reason);
2017 }
2018 
2019 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2020 				enum wb_reason reason)
2021 {
2022 	rcu_read_lock();
2023 	__wakeup_flusher_threads_bdi(bdi, reason);
2024 	rcu_read_unlock();
2025 }
2026 
2027 /*
2028  * Wakeup the flusher threads to start writeback of all currently dirty pages
2029  */
2030 void wakeup_flusher_threads(enum wb_reason reason)
2031 {
2032 	struct backing_dev_info *bdi;
2033 
2034 	/*
2035 	 * If we are expecting writeback progress we must submit plugged IO.
2036 	 */
2037 	if (blk_needs_flush_plug(current))
2038 		blk_schedule_flush_plug(current);
2039 
2040 	rcu_read_lock();
2041 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2042 		__wakeup_flusher_threads_bdi(bdi, reason);
2043 	rcu_read_unlock();
2044 }
2045 
2046 /*
2047  * Wake up bdi's periodically to make sure dirtytime inodes gets
2048  * written back periodically.  We deliberately do *not* check the
2049  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2050  * kernel to be constantly waking up once there are any dirtytime
2051  * inodes on the system.  So instead we define a separate delayed work
2052  * function which gets called much more rarely.  (By default, only
2053  * once every 12 hours.)
2054  *
2055  * If there is any other write activity going on in the file system,
2056  * this function won't be necessary.  But if the only thing that has
2057  * happened on the file system is a dirtytime inode caused by an atime
2058  * update, we need this infrastructure below to make sure that inode
2059  * eventually gets pushed out to disk.
2060  */
2061 static void wakeup_dirtytime_writeback(struct work_struct *w);
2062 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2063 
2064 static void wakeup_dirtytime_writeback(struct work_struct *w)
2065 {
2066 	struct backing_dev_info *bdi;
2067 
2068 	rcu_read_lock();
2069 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2070 		struct bdi_writeback *wb;
2071 
2072 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2073 			if (!list_empty(&wb->b_dirty_time))
2074 				wb_wakeup(wb);
2075 	}
2076 	rcu_read_unlock();
2077 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2078 }
2079 
2080 static int __init start_dirtytime_writeback(void)
2081 {
2082 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2083 	return 0;
2084 }
2085 __initcall(start_dirtytime_writeback);
2086 
2087 int dirtytime_interval_handler(struct ctl_table *table, int write,
2088 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2089 {
2090 	int ret;
2091 
2092 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2093 	if (ret == 0 && write)
2094 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2095 	return ret;
2096 }
2097 
2098 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2099 {
2100 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2101 		struct dentry *dentry;
2102 		const char *name = "?";
2103 
2104 		dentry = d_find_alias(inode);
2105 		if (dentry) {
2106 			spin_lock(&dentry->d_lock);
2107 			name = (const char *) dentry->d_name.name;
2108 		}
2109 		printk(KERN_DEBUG
2110 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2111 		       current->comm, task_pid_nr(current), inode->i_ino,
2112 		       name, inode->i_sb->s_id);
2113 		if (dentry) {
2114 			spin_unlock(&dentry->d_lock);
2115 			dput(dentry);
2116 		}
2117 	}
2118 }
2119 
2120 /**
2121  * __mark_inode_dirty -	internal function
2122  *
2123  * @inode: inode to mark
2124  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2125  *
2126  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2127  * mark_inode_dirty_sync.
2128  *
2129  * Put the inode on the super block's dirty list.
2130  *
2131  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2132  * dirty list only if it is hashed or if it refers to a blockdev.
2133  * If it was not hashed, it will never be added to the dirty list
2134  * even if it is later hashed, as it will have been marked dirty already.
2135  *
2136  * In short, make sure you hash any inodes _before_ you start marking
2137  * them dirty.
2138  *
2139  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2140  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2141  * the kernel-internal blockdev inode represents the dirtying time of the
2142  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2143  * page->mapping->host, so the page-dirtying time is recorded in the internal
2144  * blockdev inode.
2145  */
2146 void __mark_inode_dirty(struct inode *inode, int flags)
2147 {
2148 	struct super_block *sb = inode->i_sb;
2149 	int dirtytime;
2150 
2151 	trace_writeback_mark_inode_dirty(inode, flags);
2152 
2153 	/*
2154 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2155 	 * dirty the inode itself
2156 	 */
2157 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2158 		trace_writeback_dirty_inode_start(inode, flags);
2159 
2160 		if (sb->s_op->dirty_inode)
2161 			sb->s_op->dirty_inode(inode, flags);
2162 
2163 		trace_writeback_dirty_inode(inode, flags);
2164 	}
2165 	if (flags & I_DIRTY_INODE)
2166 		flags &= ~I_DIRTY_TIME;
2167 	dirtytime = flags & I_DIRTY_TIME;
2168 
2169 	/*
2170 	 * Paired with smp_mb() in __writeback_single_inode() for the
2171 	 * following lockless i_state test.  See there for details.
2172 	 */
2173 	smp_mb();
2174 
2175 	if (((inode->i_state & flags) == flags) ||
2176 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2177 		return;
2178 
2179 	if (unlikely(block_dump))
2180 		block_dump___mark_inode_dirty(inode);
2181 
2182 	spin_lock(&inode->i_lock);
2183 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2184 		goto out_unlock_inode;
2185 	if ((inode->i_state & flags) != flags) {
2186 		const int was_dirty = inode->i_state & I_DIRTY;
2187 
2188 		inode_attach_wb(inode, NULL);
2189 
2190 		if (flags & I_DIRTY_INODE)
2191 			inode->i_state &= ~I_DIRTY_TIME;
2192 		inode->i_state |= flags;
2193 
2194 		/*
2195 		 * If the inode is being synced, just update its dirty state.
2196 		 * The unlocker will place the inode on the appropriate
2197 		 * superblock list, based upon its state.
2198 		 */
2199 		if (inode->i_state & I_SYNC)
2200 			goto out_unlock_inode;
2201 
2202 		/*
2203 		 * Only add valid (hashed) inodes to the superblock's
2204 		 * dirty list.  Add blockdev inodes as well.
2205 		 */
2206 		if (!S_ISBLK(inode->i_mode)) {
2207 			if (inode_unhashed(inode))
2208 				goto out_unlock_inode;
2209 		}
2210 		if (inode->i_state & I_FREEING)
2211 			goto out_unlock_inode;
2212 
2213 		/*
2214 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2215 		 * reposition it (that would break b_dirty time-ordering).
2216 		 */
2217 		if (!was_dirty) {
2218 			struct bdi_writeback *wb;
2219 			struct list_head *dirty_list;
2220 			bool wakeup_bdi = false;
2221 
2222 			wb = locked_inode_to_wb_and_lock_list(inode);
2223 
2224 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2225 			     !test_bit(WB_registered, &wb->state),
2226 			     "bdi-%s not registered\n", wb->bdi->name);
2227 
2228 			inode->dirtied_when = jiffies;
2229 			if (dirtytime)
2230 				inode->dirtied_time_when = jiffies;
2231 
2232 			if (inode->i_state & I_DIRTY)
2233 				dirty_list = &wb->b_dirty;
2234 			else
2235 				dirty_list = &wb->b_dirty_time;
2236 
2237 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2238 							       dirty_list);
2239 
2240 			spin_unlock(&wb->list_lock);
2241 			trace_writeback_dirty_inode_enqueue(inode);
2242 
2243 			/*
2244 			 * If this is the first dirty inode for this bdi,
2245 			 * we have to wake-up the corresponding bdi thread
2246 			 * to make sure background write-back happens
2247 			 * later.
2248 			 */
2249 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2250 				wb_wakeup_delayed(wb);
2251 			return;
2252 		}
2253 	}
2254 out_unlock_inode:
2255 	spin_unlock(&inode->i_lock);
2256 }
2257 EXPORT_SYMBOL(__mark_inode_dirty);
2258 
2259 /*
2260  * The @s_sync_lock is used to serialise concurrent sync operations
2261  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2262  * Concurrent callers will block on the s_sync_lock rather than doing contending
2263  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2264  * has been issued up to the time this function is enter is guaranteed to be
2265  * completed by the time we have gained the lock and waited for all IO that is
2266  * in progress regardless of the order callers are granted the lock.
2267  */
2268 static void wait_sb_inodes(struct super_block *sb)
2269 {
2270 	LIST_HEAD(sync_list);
2271 
2272 	/*
2273 	 * We need to be protected against the filesystem going from
2274 	 * r/o to r/w or vice versa.
2275 	 */
2276 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2277 
2278 	mutex_lock(&sb->s_sync_lock);
2279 
2280 	/*
2281 	 * Splice the writeback list onto a temporary list to avoid waiting on
2282 	 * inodes that have started writeback after this point.
2283 	 *
2284 	 * Use rcu_read_lock() to keep the inodes around until we have a
2285 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2286 	 * the local list because inodes can be dropped from either by writeback
2287 	 * completion.
2288 	 */
2289 	rcu_read_lock();
2290 	spin_lock_irq(&sb->s_inode_wblist_lock);
2291 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2292 
2293 	/*
2294 	 * Data integrity sync. Must wait for all pages under writeback, because
2295 	 * there may have been pages dirtied before our sync call, but which had
2296 	 * writeout started before we write it out.  In which case, the inode
2297 	 * may not be on the dirty list, but we still have to wait for that
2298 	 * writeout.
2299 	 */
2300 	while (!list_empty(&sync_list)) {
2301 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2302 						       i_wb_list);
2303 		struct address_space *mapping = inode->i_mapping;
2304 
2305 		/*
2306 		 * Move each inode back to the wb list before we drop the lock
2307 		 * to preserve consistency between i_wb_list and the mapping
2308 		 * writeback tag. Writeback completion is responsible to remove
2309 		 * the inode from either list once the writeback tag is cleared.
2310 		 */
2311 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2312 
2313 		/*
2314 		 * The mapping can appear untagged while still on-list since we
2315 		 * do not have the mapping lock. Skip it here, wb completion
2316 		 * will remove it.
2317 		 */
2318 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2319 			continue;
2320 
2321 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2322 
2323 		spin_lock(&inode->i_lock);
2324 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2325 			spin_unlock(&inode->i_lock);
2326 
2327 			spin_lock_irq(&sb->s_inode_wblist_lock);
2328 			continue;
2329 		}
2330 		__iget(inode);
2331 		spin_unlock(&inode->i_lock);
2332 		rcu_read_unlock();
2333 
2334 		/*
2335 		 * We keep the error status of individual mapping so that
2336 		 * applications can catch the writeback error using fsync(2).
2337 		 * See filemap_fdatawait_keep_errors() for details.
2338 		 */
2339 		filemap_fdatawait_keep_errors(mapping);
2340 
2341 		cond_resched();
2342 
2343 		iput(inode);
2344 
2345 		rcu_read_lock();
2346 		spin_lock_irq(&sb->s_inode_wblist_lock);
2347 	}
2348 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2349 	rcu_read_unlock();
2350 	mutex_unlock(&sb->s_sync_lock);
2351 }
2352 
2353 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2354 				     enum wb_reason reason, bool skip_if_busy)
2355 {
2356 	DEFINE_WB_COMPLETION_ONSTACK(done);
2357 	struct wb_writeback_work work = {
2358 		.sb			= sb,
2359 		.sync_mode		= WB_SYNC_NONE,
2360 		.tagged_writepages	= 1,
2361 		.done			= &done,
2362 		.nr_pages		= nr,
2363 		.reason			= reason,
2364 	};
2365 	struct backing_dev_info *bdi = sb->s_bdi;
2366 
2367 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2368 		return;
2369 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2370 
2371 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2372 	wb_wait_for_completion(bdi, &done);
2373 }
2374 
2375 /**
2376  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2377  * @sb: the superblock
2378  * @nr: the number of pages to write
2379  * @reason: reason why some writeback work initiated
2380  *
2381  * Start writeback on some inodes on this super_block. No guarantees are made
2382  * on how many (if any) will be written, and this function does not wait
2383  * for IO completion of submitted IO.
2384  */
2385 void writeback_inodes_sb_nr(struct super_block *sb,
2386 			    unsigned long nr,
2387 			    enum wb_reason reason)
2388 {
2389 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2390 }
2391 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2392 
2393 /**
2394  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2395  * @sb: the superblock
2396  * @reason: reason why some writeback work was initiated
2397  *
2398  * Start writeback on some inodes on this super_block. No guarantees are made
2399  * on how many (if any) will be written, and this function does not wait
2400  * for IO completion of submitted IO.
2401  */
2402 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2403 {
2404 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2405 }
2406 EXPORT_SYMBOL(writeback_inodes_sb);
2407 
2408 /**
2409  * try_to_writeback_inodes_sb - try to start writeback if none underway
2410  * @sb: the superblock
2411  * @reason: reason why some writeback work was initiated
2412  *
2413  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2414  */
2415 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2416 {
2417 	if (!down_read_trylock(&sb->s_umount))
2418 		return;
2419 
2420 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2421 	up_read(&sb->s_umount);
2422 }
2423 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2424 
2425 /**
2426  * sync_inodes_sb	-	sync sb inode pages
2427  * @sb: the superblock
2428  *
2429  * This function writes and waits on any dirty inode belonging to this
2430  * super_block.
2431  */
2432 void sync_inodes_sb(struct super_block *sb)
2433 {
2434 	DEFINE_WB_COMPLETION_ONSTACK(done);
2435 	struct wb_writeback_work work = {
2436 		.sb		= sb,
2437 		.sync_mode	= WB_SYNC_ALL,
2438 		.nr_pages	= LONG_MAX,
2439 		.range_cyclic	= 0,
2440 		.done		= &done,
2441 		.reason		= WB_REASON_SYNC,
2442 		.for_sync	= 1,
2443 	};
2444 	struct backing_dev_info *bdi = sb->s_bdi;
2445 
2446 	/*
2447 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2448 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2449 	 * bdi_has_dirty() need to be written out too.
2450 	 */
2451 	if (bdi == &noop_backing_dev_info)
2452 		return;
2453 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2454 
2455 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2456 	bdi_down_write_wb_switch_rwsem(bdi);
2457 	bdi_split_work_to_wbs(bdi, &work, false);
2458 	wb_wait_for_completion(bdi, &done);
2459 	bdi_up_write_wb_switch_rwsem(bdi);
2460 
2461 	wait_sb_inodes(sb);
2462 }
2463 EXPORT_SYMBOL(sync_inodes_sb);
2464 
2465 /**
2466  * write_inode_now	-	write an inode to disk
2467  * @inode: inode to write to disk
2468  * @sync: whether the write should be synchronous or not
2469  *
2470  * This function commits an inode to disk immediately if it is dirty. This is
2471  * primarily needed by knfsd.
2472  *
2473  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2474  */
2475 int write_inode_now(struct inode *inode, int sync)
2476 {
2477 	struct writeback_control wbc = {
2478 		.nr_to_write = LONG_MAX,
2479 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2480 		.range_start = 0,
2481 		.range_end = LLONG_MAX,
2482 	};
2483 
2484 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2485 		wbc.nr_to_write = 0;
2486 
2487 	might_sleep();
2488 	return writeback_single_inode(inode, &wbc);
2489 }
2490 EXPORT_SYMBOL(write_inode_now);
2491 
2492 /**
2493  * sync_inode - write an inode and its pages to disk.
2494  * @inode: the inode to sync
2495  * @wbc: controls the writeback mode
2496  *
2497  * sync_inode() will write an inode and its pages to disk.  It will also
2498  * correctly update the inode on its superblock's dirty inode lists and will
2499  * update inode->i_state.
2500  *
2501  * The caller must have a ref on the inode.
2502  */
2503 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2504 {
2505 	return writeback_single_inode(inode, wbc);
2506 }
2507 EXPORT_SYMBOL(sync_inode);
2508 
2509 /**
2510  * sync_inode_metadata - write an inode to disk
2511  * @inode: the inode to sync
2512  * @wait: wait for I/O to complete.
2513  *
2514  * Write an inode to disk and adjust its dirty state after completion.
2515  *
2516  * Note: only writes the actual inode, no associated data or other metadata.
2517  */
2518 int sync_inode_metadata(struct inode *inode, int wait)
2519 {
2520 	struct writeback_control wbc = {
2521 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2522 		.nr_to_write = 0, /* metadata-only */
2523 	};
2524 
2525 	return sync_inode(inode, &wbc);
2526 }
2527 EXPORT_SYMBOL(sync_inode_metadata);
2528