xref: /openbmc/linux/fs/fs-writeback.c (revision 81d67439)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int for_kupdate:1;
40 	unsigned int range_cyclic:1;
41 	unsigned int for_background:1;
42 
43 	struct list_head list;		/* pending work list */
44 	struct completion *done;	/* set if the caller waits */
45 };
46 
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 	return list_entry(head, struct inode, i_wb_list);
85 }
86 
87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
88 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
89 {
90 	if (bdi->wb.task) {
91 		wake_up_process(bdi->wb.task);
92 	} else {
93 		/*
94 		 * The bdi thread isn't there, wake up the forker thread which
95 		 * will create and run it.
96 		 */
97 		wake_up_process(default_backing_dev_info.wb.task);
98 	}
99 }
100 
101 static void bdi_queue_work(struct backing_dev_info *bdi,
102 			   struct wb_writeback_work *work)
103 {
104 	trace_writeback_queue(bdi, work);
105 
106 	spin_lock_bh(&bdi->wb_lock);
107 	list_add_tail(&work->list, &bdi->work_list);
108 	if (!bdi->wb.task)
109 		trace_writeback_nothread(bdi, work);
110 	bdi_wakeup_flusher(bdi);
111 	spin_unlock_bh(&bdi->wb_lock);
112 }
113 
114 static void
115 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
116 		      bool range_cyclic)
117 {
118 	struct wb_writeback_work *work;
119 
120 	/*
121 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
122 	 * wakeup the thread for old dirty data writeback
123 	 */
124 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
125 	if (!work) {
126 		if (bdi->wb.task) {
127 			trace_writeback_nowork(bdi);
128 			wake_up_process(bdi->wb.task);
129 		}
130 		return;
131 	}
132 
133 	work->sync_mode	= WB_SYNC_NONE;
134 	work->nr_pages	= nr_pages;
135 	work->range_cyclic = range_cyclic;
136 
137 	bdi_queue_work(bdi, work);
138 }
139 
140 /**
141  * bdi_start_writeback - start writeback
142  * @bdi: the backing device to write from
143  * @nr_pages: the number of pages to write
144  *
145  * Description:
146  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
147  *   started when this function returns, we make no guarantees on
148  *   completion. Caller need not hold sb s_umount semaphore.
149  *
150  */
151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
152 {
153 	__bdi_start_writeback(bdi, nr_pages, true);
154 }
155 
156 /**
157  * bdi_start_background_writeback - start background writeback
158  * @bdi: the backing device to write from
159  *
160  * Description:
161  *   This makes sure WB_SYNC_NONE background writeback happens. When
162  *   this function returns, it is only guaranteed that for given BDI
163  *   some IO is happening if we are over background dirty threshold.
164  *   Caller need not hold sb s_umount semaphore.
165  */
166 void bdi_start_background_writeback(struct backing_dev_info *bdi)
167 {
168 	/*
169 	 * We just wake up the flusher thread. It will perform background
170 	 * writeback as soon as there is no other work to do.
171 	 */
172 	trace_writeback_wake_background(bdi);
173 	spin_lock_bh(&bdi->wb_lock);
174 	bdi_wakeup_flusher(bdi);
175 	spin_unlock_bh(&bdi->wb_lock);
176 }
177 
178 /*
179  * Remove the inode from the writeback list it is on.
180  */
181 void inode_wb_list_del(struct inode *inode)
182 {
183 	spin_lock(&inode_wb_list_lock);
184 	list_del_init(&inode->i_wb_list);
185 	spin_unlock(&inode_wb_list_lock);
186 }
187 
188 
189 /*
190  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
191  * furthest end of its superblock's dirty-inode list.
192  *
193  * Before stamping the inode's ->dirtied_when, we check to see whether it is
194  * already the most-recently-dirtied inode on the b_dirty list.  If that is
195  * the case then the inode must have been redirtied while it was being written
196  * out and we don't reset its dirtied_when.
197  */
198 static void redirty_tail(struct inode *inode)
199 {
200 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
201 
202 	assert_spin_locked(&inode_wb_list_lock);
203 	if (!list_empty(&wb->b_dirty)) {
204 		struct inode *tail;
205 
206 		tail = wb_inode(wb->b_dirty.next);
207 		if (time_before(inode->dirtied_when, tail->dirtied_when))
208 			inode->dirtied_when = jiffies;
209 	}
210 	list_move(&inode->i_wb_list, &wb->b_dirty);
211 }
212 
213 /*
214  * requeue inode for re-scanning after bdi->b_io list is exhausted.
215  */
216 static void requeue_io(struct inode *inode)
217 {
218 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
219 
220 	assert_spin_locked(&inode_wb_list_lock);
221 	list_move(&inode->i_wb_list, &wb->b_more_io);
222 }
223 
224 static void inode_sync_complete(struct inode *inode)
225 {
226 	/*
227 	 * Prevent speculative execution through
228 	 * spin_unlock(&inode_wb_list_lock);
229 	 */
230 
231 	smp_mb();
232 	wake_up_bit(&inode->i_state, __I_SYNC);
233 }
234 
235 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
236 {
237 	bool ret = time_after(inode->dirtied_when, t);
238 #ifndef CONFIG_64BIT
239 	/*
240 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
241 	 * It _appears_ to be in the future, but is actually in distant past.
242 	 * This test is necessary to prevent such wrapped-around relative times
243 	 * from permanently stopping the whole bdi writeback.
244 	 */
245 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
246 #endif
247 	return ret;
248 }
249 
250 /*
251  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
252  */
253 static void move_expired_inodes(struct list_head *delaying_queue,
254 			       struct list_head *dispatch_queue,
255 				unsigned long *older_than_this)
256 {
257 	LIST_HEAD(tmp);
258 	struct list_head *pos, *node;
259 	struct super_block *sb = NULL;
260 	struct inode *inode;
261 	int do_sb_sort = 0;
262 
263 	while (!list_empty(delaying_queue)) {
264 		inode = wb_inode(delaying_queue->prev);
265 		if (older_than_this &&
266 		    inode_dirtied_after(inode, *older_than_this))
267 			break;
268 		if (sb && sb != inode->i_sb)
269 			do_sb_sort = 1;
270 		sb = inode->i_sb;
271 		list_move(&inode->i_wb_list, &tmp);
272 	}
273 
274 	/* just one sb in list, splice to dispatch_queue and we're done */
275 	if (!do_sb_sort) {
276 		list_splice(&tmp, dispatch_queue);
277 		return;
278 	}
279 
280 	/* Move inodes from one superblock together */
281 	while (!list_empty(&tmp)) {
282 		sb = wb_inode(tmp.prev)->i_sb;
283 		list_for_each_prev_safe(pos, node, &tmp) {
284 			inode = wb_inode(pos);
285 			if (inode->i_sb == sb)
286 				list_move(&inode->i_wb_list, dispatch_queue);
287 		}
288 	}
289 }
290 
291 /*
292  * Queue all expired dirty inodes for io, eldest first.
293  * Before
294  *         newly dirtied     b_dirty    b_io    b_more_io
295  *         =============>    gf         edc     BA
296  * After
297  *         newly dirtied     b_dirty    b_io    b_more_io
298  *         =============>    g          fBAedc
299  *                                           |
300  *                                           +--> dequeue for IO
301  */
302 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
303 {
304 	assert_spin_locked(&inode_wb_list_lock);
305 	list_splice_init(&wb->b_more_io, &wb->b_io);
306 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
307 }
308 
309 static int write_inode(struct inode *inode, struct writeback_control *wbc)
310 {
311 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
312 		return inode->i_sb->s_op->write_inode(inode, wbc);
313 	return 0;
314 }
315 
316 /*
317  * Wait for writeback on an inode to complete.
318  */
319 static void inode_wait_for_writeback(struct inode *inode)
320 {
321 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
322 	wait_queue_head_t *wqh;
323 
324 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
325 	while (inode->i_state & I_SYNC) {
326 		spin_unlock(&inode->i_lock);
327 		spin_unlock(&inode_wb_list_lock);
328 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
329 		spin_lock(&inode_wb_list_lock);
330 		spin_lock(&inode->i_lock);
331 	}
332 }
333 
334 /*
335  * Write out an inode's dirty pages.  Called under inode_wb_list_lock and
336  * inode->i_lock.  Either the caller has an active reference on the inode or
337  * the inode has I_WILL_FREE set.
338  *
339  * If `wait' is set, wait on the writeout.
340  *
341  * The whole writeout design is quite complex and fragile.  We want to avoid
342  * starvation of particular inodes when others are being redirtied, prevent
343  * livelocks, etc.
344  */
345 static int
346 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
347 {
348 	struct address_space *mapping = inode->i_mapping;
349 	unsigned dirty;
350 	int ret;
351 
352 	assert_spin_locked(&inode_wb_list_lock);
353 	assert_spin_locked(&inode->i_lock);
354 
355 	if (!atomic_read(&inode->i_count))
356 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
357 	else
358 		WARN_ON(inode->i_state & I_WILL_FREE);
359 
360 	if (inode->i_state & I_SYNC) {
361 		/*
362 		 * If this inode is locked for writeback and we are not doing
363 		 * writeback-for-data-integrity, move it to b_more_io so that
364 		 * writeback can proceed with the other inodes on s_io.
365 		 *
366 		 * We'll have another go at writing back this inode when we
367 		 * completed a full scan of b_io.
368 		 */
369 		if (wbc->sync_mode != WB_SYNC_ALL) {
370 			requeue_io(inode);
371 			return 0;
372 		}
373 
374 		/*
375 		 * It's a data-integrity sync.  We must wait.
376 		 */
377 		inode_wait_for_writeback(inode);
378 	}
379 
380 	BUG_ON(inode->i_state & I_SYNC);
381 
382 	/* Set I_SYNC, reset I_DIRTY_PAGES */
383 	inode->i_state |= I_SYNC;
384 	inode->i_state &= ~I_DIRTY_PAGES;
385 	spin_unlock(&inode->i_lock);
386 	spin_unlock(&inode_wb_list_lock);
387 
388 	ret = do_writepages(mapping, wbc);
389 
390 	/*
391 	 * Make sure to wait on the data before writing out the metadata.
392 	 * This is important for filesystems that modify metadata on data
393 	 * I/O completion.
394 	 */
395 	if (wbc->sync_mode == WB_SYNC_ALL) {
396 		int err = filemap_fdatawait(mapping);
397 		if (ret == 0)
398 			ret = err;
399 	}
400 
401 	/*
402 	 * Some filesystems may redirty the inode during the writeback
403 	 * due to delalloc, clear dirty metadata flags right before
404 	 * write_inode()
405 	 */
406 	spin_lock(&inode->i_lock);
407 	dirty = inode->i_state & I_DIRTY;
408 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
409 	spin_unlock(&inode->i_lock);
410 	/* Don't write the inode if only I_DIRTY_PAGES was set */
411 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
412 		int err = write_inode(inode, wbc);
413 		if (ret == 0)
414 			ret = err;
415 	}
416 
417 	spin_lock(&inode_wb_list_lock);
418 	spin_lock(&inode->i_lock);
419 	inode->i_state &= ~I_SYNC;
420 	if (!(inode->i_state & I_FREEING)) {
421 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
422 			/*
423 			 * We didn't write back all the pages.  nfs_writepages()
424 			 * sometimes bales out without doing anything.
425 			 */
426 			inode->i_state |= I_DIRTY_PAGES;
427 			if (wbc->nr_to_write <= 0) {
428 				/*
429 				 * slice used up: queue for next turn
430 				 */
431 				requeue_io(inode);
432 			} else {
433 				/*
434 				 * Writeback blocked by something other than
435 				 * congestion. Delay the inode for some time to
436 				 * avoid spinning on the CPU (100% iowait)
437 				 * retrying writeback of the dirty page/inode
438 				 * that cannot be performed immediately.
439 				 */
440 				redirty_tail(inode);
441 			}
442 		} else if (inode->i_state & I_DIRTY) {
443 			/*
444 			 * Filesystems can dirty the inode during writeback
445 			 * operations, such as delayed allocation during
446 			 * submission or metadata updates after data IO
447 			 * completion.
448 			 */
449 			redirty_tail(inode);
450 		} else {
451 			/*
452 			 * The inode is clean.  At this point we either have
453 			 * a reference to the inode or it's on it's way out.
454 			 * No need to add it back to the LRU.
455 			 */
456 			list_del_init(&inode->i_wb_list);
457 		}
458 	}
459 	inode_sync_complete(inode);
460 	return ret;
461 }
462 
463 /*
464  * Write a portion of b_io inodes which belong to @sb.
465  *
466  * If @only_this_sb is true, then find and write all such
467  * inodes. Otherwise write only ones which go sequentially
468  * in reverse order.
469  *
470  * Return 1, if the caller writeback routine should be
471  * interrupted. Otherwise return 0.
472  */
473 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
474 		struct writeback_control *wbc, bool only_this_sb)
475 {
476 	while (!list_empty(&wb->b_io)) {
477 		long pages_skipped;
478 		struct inode *inode = wb_inode(wb->b_io.prev);
479 
480 		if (inode->i_sb != sb) {
481 			if (only_this_sb) {
482 				/*
483 				 * We only want to write back data for this
484 				 * superblock, move all inodes not belonging
485 				 * to it back onto the dirty list.
486 				 */
487 				redirty_tail(inode);
488 				continue;
489 			}
490 
491 			/*
492 			 * The inode belongs to a different superblock.
493 			 * Bounce back to the caller to unpin this and
494 			 * pin the next superblock.
495 			 */
496 			return 0;
497 		}
498 
499 		/*
500 		 * Don't bother with new inodes or inodes beeing freed, first
501 		 * kind does not need peridic writeout yet, and for the latter
502 		 * kind writeout is handled by the freer.
503 		 */
504 		spin_lock(&inode->i_lock);
505 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
506 			spin_unlock(&inode->i_lock);
507 			requeue_io(inode);
508 			continue;
509 		}
510 
511 		/*
512 		 * Was this inode dirtied after sync_sb_inodes was called?
513 		 * This keeps sync from extra jobs and livelock.
514 		 */
515 		if (inode_dirtied_after(inode, wbc->wb_start)) {
516 			spin_unlock(&inode->i_lock);
517 			return 1;
518 		}
519 
520 		__iget(inode);
521 
522 		pages_skipped = wbc->pages_skipped;
523 		writeback_single_inode(inode, wbc);
524 		if (wbc->pages_skipped != pages_skipped) {
525 			/*
526 			 * writeback is not making progress due to locked
527 			 * buffers.  Skip this inode for now.
528 			 */
529 			redirty_tail(inode);
530 		}
531 		spin_unlock(&inode->i_lock);
532 		spin_unlock(&inode_wb_list_lock);
533 		iput(inode);
534 		cond_resched();
535 		spin_lock(&inode_wb_list_lock);
536 		if (wbc->nr_to_write <= 0) {
537 			wbc->more_io = 1;
538 			return 1;
539 		}
540 		if (!list_empty(&wb->b_more_io))
541 			wbc->more_io = 1;
542 	}
543 	/* b_io is empty */
544 	return 1;
545 }
546 
547 void writeback_inodes_wb(struct bdi_writeback *wb,
548 		struct writeback_control *wbc)
549 {
550 	int ret = 0;
551 
552 	if (!wbc->wb_start)
553 		wbc->wb_start = jiffies; /* livelock avoidance */
554 	spin_lock(&inode_wb_list_lock);
555 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
556 		queue_io(wb, wbc->older_than_this);
557 
558 	while (!list_empty(&wb->b_io)) {
559 		struct inode *inode = wb_inode(wb->b_io.prev);
560 		struct super_block *sb = inode->i_sb;
561 
562 		if (!grab_super_passive(sb)) {
563 			requeue_io(inode);
564 			continue;
565 		}
566 		ret = writeback_sb_inodes(sb, wb, wbc, false);
567 		drop_super(sb);
568 
569 		if (ret)
570 			break;
571 	}
572 	spin_unlock(&inode_wb_list_lock);
573 	/* Leave any unwritten inodes on b_io */
574 }
575 
576 static void __writeback_inodes_sb(struct super_block *sb,
577 		struct bdi_writeback *wb, struct writeback_control *wbc)
578 {
579 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
580 
581 	spin_lock(&inode_wb_list_lock);
582 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
583 		queue_io(wb, wbc->older_than_this);
584 	writeback_sb_inodes(sb, wb, wbc, true);
585 	spin_unlock(&inode_wb_list_lock);
586 }
587 
588 /*
589  * The maximum number of pages to writeout in a single bdi flush/kupdate
590  * operation.  We do this so we don't hold I_SYNC against an inode for
591  * enormous amounts of time, which would block a userspace task which has
592  * been forced to throttle against that inode.  Also, the code reevaluates
593  * the dirty each time it has written this many pages.
594  */
595 #define MAX_WRITEBACK_PAGES     1024
596 
597 static inline bool over_bground_thresh(void)
598 {
599 	unsigned long background_thresh, dirty_thresh;
600 
601 	global_dirty_limits(&background_thresh, &dirty_thresh);
602 
603 	return (global_page_state(NR_FILE_DIRTY) +
604 		global_page_state(NR_UNSTABLE_NFS) > background_thresh);
605 }
606 
607 /*
608  * Explicit flushing or periodic writeback of "old" data.
609  *
610  * Define "old": the first time one of an inode's pages is dirtied, we mark the
611  * dirtying-time in the inode's address_space.  So this periodic writeback code
612  * just walks the superblock inode list, writing back any inodes which are
613  * older than a specific point in time.
614  *
615  * Try to run once per dirty_writeback_interval.  But if a writeback event
616  * takes longer than a dirty_writeback_interval interval, then leave a
617  * one-second gap.
618  *
619  * older_than_this takes precedence over nr_to_write.  So we'll only write back
620  * all dirty pages if they are all attached to "old" mappings.
621  */
622 static long wb_writeback(struct bdi_writeback *wb,
623 			 struct wb_writeback_work *work)
624 {
625 	struct writeback_control wbc = {
626 		.sync_mode		= work->sync_mode,
627 		.older_than_this	= NULL,
628 		.for_kupdate		= work->for_kupdate,
629 		.for_background		= work->for_background,
630 		.range_cyclic		= work->range_cyclic,
631 	};
632 	unsigned long oldest_jif;
633 	long wrote = 0;
634 	long write_chunk;
635 	struct inode *inode;
636 
637 	if (wbc.for_kupdate) {
638 		wbc.older_than_this = &oldest_jif;
639 		oldest_jif = jiffies -
640 				msecs_to_jiffies(dirty_expire_interval * 10);
641 	}
642 	if (!wbc.range_cyclic) {
643 		wbc.range_start = 0;
644 		wbc.range_end = LLONG_MAX;
645 	}
646 
647 	/*
648 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
649 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
650 	 * here avoids calling into writeback_inodes_wb() more than once.
651 	 *
652 	 * The intended call sequence for WB_SYNC_ALL writeback is:
653 	 *
654 	 *      wb_writeback()
655 	 *          __writeback_inodes_sb()     <== called only once
656 	 *              write_cache_pages()     <== called once for each inode
657 	 *                   (quickly) tag currently dirty pages
658 	 *                   (maybe slowly) sync all tagged pages
659 	 */
660 	if (wbc.sync_mode == WB_SYNC_NONE)
661 		write_chunk = MAX_WRITEBACK_PAGES;
662 	else
663 		write_chunk = LONG_MAX;
664 
665 	wbc.wb_start = jiffies; /* livelock avoidance */
666 	for (;;) {
667 		/*
668 		 * Stop writeback when nr_pages has been consumed
669 		 */
670 		if (work->nr_pages <= 0)
671 			break;
672 
673 		/*
674 		 * Background writeout and kupdate-style writeback may
675 		 * run forever. Stop them if there is other work to do
676 		 * so that e.g. sync can proceed. They'll be restarted
677 		 * after the other works are all done.
678 		 */
679 		if ((work->for_background || work->for_kupdate) &&
680 		    !list_empty(&wb->bdi->work_list))
681 			break;
682 
683 		/*
684 		 * For background writeout, stop when we are below the
685 		 * background dirty threshold
686 		 */
687 		if (work->for_background && !over_bground_thresh())
688 			break;
689 
690 		wbc.more_io = 0;
691 		wbc.nr_to_write = write_chunk;
692 		wbc.pages_skipped = 0;
693 
694 		trace_wbc_writeback_start(&wbc, wb->bdi);
695 		if (work->sb)
696 			__writeback_inodes_sb(work->sb, wb, &wbc);
697 		else
698 			writeback_inodes_wb(wb, &wbc);
699 		trace_wbc_writeback_written(&wbc, wb->bdi);
700 
701 		work->nr_pages -= write_chunk - wbc.nr_to_write;
702 		wrote += write_chunk - wbc.nr_to_write;
703 
704 		/*
705 		 * If we consumed everything, see if we have more
706 		 */
707 		if (wbc.nr_to_write <= 0)
708 			continue;
709 		/*
710 		 * Didn't write everything and we don't have more IO, bail
711 		 */
712 		if (!wbc.more_io)
713 			break;
714 		/*
715 		 * Did we write something? Try for more
716 		 */
717 		if (wbc.nr_to_write < write_chunk)
718 			continue;
719 		/*
720 		 * Nothing written. Wait for some inode to
721 		 * become available for writeback. Otherwise
722 		 * we'll just busyloop.
723 		 */
724 		spin_lock(&inode_wb_list_lock);
725 		if (!list_empty(&wb->b_more_io))  {
726 			inode = wb_inode(wb->b_more_io.prev);
727 			trace_wbc_writeback_wait(&wbc, wb->bdi);
728 			spin_lock(&inode->i_lock);
729 			inode_wait_for_writeback(inode);
730 			spin_unlock(&inode->i_lock);
731 		}
732 		spin_unlock(&inode_wb_list_lock);
733 	}
734 
735 	return wrote;
736 }
737 
738 /*
739  * Return the next wb_writeback_work struct that hasn't been processed yet.
740  */
741 static struct wb_writeback_work *
742 get_next_work_item(struct backing_dev_info *bdi)
743 {
744 	struct wb_writeback_work *work = NULL;
745 
746 	spin_lock_bh(&bdi->wb_lock);
747 	if (!list_empty(&bdi->work_list)) {
748 		work = list_entry(bdi->work_list.next,
749 				  struct wb_writeback_work, list);
750 		list_del_init(&work->list);
751 	}
752 	spin_unlock_bh(&bdi->wb_lock);
753 	return work;
754 }
755 
756 /*
757  * Add in the number of potentially dirty inodes, because each inode
758  * write can dirty pagecache in the underlying blockdev.
759  */
760 static unsigned long get_nr_dirty_pages(void)
761 {
762 	return global_page_state(NR_FILE_DIRTY) +
763 		global_page_state(NR_UNSTABLE_NFS) +
764 		get_nr_dirty_inodes();
765 }
766 
767 static long wb_check_background_flush(struct bdi_writeback *wb)
768 {
769 	if (over_bground_thresh()) {
770 
771 		struct wb_writeback_work work = {
772 			.nr_pages	= LONG_MAX,
773 			.sync_mode	= WB_SYNC_NONE,
774 			.for_background	= 1,
775 			.range_cyclic	= 1,
776 		};
777 
778 		return wb_writeback(wb, &work);
779 	}
780 
781 	return 0;
782 }
783 
784 static long wb_check_old_data_flush(struct bdi_writeback *wb)
785 {
786 	unsigned long expired;
787 	long nr_pages;
788 
789 	/*
790 	 * When set to zero, disable periodic writeback
791 	 */
792 	if (!dirty_writeback_interval)
793 		return 0;
794 
795 	expired = wb->last_old_flush +
796 			msecs_to_jiffies(dirty_writeback_interval * 10);
797 	if (time_before(jiffies, expired))
798 		return 0;
799 
800 	wb->last_old_flush = jiffies;
801 	nr_pages = get_nr_dirty_pages();
802 
803 	if (nr_pages) {
804 		struct wb_writeback_work work = {
805 			.nr_pages	= nr_pages,
806 			.sync_mode	= WB_SYNC_NONE,
807 			.for_kupdate	= 1,
808 			.range_cyclic	= 1,
809 		};
810 
811 		return wb_writeback(wb, &work);
812 	}
813 
814 	return 0;
815 }
816 
817 /*
818  * Retrieve work items and do the writeback they describe
819  */
820 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
821 {
822 	struct backing_dev_info *bdi = wb->bdi;
823 	struct wb_writeback_work *work;
824 	long wrote = 0;
825 
826 	set_bit(BDI_writeback_running, &wb->bdi->state);
827 	while ((work = get_next_work_item(bdi)) != NULL) {
828 		/*
829 		 * Override sync mode, in case we must wait for completion
830 		 * because this thread is exiting now.
831 		 */
832 		if (force_wait)
833 			work->sync_mode = WB_SYNC_ALL;
834 
835 		trace_writeback_exec(bdi, work);
836 
837 		wrote += wb_writeback(wb, work);
838 
839 		/*
840 		 * Notify the caller of completion if this is a synchronous
841 		 * work item, otherwise just free it.
842 		 */
843 		if (work->done)
844 			complete(work->done);
845 		else
846 			kfree(work);
847 	}
848 
849 	/*
850 	 * Check for periodic writeback, kupdated() style
851 	 */
852 	wrote += wb_check_old_data_flush(wb);
853 	wrote += wb_check_background_flush(wb);
854 	clear_bit(BDI_writeback_running, &wb->bdi->state);
855 
856 	return wrote;
857 }
858 
859 /*
860  * Handle writeback of dirty data for the device backed by this bdi. Also
861  * wakes up periodically and does kupdated style flushing.
862  */
863 int bdi_writeback_thread(void *data)
864 {
865 	struct bdi_writeback *wb = data;
866 	struct backing_dev_info *bdi = wb->bdi;
867 	long pages_written;
868 
869 	current->flags |= PF_SWAPWRITE;
870 	set_freezable();
871 	wb->last_active = jiffies;
872 
873 	/*
874 	 * Our parent may run at a different priority, just set us to normal
875 	 */
876 	set_user_nice(current, 0);
877 
878 	trace_writeback_thread_start(bdi);
879 
880 	while (!kthread_should_stop()) {
881 		/*
882 		 * Remove own delayed wake-up timer, since we are already awake
883 		 * and we'll take care of the preriodic write-back.
884 		 */
885 		del_timer(&wb->wakeup_timer);
886 
887 		pages_written = wb_do_writeback(wb, 0);
888 
889 		trace_writeback_pages_written(pages_written);
890 
891 		if (pages_written)
892 			wb->last_active = jiffies;
893 
894 		set_current_state(TASK_INTERRUPTIBLE);
895 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
896 			__set_current_state(TASK_RUNNING);
897 			continue;
898 		}
899 
900 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
901 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
902 		else {
903 			/*
904 			 * We have nothing to do, so can go sleep without any
905 			 * timeout and save power. When a work is queued or
906 			 * something is made dirty - we will be woken up.
907 			 */
908 			schedule();
909 		}
910 
911 		try_to_freeze();
912 	}
913 
914 	/* Flush any work that raced with us exiting */
915 	if (!list_empty(&bdi->work_list))
916 		wb_do_writeback(wb, 1);
917 
918 	trace_writeback_thread_stop(bdi);
919 	return 0;
920 }
921 
922 
923 /*
924  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
925  * the whole world.
926  */
927 void wakeup_flusher_threads(long nr_pages)
928 {
929 	struct backing_dev_info *bdi;
930 
931 	if (!nr_pages) {
932 		nr_pages = global_page_state(NR_FILE_DIRTY) +
933 				global_page_state(NR_UNSTABLE_NFS);
934 	}
935 
936 	rcu_read_lock();
937 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
938 		if (!bdi_has_dirty_io(bdi))
939 			continue;
940 		__bdi_start_writeback(bdi, nr_pages, false);
941 	}
942 	rcu_read_unlock();
943 }
944 
945 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
946 {
947 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
948 		struct dentry *dentry;
949 		const char *name = "?";
950 
951 		dentry = d_find_alias(inode);
952 		if (dentry) {
953 			spin_lock(&dentry->d_lock);
954 			name = (const char *) dentry->d_name.name;
955 		}
956 		printk(KERN_DEBUG
957 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
958 		       current->comm, task_pid_nr(current), inode->i_ino,
959 		       name, inode->i_sb->s_id);
960 		if (dentry) {
961 			spin_unlock(&dentry->d_lock);
962 			dput(dentry);
963 		}
964 	}
965 }
966 
967 /**
968  *	__mark_inode_dirty -	internal function
969  *	@inode: inode to mark
970  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
971  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
972  *  	mark_inode_dirty_sync.
973  *
974  * Put the inode on the super block's dirty list.
975  *
976  * CAREFUL! We mark it dirty unconditionally, but move it onto the
977  * dirty list only if it is hashed or if it refers to a blockdev.
978  * If it was not hashed, it will never be added to the dirty list
979  * even if it is later hashed, as it will have been marked dirty already.
980  *
981  * In short, make sure you hash any inodes _before_ you start marking
982  * them dirty.
983  *
984  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
985  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
986  * the kernel-internal blockdev inode represents the dirtying time of the
987  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
988  * page->mapping->host, so the page-dirtying time is recorded in the internal
989  * blockdev inode.
990  */
991 void __mark_inode_dirty(struct inode *inode, int flags)
992 {
993 	struct super_block *sb = inode->i_sb;
994 	struct backing_dev_info *bdi = NULL;
995 
996 	/*
997 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
998 	 * dirty the inode itself
999 	 */
1000 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1001 		if (sb->s_op->dirty_inode)
1002 			sb->s_op->dirty_inode(inode, flags);
1003 	}
1004 
1005 	/*
1006 	 * make sure that changes are seen by all cpus before we test i_state
1007 	 * -- mikulas
1008 	 */
1009 	smp_mb();
1010 
1011 	/* avoid the locking if we can */
1012 	if ((inode->i_state & flags) == flags)
1013 		return;
1014 
1015 	if (unlikely(block_dump))
1016 		block_dump___mark_inode_dirty(inode);
1017 
1018 	spin_lock(&inode->i_lock);
1019 	if ((inode->i_state & flags) != flags) {
1020 		const int was_dirty = inode->i_state & I_DIRTY;
1021 
1022 		inode->i_state |= flags;
1023 
1024 		/*
1025 		 * If the inode is being synced, just update its dirty state.
1026 		 * The unlocker will place the inode on the appropriate
1027 		 * superblock list, based upon its state.
1028 		 */
1029 		if (inode->i_state & I_SYNC)
1030 			goto out_unlock_inode;
1031 
1032 		/*
1033 		 * Only add valid (hashed) inodes to the superblock's
1034 		 * dirty list.  Add blockdev inodes as well.
1035 		 */
1036 		if (!S_ISBLK(inode->i_mode)) {
1037 			if (inode_unhashed(inode))
1038 				goto out_unlock_inode;
1039 		}
1040 		if (inode->i_state & I_FREEING)
1041 			goto out_unlock_inode;
1042 
1043 		/*
1044 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1045 		 * reposition it (that would break b_dirty time-ordering).
1046 		 */
1047 		if (!was_dirty) {
1048 			bool wakeup_bdi = false;
1049 			bdi = inode_to_bdi(inode);
1050 
1051 			if (bdi_cap_writeback_dirty(bdi)) {
1052 				WARN(!test_bit(BDI_registered, &bdi->state),
1053 				     "bdi-%s not registered\n", bdi->name);
1054 
1055 				/*
1056 				 * If this is the first dirty inode for this
1057 				 * bdi, we have to wake-up the corresponding
1058 				 * bdi thread to make sure background
1059 				 * write-back happens later.
1060 				 */
1061 				if (!wb_has_dirty_io(&bdi->wb))
1062 					wakeup_bdi = true;
1063 			}
1064 
1065 			spin_unlock(&inode->i_lock);
1066 			spin_lock(&inode_wb_list_lock);
1067 			inode->dirtied_when = jiffies;
1068 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1069 			spin_unlock(&inode_wb_list_lock);
1070 
1071 			if (wakeup_bdi)
1072 				bdi_wakeup_thread_delayed(bdi);
1073 			return;
1074 		}
1075 	}
1076 out_unlock_inode:
1077 	spin_unlock(&inode->i_lock);
1078 
1079 }
1080 EXPORT_SYMBOL(__mark_inode_dirty);
1081 
1082 /*
1083  * Write out a superblock's list of dirty inodes.  A wait will be performed
1084  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1085  *
1086  * If older_than_this is non-NULL, then only write out inodes which
1087  * had their first dirtying at a time earlier than *older_than_this.
1088  *
1089  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1090  * This function assumes that the blockdev superblock's inodes are backed by
1091  * a variety of queues, so all inodes are searched.  For other superblocks,
1092  * assume that all inodes are backed by the same queue.
1093  *
1094  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1095  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1096  * on the writer throttling path, and we get decent balancing between many
1097  * throttled threads: we don't want them all piling up on inode_sync_wait.
1098  */
1099 static void wait_sb_inodes(struct super_block *sb)
1100 {
1101 	struct inode *inode, *old_inode = NULL;
1102 
1103 	/*
1104 	 * We need to be protected against the filesystem going from
1105 	 * r/o to r/w or vice versa.
1106 	 */
1107 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1108 
1109 	spin_lock(&inode_sb_list_lock);
1110 
1111 	/*
1112 	 * Data integrity sync. Must wait for all pages under writeback,
1113 	 * because there may have been pages dirtied before our sync
1114 	 * call, but which had writeout started before we write it out.
1115 	 * In which case, the inode may not be on the dirty list, but
1116 	 * we still have to wait for that writeout.
1117 	 */
1118 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1119 		struct address_space *mapping = inode->i_mapping;
1120 
1121 		spin_lock(&inode->i_lock);
1122 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1123 		    (mapping->nrpages == 0)) {
1124 			spin_unlock(&inode->i_lock);
1125 			continue;
1126 		}
1127 		__iget(inode);
1128 		spin_unlock(&inode->i_lock);
1129 		spin_unlock(&inode_sb_list_lock);
1130 
1131 		/*
1132 		 * We hold a reference to 'inode' so it couldn't have been
1133 		 * removed from s_inodes list while we dropped the
1134 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1135 		 * be holding the last reference and we cannot iput it under
1136 		 * inode_sb_list_lock. So we keep the reference and iput it
1137 		 * later.
1138 		 */
1139 		iput(old_inode);
1140 		old_inode = inode;
1141 
1142 		filemap_fdatawait(mapping);
1143 
1144 		cond_resched();
1145 
1146 		spin_lock(&inode_sb_list_lock);
1147 	}
1148 	spin_unlock(&inode_sb_list_lock);
1149 	iput(old_inode);
1150 }
1151 
1152 /**
1153  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1154  * @sb: the superblock
1155  * @nr: the number of pages to write
1156  *
1157  * Start writeback on some inodes on this super_block. No guarantees are made
1158  * on how many (if any) will be written, and this function does not wait
1159  * for IO completion of submitted IO.
1160  */
1161 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1162 {
1163 	DECLARE_COMPLETION_ONSTACK(done);
1164 	struct wb_writeback_work work = {
1165 		.sb		= sb,
1166 		.sync_mode	= WB_SYNC_NONE,
1167 		.done		= &done,
1168 		.nr_pages	= nr,
1169 	};
1170 
1171 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1172 	bdi_queue_work(sb->s_bdi, &work);
1173 	wait_for_completion(&done);
1174 }
1175 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1176 
1177 /**
1178  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1179  * @sb: the superblock
1180  *
1181  * Start writeback on some inodes on this super_block. No guarantees are made
1182  * on how many (if any) will be written, and this function does not wait
1183  * for IO completion of submitted IO.
1184  */
1185 void writeback_inodes_sb(struct super_block *sb)
1186 {
1187 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1188 }
1189 EXPORT_SYMBOL(writeback_inodes_sb);
1190 
1191 /**
1192  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1193  * @sb: the superblock
1194  *
1195  * Invoke writeback_inodes_sb if no writeback is currently underway.
1196  * Returns 1 if writeback was started, 0 if not.
1197  */
1198 int writeback_inodes_sb_if_idle(struct super_block *sb)
1199 {
1200 	if (!writeback_in_progress(sb->s_bdi)) {
1201 		down_read(&sb->s_umount);
1202 		writeback_inodes_sb(sb);
1203 		up_read(&sb->s_umount);
1204 		return 1;
1205 	} else
1206 		return 0;
1207 }
1208 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1209 
1210 /**
1211  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1212  * @sb: the superblock
1213  * @nr: the number of pages to write
1214  *
1215  * Invoke writeback_inodes_sb if no writeback is currently underway.
1216  * Returns 1 if writeback was started, 0 if not.
1217  */
1218 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1219 				   unsigned long nr)
1220 {
1221 	if (!writeback_in_progress(sb->s_bdi)) {
1222 		down_read(&sb->s_umount);
1223 		writeback_inodes_sb_nr(sb, nr);
1224 		up_read(&sb->s_umount);
1225 		return 1;
1226 	} else
1227 		return 0;
1228 }
1229 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1230 
1231 /**
1232  * sync_inodes_sb	-	sync sb inode pages
1233  * @sb: the superblock
1234  *
1235  * This function writes and waits on any dirty inode belonging to this
1236  * super_block.
1237  */
1238 void sync_inodes_sb(struct super_block *sb)
1239 {
1240 	DECLARE_COMPLETION_ONSTACK(done);
1241 	struct wb_writeback_work work = {
1242 		.sb		= sb,
1243 		.sync_mode	= WB_SYNC_ALL,
1244 		.nr_pages	= LONG_MAX,
1245 		.range_cyclic	= 0,
1246 		.done		= &done,
1247 	};
1248 
1249 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1250 
1251 	bdi_queue_work(sb->s_bdi, &work);
1252 	wait_for_completion(&done);
1253 
1254 	wait_sb_inodes(sb);
1255 }
1256 EXPORT_SYMBOL(sync_inodes_sb);
1257 
1258 /**
1259  * write_inode_now	-	write an inode to disk
1260  * @inode: inode to write to disk
1261  * @sync: whether the write should be synchronous or not
1262  *
1263  * This function commits an inode to disk immediately if it is dirty. This is
1264  * primarily needed by knfsd.
1265  *
1266  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1267  */
1268 int write_inode_now(struct inode *inode, int sync)
1269 {
1270 	int ret;
1271 	struct writeback_control wbc = {
1272 		.nr_to_write = LONG_MAX,
1273 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1274 		.range_start = 0,
1275 		.range_end = LLONG_MAX,
1276 	};
1277 
1278 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1279 		wbc.nr_to_write = 0;
1280 
1281 	might_sleep();
1282 	spin_lock(&inode_wb_list_lock);
1283 	spin_lock(&inode->i_lock);
1284 	ret = writeback_single_inode(inode, &wbc);
1285 	spin_unlock(&inode->i_lock);
1286 	spin_unlock(&inode_wb_list_lock);
1287 	if (sync)
1288 		inode_sync_wait(inode);
1289 	return ret;
1290 }
1291 EXPORT_SYMBOL(write_inode_now);
1292 
1293 /**
1294  * sync_inode - write an inode and its pages to disk.
1295  * @inode: the inode to sync
1296  * @wbc: controls the writeback mode
1297  *
1298  * sync_inode() will write an inode and its pages to disk.  It will also
1299  * correctly update the inode on its superblock's dirty inode lists and will
1300  * update inode->i_state.
1301  *
1302  * The caller must have a ref on the inode.
1303  */
1304 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1305 {
1306 	int ret;
1307 
1308 	spin_lock(&inode_wb_list_lock);
1309 	spin_lock(&inode->i_lock);
1310 	ret = writeback_single_inode(inode, wbc);
1311 	spin_unlock(&inode->i_lock);
1312 	spin_unlock(&inode_wb_list_lock);
1313 	return ret;
1314 }
1315 EXPORT_SYMBOL(sync_inode);
1316 
1317 /**
1318  * sync_inode_metadata - write an inode to disk
1319  * @inode: the inode to sync
1320  * @wait: wait for I/O to complete.
1321  *
1322  * Write an inode to disk and adjust its dirty state after completion.
1323  *
1324  * Note: only writes the actual inode, no associated data or other metadata.
1325  */
1326 int sync_inode_metadata(struct inode *inode, int wait)
1327 {
1328 	struct writeback_control wbc = {
1329 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1330 		.nr_to_write = 0, /* metadata-only */
1331 	};
1332 
1333 	return sync_inode(inode, &wbc);
1334 }
1335 EXPORT_SYMBOL(sync_inode_metadata);
1336