xref: /openbmc/linux/fs/fs-writeback.c (revision 8c0b9ee8)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include "internal.h"
31 
32 /*
33  * 4MB minimal write chunk size
34  */
35 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
36 
37 /*
38  * Passed into wb_writeback(), essentially a subset of writeback_control
39  */
40 struct wb_writeback_work {
41 	long nr_pages;
42 	struct super_block *sb;
43 	unsigned long *older_than_this;
44 	enum writeback_sync_modes sync_mode;
45 	unsigned int tagged_writepages:1;
46 	unsigned int for_kupdate:1;
47 	unsigned int range_cyclic:1;
48 	unsigned int for_background:1;
49 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
50 	enum wb_reason reason;		/* why was writeback initiated? */
51 
52 	struct list_head list;		/* pending work list */
53 	struct completion *done;	/* set if the caller waits */
54 };
55 
56 /**
57  * writeback_in_progress - determine whether there is writeback in progress
58  * @bdi: the device's backing_dev_info structure.
59  *
60  * Determine whether there is writeback waiting to be handled against a
61  * backing device.
62  */
63 int writeback_in_progress(struct backing_dev_info *bdi)
64 {
65 	return test_bit(BDI_writeback_running, &bdi->state);
66 }
67 EXPORT_SYMBOL(writeback_in_progress);
68 
69 struct backing_dev_info *inode_to_bdi(struct inode *inode)
70 {
71 	struct super_block *sb;
72 
73 	if (!inode)
74 		return &noop_backing_dev_info;
75 
76 	sb = inode->i_sb;
77 #ifdef CONFIG_BLOCK
78 	if (sb_is_blkdev_sb(sb))
79 		return blk_get_backing_dev_info(I_BDEV(inode));
80 #endif
81 	return sb->s_bdi;
82 }
83 EXPORT_SYMBOL_GPL(inode_to_bdi);
84 
85 static inline struct inode *wb_inode(struct list_head *head)
86 {
87 	return list_entry(head, struct inode, i_wb_list);
88 }
89 
90 /*
91  * Include the creation of the trace points after defining the
92  * wb_writeback_work structure and inline functions so that the definition
93  * remains local to this file.
94  */
95 #define CREATE_TRACE_POINTS
96 #include <trace/events/writeback.h>
97 
98 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
99 
100 static void bdi_wakeup_thread(struct backing_dev_info *bdi)
101 {
102 	spin_lock_bh(&bdi->wb_lock);
103 	if (test_bit(BDI_registered, &bdi->state))
104 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
105 	spin_unlock_bh(&bdi->wb_lock);
106 }
107 
108 static void bdi_queue_work(struct backing_dev_info *bdi,
109 			   struct wb_writeback_work *work)
110 {
111 	trace_writeback_queue(bdi, work);
112 
113 	spin_lock_bh(&bdi->wb_lock);
114 	if (!test_bit(BDI_registered, &bdi->state)) {
115 		if (work->done)
116 			complete(work->done);
117 		goto out_unlock;
118 	}
119 	list_add_tail(&work->list, &bdi->work_list);
120 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
121 out_unlock:
122 	spin_unlock_bh(&bdi->wb_lock);
123 }
124 
125 static void
126 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
127 		      bool range_cyclic, enum wb_reason reason)
128 {
129 	struct wb_writeback_work *work;
130 
131 	/*
132 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
133 	 * wakeup the thread for old dirty data writeback
134 	 */
135 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
136 	if (!work) {
137 		trace_writeback_nowork(bdi);
138 		bdi_wakeup_thread(bdi);
139 		return;
140 	}
141 
142 	work->sync_mode	= WB_SYNC_NONE;
143 	work->nr_pages	= nr_pages;
144 	work->range_cyclic = range_cyclic;
145 	work->reason	= reason;
146 
147 	bdi_queue_work(bdi, work);
148 }
149 
150 /**
151  * bdi_start_writeback - start writeback
152  * @bdi: the backing device to write from
153  * @nr_pages: the number of pages to write
154  * @reason: reason why some writeback work was initiated
155  *
156  * Description:
157  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
158  *   started when this function returns, we make no guarantees on
159  *   completion. Caller need not hold sb s_umount semaphore.
160  *
161  */
162 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
163 			enum wb_reason reason)
164 {
165 	__bdi_start_writeback(bdi, nr_pages, true, reason);
166 }
167 
168 /**
169  * bdi_start_background_writeback - start background writeback
170  * @bdi: the backing device to write from
171  *
172  * Description:
173  *   This makes sure WB_SYNC_NONE background writeback happens. When
174  *   this function returns, it is only guaranteed that for given BDI
175  *   some IO is happening if we are over background dirty threshold.
176  *   Caller need not hold sb s_umount semaphore.
177  */
178 void bdi_start_background_writeback(struct backing_dev_info *bdi)
179 {
180 	/*
181 	 * We just wake up the flusher thread. It will perform background
182 	 * writeback as soon as there is no other work to do.
183 	 */
184 	trace_writeback_wake_background(bdi);
185 	bdi_wakeup_thread(bdi);
186 }
187 
188 /*
189  * Remove the inode from the writeback list it is on.
190  */
191 void inode_wb_list_del(struct inode *inode)
192 {
193 	struct backing_dev_info *bdi = inode_to_bdi(inode);
194 
195 	spin_lock(&bdi->wb.list_lock);
196 	list_del_init(&inode->i_wb_list);
197 	spin_unlock(&bdi->wb.list_lock);
198 }
199 
200 /*
201  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
202  * furthest end of its superblock's dirty-inode list.
203  *
204  * Before stamping the inode's ->dirtied_when, we check to see whether it is
205  * already the most-recently-dirtied inode on the b_dirty list.  If that is
206  * the case then the inode must have been redirtied while it was being written
207  * out and we don't reset its dirtied_when.
208  */
209 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
210 {
211 	assert_spin_locked(&wb->list_lock);
212 	if (!list_empty(&wb->b_dirty)) {
213 		struct inode *tail;
214 
215 		tail = wb_inode(wb->b_dirty.next);
216 		if (time_before(inode->dirtied_when, tail->dirtied_when))
217 			inode->dirtied_when = jiffies;
218 	}
219 	list_move(&inode->i_wb_list, &wb->b_dirty);
220 }
221 
222 /*
223  * requeue inode for re-scanning after bdi->b_io list is exhausted.
224  */
225 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
226 {
227 	assert_spin_locked(&wb->list_lock);
228 	list_move(&inode->i_wb_list, &wb->b_more_io);
229 }
230 
231 static void inode_sync_complete(struct inode *inode)
232 {
233 	inode->i_state &= ~I_SYNC;
234 	/* If inode is clean an unused, put it into LRU now... */
235 	inode_add_lru(inode);
236 	/* Waiters must see I_SYNC cleared before being woken up */
237 	smp_mb();
238 	wake_up_bit(&inode->i_state, __I_SYNC);
239 }
240 
241 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
242 {
243 	bool ret = time_after(inode->dirtied_when, t);
244 #ifndef CONFIG_64BIT
245 	/*
246 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
247 	 * It _appears_ to be in the future, but is actually in distant past.
248 	 * This test is necessary to prevent such wrapped-around relative times
249 	 * from permanently stopping the whole bdi writeback.
250 	 */
251 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
252 #endif
253 	return ret;
254 }
255 
256 #define EXPIRE_DIRTY_ATIME 0x0001
257 
258 /*
259  * Move expired (dirtied before work->older_than_this) dirty inodes from
260  * @delaying_queue to @dispatch_queue.
261  */
262 static int move_expired_inodes(struct list_head *delaying_queue,
263 			       struct list_head *dispatch_queue,
264 			       int flags,
265 			       struct wb_writeback_work *work)
266 {
267 	unsigned long *older_than_this = NULL;
268 	unsigned long expire_time;
269 	LIST_HEAD(tmp);
270 	struct list_head *pos, *node;
271 	struct super_block *sb = NULL;
272 	struct inode *inode;
273 	int do_sb_sort = 0;
274 	int moved = 0;
275 
276 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
277 		older_than_this = work->older_than_this;
278 	else if ((work->reason == WB_REASON_SYNC) == 0) {
279 		expire_time = jiffies - (HZ * 86400);
280 		older_than_this = &expire_time;
281 	}
282 	while (!list_empty(delaying_queue)) {
283 		inode = wb_inode(delaying_queue->prev);
284 		if (older_than_this &&
285 		    inode_dirtied_after(inode, *older_than_this))
286 			break;
287 		list_move(&inode->i_wb_list, &tmp);
288 		moved++;
289 		if (flags & EXPIRE_DIRTY_ATIME)
290 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
291 		if (sb_is_blkdev_sb(inode->i_sb))
292 			continue;
293 		if (sb && sb != inode->i_sb)
294 			do_sb_sort = 1;
295 		sb = inode->i_sb;
296 	}
297 
298 	/* just one sb in list, splice to dispatch_queue and we're done */
299 	if (!do_sb_sort) {
300 		list_splice(&tmp, dispatch_queue);
301 		goto out;
302 	}
303 
304 	/* Move inodes from one superblock together */
305 	while (!list_empty(&tmp)) {
306 		sb = wb_inode(tmp.prev)->i_sb;
307 		list_for_each_prev_safe(pos, node, &tmp) {
308 			inode = wb_inode(pos);
309 			if (inode->i_sb == sb)
310 				list_move(&inode->i_wb_list, dispatch_queue);
311 		}
312 	}
313 out:
314 	return moved;
315 }
316 
317 /*
318  * Queue all expired dirty inodes for io, eldest first.
319  * Before
320  *         newly dirtied     b_dirty    b_io    b_more_io
321  *         =============>    gf         edc     BA
322  * After
323  *         newly dirtied     b_dirty    b_io    b_more_io
324  *         =============>    g          fBAedc
325  *                                           |
326  *                                           +--> dequeue for IO
327  */
328 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
329 {
330 	int moved;
331 
332 	assert_spin_locked(&wb->list_lock);
333 	list_splice_init(&wb->b_more_io, &wb->b_io);
334 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
335 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
336 				     EXPIRE_DIRTY_ATIME, work);
337 	trace_writeback_queue_io(wb, work, moved);
338 }
339 
340 static int write_inode(struct inode *inode, struct writeback_control *wbc)
341 {
342 	int ret;
343 
344 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
345 		trace_writeback_write_inode_start(inode, wbc);
346 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
347 		trace_writeback_write_inode(inode, wbc);
348 		return ret;
349 	}
350 	return 0;
351 }
352 
353 /*
354  * Wait for writeback on an inode to complete. Called with i_lock held.
355  * Caller must make sure inode cannot go away when we drop i_lock.
356  */
357 static void __inode_wait_for_writeback(struct inode *inode)
358 	__releases(inode->i_lock)
359 	__acquires(inode->i_lock)
360 {
361 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
362 	wait_queue_head_t *wqh;
363 
364 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
365 	while (inode->i_state & I_SYNC) {
366 		spin_unlock(&inode->i_lock);
367 		__wait_on_bit(wqh, &wq, bit_wait,
368 			      TASK_UNINTERRUPTIBLE);
369 		spin_lock(&inode->i_lock);
370 	}
371 }
372 
373 /*
374  * Wait for writeback on an inode to complete. Caller must have inode pinned.
375  */
376 void inode_wait_for_writeback(struct inode *inode)
377 {
378 	spin_lock(&inode->i_lock);
379 	__inode_wait_for_writeback(inode);
380 	spin_unlock(&inode->i_lock);
381 }
382 
383 /*
384  * Sleep until I_SYNC is cleared. This function must be called with i_lock
385  * held and drops it. It is aimed for callers not holding any inode reference
386  * so once i_lock is dropped, inode can go away.
387  */
388 static void inode_sleep_on_writeback(struct inode *inode)
389 	__releases(inode->i_lock)
390 {
391 	DEFINE_WAIT(wait);
392 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
393 	int sleep;
394 
395 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
396 	sleep = inode->i_state & I_SYNC;
397 	spin_unlock(&inode->i_lock);
398 	if (sleep)
399 		schedule();
400 	finish_wait(wqh, &wait);
401 }
402 
403 /*
404  * Find proper writeback list for the inode depending on its current state and
405  * possibly also change of its state while we were doing writeback.  Here we
406  * handle things such as livelock prevention or fairness of writeback among
407  * inodes. This function can be called only by flusher thread - noone else
408  * processes all inodes in writeback lists and requeueing inodes behind flusher
409  * thread's back can have unexpected consequences.
410  */
411 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
412 			  struct writeback_control *wbc)
413 {
414 	if (inode->i_state & I_FREEING)
415 		return;
416 
417 	/*
418 	 * Sync livelock prevention. Each inode is tagged and synced in one
419 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
420 	 * the dirty time to prevent enqueue and sync it again.
421 	 */
422 	if ((inode->i_state & I_DIRTY) &&
423 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
424 		inode->dirtied_when = jiffies;
425 
426 	if (wbc->pages_skipped) {
427 		/*
428 		 * writeback is not making progress due to locked
429 		 * buffers. Skip this inode for now.
430 		 */
431 		redirty_tail(inode, wb);
432 		return;
433 	}
434 
435 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
436 		/*
437 		 * We didn't write back all the pages.  nfs_writepages()
438 		 * sometimes bales out without doing anything.
439 		 */
440 		if (wbc->nr_to_write <= 0) {
441 			/* Slice used up. Queue for next turn. */
442 			requeue_io(inode, wb);
443 		} else {
444 			/*
445 			 * Writeback blocked by something other than
446 			 * congestion. Delay the inode for some time to
447 			 * avoid spinning on the CPU (100% iowait)
448 			 * retrying writeback of the dirty page/inode
449 			 * that cannot be performed immediately.
450 			 */
451 			redirty_tail(inode, wb);
452 		}
453 	} else if (inode->i_state & I_DIRTY) {
454 		/*
455 		 * Filesystems can dirty the inode during writeback operations,
456 		 * such as delayed allocation during submission or metadata
457 		 * updates after data IO completion.
458 		 */
459 		redirty_tail(inode, wb);
460 	} else if (inode->i_state & I_DIRTY_TIME) {
461 		list_move(&inode->i_wb_list, &wb->b_dirty_time);
462 	} else {
463 		/* The inode is clean. Remove from writeback lists. */
464 		list_del_init(&inode->i_wb_list);
465 	}
466 }
467 
468 /*
469  * Write out an inode and its dirty pages. Do not update the writeback list
470  * linkage. That is left to the caller. The caller is also responsible for
471  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
472  */
473 static int
474 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
475 {
476 	struct address_space *mapping = inode->i_mapping;
477 	long nr_to_write = wbc->nr_to_write;
478 	unsigned dirty;
479 	int ret;
480 
481 	WARN_ON(!(inode->i_state & I_SYNC));
482 
483 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
484 
485 	ret = do_writepages(mapping, wbc);
486 
487 	/*
488 	 * Make sure to wait on the data before writing out the metadata.
489 	 * This is important for filesystems that modify metadata on data
490 	 * I/O completion. We don't do it for sync(2) writeback because it has a
491 	 * separate, external IO completion path and ->sync_fs for guaranteeing
492 	 * inode metadata is written back correctly.
493 	 */
494 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
495 		int err = filemap_fdatawait(mapping);
496 		if (ret == 0)
497 			ret = err;
498 	}
499 
500 	/*
501 	 * Some filesystems may redirty the inode during the writeback
502 	 * due to delalloc, clear dirty metadata flags right before
503 	 * write_inode()
504 	 */
505 	spin_lock(&inode->i_lock);
506 
507 	dirty = inode->i_state & I_DIRTY;
508 	if (((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) &&
509 	     (inode->i_state & I_DIRTY_TIME)) ||
510 	    (inode->i_state & I_DIRTY_TIME_EXPIRED)) {
511 		dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
512 		trace_writeback_lazytime(inode);
513 	}
514 	inode->i_state &= ~dirty;
515 
516 	/*
517 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
518 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
519 	 * either they see the I_DIRTY bits cleared or we see the dirtied
520 	 * inode.
521 	 *
522 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
523 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
524 	 * necessary.  This guarantees that either __mark_inode_dirty()
525 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
526 	 */
527 	smp_mb();
528 
529 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
530 		inode->i_state |= I_DIRTY_PAGES;
531 
532 	spin_unlock(&inode->i_lock);
533 
534 	if (dirty & I_DIRTY_TIME)
535 		mark_inode_dirty_sync(inode);
536 	/* Don't write the inode if only I_DIRTY_PAGES was set */
537 	if (dirty & ~I_DIRTY_PAGES) {
538 		int err = write_inode(inode, wbc);
539 		if (ret == 0)
540 			ret = err;
541 	}
542 	trace_writeback_single_inode(inode, wbc, nr_to_write);
543 	return ret;
544 }
545 
546 /*
547  * Write out an inode's dirty pages. Either the caller has an active reference
548  * on the inode or the inode has I_WILL_FREE set.
549  *
550  * This function is designed to be called for writing back one inode which
551  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
552  * and does more profound writeback list handling in writeback_sb_inodes().
553  */
554 static int
555 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
556 		       struct writeback_control *wbc)
557 {
558 	int ret = 0;
559 
560 	spin_lock(&inode->i_lock);
561 	if (!atomic_read(&inode->i_count))
562 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
563 	else
564 		WARN_ON(inode->i_state & I_WILL_FREE);
565 
566 	if (inode->i_state & I_SYNC) {
567 		if (wbc->sync_mode != WB_SYNC_ALL)
568 			goto out;
569 		/*
570 		 * It's a data-integrity sync. We must wait. Since callers hold
571 		 * inode reference or inode has I_WILL_FREE set, it cannot go
572 		 * away under us.
573 		 */
574 		__inode_wait_for_writeback(inode);
575 	}
576 	WARN_ON(inode->i_state & I_SYNC);
577 	/*
578 	 * Skip inode if it is clean and we have no outstanding writeback in
579 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
580 	 * function since flusher thread may be doing for example sync in
581 	 * parallel and if we move the inode, it could get skipped. So here we
582 	 * make sure inode is on some writeback list and leave it there unless
583 	 * we have completely cleaned the inode.
584 	 */
585 	if (!(inode->i_state & I_DIRTY_ALL) &&
586 	    (wbc->sync_mode != WB_SYNC_ALL ||
587 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
588 		goto out;
589 	inode->i_state |= I_SYNC;
590 	spin_unlock(&inode->i_lock);
591 
592 	ret = __writeback_single_inode(inode, wbc);
593 
594 	spin_lock(&wb->list_lock);
595 	spin_lock(&inode->i_lock);
596 	/*
597 	 * If inode is clean, remove it from writeback lists. Otherwise don't
598 	 * touch it. See comment above for explanation.
599 	 */
600 	if (!(inode->i_state & I_DIRTY_ALL))
601 		list_del_init(&inode->i_wb_list);
602 	spin_unlock(&wb->list_lock);
603 	inode_sync_complete(inode);
604 out:
605 	spin_unlock(&inode->i_lock);
606 	return ret;
607 }
608 
609 static long writeback_chunk_size(struct backing_dev_info *bdi,
610 				 struct wb_writeback_work *work)
611 {
612 	long pages;
613 
614 	/*
615 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
616 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
617 	 * here avoids calling into writeback_inodes_wb() more than once.
618 	 *
619 	 * The intended call sequence for WB_SYNC_ALL writeback is:
620 	 *
621 	 *      wb_writeback()
622 	 *          writeback_sb_inodes()       <== called only once
623 	 *              write_cache_pages()     <== called once for each inode
624 	 *                   (quickly) tag currently dirty pages
625 	 *                   (maybe slowly) sync all tagged pages
626 	 */
627 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
628 		pages = LONG_MAX;
629 	else {
630 		pages = min(bdi->avg_write_bandwidth / 2,
631 			    global_dirty_limit / DIRTY_SCOPE);
632 		pages = min(pages, work->nr_pages);
633 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
634 				   MIN_WRITEBACK_PAGES);
635 	}
636 
637 	return pages;
638 }
639 
640 /*
641  * Write a portion of b_io inodes which belong to @sb.
642  *
643  * Return the number of pages and/or inodes written.
644  */
645 static long writeback_sb_inodes(struct super_block *sb,
646 				struct bdi_writeback *wb,
647 				struct wb_writeback_work *work)
648 {
649 	struct writeback_control wbc = {
650 		.sync_mode		= work->sync_mode,
651 		.tagged_writepages	= work->tagged_writepages,
652 		.for_kupdate		= work->for_kupdate,
653 		.for_background		= work->for_background,
654 		.for_sync		= work->for_sync,
655 		.range_cyclic		= work->range_cyclic,
656 		.range_start		= 0,
657 		.range_end		= LLONG_MAX,
658 	};
659 	unsigned long start_time = jiffies;
660 	long write_chunk;
661 	long wrote = 0;  /* count both pages and inodes */
662 
663 	while (!list_empty(&wb->b_io)) {
664 		struct inode *inode = wb_inode(wb->b_io.prev);
665 
666 		if (inode->i_sb != sb) {
667 			if (work->sb) {
668 				/*
669 				 * We only want to write back data for this
670 				 * superblock, move all inodes not belonging
671 				 * to it back onto the dirty list.
672 				 */
673 				redirty_tail(inode, wb);
674 				continue;
675 			}
676 
677 			/*
678 			 * The inode belongs to a different superblock.
679 			 * Bounce back to the caller to unpin this and
680 			 * pin the next superblock.
681 			 */
682 			break;
683 		}
684 
685 		/*
686 		 * Don't bother with new inodes or inodes being freed, first
687 		 * kind does not need periodic writeout yet, and for the latter
688 		 * kind writeout is handled by the freer.
689 		 */
690 		spin_lock(&inode->i_lock);
691 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
692 			spin_unlock(&inode->i_lock);
693 			redirty_tail(inode, wb);
694 			continue;
695 		}
696 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
697 			/*
698 			 * If this inode is locked for writeback and we are not
699 			 * doing writeback-for-data-integrity, move it to
700 			 * b_more_io so that writeback can proceed with the
701 			 * other inodes on s_io.
702 			 *
703 			 * We'll have another go at writing back this inode
704 			 * when we completed a full scan of b_io.
705 			 */
706 			spin_unlock(&inode->i_lock);
707 			requeue_io(inode, wb);
708 			trace_writeback_sb_inodes_requeue(inode);
709 			continue;
710 		}
711 		spin_unlock(&wb->list_lock);
712 
713 		/*
714 		 * We already requeued the inode if it had I_SYNC set and we
715 		 * are doing WB_SYNC_NONE writeback. So this catches only the
716 		 * WB_SYNC_ALL case.
717 		 */
718 		if (inode->i_state & I_SYNC) {
719 			/* Wait for I_SYNC. This function drops i_lock... */
720 			inode_sleep_on_writeback(inode);
721 			/* Inode may be gone, start again */
722 			spin_lock(&wb->list_lock);
723 			continue;
724 		}
725 		inode->i_state |= I_SYNC;
726 		spin_unlock(&inode->i_lock);
727 
728 		write_chunk = writeback_chunk_size(wb->bdi, work);
729 		wbc.nr_to_write = write_chunk;
730 		wbc.pages_skipped = 0;
731 
732 		/*
733 		 * We use I_SYNC to pin the inode in memory. While it is set
734 		 * evict_inode() will wait so the inode cannot be freed.
735 		 */
736 		__writeback_single_inode(inode, &wbc);
737 
738 		work->nr_pages -= write_chunk - wbc.nr_to_write;
739 		wrote += write_chunk - wbc.nr_to_write;
740 		spin_lock(&wb->list_lock);
741 		spin_lock(&inode->i_lock);
742 		if (!(inode->i_state & I_DIRTY_ALL))
743 			wrote++;
744 		requeue_inode(inode, wb, &wbc);
745 		inode_sync_complete(inode);
746 		spin_unlock(&inode->i_lock);
747 		cond_resched_lock(&wb->list_lock);
748 		/*
749 		 * bail out to wb_writeback() often enough to check
750 		 * background threshold and other termination conditions.
751 		 */
752 		if (wrote) {
753 			if (time_is_before_jiffies(start_time + HZ / 10UL))
754 				break;
755 			if (work->nr_pages <= 0)
756 				break;
757 		}
758 	}
759 	return wrote;
760 }
761 
762 static long __writeback_inodes_wb(struct bdi_writeback *wb,
763 				  struct wb_writeback_work *work)
764 {
765 	unsigned long start_time = jiffies;
766 	long wrote = 0;
767 
768 	while (!list_empty(&wb->b_io)) {
769 		struct inode *inode = wb_inode(wb->b_io.prev);
770 		struct super_block *sb = inode->i_sb;
771 
772 		if (!trylock_super(sb)) {
773 			/*
774 			 * trylock_super() may fail consistently due to
775 			 * s_umount being grabbed by someone else. Don't use
776 			 * requeue_io() to avoid busy retrying the inode/sb.
777 			 */
778 			redirty_tail(inode, wb);
779 			continue;
780 		}
781 		wrote += writeback_sb_inodes(sb, wb, work);
782 		up_read(&sb->s_umount);
783 
784 		/* refer to the same tests at the end of writeback_sb_inodes */
785 		if (wrote) {
786 			if (time_is_before_jiffies(start_time + HZ / 10UL))
787 				break;
788 			if (work->nr_pages <= 0)
789 				break;
790 		}
791 	}
792 	/* Leave any unwritten inodes on b_io */
793 	return wrote;
794 }
795 
796 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
797 				enum wb_reason reason)
798 {
799 	struct wb_writeback_work work = {
800 		.nr_pages	= nr_pages,
801 		.sync_mode	= WB_SYNC_NONE,
802 		.range_cyclic	= 1,
803 		.reason		= reason,
804 	};
805 
806 	spin_lock(&wb->list_lock);
807 	if (list_empty(&wb->b_io))
808 		queue_io(wb, &work);
809 	__writeback_inodes_wb(wb, &work);
810 	spin_unlock(&wb->list_lock);
811 
812 	return nr_pages - work.nr_pages;
813 }
814 
815 static bool over_bground_thresh(struct backing_dev_info *bdi)
816 {
817 	unsigned long background_thresh, dirty_thresh;
818 
819 	global_dirty_limits(&background_thresh, &dirty_thresh);
820 
821 	if (global_page_state(NR_FILE_DIRTY) +
822 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
823 		return true;
824 
825 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
826 				bdi_dirty_limit(bdi, background_thresh))
827 		return true;
828 
829 	return false;
830 }
831 
832 /*
833  * Called under wb->list_lock. If there are multiple wb per bdi,
834  * only the flusher working on the first wb should do it.
835  */
836 static void wb_update_bandwidth(struct bdi_writeback *wb,
837 				unsigned long start_time)
838 {
839 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
840 }
841 
842 /*
843  * Explicit flushing or periodic writeback of "old" data.
844  *
845  * Define "old": the first time one of an inode's pages is dirtied, we mark the
846  * dirtying-time in the inode's address_space.  So this periodic writeback code
847  * just walks the superblock inode list, writing back any inodes which are
848  * older than a specific point in time.
849  *
850  * Try to run once per dirty_writeback_interval.  But if a writeback event
851  * takes longer than a dirty_writeback_interval interval, then leave a
852  * one-second gap.
853  *
854  * older_than_this takes precedence over nr_to_write.  So we'll only write back
855  * all dirty pages if they are all attached to "old" mappings.
856  */
857 static long wb_writeback(struct bdi_writeback *wb,
858 			 struct wb_writeback_work *work)
859 {
860 	unsigned long wb_start = jiffies;
861 	long nr_pages = work->nr_pages;
862 	unsigned long oldest_jif;
863 	struct inode *inode;
864 	long progress;
865 
866 	oldest_jif = jiffies;
867 	work->older_than_this = &oldest_jif;
868 
869 	spin_lock(&wb->list_lock);
870 	for (;;) {
871 		/*
872 		 * Stop writeback when nr_pages has been consumed
873 		 */
874 		if (work->nr_pages <= 0)
875 			break;
876 
877 		/*
878 		 * Background writeout and kupdate-style writeback may
879 		 * run forever. Stop them if there is other work to do
880 		 * so that e.g. sync can proceed. They'll be restarted
881 		 * after the other works are all done.
882 		 */
883 		if ((work->for_background || work->for_kupdate) &&
884 		    !list_empty(&wb->bdi->work_list))
885 			break;
886 
887 		/*
888 		 * For background writeout, stop when we are below the
889 		 * background dirty threshold
890 		 */
891 		if (work->for_background && !over_bground_thresh(wb->bdi))
892 			break;
893 
894 		/*
895 		 * Kupdate and background works are special and we want to
896 		 * include all inodes that need writing. Livelock avoidance is
897 		 * handled by these works yielding to any other work so we are
898 		 * safe.
899 		 */
900 		if (work->for_kupdate) {
901 			oldest_jif = jiffies -
902 				msecs_to_jiffies(dirty_expire_interval * 10);
903 		} else if (work->for_background)
904 			oldest_jif = jiffies;
905 
906 		trace_writeback_start(wb->bdi, work);
907 		if (list_empty(&wb->b_io))
908 			queue_io(wb, work);
909 		if (work->sb)
910 			progress = writeback_sb_inodes(work->sb, wb, work);
911 		else
912 			progress = __writeback_inodes_wb(wb, work);
913 		trace_writeback_written(wb->bdi, work);
914 
915 		wb_update_bandwidth(wb, wb_start);
916 
917 		/*
918 		 * Did we write something? Try for more
919 		 *
920 		 * Dirty inodes are moved to b_io for writeback in batches.
921 		 * The completion of the current batch does not necessarily
922 		 * mean the overall work is done. So we keep looping as long
923 		 * as made some progress on cleaning pages or inodes.
924 		 */
925 		if (progress)
926 			continue;
927 		/*
928 		 * No more inodes for IO, bail
929 		 */
930 		if (list_empty(&wb->b_more_io))
931 			break;
932 		/*
933 		 * Nothing written. Wait for some inode to
934 		 * become available for writeback. Otherwise
935 		 * we'll just busyloop.
936 		 */
937 		if (!list_empty(&wb->b_more_io))  {
938 			trace_writeback_wait(wb->bdi, work);
939 			inode = wb_inode(wb->b_more_io.prev);
940 			spin_lock(&inode->i_lock);
941 			spin_unlock(&wb->list_lock);
942 			/* This function drops i_lock... */
943 			inode_sleep_on_writeback(inode);
944 			spin_lock(&wb->list_lock);
945 		}
946 	}
947 	spin_unlock(&wb->list_lock);
948 
949 	return nr_pages - work->nr_pages;
950 }
951 
952 /*
953  * Return the next wb_writeback_work struct that hasn't been processed yet.
954  */
955 static struct wb_writeback_work *
956 get_next_work_item(struct backing_dev_info *bdi)
957 {
958 	struct wb_writeback_work *work = NULL;
959 
960 	spin_lock_bh(&bdi->wb_lock);
961 	if (!list_empty(&bdi->work_list)) {
962 		work = list_entry(bdi->work_list.next,
963 				  struct wb_writeback_work, list);
964 		list_del_init(&work->list);
965 	}
966 	spin_unlock_bh(&bdi->wb_lock);
967 	return work;
968 }
969 
970 /*
971  * Add in the number of potentially dirty inodes, because each inode
972  * write can dirty pagecache in the underlying blockdev.
973  */
974 static unsigned long get_nr_dirty_pages(void)
975 {
976 	return global_page_state(NR_FILE_DIRTY) +
977 		global_page_state(NR_UNSTABLE_NFS) +
978 		get_nr_dirty_inodes();
979 }
980 
981 static long wb_check_background_flush(struct bdi_writeback *wb)
982 {
983 	if (over_bground_thresh(wb->bdi)) {
984 
985 		struct wb_writeback_work work = {
986 			.nr_pages	= LONG_MAX,
987 			.sync_mode	= WB_SYNC_NONE,
988 			.for_background	= 1,
989 			.range_cyclic	= 1,
990 			.reason		= WB_REASON_BACKGROUND,
991 		};
992 
993 		return wb_writeback(wb, &work);
994 	}
995 
996 	return 0;
997 }
998 
999 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1000 {
1001 	unsigned long expired;
1002 	long nr_pages;
1003 
1004 	/*
1005 	 * When set to zero, disable periodic writeback
1006 	 */
1007 	if (!dirty_writeback_interval)
1008 		return 0;
1009 
1010 	expired = wb->last_old_flush +
1011 			msecs_to_jiffies(dirty_writeback_interval * 10);
1012 	if (time_before(jiffies, expired))
1013 		return 0;
1014 
1015 	wb->last_old_flush = jiffies;
1016 	nr_pages = get_nr_dirty_pages();
1017 
1018 	if (nr_pages) {
1019 		struct wb_writeback_work work = {
1020 			.nr_pages	= nr_pages,
1021 			.sync_mode	= WB_SYNC_NONE,
1022 			.for_kupdate	= 1,
1023 			.range_cyclic	= 1,
1024 			.reason		= WB_REASON_PERIODIC,
1025 		};
1026 
1027 		return wb_writeback(wb, &work);
1028 	}
1029 
1030 	return 0;
1031 }
1032 
1033 /*
1034  * Retrieve work items and do the writeback they describe
1035  */
1036 static long wb_do_writeback(struct bdi_writeback *wb)
1037 {
1038 	struct backing_dev_info *bdi = wb->bdi;
1039 	struct wb_writeback_work *work;
1040 	long wrote = 0;
1041 
1042 	set_bit(BDI_writeback_running, &wb->bdi->state);
1043 	while ((work = get_next_work_item(bdi)) != NULL) {
1044 
1045 		trace_writeback_exec(bdi, work);
1046 
1047 		wrote += wb_writeback(wb, work);
1048 
1049 		/*
1050 		 * Notify the caller of completion if this is a synchronous
1051 		 * work item, otherwise just free it.
1052 		 */
1053 		if (work->done)
1054 			complete(work->done);
1055 		else
1056 			kfree(work);
1057 	}
1058 
1059 	/*
1060 	 * Check for periodic writeback, kupdated() style
1061 	 */
1062 	wrote += wb_check_old_data_flush(wb);
1063 	wrote += wb_check_background_flush(wb);
1064 	clear_bit(BDI_writeback_running, &wb->bdi->state);
1065 
1066 	return wrote;
1067 }
1068 
1069 /*
1070  * Handle writeback of dirty data for the device backed by this bdi. Also
1071  * reschedules periodically and does kupdated style flushing.
1072  */
1073 void bdi_writeback_workfn(struct work_struct *work)
1074 {
1075 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1076 						struct bdi_writeback, dwork);
1077 	struct backing_dev_info *bdi = wb->bdi;
1078 	long pages_written;
1079 
1080 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1081 	current->flags |= PF_SWAPWRITE;
1082 
1083 	if (likely(!current_is_workqueue_rescuer() ||
1084 		   !test_bit(BDI_registered, &bdi->state))) {
1085 		/*
1086 		 * The normal path.  Keep writing back @bdi until its
1087 		 * work_list is empty.  Note that this path is also taken
1088 		 * if @bdi is shutting down even when we're running off the
1089 		 * rescuer as work_list needs to be drained.
1090 		 */
1091 		do {
1092 			pages_written = wb_do_writeback(wb);
1093 			trace_writeback_pages_written(pages_written);
1094 		} while (!list_empty(&bdi->work_list));
1095 	} else {
1096 		/*
1097 		 * bdi_wq can't get enough workers and we're running off
1098 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1099 		 * enough for efficient IO.
1100 		 */
1101 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1102 						    WB_REASON_FORKER_THREAD);
1103 		trace_writeback_pages_written(pages_written);
1104 	}
1105 
1106 	if (!list_empty(&bdi->work_list))
1107 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1108 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1109 		bdi_wakeup_thread_delayed(bdi);
1110 
1111 	current->flags &= ~PF_SWAPWRITE;
1112 }
1113 
1114 /*
1115  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1116  * the whole world.
1117  */
1118 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1119 {
1120 	struct backing_dev_info *bdi;
1121 
1122 	if (!nr_pages)
1123 		nr_pages = get_nr_dirty_pages();
1124 
1125 	rcu_read_lock();
1126 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1127 		if (!bdi_has_dirty_io(bdi))
1128 			continue;
1129 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1130 	}
1131 	rcu_read_unlock();
1132 }
1133 
1134 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1135 {
1136 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1137 		struct dentry *dentry;
1138 		const char *name = "?";
1139 
1140 		dentry = d_find_alias(inode);
1141 		if (dentry) {
1142 			spin_lock(&dentry->d_lock);
1143 			name = (const char *) dentry->d_name.name;
1144 		}
1145 		printk(KERN_DEBUG
1146 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1147 		       current->comm, task_pid_nr(current), inode->i_ino,
1148 		       name, inode->i_sb->s_id);
1149 		if (dentry) {
1150 			spin_unlock(&dentry->d_lock);
1151 			dput(dentry);
1152 		}
1153 	}
1154 }
1155 
1156 /**
1157  *	__mark_inode_dirty -	internal function
1158  *	@inode: inode to mark
1159  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1160  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1161  *  	mark_inode_dirty_sync.
1162  *
1163  * Put the inode on the super block's dirty list.
1164  *
1165  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1166  * dirty list only if it is hashed or if it refers to a blockdev.
1167  * If it was not hashed, it will never be added to the dirty list
1168  * even if it is later hashed, as it will have been marked dirty already.
1169  *
1170  * In short, make sure you hash any inodes _before_ you start marking
1171  * them dirty.
1172  *
1173  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1174  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1175  * the kernel-internal blockdev inode represents the dirtying time of the
1176  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1177  * page->mapping->host, so the page-dirtying time is recorded in the internal
1178  * blockdev inode.
1179  */
1180 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1181 void __mark_inode_dirty(struct inode *inode, int flags)
1182 {
1183 	struct super_block *sb = inode->i_sb;
1184 	struct backing_dev_info *bdi = NULL;
1185 	int dirtytime;
1186 
1187 	trace_writeback_mark_inode_dirty(inode, flags);
1188 
1189 	/*
1190 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1191 	 * dirty the inode itself
1192 	 */
1193 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1194 		trace_writeback_dirty_inode_start(inode, flags);
1195 
1196 		if (sb->s_op->dirty_inode)
1197 			sb->s_op->dirty_inode(inode, flags);
1198 
1199 		trace_writeback_dirty_inode(inode, flags);
1200 	}
1201 	if (flags & I_DIRTY_INODE)
1202 		flags &= ~I_DIRTY_TIME;
1203 	dirtytime = flags & I_DIRTY_TIME;
1204 
1205 	/*
1206 	 * Paired with smp_mb() in __writeback_single_inode() for the
1207 	 * following lockless i_state test.  See there for details.
1208 	 */
1209 	smp_mb();
1210 
1211 	if (((inode->i_state & flags) == flags) ||
1212 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
1213 		return;
1214 
1215 	if (unlikely(block_dump))
1216 		block_dump___mark_inode_dirty(inode);
1217 
1218 	spin_lock(&inode->i_lock);
1219 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
1220 		goto out_unlock_inode;
1221 	if ((inode->i_state & flags) != flags) {
1222 		const int was_dirty = inode->i_state & I_DIRTY;
1223 
1224 		if (flags & I_DIRTY_INODE)
1225 			inode->i_state &= ~I_DIRTY_TIME;
1226 		inode->i_state |= flags;
1227 
1228 		/*
1229 		 * If the inode is being synced, just update its dirty state.
1230 		 * The unlocker will place the inode on the appropriate
1231 		 * superblock list, based upon its state.
1232 		 */
1233 		if (inode->i_state & I_SYNC)
1234 			goto out_unlock_inode;
1235 
1236 		/*
1237 		 * Only add valid (hashed) inodes to the superblock's
1238 		 * dirty list.  Add blockdev inodes as well.
1239 		 */
1240 		if (!S_ISBLK(inode->i_mode)) {
1241 			if (inode_unhashed(inode))
1242 				goto out_unlock_inode;
1243 		}
1244 		if (inode->i_state & I_FREEING)
1245 			goto out_unlock_inode;
1246 
1247 		/*
1248 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1249 		 * reposition it (that would break b_dirty time-ordering).
1250 		 */
1251 		if (!was_dirty) {
1252 			bool wakeup_bdi = false;
1253 			bdi = inode_to_bdi(inode);
1254 
1255 			spin_unlock(&inode->i_lock);
1256 			spin_lock(&bdi->wb.list_lock);
1257 			if (bdi_cap_writeback_dirty(bdi)) {
1258 				WARN(!test_bit(BDI_registered, &bdi->state),
1259 				     "bdi-%s not registered\n", bdi->name);
1260 
1261 				/*
1262 				 * If this is the first dirty inode for this
1263 				 * bdi, we have to wake-up the corresponding
1264 				 * bdi thread to make sure background
1265 				 * write-back happens later.
1266 				 */
1267 				if (!wb_has_dirty_io(&bdi->wb))
1268 					wakeup_bdi = true;
1269 			}
1270 
1271 			inode->dirtied_when = jiffies;
1272 			list_move(&inode->i_wb_list, dirtytime ?
1273 				  &bdi->wb.b_dirty_time : &bdi->wb.b_dirty);
1274 			spin_unlock(&bdi->wb.list_lock);
1275 			trace_writeback_dirty_inode_enqueue(inode);
1276 
1277 			if (wakeup_bdi)
1278 				bdi_wakeup_thread_delayed(bdi);
1279 			return;
1280 		}
1281 	}
1282 out_unlock_inode:
1283 	spin_unlock(&inode->i_lock);
1284 
1285 }
1286 EXPORT_SYMBOL(__mark_inode_dirty);
1287 
1288 static void wait_sb_inodes(struct super_block *sb)
1289 {
1290 	struct inode *inode, *old_inode = NULL;
1291 
1292 	/*
1293 	 * We need to be protected against the filesystem going from
1294 	 * r/o to r/w or vice versa.
1295 	 */
1296 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1297 
1298 	spin_lock(&inode_sb_list_lock);
1299 
1300 	/*
1301 	 * Data integrity sync. Must wait for all pages under writeback,
1302 	 * because there may have been pages dirtied before our sync
1303 	 * call, but which had writeout started before we write it out.
1304 	 * In which case, the inode may not be on the dirty list, but
1305 	 * we still have to wait for that writeout.
1306 	 */
1307 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1308 		struct address_space *mapping = inode->i_mapping;
1309 
1310 		spin_lock(&inode->i_lock);
1311 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1312 		    (mapping->nrpages == 0)) {
1313 			spin_unlock(&inode->i_lock);
1314 			continue;
1315 		}
1316 		__iget(inode);
1317 		spin_unlock(&inode->i_lock);
1318 		spin_unlock(&inode_sb_list_lock);
1319 
1320 		/*
1321 		 * We hold a reference to 'inode' so it couldn't have been
1322 		 * removed from s_inodes list while we dropped the
1323 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1324 		 * be holding the last reference and we cannot iput it under
1325 		 * inode_sb_list_lock. So we keep the reference and iput it
1326 		 * later.
1327 		 */
1328 		iput(old_inode);
1329 		old_inode = inode;
1330 
1331 		filemap_fdatawait(mapping);
1332 
1333 		cond_resched();
1334 
1335 		spin_lock(&inode_sb_list_lock);
1336 	}
1337 	spin_unlock(&inode_sb_list_lock);
1338 	iput(old_inode);
1339 }
1340 
1341 /**
1342  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1343  * @sb: the superblock
1344  * @nr: the number of pages to write
1345  * @reason: reason why some writeback work initiated
1346  *
1347  * Start writeback on some inodes on this super_block. No guarantees are made
1348  * on how many (if any) will be written, and this function does not wait
1349  * for IO completion of submitted IO.
1350  */
1351 void writeback_inodes_sb_nr(struct super_block *sb,
1352 			    unsigned long nr,
1353 			    enum wb_reason reason)
1354 {
1355 	DECLARE_COMPLETION_ONSTACK(done);
1356 	struct wb_writeback_work work = {
1357 		.sb			= sb,
1358 		.sync_mode		= WB_SYNC_NONE,
1359 		.tagged_writepages	= 1,
1360 		.done			= &done,
1361 		.nr_pages		= nr,
1362 		.reason			= reason,
1363 	};
1364 
1365 	if (sb->s_bdi == &noop_backing_dev_info)
1366 		return;
1367 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1368 	bdi_queue_work(sb->s_bdi, &work);
1369 	wait_for_completion(&done);
1370 }
1371 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1372 
1373 /**
1374  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1375  * @sb: the superblock
1376  * @reason: reason why some writeback work was initiated
1377  *
1378  * Start writeback on some inodes on this super_block. No guarantees are made
1379  * on how many (if any) will be written, and this function does not wait
1380  * for IO completion of submitted IO.
1381  */
1382 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1383 {
1384 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1385 }
1386 EXPORT_SYMBOL(writeback_inodes_sb);
1387 
1388 /**
1389  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1390  * @sb: the superblock
1391  * @nr: the number of pages to write
1392  * @reason: the reason of writeback
1393  *
1394  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1395  * Returns 1 if writeback was started, 0 if not.
1396  */
1397 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1398 				  unsigned long nr,
1399 				  enum wb_reason reason)
1400 {
1401 	if (writeback_in_progress(sb->s_bdi))
1402 		return 1;
1403 
1404 	if (!down_read_trylock(&sb->s_umount))
1405 		return 0;
1406 
1407 	writeback_inodes_sb_nr(sb, nr, reason);
1408 	up_read(&sb->s_umount);
1409 	return 1;
1410 }
1411 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1412 
1413 /**
1414  * try_to_writeback_inodes_sb - try to start writeback if none underway
1415  * @sb: the superblock
1416  * @reason: reason why some writeback work was initiated
1417  *
1418  * Implement by try_to_writeback_inodes_sb_nr()
1419  * Returns 1 if writeback was started, 0 if not.
1420  */
1421 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1422 {
1423 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1424 }
1425 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1426 
1427 /**
1428  * sync_inodes_sb	-	sync sb inode pages
1429  * @sb: the superblock
1430  *
1431  * This function writes and waits on any dirty inode belonging to this
1432  * super_block.
1433  */
1434 void sync_inodes_sb(struct super_block *sb)
1435 {
1436 	DECLARE_COMPLETION_ONSTACK(done);
1437 	struct wb_writeback_work work = {
1438 		.sb		= sb,
1439 		.sync_mode	= WB_SYNC_ALL,
1440 		.nr_pages	= LONG_MAX,
1441 		.range_cyclic	= 0,
1442 		.done		= &done,
1443 		.reason		= WB_REASON_SYNC,
1444 		.for_sync	= 1,
1445 	};
1446 
1447 	/* Nothing to do? */
1448 	if (sb->s_bdi == &noop_backing_dev_info)
1449 		return;
1450 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1451 
1452 	bdi_queue_work(sb->s_bdi, &work);
1453 	wait_for_completion(&done);
1454 
1455 	wait_sb_inodes(sb);
1456 }
1457 EXPORT_SYMBOL(sync_inodes_sb);
1458 
1459 /**
1460  * write_inode_now	-	write an inode to disk
1461  * @inode: inode to write to disk
1462  * @sync: whether the write should be synchronous or not
1463  *
1464  * This function commits an inode to disk immediately if it is dirty. This is
1465  * primarily needed by knfsd.
1466  *
1467  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1468  */
1469 int write_inode_now(struct inode *inode, int sync)
1470 {
1471 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1472 	struct writeback_control wbc = {
1473 		.nr_to_write = LONG_MAX,
1474 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1475 		.range_start = 0,
1476 		.range_end = LLONG_MAX,
1477 	};
1478 
1479 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1480 		wbc.nr_to_write = 0;
1481 
1482 	might_sleep();
1483 	return writeback_single_inode(inode, wb, &wbc);
1484 }
1485 EXPORT_SYMBOL(write_inode_now);
1486 
1487 /**
1488  * sync_inode - write an inode and its pages to disk.
1489  * @inode: the inode to sync
1490  * @wbc: controls the writeback mode
1491  *
1492  * sync_inode() will write an inode and its pages to disk.  It will also
1493  * correctly update the inode on its superblock's dirty inode lists and will
1494  * update inode->i_state.
1495  *
1496  * The caller must have a ref on the inode.
1497  */
1498 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1499 {
1500 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1501 }
1502 EXPORT_SYMBOL(sync_inode);
1503 
1504 /**
1505  * sync_inode_metadata - write an inode to disk
1506  * @inode: the inode to sync
1507  * @wait: wait for I/O to complete.
1508  *
1509  * Write an inode to disk and adjust its dirty state after completion.
1510  *
1511  * Note: only writes the actual inode, no associated data or other metadata.
1512  */
1513 int sync_inode_metadata(struct inode *inode, int wait)
1514 {
1515 	struct writeback_control wbc = {
1516 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1517 		.nr_to_write = 0, /* metadata-only */
1518 	};
1519 
1520 	return sync_inode(inode, &wbc);
1521 }
1522 EXPORT_SYMBOL(sync_inode_metadata);
1523