xref: /openbmc/linux/fs/fs-writeback.c (revision 93dc544c)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	akpm@zip.com.au
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
20 #include <linux/fs.h>
21 #include <linux/mm.h>
22 #include <linux/writeback.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/buffer_head.h>
26 #include "internal.h"
27 
28 
29 /**
30  * writeback_acquire - attempt to get exclusive writeback access to a device
31  * @bdi: the device's backing_dev_info structure
32  *
33  * It is a waste of resources to have more than one pdflush thread blocked on
34  * a single request queue.  Exclusion at the request_queue level is obtained
35  * via a flag in the request_queue's backing_dev_info.state.
36  *
37  * Non-request_queue-backed address_spaces will share default_backing_dev_info,
38  * unless they implement their own.  Which is somewhat inefficient, as this
39  * may prevent concurrent writeback against multiple devices.
40  */
41 static int writeback_acquire(struct backing_dev_info *bdi)
42 {
43 	return !test_and_set_bit(BDI_pdflush, &bdi->state);
44 }
45 
46 /**
47  * writeback_in_progress - determine whether there is writeback in progress
48  * @bdi: the device's backing_dev_info structure.
49  *
50  * Determine whether there is writeback in progress against a backing device.
51  */
52 int writeback_in_progress(struct backing_dev_info *bdi)
53 {
54 	return test_bit(BDI_pdflush, &bdi->state);
55 }
56 
57 /**
58  * writeback_release - relinquish exclusive writeback access against a device.
59  * @bdi: the device's backing_dev_info structure
60  */
61 static void writeback_release(struct backing_dev_info *bdi)
62 {
63 	BUG_ON(!writeback_in_progress(bdi));
64 	clear_bit(BDI_pdflush, &bdi->state);
65 }
66 
67 /**
68  *	__mark_inode_dirty -	internal function
69  *	@inode: inode to mark
70  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
71  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
72  *  	mark_inode_dirty_sync.
73  *
74  * Put the inode on the super block's dirty list.
75  *
76  * CAREFUL! We mark it dirty unconditionally, but move it onto the
77  * dirty list only if it is hashed or if it refers to a blockdev.
78  * If it was not hashed, it will never be added to the dirty list
79  * even if it is later hashed, as it will have been marked dirty already.
80  *
81  * In short, make sure you hash any inodes _before_ you start marking
82  * them dirty.
83  *
84  * This function *must* be atomic for the I_DIRTY_PAGES case -
85  * set_page_dirty() is called under spinlock in several places.
86  *
87  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
88  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
89  * the kernel-internal blockdev inode represents the dirtying time of the
90  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
91  * page->mapping->host, so the page-dirtying time is recorded in the internal
92  * blockdev inode.
93  */
94 void __mark_inode_dirty(struct inode *inode, int flags)
95 {
96 	struct super_block *sb = inode->i_sb;
97 
98 	/*
99 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
100 	 * dirty the inode itself
101 	 */
102 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
103 		if (sb->s_op->dirty_inode)
104 			sb->s_op->dirty_inode(inode);
105 	}
106 
107 	/*
108 	 * make sure that changes are seen by all cpus before we test i_state
109 	 * -- mikulas
110 	 */
111 	smp_mb();
112 
113 	/* avoid the locking if we can */
114 	if ((inode->i_state & flags) == flags)
115 		return;
116 
117 	if (unlikely(block_dump)) {
118 		struct dentry *dentry = NULL;
119 		const char *name = "?";
120 
121 		if (!list_empty(&inode->i_dentry)) {
122 			dentry = list_entry(inode->i_dentry.next,
123 					    struct dentry, d_alias);
124 			if (dentry && dentry->d_name.name)
125 				name = (const char *) dentry->d_name.name;
126 		}
127 
128 		if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
129 			printk(KERN_DEBUG
130 			       "%s(%d): dirtied inode %lu (%s) on %s\n",
131 			       current->comm, task_pid_nr(current), inode->i_ino,
132 			       name, inode->i_sb->s_id);
133 	}
134 
135 	spin_lock(&inode_lock);
136 	if ((inode->i_state & flags) != flags) {
137 		const int was_dirty = inode->i_state & I_DIRTY;
138 
139 		inode->i_state |= flags;
140 
141 		/*
142 		 * If the inode is being synced, just update its dirty state.
143 		 * The unlocker will place the inode on the appropriate
144 		 * superblock list, based upon its state.
145 		 */
146 		if (inode->i_state & I_SYNC)
147 			goto out;
148 
149 		/*
150 		 * Only add valid (hashed) inodes to the superblock's
151 		 * dirty list.  Add blockdev inodes as well.
152 		 */
153 		if (!S_ISBLK(inode->i_mode)) {
154 			if (hlist_unhashed(&inode->i_hash))
155 				goto out;
156 		}
157 		if (inode->i_state & (I_FREEING|I_CLEAR))
158 			goto out;
159 
160 		/*
161 		 * If the inode was already on s_dirty/s_io/s_more_io, don't
162 		 * reposition it (that would break s_dirty time-ordering).
163 		 */
164 		if (!was_dirty) {
165 			inode->dirtied_when = jiffies;
166 			list_move(&inode->i_list, &sb->s_dirty);
167 		}
168 	}
169 out:
170 	spin_unlock(&inode_lock);
171 }
172 
173 EXPORT_SYMBOL(__mark_inode_dirty);
174 
175 static int write_inode(struct inode *inode, int sync)
176 {
177 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
178 		return inode->i_sb->s_op->write_inode(inode, sync);
179 	return 0;
180 }
181 
182 /*
183  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
184  * furthest end of its superblock's dirty-inode list.
185  *
186  * Before stamping the inode's ->dirtied_when, we check to see whether it is
187  * already the most-recently-dirtied inode on the s_dirty list.  If that is
188  * the case then the inode must have been redirtied while it was being written
189  * out and we don't reset its dirtied_when.
190  */
191 static void redirty_tail(struct inode *inode)
192 {
193 	struct super_block *sb = inode->i_sb;
194 
195 	if (!list_empty(&sb->s_dirty)) {
196 		struct inode *tail_inode;
197 
198 		tail_inode = list_entry(sb->s_dirty.next, struct inode, i_list);
199 		if (!time_after_eq(inode->dirtied_when,
200 				tail_inode->dirtied_when))
201 			inode->dirtied_when = jiffies;
202 	}
203 	list_move(&inode->i_list, &sb->s_dirty);
204 }
205 
206 /*
207  * requeue inode for re-scanning after sb->s_io list is exhausted.
208  */
209 static void requeue_io(struct inode *inode)
210 {
211 	list_move(&inode->i_list, &inode->i_sb->s_more_io);
212 }
213 
214 static void inode_sync_complete(struct inode *inode)
215 {
216 	/*
217 	 * Prevent speculative execution through spin_unlock(&inode_lock);
218 	 */
219 	smp_mb();
220 	wake_up_bit(&inode->i_state, __I_SYNC);
221 }
222 
223 /*
224  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
225  */
226 static void move_expired_inodes(struct list_head *delaying_queue,
227 			       struct list_head *dispatch_queue,
228 				unsigned long *older_than_this)
229 {
230 	while (!list_empty(delaying_queue)) {
231 		struct inode *inode = list_entry(delaying_queue->prev,
232 						struct inode, i_list);
233 		if (older_than_this &&
234 			time_after(inode->dirtied_when, *older_than_this))
235 			break;
236 		list_move(&inode->i_list, dispatch_queue);
237 	}
238 }
239 
240 /*
241  * Queue all expired dirty inodes for io, eldest first.
242  */
243 static void queue_io(struct super_block *sb,
244 				unsigned long *older_than_this)
245 {
246 	list_splice_init(&sb->s_more_io, sb->s_io.prev);
247 	move_expired_inodes(&sb->s_dirty, &sb->s_io, older_than_this);
248 }
249 
250 int sb_has_dirty_inodes(struct super_block *sb)
251 {
252 	return !list_empty(&sb->s_dirty) ||
253 	       !list_empty(&sb->s_io) ||
254 	       !list_empty(&sb->s_more_io);
255 }
256 EXPORT_SYMBOL(sb_has_dirty_inodes);
257 
258 /*
259  * Write a single inode's dirty pages and inode data out to disk.
260  * If `wait' is set, wait on the writeout.
261  *
262  * The whole writeout design is quite complex and fragile.  We want to avoid
263  * starvation of particular inodes when others are being redirtied, prevent
264  * livelocks, etc.
265  *
266  * Called under inode_lock.
267  */
268 static int
269 __sync_single_inode(struct inode *inode, struct writeback_control *wbc)
270 {
271 	unsigned dirty;
272 	struct address_space *mapping = inode->i_mapping;
273 	int wait = wbc->sync_mode == WB_SYNC_ALL;
274 	int ret;
275 
276 	BUG_ON(inode->i_state & I_SYNC);
277 
278 	/* Set I_SYNC, reset I_DIRTY */
279 	dirty = inode->i_state & I_DIRTY;
280 	inode->i_state |= I_SYNC;
281 	inode->i_state &= ~I_DIRTY;
282 
283 	spin_unlock(&inode_lock);
284 
285 	ret = do_writepages(mapping, wbc);
286 
287 	/* Don't write the inode if only I_DIRTY_PAGES was set */
288 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
289 		int err = write_inode(inode, wait);
290 		if (ret == 0)
291 			ret = err;
292 	}
293 
294 	if (wait) {
295 		int err = filemap_fdatawait(mapping);
296 		if (ret == 0)
297 			ret = err;
298 	}
299 
300 	spin_lock(&inode_lock);
301 	inode->i_state &= ~I_SYNC;
302 	if (!(inode->i_state & I_FREEING)) {
303 		if (!(inode->i_state & I_DIRTY) &&
304 		    mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
305 			/*
306 			 * We didn't write back all the pages.  nfs_writepages()
307 			 * sometimes bales out without doing anything. Redirty
308 			 * the inode; Move it from s_io onto s_more_io/s_dirty.
309 			 */
310 			/*
311 			 * akpm: if the caller was the kupdate function we put
312 			 * this inode at the head of s_dirty so it gets first
313 			 * consideration.  Otherwise, move it to the tail, for
314 			 * the reasons described there.  I'm not really sure
315 			 * how much sense this makes.  Presumably I had a good
316 			 * reasons for doing it this way, and I'd rather not
317 			 * muck with it at present.
318 			 */
319 			if (wbc->for_kupdate) {
320 				/*
321 				 * For the kupdate function we move the inode
322 				 * to s_more_io so it will get more writeout as
323 				 * soon as the queue becomes uncongested.
324 				 */
325 				inode->i_state |= I_DIRTY_PAGES;
326 				if (wbc->nr_to_write <= 0) {
327 					/*
328 					 * slice used up: queue for next turn
329 					 */
330 					requeue_io(inode);
331 				} else {
332 					/*
333 					 * somehow blocked: retry later
334 					 */
335 					redirty_tail(inode);
336 				}
337 			} else {
338 				/*
339 				 * Otherwise fully redirty the inode so that
340 				 * other inodes on this superblock will get some
341 				 * writeout.  Otherwise heavy writing to one
342 				 * file would indefinitely suspend writeout of
343 				 * all the other files.
344 				 */
345 				inode->i_state |= I_DIRTY_PAGES;
346 				redirty_tail(inode);
347 			}
348 		} else if (inode->i_state & I_DIRTY) {
349 			/*
350 			 * Someone redirtied the inode while were writing back
351 			 * the pages.
352 			 */
353 			redirty_tail(inode);
354 		} else if (atomic_read(&inode->i_count)) {
355 			/*
356 			 * The inode is clean, inuse
357 			 */
358 			list_move(&inode->i_list, &inode_in_use);
359 		} else {
360 			/*
361 			 * The inode is clean, unused
362 			 */
363 			list_move(&inode->i_list, &inode_unused);
364 		}
365 	}
366 	inode_sync_complete(inode);
367 	return ret;
368 }
369 
370 /*
371  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
372  * caller has ref on the inode (either via __iget or via syscall against an fd)
373  * or the inode has I_WILL_FREE set (via generic_forget_inode)
374  */
375 static int
376 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
377 {
378 	wait_queue_head_t *wqh;
379 
380 	if (!atomic_read(&inode->i_count))
381 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
382 	else
383 		WARN_ON(inode->i_state & I_WILL_FREE);
384 
385 	if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_SYNC)) {
386 		/*
387 		 * We're skipping this inode because it's locked, and we're not
388 		 * doing writeback-for-data-integrity.  Move it to s_more_io so
389 		 * that writeback can proceed with the other inodes on s_io.
390 		 * We'll have another go at writing back this inode when we
391 		 * completed a full scan of s_io.
392 		 */
393 		requeue_io(inode);
394 		return 0;
395 	}
396 
397 	/*
398 	 * It's a data-integrity sync.  We must wait.
399 	 */
400 	if (inode->i_state & I_SYNC) {
401 		DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
402 
403 		wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
404 		do {
405 			spin_unlock(&inode_lock);
406 			__wait_on_bit(wqh, &wq, inode_wait,
407 							TASK_UNINTERRUPTIBLE);
408 			spin_lock(&inode_lock);
409 		} while (inode->i_state & I_SYNC);
410 	}
411 	return __sync_single_inode(inode, wbc);
412 }
413 
414 /*
415  * Write out a superblock's list of dirty inodes.  A wait will be performed
416  * upon no inodes, all inodes or the final one, depending upon sync_mode.
417  *
418  * If older_than_this is non-NULL, then only write out inodes which
419  * had their first dirtying at a time earlier than *older_than_this.
420  *
421  * If we're a pdlfush thread, then implement pdflush collision avoidance
422  * against the entire list.
423  *
424  * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
425  * that it can be located for waiting on in __writeback_single_inode().
426  *
427  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
428  * This function assumes that the blockdev superblock's inodes are backed by
429  * a variety of queues, so all inodes are searched.  For other superblocks,
430  * assume that all inodes are backed by the same queue.
431  *
432  * FIXME: this linear search could get expensive with many fileystems.  But
433  * how to fix?  We need to go from an address_space to all inodes which share
434  * a queue with that address_space.  (Easy: have a global "dirty superblocks"
435  * list).
436  *
437  * The inodes to be written are parked on sb->s_io.  They are moved back onto
438  * sb->s_dirty as they are selected for writing.  This way, none can be missed
439  * on the writer throttling path, and we get decent balancing between many
440  * throttled threads: we don't want them all piling up on inode_sync_wait.
441  */
442 void generic_sync_sb_inodes(struct super_block *sb,
443 				struct writeback_control *wbc)
444 {
445 	const unsigned long start = jiffies;	/* livelock avoidance */
446 
447 	spin_lock(&inode_lock);
448 	if (!wbc->for_kupdate || list_empty(&sb->s_io))
449 		queue_io(sb, wbc->older_than_this);
450 
451 	while (!list_empty(&sb->s_io)) {
452 		struct inode *inode = list_entry(sb->s_io.prev,
453 						struct inode, i_list);
454 		struct address_space *mapping = inode->i_mapping;
455 		struct backing_dev_info *bdi = mapping->backing_dev_info;
456 		long pages_skipped;
457 
458 		if (!bdi_cap_writeback_dirty(bdi)) {
459 			redirty_tail(inode);
460 			if (sb_is_blkdev_sb(sb)) {
461 				/*
462 				 * Dirty memory-backed blockdev: the ramdisk
463 				 * driver does this.  Skip just this inode
464 				 */
465 				continue;
466 			}
467 			/*
468 			 * Dirty memory-backed inode against a filesystem other
469 			 * than the kernel-internal bdev filesystem.  Skip the
470 			 * entire superblock.
471 			 */
472 			break;
473 		}
474 
475 		if (wbc->nonblocking && bdi_write_congested(bdi)) {
476 			wbc->encountered_congestion = 1;
477 			if (!sb_is_blkdev_sb(sb))
478 				break;		/* Skip a congested fs */
479 			requeue_io(inode);
480 			continue;		/* Skip a congested blockdev */
481 		}
482 
483 		if (wbc->bdi && bdi != wbc->bdi) {
484 			if (!sb_is_blkdev_sb(sb))
485 				break;		/* fs has the wrong queue */
486 			requeue_io(inode);
487 			continue;		/* blockdev has wrong queue */
488 		}
489 
490 		/* Was this inode dirtied after sync_sb_inodes was called? */
491 		if (time_after(inode->dirtied_when, start))
492 			break;
493 
494 		/* Is another pdflush already flushing this queue? */
495 		if (current_is_pdflush() && !writeback_acquire(bdi))
496 			break;
497 
498 		BUG_ON(inode->i_state & I_FREEING);
499 		__iget(inode);
500 		pages_skipped = wbc->pages_skipped;
501 		__writeback_single_inode(inode, wbc);
502 		if (wbc->sync_mode == WB_SYNC_HOLD) {
503 			inode->dirtied_when = jiffies;
504 			list_move(&inode->i_list, &sb->s_dirty);
505 		}
506 		if (current_is_pdflush())
507 			writeback_release(bdi);
508 		if (wbc->pages_skipped != pages_skipped) {
509 			/*
510 			 * writeback is not making progress due to locked
511 			 * buffers.  Skip this inode for now.
512 			 */
513 			redirty_tail(inode);
514 		}
515 		spin_unlock(&inode_lock);
516 		iput(inode);
517 		cond_resched();
518 		spin_lock(&inode_lock);
519 		if (wbc->nr_to_write <= 0) {
520 			wbc->more_io = 1;
521 			break;
522 		}
523 		if (!list_empty(&sb->s_more_io))
524 			wbc->more_io = 1;
525 	}
526 	spin_unlock(&inode_lock);
527 	return;		/* Leave any unwritten inodes on s_io */
528 }
529 EXPORT_SYMBOL_GPL(generic_sync_sb_inodes);
530 
531 static void sync_sb_inodes(struct super_block *sb,
532 				struct writeback_control *wbc)
533 {
534 	generic_sync_sb_inodes(sb, wbc);
535 }
536 
537 /*
538  * Start writeback of dirty pagecache data against all unlocked inodes.
539  *
540  * Note:
541  * We don't need to grab a reference to superblock here. If it has non-empty
542  * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
543  * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
544  * empty. Since __sync_single_inode() regains inode_lock before it finally moves
545  * inode from superblock lists we are OK.
546  *
547  * If `older_than_this' is non-zero then only flush inodes which have a
548  * flushtime older than *older_than_this.
549  *
550  * If `bdi' is non-zero then we will scan the first inode against each
551  * superblock until we find the matching ones.  One group will be the dirty
552  * inodes against a filesystem.  Then when we hit the dummy blockdev superblock,
553  * sync_sb_inodes will seekout the blockdev which matches `bdi'.  Maybe not
554  * super-efficient but we're about to do a ton of I/O...
555  */
556 void
557 writeback_inodes(struct writeback_control *wbc)
558 {
559 	struct super_block *sb;
560 
561 	might_sleep();
562 	spin_lock(&sb_lock);
563 restart:
564 	list_for_each_entry_reverse(sb, &super_blocks, s_list) {
565 		if (sb_has_dirty_inodes(sb)) {
566 			/* we're making our own get_super here */
567 			sb->s_count++;
568 			spin_unlock(&sb_lock);
569 			/*
570 			 * If we can't get the readlock, there's no sense in
571 			 * waiting around, most of the time the FS is going to
572 			 * be unmounted by the time it is released.
573 			 */
574 			if (down_read_trylock(&sb->s_umount)) {
575 				if (sb->s_root)
576 					sync_sb_inodes(sb, wbc);
577 				up_read(&sb->s_umount);
578 			}
579 			spin_lock(&sb_lock);
580 			if (__put_super_and_need_restart(sb))
581 				goto restart;
582 		}
583 		if (wbc->nr_to_write <= 0)
584 			break;
585 	}
586 	spin_unlock(&sb_lock);
587 }
588 
589 /*
590  * writeback and wait upon the filesystem's dirty inodes.  The caller will
591  * do this in two passes - one to write, and one to wait.  WB_SYNC_HOLD is
592  * used to park the written inodes on sb->s_dirty for the wait pass.
593  *
594  * A finite limit is set on the number of pages which will be written.
595  * To prevent infinite livelock of sys_sync().
596  *
597  * We add in the number of potentially dirty inodes, because each inode write
598  * can dirty pagecache in the underlying blockdev.
599  */
600 void sync_inodes_sb(struct super_block *sb, int wait)
601 {
602 	struct writeback_control wbc = {
603 		.sync_mode	= wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
604 		.range_start	= 0,
605 		.range_end	= LLONG_MAX,
606 	};
607 	unsigned long nr_dirty = global_page_state(NR_FILE_DIRTY);
608 	unsigned long nr_unstable = global_page_state(NR_UNSTABLE_NFS);
609 
610 	wbc.nr_to_write = nr_dirty + nr_unstable +
611 			(inodes_stat.nr_inodes - inodes_stat.nr_unused) +
612 			nr_dirty + nr_unstable;
613 	wbc.nr_to_write += wbc.nr_to_write / 2;		/* Bit more for luck */
614 	sync_sb_inodes(sb, &wbc);
615 }
616 
617 /*
618  * Rather lame livelock avoidance.
619  */
620 static void set_sb_syncing(int val)
621 {
622 	struct super_block *sb;
623 	spin_lock(&sb_lock);
624 	list_for_each_entry_reverse(sb, &super_blocks, s_list)
625 		sb->s_syncing = val;
626 	spin_unlock(&sb_lock);
627 }
628 
629 /**
630  * sync_inodes - writes all inodes to disk
631  * @wait: wait for completion
632  *
633  * sync_inodes() goes through each super block's dirty inode list, writes the
634  * inodes out, waits on the writeout and puts the inodes back on the normal
635  * list.
636  *
637  * This is for sys_sync().  fsync_dev() uses the same algorithm.  The subtle
638  * part of the sync functions is that the blockdev "superblock" is processed
639  * last.  This is because the write_inode() function of a typical fs will
640  * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
641  * What we want to do is to perform all that dirtying first, and then write
642  * back all those inode blocks via the blockdev mapping in one sweep.  So the
643  * additional (somewhat redundant) sync_blockdev() calls here are to make
644  * sure that really happens.  Because if we call sync_inodes_sb(wait=1) with
645  * outstanding dirty inodes, the writeback goes block-at-a-time within the
646  * filesystem's write_inode().  This is extremely slow.
647  */
648 static void __sync_inodes(int wait)
649 {
650 	struct super_block *sb;
651 
652 	spin_lock(&sb_lock);
653 restart:
654 	list_for_each_entry(sb, &super_blocks, s_list) {
655 		if (sb->s_syncing)
656 			continue;
657 		sb->s_syncing = 1;
658 		sb->s_count++;
659 		spin_unlock(&sb_lock);
660 		down_read(&sb->s_umount);
661 		if (sb->s_root) {
662 			sync_inodes_sb(sb, wait);
663 			sync_blockdev(sb->s_bdev);
664 		}
665 		up_read(&sb->s_umount);
666 		spin_lock(&sb_lock);
667 		if (__put_super_and_need_restart(sb))
668 			goto restart;
669 	}
670 	spin_unlock(&sb_lock);
671 }
672 
673 void sync_inodes(int wait)
674 {
675 	set_sb_syncing(0);
676 	__sync_inodes(0);
677 
678 	if (wait) {
679 		set_sb_syncing(0);
680 		__sync_inodes(1);
681 	}
682 }
683 
684 /**
685  * write_inode_now	-	write an inode to disk
686  * @inode: inode to write to disk
687  * @sync: whether the write should be synchronous or not
688  *
689  * This function commits an inode to disk immediately if it is dirty. This is
690  * primarily needed by knfsd.
691  *
692  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
693  */
694 int write_inode_now(struct inode *inode, int sync)
695 {
696 	int ret;
697 	struct writeback_control wbc = {
698 		.nr_to_write = LONG_MAX,
699 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
700 		.range_start = 0,
701 		.range_end = LLONG_MAX,
702 	};
703 
704 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
705 		wbc.nr_to_write = 0;
706 
707 	might_sleep();
708 	spin_lock(&inode_lock);
709 	ret = __writeback_single_inode(inode, &wbc);
710 	spin_unlock(&inode_lock);
711 	if (sync)
712 		inode_sync_wait(inode);
713 	return ret;
714 }
715 EXPORT_SYMBOL(write_inode_now);
716 
717 /**
718  * sync_inode - write an inode and its pages to disk.
719  * @inode: the inode to sync
720  * @wbc: controls the writeback mode
721  *
722  * sync_inode() will write an inode and its pages to disk.  It will also
723  * correctly update the inode on its superblock's dirty inode lists and will
724  * update inode->i_state.
725  *
726  * The caller must have a ref on the inode.
727  */
728 int sync_inode(struct inode *inode, struct writeback_control *wbc)
729 {
730 	int ret;
731 
732 	spin_lock(&inode_lock);
733 	ret = __writeback_single_inode(inode, wbc);
734 	spin_unlock(&inode_lock);
735 	return ret;
736 }
737 EXPORT_SYMBOL(sync_inode);
738 
739 /**
740  * generic_osync_inode - flush all dirty data for a given inode to disk
741  * @inode: inode to write
742  * @mapping: the address_space that should be flushed
743  * @what:  what to write and wait upon
744  *
745  * This can be called by file_write functions for files which have the
746  * O_SYNC flag set, to flush dirty writes to disk.
747  *
748  * @what is a bitmask, specifying which part of the inode's data should be
749  * written and waited upon.
750  *
751  *    OSYNC_DATA:     i_mapping's dirty data
752  *    OSYNC_METADATA: the buffers at i_mapping->private_list
753  *    OSYNC_INODE:    the inode itself
754  */
755 
756 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
757 {
758 	int err = 0;
759 	int need_write_inode_now = 0;
760 	int err2;
761 
762 	if (what & OSYNC_DATA)
763 		err = filemap_fdatawrite(mapping);
764 	if (what & (OSYNC_METADATA|OSYNC_DATA)) {
765 		err2 = sync_mapping_buffers(mapping);
766 		if (!err)
767 			err = err2;
768 	}
769 	if (what & OSYNC_DATA) {
770 		err2 = filemap_fdatawait(mapping);
771 		if (!err)
772 			err = err2;
773 	}
774 
775 	spin_lock(&inode_lock);
776 	if ((inode->i_state & I_DIRTY) &&
777 	    ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
778 		need_write_inode_now = 1;
779 	spin_unlock(&inode_lock);
780 
781 	if (need_write_inode_now) {
782 		err2 = write_inode_now(inode, 1);
783 		if (!err)
784 			err = err2;
785 	}
786 	else
787 		inode_sync_wait(inode);
788 
789 	return err;
790 }
791 EXPORT_SYMBOL(generic_osync_inode);
792