xref: /openbmc/linux/fs/fs-writeback.c (revision 87c2ce3b)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	akpm@zip.com.au
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/spinlock.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/backing-dev.h>
24 #include <linux/buffer_head.h>
25 
26 extern struct super_block *blockdev_superblock;
27 
28 /**
29  *	__mark_inode_dirty -	internal function
30  *	@inode: inode to mark
31  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
32  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
33  *  	mark_inode_dirty_sync.
34  *
35  * Put the inode on the super block's dirty list.
36  *
37  * CAREFUL! We mark it dirty unconditionally, but move it onto the
38  * dirty list only if it is hashed or if it refers to a blockdev.
39  * If it was not hashed, it will never be added to the dirty list
40  * even if it is later hashed, as it will have been marked dirty already.
41  *
42  * In short, make sure you hash any inodes _before_ you start marking
43  * them dirty.
44  *
45  * This function *must* be atomic for the I_DIRTY_PAGES case -
46  * set_page_dirty() is called under spinlock in several places.
47  *
48  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
49  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
50  * the kernel-internal blockdev inode represents the dirtying time of the
51  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
52  * page->mapping->host, so the page-dirtying time is recorded in the internal
53  * blockdev inode.
54  */
55 void __mark_inode_dirty(struct inode *inode, int flags)
56 {
57 	struct super_block *sb = inode->i_sb;
58 
59 	/*
60 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
61 	 * dirty the inode itself
62 	 */
63 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
64 		if (sb->s_op->dirty_inode)
65 			sb->s_op->dirty_inode(inode);
66 	}
67 
68 	/*
69 	 * make sure that changes are seen by all cpus before we test i_state
70 	 * -- mikulas
71 	 */
72 	smp_mb();
73 
74 	/* avoid the locking if we can */
75 	if ((inode->i_state & flags) == flags)
76 		return;
77 
78 	if (unlikely(block_dump)) {
79 		struct dentry *dentry = NULL;
80 		const char *name = "?";
81 
82 		if (!list_empty(&inode->i_dentry)) {
83 			dentry = list_entry(inode->i_dentry.next,
84 					    struct dentry, d_alias);
85 			if (dentry && dentry->d_name.name)
86 				name = (const char *) dentry->d_name.name;
87 		}
88 
89 		if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev"))
90 			printk(KERN_DEBUG
91 			       "%s(%d): dirtied inode %lu (%s) on %s\n",
92 			       current->comm, current->pid, inode->i_ino,
93 			       name, inode->i_sb->s_id);
94 	}
95 
96 	spin_lock(&inode_lock);
97 	if ((inode->i_state & flags) != flags) {
98 		const int was_dirty = inode->i_state & I_DIRTY;
99 
100 		inode->i_state |= flags;
101 
102 		/*
103 		 * If the inode is locked, just update its dirty state.
104 		 * The unlocker will place the inode on the appropriate
105 		 * superblock list, based upon its state.
106 		 */
107 		if (inode->i_state & I_LOCK)
108 			goto out;
109 
110 		/*
111 		 * Only add valid (hashed) inodes to the superblock's
112 		 * dirty list.  Add blockdev inodes as well.
113 		 */
114 		if (!S_ISBLK(inode->i_mode)) {
115 			if (hlist_unhashed(&inode->i_hash))
116 				goto out;
117 		}
118 		if (inode->i_state & (I_FREEING|I_CLEAR))
119 			goto out;
120 
121 		/*
122 		 * If the inode was already on s_dirty or s_io, don't
123 		 * reposition it (that would break s_dirty time-ordering).
124 		 */
125 		if (!was_dirty) {
126 			inode->dirtied_when = jiffies;
127 			list_move(&inode->i_list, &sb->s_dirty);
128 		}
129 	}
130 out:
131 	spin_unlock(&inode_lock);
132 }
133 
134 EXPORT_SYMBOL(__mark_inode_dirty);
135 
136 static int write_inode(struct inode *inode, int sync)
137 {
138 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
139 		return inode->i_sb->s_op->write_inode(inode, sync);
140 	return 0;
141 }
142 
143 /*
144  * Write a single inode's dirty pages and inode data out to disk.
145  * If `wait' is set, wait on the writeout.
146  *
147  * The whole writeout design is quite complex and fragile.  We want to avoid
148  * starvation of particular inodes when others are being redirtied, prevent
149  * livelocks, etc.
150  *
151  * Called under inode_lock.
152  */
153 static int
154 __sync_single_inode(struct inode *inode, struct writeback_control *wbc)
155 {
156 	unsigned dirty;
157 	struct address_space *mapping = inode->i_mapping;
158 	struct super_block *sb = inode->i_sb;
159 	int wait = wbc->sync_mode == WB_SYNC_ALL;
160 	int ret;
161 
162 	BUG_ON(inode->i_state & I_LOCK);
163 
164 	/* Set I_LOCK, reset I_DIRTY */
165 	dirty = inode->i_state & I_DIRTY;
166 	inode->i_state |= I_LOCK;
167 	inode->i_state &= ~I_DIRTY;
168 
169 	spin_unlock(&inode_lock);
170 
171 	ret = do_writepages(mapping, wbc);
172 
173 	/* Don't write the inode if only I_DIRTY_PAGES was set */
174 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
175 		int err = write_inode(inode, wait);
176 		if (ret == 0)
177 			ret = err;
178 	}
179 
180 	if (wait) {
181 		int err = filemap_fdatawait(mapping);
182 		if (ret == 0)
183 			ret = err;
184 	}
185 
186 	spin_lock(&inode_lock);
187 	inode->i_state &= ~I_LOCK;
188 	if (!(inode->i_state & I_FREEING)) {
189 		if (!(inode->i_state & I_DIRTY) &&
190 		    mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
191 			/*
192 			 * We didn't write back all the pages.  nfs_writepages()
193 			 * sometimes bales out without doing anything. Redirty
194 			 * the inode.  It is still on sb->s_io.
195 			 */
196 			if (wbc->for_kupdate) {
197 				/*
198 				 * For the kupdate function we leave the inode
199 				 * at the head of sb_dirty so it will get more
200 				 * writeout as soon as the queue becomes
201 				 * uncongested.
202 				 */
203 				inode->i_state |= I_DIRTY_PAGES;
204 				list_move_tail(&inode->i_list, &sb->s_dirty);
205 			} else {
206 				/*
207 				 * Otherwise fully redirty the inode so that
208 				 * other inodes on this superblock will get some
209 				 * writeout.  Otherwise heavy writing to one
210 				 * file would indefinitely suspend writeout of
211 				 * all the other files.
212 				 */
213 				inode->i_state |= I_DIRTY_PAGES;
214 				inode->dirtied_when = jiffies;
215 				list_move(&inode->i_list, &sb->s_dirty);
216 			}
217 		} else if (inode->i_state & I_DIRTY) {
218 			/*
219 			 * Someone redirtied the inode while were writing back
220 			 * the pages.
221 			 */
222 			list_move(&inode->i_list, &sb->s_dirty);
223 		} else if (atomic_read(&inode->i_count)) {
224 			/*
225 			 * The inode is clean, inuse
226 			 */
227 			list_move(&inode->i_list, &inode_in_use);
228 		} else {
229 			/*
230 			 * The inode is clean, unused
231 			 */
232 			list_move(&inode->i_list, &inode_unused);
233 		}
234 	}
235 	wake_up_inode(inode);
236 	return ret;
237 }
238 
239 /*
240  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
241  * caller has ref on the inode (either via __iget or via syscall against an fd)
242  * or the inode has I_WILL_FREE set (via generic_forget_inode)
243  */
244 static int
245 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
246 {
247 	wait_queue_head_t *wqh;
248 
249 	if (!atomic_read(&inode->i_count))
250 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
251 	else
252 		WARN_ON(inode->i_state & I_WILL_FREE);
253 
254 	if ((wbc->sync_mode != WB_SYNC_ALL) && (inode->i_state & I_LOCK)) {
255 		list_move(&inode->i_list, &inode->i_sb->s_dirty);
256 		return 0;
257 	}
258 
259 	/*
260 	 * It's a data-integrity sync.  We must wait.
261 	 */
262 	if (inode->i_state & I_LOCK) {
263 		DEFINE_WAIT_BIT(wq, &inode->i_state, __I_LOCK);
264 
265 		wqh = bit_waitqueue(&inode->i_state, __I_LOCK);
266 		do {
267 			spin_unlock(&inode_lock);
268 			__wait_on_bit(wqh, &wq, inode_wait,
269 							TASK_UNINTERRUPTIBLE);
270 			spin_lock(&inode_lock);
271 		} while (inode->i_state & I_LOCK);
272 	}
273 	return __sync_single_inode(inode, wbc);
274 }
275 
276 /*
277  * Write out a superblock's list of dirty inodes.  A wait will be performed
278  * upon no inodes, all inodes or the final one, depending upon sync_mode.
279  *
280  * If older_than_this is non-NULL, then only write out inodes which
281  * had their first dirtying at a time earlier than *older_than_this.
282  *
283  * If we're a pdlfush thread, then implement pdflush collision avoidance
284  * against the entire list.
285  *
286  * WB_SYNC_HOLD is a hack for sys_sync(): reattach the inode to sb->s_dirty so
287  * that it can be located for waiting on in __writeback_single_inode().
288  *
289  * Called under inode_lock.
290  *
291  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
292  * This function assumes that the blockdev superblock's inodes are backed by
293  * a variety of queues, so all inodes are searched.  For other superblocks,
294  * assume that all inodes are backed by the same queue.
295  *
296  * FIXME: this linear search could get expensive with many fileystems.  But
297  * how to fix?  We need to go from an address_space to all inodes which share
298  * a queue with that address_space.  (Easy: have a global "dirty superblocks"
299  * list).
300  *
301  * The inodes to be written are parked on sb->s_io.  They are moved back onto
302  * sb->s_dirty as they are selected for writing.  This way, none can be missed
303  * on the writer throttling path, and we get decent balancing between many
304  * throttled threads: we don't want them all piling up on __wait_on_inode.
305  */
306 static void
307 sync_sb_inodes(struct super_block *sb, struct writeback_control *wbc)
308 {
309 	const unsigned long start = jiffies;	/* livelock avoidance */
310 
311 	if (!wbc->for_kupdate || list_empty(&sb->s_io))
312 		list_splice_init(&sb->s_dirty, &sb->s_io);
313 
314 	while (!list_empty(&sb->s_io)) {
315 		struct inode *inode = list_entry(sb->s_io.prev,
316 						struct inode, i_list);
317 		struct address_space *mapping = inode->i_mapping;
318 		struct backing_dev_info *bdi = mapping->backing_dev_info;
319 		long pages_skipped;
320 
321 		if (!bdi_cap_writeback_dirty(bdi)) {
322 			list_move(&inode->i_list, &sb->s_dirty);
323 			if (sb == blockdev_superblock) {
324 				/*
325 				 * Dirty memory-backed blockdev: the ramdisk
326 				 * driver does this.  Skip just this inode
327 				 */
328 				continue;
329 			}
330 			/*
331 			 * Dirty memory-backed inode against a filesystem other
332 			 * than the kernel-internal bdev filesystem.  Skip the
333 			 * entire superblock.
334 			 */
335 			break;
336 		}
337 
338 		if (wbc->nonblocking && bdi_write_congested(bdi)) {
339 			wbc->encountered_congestion = 1;
340 			if (sb != blockdev_superblock)
341 				break;		/* Skip a congested fs */
342 			list_move(&inode->i_list, &sb->s_dirty);
343 			continue;		/* Skip a congested blockdev */
344 		}
345 
346 		if (wbc->bdi && bdi != wbc->bdi) {
347 			if (sb != blockdev_superblock)
348 				break;		/* fs has the wrong queue */
349 			list_move(&inode->i_list, &sb->s_dirty);
350 			continue;		/* blockdev has wrong queue */
351 		}
352 
353 		/* Was this inode dirtied after sync_sb_inodes was called? */
354 		if (time_after(inode->dirtied_when, start))
355 			break;
356 
357 		/* Was this inode dirtied too recently? */
358 		if (wbc->older_than_this && time_after(inode->dirtied_when,
359 						*wbc->older_than_this))
360 			break;
361 
362 		/* Is another pdflush already flushing this queue? */
363 		if (current_is_pdflush() && !writeback_acquire(bdi))
364 			break;
365 
366 		BUG_ON(inode->i_state & I_FREEING);
367 		__iget(inode);
368 		pages_skipped = wbc->pages_skipped;
369 		__writeback_single_inode(inode, wbc);
370 		if (wbc->sync_mode == WB_SYNC_HOLD) {
371 			inode->dirtied_when = jiffies;
372 			list_move(&inode->i_list, &sb->s_dirty);
373 		}
374 		if (current_is_pdflush())
375 			writeback_release(bdi);
376 		if (wbc->pages_skipped != pages_skipped) {
377 			/*
378 			 * writeback is not making progress due to locked
379 			 * buffers.  Skip this inode for now.
380 			 */
381 			list_move(&inode->i_list, &sb->s_dirty);
382 		}
383 		spin_unlock(&inode_lock);
384 		cond_resched();
385 		iput(inode);
386 		spin_lock(&inode_lock);
387 		if (wbc->nr_to_write <= 0)
388 			break;
389 	}
390 	return;		/* Leave any unwritten inodes on s_io */
391 }
392 
393 /*
394  * Start writeback of dirty pagecache data against all unlocked inodes.
395  *
396  * Note:
397  * We don't need to grab a reference to superblock here. If it has non-empty
398  * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
399  * past sync_inodes_sb() until both the ->s_dirty and ->s_io lists are
400  * empty. Since __sync_single_inode() regains inode_lock before it finally moves
401  * inode from superblock lists we are OK.
402  *
403  * If `older_than_this' is non-zero then only flush inodes which have a
404  * flushtime older than *older_than_this.
405  *
406  * If `bdi' is non-zero then we will scan the first inode against each
407  * superblock until we find the matching ones.  One group will be the dirty
408  * inodes against a filesystem.  Then when we hit the dummy blockdev superblock,
409  * sync_sb_inodes will seekout the blockdev which matches `bdi'.  Maybe not
410  * super-efficient but we're about to do a ton of I/O...
411  */
412 void
413 writeback_inodes(struct writeback_control *wbc)
414 {
415 	struct super_block *sb;
416 
417 	might_sleep();
418 	spin_lock(&sb_lock);
419 restart:
420 	sb = sb_entry(super_blocks.prev);
421 	for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
422 		if (!list_empty(&sb->s_dirty) || !list_empty(&sb->s_io)) {
423 			/* we're making our own get_super here */
424 			sb->s_count++;
425 			spin_unlock(&sb_lock);
426 			/*
427 			 * If we can't get the readlock, there's no sense in
428 			 * waiting around, most of the time the FS is going to
429 			 * be unmounted by the time it is released.
430 			 */
431 			if (down_read_trylock(&sb->s_umount)) {
432 				if (sb->s_root) {
433 					spin_lock(&inode_lock);
434 					sync_sb_inodes(sb, wbc);
435 					spin_unlock(&inode_lock);
436 				}
437 				up_read(&sb->s_umount);
438 			}
439 			spin_lock(&sb_lock);
440 			if (__put_super_and_need_restart(sb))
441 				goto restart;
442 		}
443 		if (wbc->nr_to_write <= 0)
444 			break;
445 	}
446 	spin_unlock(&sb_lock);
447 }
448 
449 /*
450  * writeback and wait upon the filesystem's dirty inodes.  The caller will
451  * do this in two passes - one to write, and one to wait.  WB_SYNC_HOLD is
452  * used to park the written inodes on sb->s_dirty for the wait pass.
453  *
454  * A finite limit is set on the number of pages which will be written.
455  * To prevent infinite livelock of sys_sync().
456  *
457  * We add in the number of potentially dirty inodes, because each inode write
458  * can dirty pagecache in the underlying blockdev.
459  */
460 void sync_inodes_sb(struct super_block *sb, int wait)
461 {
462 	struct writeback_control wbc = {
463 		.sync_mode	= wait ? WB_SYNC_ALL : WB_SYNC_HOLD,
464 	};
465 	unsigned long nr_dirty = read_page_state(nr_dirty);
466 	unsigned long nr_unstable = read_page_state(nr_unstable);
467 
468 	wbc.nr_to_write = nr_dirty + nr_unstable +
469 			(inodes_stat.nr_inodes - inodes_stat.nr_unused) +
470 			nr_dirty + nr_unstable;
471 	wbc.nr_to_write += wbc.nr_to_write / 2;		/* Bit more for luck */
472 	spin_lock(&inode_lock);
473 	sync_sb_inodes(sb, &wbc);
474 	spin_unlock(&inode_lock);
475 }
476 
477 /*
478  * Rather lame livelock avoidance.
479  */
480 static void set_sb_syncing(int val)
481 {
482 	struct super_block *sb;
483 	spin_lock(&sb_lock);
484 	sb = sb_entry(super_blocks.prev);
485 	for (; sb != sb_entry(&super_blocks); sb = sb_entry(sb->s_list.prev)) {
486 		sb->s_syncing = val;
487 	}
488 	spin_unlock(&sb_lock);
489 }
490 
491 /**
492  * sync_inodes - writes all inodes to disk
493  * @wait: wait for completion
494  *
495  * sync_inodes() goes through each super block's dirty inode list, writes the
496  * inodes out, waits on the writeout and puts the inodes back on the normal
497  * list.
498  *
499  * This is for sys_sync().  fsync_dev() uses the same algorithm.  The subtle
500  * part of the sync functions is that the blockdev "superblock" is processed
501  * last.  This is because the write_inode() function of a typical fs will
502  * perform no I/O, but will mark buffers in the blockdev mapping as dirty.
503  * What we want to do is to perform all that dirtying first, and then write
504  * back all those inode blocks via the blockdev mapping in one sweep.  So the
505  * additional (somewhat redundant) sync_blockdev() calls here are to make
506  * sure that really happens.  Because if we call sync_inodes_sb(wait=1) with
507  * outstanding dirty inodes, the writeback goes block-at-a-time within the
508  * filesystem's write_inode().  This is extremely slow.
509  */
510 static void __sync_inodes(int wait)
511 {
512 	struct super_block *sb;
513 
514 	spin_lock(&sb_lock);
515 restart:
516 	list_for_each_entry(sb, &super_blocks, s_list) {
517 		if (sb->s_syncing)
518 			continue;
519 		sb->s_syncing = 1;
520 		sb->s_count++;
521 		spin_unlock(&sb_lock);
522 		down_read(&sb->s_umount);
523 		if (sb->s_root) {
524 			sync_inodes_sb(sb, wait);
525 			sync_blockdev(sb->s_bdev);
526 		}
527 		up_read(&sb->s_umount);
528 		spin_lock(&sb_lock);
529 		if (__put_super_and_need_restart(sb))
530 			goto restart;
531 	}
532 	spin_unlock(&sb_lock);
533 }
534 
535 void sync_inodes(int wait)
536 {
537 	set_sb_syncing(0);
538 	__sync_inodes(0);
539 
540 	if (wait) {
541 		set_sb_syncing(0);
542 		__sync_inodes(1);
543 	}
544 }
545 
546 /**
547  * write_inode_now	-	write an inode to disk
548  * @inode: inode to write to disk
549  * @sync: whether the write should be synchronous or not
550  *
551  * This function commits an inode to disk immediately if it is dirty. This is
552  * primarily needed by knfsd.
553  *
554  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
555  */
556 int write_inode_now(struct inode *inode, int sync)
557 {
558 	int ret;
559 	struct writeback_control wbc = {
560 		.nr_to_write = LONG_MAX,
561 		.sync_mode = WB_SYNC_ALL,
562 	};
563 
564 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
565 		wbc.nr_to_write = 0;
566 
567 	might_sleep();
568 	spin_lock(&inode_lock);
569 	ret = __writeback_single_inode(inode, &wbc);
570 	spin_unlock(&inode_lock);
571 	if (sync)
572 		wait_on_inode(inode);
573 	return ret;
574 }
575 EXPORT_SYMBOL(write_inode_now);
576 
577 /**
578  * sync_inode - write an inode and its pages to disk.
579  * @inode: the inode to sync
580  * @wbc: controls the writeback mode
581  *
582  * sync_inode() will write an inode and its pages to disk.  It will also
583  * correctly update the inode on its superblock's dirty inode lists and will
584  * update inode->i_state.
585  *
586  * The caller must have a ref on the inode.
587  */
588 int sync_inode(struct inode *inode, struct writeback_control *wbc)
589 {
590 	int ret;
591 
592 	spin_lock(&inode_lock);
593 	ret = __writeback_single_inode(inode, wbc);
594 	spin_unlock(&inode_lock);
595 	return ret;
596 }
597 EXPORT_SYMBOL(sync_inode);
598 
599 /**
600  * generic_osync_inode - flush all dirty data for a given inode to disk
601  * @inode: inode to write
602  * @mapping: the address_space that should be flushed
603  * @what:  what to write and wait upon
604  *
605  * This can be called by file_write functions for files which have the
606  * O_SYNC flag set, to flush dirty writes to disk.
607  *
608  * @what is a bitmask, specifying which part of the inode's data should be
609  * written and waited upon.
610  *
611  *    OSYNC_DATA:     i_mapping's dirty data
612  *    OSYNC_METADATA: the buffers at i_mapping->private_list
613  *    OSYNC_INODE:    the inode itself
614  */
615 
616 int generic_osync_inode(struct inode *inode, struct address_space *mapping, int what)
617 {
618 	int err = 0;
619 	int need_write_inode_now = 0;
620 	int err2;
621 
622 	current->flags |= PF_SYNCWRITE;
623 	if (what & OSYNC_DATA)
624 		err = filemap_fdatawrite(mapping);
625 	if (what & (OSYNC_METADATA|OSYNC_DATA)) {
626 		err2 = sync_mapping_buffers(mapping);
627 		if (!err)
628 			err = err2;
629 	}
630 	if (what & OSYNC_DATA) {
631 		err2 = filemap_fdatawait(mapping);
632 		if (!err)
633 			err = err2;
634 	}
635 	current->flags &= ~PF_SYNCWRITE;
636 
637 	spin_lock(&inode_lock);
638 	if ((inode->i_state & I_DIRTY) &&
639 	    ((what & OSYNC_INODE) || (inode->i_state & I_DIRTY_DATASYNC)))
640 		need_write_inode_now = 1;
641 	spin_unlock(&inode_lock);
642 
643 	if (need_write_inode_now) {
644 		err2 = write_inode_now(inode, 1);
645 		if (!err)
646 			err = err2;
647 	}
648 	else
649 		wait_on_inode(inode);
650 
651 	return err;
652 }
653 
654 EXPORT_SYMBOL(generic_osync_inode);
655 
656 /**
657  * writeback_acquire: attempt to get exclusive writeback access to a device
658  * @bdi: the device's backing_dev_info structure
659  *
660  * It is a waste of resources to have more than one pdflush thread blocked on
661  * a single request queue.  Exclusion at the request_queue level is obtained
662  * via a flag in the request_queue's backing_dev_info.state.
663  *
664  * Non-request_queue-backed address_spaces will share default_backing_dev_info,
665  * unless they implement their own.  Which is somewhat inefficient, as this
666  * may prevent concurrent writeback against multiple devices.
667  */
668 int writeback_acquire(struct backing_dev_info *bdi)
669 {
670 	return !test_and_set_bit(BDI_pdflush, &bdi->state);
671 }
672 
673 /**
674  * writeback_in_progress: determine whether there is writeback in progress
675  * @bdi: the device's backing_dev_info structure.
676  *
677  * Determine whether there is writeback in progress against a backing device.
678  */
679 int writeback_in_progress(struct backing_dev_info *bdi)
680 {
681 	return test_bit(BDI_pdflush, &bdi->state);
682 }
683 
684 /**
685  * writeback_release: relinquish exclusive writeback access against a device.
686  * @bdi: the device's backing_dev_info structure
687  */
688 void writeback_release(struct backing_dev_info *bdi)
689 {
690 	BUG_ON(!writeback_in_progress(bdi));
691 	clear_bit(BDI_pdflush, &bdi->state);
692 }
693