xref: /openbmc/linux/fs/fs-writeback.c (revision 95e9fd10)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/freezer.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 	return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 
67 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
68 {
69 	struct super_block *sb = inode->i_sb;
70 
71 	if (strcmp(sb->s_type->name, "bdev") == 0)
72 		return inode->i_mapping->backing_dev_info;
73 
74 	return sb->s_bdi;
75 }
76 
77 static inline struct inode *wb_inode(struct list_head *head)
78 {
79 	return list_entry(head, struct inode, i_wb_list);
80 }
81 
82 /*
83  * Include the creation of the trace points after defining the
84  * wb_writeback_work structure and inline functions so that the definition
85  * remains local to this file.
86  */
87 #define CREATE_TRACE_POINTS
88 #include <trace/events/writeback.h>
89 
90 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
91 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
92 {
93 	if (bdi->wb.task) {
94 		wake_up_process(bdi->wb.task);
95 	} else {
96 		/*
97 		 * The bdi thread isn't there, wake up the forker thread which
98 		 * will create and run it.
99 		 */
100 		wake_up_process(default_backing_dev_info.wb.task);
101 	}
102 }
103 
104 static void bdi_queue_work(struct backing_dev_info *bdi,
105 			   struct wb_writeback_work *work)
106 {
107 	trace_writeback_queue(bdi, work);
108 
109 	spin_lock_bh(&bdi->wb_lock);
110 	list_add_tail(&work->list, &bdi->work_list);
111 	if (!bdi->wb.task)
112 		trace_writeback_nothread(bdi, work);
113 	bdi_wakeup_flusher(bdi);
114 	spin_unlock_bh(&bdi->wb_lock);
115 }
116 
117 static void
118 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
119 		      bool range_cyclic, enum wb_reason reason)
120 {
121 	struct wb_writeback_work *work;
122 
123 	/*
124 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
125 	 * wakeup the thread for old dirty data writeback
126 	 */
127 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
128 	if (!work) {
129 		if (bdi->wb.task) {
130 			trace_writeback_nowork(bdi);
131 			wake_up_process(bdi->wb.task);
132 		}
133 		return;
134 	}
135 
136 	work->sync_mode	= WB_SYNC_NONE;
137 	work->nr_pages	= nr_pages;
138 	work->range_cyclic = range_cyclic;
139 	work->reason	= reason;
140 
141 	bdi_queue_work(bdi, work);
142 }
143 
144 /**
145  * bdi_start_writeback - start writeback
146  * @bdi: the backing device to write from
147  * @nr_pages: the number of pages to write
148  * @reason: reason why some writeback work was initiated
149  *
150  * Description:
151  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
152  *   started when this function returns, we make no guarantees on
153  *   completion. Caller need not hold sb s_umount semaphore.
154  *
155  */
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 			enum wb_reason reason)
158 {
159 	__bdi_start_writeback(bdi, nr_pages, true, reason);
160 }
161 
162 /**
163  * bdi_start_background_writeback - start background writeback
164  * @bdi: the backing device to write from
165  *
166  * Description:
167  *   This makes sure WB_SYNC_NONE background writeback happens. When
168  *   this function returns, it is only guaranteed that for given BDI
169  *   some IO is happening if we are over background dirty threshold.
170  *   Caller need not hold sb s_umount semaphore.
171  */
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
173 {
174 	/*
175 	 * We just wake up the flusher thread. It will perform background
176 	 * writeback as soon as there is no other work to do.
177 	 */
178 	trace_writeback_wake_background(bdi);
179 	spin_lock_bh(&bdi->wb_lock);
180 	bdi_wakeup_flusher(bdi);
181 	spin_unlock_bh(&bdi->wb_lock);
182 }
183 
184 /*
185  * Remove the inode from the writeback list it is on.
186  */
187 void inode_wb_list_del(struct inode *inode)
188 {
189 	struct backing_dev_info *bdi = inode_to_bdi(inode);
190 
191 	spin_lock(&bdi->wb.list_lock);
192 	list_del_init(&inode->i_wb_list);
193 	spin_unlock(&bdi->wb.list_lock);
194 }
195 
196 /*
197  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
198  * furthest end of its superblock's dirty-inode list.
199  *
200  * Before stamping the inode's ->dirtied_when, we check to see whether it is
201  * already the most-recently-dirtied inode on the b_dirty list.  If that is
202  * the case then the inode must have been redirtied while it was being written
203  * out and we don't reset its dirtied_when.
204  */
205 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
206 {
207 	assert_spin_locked(&wb->list_lock);
208 	if (!list_empty(&wb->b_dirty)) {
209 		struct inode *tail;
210 
211 		tail = wb_inode(wb->b_dirty.next);
212 		if (time_before(inode->dirtied_when, tail->dirtied_when))
213 			inode->dirtied_when = jiffies;
214 	}
215 	list_move(&inode->i_wb_list, &wb->b_dirty);
216 }
217 
218 /*
219  * requeue inode for re-scanning after bdi->b_io list is exhausted.
220  */
221 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
222 {
223 	assert_spin_locked(&wb->list_lock);
224 	list_move(&inode->i_wb_list, &wb->b_more_io);
225 }
226 
227 static void inode_sync_complete(struct inode *inode)
228 {
229 	inode->i_state &= ~I_SYNC;
230 	/* Waiters must see I_SYNC cleared before being woken up */
231 	smp_mb();
232 	wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234 
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 	bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 	/*
240 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 	 * It _appears_ to be in the future, but is actually in distant past.
242 	 * This test is necessary to prevent such wrapped-around relative times
243 	 * from permanently stopping the whole bdi writeback.
244 	 */
245 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 	return ret;
248 }
249 
250 /*
251  * Move expired (dirtied after work->older_than_this) dirty inodes from
252  * @delaying_queue to @dispatch_queue.
253  */
254 static int move_expired_inodes(struct list_head *delaying_queue,
255 			       struct list_head *dispatch_queue,
256 			       struct wb_writeback_work *work)
257 {
258 	LIST_HEAD(tmp);
259 	struct list_head *pos, *node;
260 	struct super_block *sb = NULL;
261 	struct inode *inode;
262 	int do_sb_sort = 0;
263 	int moved = 0;
264 
265 	while (!list_empty(delaying_queue)) {
266 		inode = wb_inode(delaying_queue->prev);
267 		if (work->older_than_this &&
268 		    inode_dirtied_after(inode, *work->older_than_this))
269 			break;
270 		if (sb && sb != inode->i_sb)
271 			do_sb_sort = 1;
272 		sb = inode->i_sb;
273 		list_move(&inode->i_wb_list, &tmp);
274 		moved++;
275 	}
276 
277 	/* just one sb in list, splice to dispatch_queue and we're done */
278 	if (!do_sb_sort) {
279 		list_splice(&tmp, dispatch_queue);
280 		goto out;
281 	}
282 
283 	/* Move inodes from one superblock together */
284 	while (!list_empty(&tmp)) {
285 		sb = wb_inode(tmp.prev)->i_sb;
286 		list_for_each_prev_safe(pos, node, &tmp) {
287 			inode = wb_inode(pos);
288 			if (inode->i_sb == sb)
289 				list_move(&inode->i_wb_list, dispatch_queue);
290 		}
291 	}
292 out:
293 	return moved;
294 }
295 
296 /*
297  * Queue all expired dirty inodes for io, eldest first.
298  * Before
299  *         newly dirtied     b_dirty    b_io    b_more_io
300  *         =============>    gf         edc     BA
301  * After
302  *         newly dirtied     b_dirty    b_io    b_more_io
303  *         =============>    g          fBAedc
304  *                                           |
305  *                                           +--> dequeue for IO
306  */
307 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
308 {
309 	int moved;
310 	assert_spin_locked(&wb->list_lock);
311 	list_splice_init(&wb->b_more_io, &wb->b_io);
312 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
313 	trace_writeback_queue_io(wb, work, moved);
314 }
315 
316 static int write_inode(struct inode *inode, struct writeback_control *wbc)
317 {
318 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
319 		return inode->i_sb->s_op->write_inode(inode, wbc);
320 	return 0;
321 }
322 
323 /*
324  * Wait for writeback on an inode to complete. Called with i_lock held.
325  * Caller must make sure inode cannot go away when we drop i_lock.
326  */
327 static void __inode_wait_for_writeback(struct inode *inode)
328 	__releases(inode->i_lock)
329 	__acquires(inode->i_lock)
330 {
331 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
332 	wait_queue_head_t *wqh;
333 
334 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
335 	while (inode->i_state & I_SYNC) {
336 		spin_unlock(&inode->i_lock);
337 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
338 		spin_lock(&inode->i_lock);
339 	}
340 }
341 
342 /*
343  * Wait for writeback on an inode to complete. Caller must have inode pinned.
344  */
345 void inode_wait_for_writeback(struct inode *inode)
346 {
347 	spin_lock(&inode->i_lock);
348 	__inode_wait_for_writeback(inode);
349 	spin_unlock(&inode->i_lock);
350 }
351 
352 /*
353  * Sleep until I_SYNC is cleared. This function must be called with i_lock
354  * held and drops it. It is aimed for callers not holding any inode reference
355  * so once i_lock is dropped, inode can go away.
356  */
357 static void inode_sleep_on_writeback(struct inode *inode)
358 	__releases(inode->i_lock)
359 {
360 	DEFINE_WAIT(wait);
361 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
362 	int sleep;
363 
364 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
365 	sleep = inode->i_state & I_SYNC;
366 	spin_unlock(&inode->i_lock);
367 	if (sleep)
368 		schedule();
369 	finish_wait(wqh, &wait);
370 }
371 
372 /*
373  * Find proper writeback list for the inode depending on its current state and
374  * possibly also change of its state while we were doing writeback.  Here we
375  * handle things such as livelock prevention or fairness of writeback among
376  * inodes. This function can be called only by flusher thread - noone else
377  * processes all inodes in writeback lists and requeueing inodes behind flusher
378  * thread's back can have unexpected consequences.
379  */
380 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
381 			  struct writeback_control *wbc)
382 {
383 	if (inode->i_state & I_FREEING)
384 		return;
385 
386 	/*
387 	 * Sync livelock prevention. Each inode is tagged and synced in one
388 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
389 	 * the dirty time to prevent enqueue and sync it again.
390 	 */
391 	if ((inode->i_state & I_DIRTY) &&
392 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
393 		inode->dirtied_when = jiffies;
394 
395 	if (wbc->pages_skipped) {
396 		/*
397 		 * writeback is not making progress due to locked
398 		 * buffers. Skip this inode for now.
399 		 */
400 		redirty_tail(inode, wb);
401 		return;
402 	}
403 
404 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
405 		/*
406 		 * We didn't write back all the pages.  nfs_writepages()
407 		 * sometimes bales out without doing anything.
408 		 */
409 		if (wbc->nr_to_write <= 0) {
410 			/* Slice used up. Queue for next turn. */
411 			requeue_io(inode, wb);
412 		} else {
413 			/*
414 			 * Writeback blocked by something other than
415 			 * congestion. Delay the inode for some time to
416 			 * avoid spinning on the CPU (100% iowait)
417 			 * retrying writeback of the dirty page/inode
418 			 * that cannot be performed immediately.
419 			 */
420 			redirty_tail(inode, wb);
421 		}
422 	} else if (inode->i_state & I_DIRTY) {
423 		/*
424 		 * Filesystems can dirty the inode during writeback operations,
425 		 * such as delayed allocation during submission or metadata
426 		 * updates after data IO completion.
427 		 */
428 		redirty_tail(inode, wb);
429 	} else {
430 		/* The inode is clean. Remove from writeback lists. */
431 		list_del_init(&inode->i_wb_list);
432 	}
433 }
434 
435 /*
436  * Write out an inode and its dirty pages. Do not update the writeback list
437  * linkage. That is left to the caller. The caller is also responsible for
438  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
439  */
440 static int
441 __writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
442 			 struct writeback_control *wbc)
443 {
444 	struct address_space *mapping = inode->i_mapping;
445 	long nr_to_write = wbc->nr_to_write;
446 	unsigned dirty;
447 	int ret;
448 
449 	WARN_ON(!(inode->i_state & I_SYNC));
450 
451 	ret = do_writepages(mapping, wbc);
452 
453 	/*
454 	 * Make sure to wait on the data before writing out the metadata.
455 	 * This is important for filesystems that modify metadata on data
456 	 * I/O completion.
457 	 */
458 	if (wbc->sync_mode == WB_SYNC_ALL) {
459 		int err = filemap_fdatawait(mapping);
460 		if (ret == 0)
461 			ret = err;
462 	}
463 
464 	/*
465 	 * Some filesystems may redirty the inode during the writeback
466 	 * due to delalloc, clear dirty metadata flags right before
467 	 * write_inode()
468 	 */
469 	spin_lock(&inode->i_lock);
470 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
471 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
472 		inode->i_state &= ~I_DIRTY_PAGES;
473 	dirty = inode->i_state & I_DIRTY;
474 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
475 	spin_unlock(&inode->i_lock);
476 	/* Don't write the inode if only I_DIRTY_PAGES was set */
477 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
478 		int err = write_inode(inode, wbc);
479 		if (ret == 0)
480 			ret = err;
481 	}
482 	trace_writeback_single_inode(inode, wbc, nr_to_write);
483 	return ret;
484 }
485 
486 /*
487  * Write out an inode's dirty pages. Either the caller has an active reference
488  * on the inode or the inode has I_WILL_FREE set.
489  *
490  * This function is designed to be called for writing back one inode which
491  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
492  * and does more profound writeback list handling in writeback_sb_inodes().
493  */
494 static int
495 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
496 		       struct writeback_control *wbc)
497 {
498 	int ret = 0;
499 
500 	spin_lock(&inode->i_lock);
501 	if (!atomic_read(&inode->i_count))
502 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
503 	else
504 		WARN_ON(inode->i_state & I_WILL_FREE);
505 
506 	if (inode->i_state & I_SYNC) {
507 		if (wbc->sync_mode != WB_SYNC_ALL)
508 			goto out;
509 		/*
510 		 * It's a data-integrity sync. We must wait. Since callers hold
511 		 * inode reference or inode has I_WILL_FREE set, it cannot go
512 		 * away under us.
513 		 */
514 		__inode_wait_for_writeback(inode);
515 	}
516 	WARN_ON(inode->i_state & I_SYNC);
517 	/*
518 	 * Skip inode if it is clean. We don't want to mess with writeback
519 	 * lists in this function since flusher thread may be doing for example
520 	 * sync in parallel and if we move the inode, it could get skipped. So
521 	 * here we make sure inode is on some writeback list and leave it there
522 	 * unless we have completely cleaned the inode.
523 	 */
524 	if (!(inode->i_state & I_DIRTY))
525 		goto out;
526 	inode->i_state |= I_SYNC;
527 	spin_unlock(&inode->i_lock);
528 
529 	ret = __writeback_single_inode(inode, wb, wbc);
530 
531 	spin_lock(&wb->list_lock);
532 	spin_lock(&inode->i_lock);
533 	/*
534 	 * If inode is clean, remove it from writeback lists. Otherwise don't
535 	 * touch it. See comment above for explanation.
536 	 */
537 	if (!(inode->i_state & I_DIRTY))
538 		list_del_init(&inode->i_wb_list);
539 	spin_unlock(&wb->list_lock);
540 	inode_sync_complete(inode);
541 out:
542 	spin_unlock(&inode->i_lock);
543 	return ret;
544 }
545 
546 static long writeback_chunk_size(struct backing_dev_info *bdi,
547 				 struct wb_writeback_work *work)
548 {
549 	long pages;
550 
551 	/*
552 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
553 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
554 	 * here avoids calling into writeback_inodes_wb() more than once.
555 	 *
556 	 * The intended call sequence for WB_SYNC_ALL writeback is:
557 	 *
558 	 *      wb_writeback()
559 	 *          writeback_sb_inodes()       <== called only once
560 	 *              write_cache_pages()     <== called once for each inode
561 	 *                   (quickly) tag currently dirty pages
562 	 *                   (maybe slowly) sync all tagged pages
563 	 */
564 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
565 		pages = LONG_MAX;
566 	else {
567 		pages = min(bdi->avg_write_bandwidth / 2,
568 			    global_dirty_limit / DIRTY_SCOPE);
569 		pages = min(pages, work->nr_pages);
570 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
571 				   MIN_WRITEBACK_PAGES);
572 	}
573 
574 	return pages;
575 }
576 
577 /*
578  * Write a portion of b_io inodes which belong to @sb.
579  *
580  * If @only_this_sb is true, then find and write all such
581  * inodes. Otherwise write only ones which go sequentially
582  * in reverse order.
583  *
584  * Return the number of pages and/or inodes written.
585  */
586 static long writeback_sb_inodes(struct super_block *sb,
587 				struct bdi_writeback *wb,
588 				struct wb_writeback_work *work)
589 {
590 	struct writeback_control wbc = {
591 		.sync_mode		= work->sync_mode,
592 		.tagged_writepages	= work->tagged_writepages,
593 		.for_kupdate		= work->for_kupdate,
594 		.for_background		= work->for_background,
595 		.range_cyclic		= work->range_cyclic,
596 		.range_start		= 0,
597 		.range_end		= LLONG_MAX,
598 	};
599 	unsigned long start_time = jiffies;
600 	long write_chunk;
601 	long wrote = 0;  /* count both pages and inodes */
602 
603 	while (!list_empty(&wb->b_io)) {
604 		struct inode *inode = wb_inode(wb->b_io.prev);
605 
606 		if (inode->i_sb != sb) {
607 			if (work->sb) {
608 				/*
609 				 * We only want to write back data for this
610 				 * superblock, move all inodes not belonging
611 				 * to it back onto the dirty list.
612 				 */
613 				redirty_tail(inode, wb);
614 				continue;
615 			}
616 
617 			/*
618 			 * The inode belongs to a different superblock.
619 			 * Bounce back to the caller to unpin this and
620 			 * pin the next superblock.
621 			 */
622 			break;
623 		}
624 
625 		/*
626 		 * Don't bother with new inodes or inodes being freed, first
627 		 * kind does not need periodic writeout yet, and for the latter
628 		 * kind writeout is handled by the freer.
629 		 */
630 		spin_lock(&inode->i_lock);
631 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
632 			spin_unlock(&inode->i_lock);
633 			redirty_tail(inode, wb);
634 			continue;
635 		}
636 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
637 			/*
638 			 * If this inode is locked for writeback and we are not
639 			 * doing writeback-for-data-integrity, move it to
640 			 * b_more_io so that writeback can proceed with the
641 			 * other inodes on s_io.
642 			 *
643 			 * We'll have another go at writing back this inode
644 			 * when we completed a full scan of b_io.
645 			 */
646 			spin_unlock(&inode->i_lock);
647 			requeue_io(inode, wb);
648 			trace_writeback_sb_inodes_requeue(inode);
649 			continue;
650 		}
651 		spin_unlock(&wb->list_lock);
652 
653 		/*
654 		 * We already requeued the inode if it had I_SYNC set and we
655 		 * are doing WB_SYNC_NONE writeback. So this catches only the
656 		 * WB_SYNC_ALL case.
657 		 */
658 		if (inode->i_state & I_SYNC) {
659 			/* Wait for I_SYNC. This function drops i_lock... */
660 			inode_sleep_on_writeback(inode);
661 			/* Inode may be gone, start again */
662 			spin_lock(&wb->list_lock);
663 			continue;
664 		}
665 		inode->i_state |= I_SYNC;
666 		spin_unlock(&inode->i_lock);
667 
668 		write_chunk = writeback_chunk_size(wb->bdi, work);
669 		wbc.nr_to_write = write_chunk;
670 		wbc.pages_skipped = 0;
671 
672 		/*
673 		 * We use I_SYNC to pin the inode in memory. While it is set
674 		 * evict_inode() will wait so the inode cannot be freed.
675 		 */
676 		__writeback_single_inode(inode, wb, &wbc);
677 
678 		work->nr_pages -= write_chunk - wbc.nr_to_write;
679 		wrote += write_chunk - wbc.nr_to_write;
680 		spin_lock(&wb->list_lock);
681 		spin_lock(&inode->i_lock);
682 		if (!(inode->i_state & I_DIRTY))
683 			wrote++;
684 		requeue_inode(inode, wb, &wbc);
685 		inode_sync_complete(inode);
686 		spin_unlock(&inode->i_lock);
687 		cond_resched_lock(&wb->list_lock);
688 		/*
689 		 * bail out to wb_writeback() often enough to check
690 		 * background threshold and other termination conditions.
691 		 */
692 		if (wrote) {
693 			if (time_is_before_jiffies(start_time + HZ / 10UL))
694 				break;
695 			if (work->nr_pages <= 0)
696 				break;
697 		}
698 	}
699 	return wrote;
700 }
701 
702 static long __writeback_inodes_wb(struct bdi_writeback *wb,
703 				  struct wb_writeback_work *work)
704 {
705 	unsigned long start_time = jiffies;
706 	long wrote = 0;
707 
708 	while (!list_empty(&wb->b_io)) {
709 		struct inode *inode = wb_inode(wb->b_io.prev);
710 		struct super_block *sb = inode->i_sb;
711 
712 		if (!grab_super_passive(sb)) {
713 			/*
714 			 * grab_super_passive() may fail consistently due to
715 			 * s_umount being grabbed by someone else. Don't use
716 			 * requeue_io() to avoid busy retrying the inode/sb.
717 			 */
718 			redirty_tail(inode, wb);
719 			continue;
720 		}
721 		wrote += writeback_sb_inodes(sb, wb, work);
722 		drop_super(sb);
723 
724 		/* refer to the same tests at the end of writeback_sb_inodes */
725 		if (wrote) {
726 			if (time_is_before_jiffies(start_time + HZ / 10UL))
727 				break;
728 			if (work->nr_pages <= 0)
729 				break;
730 		}
731 	}
732 	/* Leave any unwritten inodes on b_io */
733 	return wrote;
734 }
735 
736 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
737 				enum wb_reason reason)
738 {
739 	struct wb_writeback_work work = {
740 		.nr_pages	= nr_pages,
741 		.sync_mode	= WB_SYNC_NONE,
742 		.range_cyclic	= 1,
743 		.reason		= reason,
744 	};
745 
746 	spin_lock(&wb->list_lock);
747 	if (list_empty(&wb->b_io))
748 		queue_io(wb, &work);
749 	__writeback_inodes_wb(wb, &work);
750 	spin_unlock(&wb->list_lock);
751 
752 	return nr_pages - work.nr_pages;
753 }
754 
755 static bool over_bground_thresh(struct backing_dev_info *bdi)
756 {
757 	unsigned long background_thresh, dirty_thresh;
758 
759 	global_dirty_limits(&background_thresh, &dirty_thresh);
760 
761 	if (global_page_state(NR_FILE_DIRTY) +
762 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
763 		return true;
764 
765 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
766 				bdi_dirty_limit(bdi, background_thresh))
767 		return true;
768 
769 	return false;
770 }
771 
772 /*
773  * Called under wb->list_lock. If there are multiple wb per bdi,
774  * only the flusher working on the first wb should do it.
775  */
776 static void wb_update_bandwidth(struct bdi_writeback *wb,
777 				unsigned long start_time)
778 {
779 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
780 }
781 
782 /*
783  * Explicit flushing or periodic writeback of "old" data.
784  *
785  * Define "old": the first time one of an inode's pages is dirtied, we mark the
786  * dirtying-time in the inode's address_space.  So this periodic writeback code
787  * just walks the superblock inode list, writing back any inodes which are
788  * older than a specific point in time.
789  *
790  * Try to run once per dirty_writeback_interval.  But if a writeback event
791  * takes longer than a dirty_writeback_interval interval, then leave a
792  * one-second gap.
793  *
794  * older_than_this takes precedence over nr_to_write.  So we'll only write back
795  * all dirty pages if they are all attached to "old" mappings.
796  */
797 static long wb_writeback(struct bdi_writeback *wb,
798 			 struct wb_writeback_work *work)
799 {
800 	unsigned long wb_start = jiffies;
801 	long nr_pages = work->nr_pages;
802 	unsigned long oldest_jif;
803 	struct inode *inode;
804 	long progress;
805 
806 	oldest_jif = jiffies;
807 	work->older_than_this = &oldest_jif;
808 
809 	spin_lock(&wb->list_lock);
810 	for (;;) {
811 		/*
812 		 * Stop writeback when nr_pages has been consumed
813 		 */
814 		if (work->nr_pages <= 0)
815 			break;
816 
817 		/*
818 		 * Background writeout and kupdate-style writeback may
819 		 * run forever. Stop them if there is other work to do
820 		 * so that e.g. sync can proceed. They'll be restarted
821 		 * after the other works are all done.
822 		 */
823 		if ((work->for_background || work->for_kupdate) &&
824 		    !list_empty(&wb->bdi->work_list))
825 			break;
826 
827 		/*
828 		 * For background writeout, stop when we are below the
829 		 * background dirty threshold
830 		 */
831 		if (work->for_background && !over_bground_thresh(wb->bdi))
832 			break;
833 
834 		/*
835 		 * Kupdate and background works are special and we want to
836 		 * include all inodes that need writing. Livelock avoidance is
837 		 * handled by these works yielding to any other work so we are
838 		 * safe.
839 		 */
840 		if (work->for_kupdate) {
841 			oldest_jif = jiffies -
842 				msecs_to_jiffies(dirty_expire_interval * 10);
843 		} else if (work->for_background)
844 			oldest_jif = jiffies;
845 
846 		trace_writeback_start(wb->bdi, work);
847 		if (list_empty(&wb->b_io))
848 			queue_io(wb, work);
849 		if (work->sb)
850 			progress = writeback_sb_inodes(work->sb, wb, work);
851 		else
852 			progress = __writeback_inodes_wb(wb, work);
853 		trace_writeback_written(wb->bdi, work);
854 
855 		wb_update_bandwidth(wb, wb_start);
856 
857 		/*
858 		 * Did we write something? Try for more
859 		 *
860 		 * Dirty inodes are moved to b_io for writeback in batches.
861 		 * The completion of the current batch does not necessarily
862 		 * mean the overall work is done. So we keep looping as long
863 		 * as made some progress on cleaning pages or inodes.
864 		 */
865 		if (progress)
866 			continue;
867 		/*
868 		 * No more inodes for IO, bail
869 		 */
870 		if (list_empty(&wb->b_more_io))
871 			break;
872 		/*
873 		 * Nothing written. Wait for some inode to
874 		 * become available for writeback. Otherwise
875 		 * we'll just busyloop.
876 		 */
877 		if (!list_empty(&wb->b_more_io))  {
878 			trace_writeback_wait(wb->bdi, work);
879 			inode = wb_inode(wb->b_more_io.prev);
880 			spin_lock(&inode->i_lock);
881 			spin_unlock(&wb->list_lock);
882 			/* This function drops i_lock... */
883 			inode_sleep_on_writeback(inode);
884 			spin_lock(&wb->list_lock);
885 		}
886 	}
887 	spin_unlock(&wb->list_lock);
888 
889 	return nr_pages - work->nr_pages;
890 }
891 
892 /*
893  * Return the next wb_writeback_work struct that hasn't been processed yet.
894  */
895 static struct wb_writeback_work *
896 get_next_work_item(struct backing_dev_info *bdi)
897 {
898 	struct wb_writeback_work *work = NULL;
899 
900 	spin_lock_bh(&bdi->wb_lock);
901 	if (!list_empty(&bdi->work_list)) {
902 		work = list_entry(bdi->work_list.next,
903 				  struct wb_writeback_work, list);
904 		list_del_init(&work->list);
905 	}
906 	spin_unlock_bh(&bdi->wb_lock);
907 	return work;
908 }
909 
910 /*
911  * Add in the number of potentially dirty inodes, because each inode
912  * write can dirty pagecache in the underlying blockdev.
913  */
914 static unsigned long get_nr_dirty_pages(void)
915 {
916 	return global_page_state(NR_FILE_DIRTY) +
917 		global_page_state(NR_UNSTABLE_NFS) +
918 		get_nr_dirty_inodes();
919 }
920 
921 static long wb_check_background_flush(struct bdi_writeback *wb)
922 {
923 	if (over_bground_thresh(wb->bdi)) {
924 
925 		struct wb_writeback_work work = {
926 			.nr_pages	= LONG_MAX,
927 			.sync_mode	= WB_SYNC_NONE,
928 			.for_background	= 1,
929 			.range_cyclic	= 1,
930 			.reason		= WB_REASON_BACKGROUND,
931 		};
932 
933 		return wb_writeback(wb, &work);
934 	}
935 
936 	return 0;
937 }
938 
939 static long wb_check_old_data_flush(struct bdi_writeback *wb)
940 {
941 	unsigned long expired;
942 	long nr_pages;
943 
944 	/*
945 	 * When set to zero, disable periodic writeback
946 	 */
947 	if (!dirty_writeback_interval)
948 		return 0;
949 
950 	expired = wb->last_old_flush +
951 			msecs_to_jiffies(dirty_writeback_interval * 10);
952 	if (time_before(jiffies, expired))
953 		return 0;
954 
955 	wb->last_old_flush = jiffies;
956 	nr_pages = get_nr_dirty_pages();
957 
958 	if (nr_pages) {
959 		struct wb_writeback_work work = {
960 			.nr_pages	= nr_pages,
961 			.sync_mode	= WB_SYNC_NONE,
962 			.for_kupdate	= 1,
963 			.range_cyclic	= 1,
964 			.reason		= WB_REASON_PERIODIC,
965 		};
966 
967 		return wb_writeback(wb, &work);
968 	}
969 
970 	return 0;
971 }
972 
973 /*
974  * Retrieve work items and do the writeback they describe
975  */
976 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
977 {
978 	struct backing_dev_info *bdi = wb->bdi;
979 	struct wb_writeback_work *work;
980 	long wrote = 0;
981 
982 	set_bit(BDI_writeback_running, &wb->bdi->state);
983 	while ((work = get_next_work_item(bdi)) != NULL) {
984 		/*
985 		 * Override sync mode, in case we must wait for completion
986 		 * because this thread is exiting now.
987 		 */
988 		if (force_wait)
989 			work->sync_mode = WB_SYNC_ALL;
990 
991 		trace_writeback_exec(bdi, work);
992 
993 		wrote += wb_writeback(wb, work);
994 
995 		/*
996 		 * Notify the caller of completion if this is a synchronous
997 		 * work item, otherwise just free it.
998 		 */
999 		if (work->done)
1000 			complete(work->done);
1001 		else
1002 			kfree(work);
1003 	}
1004 
1005 	/*
1006 	 * Check for periodic writeback, kupdated() style
1007 	 */
1008 	wrote += wb_check_old_data_flush(wb);
1009 	wrote += wb_check_background_flush(wb);
1010 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1011 
1012 	return wrote;
1013 }
1014 
1015 /*
1016  * Handle writeback of dirty data for the device backed by this bdi. Also
1017  * wakes up periodically and does kupdated style flushing.
1018  */
1019 int bdi_writeback_thread(void *data)
1020 {
1021 	struct bdi_writeback *wb = data;
1022 	struct backing_dev_info *bdi = wb->bdi;
1023 	long pages_written;
1024 
1025 	current->flags |= PF_SWAPWRITE;
1026 	set_freezable();
1027 	wb->last_active = jiffies;
1028 
1029 	/*
1030 	 * Our parent may run at a different priority, just set us to normal
1031 	 */
1032 	set_user_nice(current, 0);
1033 
1034 	trace_writeback_thread_start(bdi);
1035 
1036 	while (!kthread_freezable_should_stop(NULL)) {
1037 		/*
1038 		 * Remove own delayed wake-up timer, since we are already awake
1039 		 * and we'll take care of the preriodic write-back.
1040 		 */
1041 		del_timer(&wb->wakeup_timer);
1042 
1043 		pages_written = wb_do_writeback(wb, 0);
1044 
1045 		trace_writeback_pages_written(pages_written);
1046 
1047 		if (pages_written)
1048 			wb->last_active = jiffies;
1049 
1050 		set_current_state(TASK_INTERRUPTIBLE);
1051 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
1052 			__set_current_state(TASK_RUNNING);
1053 			continue;
1054 		}
1055 
1056 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1057 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
1058 		else {
1059 			/*
1060 			 * We have nothing to do, so can go sleep without any
1061 			 * timeout and save power. When a work is queued or
1062 			 * something is made dirty - we will be woken up.
1063 			 */
1064 			schedule();
1065 		}
1066 	}
1067 
1068 	/* Flush any work that raced with us exiting */
1069 	if (!list_empty(&bdi->work_list))
1070 		wb_do_writeback(wb, 1);
1071 
1072 	trace_writeback_thread_stop(bdi);
1073 	return 0;
1074 }
1075 
1076 
1077 /*
1078  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1079  * the whole world.
1080  */
1081 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1082 {
1083 	struct backing_dev_info *bdi;
1084 
1085 	if (!nr_pages) {
1086 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1087 				global_page_state(NR_UNSTABLE_NFS);
1088 	}
1089 
1090 	rcu_read_lock();
1091 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1092 		if (!bdi_has_dirty_io(bdi))
1093 			continue;
1094 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1095 	}
1096 	rcu_read_unlock();
1097 }
1098 
1099 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1100 {
1101 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1102 		struct dentry *dentry;
1103 		const char *name = "?";
1104 
1105 		dentry = d_find_alias(inode);
1106 		if (dentry) {
1107 			spin_lock(&dentry->d_lock);
1108 			name = (const char *) dentry->d_name.name;
1109 		}
1110 		printk(KERN_DEBUG
1111 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1112 		       current->comm, task_pid_nr(current), inode->i_ino,
1113 		       name, inode->i_sb->s_id);
1114 		if (dentry) {
1115 			spin_unlock(&dentry->d_lock);
1116 			dput(dentry);
1117 		}
1118 	}
1119 }
1120 
1121 /**
1122  *	__mark_inode_dirty -	internal function
1123  *	@inode: inode to mark
1124  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1125  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1126  *  	mark_inode_dirty_sync.
1127  *
1128  * Put the inode on the super block's dirty list.
1129  *
1130  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1131  * dirty list only if it is hashed or if it refers to a blockdev.
1132  * If it was not hashed, it will never be added to the dirty list
1133  * even if it is later hashed, as it will have been marked dirty already.
1134  *
1135  * In short, make sure you hash any inodes _before_ you start marking
1136  * them dirty.
1137  *
1138  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1139  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1140  * the kernel-internal blockdev inode represents the dirtying time of the
1141  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1142  * page->mapping->host, so the page-dirtying time is recorded in the internal
1143  * blockdev inode.
1144  */
1145 void __mark_inode_dirty(struct inode *inode, int flags)
1146 {
1147 	struct super_block *sb = inode->i_sb;
1148 	struct backing_dev_info *bdi = NULL;
1149 
1150 	/*
1151 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1152 	 * dirty the inode itself
1153 	 */
1154 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1155 		if (sb->s_op->dirty_inode)
1156 			sb->s_op->dirty_inode(inode, flags);
1157 	}
1158 
1159 	/*
1160 	 * make sure that changes are seen by all cpus before we test i_state
1161 	 * -- mikulas
1162 	 */
1163 	smp_mb();
1164 
1165 	/* avoid the locking if we can */
1166 	if ((inode->i_state & flags) == flags)
1167 		return;
1168 
1169 	if (unlikely(block_dump))
1170 		block_dump___mark_inode_dirty(inode);
1171 
1172 	spin_lock(&inode->i_lock);
1173 	if ((inode->i_state & flags) != flags) {
1174 		const int was_dirty = inode->i_state & I_DIRTY;
1175 
1176 		inode->i_state |= flags;
1177 
1178 		/*
1179 		 * If the inode is being synced, just update its dirty state.
1180 		 * The unlocker will place the inode on the appropriate
1181 		 * superblock list, based upon its state.
1182 		 */
1183 		if (inode->i_state & I_SYNC)
1184 			goto out_unlock_inode;
1185 
1186 		/*
1187 		 * Only add valid (hashed) inodes to the superblock's
1188 		 * dirty list.  Add blockdev inodes as well.
1189 		 */
1190 		if (!S_ISBLK(inode->i_mode)) {
1191 			if (inode_unhashed(inode))
1192 				goto out_unlock_inode;
1193 		}
1194 		if (inode->i_state & I_FREEING)
1195 			goto out_unlock_inode;
1196 
1197 		/*
1198 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1199 		 * reposition it (that would break b_dirty time-ordering).
1200 		 */
1201 		if (!was_dirty) {
1202 			bool wakeup_bdi = false;
1203 			bdi = inode_to_bdi(inode);
1204 
1205 			if (bdi_cap_writeback_dirty(bdi)) {
1206 				WARN(!test_bit(BDI_registered, &bdi->state),
1207 				     "bdi-%s not registered\n", bdi->name);
1208 
1209 				/*
1210 				 * If this is the first dirty inode for this
1211 				 * bdi, we have to wake-up the corresponding
1212 				 * bdi thread to make sure background
1213 				 * write-back happens later.
1214 				 */
1215 				if (!wb_has_dirty_io(&bdi->wb))
1216 					wakeup_bdi = true;
1217 			}
1218 
1219 			spin_unlock(&inode->i_lock);
1220 			spin_lock(&bdi->wb.list_lock);
1221 			inode->dirtied_when = jiffies;
1222 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1223 			spin_unlock(&bdi->wb.list_lock);
1224 
1225 			if (wakeup_bdi)
1226 				bdi_wakeup_thread_delayed(bdi);
1227 			return;
1228 		}
1229 	}
1230 out_unlock_inode:
1231 	spin_unlock(&inode->i_lock);
1232 
1233 }
1234 EXPORT_SYMBOL(__mark_inode_dirty);
1235 
1236 static void wait_sb_inodes(struct super_block *sb)
1237 {
1238 	struct inode *inode, *old_inode = NULL;
1239 
1240 	/*
1241 	 * We need to be protected against the filesystem going from
1242 	 * r/o to r/w or vice versa.
1243 	 */
1244 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1245 
1246 	spin_lock(&inode_sb_list_lock);
1247 
1248 	/*
1249 	 * Data integrity sync. Must wait for all pages under writeback,
1250 	 * because there may have been pages dirtied before our sync
1251 	 * call, but which had writeout started before we write it out.
1252 	 * In which case, the inode may not be on the dirty list, but
1253 	 * we still have to wait for that writeout.
1254 	 */
1255 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1256 		struct address_space *mapping = inode->i_mapping;
1257 
1258 		spin_lock(&inode->i_lock);
1259 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1260 		    (mapping->nrpages == 0)) {
1261 			spin_unlock(&inode->i_lock);
1262 			continue;
1263 		}
1264 		__iget(inode);
1265 		spin_unlock(&inode->i_lock);
1266 		spin_unlock(&inode_sb_list_lock);
1267 
1268 		/*
1269 		 * We hold a reference to 'inode' so it couldn't have been
1270 		 * removed from s_inodes list while we dropped the
1271 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1272 		 * be holding the last reference and we cannot iput it under
1273 		 * inode_sb_list_lock. So we keep the reference and iput it
1274 		 * later.
1275 		 */
1276 		iput(old_inode);
1277 		old_inode = inode;
1278 
1279 		filemap_fdatawait(mapping);
1280 
1281 		cond_resched();
1282 
1283 		spin_lock(&inode_sb_list_lock);
1284 	}
1285 	spin_unlock(&inode_sb_list_lock);
1286 	iput(old_inode);
1287 }
1288 
1289 /**
1290  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1291  * @sb: the superblock
1292  * @nr: the number of pages to write
1293  * @reason: reason why some writeback work initiated
1294  *
1295  * Start writeback on some inodes on this super_block. No guarantees are made
1296  * on how many (if any) will be written, and this function does not wait
1297  * for IO completion of submitted IO.
1298  */
1299 void writeback_inodes_sb_nr(struct super_block *sb,
1300 			    unsigned long nr,
1301 			    enum wb_reason reason)
1302 {
1303 	DECLARE_COMPLETION_ONSTACK(done);
1304 	struct wb_writeback_work work = {
1305 		.sb			= sb,
1306 		.sync_mode		= WB_SYNC_NONE,
1307 		.tagged_writepages	= 1,
1308 		.done			= &done,
1309 		.nr_pages		= nr,
1310 		.reason			= reason,
1311 	};
1312 
1313 	if (sb->s_bdi == &noop_backing_dev_info)
1314 		return;
1315 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1316 	bdi_queue_work(sb->s_bdi, &work);
1317 	wait_for_completion(&done);
1318 }
1319 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1320 
1321 /**
1322  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1323  * @sb: the superblock
1324  * @reason: reason why some writeback work was initiated
1325  *
1326  * Start writeback on some inodes on this super_block. No guarantees are made
1327  * on how many (if any) will be written, and this function does not wait
1328  * for IO completion of submitted IO.
1329  */
1330 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1331 {
1332 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1333 }
1334 EXPORT_SYMBOL(writeback_inodes_sb);
1335 
1336 /**
1337  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1338  * @sb: the superblock
1339  * @reason: reason why some writeback work was initiated
1340  *
1341  * Invoke writeback_inodes_sb if no writeback is currently underway.
1342  * Returns 1 if writeback was started, 0 if not.
1343  */
1344 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1345 {
1346 	if (!writeback_in_progress(sb->s_bdi)) {
1347 		down_read(&sb->s_umount);
1348 		writeback_inodes_sb(sb, reason);
1349 		up_read(&sb->s_umount);
1350 		return 1;
1351 	} else
1352 		return 0;
1353 }
1354 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1355 
1356 /**
1357  * writeback_inodes_sb_nr_if_idle	-	start writeback if none underway
1358  * @sb: the superblock
1359  * @nr: the number of pages to write
1360  * @reason: reason why some writeback work was initiated
1361  *
1362  * Invoke writeback_inodes_sb if no writeback is currently underway.
1363  * Returns 1 if writeback was started, 0 if not.
1364  */
1365 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1366 				   unsigned long nr,
1367 				   enum wb_reason reason)
1368 {
1369 	if (!writeback_in_progress(sb->s_bdi)) {
1370 		down_read(&sb->s_umount);
1371 		writeback_inodes_sb_nr(sb, nr, reason);
1372 		up_read(&sb->s_umount);
1373 		return 1;
1374 	} else
1375 		return 0;
1376 }
1377 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1378 
1379 /**
1380  * sync_inodes_sb	-	sync sb inode pages
1381  * @sb: the superblock
1382  *
1383  * This function writes and waits on any dirty inode belonging to this
1384  * super_block.
1385  */
1386 void sync_inodes_sb(struct super_block *sb)
1387 {
1388 	DECLARE_COMPLETION_ONSTACK(done);
1389 	struct wb_writeback_work work = {
1390 		.sb		= sb,
1391 		.sync_mode	= WB_SYNC_ALL,
1392 		.nr_pages	= LONG_MAX,
1393 		.range_cyclic	= 0,
1394 		.done		= &done,
1395 		.reason		= WB_REASON_SYNC,
1396 	};
1397 
1398 	/* Nothing to do? */
1399 	if (sb->s_bdi == &noop_backing_dev_info)
1400 		return;
1401 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1402 
1403 	bdi_queue_work(sb->s_bdi, &work);
1404 	wait_for_completion(&done);
1405 
1406 	wait_sb_inodes(sb);
1407 }
1408 EXPORT_SYMBOL(sync_inodes_sb);
1409 
1410 /**
1411  * write_inode_now	-	write an inode to disk
1412  * @inode: inode to write to disk
1413  * @sync: whether the write should be synchronous or not
1414  *
1415  * This function commits an inode to disk immediately if it is dirty. This is
1416  * primarily needed by knfsd.
1417  *
1418  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1419  */
1420 int write_inode_now(struct inode *inode, int sync)
1421 {
1422 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1423 	struct writeback_control wbc = {
1424 		.nr_to_write = LONG_MAX,
1425 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1426 		.range_start = 0,
1427 		.range_end = LLONG_MAX,
1428 	};
1429 
1430 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1431 		wbc.nr_to_write = 0;
1432 
1433 	might_sleep();
1434 	return writeback_single_inode(inode, wb, &wbc);
1435 }
1436 EXPORT_SYMBOL(write_inode_now);
1437 
1438 /**
1439  * sync_inode - write an inode and its pages to disk.
1440  * @inode: the inode to sync
1441  * @wbc: controls the writeback mode
1442  *
1443  * sync_inode() will write an inode and its pages to disk.  It will also
1444  * correctly update the inode on its superblock's dirty inode lists and will
1445  * update inode->i_state.
1446  *
1447  * The caller must have a ref on the inode.
1448  */
1449 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1450 {
1451 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1452 }
1453 EXPORT_SYMBOL(sync_inode);
1454 
1455 /**
1456  * sync_inode_metadata - write an inode to disk
1457  * @inode: the inode to sync
1458  * @wait: wait for I/O to complete.
1459  *
1460  * Write an inode to disk and adjust its dirty state after completion.
1461  *
1462  * Note: only writes the actual inode, no associated data or other metadata.
1463  */
1464 int sync_inode_metadata(struct inode *inode, int wait)
1465 {
1466 	struct writeback_control wbc = {
1467 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1468 		.nr_to_write = 0, /* metadata-only */
1469 	};
1470 
1471 	return sync_inode(inode, &wbc);
1472 }
1473 EXPORT_SYMBOL(sync_inode_metadata);
1474