xref: /openbmc/linux/fs/fs-writeback.c (revision 7fde9d6e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	enum writeback_sync_modes sync_mode;
46 	unsigned int tagged_writepages:1;
47 	unsigned int for_kupdate:1;
48 	unsigned int range_cyclic:1;
49 	unsigned int for_background:1;
50 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
51 	unsigned int auto_free:1;	/* free on completion */
52 	enum wb_reason reason;		/* why was writeback initiated? */
53 
54 	struct list_head list;		/* pending work list */
55 	struct wb_completion *done;	/* set if the caller waits */
56 };
57 
58 /*
59  * If an inode is constantly having its pages dirtied, but then the
60  * updates stop dirtytime_expire_interval seconds in the past, it's
61  * possible for the worst case time between when an inode has its
62  * timestamps updated and when they finally get written out to be two
63  * dirtytime_expire_intervals.  We set the default to 12 hours (in
64  * seconds), which means most of the time inodes will have their
65  * timestamps written to disk after 12 hours, but in the worst case a
66  * few inodes might not their timestamps updated for 24 hours.
67  */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69 
70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 	return list_entry(head, struct inode, i_io_list);
73 }
74 
75 /*
76  * Include the creation of the trace points after defining the
77  * wb_writeback_work structure and inline functions so that the definition
78  * remains local to this file.
79  */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82 
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84 
85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 	if (wb_has_dirty_io(wb)) {
88 		return false;
89 	} else {
90 		set_bit(WB_has_dirty_io, &wb->state);
91 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 		atomic_long_add(wb->avg_write_bandwidth,
93 				&wb->bdi->tot_write_bandwidth);
94 		return true;
95 	}
96 }
97 
98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 		clear_bit(WB_has_dirty_io, &wb->state);
103 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 					&wb->bdi->tot_write_bandwidth) < 0);
105 	}
106 }
107 
108 /**
109  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110  * @inode: inode to be moved
111  * @wb: target bdi_writeback
112  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113  *
114  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115  * Returns %true if @inode is the first occupant of the !dirty_time IO
116  * lists; otherwise, %false.
117  */
118 static bool inode_io_list_move_locked(struct inode *inode,
119 				      struct bdi_writeback *wb,
120 				      struct list_head *head)
121 {
122 	assert_spin_locked(&wb->list_lock);
123 
124 	list_move(&inode->i_io_list, head);
125 
126 	/* dirty_time doesn't count as dirty_io until expiration */
127 	if (head != &wb->b_dirty_time)
128 		return wb_io_lists_populated(wb);
129 
130 	wb_io_lists_depopulated(wb);
131 	return false;
132 }
133 
134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136 	spin_lock_bh(&wb->work_lock);
137 	if (test_bit(WB_registered, &wb->state))
138 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 	spin_unlock_bh(&wb->work_lock);
140 }
141 
142 static void finish_writeback_work(struct bdi_writeback *wb,
143 				  struct wb_writeback_work *work)
144 {
145 	struct wb_completion *done = work->done;
146 
147 	if (work->auto_free)
148 		kfree(work);
149 	if (done) {
150 		wait_queue_head_t *waitq = done->waitq;
151 
152 		/* @done can't be accessed after the following dec */
153 		if (atomic_dec_and_test(&done->cnt))
154 			wake_up_all(waitq);
155 	}
156 }
157 
158 static void wb_queue_work(struct bdi_writeback *wb,
159 			  struct wb_writeback_work *work)
160 {
161 	trace_writeback_queue(wb, work);
162 
163 	if (work->done)
164 		atomic_inc(&work->done->cnt);
165 
166 	spin_lock_bh(&wb->work_lock);
167 
168 	if (test_bit(WB_registered, &wb->state)) {
169 		list_add_tail(&work->list, &wb->work_list);
170 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 	} else
172 		finish_writeback_work(wb, work);
173 
174 	spin_unlock_bh(&wb->work_lock);
175 }
176 
177 /**
178  * wb_wait_for_completion - wait for completion of bdi_writeback_works
179  * @done: target wb_completion
180  *
181  * Wait for one or more work items issued to @bdi with their ->done field
182  * set to @done, which should have been initialized with
183  * DEFINE_WB_COMPLETION().  This function returns after all such work items
184  * are completed.  Work items which are waited upon aren't freed
185  * automatically on completion.
186  */
187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189 	atomic_dec(&done->cnt);		/* put down the initial count */
190 	wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192 
193 #ifdef CONFIG_CGROUP_WRITEBACK
194 
195 /*
196  * Parameters for foreign inode detection, see wbc_detach_inode() to see
197  * how they're used.
198  *
199  * These paramters are inherently heuristical as the detection target
200  * itself is fuzzy.  All we want to do is detaching an inode from the
201  * current owner if it's being written to by some other cgroups too much.
202  *
203  * The current cgroup writeback is built on the assumption that multiple
204  * cgroups writing to the same inode concurrently is very rare and a mode
205  * of operation which isn't well supported.  As such, the goal is not
206  * taking too long when a different cgroup takes over an inode while
207  * avoiding too aggressive flip-flops from occasional foreign writes.
208  *
209  * We record, very roughly, 2s worth of IO time history and if more than
210  * half of that is foreign, trigger the switch.  The recording is quantized
211  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
212  * writes smaller than 1/8 of avg size are ignored.
213  */
214 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
218 
219 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 					/* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
223 					/* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 					/* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
227 
228 /*
229  * Maximum inodes per isw.  A specific value has been chosen to make
230  * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231  */
232 #define WB_MAX_INODES_PER_ISW  ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233                                 / sizeof(struct inode *))
234 
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237 
238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240 	struct backing_dev_info *bdi = inode_to_bdi(inode);
241 	struct bdi_writeback *wb = NULL;
242 
243 	if (inode_cgwb_enabled(inode)) {
244 		struct cgroup_subsys_state *memcg_css;
245 
246 		if (page) {
247 			memcg_css = mem_cgroup_css_from_page(page);
248 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249 		} else {
250 			/* must pin memcg_css, see wb_get_create() */
251 			memcg_css = task_get_css(current, memory_cgrp_id);
252 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253 			css_put(memcg_css);
254 		}
255 	}
256 
257 	if (!wb)
258 		wb = &bdi->wb;
259 
260 	/*
261 	 * There may be multiple instances of this function racing to
262 	 * update the same inode.  Use cmpxchg() to tell the winner.
263 	 */
264 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265 		wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268 
269 /**
270  * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271  * @inode: inode of interest with i_lock held
272  * @wb: target bdi_writeback
273  *
274  * Remove the inode from wb's io lists and if necessarily put onto b_attached
275  * list.  Only inodes attached to cgwb's are kept on this list.
276  */
277 static void inode_cgwb_move_to_attached(struct inode *inode,
278 					struct bdi_writeback *wb)
279 {
280 	assert_spin_locked(&wb->list_lock);
281 	assert_spin_locked(&inode->i_lock);
282 
283 	inode->i_state &= ~I_SYNC_QUEUED;
284 	if (wb != &wb->bdi->wb)
285 		list_move(&inode->i_io_list, &wb->b_attached);
286 	else
287 		list_del_init(&inode->i_io_list);
288 	wb_io_lists_depopulated(wb);
289 }
290 
291 /**
292  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293  * @inode: inode of interest with i_lock held
294  *
295  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
296  * held on entry and is released on return.  The returned wb is guaranteed
297  * to stay @inode's associated wb until its list_lock is released.
298  */
299 static struct bdi_writeback *
300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301 	__releases(&inode->i_lock)
302 	__acquires(&wb->list_lock)
303 {
304 	while (true) {
305 		struct bdi_writeback *wb = inode_to_wb(inode);
306 
307 		/*
308 		 * inode_to_wb() association is protected by both
309 		 * @inode->i_lock and @wb->list_lock but list_lock nests
310 		 * outside i_lock.  Drop i_lock and verify that the
311 		 * association hasn't changed after acquiring list_lock.
312 		 */
313 		wb_get(wb);
314 		spin_unlock(&inode->i_lock);
315 		spin_lock(&wb->list_lock);
316 
317 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
318 		if (likely(wb == inode->i_wb)) {
319 			wb_put(wb);	/* @inode already has ref */
320 			return wb;
321 		}
322 
323 		spin_unlock(&wb->list_lock);
324 		wb_put(wb);
325 		cpu_relax();
326 		spin_lock(&inode->i_lock);
327 	}
328 }
329 
330 /**
331  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332  * @inode: inode of interest
333  *
334  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335  * on entry.
336  */
337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 	__acquires(&wb->list_lock)
339 {
340 	spin_lock(&inode->i_lock);
341 	return locked_inode_to_wb_and_lock_list(inode);
342 }
343 
344 struct inode_switch_wbs_context {
345 	struct rcu_work		work;
346 
347 	/*
348 	 * Multiple inodes can be switched at once.  The switching procedure
349 	 * consists of two parts, separated by a RCU grace period.  To make
350 	 * sure that the second part is executed for each inode gone through
351 	 * the first part, all inode pointers are placed into a NULL-terminated
352 	 * array embedded into struct inode_switch_wbs_context.  Otherwise
353 	 * an inode could be left in a non-consistent state.
354 	 */
355 	struct bdi_writeback	*new_wb;
356 	struct inode		*inodes[];
357 };
358 
359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361 	down_write(&bdi->wb_switch_rwsem);
362 }
363 
364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366 	up_write(&bdi->wb_switch_rwsem);
367 }
368 
369 static bool inode_do_switch_wbs(struct inode *inode,
370 				struct bdi_writeback *old_wb,
371 				struct bdi_writeback *new_wb)
372 {
373 	struct address_space *mapping = inode->i_mapping;
374 	XA_STATE(xas, &mapping->i_pages, 0);
375 	struct page *page;
376 	bool switched = false;
377 
378 	spin_lock(&inode->i_lock);
379 	xa_lock_irq(&mapping->i_pages);
380 
381 	/*
382 	 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 	 * path owns the inode and we shouldn't modify ->i_io_list.
384 	 */
385 	if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386 		goto skip_switch;
387 
388 	trace_inode_switch_wbs(inode, old_wb, new_wb);
389 
390 	/*
391 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 	 * pages actually under writeback.
394 	 */
395 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 		if (PageDirty(page)) {
397 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 		}
400 	}
401 
402 	xas_set(&xas, 0);
403 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 		WARN_ON_ONCE(!PageWriteback(page));
405 		dec_wb_stat(old_wb, WB_WRITEBACK);
406 		inc_wb_stat(new_wb, WB_WRITEBACK);
407 	}
408 
409 	wb_get(new_wb);
410 
411 	/*
412 	 * Transfer to @new_wb's IO list if necessary.  If the @inode is dirty,
413 	 * the specific list @inode was on is ignored and the @inode is put on
414 	 * ->b_dirty which is always correct including from ->b_dirty_time.
415 	 * The transfer preserves @inode->dirtied_when ordering.  If the @inode
416 	 * was clean, it means it was on the b_attached list, so move it onto
417 	 * the b_attached list of @new_wb.
418 	 */
419 	if (!list_empty(&inode->i_io_list)) {
420 		inode->i_wb = new_wb;
421 
422 		if (inode->i_state & I_DIRTY_ALL) {
423 			struct inode *pos;
424 
425 			list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
426 				if (time_after_eq(inode->dirtied_when,
427 						  pos->dirtied_when))
428 					break;
429 			inode_io_list_move_locked(inode, new_wb,
430 						  pos->i_io_list.prev);
431 		} else {
432 			inode_cgwb_move_to_attached(inode, new_wb);
433 		}
434 	} else {
435 		inode->i_wb = new_wb;
436 	}
437 
438 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
439 	inode->i_wb_frn_winner = 0;
440 	inode->i_wb_frn_avg_time = 0;
441 	inode->i_wb_frn_history = 0;
442 	switched = true;
443 skip_switch:
444 	/*
445 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
446 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
447 	 */
448 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
449 
450 	xa_unlock_irq(&mapping->i_pages);
451 	spin_unlock(&inode->i_lock);
452 
453 	return switched;
454 }
455 
456 static void inode_switch_wbs_work_fn(struct work_struct *work)
457 {
458 	struct inode_switch_wbs_context *isw =
459 		container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
460 	struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
461 	struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
462 	struct bdi_writeback *new_wb = isw->new_wb;
463 	unsigned long nr_switched = 0;
464 	struct inode **inodep;
465 
466 	/*
467 	 * If @inode switches cgwb membership while sync_inodes_sb() is
468 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
469 	 */
470 	down_read(&bdi->wb_switch_rwsem);
471 
472 	/*
473 	 * By the time control reaches here, RCU grace period has passed
474 	 * since I_WB_SWITCH assertion and all wb stat update transactions
475 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
476 	 * synchronizing against the i_pages lock.
477 	 *
478 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
479 	 * gives us exclusion against all wb related operations on @inode
480 	 * including IO list manipulations and stat updates.
481 	 */
482 	if (old_wb < new_wb) {
483 		spin_lock(&old_wb->list_lock);
484 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
485 	} else {
486 		spin_lock(&new_wb->list_lock);
487 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
488 	}
489 
490 	for (inodep = isw->inodes; *inodep; inodep++) {
491 		WARN_ON_ONCE((*inodep)->i_wb != old_wb);
492 		if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
493 			nr_switched++;
494 	}
495 
496 	spin_unlock(&new_wb->list_lock);
497 	spin_unlock(&old_wb->list_lock);
498 
499 	up_read(&bdi->wb_switch_rwsem);
500 
501 	if (nr_switched) {
502 		wb_wakeup(new_wb);
503 		wb_put_many(old_wb, nr_switched);
504 	}
505 
506 	for (inodep = isw->inodes; *inodep; inodep++)
507 		iput(*inodep);
508 	wb_put(new_wb);
509 	kfree(isw);
510 	atomic_dec(&isw_nr_in_flight);
511 }
512 
513 static bool inode_prepare_wbs_switch(struct inode *inode,
514 				     struct bdi_writeback *new_wb)
515 {
516 	/*
517 	 * Paired with smp_mb() in cgroup_writeback_umount().
518 	 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
519 	 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
520 	 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
521 	 */
522 	smp_mb();
523 
524 	/* while holding I_WB_SWITCH, no one else can update the association */
525 	spin_lock(&inode->i_lock);
526 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
527 	    inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
528 	    inode_to_wb(inode) == new_wb) {
529 		spin_unlock(&inode->i_lock);
530 		return false;
531 	}
532 	inode->i_state |= I_WB_SWITCH;
533 	__iget(inode);
534 	spin_unlock(&inode->i_lock);
535 
536 	return true;
537 }
538 
539 /**
540  * inode_switch_wbs - change the wb association of an inode
541  * @inode: target inode
542  * @new_wb_id: ID of the new wb
543  *
544  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
545  * switching is performed asynchronously and may fail silently.
546  */
547 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
548 {
549 	struct backing_dev_info *bdi = inode_to_bdi(inode);
550 	struct cgroup_subsys_state *memcg_css;
551 	struct inode_switch_wbs_context *isw;
552 
553 	/* noop if seems to be already in progress */
554 	if (inode->i_state & I_WB_SWITCH)
555 		return;
556 
557 	/* avoid queueing a new switch if too many are already in flight */
558 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
559 		return;
560 
561 	isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
562 	if (!isw)
563 		return;
564 
565 	atomic_inc(&isw_nr_in_flight);
566 
567 	/* find and pin the new wb */
568 	rcu_read_lock();
569 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
570 	if (memcg_css)
571 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
572 	rcu_read_unlock();
573 	if (!isw->new_wb)
574 		goto out_free;
575 
576 	if (!inode_prepare_wbs_switch(inode, isw->new_wb))
577 		goto out_free;
578 
579 	isw->inodes[0] = inode;
580 
581 	/*
582 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
583 	 * the RCU protected stat update paths to grab the i_page
584 	 * lock so that stat transfer can synchronize against them.
585 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
586 	 */
587 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
588 	queue_rcu_work(isw_wq, &isw->work);
589 	return;
590 
591 out_free:
592 	atomic_dec(&isw_nr_in_flight);
593 	if (isw->new_wb)
594 		wb_put(isw->new_wb);
595 	kfree(isw);
596 }
597 
598 /**
599  * cleanup_offline_cgwb - detach associated inodes
600  * @wb: target wb
601  *
602  * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
603  * to eventually release the dying @wb.  Returns %true if not all inodes were
604  * switched and the function has to be restarted.
605  */
606 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
607 {
608 	struct cgroup_subsys_state *memcg_css;
609 	struct inode_switch_wbs_context *isw;
610 	struct inode *inode;
611 	int nr;
612 	bool restart = false;
613 
614 	isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
615 		      sizeof(struct inode *), GFP_KERNEL);
616 	if (!isw)
617 		return restart;
618 
619 	atomic_inc(&isw_nr_in_flight);
620 
621 	for (memcg_css = wb->memcg_css->parent; memcg_css;
622 	     memcg_css = memcg_css->parent) {
623 		isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
624 		if (isw->new_wb)
625 			break;
626 	}
627 	if (unlikely(!isw->new_wb))
628 		isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
629 
630 	nr = 0;
631 	spin_lock(&wb->list_lock);
632 	list_for_each_entry(inode, &wb->b_attached, i_io_list) {
633 		if (!inode_prepare_wbs_switch(inode, isw->new_wb))
634 			continue;
635 
636 		isw->inodes[nr++] = inode;
637 
638 		if (nr >= WB_MAX_INODES_PER_ISW - 1) {
639 			restart = true;
640 			break;
641 		}
642 	}
643 	spin_unlock(&wb->list_lock);
644 
645 	/* no attached inodes? bail out */
646 	if (nr == 0) {
647 		atomic_dec(&isw_nr_in_flight);
648 		wb_put(isw->new_wb);
649 		kfree(isw);
650 		return restart;
651 	}
652 
653 	/*
654 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
655 	 * the RCU protected stat update paths to grab the i_page
656 	 * lock so that stat transfer can synchronize against them.
657 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
658 	 */
659 	INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
660 	queue_rcu_work(isw_wq, &isw->work);
661 
662 	return restart;
663 }
664 
665 /**
666  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
667  * @wbc: writeback_control of interest
668  * @inode: target inode
669  *
670  * @inode is locked and about to be written back under the control of @wbc.
671  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
672  * writeback completion, wbc_detach_inode() should be called.  This is used
673  * to track the cgroup writeback context.
674  */
675 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
676 				 struct inode *inode)
677 {
678 	if (!inode_cgwb_enabled(inode)) {
679 		spin_unlock(&inode->i_lock);
680 		return;
681 	}
682 
683 	wbc->wb = inode_to_wb(inode);
684 	wbc->inode = inode;
685 
686 	wbc->wb_id = wbc->wb->memcg_css->id;
687 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
688 	wbc->wb_tcand_id = 0;
689 	wbc->wb_bytes = 0;
690 	wbc->wb_lcand_bytes = 0;
691 	wbc->wb_tcand_bytes = 0;
692 
693 	wb_get(wbc->wb);
694 	spin_unlock(&inode->i_lock);
695 
696 	/*
697 	 * A dying wb indicates that either the blkcg associated with the
698 	 * memcg changed or the associated memcg is dying.  In the first
699 	 * case, a replacement wb should already be available and we should
700 	 * refresh the wb immediately.  In the second case, trying to
701 	 * refresh will keep failing.
702 	 */
703 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
704 		inode_switch_wbs(inode, wbc->wb_id);
705 }
706 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
707 
708 /**
709  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
710  * @wbc: writeback_control of the just finished writeback
711  *
712  * To be called after a writeback attempt of an inode finishes and undoes
713  * wbc_attach_and_unlock_inode().  Can be called under any context.
714  *
715  * As concurrent write sharing of an inode is expected to be very rare and
716  * memcg only tracks page ownership on first-use basis severely confining
717  * the usefulness of such sharing, cgroup writeback tracks ownership
718  * per-inode.  While the support for concurrent write sharing of an inode
719  * is deemed unnecessary, an inode being written to by different cgroups at
720  * different points in time is a lot more common, and, more importantly,
721  * charging only by first-use can too readily lead to grossly incorrect
722  * behaviors (single foreign page can lead to gigabytes of writeback to be
723  * incorrectly attributed).
724  *
725  * To resolve this issue, cgroup writeback detects the majority dirtier of
726  * an inode and transfers the ownership to it.  To avoid unnnecessary
727  * oscillation, the detection mechanism keeps track of history and gives
728  * out the switch verdict only if the foreign usage pattern is stable over
729  * a certain amount of time and/or writeback attempts.
730  *
731  * On each writeback attempt, @wbc tries to detect the majority writer
732  * using Boyer-Moore majority vote algorithm.  In addition to the byte
733  * count from the majority voting, it also counts the bytes written for the
734  * current wb and the last round's winner wb (max of last round's current
735  * wb, the winner from two rounds ago, and the last round's majority
736  * candidate).  Keeping track of the historical winner helps the algorithm
737  * to semi-reliably detect the most active writer even when it's not the
738  * absolute majority.
739  *
740  * Once the winner of the round is determined, whether the winner is
741  * foreign or not and how much IO time the round consumed is recorded in
742  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
743  * over a certain threshold, the switch verdict is given.
744  */
745 void wbc_detach_inode(struct writeback_control *wbc)
746 {
747 	struct bdi_writeback *wb = wbc->wb;
748 	struct inode *inode = wbc->inode;
749 	unsigned long avg_time, max_bytes, max_time;
750 	u16 history;
751 	int max_id;
752 
753 	if (!wb)
754 		return;
755 
756 	history = inode->i_wb_frn_history;
757 	avg_time = inode->i_wb_frn_avg_time;
758 
759 	/* pick the winner of this round */
760 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
761 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
762 		max_id = wbc->wb_id;
763 		max_bytes = wbc->wb_bytes;
764 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
765 		max_id = wbc->wb_lcand_id;
766 		max_bytes = wbc->wb_lcand_bytes;
767 	} else {
768 		max_id = wbc->wb_tcand_id;
769 		max_bytes = wbc->wb_tcand_bytes;
770 	}
771 
772 	/*
773 	 * Calculate the amount of IO time the winner consumed and fold it
774 	 * into the running average kept per inode.  If the consumed IO
775 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
776 	 * deciding whether to switch or not.  This is to prevent one-off
777 	 * small dirtiers from skewing the verdict.
778 	 */
779 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
780 				wb->avg_write_bandwidth);
781 	if (avg_time)
782 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
783 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
784 	else
785 		avg_time = max_time;	/* immediate catch up on first run */
786 
787 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
788 		int slots;
789 
790 		/*
791 		 * The switch verdict is reached if foreign wb's consume
792 		 * more than a certain proportion of IO time in a
793 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
794 		 * history mask where each bit represents one sixteenth of
795 		 * the period.  Determine the number of slots to shift into
796 		 * history from @max_time.
797 		 */
798 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
799 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
800 		history <<= slots;
801 		if (wbc->wb_id != max_id)
802 			history |= (1U << slots) - 1;
803 
804 		if (history)
805 			trace_inode_foreign_history(inode, wbc, history);
806 
807 		/*
808 		 * Switch if the current wb isn't the consistent winner.
809 		 * If there are multiple closely competing dirtiers, the
810 		 * inode may switch across them repeatedly over time, which
811 		 * is okay.  The main goal is avoiding keeping an inode on
812 		 * the wrong wb for an extended period of time.
813 		 */
814 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
815 			inode_switch_wbs(inode, max_id);
816 	}
817 
818 	/*
819 	 * Multiple instances of this function may race to update the
820 	 * following fields but we don't mind occassional inaccuracies.
821 	 */
822 	inode->i_wb_frn_winner = max_id;
823 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
824 	inode->i_wb_frn_history = history;
825 
826 	wb_put(wbc->wb);
827 	wbc->wb = NULL;
828 }
829 EXPORT_SYMBOL_GPL(wbc_detach_inode);
830 
831 /**
832  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
833  * @wbc: writeback_control of the writeback in progress
834  * @page: page being written out
835  * @bytes: number of bytes being written out
836  *
837  * @bytes from @page are about to written out during the writeback
838  * controlled by @wbc.  Keep the book for foreign inode detection.  See
839  * wbc_detach_inode().
840  */
841 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
842 			      size_t bytes)
843 {
844 	struct cgroup_subsys_state *css;
845 	int id;
846 
847 	/*
848 	 * pageout() path doesn't attach @wbc to the inode being written
849 	 * out.  This is intentional as we don't want the function to block
850 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
851 	 * regular writeback instead of writing things out itself.
852 	 */
853 	if (!wbc->wb || wbc->no_cgroup_owner)
854 		return;
855 
856 	css = mem_cgroup_css_from_page(page);
857 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
858 	if (!(css->flags & CSS_ONLINE))
859 		return;
860 
861 	id = css->id;
862 
863 	if (id == wbc->wb_id) {
864 		wbc->wb_bytes += bytes;
865 		return;
866 	}
867 
868 	if (id == wbc->wb_lcand_id)
869 		wbc->wb_lcand_bytes += bytes;
870 
871 	/* Boyer-Moore majority vote algorithm */
872 	if (!wbc->wb_tcand_bytes)
873 		wbc->wb_tcand_id = id;
874 	if (id == wbc->wb_tcand_id)
875 		wbc->wb_tcand_bytes += bytes;
876 	else
877 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
878 }
879 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
880 
881 /**
882  * inode_congested - test whether an inode is congested
883  * @inode: inode to test for congestion (may be NULL)
884  * @cong_bits: mask of WB_[a]sync_congested bits to test
885  *
886  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
887  * bits to test and the return value is the mask of set bits.
888  *
889  * If cgroup writeback is enabled for @inode, the congestion state is
890  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
891  * associated with @inode is congested; otherwise, the root wb's congestion
892  * state is used.
893  *
894  * @inode is allowed to be NULL as this function is often called on
895  * mapping->host which is NULL for the swapper space.
896  */
897 int inode_congested(struct inode *inode, int cong_bits)
898 {
899 	/*
900 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
901 	 * Start transaction iff ->i_wb is visible.
902 	 */
903 	if (inode && inode_to_wb_is_valid(inode)) {
904 		struct bdi_writeback *wb;
905 		struct wb_lock_cookie lock_cookie = {};
906 		bool congested;
907 
908 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
909 		congested = wb_congested(wb, cong_bits);
910 		unlocked_inode_to_wb_end(inode, &lock_cookie);
911 		return congested;
912 	}
913 
914 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
915 }
916 EXPORT_SYMBOL_GPL(inode_congested);
917 
918 /**
919  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
920  * @wb: target bdi_writeback to split @nr_pages to
921  * @nr_pages: number of pages to write for the whole bdi
922  *
923  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
924  * relation to the total write bandwidth of all wb's w/ dirty inodes on
925  * @wb->bdi.
926  */
927 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
928 {
929 	unsigned long this_bw = wb->avg_write_bandwidth;
930 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
931 
932 	if (nr_pages == LONG_MAX)
933 		return LONG_MAX;
934 
935 	/*
936 	 * This may be called on clean wb's and proportional distribution
937 	 * may not make sense, just use the original @nr_pages in those
938 	 * cases.  In general, we wanna err on the side of writing more.
939 	 */
940 	if (!tot_bw || this_bw >= tot_bw)
941 		return nr_pages;
942 	else
943 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
944 }
945 
946 /**
947  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
948  * @bdi: target backing_dev_info
949  * @base_work: wb_writeback_work to issue
950  * @skip_if_busy: skip wb's which already have writeback in progress
951  *
952  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
953  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
954  * distributed to the busy wbs according to each wb's proportion in the
955  * total active write bandwidth of @bdi.
956  */
957 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
958 				  struct wb_writeback_work *base_work,
959 				  bool skip_if_busy)
960 {
961 	struct bdi_writeback *last_wb = NULL;
962 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
963 					      struct bdi_writeback, bdi_node);
964 
965 	might_sleep();
966 restart:
967 	rcu_read_lock();
968 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
969 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
970 		struct wb_writeback_work fallback_work;
971 		struct wb_writeback_work *work;
972 		long nr_pages;
973 
974 		if (last_wb) {
975 			wb_put(last_wb);
976 			last_wb = NULL;
977 		}
978 
979 		/* SYNC_ALL writes out I_DIRTY_TIME too */
980 		if (!wb_has_dirty_io(wb) &&
981 		    (base_work->sync_mode == WB_SYNC_NONE ||
982 		     list_empty(&wb->b_dirty_time)))
983 			continue;
984 		if (skip_if_busy && writeback_in_progress(wb))
985 			continue;
986 
987 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
988 
989 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
990 		if (work) {
991 			*work = *base_work;
992 			work->nr_pages = nr_pages;
993 			work->auto_free = 1;
994 			wb_queue_work(wb, work);
995 			continue;
996 		}
997 
998 		/* alloc failed, execute synchronously using on-stack fallback */
999 		work = &fallback_work;
1000 		*work = *base_work;
1001 		work->nr_pages = nr_pages;
1002 		work->auto_free = 0;
1003 		work->done = &fallback_work_done;
1004 
1005 		wb_queue_work(wb, work);
1006 
1007 		/*
1008 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
1009 		 * continuing iteration from @wb after dropping and
1010 		 * regrabbing rcu read lock.
1011 		 */
1012 		wb_get(wb);
1013 		last_wb = wb;
1014 
1015 		rcu_read_unlock();
1016 		wb_wait_for_completion(&fallback_work_done);
1017 		goto restart;
1018 	}
1019 	rcu_read_unlock();
1020 
1021 	if (last_wb)
1022 		wb_put(last_wb);
1023 }
1024 
1025 /**
1026  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1027  * @bdi_id: target bdi id
1028  * @memcg_id: target memcg css id
1029  * @nr: number of pages to write, 0 for best-effort dirty flushing
1030  * @reason: reason why some writeback work initiated
1031  * @done: target wb_completion
1032  *
1033  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1034  * with the specified parameters.
1035  */
1036 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
1037 			   enum wb_reason reason, struct wb_completion *done)
1038 {
1039 	struct backing_dev_info *bdi;
1040 	struct cgroup_subsys_state *memcg_css;
1041 	struct bdi_writeback *wb;
1042 	struct wb_writeback_work *work;
1043 	int ret;
1044 
1045 	/* lookup bdi and memcg */
1046 	bdi = bdi_get_by_id(bdi_id);
1047 	if (!bdi)
1048 		return -ENOENT;
1049 
1050 	rcu_read_lock();
1051 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1052 	if (memcg_css && !css_tryget(memcg_css))
1053 		memcg_css = NULL;
1054 	rcu_read_unlock();
1055 	if (!memcg_css) {
1056 		ret = -ENOENT;
1057 		goto out_bdi_put;
1058 	}
1059 
1060 	/*
1061 	 * And find the associated wb.  If the wb isn't there already
1062 	 * there's nothing to flush, don't create one.
1063 	 */
1064 	wb = wb_get_lookup(bdi, memcg_css);
1065 	if (!wb) {
1066 		ret = -ENOENT;
1067 		goto out_css_put;
1068 	}
1069 
1070 	/*
1071 	 * If @nr is zero, the caller is attempting to write out most of
1072 	 * the currently dirty pages.  Let's take the current dirty page
1073 	 * count and inflate it by 25% which should be large enough to
1074 	 * flush out most dirty pages while avoiding getting livelocked by
1075 	 * concurrent dirtiers.
1076 	 */
1077 	if (!nr) {
1078 		unsigned long filepages, headroom, dirty, writeback;
1079 
1080 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
1081 				      &writeback);
1082 		nr = dirty * 10 / 8;
1083 	}
1084 
1085 	/* issue the writeback work */
1086 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1087 	if (work) {
1088 		work->nr_pages = nr;
1089 		work->sync_mode = WB_SYNC_NONE;
1090 		work->range_cyclic = 1;
1091 		work->reason = reason;
1092 		work->done = done;
1093 		work->auto_free = 1;
1094 		wb_queue_work(wb, work);
1095 		ret = 0;
1096 	} else {
1097 		ret = -ENOMEM;
1098 	}
1099 
1100 	wb_put(wb);
1101 out_css_put:
1102 	css_put(memcg_css);
1103 out_bdi_put:
1104 	bdi_put(bdi);
1105 	return ret;
1106 }
1107 
1108 /**
1109  * cgroup_writeback_umount - flush inode wb switches for umount
1110  *
1111  * This function is called when a super_block is about to be destroyed and
1112  * flushes in-flight inode wb switches.  An inode wb switch goes through
1113  * RCU and then workqueue, so the two need to be flushed in order to ensure
1114  * that all previously scheduled switches are finished.  As wb switches are
1115  * rare occurrences and synchronize_rcu() can take a while, perform
1116  * flushing iff wb switches are in flight.
1117  */
1118 void cgroup_writeback_umount(void)
1119 {
1120 	/*
1121 	 * SB_ACTIVE should be reliably cleared before checking
1122 	 * isw_nr_in_flight, see generic_shutdown_super().
1123 	 */
1124 	smp_mb();
1125 
1126 	if (atomic_read(&isw_nr_in_flight)) {
1127 		/*
1128 		 * Use rcu_barrier() to wait for all pending callbacks to
1129 		 * ensure that all in-flight wb switches are in the workqueue.
1130 		 */
1131 		rcu_barrier();
1132 		flush_workqueue(isw_wq);
1133 	}
1134 }
1135 
1136 static int __init cgroup_writeback_init(void)
1137 {
1138 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1139 	if (!isw_wq)
1140 		return -ENOMEM;
1141 	return 0;
1142 }
1143 fs_initcall(cgroup_writeback_init);
1144 
1145 #else	/* CONFIG_CGROUP_WRITEBACK */
1146 
1147 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1148 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1149 
1150 static void inode_cgwb_move_to_attached(struct inode *inode,
1151 					struct bdi_writeback *wb)
1152 {
1153 	assert_spin_locked(&wb->list_lock);
1154 	assert_spin_locked(&inode->i_lock);
1155 
1156 	inode->i_state &= ~I_SYNC_QUEUED;
1157 	list_del_init(&inode->i_io_list);
1158 	wb_io_lists_depopulated(wb);
1159 }
1160 
1161 static struct bdi_writeback *
1162 locked_inode_to_wb_and_lock_list(struct inode *inode)
1163 	__releases(&inode->i_lock)
1164 	__acquires(&wb->list_lock)
1165 {
1166 	struct bdi_writeback *wb = inode_to_wb(inode);
1167 
1168 	spin_unlock(&inode->i_lock);
1169 	spin_lock(&wb->list_lock);
1170 	return wb;
1171 }
1172 
1173 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1174 	__acquires(&wb->list_lock)
1175 {
1176 	struct bdi_writeback *wb = inode_to_wb(inode);
1177 
1178 	spin_lock(&wb->list_lock);
1179 	return wb;
1180 }
1181 
1182 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1183 {
1184 	return nr_pages;
1185 }
1186 
1187 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1188 				  struct wb_writeback_work *base_work,
1189 				  bool skip_if_busy)
1190 {
1191 	might_sleep();
1192 
1193 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1194 		base_work->auto_free = 0;
1195 		wb_queue_work(&bdi->wb, base_work);
1196 	}
1197 }
1198 
1199 #endif	/* CONFIG_CGROUP_WRITEBACK */
1200 
1201 /*
1202  * Add in the number of potentially dirty inodes, because each inode
1203  * write can dirty pagecache in the underlying blockdev.
1204  */
1205 static unsigned long get_nr_dirty_pages(void)
1206 {
1207 	return global_node_page_state(NR_FILE_DIRTY) +
1208 		get_nr_dirty_inodes();
1209 }
1210 
1211 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1212 {
1213 	if (!wb_has_dirty_io(wb))
1214 		return;
1215 
1216 	/*
1217 	 * All callers of this function want to start writeback of all
1218 	 * dirty pages. Places like vmscan can call this at a very
1219 	 * high frequency, causing pointless allocations of tons of
1220 	 * work items and keeping the flusher threads busy retrieving
1221 	 * that work. Ensure that we only allow one of them pending and
1222 	 * inflight at the time.
1223 	 */
1224 	if (test_bit(WB_start_all, &wb->state) ||
1225 	    test_and_set_bit(WB_start_all, &wb->state))
1226 		return;
1227 
1228 	wb->start_all_reason = reason;
1229 	wb_wakeup(wb);
1230 }
1231 
1232 /**
1233  * wb_start_background_writeback - start background writeback
1234  * @wb: bdi_writback to write from
1235  *
1236  * Description:
1237  *   This makes sure WB_SYNC_NONE background writeback happens. When
1238  *   this function returns, it is only guaranteed that for given wb
1239  *   some IO is happening if we are over background dirty threshold.
1240  *   Caller need not hold sb s_umount semaphore.
1241  */
1242 void wb_start_background_writeback(struct bdi_writeback *wb)
1243 {
1244 	/*
1245 	 * We just wake up the flusher thread. It will perform background
1246 	 * writeback as soon as there is no other work to do.
1247 	 */
1248 	trace_writeback_wake_background(wb);
1249 	wb_wakeup(wb);
1250 }
1251 
1252 /*
1253  * Remove the inode from the writeback list it is on.
1254  */
1255 void inode_io_list_del(struct inode *inode)
1256 {
1257 	struct bdi_writeback *wb;
1258 
1259 	wb = inode_to_wb_and_lock_list(inode);
1260 	spin_lock(&inode->i_lock);
1261 
1262 	inode->i_state &= ~I_SYNC_QUEUED;
1263 	list_del_init(&inode->i_io_list);
1264 	wb_io_lists_depopulated(wb);
1265 
1266 	spin_unlock(&inode->i_lock);
1267 	spin_unlock(&wb->list_lock);
1268 }
1269 EXPORT_SYMBOL(inode_io_list_del);
1270 
1271 /*
1272  * mark an inode as under writeback on the sb
1273  */
1274 void sb_mark_inode_writeback(struct inode *inode)
1275 {
1276 	struct super_block *sb = inode->i_sb;
1277 	unsigned long flags;
1278 
1279 	if (list_empty(&inode->i_wb_list)) {
1280 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1281 		if (list_empty(&inode->i_wb_list)) {
1282 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1283 			trace_sb_mark_inode_writeback(inode);
1284 		}
1285 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1286 	}
1287 }
1288 
1289 /*
1290  * clear an inode as under writeback on the sb
1291  */
1292 void sb_clear_inode_writeback(struct inode *inode)
1293 {
1294 	struct super_block *sb = inode->i_sb;
1295 	unsigned long flags;
1296 
1297 	if (!list_empty(&inode->i_wb_list)) {
1298 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1299 		if (!list_empty(&inode->i_wb_list)) {
1300 			list_del_init(&inode->i_wb_list);
1301 			trace_sb_clear_inode_writeback(inode);
1302 		}
1303 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1304 	}
1305 }
1306 
1307 /*
1308  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1309  * furthest end of its superblock's dirty-inode list.
1310  *
1311  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1312  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1313  * the case then the inode must have been redirtied while it was being written
1314  * out and we don't reset its dirtied_when.
1315  */
1316 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1317 {
1318 	assert_spin_locked(&inode->i_lock);
1319 
1320 	if (!list_empty(&wb->b_dirty)) {
1321 		struct inode *tail;
1322 
1323 		tail = wb_inode(wb->b_dirty.next);
1324 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1325 			inode->dirtied_when = jiffies;
1326 	}
1327 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1328 	inode->i_state &= ~I_SYNC_QUEUED;
1329 }
1330 
1331 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1332 {
1333 	spin_lock(&inode->i_lock);
1334 	redirty_tail_locked(inode, wb);
1335 	spin_unlock(&inode->i_lock);
1336 }
1337 
1338 /*
1339  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1340  */
1341 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1342 {
1343 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1344 }
1345 
1346 static void inode_sync_complete(struct inode *inode)
1347 {
1348 	inode->i_state &= ~I_SYNC;
1349 	/* If inode is clean an unused, put it into LRU now... */
1350 	inode_add_lru(inode);
1351 	/* Waiters must see I_SYNC cleared before being woken up */
1352 	smp_mb();
1353 	wake_up_bit(&inode->i_state, __I_SYNC);
1354 }
1355 
1356 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1357 {
1358 	bool ret = time_after(inode->dirtied_when, t);
1359 #ifndef CONFIG_64BIT
1360 	/*
1361 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1362 	 * It _appears_ to be in the future, but is actually in distant past.
1363 	 * This test is necessary to prevent such wrapped-around relative times
1364 	 * from permanently stopping the whole bdi writeback.
1365 	 */
1366 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1367 #endif
1368 	return ret;
1369 }
1370 
1371 #define EXPIRE_DIRTY_ATIME 0x0001
1372 
1373 /*
1374  * Move expired (dirtied before dirtied_before) dirty inodes from
1375  * @delaying_queue to @dispatch_queue.
1376  */
1377 static int move_expired_inodes(struct list_head *delaying_queue,
1378 			       struct list_head *dispatch_queue,
1379 			       unsigned long dirtied_before)
1380 {
1381 	LIST_HEAD(tmp);
1382 	struct list_head *pos, *node;
1383 	struct super_block *sb = NULL;
1384 	struct inode *inode;
1385 	int do_sb_sort = 0;
1386 	int moved = 0;
1387 
1388 	while (!list_empty(delaying_queue)) {
1389 		inode = wb_inode(delaying_queue->prev);
1390 		if (inode_dirtied_after(inode, dirtied_before))
1391 			break;
1392 		list_move(&inode->i_io_list, &tmp);
1393 		moved++;
1394 		spin_lock(&inode->i_lock);
1395 		inode->i_state |= I_SYNC_QUEUED;
1396 		spin_unlock(&inode->i_lock);
1397 		if (sb_is_blkdev_sb(inode->i_sb))
1398 			continue;
1399 		if (sb && sb != inode->i_sb)
1400 			do_sb_sort = 1;
1401 		sb = inode->i_sb;
1402 	}
1403 
1404 	/* just one sb in list, splice to dispatch_queue and we're done */
1405 	if (!do_sb_sort) {
1406 		list_splice(&tmp, dispatch_queue);
1407 		goto out;
1408 	}
1409 
1410 	/* Move inodes from one superblock together */
1411 	while (!list_empty(&tmp)) {
1412 		sb = wb_inode(tmp.prev)->i_sb;
1413 		list_for_each_prev_safe(pos, node, &tmp) {
1414 			inode = wb_inode(pos);
1415 			if (inode->i_sb == sb)
1416 				list_move(&inode->i_io_list, dispatch_queue);
1417 		}
1418 	}
1419 out:
1420 	return moved;
1421 }
1422 
1423 /*
1424  * Queue all expired dirty inodes for io, eldest first.
1425  * Before
1426  *         newly dirtied     b_dirty    b_io    b_more_io
1427  *         =============>    gf         edc     BA
1428  * After
1429  *         newly dirtied     b_dirty    b_io    b_more_io
1430  *         =============>    g          fBAedc
1431  *                                           |
1432  *                                           +--> dequeue for IO
1433  */
1434 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1435 		     unsigned long dirtied_before)
1436 {
1437 	int moved;
1438 	unsigned long time_expire_jif = dirtied_before;
1439 
1440 	assert_spin_locked(&wb->list_lock);
1441 	list_splice_init(&wb->b_more_io, &wb->b_io);
1442 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1443 	if (!work->for_sync)
1444 		time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1445 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1446 				     time_expire_jif);
1447 	if (moved)
1448 		wb_io_lists_populated(wb);
1449 	trace_writeback_queue_io(wb, work, dirtied_before, moved);
1450 }
1451 
1452 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1453 {
1454 	int ret;
1455 
1456 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1457 		trace_writeback_write_inode_start(inode, wbc);
1458 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1459 		trace_writeback_write_inode(inode, wbc);
1460 		return ret;
1461 	}
1462 	return 0;
1463 }
1464 
1465 /*
1466  * Wait for writeback on an inode to complete. Called with i_lock held.
1467  * Caller must make sure inode cannot go away when we drop i_lock.
1468  */
1469 static void __inode_wait_for_writeback(struct inode *inode)
1470 	__releases(inode->i_lock)
1471 	__acquires(inode->i_lock)
1472 {
1473 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1474 	wait_queue_head_t *wqh;
1475 
1476 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1477 	while (inode->i_state & I_SYNC) {
1478 		spin_unlock(&inode->i_lock);
1479 		__wait_on_bit(wqh, &wq, bit_wait,
1480 			      TASK_UNINTERRUPTIBLE);
1481 		spin_lock(&inode->i_lock);
1482 	}
1483 }
1484 
1485 /*
1486  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1487  */
1488 void inode_wait_for_writeback(struct inode *inode)
1489 {
1490 	spin_lock(&inode->i_lock);
1491 	__inode_wait_for_writeback(inode);
1492 	spin_unlock(&inode->i_lock);
1493 }
1494 
1495 /*
1496  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1497  * held and drops it. It is aimed for callers not holding any inode reference
1498  * so once i_lock is dropped, inode can go away.
1499  */
1500 static void inode_sleep_on_writeback(struct inode *inode)
1501 	__releases(inode->i_lock)
1502 {
1503 	DEFINE_WAIT(wait);
1504 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1505 	int sleep;
1506 
1507 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1508 	sleep = inode->i_state & I_SYNC;
1509 	spin_unlock(&inode->i_lock);
1510 	if (sleep)
1511 		schedule();
1512 	finish_wait(wqh, &wait);
1513 }
1514 
1515 /*
1516  * Find proper writeback list for the inode depending on its current state and
1517  * possibly also change of its state while we were doing writeback.  Here we
1518  * handle things such as livelock prevention or fairness of writeback among
1519  * inodes. This function can be called only by flusher thread - noone else
1520  * processes all inodes in writeback lists and requeueing inodes behind flusher
1521  * thread's back can have unexpected consequences.
1522  */
1523 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1524 			  struct writeback_control *wbc)
1525 {
1526 	if (inode->i_state & I_FREEING)
1527 		return;
1528 
1529 	/*
1530 	 * Sync livelock prevention. Each inode is tagged and synced in one
1531 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1532 	 * the dirty time to prevent enqueue and sync it again.
1533 	 */
1534 	if ((inode->i_state & I_DIRTY) &&
1535 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1536 		inode->dirtied_when = jiffies;
1537 
1538 	if (wbc->pages_skipped) {
1539 		/*
1540 		 * writeback is not making progress due to locked
1541 		 * buffers. Skip this inode for now.
1542 		 */
1543 		redirty_tail_locked(inode, wb);
1544 		return;
1545 	}
1546 
1547 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1548 		/*
1549 		 * We didn't write back all the pages.  nfs_writepages()
1550 		 * sometimes bales out without doing anything.
1551 		 */
1552 		if (wbc->nr_to_write <= 0) {
1553 			/* Slice used up. Queue for next turn. */
1554 			requeue_io(inode, wb);
1555 		} else {
1556 			/*
1557 			 * Writeback blocked by something other than
1558 			 * congestion. Delay the inode for some time to
1559 			 * avoid spinning on the CPU (100% iowait)
1560 			 * retrying writeback of the dirty page/inode
1561 			 * that cannot be performed immediately.
1562 			 */
1563 			redirty_tail_locked(inode, wb);
1564 		}
1565 	} else if (inode->i_state & I_DIRTY) {
1566 		/*
1567 		 * Filesystems can dirty the inode during writeback operations,
1568 		 * such as delayed allocation during submission or metadata
1569 		 * updates after data IO completion.
1570 		 */
1571 		redirty_tail_locked(inode, wb);
1572 	} else if (inode->i_state & I_DIRTY_TIME) {
1573 		inode->dirtied_when = jiffies;
1574 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1575 		inode->i_state &= ~I_SYNC_QUEUED;
1576 	} else {
1577 		/* The inode is clean. Remove from writeback lists. */
1578 		inode_cgwb_move_to_attached(inode, wb);
1579 	}
1580 }
1581 
1582 /*
1583  * Write out an inode and its dirty pages (or some of its dirty pages, depending
1584  * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1585  *
1586  * This doesn't remove the inode from the writeback list it is on, except
1587  * potentially to move it from b_dirty_time to b_dirty due to timestamp
1588  * expiration.  The caller is otherwise responsible for writeback list handling.
1589  *
1590  * The caller is also responsible for setting the I_SYNC flag beforehand and
1591  * calling inode_sync_complete() to clear it afterwards.
1592  */
1593 static int
1594 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1595 {
1596 	struct address_space *mapping = inode->i_mapping;
1597 	long nr_to_write = wbc->nr_to_write;
1598 	unsigned dirty;
1599 	int ret;
1600 
1601 	WARN_ON(!(inode->i_state & I_SYNC));
1602 
1603 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1604 
1605 	ret = do_writepages(mapping, wbc);
1606 
1607 	/*
1608 	 * Make sure to wait on the data before writing out the metadata.
1609 	 * This is important for filesystems that modify metadata on data
1610 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1611 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1612 	 * inode metadata is written back correctly.
1613 	 */
1614 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1615 		int err = filemap_fdatawait(mapping);
1616 		if (ret == 0)
1617 			ret = err;
1618 	}
1619 
1620 	/*
1621 	 * If the inode has dirty timestamps and we need to write them, call
1622 	 * mark_inode_dirty_sync() to notify the filesystem about it and to
1623 	 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1624 	 */
1625 	if ((inode->i_state & I_DIRTY_TIME) &&
1626 	    (wbc->sync_mode == WB_SYNC_ALL ||
1627 	     time_after(jiffies, inode->dirtied_time_when +
1628 			dirtytime_expire_interval * HZ))) {
1629 		trace_writeback_lazytime(inode);
1630 		mark_inode_dirty_sync(inode);
1631 	}
1632 
1633 	/*
1634 	 * Get and clear the dirty flags from i_state.  This needs to be done
1635 	 * after calling writepages because some filesystems may redirty the
1636 	 * inode during writepages due to delalloc.  It also needs to be done
1637 	 * after handling timestamp expiration, as that may dirty the inode too.
1638 	 */
1639 	spin_lock(&inode->i_lock);
1640 	dirty = inode->i_state & I_DIRTY;
1641 	inode->i_state &= ~dirty;
1642 
1643 	/*
1644 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1645 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1646 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1647 	 * inode.
1648 	 *
1649 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1650 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1651 	 * necessary.  This guarantees that either __mark_inode_dirty()
1652 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1653 	 */
1654 	smp_mb();
1655 
1656 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1657 		inode->i_state |= I_DIRTY_PAGES;
1658 
1659 	spin_unlock(&inode->i_lock);
1660 
1661 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1662 	if (dirty & ~I_DIRTY_PAGES) {
1663 		int err = write_inode(inode, wbc);
1664 		if (ret == 0)
1665 			ret = err;
1666 	}
1667 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1668 	return ret;
1669 }
1670 
1671 /*
1672  * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1673  * the regular batched writeback done by the flusher threads in
1674  * writeback_sb_inodes().  @wbc controls various aspects of the write, such as
1675  * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1676  *
1677  * To prevent the inode from going away, either the caller must have a reference
1678  * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1679  */
1680 static int writeback_single_inode(struct inode *inode,
1681 				  struct writeback_control *wbc)
1682 {
1683 	struct bdi_writeback *wb;
1684 	int ret = 0;
1685 
1686 	spin_lock(&inode->i_lock);
1687 	if (!atomic_read(&inode->i_count))
1688 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1689 	else
1690 		WARN_ON(inode->i_state & I_WILL_FREE);
1691 
1692 	if (inode->i_state & I_SYNC) {
1693 		/*
1694 		 * Writeback is already running on the inode.  For WB_SYNC_NONE,
1695 		 * that's enough and we can just return.  For WB_SYNC_ALL, we
1696 		 * must wait for the existing writeback to complete, then do
1697 		 * writeback again if there's anything left.
1698 		 */
1699 		if (wbc->sync_mode != WB_SYNC_ALL)
1700 			goto out;
1701 		__inode_wait_for_writeback(inode);
1702 	}
1703 	WARN_ON(inode->i_state & I_SYNC);
1704 	/*
1705 	 * If the inode is already fully clean, then there's nothing to do.
1706 	 *
1707 	 * For data-integrity syncs we also need to check whether any pages are
1708 	 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback.  If
1709 	 * there are any such pages, we'll need to wait for them.
1710 	 */
1711 	if (!(inode->i_state & I_DIRTY_ALL) &&
1712 	    (wbc->sync_mode != WB_SYNC_ALL ||
1713 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1714 		goto out;
1715 	inode->i_state |= I_SYNC;
1716 	wbc_attach_and_unlock_inode(wbc, inode);
1717 
1718 	ret = __writeback_single_inode(inode, wbc);
1719 
1720 	wbc_detach_inode(wbc);
1721 
1722 	wb = inode_to_wb_and_lock_list(inode);
1723 	spin_lock(&inode->i_lock);
1724 	/*
1725 	 * If the inode is now fully clean, then it can be safely removed from
1726 	 * its writeback list (if any).  Otherwise the flusher threads are
1727 	 * responsible for the writeback lists.
1728 	 */
1729 	if (!(inode->i_state & I_DIRTY_ALL))
1730 		inode_cgwb_move_to_attached(inode, wb);
1731 	spin_unlock(&wb->list_lock);
1732 	inode_sync_complete(inode);
1733 out:
1734 	spin_unlock(&inode->i_lock);
1735 	return ret;
1736 }
1737 
1738 static long writeback_chunk_size(struct bdi_writeback *wb,
1739 				 struct wb_writeback_work *work)
1740 {
1741 	long pages;
1742 
1743 	/*
1744 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1745 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1746 	 * here avoids calling into writeback_inodes_wb() more than once.
1747 	 *
1748 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1749 	 *
1750 	 *      wb_writeback()
1751 	 *          writeback_sb_inodes()       <== called only once
1752 	 *              write_cache_pages()     <== called once for each inode
1753 	 *                   (quickly) tag currently dirty pages
1754 	 *                   (maybe slowly) sync all tagged pages
1755 	 */
1756 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1757 		pages = LONG_MAX;
1758 	else {
1759 		pages = min(wb->avg_write_bandwidth / 2,
1760 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1761 		pages = min(pages, work->nr_pages);
1762 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1763 				   MIN_WRITEBACK_PAGES);
1764 	}
1765 
1766 	return pages;
1767 }
1768 
1769 /*
1770  * Write a portion of b_io inodes which belong to @sb.
1771  *
1772  * Return the number of pages and/or inodes written.
1773  *
1774  * NOTE! This is called with wb->list_lock held, and will
1775  * unlock and relock that for each inode it ends up doing
1776  * IO for.
1777  */
1778 static long writeback_sb_inodes(struct super_block *sb,
1779 				struct bdi_writeback *wb,
1780 				struct wb_writeback_work *work)
1781 {
1782 	struct writeback_control wbc = {
1783 		.sync_mode		= work->sync_mode,
1784 		.tagged_writepages	= work->tagged_writepages,
1785 		.for_kupdate		= work->for_kupdate,
1786 		.for_background		= work->for_background,
1787 		.for_sync		= work->for_sync,
1788 		.range_cyclic		= work->range_cyclic,
1789 		.range_start		= 0,
1790 		.range_end		= LLONG_MAX,
1791 	};
1792 	unsigned long start_time = jiffies;
1793 	long write_chunk;
1794 	long wrote = 0;  /* count both pages and inodes */
1795 
1796 	while (!list_empty(&wb->b_io)) {
1797 		struct inode *inode = wb_inode(wb->b_io.prev);
1798 		struct bdi_writeback *tmp_wb;
1799 
1800 		if (inode->i_sb != sb) {
1801 			if (work->sb) {
1802 				/*
1803 				 * We only want to write back data for this
1804 				 * superblock, move all inodes not belonging
1805 				 * to it back onto the dirty list.
1806 				 */
1807 				redirty_tail(inode, wb);
1808 				continue;
1809 			}
1810 
1811 			/*
1812 			 * The inode belongs to a different superblock.
1813 			 * Bounce back to the caller to unpin this and
1814 			 * pin the next superblock.
1815 			 */
1816 			break;
1817 		}
1818 
1819 		/*
1820 		 * Don't bother with new inodes or inodes being freed, first
1821 		 * kind does not need periodic writeout yet, and for the latter
1822 		 * kind writeout is handled by the freer.
1823 		 */
1824 		spin_lock(&inode->i_lock);
1825 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1826 			redirty_tail_locked(inode, wb);
1827 			spin_unlock(&inode->i_lock);
1828 			continue;
1829 		}
1830 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1831 			/*
1832 			 * If this inode is locked for writeback and we are not
1833 			 * doing writeback-for-data-integrity, move it to
1834 			 * b_more_io so that writeback can proceed with the
1835 			 * other inodes on s_io.
1836 			 *
1837 			 * We'll have another go at writing back this inode
1838 			 * when we completed a full scan of b_io.
1839 			 */
1840 			spin_unlock(&inode->i_lock);
1841 			requeue_io(inode, wb);
1842 			trace_writeback_sb_inodes_requeue(inode);
1843 			continue;
1844 		}
1845 		spin_unlock(&wb->list_lock);
1846 
1847 		/*
1848 		 * We already requeued the inode if it had I_SYNC set and we
1849 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1850 		 * WB_SYNC_ALL case.
1851 		 */
1852 		if (inode->i_state & I_SYNC) {
1853 			/* Wait for I_SYNC. This function drops i_lock... */
1854 			inode_sleep_on_writeback(inode);
1855 			/* Inode may be gone, start again */
1856 			spin_lock(&wb->list_lock);
1857 			continue;
1858 		}
1859 		inode->i_state |= I_SYNC;
1860 		wbc_attach_and_unlock_inode(&wbc, inode);
1861 
1862 		write_chunk = writeback_chunk_size(wb, work);
1863 		wbc.nr_to_write = write_chunk;
1864 		wbc.pages_skipped = 0;
1865 
1866 		/*
1867 		 * We use I_SYNC to pin the inode in memory. While it is set
1868 		 * evict_inode() will wait so the inode cannot be freed.
1869 		 */
1870 		__writeback_single_inode(inode, &wbc);
1871 
1872 		wbc_detach_inode(&wbc);
1873 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1874 		wrote += write_chunk - wbc.nr_to_write;
1875 
1876 		if (need_resched()) {
1877 			/*
1878 			 * We're trying to balance between building up a nice
1879 			 * long list of IOs to improve our merge rate, and
1880 			 * getting those IOs out quickly for anyone throttling
1881 			 * in balance_dirty_pages().  cond_resched() doesn't
1882 			 * unplug, so get our IOs out the door before we
1883 			 * give up the CPU.
1884 			 */
1885 			blk_flush_plug(current);
1886 			cond_resched();
1887 		}
1888 
1889 		/*
1890 		 * Requeue @inode if still dirty.  Be careful as @inode may
1891 		 * have been switched to another wb in the meantime.
1892 		 */
1893 		tmp_wb = inode_to_wb_and_lock_list(inode);
1894 		spin_lock(&inode->i_lock);
1895 		if (!(inode->i_state & I_DIRTY_ALL))
1896 			wrote++;
1897 		requeue_inode(inode, tmp_wb, &wbc);
1898 		inode_sync_complete(inode);
1899 		spin_unlock(&inode->i_lock);
1900 
1901 		if (unlikely(tmp_wb != wb)) {
1902 			spin_unlock(&tmp_wb->list_lock);
1903 			spin_lock(&wb->list_lock);
1904 		}
1905 
1906 		/*
1907 		 * bail out to wb_writeback() often enough to check
1908 		 * background threshold and other termination conditions.
1909 		 */
1910 		if (wrote) {
1911 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1912 				break;
1913 			if (work->nr_pages <= 0)
1914 				break;
1915 		}
1916 	}
1917 	return wrote;
1918 }
1919 
1920 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1921 				  struct wb_writeback_work *work)
1922 {
1923 	unsigned long start_time = jiffies;
1924 	long wrote = 0;
1925 
1926 	while (!list_empty(&wb->b_io)) {
1927 		struct inode *inode = wb_inode(wb->b_io.prev);
1928 		struct super_block *sb = inode->i_sb;
1929 
1930 		if (!trylock_super(sb)) {
1931 			/*
1932 			 * trylock_super() may fail consistently due to
1933 			 * s_umount being grabbed by someone else. Don't use
1934 			 * requeue_io() to avoid busy retrying the inode/sb.
1935 			 */
1936 			redirty_tail(inode, wb);
1937 			continue;
1938 		}
1939 		wrote += writeback_sb_inodes(sb, wb, work);
1940 		up_read(&sb->s_umount);
1941 
1942 		/* refer to the same tests at the end of writeback_sb_inodes */
1943 		if (wrote) {
1944 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1945 				break;
1946 			if (work->nr_pages <= 0)
1947 				break;
1948 		}
1949 	}
1950 	/* Leave any unwritten inodes on b_io */
1951 	return wrote;
1952 }
1953 
1954 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1955 				enum wb_reason reason)
1956 {
1957 	struct wb_writeback_work work = {
1958 		.nr_pages	= nr_pages,
1959 		.sync_mode	= WB_SYNC_NONE,
1960 		.range_cyclic	= 1,
1961 		.reason		= reason,
1962 	};
1963 	struct blk_plug plug;
1964 
1965 	blk_start_plug(&plug);
1966 	spin_lock(&wb->list_lock);
1967 	if (list_empty(&wb->b_io))
1968 		queue_io(wb, &work, jiffies);
1969 	__writeback_inodes_wb(wb, &work);
1970 	spin_unlock(&wb->list_lock);
1971 	blk_finish_plug(&plug);
1972 
1973 	return nr_pages - work.nr_pages;
1974 }
1975 
1976 /*
1977  * Explicit flushing or periodic writeback of "old" data.
1978  *
1979  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1980  * dirtying-time in the inode's address_space.  So this periodic writeback code
1981  * just walks the superblock inode list, writing back any inodes which are
1982  * older than a specific point in time.
1983  *
1984  * Try to run once per dirty_writeback_interval.  But if a writeback event
1985  * takes longer than a dirty_writeback_interval interval, then leave a
1986  * one-second gap.
1987  *
1988  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1989  * all dirty pages if they are all attached to "old" mappings.
1990  */
1991 static long wb_writeback(struct bdi_writeback *wb,
1992 			 struct wb_writeback_work *work)
1993 {
1994 	unsigned long wb_start = jiffies;
1995 	long nr_pages = work->nr_pages;
1996 	unsigned long dirtied_before = jiffies;
1997 	struct inode *inode;
1998 	long progress;
1999 	struct blk_plug plug;
2000 
2001 	blk_start_plug(&plug);
2002 	spin_lock(&wb->list_lock);
2003 	for (;;) {
2004 		/*
2005 		 * Stop writeback when nr_pages has been consumed
2006 		 */
2007 		if (work->nr_pages <= 0)
2008 			break;
2009 
2010 		/*
2011 		 * Background writeout and kupdate-style writeback may
2012 		 * run forever. Stop them if there is other work to do
2013 		 * so that e.g. sync can proceed. They'll be restarted
2014 		 * after the other works are all done.
2015 		 */
2016 		if ((work->for_background || work->for_kupdate) &&
2017 		    !list_empty(&wb->work_list))
2018 			break;
2019 
2020 		/*
2021 		 * For background writeout, stop when we are below the
2022 		 * background dirty threshold
2023 		 */
2024 		if (work->for_background && !wb_over_bg_thresh(wb))
2025 			break;
2026 
2027 		/*
2028 		 * Kupdate and background works are special and we want to
2029 		 * include all inodes that need writing. Livelock avoidance is
2030 		 * handled by these works yielding to any other work so we are
2031 		 * safe.
2032 		 */
2033 		if (work->for_kupdate) {
2034 			dirtied_before = jiffies -
2035 				msecs_to_jiffies(dirty_expire_interval * 10);
2036 		} else if (work->for_background)
2037 			dirtied_before = jiffies;
2038 
2039 		trace_writeback_start(wb, work);
2040 		if (list_empty(&wb->b_io))
2041 			queue_io(wb, work, dirtied_before);
2042 		if (work->sb)
2043 			progress = writeback_sb_inodes(work->sb, wb, work);
2044 		else
2045 			progress = __writeback_inodes_wb(wb, work);
2046 		trace_writeback_written(wb, work);
2047 
2048 		wb_update_bandwidth(wb, wb_start);
2049 
2050 		/*
2051 		 * Did we write something? Try for more
2052 		 *
2053 		 * Dirty inodes are moved to b_io for writeback in batches.
2054 		 * The completion of the current batch does not necessarily
2055 		 * mean the overall work is done. So we keep looping as long
2056 		 * as made some progress on cleaning pages or inodes.
2057 		 */
2058 		if (progress)
2059 			continue;
2060 		/*
2061 		 * No more inodes for IO, bail
2062 		 */
2063 		if (list_empty(&wb->b_more_io))
2064 			break;
2065 		/*
2066 		 * Nothing written. Wait for some inode to
2067 		 * become available for writeback. Otherwise
2068 		 * we'll just busyloop.
2069 		 */
2070 		trace_writeback_wait(wb, work);
2071 		inode = wb_inode(wb->b_more_io.prev);
2072 		spin_lock(&inode->i_lock);
2073 		spin_unlock(&wb->list_lock);
2074 		/* This function drops i_lock... */
2075 		inode_sleep_on_writeback(inode);
2076 		spin_lock(&wb->list_lock);
2077 	}
2078 	spin_unlock(&wb->list_lock);
2079 	blk_finish_plug(&plug);
2080 
2081 	return nr_pages - work->nr_pages;
2082 }
2083 
2084 /*
2085  * Return the next wb_writeback_work struct that hasn't been processed yet.
2086  */
2087 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2088 {
2089 	struct wb_writeback_work *work = NULL;
2090 
2091 	spin_lock_bh(&wb->work_lock);
2092 	if (!list_empty(&wb->work_list)) {
2093 		work = list_entry(wb->work_list.next,
2094 				  struct wb_writeback_work, list);
2095 		list_del_init(&work->list);
2096 	}
2097 	spin_unlock_bh(&wb->work_lock);
2098 	return work;
2099 }
2100 
2101 static long wb_check_background_flush(struct bdi_writeback *wb)
2102 {
2103 	if (wb_over_bg_thresh(wb)) {
2104 
2105 		struct wb_writeback_work work = {
2106 			.nr_pages	= LONG_MAX,
2107 			.sync_mode	= WB_SYNC_NONE,
2108 			.for_background	= 1,
2109 			.range_cyclic	= 1,
2110 			.reason		= WB_REASON_BACKGROUND,
2111 		};
2112 
2113 		return wb_writeback(wb, &work);
2114 	}
2115 
2116 	return 0;
2117 }
2118 
2119 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2120 {
2121 	unsigned long expired;
2122 	long nr_pages;
2123 
2124 	/*
2125 	 * When set to zero, disable periodic writeback
2126 	 */
2127 	if (!dirty_writeback_interval)
2128 		return 0;
2129 
2130 	expired = wb->last_old_flush +
2131 			msecs_to_jiffies(dirty_writeback_interval * 10);
2132 	if (time_before(jiffies, expired))
2133 		return 0;
2134 
2135 	wb->last_old_flush = jiffies;
2136 	nr_pages = get_nr_dirty_pages();
2137 
2138 	if (nr_pages) {
2139 		struct wb_writeback_work work = {
2140 			.nr_pages	= nr_pages,
2141 			.sync_mode	= WB_SYNC_NONE,
2142 			.for_kupdate	= 1,
2143 			.range_cyclic	= 1,
2144 			.reason		= WB_REASON_PERIODIC,
2145 		};
2146 
2147 		return wb_writeback(wb, &work);
2148 	}
2149 
2150 	return 0;
2151 }
2152 
2153 static long wb_check_start_all(struct bdi_writeback *wb)
2154 {
2155 	long nr_pages;
2156 
2157 	if (!test_bit(WB_start_all, &wb->state))
2158 		return 0;
2159 
2160 	nr_pages = get_nr_dirty_pages();
2161 	if (nr_pages) {
2162 		struct wb_writeback_work work = {
2163 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2164 			.sync_mode	= WB_SYNC_NONE,
2165 			.range_cyclic	= 1,
2166 			.reason		= wb->start_all_reason,
2167 		};
2168 
2169 		nr_pages = wb_writeback(wb, &work);
2170 	}
2171 
2172 	clear_bit(WB_start_all, &wb->state);
2173 	return nr_pages;
2174 }
2175 
2176 
2177 /*
2178  * Retrieve work items and do the writeback they describe
2179  */
2180 static long wb_do_writeback(struct bdi_writeback *wb)
2181 {
2182 	struct wb_writeback_work *work;
2183 	long wrote = 0;
2184 
2185 	set_bit(WB_writeback_running, &wb->state);
2186 	while ((work = get_next_work_item(wb)) != NULL) {
2187 		trace_writeback_exec(wb, work);
2188 		wrote += wb_writeback(wb, work);
2189 		finish_writeback_work(wb, work);
2190 	}
2191 
2192 	/*
2193 	 * Check for a flush-everything request
2194 	 */
2195 	wrote += wb_check_start_all(wb);
2196 
2197 	/*
2198 	 * Check for periodic writeback, kupdated() style
2199 	 */
2200 	wrote += wb_check_old_data_flush(wb);
2201 	wrote += wb_check_background_flush(wb);
2202 	clear_bit(WB_writeback_running, &wb->state);
2203 
2204 	return wrote;
2205 }
2206 
2207 /*
2208  * Handle writeback of dirty data for the device backed by this bdi. Also
2209  * reschedules periodically and does kupdated style flushing.
2210  */
2211 void wb_workfn(struct work_struct *work)
2212 {
2213 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2214 						struct bdi_writeback, dwork);
2215 	long pages_written;
2216 
2217 	set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2218 	current->flags |= PF_SWAPWRITE;
2219 
2220 	if (likely(!current_is_workqueue_rescuer() ||
2221 		   !test_bit(WB_registered, &wb->state))) {
2222 		/*
2223 		 * The normal path.  Keep writing back @wb until its
2224 		 * work_list is empty.  Note that this path is also taken
2225 		 * if @wb is shutting down even when we're running off the
2226 		 * rescuer as work_list needs to be drained.
2227 		 */
2228 		do {
2229 			pages_written = wb_do_writeback(wb);
2230 			trace_writeback_pages_written(pages_written);
2231 		} while (!list_empty(&wb->work_list));
2232 	} else {
2233 		/*
2234 		 * bdi_wq can't get enough workers and we're running off
2235 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2236 		 * enough for efficient IO.
2237 		 */
2238 		pages_written = writeback_inodes_wb(wb, 1024,
2239 						    WB_REASON_FORKER_THREAD);
2240 		trace_writeback_pages_written(pages_written);
2241 	}
2242 
2243 	if (!list_empty(&wb->work_list))
2244 		wb_wakeup(wb);
2245 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2246 		wb_wakeup_delayed(wb);
2247 
2248 	current->flags &= ~PF_SWAPWRITE;
2249 }
2250 
2251 /*
2252  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2253  * write back the whole world.
2254  */
2255 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2256 					 enum wb_reason reason)
2257 {
2258 	struct bdi_writeback *wb;
2259 
2260 	if (!bdi_has_dirty_io(bdi))
2261 		return;
2262 
2263 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2264 		wb_start_writeback(wb, reason);
2265 }
2266 
2267 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2268 				enum wb_reason reason)
2269 {
2270 	rcu_read_lock();
2271 	__wakeup_flusher_threads_bdi(bdi, reason);
2272 	rcu_read_unlock();
2273 }
2274 
2275 /*
2276  * Wakeup the flusher threads to start writeback of all currently dirty pages
2277  */
2278 void wakeup_flusher_threads(enum wb_reason reason)
2279 {
2280 	struct backing_dev_info *bdi;
2281 
2282 	/*
2283 	 * If we are expecting writeback progress we must submit plugged IO.
2284 	 */
2285 	if (blk_needs_flush_plug(current))
2286 		blk_schedule_flush_plug(current);
2287 
2288 	rcu_read_lock();
2289 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2290 		__wakeup_flusher_threads_bdi(bdi, reason);
2291 	rcu_read_unlock();
2292 }
2293 
2294 /*
2295  * Wake up bdi's periodically to make sure dirtytime inodes gets
2296  * written back periodically.  We deliberately do *not* check the
2297  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2298  * kernel to be constantly waking up once there are any dirtytime
2299  * inodes on the system.  So instead we define a separate delayed work
2300  * function which gets called much more rarely.  (By default, only
2301  * once every 12 hours.)
2302  *
2303  * If there is any other write activity going on in the file system,
2304  * this function won't be necessary.  But if the only thing that has
2305  * happened on the file system is a dirtytime inode caused by an atime
2306  * update, we need this infrastructure below to make sure that inode
2307  * eventually gets pushed out to disk.
2308  */
2309 static void wakeup_dirtytime_writeback(struct work_struct *w);
2310 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2311 
2312 static void wakeup_dirtytime_writeback(struct work_struct *w)
2313 {
2314 	struct backing_dev_info *bdi;
2315 
2316 	rcu_read_lock();
2317 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2318 		struct bdi_writeback *wb;
2319 
2320 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2321 			if (!list_empty(&wb->b_dirty_time))
2322 				wb_wakeup(wb);
2323 	}
2324 	rcu_read_unlock();
2325 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2326 }
2327 
2328 static int __init start_dirtytime_writeback(void)
2329 {
2330 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2331 	return 0;
2332 }
2333 __initcall(start_dirtytime_writeback);
2334 
2335 int dirtytime_interval_handler(struct ctl_table *table, int write,
2336 			       void *buffer, size_t *lenp, loff_t *ppos)
2337 {
2338 	int ret;
2339 
2340 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2341 	if (ret == 0 && write)
2342 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2343 	return ret;
2344 }
2345 
2346 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2347 {
2348 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2349 		struct dentry *dentry;
2350 		const char *name = "?";
2351 
2352 		dentry = d_find_alias(inode);
2353 		if (dentry) {
2354 			spin_lock(&dentry->d_lock);
2355 			name = (const char *) dentry->d_name.name;
2356 		}
2357 		printk(KERN_DEBUG
2358 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2359 		       current->comm, task_pid_nr(current), inode->i_ino,
2360 		       name, inode->i_sb->s_id);
2361 		if (dentry) {
2362 			spin_unlock(&dentry->d_lock);
2363 			dput(dentry);
2364 		}
2365 	}
2366 }
2367 
2368 /**
2369  * __mark_inode_dirty -	internal function to mark an inode dirty
2370  *
2371  * @inode: inode to mark
2372  * @flags: what kind of dirty, e.g. I_DIRTY_SYNC.  This can be a combination of
2373  *	   multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2374  *	   with I_DIRTY_PAGES.
2375  *
2376  * Mark an inode as dirty.  We notify the filesystem, then update the inode's
2377  * dirty flags.  Then, if needed we add the inode to the appropriate dirty list.
2378  *
2379  * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2380  * instead of calling this directly.
2381  *
2382  * CAREFUL!  We only add the inode to the dirty list if it is hashed or if it
2383  * refers to a blockdev.  Unhashed inodes will never be added to the dirty list
2384  * even if they are later hashed, as they will have been marked dirty already.
2385  *
2386  * In short, ensure you hash any inodes _before_ you start marking them dirty.
2387  *
2388  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2389  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2390  * the kernel-internal blockdev inode represents the dirtying time of the
2391  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2392  * page->mapping->host, so the page-dirtying time is recorded in the internal
2393  * blockdev inode.
2394  */
2395 void __mark_inode_dirty(struct inode *inode, int flags)
2396 {
2397 	struct super_block *sb = inode->i_sb;
2398 	int dirtytime = 0;
2399 
2400 	trace_writeback_mark_inode_dirty(inode, flags);
2401 
2402 	if (flags & I_DIRTY_INODE) {
2403 		/*
2404 		 * Notify the filesystem about the inode being dirtied, so that
2405 		 * (if needed) it can update on-disk fields and journal the
2406 		 * inode.  This is only needed when the inode itself is being
2407 		 * dirtied now.  I.e. it's only needed for I_DIRTY_INODE, not
2408 		 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2409 		 */
2410 		trace_writeback_dirty_inode_start(inode, flags);
2411 		if (sb->s_op->dirty_inode)
2412 			sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2413 		trace_writeback_dirty_inode(inode, flags);
2414 
2415 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2416 		flags &= ~I_DIRTY_TIME;
2417 	} else {
2418 		/*
2419 		 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2420 		 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2421 		 * in one call to __mark_inode_dirty().)
2422 		 */
2423 		dirtytime = flags & I_DIRTY_TIME;
2424 		WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2425 	}
2426 
2427 	/*
2428 	 * Paired with smp_mb() in __writeback_single_inode() for the
2429 	 * following lockless i_state test.  See there for details.
2430 	 */
2431 	smp_mb();
2432 
2433 	if (((inode->i_state & flags) == flags) ||
2434 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2435 		return;
2436 
2437 	if (unlikely(block_dump))
2438 		block_dump___mark_inode_dirty(inode);
2439 
2440 	spin_lock(&inode->i_lock);
2441 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2442 		goto out_unlock_inode;
2443 	if ((inode->i_state & flags) != flags) {
2444 		const int was_dirty = inode->i_state & I_DIRTY;
2445 
2446 		inode_attach_wb(inode, NULL);
2447 
2448 		/* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2449 		if (flags & I_DIRTY_INODE)
2450 			inode->i_state &= ~I_DIRTY_TIME;
2451 		inode->i_state |= flags;
2452 
2453 		/*
2454 		 * If the inode is queued for writeback by flush worker, just
2455 		 * update its dirty state. Once the flush worker is done with
2456 		 * the inode it will place it on the appropriate superblock
2457 		 * list, based upon its state.
2458 		 */
2459 		if (inode->i_state & I_SYNC_QUEUED)
2460 			goto out_unlock_inode;
2461 
2462 		/*
2463 		 * Only add valid (hashed) inodes to the superblock's
2464 		 * dirty list.  Add blockdev inodes as well.
2465 		 */
2466 		if (!S_ISBLK(inode->i_mode)) {
2467 			if (inode_unhashed(inode))
2468 				goto out_unlock_inode;
2469 		}
2470 		if (inode->i_state & I_FREEING)
2471 			goto out_unlock_inode;
2472 
2473 		/*
2474 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2475 		 * reposition it (that would break b_dirty time-ordering).
2476 		 */
2477 		if (!was_dirty) {
2478 			struct bdi_writeback *wb;
2479 			struct list_head *dirty_list;
2480 			bool wakeup_bdi = false;
2481 
2482 			wb = locked_inode_to_wb_and_lock_list(inode);
2483 
2484 			inode->dirtied_when = jiffies;
2485 			if (dirtytime)
2486 				inode->dirtied_time_when = jiffies;
2487 
2488 			if (inode->i_state & I_DIRTY)
2489 				dirty_list = &wb->b_dirty;
2490 			else
2491 				dirty_list = &wb->b_dirty_time;
2492 
2493 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2494 							       dirty_list);
2495 
2496 			spin_unlock(&wb->list_lock);
2497 			trace_writeback_dirty_inode_enqueue(inode);
2498 
2499 			/*
2500 			 * If this is the first dirty inode for this bdi,
2501 			 * we have to wake-up the corresponding bdi thread
2502 			 * to make sure background write-back happens
2503 			 * later.
2504 			 */
2505 			if (wakeup_bdi &&
2506 			    (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2507 				wb_wakeup_delayed(wb);
2508 			return;
2509 		}
2510 	}
2511 out_unlock_inode:
2512 	spin_unlock(&inode->i_lock);
2513 }
2514 EXPORT_SYMBOL(__mark_inode_dirty);
2515 
2516 /*
2517  * The @s_sync_lock is used to serialise concurrent sync operations
2518  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2519  * Concurrent callers will block on the s_sync_lock rather than doing contending
2520  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2521  * has been issued up to the time this function is enter is guaranteed to be
2522  * completed by the time we have gained the lock and waited for all IO that is
2523  * in progress regardless of the order callers are granted the lock.
2524  */
2525 static void wait_sb_inodes(struct super_block *sb)
2526 {
2527 	LIST_HEAD(sync_list);
2528 
2529 	/*
2530 	 * We need to be protected against the filesystem going from
2531 	 * r/o to r/w or vice versa.
2532 	 */
2533 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2534 
2535 	mutex_lock(&sb->s_sync_lock);
2536 
2537 	/*
2538 	 * Splice the writeback list onto a temporary list to avoid waiting on
2539 	 * inodes that have started writeback after this point.
2540 	 *
2541 	 * Use rcu_read_lock() to keep the inodes around until we have a
2542 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2543 	 * the local list because inodes can be dropped from either by writeback
2544 	 * completion.
2545 	 */
2546 	rcu_read_lock();
2547 	spin_lock_irq(&sb->s_inode_wblist_lock);
2548 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2549 
2550 	/*
2551 	 * Data integrity sync. Must wait for all pages under writeback, because
2552 	 * there may have been pages dirtied before our sync call, but which had
2553 	 * writeout started before we write it out.  In which case, the inode
2554 	 * may not be on the dirty list, but we still have to wait for that
2555 	 * writeout.
2556 	 */
2557 	while (!list_empty(&sync_list)) {
2558 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2559 						       i_wb_list);
2560 		struct address_space *mapping = inode->i_mapping;
2561 
2562 		/*
2563 		 * Move each inode back to the wb list before we drop the lock
2564 		 * to preserve consistency between i_wb_list and the mapping
2565 		 * writeback tag. Writeback completion is responsible to remove
2566 		 * the inode from either list once the writeback tag is cleared.
2567 		 */
2568 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2569 
2570 		/*
2571 		 * The mapping can appear untagged while still on-list since we
2572 		 * do not have the mapping lock. Skip it here, wb completion
2573 		 * will remove it.
2574 		 */
2575 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2576 			continue;
2577 
2578 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2579 
2580 		spin_lock(&inode->i_lock);
2581 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2582 			spin_unlock(&inode->i_lock);
2583 
2584 			spin_lock_irq(&sb->s_inode_wblist_lock);
2585 			continue;
2586 		}
2587 		__iget(inode);
2588 		spin_unlock(&inode->i_lock);
2589 		rcu_read_unlock();
2590 
2591 		/*
2592 		 * We keep the error status of individual mapping so that
2593 		 * applications can catch the writeback error using fsync(2).
2594 		 * See filemap_fdatawait_keep_errors() for details.
2595 		 */
2596 		filemap_fdatawait_keep_errors(mapping);
2597 
2598 		cond_resched();
2599 
2600 		iput(inode);
2601 
2602 		rcu_read_lock();
2603 		spin_lock_irq(&sb->s_inode_wblist_lock);
2604 	}
2605 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2606 	rcu_read_unlock();
2607 	mutex_unlock(&sb->s_sync_lock);
2608 }
2609 
2610 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2611 				     enum wb_reason reason, bool skip_if_busy)
2612 {
2613 	struct backing_dev_info *bdi = sb->s_bdi;
2614 	DEFINE_WB_COMPLETION(done, bdi);
2615 	struct wb_writeback_work work = {
2616 		.sb			= sb,
2617 		.sync_mode		= WB_SYNC_NONE,
2618 		.tagged_writepages	= 1,
2619 		.done			= &done,
2620 		.nr_pages		= nr,
2621 		.reason			= reason,
2622 	};
2623 
2624 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2625 		return;
2626 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2627 
2628 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2629 	wb_wait_for_completion(&done);
2630 }
2631 
2632 /**
2633  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2634  * @sb: the superblock
2635  * @nr: the number of pages to write
2636  * @reason: reason why some writeback work initiated
2637  *
2638  * Start writeback on some inodes on this super_block. No guarantees are made
2639  * on how many (if any) will be written, and this function does not wait
2640  * for IO completion of submitted IO.
2641  */
2642 void writeback_inodes_sb_nr(struct super_block *sb,
2643 			    unsigned long nr,
2644 			    enum wb_reason reason)
2645 {
2646 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2647 }
2648 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2649 
2650 /**
2651  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2652  * @sb: the superblock
2653  * @reason: reason why some writeback work was initiated
2654  *
2655  * Start writeback on some inodes on this super_block. No guarantees are made
2656  * on how many (if any) will be written, and this function does not wait
2657  * for IO completion of submitted IO.
2658  */
2659 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2660 {
2661 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2662 }
2663 EXPORT_SYMBOL(writeback_inodes_sb);
2664 
2665 /**
2666  * try_to_writeback_inodes_sb - try to start writeback if none underway
2667  * @sb: the superblock
2668  * @reason: reason why some writeback work was initiated
2669  *
2670  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2671  */
2672 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2673 {
2674 	if (!down_read_trylock(&sb->s_umount))
2675 		return;
2676 
2677 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2678 	up_read(&sb->s_umount);
2679 }
2680 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2681 
2682 /**
2683  * sync_inodes_sb	-	sync sb inode pages
2684  * @sb: the superblock
2685  *
2686  * This function writes and waits on any dirty inode belonging to this
2687  * super_block.
2688  */
2689 void sync_inodes_sb(struct super_block *sb)
2690 {
2691 	struct backing_dev_info *bdi = sb->s_bdi;
2692 	DEFINE_WB_COMPLETION(done, bdi);
2693 	struct wb_writeback_work work = {
2694 		.sb		= sb,
2695 		.sync_mode	= WB_SYNC_ALL,
2696 		.nr_pages	= LONG_MAX,
2697 		.range_cyclic	= 0,
2698 		.done		= &done,
2699 		.reason		= WB_REASON_SYNC,
2700 		.for_sync	= 1,
2701 	};
2702 
2703 	/*
2704 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2705 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2706 	 * bdi_has_dirty() need to be written out too.
2707 	 */
2708 	if (bdi == &noop_backing_dev_info)
2709 		return;
2710 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2711 
2712 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2713 	bdi_down_write_wb_switch_rwsem(bdi);
2714 	bdi_split_work_to_wbs(bdi, &work, false);
2715 	wb_wait_for_completion(&done);
2716 	bdi_up_write_wb_switch_rwsem(bdi);
2717 
2718 	wait_sb_inodes(sb);
2719 }
2720 EXPORT_SYMBOL(sync_inodes_sb);
2721 
2722 /**
2723  * write_inode_now	-	write an inode to disk
2724  * @inode: inode to write to disk
2725  * @sync: whether the write should be synchronous or not
2726  *
2727  * This function commits an inode to disk immediately if it is dirty. This is
2728  * primarily needed by knfsd.
2729  *
2730  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2731  */
2732 int write_inode_now(struct inode *inode, int sync)
2733 {
2734 	struct writeback_control wbc = {
2735 		.nr_to_write = LONG_MAX,
2736 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2737 		.range_start = 0,
2738 		.range_end = LLONG_MAX,
2739 	};
2740 
2741 	if (!mapping_can_writeback(inode->i_mapping))
2742 		wbc.nr_to_write = 0;
2743 
2744 	might_sleep();
2745 	return writeback_single_inode(inode, &wbc);
2746 }
2747 EXPORT_SYMBOL(write_inode_now);
2748 
2749 /**
2750  * sync_inode - write an inode and its pages to disk.
2751  * @inode: the inode to sync
2752  * @wbc: controls the writeback mode
2753  *
2754  * sync_inode() will write an inode and its pages to disk.  It will also
2755  * correctly update the inode on its superblock's dirty inode lists and will
2756  * update inode->i_state.
2757  *
2758  * The caller must have a ref on the inode.
2759  */
2760 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2761 {
2762 	return writeback_single_inode(inode, wbc);
2763 }
2764 EXPORT_SYMBOL(sync_inode);
2765 
2766 /**
2767  * sync_inode_metadata - write an inode to disk
2768  * @inode: the inode to sync
2769  * @wait: wait for I/O to complete.
2770  *
2771  * Write an inode to disk and adjust its dirty state after completion.
2772  *
2773  * Note: only writes the actual inode, no associated data or other metadata.
2774  */
2775 int sync_inode_metadata(struct inode *inode, int wait)
2776 {
2777 	struct writeback_control wbc = {
2778 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2779 		.nr_to_write = 0, /* metadata-only */
2780 	};
2781 
2782 	return sync_inode(inode, &wbc);
2783 }
2784 EXPORT_SYMBOL(sync_inode_metadata);
2785