1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 enum writeback_sync_modes sync_mode; 39 unsigned int for_kupdate:1; 40 unsigned int range_cyclic:1; 41 unsigned int for_background:1; 42 43 struct list_head list; /* pending work list */ 44 struct completion *done; /* set if the caller waits */ 45 }; 46 47 /* 48 * Include the creation of the trace points after defining the 49 * wb_writeback_work structure so that the definition remains local to this 50 * file. 51 */ 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/writeback.h> 54 55 /* 56 * We don't actually have pdflush, but this one is exported though /proc... 57 */ 58 int nr_pdflush_threads; 59 60 /** 61 * writeback_in_progress - determine whether there is writeback in progress 62 * @bdi: the device's backing_dev_info structure. 63 * 64 * Determine whether there is writeback waiting to be handled against a 65 * backing device. 66 */ 67 int writeback_in_progress(struct backing_dev_info *bdi) 68 { 69 return test_bit(BDI_writeback_running, &bdi->state); 70 } 71 72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 73 { 74 struct super_block *sb = inode->i_sb; 75 76 if (strcmp(sb->s_type->name, "bdev") == 0) 77 return inode->i_mapping->backing_dev_info; 78 79 return sb->s_bdi; 80 } 81 82 static inline struct inode *wb_inode(struct list_head *head) 83 { 84 return list_entry(head, struct inode, i_wb_list); 85 } 86 87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 88 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 89 { 90 if (bdi->wb.task) { 91 wake_up_process(bdi->wb.task); 92 } else { 93 /* 94 * The bdi thread isn't there, wake up the forker thread which 95 * will create and run it. 96 */ 97 wake_up_process(default_backing_dev_info.wb.task); 98 } 99 } 100 101 static void bdi_queue_work(struct backing_dev_info *bdi, 102 struct wb_writeback_work *work) 103 { 104 trace_writeback_queue(bdi, work); 105 106 spin_lock_bh(&bdi->wb_lock); 107 list_add_tail(&work->list, &bdi->work_list); 108 if (!bdi->wb.task) 109 trace_writeback_nothread(bdi, work); 110 bdi_wakeup_flusher(bdi); 111 spin_unlock_bh(&bdi->wb_lock); 112 } 113 114 static void 115 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 116 bool range_cyclic) 117 { 118 struct wb_writeback_work *work; 119 120 /* 121 * This is WB_SYNC_NONE writeback, so if allocation fails just 122 * wakeup the thread for old dirty data writeback 123 */ 124 work = kzalloc(sizeof(*work), GFP_ATOMIC); 125 if (!work) { 126 if (bdi->wb.task) { 127 trace_writeback_nowork(bdi); 128 wake_up_process(bdi->wb.task); 129 } 130 return; 131 } 132 133 work->sync_mode = WB_SYNC_NONE; 134 work->nr_pages = nr_pages; 135 work->range_cyclic = range_cyclic; 136 137 bdi_queue_work(bdi, work); 138 } 139 140 /** 141 * bdi_start_writeback - start writeback 142 * @bdi: the backing device to write from 143 * @nr_pages: the number of pages to write 144 * 145 * Description: 146 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 147 * started when this function returns, we make no guarantees on 148 * completion. Caller need not hold sb s_umount semaphore. 149 * 150 */ 151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 152 { 153 __bdi_start_writeback(bdi, nr_pages, true); 154 } 155 156 /** 157 * bdi_start_background_writeback - start background writeback 158 * @bdi: the backing device to write from 159 * 160 * Description: 161 * This makes sure WB_SYNC_NONE background writeback happens. When 162 * this function returns, it is only guaranteed that for given BDI 163 * some IO is happening if we are over background dirty threshold. 164 * Caller need not hold sb s_umount semaphore. 165 */ 166 void bdi_start_background_writeback(struct backing_dev_info *bdi) 167 { 168 /* 169 * We just wake up the flusher thread. It will perform background 170 * writeback as soon as there is no other work to do. 171 */ 172 trace_writeback_wake_background(bdi); 173 spin_lock_bh(&bdi->wb_lock); 174 bdi_wakeup_flusher(bdi); 175 spin_unlock_bh(&bdi->wb_lock); 176 } 177 178 /* 179 * Remove the inode from the writeback list it is on. 180 */ 181 void inode_wb_list_del(struct inode *inode) 182 { 183 spin_lock(&inode_wb_list_lock); 184 list_del_init(&inode->i_wb_list); 185 spin_unlock(&inode_wb_list_lock); 186 } 187 188 189 /* 190 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 191 * furthest end of its superblock's dirty-inode list. 192 * 193 * Before stamping the inode's ->dirtied_when, we check to see whether it is 194 * already the most-recently-dirtied inode on the b_dirty list. If that is 195 * the case then the inode must have been redirtied while it was being written 196 * out and we don't reset its dirtied_when. 197 */ 198 static void redirty_tail(struct inode *inode) 199 { 200 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 201 202 assert_spin_locked(&inode_wb_list_lock); 203 if (!list_empty(&wb->b_dirty)) { 204 struct inode *tail; 205 206 tail = wb_inode(wb->b_dirty.next); 207 if (time_before(inode->dirtied_when, tail->dirtied_when)) 208 inode->dirtied_when = jiffies; 209 } 210 list_move(&inode->i_wb_list, &wb->b_dirty); 211 } 212 213 /* 214 * requeue inode for re-scanning after bdi->b_io list is exhausted. 215 */ 216 static void requeue_io(struct inode *inode) 217 { 218 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 219 220 assert_spin_locked(&inode_wb_list_lock); 221 list_move(&inode->i_wb_list, &wb->b_more_io); 222 } 223 224 static void inode_sync_complete(struct inode *inode) 225 { 226 /* 227 * Prevent speculative execution through 228 * spin_unlock(&inode_wb_list_lock); 229 */ 230 231 smp_mb(); 232 wake_up_bit(&inode->i_state, __I_SYNC); 233 } 234 235 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 236 { 237 bool ret = time_after(inode->dirtied_when, t); 238 #ifndef CONFIG_64BIT 239 /* 240 * For inodes being constantly redirtied, dirtied_when can get stuck. 241 * It _appears_ to be in the future, but is actually in distant past. 242 * This test is necessary to prevent such wrapped-around relative times 243 * from permanently stopping the whole bdi writeback. 244 */ 245 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 246 #endif 247 return ret; 248 } 249 250 /* 251 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 252 */ 253 static void move_expired_inodes(struct list_head *delaying_queue, 254 struct list_head *dispatch_queue, 255 unsigned long *older_than_this) 256 { 257 LIST_HEAD(tmp); 258 struct list_head *pos, *node; 259 struct super_block *sb = NULL; 260 struct inode *inode; 261 int do_sb_sort = 0; 262 263 while (!list_empty(delaying_queue)) { 264 inode = wb_inode(delaying_queue->prev); 265 if (older_than_this && 266 inode_dirtied_after(inode, *older_than_this)) 267 break; 268 if (sb && sb != inode->i_sb) 269 do_sb_sort = 1; 270 sb = inode->i_sb; 271 list_move(&inode->i_wb_list, &tmp); 272 } 273 274 /* just one sb in list, splice to dispatch_queue and we're done */ 275 if (!do_sb_sort) { 276 list_splice(&tmp, dispatch_queue); 277 return; 278 } 279 280 /* Move inodes from one superblock together */ 281 while (!list_empty(&tmp)) { 282 sb = wb_inode(tmp.prev)->i_sb; 283 list_for_each_prev_safe(pos, node, &tmp) { 284 inode = wb_inode(pos); 285 if (inode->i_sb == sb) 286 list_move(&inode->i_wb_list, dispatch_queue); 287 } 288 } 289 } 290 291 /* 292 * Queue all expired dirty inodes for io, eldest first. 293 * Before 294 * newly dirtied b_dirty b_io b_more_io 295 * =============> gf edc BA 296 * After 297 * newly dirtied b_dirty b_io b_more_io 298 * =============> g fBAedc 299 * | 300 * +--> dequeue for IO 301 */ 302 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 303 { 304 assert_spin_locked(&inode_wb_list_lock); 305 list_splice_init(&wb->b_more_io, &wb->b_io); 306 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 307 } 308 309 static int write_inode(struct inode *inode, struct writeback_control *wbc) 310 { 311 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 312 return inode->i_sb->s_op->write_inode(inode, wbc); 313 return 0; 314 } 315 316 /* 317 * Wait for writeback on an inode to complete. 318 */ 319 static void inode_wait_for_writeback(struct inode *inode) 320 { 321 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 322 wait_queue_head_t *wqh; 323 324 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 325 while (inode->i_state & I_SYNC) { 326 spin_unlock(&inode->i_lock); 327 spin_unlock(&inode_wb_list_lock); 328 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 329 spin_lock(&inode_wb_list_lock); 330 spin_lock(&inode->i_lock); 331 } 332 } 333 334 /* 335 * Write out an inode's dirty pages. Called under inode_wb_list_lock and 336 * inode->i_lock. Either the caller has an active reference on the inode or 337 * the inode has I_WILL_FREE set. 338 * 339 * If `wait' is set, wait on the writeout. 340 * 341 * The whole writeout design is quite complex and fragile. We want to avoid 342 * starvation of particular inodes when others are being redirtied, prevent 343 * livelocks, etc. 344 */ 345 static int 346 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 347 { 348 struct address_space *mapping = inode->i_mapping; 349 unsigned dirty; 350 int ret; 351 352 assert_spin_locked(&inode_wb_list_lock); 353 assert_spin_locked(&inode->i_lock); 354 355 if (!atomic_read(&inode->i_count)) 356 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 357 else 358 WARN_ON(inode->i_state & I_WILL_FREE); 359 360 if (inode->i_state & I_SYNC) { 361 /* 362 * If this inode is locked for writeback and we are not doing 363 * writeback-for-data-integrity, move it to b_more_io so that 364 * writeback can proceed with the other inodes on s_io. 365 * 366 * We'll have another go at writing back this inode when we 367 * completed a full scan of b_io. 368 */ 369 if (wbc->sync_mode != WB_SYNC_ALL) { 370 requeue_io(inode); 371 return 0; 372 } 373 374 /* 375 * It's a data-integrity sync. We must wait. 376 */ 377 inode_wait_for_writeback(inode); 378 } 379 380 BUG_ON(inode->i_state & I_SYNC); 381 382 /* Set I_SYNC, reset I_DIRTY_PAGES */ 383 inode->i_state |= I_SYNC; 384 inode->i_state &= ~I_DIRTY_PAGES; 385 spin_unlock(&inode->i_lock); 386 spin_unlock(&inode_wb_list_lock); 387 388 ret = do_writepages(mapping, wbc); 389 390 /* 391 * Make sure to wait on the data before writing out the metadata. 392 * This is important for filesystems that modify metadata on data 393 * I/O completion. 394 */ 395 if (wbc->sync_mode == WB_SYNC_ALL) { 396 int err = filemap_fdatawait(mapping); 397 if (ret == 0) 398 ret = err; 399 } 400 401 /* 402 * Some filesystems may redirty the inode during the writeback 403 * due to delalloc, clear dirty metadata flags right before 404 * write_inode() 405 */ 406 spin_lock(&inode->i_lock); 407 dirty = inode->i_state & I_DIRTY; 408 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 409 spin_unlock(&inode->i_lock); 410 /* Don't write the inode if only I_DIRTY_PAGES was set */ 411 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 412 int err = write_inode(inode, wbc); 413 if (ret == 0) 414 ret = err; 415 } 416 417 spin_lock(&inode_wb_list_lock); 418 spin_lock(&inode->i_lock); 419 inode->i_state &= ~I_SYNC; 420 if (!(inode->i_state & I_FREEING)) { 421 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 422 /* 423 * We didn't write back all the pages. nfs_writepages() 424 * sometimes bales out without doing anything. 425 */ 426 inode->i_state |= I_DIRTY_PAGES; 427 if (wbc->nr_to_write <= 0) { 428 /* 429 * slice used up: queue for next turn 430 */ 431 requeue_io(inode); 432 } else { 433 /* 434 * Writeback blocked by something other than 435 * congestion. Delay the inode for some time to 436 * avoid spinning on the CPU (100% iowait) 437 * retrying writeback of the dirty page/inode 438 * that cannot be performed immediately. 439 */ 440 redirty_tail(inode); 441 } 442 } else if (inode->i_state & I_DIRTY) { 443 /* 444 * Filesystems can dirty the inode during writeback 445 * operations, such as delayed allocation during 446 * submission or metadata updates after data IO 447 * completion. 448 */ 449 redirty_tail(inode); 450 } else { 451 /* 452 * The inode is clean. At this point we either have 453 * a reference to the inode or it's on it's way out. 454 * No need to add it back to the LRU. 455 */ 456 list_del_init(&inode->i_wb_list); 457 } 458 } 459 inode_sync_complete(inode); 460 return ret; 461 } 462 463 /* 464 * Write a portion of b_io inodes which belong to @sb. 465 * 466 * If @only_this_sb is true, then find and write all such 467 * inodes. Otherwise write only ones which go sequentially 468 * in reverse order. 469 * 470 * Return 1, if the caller writeback routine should be 471 * interrupted. Otherwise return 0. 472 */ 473 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, 474 struct writeback_control *wbc, bool only_this_sb) 475 { 476 while (!list_empty(&wb->b_io)) { 477 long pages_skipped; 478 struct inode *inode = wb_inode(wb->b_io.prev); 479 480 if (inode->i_sb != sb) { 481 if (only_this_sb) { 482 /* 483 * We only want to write back data for this 484 * superblock, move all inodes not belonging 485 * to it back onto the dirty list. 486 */ 487 redirty_tail(inode); 488 continue; 489 } 490 491 /* 492 * The inode belongs to a different superblock. 493 * Bounce back to the caller to unpin this and 494 * pin the next superblock. 495 */ 496 return 0; 497 } 498 499 /* 500 * Don't bother with new inodes or inodes beeing freed, first 501 * kind does not need peridic writeout yet, and for the latter 502 * kind writeout is handled by the freer. 503 */ 504 spin_lock(&inode->i_lock); 505 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 506 spin_unlock(&inode->i_lock); 507 requeue_io(inode); 508 continue; 509 } 510 511 /* 512 * Was this inode dirtied after sync_sb_inodes was called? 513 * This keeps sync from extra jobs and livelock. 514 */ 515 if (inode_dirtied_after(inode, wbc->wb_start)) { 516 spin_unlock(&inode->i_lock); 517 return 1; 518 } 519 520 __iget(inode); 521 522 pages_skipped = wbc->pages_skipped; 523 writeback_single_inode(inode, wbc); 524 if (wbc->pages_skipped != pages_skipped) { 525 /* 526 * writeback is not making progress due to locked 527 * buffers. Skip this inode for now. 528 */ 529 redirty_tail(inode); 530 } 531 spin_unlock(&inode->i_lock); 532 spin_unlock(&inode_wb_list_lock); 533 iput(inode); 534 cond_resched(); 535 spin_lock(&inode_wb_list_lock); 536 if (wbc->nr_to_write <= 0) { 537 wbc->more_io = 1; 538 return 1; 539 } 540 if (!list_empty(&wb->b_more_io)) 541 wbc->more_io = 1; 542 } 543 /* b_io is empty */ 544 return 1; 545 } 546 547 void writeback_inodes_wb(struct bdi_writeback *wb, 548 struct writeback_control *wbc) 549 { 550 int ret = 0; 551 552 if (!wbc->wb_start) 553 wbc->wb_start = jiffies; /* livelock avoidance */ 554 spin_lock(&inode_wb_list_lock); 555 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 556 queue_io(wb, wbc->older_than_this); 557 558 while (!list_empty(&wb->b_io)) { 559 struct inode *inode = wb_inode(wb->b_io.prev); 560 struct super_block *sb = inode->i_sb; 561 562 if (!grab_super_passive(sb)) { 563 requeue_io(inode); 564 continue; 565 } 566 ret = writeback_sb_inodes(sb, wb, wbc, false); 567 drop_super(sb); 568 569 if (ret) 570 break; 571 } 572 spin_unlock(&inode_wb_list_lock); 573 /* Leave any unwritten inodes on b_io */ 574 } 575 576 static void __writeback_inodes_sb(struct super_block *sb, 577 struct bdi_writeback *wb, struct writeback_control *wbc) 578 { 579 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 580 581 spin_lock(&inode_wb_list_lock); 582 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 583 queue_io(wb, wbc->older_than_this); 584 writeback_sb_inodes(sb, wb, wbc, true); 585 spin_unlock(&inode_wb_list_lock); 586 } 587 588 /* 589 * The maximum number of pages to writeout in a single bdi flush/kupdate 590 * operation. We do this so we don't hold I_SYNC against an inode for 591 * enormous amounts of time, which would block a userspace task which has 592 * been forced to throttle against that inode. Also, the code reevaluates 593 * the dirty each time it has written this many pages. 594 */ 595 #define MAX_WRITEBACK_PAGES 1024 596 597 static inline bool over_bground_thresh(void) 598 { 599 unsigned long background_thresh, dirty_thresh; 600 601 global_dirty_limits(&background_thresh, &dirty_thresh); 602 603 return (global_page_state(NR_FILE_DIRTY) + 604 global_page_state(NR_UNSTABLE_NFS) > background_thresh); 605 } 606 607 /* 608 * Explicit flushing or periodic writeback of "old" data. 609 * 610 * Define "old": the first time one of an inode's pages is dirtied, we mark the 611 * dirtying-time in the inode's address_space. So this periodic writeback code 612 * just walks the superblock inode list, writing back any inodes which are 613 * older than a specific point in time. 614 * 615 * Try to run once per dirty_writeback_interval. But if a writeback event 616 * takes longer than a dirty_writeback_interval interval, then leave a 617 * one-second gap. 618 * 619 * older_than_this takes precedence over nr_to_write. So we'll only write back 620 * all dirty pages if they are all attached to "old" mappings. 621 */ 622 static long wb_writeback(struct bdi_writeback *wb, 623 struct wb_writeback_work *work) 624 { 625 struct writeback_control wbc = { 626 .sync_mode = work->sync_mode, 627 .older_than_this = NULL, 628 .for_kupdate = work->for_kupdate, 629 .for_background = work->for_background, 630 .range_cyclic = work->range_cyclic, 631 }; 632 unsigned long oldest_jif; 633 long wrote = 0; 634 long write_chunk; 635 struct inode *inode; 636 637 if (wbc.for_kupdate) { 638 wbc.older_than_this = &oldest_jif; 639 oldest_jif = jiffies - 640 msecs_to_jiffies(dirty_expire_interval * 10); 641 } 642 if (!wbc.range_cyclic) { 643 wbc.range_start = 0; 644 wbc.range_end = LLONG_MAX; 645 } 646 647 /* 648 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 649 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 650 * here avoids calling into writeback_inodes_wb() more than once. 651 * 652 * The intended call sequence for WB_SYNC_ALL writeback is: 653 * 654 * wb_writeback() 655 * __writeback_inodes_sb() <== called only once 656 * write_cache_pages() <== called once for each inode 657 * (quickly) tag currently dirty pages 658 * (maybe slowly) sync all tagged pages 659 */ 660 if (wbc.sync_mode == WB_SYNC_NONE) 661 write_chunk = MAX_WRITEBACK_PAGES; 662 else 663 write_chunk = LONG_MAX; 664 665 wbc.wb_start = jiffies; /* livelock avoidance */ 666 for (;;) { 667 /* 668 * Stop writeback when nr_pages has been consumed 669 */ 670 if (work->nr_pages <= 0) 671 break; 672 673 /* 674 * Background writeout and kupdate-style writeback may 675 * run forever. Stop them if there is other work to do 676 * so that e.g. sync can proceed. They'll be restarted 677 * after the other works are all done. 678 */ 679 if ((work->for_background || work->for_kupdate) && 680 !list_empty(&wb->bdi->work_list)) 681 break; 682 683 /* 684 * For background writeout, stop when we are below the 685 * background dirty threshold 686 */ 687 if (work->for_background && !over_bground_thresh()) 688 break; 689 690 wbc.more_io = 0; 691 wbc.nr_to_write = write_chunk; 692 wbc.pages_skipped = 0; 693 694 trace_wbc_writeback_start(&wbc, wb->bdi); 695 if (work->sb) 696 __writeback_inodes_sb(work->sb, wb, &wbc); 697 else 698 writeback_inodes_wb(wb, &wbc); 699 trace_wbc_writeback_written(&wbc, wb->bdi); 700 701 work->nr_pages -= write_chunk - wbc.nr_to_write; 702 wrote += write_chunk - wbc.nr_to_write; 703 704 /* 705 * If we consumed everything, see if we have more 706 */ 707 if (wbc.nr_to_write <= 0) 708 continue; 709 /* 710 * Didn't write everything and we don't have more IO, bail 711 */ 712 if (!wbc.more_io) 713 break; 714 /* 715 * Did we write something? Try for more 716 */ 717 if (wbc.nr_to_write < write_chunk) 718 continue; 719 /* 720 * Nothing written. Wait for some inode to 721 * become available for writeback. Otherwise 722 * we'll just busyloop. 723 */ 724 spin_lock(&inode_wb_list_lock); 725 if (!list_empty(&wb->b_more_io)) { 726 inode = wb_inode(wb->b_more_io.prev); 727 trace_wbc_writeback_wait(&wbc, wb->bdi); 728 spin_lock(&inode->i_lock); 729 inode_wait_for_writeback(inode); 730 spin_unlock(&inode->i_lock); 731 } 732 spin_unlock(&inode_wb_list_lock); 733 } 734 735 return wrote; 736 } 737 738 /* 739 * Return the next wb_writeback_work struct that hasn't been processed yet. 740 */ 741 static struct wb_writeback_work * 742 get_next_work_item(struct backing_dev_info *bdi) 743 { 744 struct wb_writeback_work *work = NULL; 745 746 spin_lock_bh(&bdi->wb_lock); 747 if (!list_empty(&bdi->work_list)) { 748 work = list_entry(bdi->work_list.next, 749 struct wb_writeback_work, list); 750 list_del_init(&work->list); 751 } 752 spin_unlock_bh(&bdi->wb_lock); 753 return work; 754 } 755 756 /* 757 * Add in the number of potentially dirty inodes, because each inode 758 * write can dirty pagecache in the underlying blockdev. 759 */ 760 static unsigned long get_nr_dirty_pages(void) 761 { 762 return global_page_state(NR_FILE_DIRTY) + 763 global_page_state(NR_UNSTABLE_NFS) + 764 get_nr_dirty_inodes(); 765 } 766 767 static long wb_check_background_flush(struct bdi_writeback *wb) 768 { 769 if (over_bground_thresh()) { 770 771 struct wb_writeback_work work = { 772 .nr_pages = LONG_MAX, 773 .sync_mode = WB_SYNC_NONE, 774 .for_background = 1, 775 .range_cyclic = 1, 776 }; 777 778 return wb_writeback(wb, &work); 779 } 780 781 return 0; 782 } 783 784 static long wb_check_old_data_flush(struct bdi_writeback *wb) 785 { 786 unsigned long expired; 787 long nr_pages; 788 789 /* 790 * When set to zero, disable periodic writeback 791 */ 792 if (!dirty_writeback_interval) 793 return 0; 794 795 expired = wb->last_old_flush + 796 msecs_to_jiffies(dirty_writeback_interval * 10); 797 if (time_before(jiffies, expired)) 798 return 0; 799 800 wb->last_old_flush = jiffies; 801 nr_pages = get_nr_dirty_pages(); 802 803 if (nr_pages) { 804 struct wb_writeback_work work = { 805 .nr_pages = nr_pages, 806 .sync_mode = WB_SYNC_NONE, 807 .for_kupdate = 1, 808 .range_cyclic = 1, 809 }; 810 811 return wb_writeback(wb, &work); 812 } 813 814 return 0; 815 } 816 817 /* 818 * Retrieve work items and do the writeback they describe 819 */ 820 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 821 { 822 struct backing_dev_info *bdi = wb->bdi; 823 struct wb_writeback_work *work; 824 long wrote = 0; 825 826 set_bit(BDI_writeback_running, &wb->bdi->state); 827 while ((work = get_next_work_item(bdi)) != NULL) { 828 /* 829 * Override sync mode, in case we must wait for completion 830 * because this thread is exiting now. 831 */ 832 if (force_wait) 833 work->sync_mode = WB_SYNC_ALL; 834 835 trace_writeback_exec(bdi, work); 836 837 wrote += wb_writeback(wb, work); 838 839 /* 840 * Notify the caller of completion if this is a synchronous 841 * work item, otherwise just free it. 842 */ 843 if (work->done) 844 complete(work->done); 845 else 846 kfree(work); 847 } 848 849 /* 850 * Check for periodic writeback, kupdated() style 851 */ 852 wrote += wb_check_old_data_flush(wb); 853 wrote += wb_check_background_flush(wb); 854 clear_bit(BDI_writeback_running, &wb->bdi->state); 855 856 return wrote; 857 } 858 859 /* 860 * Handle writeback of dirty data for the device backed by this bdi. Also 861 * wakes up periodically and does kupdated style flushing. 862 */ 863 int bdi_writeback_thread(void *data) 864 { 865 struct bdi_writeback *wb = data; 866 struct backing_dev_info *bdi = wb->bdi; 867 long pages_written; 868 869 current->flags |= PF_SWAPWRITE; 870 set_freezable(); 871 wb->last_active = jiffies; 872 873 /* 874 * Our parent may run at a different priority, just set us to normal 875 */ 876 set_user_nice(current, 0); 877 878 trace_writeback_thread_start(bdi); 879 880 while (!kthread_should_stop()) { 881 /* 882 * Remove own delayed wake-up timer, since we are already awake 883 * and we'll take care of the preriodic write-back. 884 */ 885 del_timer(&wb->wakeup_timer); 886 887 pages_written = wb_do_writeback(wb, 0); 888 889 trace_writeback_pages_written(pages_written); 890 891 if (pages_written) 892 wb->last_active = jiffies; 893 894 set_current_state(TASK_INTERRUPTIBLE); 895 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 896 __set_current_state(TASK_RUNNING); 897 continue; 898 } 899 900 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 901 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 902 else { 903 /* 904 * We have nothing to do, so can go sleep without any 905 * timeout and save power. When a work is queued or 906 * something is made dirty - we will be woken up. 907 */ 908 schedule(); 909 } 910 911 try_to_freeze(); 912 } 913 914 /* Flush any work that raced with us exiting */ 915 if (!list_empty(&bdi->work_list)) 916 wb_do_writeback(wb, 1); 917 918 trace_writeback_thread_stop(bdi); 919 return 0; 920 } 921 922 923 /* 924 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 925 * the whole world. 926 */ 927 void wakeup_flusher_threads(long nr_pages) 928 { 929 struct backing_dev_info *bdi; 930 931 if (!nr_pages) { 932 nr_pages = global_page_state(NR_FILE_DIRTY) + 933 global_page_state(NR_UNSTABLE_NFS); 934 } 935 936 rcu_read_lock(); 937 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 938 if (!bdi_has_dirty_io(bdi)) 939 continue; 940 __bdi_start_writeback(bdi, nr_pages, false); 941 } 942 rcu_read_unlock(); 943 } 944 945 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 946 { 947 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 948 struct dentry *dentry; 949 const char *name = "?"; 950 951 dentry = d_find_alias(inode); 952 if (dentry) { 953 spin_lock(&dentry->d_lock); 954 name = (const char *) dentry->d_name.name; 955 } 956 printk(KERN_DEBUG 957 "%s(%d): dirtied inode %lu (%s) on %s\n", 958 current->comm, task_pid_nr(current), inode->i_ino, 959 name, inode->i_sb->s_id); 960 if (dentry) { 961 spin_unlock(&dentry->d_lock); 962 dput(dentry); 963 } 964 } 965 } 966 967 /** 968 * __mark_inode_dirty - internal function 969 * @inode: inode to mark 970 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 971 * Mark an inode as dirty. Callers should use mark_inode_dirty or 972 * mark_inode_dirty_sync. 973 * 974 * Put the inode on the super block's dirty list. 975 * 976 * CAREFUL! We mark it dirty unconditionally, but move it onto the 977 * dirty list only if it is hashed or if it refers to a blockdev. 978 * If it was not hashed, it will never be added to the dirty list 979 * even if it is later hashed, as it will have been marked dirty already. 980 * 981 * In short, make sure you hash any inodes _before_ you start marking 982 * them dirty. 983 * 984 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 985 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 986 * the kernel-internal blockdev inode represents the dirtying time of the 987 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 988 * page->mapping->host, so the page-dirtying time is recorded in the internal 989 * blockdev inode. 990 */ 991 void __mark_inode_dirty(struct inode *inode, int flags) 992 { 993 struct super_block *sb = inode->i_sb; 994 struct backing_dev_info *bdi = NULL; 995 996 /* 997 * Don't do this for I_DIRTY_PAGES - that doesn't actually 998 * dirty the inode itself 999 */ 1000 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1001 if (sb->s_op->dirty_inode) 1002 sb->s_op->dirty_inode(inode, flags); 1003 } 1004 1005 /* 1006 * make sure that changes are seen by all cpus before we test i_state 1007 * -- mikulas 1008 */ 1009 smp_mb(); 1010 1011 /* avoid the locking if we can */ 1012 if ((inode->i_state & flags) == flags) 1013 return; 1014 1015 if (unlikely(block_dump)) 1016 block_dump___mark_inode_dirty(inode); 1017 1018 spin_lock(&inode->i_lock); 1019 if ((inode->i_state & flags) != flags) { 1020 const int was_dirty = inode->i_state & I_DIRTY; 1021 1022 inode->i_state |= flags; 1023 1024 /* 1025 * If the inode is being synced, just update its dirty state. 1026 * The unlocker will place the inode on the appropriate 1027 * superblock list, based upon its state. 1028 */ 1029 if (inode->i_state & I_SYNC) 1030 goto out_unlock_inode; 1031 1032 /* 1033 * Only add valid (hashed) inodes to the superblock's 1034 * dirty list. Add blockdev inodes as well. 1035 */ 1036 if (!S_ISBLK(inode->i_mode)) { 1037 if (inode_unhashed(inode)) 1038 goto out_unlock_inode; 1039 } 1040 if (inode->i_state & I_FREEING) 1041 goto out_unlock_inode; 1042 1043 /* 1044 * If the inode was already on b_dirty/b_io/b_more_io, don't 1045 * reposition it (that would break b_dirty time-ordering). 1046 */ 1047 if (!was_dirty) { 1048 bool wakeup_bdi = false; 1049 bdi = inode_to_bdi(inode); 1050 1051 if (bdi_cap_writeback_dirty(bdi)) { 1052 WARN(!test_bit(BDI_registered, &bdi->state), 1053 "bdi-%s not registered\n", bdi->name); 1054 1055 /* 1056 * If this is the first dirty inode for this 1057 * bdi, we have to wake-up the corresponding 1058 * bdi thread to make sure background 1059 * write-back happens later. 1060 */ 1061 if (!wb_has_dirty_io(&bdi->wb)) 1062 wakeup_bdi = true; 1063 } 1064 1065 spin_unlock(&inode->i_lock); 1066 spin_lock(&inode_wb_list_lock); 1067 inode->dirtied_when = jiffies; 1068 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1069 spin_unlock(&inode_wb_list_lock); 1070 1071 if (wakeup_bdi) 1072 bdi_wakeup_thread_delayed(bdi); 1073 return; 1074 } 1075 } 1076 out_unlock_inode: 1077 spin_unlock(&inode->i_lock); 1078 1079 } 1080 EXPORT_SYMBOL(__mark_inode_dirty); 1081 1082 /* 1083 * Write out a superblock's list of dirty inodes. A wait will be performed 1084 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1085 * 1086 * If older_than_this is non-NULL, then only write out inodes which 1087 * had their first dirtying at a time earlier than *older_than_this. 1088 * 1089 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1090 * This function assumes that the blockdev superblock's inodes are backed by 1091 * a variety of queues, so all inodes are searched. For other superblocks, 1092 * assume that all inodes are backed by the same queue. 1093 * 1094 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1095 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1096 * on the writer throttling path, and we get decent balancing between many 1097 * throttled threads: we don't want them all piling up on inode_sync_wait. 1098 */ 1099 static void wait_sb_inodes(struct super_block *sb) 1100 { 1101 struct inode *inode, *old_inode = NULL; 1102 1103 /* 1104 * We need to be protected against the filesystem going from 1105 * r/o to r/w or vice versa. 1106 */ 1107 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1108 1109 spin_lock(&inode_sb_list_lock); 1110 1111 /* 1112 * Data integrity sync. Must wait for all pages under writeback, 1113 * because there may have been pages dirtied before our sync 1114 * call, but which had writeout started before we write it out. 1115 * In which case, the inode may not be on the dirty list, but 1116 * we still have to wait for that writeout. 1117 */ 1118 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1119 struct address_space *mapping = inode->i_mapping; 1120 1121 spin_lock(&inode->i_lock); 1122 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) || 1123 (mapping->nrpages == 0)) { 1124 spin_unlock(&inode->i_lock); 1125 continue; 1126 } 1127 __iget(inode); 1128 spin_unlock(&inode->i_lock); 1129 spin_unlock(&inode_sb_list_lock); 1130 1131 /* 1132 * We hold a reference to 'inode' so it couldn't have been 1133 * removed from s_inodes list while we dropped the 1134 * inode_sb_list_lock. We cannot iput the inode now as we can 1135 * be holding the last reference and we cannot iput it under 1136 * inode_sb_list_lock. So we keep the reference and iput it 1137 * later. 1138 */ 1139 iput(old_inode); 1140 old_inode = inode; 1141 1142 filemap_fdatawait(mapping); 1143 1144 cond_resched(); 1145 1146 spin_lock(&inode_sb_list_lock); 1147 } 1148 spin_unlock(&inode_sb_list_lock); 1149 iput(old_inode); 1150 } 1151 1152 /** 1153 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1154 * @sb: the superblock 1155 * @nr: the number of pages to write 1156 * 1157 * Start writeback on some inodes on this super_block. No guarantees are made 1158 * on how many (if any) will be written, and this function does not wait 1159 * for IO completion of submitted IO. 1160 */ 1161 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr) 1162 { 1163 DECLARE_COMPLETION_ONSTACK(done); 1164 struct wb_writeback_work work = { 1165 .sb = sb, 1166 .sync_mode = WB_SYNC_NONE, 1167 .done = &done, 1168 .nr_pages = nr, 1169 }; 1170 1171 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1172 bdi_queue_work(sb->s_bdi, &work); 1173 wait_for_completion(&done); 1174 } 1175 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1176 1177 /** 1178 * writeback_inodes_sb - writeback dirty inodes from given super_block 1179 * @sb: the superblock 1180 * 1181 * Start writeback on some inodes on this super_block. No guarantees are made 1182 * on how many (if any) will be written, and this function does not wait 1183 * for IO completion of submitted IO. 1184 */ 1185 void writeback_inodes_sb(struct super_block *sb) 1186 { 1187 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages()); 1188 } 1189 EXPORT_SYMBOL(writeback_inodes_sb); 1190 1191 /** 1192 * writeback_inodes_sb_if_idle - start writeback if none underway 1193 * @sb: the superblock 1194 * 1195 * Invoke writeback_inodes_sb if no writeback is currently underway. 1196 * Returns 1 if writeback was started, 0 if not. 1197 */ 1198 int writeback_inodes_sb_if_idle(struct super_block *sb) 1199 { 1200 if (!writeback_in_progress(sb->s_bdi)) { 1201 down_read(&sb->s_umount); 1202 writeback_inodes_sb(sb); 1203 up_read(&sb->s_umount); 1204 return 1; 1205 } else 1206 return 0; 1207 } 1208 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1209 1210 /** 1211 * writeback_inodes_sb_if_idle - start writeback if none underway 1212 * @sb: the superblock 1213 * @nr: the number of pages to write 1214 * 1215 * Invoke writeback_inodes_sb if no writeback is currently underway. 1216 * Returns 1 if writeback was started, 0 if not. 1217 */ 1218 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1219 unsigned long nr) 1220 { 1221 if (!writeback_in_progress(sb->s_bdi)) { 1222 down_read(&sb->s_umount); 1223 writeback_inodes_sb_nr(sb, nr); 1224 up_read(&sb->s_umount); 1225 return 1; 1226 } else 1227 return 0; 1228 } 1229 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1230 1231 /** 1232 * sync_inodes_sb - sync sb inode pages 1233 * @sb: the superblock 1234 * 1235 * This function writes and waits on any dirty inode belonging to this 1236 * super_block. 1237 */ 1238 void sync_inodes_sb(struct super_block *sb) 1239 { 1240 DECLARE_COMPLETION_ONSTACK(done); 1241 struct wb_writeback_work work = { 1242 .sb = sb, 1243 .sync_mode = WB_SYNC_ALL, 1244 .nr_pages = LONG_MAX, 1245 .range_cyclic = 0, 1246 .done = &done, 1247 }; 1248 1249 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1250 1251 bdi_queue_work(sb->s_bdi, &work); 1252 wait_for_completion(&done); 1253 1254 wait_sb_inodes(sb); 1255 } 1256 EXPORT_SYMBOL(sync_inodes_sb); 1257 1258 /** 1259 * write_inode_now - write an inode to disk 1260 * @inode: inode to write to disk 1261 * @sync: whether the write should be synchronous or not 1262 * 1263 * This function commits an inode to disk immediately if it is dirty. This is 1264 * primarily needed by knfsd. 1265 * 1266 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1267 */ 1268 int write_inode_now(struct inode *inode, int sync) 1269 { 1270 int ret; 1271 struct writeback_control wbc = { 1272 .nr_to_write = LONG_MAX, 1273 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1274 .range_start = 0, 1275 .range_end = LLONG_MAX, 1276 }; 1277 1278 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1279 wbc.nr_to_write = 0; 1280 1281 might_sleep(); 1282 spin_lock(&inode_wb_list_lock); 1283 spin_lock(&inode->i_lock); 1284 ret = writeback_single_inode(inode, &wbc); 1285 spin_unlock(&inode->i_lock); 1286 spin_unlock(&inode_wb_list_lock); 1287 if (sync) 1288 inode_sync_wait(inode); 1289 return ret; 1290 } 1291 EXPORT_SYMBOL(write_inode_now); 1292 1293 /** 1294 * sync_inode - write an inode and its pages to disk. 1295 * @inode: the inode to sync 1296 * @wbc: controls the writeback mode 1297 * 1298 * sync_inode() will write an inode and its pages to disk. It will also 1299 * correctly update the inode on its superblock's dirty inode lists and will 1300 * update inode->i_state. 1301 * 1302 * The caller must have a ref on the inode. 1303 */ 1304 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1305 { 1306 int ret; 1307 1308 spin_lock(&inode_wb_list_lock); 1309 spin_lock(&inode->i_lock); 1310 ret = writeback_single_inode(inode, wbc); 1311 spin_unlock(&inode->i_lock); 1312 spin_unlock(&inode_wb_list_lock); 1313 return ret; 1314 } 1315 EXPORT_SYMBOL(sync_inode); 1316 1317 /** 1318 * sync_inode_metadata - write an inode to disk 1319 * @inode: the inode to sync 1320 * @wait: wait for I/O to complete. 1321 * 1322 * Write an inode to disk and adjust its dirty state after completion. 1323 * 1324 * Note: only writes the actual inode, no associated data or other metadata. 1325 */ 1326 int sync_inode_metadata(struct inode *inode, int wait) 1327 { 1328 struct writeback_control wbc = { 1329 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1330 .nr_to_write = 0, /* metadata-only */ 1331 }; 1332 1333 return sync_inode(inode, &wbc); 1334 } 1335 EXPORT_SYMBOL(sync_inode_metadata); 1336