xref: /openbmc/linux/fs/fs-writeback.c (revision 94c7b6fc)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
50 	enum wb_reason reason;		/* why was writeback initiated? */
51 
52 	struct list_head list;		/* pending work list */
53 	struct completion *done;	/* set if the caller waits */
54 };
55 
56 /**
57  * writeback_in_progress - determine whether there is writeback in progress
58  * @bdi: the device's backing_dev_info structure.
59  *
60  * Determine whether there is writeback waiting to be handled against a
61  * backing device.
62  */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 	return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68 
69 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 	struct super_block *sb = inode->i_sb;
72 
73 	if (sb_is_blkdev_sb(sb))
74 		return inode->i_mapping->backing_dev_info;
75 
76 	return sb->s_bdi;
77 }
78 
79 static inline struct inode *wb_inode(struct list_head *head)
80 {
81 	return list_entry(head, struct inode, i_wb_list);
82 }
83 
84 /*
85  * Include the creation of the trace points after defining the
86  * wb_writeback_work structure and inline functions so that the definition
87  * remains local to this file.
88  */
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/writeback.h>
91 
92 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
93 
94 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
95 {
96 	spin_lock_bh(&bdi->wb_lock);
97 	if (test_bit(BDI_registered, &bdi->state))
98 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
99 	spin_unlock_bh(&bdi->wb_lock);
100 }
101 
102 static void bdi_queue_work(struct backing_dev_info *bdi,
103 			   struct wb_writeback_work *work)
104 {
105 	trace_writeback_queue(bdi, work);
106 
107 	spin_lock_bh(&bdi->wb_lock);
108 	if (!test_bit(BDI_registered, &bdi->state)) {
109 		if (work->done)
110 			complete(work->done);
111 		goto out_unlock;
112 	}
113 	list_add_tail(&work->list, &bdi->work_list);
114 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
115 out_unlock:
116 	spin_unlock_bh(&bdi->wb_lock);
117 }
118 
119 static void
120 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
121 		      bool range_cyclic, enum wb_reason reason)
122 {
123 	struct wb_writeback_work *work;
124 
125 	/*
126 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
127 	 * wakeup the thread for old dirty data writeback
128 	 */
129 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
130 	if (!work) {
131 		trace_writeback_nowork(bdi);
132 		bdi_wakeup_thread(bdi);
133 		return;
134 	}
135 
136 	work->sync_mode	= WB_SYNC_NONE;
137 	work->nr_pages	= nr_pages;
138 	work->range_cyclic = range_cyclic;
139 	work->reason	= reason;
140 
141 	bdi_queue_work(bdi, work);
142 }
143 
144 /**
145  * bdi_start_writeback - start writeback
146  * @bdi: the backing device to write from
147  * @nr_pages: the number of pages to write
148  * @reason: reason why some writeback work was initiated
149  *
150  * Description:
151  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
152  *   started when this function returns, we make no guarantees on
153  *   completion. Caller need not hold sb s_umount semaphore.
154  *
155  */
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 			enum wb_reason reason)
158 {
159 	__bdi_start_writeback(bdi, nr_pages, true, reason);
160 }
161 
162 /**
163  * bdi_start_background_writeback - start background writeback
164  * @bdi: the backing device to write from
165  *
166  * Description:
167  *   This makes sure WB_SYNC_NONE background writeback happens. When
168  *   this function returns, it is only guaranteed that for given BDI
169  *   some IO is happening if we are over background dirty threshold.
170  *   Caller need not hold sb s_umount semaphore.
171  */
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
173 {
174 	/*
175 	 * We just wake up the flusher thread. It will perform background
176 	 * writeback as soon as there is no other work to do.
177 	 */
178 	trace_writeback_wake_background(bdi);
179 	bdi_wakeup_thread(bdi);
180 }
181 
182 /*
183  * Remove the inode from the writeback list it is on.
184  */
185 void inode_wb_list_del(struct inode *inode)
186 {
187 	struct backing_dev_info *bdi = inode_to_bdi(inode);
188 
189 	spin_lock(&bdi->wb.list_lock);
190 	list_del_init(&inode->i_wb_list);
191 	spin_unlock(&bdi->wb.list_lock);
192 }
193 
194 /*
195  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
196  * furthest end of its superblock's dirty-inode list.
197  *
198  * Before stamping the inode's ->dirtied_when, we check to see whether it is
199  * already the most-recently-dirtied inode on the b_dirty list.  If that is
200  * the case then the inode must have been redirtied while it was being written
201  * out and we don't reset its dirtied_when.
202  */
203 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
204 {
205 	assert_spin_locked(&wb->list_lock);
206 	if (!list_empty(&wb->b_dirty)) {
207 		struct inode *tail;
208 
209 		tail = wb_inode(wb->b_dirty.next);
210 		if (time_before(inode->dirtied_when, tail->dirtied_when))
211 			inode->dirtied_when = jiffies;
212 	}
213 	list_move(&inode->i_wb_list, &wb->b_dirty);
214 }
215 
216 /*
217  * requeue inode for re-scanning after bdi->b_io list is exhausted.
218  */
219 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
220 {
221 	assert_spin_locked(&wb->list_lock);
222 	list_move(&inode->i_wb_list, &wb->b_more_io);
223 }
224 
225 static void inode_sync_complete(struct inode *inode)
226 {
227 	inode->i_state &= ~I_SYNC;
228 	/* If inode is clean an unused, put it into LRU now... */
229 	inode_add_lru(inode);
230 	/* Waiters must see I_SYNC cleared before being woken up */
231 	smp_mb();
232 	wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234 
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 	bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 	/*
240 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 	 * It _appears_ to be in the future, but is actually in distant past.
242 	 * This test is necessary to prevent such wrapped-around relative times
243 	 * from permanently stopping the whole bdi writeback.
244 	 */
245 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 	return ret;
248 }
249 
250 /*
251  * Move expired (dirtied before work->older_than_this) dirty inodes from
252  * @delaying_queue to @dispatch_queue.
253  */
254 static int move_expired_inodes(struct list_head *delaying_queue,
255 			       struct list_head *dispatch_queue,
256 			       struct wb_writeback_work *work)
257 {
258 	LIST_HEAD(tmp);
259 	struct list_head *pos, *node;
260 	struct super_block *sb = NULL;
261 	struct inode *inode;
262 	int do_sb_sort = 0;
263 	int moved = 0;
264 
265 	while (!list_empty(delaying_queue)) {
266 		inode = wb_inode(delaying_queue->prev);
267 		if (work->older_than_this &&
268 		    inode_dirtied_after(inode, *work->older_than_this))
269 			break;
270 		list_move(&inode->i_wb_list, &tmp);
271 		moved++;
272 		if (sb_is_blkdev_sb(inode->i_sb))
273 			continue;
274 		if (sb && sb != inode->i_sb)
275 			do_sb_sort = 1;
276 		sb = inode->i_sb;
277 	}
278 
279 	/* just one sb in list, splice to dispatch_queue and we're done */
280 	if (!do_sb_sort) {
281 		list_splice(&tmp, dispatch_queue);
282 		goto out;
283 	}
284 
285 	/* Move inodes from one superblock together */
286 	while (!list_empty(&tmp)) {
287 		sb = wb_inode(tmp.prev)->i_sb;
288 		list_for_each_prev_safe(pos, node, &tmp) {
289 			inode = wb_inode(pos);
290 			if (inode->i_sb == sb)
291 				list_move(&inode->i_wb_list, dispatch_queue);
292 		}
293 	}
294 out:
295 	return moved;
296 }
297 
298 /*
299  * Queue all expired dirty inodes for io, eldest first.
300  * Before
301  *         newly dirtied     b_dirty    b_io    b_more_io
302  *         =============>    gf         edc     BA
303  * After
304  *         newly dirtied     b_dirty    b_io    b_more_io
305  *         =============>    g          fBAedc
306  *                                           |
307  *                                           +--> dequeue for IO
308  */
309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
310 {
311 	int moved;
312 	assert_spin_locked(&wb->list_lock);
313 	list_splice_init(&wb->b_more_io, &wb->b_io);
314 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
315 	trace_writeback_queue_io(wb, work, moved);
316 }
317 
318 static int write_inode(struct inode *inode, struct writeback_control *wbc)
319 {
320 	int ret;
321 
322 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
323 		trace_writeback_write_inode_start(inode, wbc);
324 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
325 		trace_writeback_write_inode(inode, wbc);
326 		return ret;
327 	}
328 	return 0;
329 }
330 
331 /*
332  * Wait for writeback on an inode to complete. Called with i_lock held.
333  * Caller must make sure inode cannot go away when we drop i_lock.
334  */
335 static void __inode_wait_for_writeback(struct inode *inode)
336 	__releases(inode->i_lock)
337 	__acquires(inode->i_lock)
338 {
339 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
340 	wait_queue_head_t *wqh;
341 
342 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
343 	while (inode->i_state & I_SYNC) {
344 		spin_unlock(&inode->i_lock);
345 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
346 		spin_lock(&inode->i_lock);
347 	}
348 }
349 
350 /*
351  * Wait for writeback on an inode to complete. Caller must have inode pinned.
352  */
353 void inode_wait_for_writeback(struct inode *inode)
354 {
355 	spin_lock(&inode->i_lock);
356 	__inode_wait_for_writeback(inode);
357 	spin_unlock(&inode->i_lock);
358 }
359 
360 /*
361  * Sleep until I_SYNC is cleared. This function must be called with i_lock
362  * held and drops it. It is aimed for callers not holding any inode reference
363  * so once i_lock is dropped, inode can go away.
364  */
365 static void inode_sleep_on_writeback(struct inode *inode)
366 	__releases(inode->i_lock)
367 {
368 	DEFINE_WAIT(wait);
369 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
370 	int sleep;
371 
372 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
373 	sleep = inode->i_state & I_SYNC;
374 	spin_unlock(&inode->i_lock);
375 	if (sleep)
376 		schedule();
377 	finish_wait(wqh, &wait);
378 }
379 
380 /*
381  * Find proper writeback list for the inode depending on its current state and
382  * possibly also change of its state while we were doing writeback.  Here we
383  * handle things such as livelock prevention or fairness of writeback among
384  * inodes. This function can be called only by flusher thread - noone else
385  * processes all inodes in writeback lists and requeueing inodes behind flusher
386  * thread's back can have unexpected consequences.
387  */
388 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
389 			  struct writeback_control *wbc)
390 {
391 	if (inode->i_state & I_FREEING)
392 		return;
393 
394 	/*
395 	 * Sync livelock prevention. Each inode is tagged and synced in one
396 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
397 	 * the dirty time to prevent enqueue and sync it again.
398 	 */
399 	if ((inode->i_state & I_DIRTY) &&
400 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
401 		inode->dirtied_when = jiffies;
402 
403 	if (wbc->pages_skipped) {
404 		/*
405 		 * writeback is not making progress due to locked
406 		 * buffers. Skip this inode for now.
407 		 */
408 		redirty_tail(inode, wb);
409 		return;
410 	}
411 
412 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
413 		/*
414 		 * We didn't write back all the pages.  nfs_writepages()
415 		 * sometimes bales out without doing anything.
416 		 */
417 		if (wbc->nr_to_write <= 0) {
418 			/* Slice used up. Queue for next turn. */
419 			requeue_io(inode, wb);
420 		} else {
421 			/*
422 			 * Writeback blocked by something other than
423 			 * congestion. Delay the inode for some time to
424 			 * avoid spinning on the CPU (100% iowait)
425 			 * retrying writeback of the dirty page/inode
426 			 * that cannot be performed immediately.
427 			 */
428 			redirty_tail(inode, wb);
429 		}
430 	} else if (inode->i_state & I_DIRTY) {
431 		/*
432 		 * Filesystems can dirty the inode during writeback operations,
433 		 * such as delayed allocation during submission or metadata
434 		 * updates after data IO completion.
435 		 */
436 		redirty_tail(inode, wb);
437 	} else {
438 		/* The inode is clean. Remove from writeback lists. */
439 		list_del_init(&inode->i_wb_list);
440 	}
441 }
442 
443 /*
444  * Write out an inode and its dirty pages. Do not update the writeback list
445  * linkage. That is left to the caller. The caller is also responsible for
446  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
447  */
448 static int
449 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
450 {
451 	struct address_space *mapping = inode->i_mapping;
452 	long nr_to_write = wbc->nr_to_write;
453 	unsigned dirty;
454 	int ret;
455 
456 	WARN_ON(!(inode->i_state & I_SYNC));
457 
458 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
459 
460 	ret = do_writepages(mapping, wbc);
461 
462 	/*
463 	 * Make sure to wait on the data before writing out the metadata.
464 	 * This is important for filesystems that modify metadata on data
465 	 * I/O completion. We don't do it for sync(2) writeback because it has a
466 	 * separate, external IO completion path and ->sync_fs for guaranteeing
467 	 * inode metadata is written back correctly.
468 	 */
469 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
470 		int err = filemap_fdatawait(mapping);
471 		if (ret == 0)
472 			ret = err;
473 	}
474 
475 	/*
476 	 * Some filesystems may redirty the inode during the writeback
477 	 * due to delalloc, clear dirty metadata flags right before
478 	 * write_inode()
479 	 */
480 	spin_lock(&inode->i_lock);
481 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
482 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
483 		inode->i_state &= ~I_DIRTY_PAGES;
484 	dirty = inode->i_state & I_DIRTY;
485 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
486 	spin_unlock(&inode->i_lock);
487 	/* Don't write the inode if only I_DIRTY_PAGES was set */
488 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
489 		int err = write_inode(inode, wbc);
490 		if (ret == 0)
491 			ret = err;
492 	}
493 	trace_writeback_single_inode(inode, wbc, nr_to_write);
494 	return ret;
495 }
496 
497 /*
498  * Write out an inode's dirty pages. Either the caller has an active reference
499  * on the inode or the inode has I_WILL_FREE set.
500  *
501  * This function is designed to be called for writing back one inode which
502  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
503  * and does more profound writeback list handling in writeback_sb_inodes().
504  */
505 static int
506 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
507 		       struct writeback_control *wbc)
508 {
509 	int ret = 0;
510 
511 	spin_lock(&inode->i_lock);
512 	if (!atomic_read(&inode->i_count))
513 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
514 	else
515 		WARN_ON(inode->i_state & I_WILL_FREE);
516 
517 	if (inode->i_state & I_SYNC) {
518 		if (wbc->sync_mode != WB_SYNC_ALL)
519 			goto out;
520 		/*
521 		 * It's a data-integrity sync. We must wait. Since callers hold
522 		 * inode reference or inode has I_WILL_FREE set, it cannot go
523 		 * away under us.
524 		 */
525 		__inode_wait_for_writeback(inode);
526 	}
527 	WARN_ON(inode->i_state & I_SYNC);
528 	/*
529 	 * Skip inode if it is clean and we have no outstanding writeback in
530 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
531 	 * function since flusher thread may be doing for example sync in
532 	 * parallel and if we move the inode, it could get skipped. So here we
533 	 * make sure inode is on some writeback list and leave it there unless
534 	 * we have completely cleaned the inode.
535 	 */
536 	if (!(inode->i_state & I_DIRTY) &&
537 	    (wbc->sync_mode != WB_SYNC_ALL ||
538 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
539 		goto out;
540 	inode->i_state |= I_SYNC;
541 	spin_unlock(&inode->i_lock);
542 
543 	ret = __writeback_single_inode(inode, wbc);
544 
545 	spin_lock(&wb->list_lock);
546 	spin_lock(&inode->i_lock);
547 	/*
548 	 * If inode is clean, remove it from writeback lists. Otherwise don't
549 	 * touch it. See comment above for explanation.
550 	 */
551 	if (!(inode->i_state & I_DIRTY))
552 		list_del_init(&inode->i_wb_list);
553 	spin_unlock(&wb->list_lock);
554 	inode_sync_complete(inode);
555 out:
556 	spin_unlock(&inode->i_lock);
557 	return ret;
558 }
559 
560 static long writeback_chunk_size(struct backing_dev_info *bdi,
561 				 struct wb_writeback_work *work)
562 {
563 	long pages;
564 
565 	/*
566 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
567 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
568 	 * here avoids calling into writeback_inodes_wb() more than once.
569 	 *
570 	 * The intended call sequence for WB_SYNC_ALL writeback is:
571 	 *
572 	 *      wb_writeback()
573 	 *          writeback_sb_inodes()       <== called only once
574 	 *              write_cache_pages()     <== called once for each inode
575 	 *                   (quickly) tag currently dirty pages
576 	 *                   (maybe slowly) sync all tagged pages
577 	 */
578 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
579 		pages = LONG_MAX;
580 	else {
581 		pages = min(bdi->avg_write_bandwidth / 2,
582 			    global_dirty_limit / DIRTY_SCOPE);
583 		pages = min(pages, work->nr_pages);
584 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
585 				   MIN_WRITEBACK_PAGES);
586 	}
587 
588 	return pages;
589 }
590 
591 /*
592  * Write a portion of b_io inodes which belong to @sb.
593  *
594  * Return the number of pages and/or inodes written.
595  */
596 static long writeback_sb_inodes(struct super_block *sb,
597 				struct bdi_writeback *wb,
598 				struct wb_writeback_work *work)
599 {
600 	struct writeback_control wbc = {
601 		.sync_mode		= work->sync_mode,
602 		.tagged_writepages	= work->tagged_writepages,
603 		.for_kupdate		= work->for_kupdate,
604 		.for_background		= work->for_background,
605 		.for_sync		= work->for_sync,
606 		.range_cyclic		= work->range_cyclic,
607 		.range_start		= 0,
608 		.range_end		= LLONG_MAX,
609 	};
610 	unsigned long start_time = jiffies;
611 	long write_chunk;
612 	long wrote = 0;  /* count both pages and inodes */
613 
614 	while (!list_empty(&wb->b_io)) {
615 		struct inode *inode = wb_inode(wb->b_io.prev);
616 
617 		if (inode->i_sb != sb) {
618 			if (work->sb) {
619 				/*
620 				 * We only want to write back data for this
621 				 * superblock, move all inodes not belonging
622 				 * to it back onto the dirty list.
623 				 */
624 				redirty_tail(inode, wb);
625 				continue;
626 			}
627 
628 			/*
629 			 * The inode belongs to a different superblock.
630 			 * Bounce back to the caller to unpin this and
631 			 * pin the next superblock.
632 			 */
633 			break;
634 		}
635 
636 		/*
637 		 * Don't bother with new inodes or inodes being freed, first
638 		 * kind does not need periodic writeout yet, and for the latter
639 		 * kind writeout is handled by the freer.
640 		 */
641 		spin_lock(&inode->i_lock);
642 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
643 			spin_unlock(&inode->i_lock);
644 			redirty_tail(inode, wb);
645 			continue;
646 		}
647 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
648 			/*
649 			 * If this inode is locked for writeback and we are not
650 			 * doing writeback-for-data-integrity, move it to
651 			 * b_more_io so that writeback can proceed with the
652 			 * other inodes on s_io.
653 			 *
654 			 * We'll have another go at writing back this inode
655 			 * when we completed a full scan of b_io.
656 			 */
657 			spin_unlock(&inode->i_lock);
658 			requeue_io(inode, wb);
659 			trace_writeback_sb_inodes_requeue(inode);
660 			continue;
661 		}
662 		spin_unlock(&wb->list_lock);
663 
664 		/*
665 		 * We already requeued the inode if it had I_SYNC set and we
666 		 * are doing WB_SYNC_NONE writeback. So this catches only the
667 		 * WB_SYNC_ALL case.
668 		 */
669 		if (inode->i_state & I_SYNC) {
670 			/* Wait for I_SYNC. This function drops i_lock... */
671 			inode_sleep_on_writeback(inode);
672 			/* Inode may be gone, start again */
673 			spin_lock(&wb->list_lock);
674 			continue;
675 		}
676 		inode->i_state |= I_SYNC;
677 		spin_unlock(&inode->i_lock);
678 
679 		write_chunk = writeback_chunk_size(wb->bdi, work);
680 		wbc.nr_to_write = write_chunk;
681 		wbc.pages_skipped = 0;
682 
683 		/*
684 		 * We use I_SYNC to pin the inode in memory. While it is set
685 		 * evict_inode() will wait so the inode cannot be freed.
686 		 */
687 		__writeback_single_inode(inode, &wbc);
688 
689 		work->nr_pages -= write_chunk - wbc.nr_to_write;
690 		wrote += write_chunk - wbc.nr_to_write;
691 		spin_lock(&wb->list_lock);
692 		spin_lock(&inode->i_lock);
693 		if (!(inode->i_state & I_DIRTY))
694 			wrote++;
695 		requeue_inode(inode, wb, &wbc);
696 		inode_sync_complete(inode);
697 		spin_unlock(&inode->i_lock);
698 		cond_resched_lock(&wb->list_lock);
699 		/*
700 		 * bail out to wb_writeback() often enough to check
701 		 * background threshold and other termination conditions.
702 		 */
703 		if (wrote) {
704 			if (time_is_before_jiffies(start_time + HZ / 10UL))
705 				break;
706 			if (work->nr_pages <= 0)
707 				break;
708 		}
709 	}
710 	return wrote;
711 }
712 
713 static long __writeback_inodes_wb(struct bdi_writeback *wb,
714 				  struct wb_writeback_work *work)
715 {
716 	unsigned long start_time = jiffies;
717 	long wrote = 0;
718 
719 	while (!list_empty(&wb->b_io)) {
720 		struct inode *inode = wb_inode(wb->b_io.prev);
721 		struct super_block *sb = inode->i_sb;
722 
723 		if (!grab_super_passive(sb)) {
724 			/*
725 			 * grab_super_passive() may fail consistently due to
726 			 * s_umount being grabbed by someone else. Don't use
727 			 * requeue_io() to avoid busy retrying the inode/sb.
728 			 */
729 			redirty_tail(inode, wb);
730 			continue;
731 		}
732 		wrote += writeback_sb_inodes(sb, wb, work);
733 		drop_super(sb);
734 
735 		/* refer to the same tests at the end of writeback_sb_inodes */
736 		if (wrote) {
737 			if (time_is_before_jiffies(start_time + HZ / 10UL))
738 				break;
739 			if (work->nr_pages <= 0)
740 				break;
741 		}
742 	}
743 	/* Leave any unwritten inodes on b_io */
744 	return wrote;
745 }
746 
747 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
748 				enum wb_reason reason)
749 {
750 	struct wb_writeback_work work = {
751 		.nr_pages	= nr_pages,
752 		.sync_mode	= WB_SYNC_NONE,
753 		.range_cyclic	= 1,
754 		.reason		= reason,
755 	};
756 
757 	spin_lock(&wb->list_lock);
758 	if (list_empty(&wb->b_io))
759 		queue_io(wb, &work);
760 	__writeback_inodes_wb(wb, &work);
761 	spin_unlock(&wb->list_lock);
762 
763 	return nr_pages - work.nr_pages;
764 }
765 
766 static bool over_bground_thresh(struct backing_dev_info *bdi)
767 {
768 	unsigned long background_thresh, dirty_thresh;
769 
770 	global_dirty_limits(&background_thresh, &dirty_thresh);
771 
772 	if (global_page_state(NR_FILE_DIRTY) +
773 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
774 		return true;
775 
776 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
777 				bdi_dirty_limit(bdi, background_thresh))
778 		return true;
779 
780 	return false;
781 }
782 
783 /*
784  * Called under wb->list_lock. If there are multiple wb per bdi,
785  * only the flusher working on the first wb should do it.
786  */
787 static void wb_update_bandwidth(struct bdi_writeback *wb,
788 				unsigned long start_time)
789 {
790 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
791 }
792 
793 /*
794  * Explicit flushing or periodic writeback of "old" data.
795  *
796  * Define "old": the first time one of an inode's pages is dirtied, we mark the
797  * dirtying-time in the inode's address_space.  So this periodic writeback code
798  * just walks the superblock inode list, writing back any inodes which are
799  * older than a specific point in time.
800  *
801  * Try to run once per dirty_writeback_interval.  But if a writeback event
802  * takes longer than a dirty_writeback_interval interval, then leave a
803  * one-second gap.
804  *
805  * older_than_this takes precedence over nr_to_write.  So we'll only write back
806  * all dirty pages if they are all attached to "old" mappings.
807  */
808 static long wb_writeback(struct bdi_writeback *wb,
809 			 struct wb_writeback_work *work)
810 {
811 	unsigned long wb_start = jiffies;
812 	long nr_pages = work->nr_pages;
813 	unsigned long oldest_jif;
814 	struct inode *inode;
815 	long progress;
816 
817 	oldest_jif = jiffies;
818 	work->older_than_this = &oldest_jif;
819 
820 	spin_lock(&wb->list_lock);
821 	for (;;) {
822 		/*
823 		 * Stop writeback when nr_pages has been consumed
824 		 */
825 		if (work->nr_pages <= 0)
826 			break;
827 
828 		/*
829 		 * Background writeout and kupdate-style writeback may
830 		 * run forever. Stop them if there is other work to do
831 		 * so that e.g. sync can proceed. They'll be restarted
832 		 * after the other works are all done.
833 		 */
834 		if ((work->for_background || work->for_kupdate) &&
835 		    !list_empty(&wb->bdi->work_list))
836 			break;
837 
838 		/*
839 		 * For background writeout, stop when we are below the
840 		 * background dirty threshold
841 		 */
842 		if (work->for_background && !over_bground_thresh(wb->bdi))
843 			break;
844 
845 		/*
846 		 * Kupdate and background works are special and we want to
847 		 * include all inodes that need writing. Livelock avoidance is
848 		 * handled by these works yielding to any other work so we are
849 		 * safe.
850 		 */
851 		if (work->for_kupdate) {
852 			oldest_jif = jiffies -
853 				msecs_to_jiffies(dirty_expire_interval * 10);
854 		} else if (work->for_background)
855 			oldest_jif = jiffies;
856 
857 		trace_writeback_start(wb->bdi, work);
858 		if (list_empty(&wb->b_io))
859 			queue_io(wb, work);
860 		if (work->sb)
861 			progress = writeback_sb_inodes(work->sb, wb, work);
862 		else
863 			progress = __writeback_inodes_wb(wb, work);
864 		trace_writeback_written(wb->bdi, work);
865 
866 		wb_update_bandwidth(wb, wb_start);
867 
868 		/*
869 		 * Did we write something? Try for more
870 		 *
871 		 * Dirty inodes are moved to b_io for writeback in batches.
872 		 * The completion of the current batch does not necessarily
873 		 * mean the overall work is done. So we keep looping as long
874 		 * as made some progress on cleaning pages or inodes.
875 		 */
876 		if (progress)
877 			continue;
878 		/*
879 		 * No more inodes for IO, bail
880 		 */
881 		if (list_empty(&wb->b_more_io))
882 			break;
883 		/*
884 		 * Nothing written. Wait for some inode to
885 		 * become available for writeback. Otherwise
886 		 * we'll just busyloop.
887 		 */
888 		if (!list_empty(&wb->b_more_io))  {
889 			trace_writeback_wait(wb->bdi, work);
890 			inode = wb_inode(wb->b_more_io.prev);
891 			spin_lock(&inode->i_lock);
892 			spin_unlock(&wb->list_lock);
893 			/* This function drops i_lock... */
894 			inode_sleep_on_writeback(inode);
895 			spin_lock(&wb->list_lock);
896 		}
897 	}
898 	spin_unlock(&wb->list_lock);
899 
900 	return nr_pages - work->nr_pages;
901 }
902 
903 /*
904  * Return the next wb_writeback_work struct that hasn't been processed yet.
905  */
906 static struct wb_writeback_work *
907 get_next_work_item(struct backing_dev_info *bdi)
908 {
909 	struct wb_writeback_work *work = NULL;
910 
911 	spin_lock_bh(&bdi->wb_lock);
912 	if (!list_empty(&bdi->work_list)) {
913 		work = list_entry(bdi->work_list.next,
914 				  struct wb_writeback_work, list);
915 		list_del_init(&work->list);
916 	}
917 	spin_unlock_bh(&bdi->wb_lock);
918 	return work;
919 }
920 
921 /*
922  * Add in the number of potentially dirty inodes, because each inode
923  * write can dirty pagecache in the underlying blockdev.
924  */
925 static unsigned long get_nr_dirty_pages(void)
926 {
927 	return global_page_state(NR_FILE_DIRTY) +
928 		global_page_state(NR_UNSTABLE_NFS) +
929 		get_nr_dirty_inodes();
930 }
931 
932 static long wb_check_background_flush(struct bdi_writeback *wb)
933 {
934 	if (over_bground_thresh(wb->bdi)) {
935 
936 		struct wb_writeback_work work = {
937 			.nr_pages	= LONG_MAX,
938 			.sync_mode	= WB_SYNC_NONE,
939 			.for_background	= 1,
940 			.range_cyclic	= 1,
941 			.reason		= WB_REASON_BACKGROUND,
942 		};
943 
944 		return wb_writeback(wb, &work);
945 	}
946 
947 	return 0;
948 }
949 
950 static long wb_check_old_data_flush(struct bdi_writeback *wb)
951 {
952 	unsigned long expired;
953 	long nr_pages;
954 
955 	/*
956 	 * When set to zero, disable periodic writeback
957 	 */
958 	if (!dirty_writeback_interval)
959 		return 0;
960 
961 	expired = wb->last_old_flush +
962 			msecs_to_jiffies(dirty_writeback_interval * 10);
963 	if (time_before(jiffies, expired))
964 		return 0;
965 
966 	wb->last_old_flush = jiffies;
967 	nr_pages = get_nr_dirty_pages();
968 
969 	if (nr_pages) {
970 		struct wb_writeback_work work = {
971 			.nr_pages	= nr_pages,
972 			.sync_mode	= WB_SYNC_NONE,
973 			.for_kupdate	= 1,
974 			.range_cyclic	= 1,
975 			.reason		= WB_REASON_PERIODIC,
976 		};
977 
978 		return wb_writeback(wb, &work);
979 	}
980 
981 	return 0;
982 }
983 
984 /*
985  * Retrieve work items and do the writeback they describe
986  */
987 static long wb_do_writeback(struct bdi_writeback *wb)
988 {
989 	struct backing_dev_info *bdi = wb->bdi;
990 	struct wb_writeback_work *work;
991 	long wrote = 0;
992 
993 	set_bit(BDI_writeback_running, &wb->bdi->state);
994 	while ((work = get_next_work_item(bdi)) != NULL) {
995 
996 		trace_writeback_exec(bdi, work);
997 
998 		wrote += wb_writeback(wb, work);
999 
1000 		/*
1001 		 * Notify the caller of completion if this is a synchronous
1002 		 * work item, otherwise just free it.
1003 		 */
1004 		if (work->done)
1005 			complete(work->done);
1006 		else
1007 			kfree(work);
1008 	}
1009 
1010 	/*
1011 	 * Check for periodic writeback, kupdated() style
1012 	 */
1013 	wrote += wb_check_old_data_flush(wb);
1014 	wrote += wb_check_background_flush(wb);
1015 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1016 
1017 	return wrote;
1018 }
1019 
1020 /*
1021  * Handle writeback of dirty data for the device backed by this bdi. Also
1022  * reschedules periodically and does kupdated style flushing.
1023  */
1024 void bdi_writeback_workfn(struct work_struct *work)
1025 {
1026 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1027 						struct bdi_writeback, dwork);
1028 	struct backing_dev_info *bdi = wb->bdi;
1029 	long pages_written;
1030 
1031 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1032 	current->flags |= PF_SWAPWRITE;
1033 
1034 	if (likely(!current_is_workqueue_rescuer() ||
1035 		   !test_bit(BDI_registered, &bdi->state))) {
1036 		/*
1037 		 * The normal path.  Keep writing back @bdi until its
1038 		 * work_list is empty.  Note that this path is also taken
1039 		 * if @bdi is shutting down even when we're running off the
1040 		 * rescuer as work_list needs to be drained.
1041 		 */
1042 		do {
1043 			pages_written = wb_do_writeback(wb);
1044 			trace_writeback_pages_written(pages_written);
1045 		} while (!list_empty(&bdi->work_list));
1046 	} else {
1047 		/*
1048 		 * bdi_wq can't get enough workers and we're running off
1049 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1050 		 * enough for efficient IO.
1051 		 */
1052 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1053 						    WB_REASON_FORKER_THREAD);
1054 		trace_writeback_pages_written(pages_written);
1055 	}
1056 
1057 	if (!list_empty(&bdi->work_list))
1058 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1059 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1060 		bdi_wakeup_thread_delayed(bdi);
1061 
1062 	current->flags &= ~PF_SWAPWRITE;
1063 }
1064 
1065 /*
1066  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1067  * the whole world.
1068  */
1069 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1070 {
1071 	struct backing_dev_info *bdi;
1072 
1073 	if (!nr_pages)
1074 		nr_pages = get_nr_dirty_pages();
1075 
1076 	rcu_read_lock();
1077 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1078 		if (!bdi_has_dirty_io(bdi))
1079 			continue;
1080 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1081 	}
1082 	rcu_read_unlock();
1083 }
1084 
1085 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1086 {
1087 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1088 		struct dentry *dentry;
1089 		const char *name = "?";
1090 
1091 		dentry = d_find_alias(inode);
1092 		if (dentry) {
1093 			spin_lock(&dentry->d_lock);
1094 			name = (const char *) dentry->d_name.name;
1095 		}
1096 		printk(KERN_DEBUG
1097 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1098 		       current->comm, task_pid_nr(current), inode->i_ino,
1099 		       name, inode->i_sb->s_id);
1100 		if (dentry) {
1101 			spin_unlock(&dentry->d_lock);
1102 			dput(dentry);
1103 		}
1104 	}
1105 }
1106 
1107 /**
1108  *	__mark_inode_dirty -	internal function
1109  *	@inode: inode to mark
1110  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1111  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1112  *  	mark_inode_dirty_sync.
1113  *
1114  * Put the inode on the super block's dirty list.
1115  *
1116  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1117  * dirty list only if it is hashed or if it refers to a blockdev.
1118  * If it was not hashed, it will never be added to the dirty list
1119  * even if it is later hashed, as it will have been marked dirty already.
1120  *
1121  * In short, make sure you hash any inodes _before_ you start marking
1122  * them dirty.
1123  *
1124  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1125  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1126  * the kernel-internal blockdev inode represents the dirtying time of the
1127  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1128  * page->mapping->host, so the page-dirtying time is recorded in the internal
1129  * blockdev inode.
1130  */
1131 void __mark_inode_dirty(struct inode *inode, int flags)
1132 {
1133 	struct super_block *sb = inode->i_sb;
1134 	struct backing_dev_info *bdi = NULL;
1135 
1136 	/*
1137 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1138 	 * dirty the inode itself
1139 	 */
1140 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1141 		trace_writeback_dirty_inode_start(inode, flags);
1142 
1143 		if (sb->s_op->dirty_inode)
1144 			sb->s_op->dirty_inode(inode, flags);
1145 
1146 		trace_writeback_dirty_inode(inode, flags);
1147 	}
1148 
1149 	/*
1150 	 * make sure that changes are seen by all cpus before we test i_state
1151 	 * -- mikulas
1152 	 */
1153 	smp_mb();
1154 
1155 	/* avoid the locking if we can */
1156 	if ((inode->i_state & flags) == flags)
1157 		return;
1158 
1159 	if (unlikely(block_dump))
1160 		block_dump___mark_inode_dirty(inode);
1161 
1162 	spin_lock(&inode->i_lock);
1163 	if ((inode->i_state & flags) != flags) {
1164 		const int was_dirty = inode->i_state & I_DIRTY;
1165 
1166 		inode->i_state |= flags;
1167 
1168 		/*
1169 		 * If the inode is being synced, just update its dirty state.
1170 		 * The unlocker will place the inode on the appropriate
1171 		 * superblock list, based upon its state.
1172 		 */
1173 		if (inode->i_state & I_SYNC)
1174 			goto out_unlock_inode;
1175 
1176 		/*
1177 		 * Only add valid (hashed) inodes to the superblock's
1178 		 * dirty list.  Add blockdev inodes as well.
1179 		 */
1180 		if (!S_ISBLK(inode->i_mode)) {
1181 			if (inode_unhashed(inode))
1182 				goto out_unlock_inode;
1183 		}
1184 		if (inode->i_state & I_FREEING)
1185 			goto out_unlock_inode;
1186 
1187 		/*
1188 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1189 		 * reposition it (that would break b_dirty time-ordering).
1190 		 */
1191 		if (!was_dirty) {
1192 			bool wakeup_bdi = false;
1193 			bdi = inode_to_bdi(inode);
1194 
1195 			spin_unlock(&inode->i_lock);
1196 			spin_lock(&bdi->wb.list_lock);
1197 			if (bdi_cap_writeback_dirty(bdi)) {
1198 				WARN(!test_bit(BDI_registered, &bdi->state),
1199 				     "bdi-%s not registered\n", bdi->name);
1200 
1201 				/*
1202 				 * If this is the first dirty inode for this
1203 				 * bdi, we have to wake-up the corresponding
1204 				 * bdi thread to make sure background
1205 				 * write-back happens later.
1206 				 */
1207 				if (!wb_has_dirty_io(&bdi->wb))
1208 					wakeup_bdi = true;
1209 			}
1210 
1211 			inode->dirtied_when = jiffies;
1212 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1213 			spin_unlock(&bdi->wb.list_lock);
1214 
1215 			if (wakeup_bdi)
1216 				bdi_wakeup_thread_delayed(bdi);
1217 			return;
1218 		}
1219 	}
1220 out_unlock_inode:
1221 	spin_unlock(&inode->i_lock);
1222 
1223 }
1224 EXPORT_SYMBOL(__mark_inode_dirty);
1225 
1226 static void wait_sb_inodes(struct super_block *sb)
1227 {
1228 	struct inode *inode, *old_inode = NULL;
1229 
1230 	/*
1231 	 * We need to be protected against the filesystem going from
1232 	 * r/o to r/w or vice versa.
1233 	 */
1234 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1235 
1236 	spin_lock(&inode_sb_list_lock);
1237 
1238 	/*
1239 	 * Data integrity sync. Must wait for all pages under writeback,
1240 	 * because there may have been pages dirtied before our sync
1241 	 * call, but which had writeout started before we write it out.
1242 	 * In which case, the inode may not be on the dirty list, but
1243 	 * we still have to wait for that writeout.
1244 	 */
1245 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1246 		struct address_space *mapping = inode->i_mapping;
1247 
1248 		spin_lock(&inode->i_lock);
1249 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1250 		    (mapping->nrpages == 0)) {
1251 			spin_unlock(&inode->i_lock);
1252 			continue;
1253 		}
1254 		__iget(inode);
1255 		spin_unlock(&inode->i_lock);
1256 		spin_unlock(&inode_sb_list_lock);
1257 
1258 		/*
1259 		 * We hold a reference to 'inode' so it couldn't have been
1260 		 * removed from s_inodes list while we dropped the
1261 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1262 		 * be holding the last reference and we cannot iput it under
1263 		 * inode_sb_list_lock. So we keep the reference and iput it
1264 		 * later.
1265 		 */
1266 		iput(old_inode);
1267 		old_inode = inode;
1268 
1269 		filemap_fdatawait(mapping);
1270 
1271 		cond_resched();
1272 
1273 		spin_lock(&inode_sb_list_lock);
1274 	}
1275 	spin_unlock(&inode_sb_list_lock);
1276 	iput(old_inode);
1277 }
1278 
1279 /**
1280  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1281  * @sb: the superblock
1282  * @nr: the number of pages to write
1283  * @reason: reason why some writeback work initiated
1284  *
1285  * Start writeback on some inodes on this super_block. No guarantees are made
1286  * on how many (if any) will be written, and this function does not wait
1287  * for IO completion of submitted IO.
1288  */
1289 void writeback_inodes_sb_nr(struct super_block *sb,
1290 			    unsigned long nr,
1291 			    enum wb_reason reason)
1292 {
1293 	DECLARE_COMPLETION_ONSTACK(done);
1294 	struct wb_writeback_work work = {
1295 		.sb			= sb,
1296 		.sync_mode		= WB_SYNC_NONE,
1297 		.tagged_writepages	= 1,
1298 		.done			= &done,
1299 		.nr_pages		= nr,
1300 		.reason			= reason,
1301 	};
1302 
1303 	if (sb->s_bdi == &noop_backing_dev_info)
1304 		return;
1305 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1306 	bdi_queue_work(sb->s_bdi, &work);
1307 	wait_for_completion(&done);
1308 }
1309 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1310 
1311 /**
1312  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1313  * @sb: the superblock
1314  * @reason: reason why some writeback work was initiated
1315  *
1316  * Start writeback on some inodes on this super_block. No guarantees are made
1317  * on how many (if any) will be written, and this function does not wait
1318  * for IO completion of submitted IO.
1319  */
1320 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1321 {
1322 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1323 }
1324 EXPORT_SYMBOL(writeback_inodes_sb);
1325 
1326 /**
1327  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1328  * @sb: the superblock
1329  * @nr: the number of pages to write
1330  * @reason: the reason of writeback
1331  *
1332  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1333  * Returns 1 if writeback was started, 0 if not.
1334  */
1335 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1336 				  unsigned long nr,
1337 				  enum wb_reason reason)
1338 {
1339 	if (writeback_in_progress(sb->s_bdi))
1340 		return 1;
1341 
1342 	if (!down_read_trylock(&sb->s_umount))
1343 		return 0;
1344 
1345 	writeback_inodes_sb_nr(sb, nr, reason);
1346 	up_read(&sb->s_umount);
1347 	return 1;
1348 }
1349 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1350 
1351 /**
1352  * try_to_writeback_inodes_sb - try to start writeback if none underway
1353  * @sb: the superblock
1354  * @reason: reason why some writeback work was initiated
1355  *
1356  * Implement by try_to_writeback_inodes_sb_nr()
1357  * Returns 1 if writeback was started, 0 if not.
1358  */
1359 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1360 {
1361 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1362 }
1363 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1364 
1365 /**
1366  * sync_inodes_sb	-	sync sb inode pages
1367  * @sb: the superblock
1368  *
1369  * This function writes and waits on any dirty inode belonging to this
1370  * super_block.
1371  */
1372 void sync_inodes_sb(struct super_block *sb)
1373 {
1374 	DECLARE_COMPLETION_ONSTACK(done);
1375 	struct wb_writeback_work work = {
1376 		.sb		= sb,
1377 		.sync_mode	= WB_SYNC_ALL,
1378 		.nr_pages	= LONG_MAX,
1379 		.range_cyclic	= 0,
1380 		.done		= &done,
1381 		.reason		= WB_REASON_SYNC,
1382 		.for_sync	= 1,
1383 	};
1384 
1385 	/* Nothing to do? */
1386 	if (sb->s_bdi == &noop_backing_dev_info)
1387 		return;
1388 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1389 
1390 	bdi_queue_work(sb->s_bdi, &work);
1391 	wait_for_completion(&done);
1392 
1393 	wait_sb_inodes(sb);
1394 }
1395 EXPORT_SYMBOL(sync_inodes_sb);
1396 
1397 /**
1398  * write_inode_now	-	write an inode to disk
1399  * @inode: inode to write to disk
1400  * @sync: whether the write should be synchronous or not
1401  *
1402  * This function commits an inode to disk immediately if it is dirty. This is
1403  * primarily needed by knfsd.
1404  *
1405  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1406  */
1407 int write_inode_now(struct inode *inode, int sync)
1408 {
1409 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1410 	struct writeback_control wbc = {
1411 		.nr_to_write = LONG_MAX,
1412 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1413 		.range_start = 0,
1414 		.range_end = LLONG_MAX,
1415 	};
1416 
1417 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1418 		wbc.nr_to_write = 0;
1419 
1420 	might_sleep();
1421 	return writeback_single_inode(inode, wb, &wbc);
1422 }
1423 EXPORT_SYMBOL(write_inode_now);
1424 
1425 /**
1426  * sync_inode - write an inode and its pages to disk.
1427  * @inode: the inode to sync
1428  * @wbc: controls the writeback mode
1429  *
1430  * sync_inode() will write an inode and its pages to disk.  It will also
1431  * correctly update the inode on its superblock's dirty inode lists and will
1432  * update inode->i_state.
1433  *
1434  * The caller must have a ref on the inode.
1435  */
1436 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1437 {
1438 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1439 }
1440 EXPORT_SYMBOL(sync_inode);
1441 
1442 /**
1443  * sync_inode_metadata - write an inode to disk
1444  * @inode: the inode to sync
1445  * @wait: wait for I/O to complete.
1446  *
1447  * Write an inode to disk and adjust its dirty state after completion.
1448  *
1449  * Note: only writes the actual inode, no associated data or other metadata.
1450  */
1451 int sync_inode_metadata(struct inode *inode, int wait)
1452 {
1453 	struct writeback_control wbc = {
1454 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1455 		.nr_to_write = 0, /* metadata-only */
1456 	};
1457 
1458 	return sync_inode(inode, &wbc);
1459 }
1460 EXPORT_SYMBOL(sync_inode_metadata);
1461