1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 124 list_move(&inode->i_io_list, head); 125 126 /* dirty_time doesn't count as dirty_io until expiration */ 127 if (head != &wb->b_dirty_time) 128 return wb_io_lists_populated(wb); 129 130 wb_io_lists_depopulated(wb); 131 return false; 132 } 133 134 static void wb_wakeup(struct bdi_writeback *wb) 135 { 136 spin_lock_bh(&wb->work_lock); 137 if (test_bit(WB_registered, &wb->state)) 138 mod_delayed_work(bdi_wq, &wb->dwork, 0); 139 spin_unlock_bh(&wb->work_lock); 140 } 141 142 static void finish_writeback_work(struct bdi_writeback *wb, 143 struct wb_writeback_work *work) 144 { 145 struct wb_completion *done = work->done; 146 147 if (work->auto_free) 148 kfree(work); 149 if (done) { 150 wait_queue_head_t *waitq = done->waitq; 151 152 /* @done can't be accessed after the following dec */ 153 if (atomic_dec_and_test(&done->cnt)) 154 wake_up_all(waitq); 155 } 156 } 157 158 static void wb_queue_work(struct bdi_writeback *wb, 159 struct wb_writeback_work *work) 160 { 161 trace_writeback_queue(wb, work); 162 163 if (work->done) 164 atomic_inc(&work->done->cnt); 165 166 spin_lock_bh(&wb->work_lock); 167 168 if (test_bit(WB_registered, &wb->state)) { 169 list_add_tail(&work->list, &wb->work_list); 170 mod_delayed_work(bdi_wq, &wb->dwork, 0); 171 } else 172 finish_writeback_work(wb, work); 173 174 spin_unlock_bh(&wb->work_lock); 175 } 176 177 /** 178 * wb_wait_for_completion - wait for completion of bdi_writeback_works 179 * @done: target wb_completion 180 * 181 * Wait for one or more work items issued to @bdi with their ->done field 182 * set to @done, which should have been initialized with 183 * DEFINE_WB_COMPLETION(). This function returns after all such work items 184 * are completed. Work items which are waited upon aren't freed 185 * automatically on completion. 186 */ 187 void wb_wait_for_completion(struct wb_completion *done) 188 { 189 atomic_dec(&done->cnt); /* put down the initial count */ 190 wait_event(*done->waitq, !atomic_read(&done->cnt)); 191 } 192 193 #ifdef CONFIG_CGROUP_WRITEBACK 194 195 /* 196 * Parameters for foreign inode detection, see wbc_detach_inode() to see 197 * how they're used. 198 * 199 * These paramters are inherently heuristical as the detection target 200 * itself is fuzzy. All we want to do is detaching an inode from the 201 * current owner if it's being written to by some other cgroups too much. 202 * 203 * The current cgroup writeback is built on the assumption that multiple 204 * cgroups writing to the same inode concurrently is very rare and a mode 205 * of operation which isn't well supported. As such, the goal is not 206 * taking too long when a different cgroup takes over an inode while 207 * avoiding too aggressive flip-flops from occasional foreign writes. 208 * 209 * We record, very roughly, 2s worth of IO time history and if more than 210 * half of that is foreign, trigger the switch. The recording is quantized 211 * to 16 slots. To avoid tiny writes from swinging the decision too much, 212 * writes smaller than 1/8 of avg size are ignored. 213 */ 214 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 215 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 216 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 217 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 218 219 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 220 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 221 /* each slot's duration is 2s / 16 */ 222 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 223 /* if foreign slots >= 8, switch */ 224 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 225 /* one round can affect upto 5 slots */ 226 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 227 228 /* 229 * Maximum inodes per isw. A specific value has been chosen to make 230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 231 */ 232 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 233 / sizeof(struct inode *)) 234 235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 236 static struct workqueue_struct *isw_wq; 237 238 void __inode_attach_wb(struct inode *inode, struct page *page) 239 { 240 struct backing_dev_info *bdi = inode_to_bdi(inode); 241 struct bdi_writeback *wb = NULL; 242 243 if (inode_cgwb_enabled(inode)) { 244 struct cgroup_subsys_state *memcg_css; 245 246 if (page) { 247 memcg_css = mem_cgroup_css_from_page(page); 248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 249 } else { 250 /* must pin memcg_css, see wb_get_create() */ 251 memcg_css = task_get_css(current, memory_cgrp_id); 252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 253 css_put(memcg_css); 254 } 255 } 256 257 if (!wb) 258 wb = &bdi->wb; 259 260 /* 261 * There may be multiple instances of this function racing to 262 * update the same inode. Use cmpxchg() to tell the winner. 263 */ 264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 265 wb_put(wb); 266 } 267 EXPORT_SYMBOL_GPL(__inode_attach_wb); 268 269 /** 270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 271 * @inode: inode of interest with i_lock held 272 * @wb: target bdi_writeback 273 * 274 * Remove the inode from wb's io lists and if necessarily put onto b_attached 275 * list. Only inodes attached to cgwb's are kept on this list. 276 */ 277 static void inode_cgwb_move_to_attached(struct inode *inode, 278 struct bdi_writeback *wb) 279 { 280 assert_spin_locked(&wb->list_lock); 281 assert_spin_locked(&inode->i_lock); 282 283 inode->i_state &= ~I_SYNC_QUEUED; 284 if (wb != &wb->bdi->wb) 285 list_move(&inode->i_io_list, &wb->b_attached); 286 else 287 list_del_init(&inode->i_io_list); 288 wb_io_lists_depopulated(wb); 289 } 290 291 /** 292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 293 * @inode: inode of interest with i_lock held 294 * 295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 296 * held on entry and is released on return. The returned wb is guaranteed 297 * to stay @inode's associated wb until its list_lock is released. 298 */ 299 static struct bdi_writeback * 300 locked_inode_to_wb_and_lock_list(struct inode *inode) 301 __releases(&inode->i_lock) 302 __acquires(&wb->list_lock) 303 { 304 while (true) { 305 struct bdi_writeback *wb = inode_to_wb(inode); 306 307 /* 308 * inode_to_wb() association is protected by both 309 * @inode->i_lock and @wb->list_lock but list_lock nests 310 * outside i_lock. Drop i_lock and verify that the 311 * association hasn't changed after acquiring list_lock. 312 */ 313 wb_get(wb); 314 spin_unlock(&inode->i_lock); 315 spin_lock(&wb->list_lock); 316 317 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 318 if (likely(wb == inode->i_wb)) { 319 wb_put(wb); /* @inode already has ref */ 320 return wb; 321 } 322 323 spin_unlock(&wb->list_lock); 324 wb_put(wb); 325 cpu_relax(); 326 spin_lock(&inode->i_lock); 327 } 328 } 329 330 /** 331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 332 * @inode: inode of interest 333 * 334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 335 * on entry. 336 */ 337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 338 __acquires(&wb->list_lock) 339 { 340 spin_lock(&inode->i_lock); 341 return locked_inode_to_wb_and_lock_list(inode); 342 } 343 344 struct inode_switch_wbs_context { 345 struct rcu_work work; 346 347 /* 348 * Multiple inodes can be switched at once. The switching procedure 349 * consists of two parts, separated by a RCU grace period. To make 350 * sure that the second part is executed for each inode gone through 351 * the first part, all inode pointers are placed into a NULL-terminated 352 * array embedded into struct inode_switch_wbs_context. Otherwise 353 * an inode could be left in a non-consistent state. 354 */ 355 struct bdi_writeback *new_wb; 356 struct inode *inodes[]; 357 }; 358 359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 360 { 361 down_write(&bdi->wb_switch_rwsem); 362 } 363 364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 365 { 366 up_write(&bdi->wb_switch_rwsem); 367 } 368 369 static bool inode_do_switch_wbs(struct inode *inode, 370 struct bdi_writeback *old_wb, 371 struct bdi_writeback *new_wb) 372 { 373 struct address_space *mapping = inode->i_mapping; 374 XA_STATE(xas, &mapping->i_pages, 0); 375 struct page *page; 376 bool switched = false; 377 378 spin_lock(&inode->i_lock); 379 xa_lock_irq(&mapping->i_pages); 380 381 /* 382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 383 * path owns the inode and we shouldn't modify ->i_io_list. 384 */ 385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 386 goto skip_switch; 387 388 trace_inode_switch_wbs(inode, old_wb, new_wb); 389 390 /* 391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 393 * pages actually under writeback. 394 */ 395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 396 if (PageDirty(page)) { 397 dec_wb_stat(old_wb, WB_RECLAIMABLE); 398 inc_wb_stat(new_wb, WB_RECLAIMABLE); 399 } 400 } 401 402 xas_set(&xas, 0); 403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 404 WARN_ON_ONCE(!PageWriteback(page)); 405 dec_wb_stat(old_wb, WB_WRITEBACK); 406 inc_wb_stat(new_wb, WB_WRITEBACK); 407 } 408 409 wb_get(new_wb); 410 411 /* 412 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 413 * the specific list @inode was on is ignored and the @inode is put on 414 * ->b_dirty which is always correct including from ->b_dirty_time. 415 * The transfer preserves @inode->dirtied_when ordering. If the @inode 416 * was clean, it means it was on the b_attached list, so move it onto 417 * the b_attached list of @new_wb. 418 */ 419 if (!list_empty(&inode->i_io_list)) { 420 inode->i_wb = new_wb; 421 422 if (inode->i_state & I_DIRTY_ALL) { 423 struct inode *pos; 424 425 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 426 if (time_after_eq(inode->dirtied_when, 427 pos->dirtied_when)) 428 break; 429 inode_io_list_move_locked(inode, new_wb, 430 pos->i_io_list.prev); 431 } else { 432 inode_cgwb_move_to_attached(inode, new_wb); 433 } 434 } else { 435 inode->i_wb = new_wb; 436 } 437 438 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 439 inode->i_wb_frn_winner = 0; 440 inode->i_wb_frn_avg_time = 0; 441 inode->i_wb_frn_history = 0; 442 switched = true; 443 skip_switch: 444 /* 445 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 446 * ensures that the new wb is visible if they see !I_WB_SWITCH. 447 */ 448 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 449 450 xa_unlock_irq(&mapping->i_pages); 451 spin_unlock(&inode->i_lock); 452 453 return switched; 454 } 455 456 static void inode_switch_wbs_work_fn(struct work_struct *work) 457 { 458 struct inode_switch_wbs_context *isw = 459 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 460 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 461 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 462 struct bdi_writeback *new_wb = isw->new_wb; 463 unsigned long nr_switched = 0; 464 struct inode **inodep; 465 466 /* 467 * If @inode switches cgwb membership while sync_inodes_sb() is 468 * being issued, sync_inodes_sb() might miss it. Synchronize. 469 */ 470 down_read(&bdi->wb_switch_rwsem); 471 472 /* 473 * By the time control reaches here, RCU grace period has passed 474 * since I_WB_SWITCH assertion and all wb stat update transactions 475 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 476 * synchronizing against the i_pages lock. 477 * 478 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 479 * gives us exclusion against all wb related operations on @inode 480 * including IO list manipulations and stat updates. 481 */ 482 if (old_wb < new_wb) { 483 spin_lock(&old_wb->list_lock); 484 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 485 } else { 486 spin_lock(&new_wb->list_lock); 487 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 488 } 489 490 for (inodep = isw->inodes; *inodep; inodep++) { 491 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 492 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 493 nr_switched++; 494 } 495 496 spin_unlock(&new_wb->list_lock); 497 spin_unlock(&old_wb->list_lock); 498 499 up_read(&bdi->wb_switch_rwsem); 500 501 if (nr_switched) { 502 wb_wakeup(new_wb); 503 wb_put_many(old_wb, nr_switched); 504 } 505 506 for (inodep = isw->inodes; *inodep; inodep++) 507 iput(*inodep); 508 wb_put(new_wb); 509 kfree(isw); 510 atomic_dec(&isw_nr_in_flight); 511 } 512 513 static bool inode_prepare_wbs_switch(struct inode *inode, 514 struct bdi_writeback *new_wb) 515 { 516 /* 517 * Paired with smp_mb() in cgroup_writeback_umount(). 518 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 519 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 520 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 521 */ 522 smp_mb(); 523 524 /* while holding I_WB_SWITCH, no one else can update the association */ 525 spin_lock(&inode->i_lock); 526 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 527 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 528 inode_to_wb(inode) == new_wb) { 529 spin_unlock(&inode->i_lock); 530 return false; 531 } 532 inode->i_state |= I_WB_SWITCH; 533 __iget(inode); 534 spin_unlock(&inode->i_lock); 535 536 return true; 537 } 538 539 /** 540 * inode_switch_wbs - change the wb association of an inode 541 * @inode: target inode 542 * @new_wb_id: ID of the new wb 543 * 544 * Switch @inode's wb association to the wb identified by @new_wb_id. The 545 * switching is performed asynchronously and may fail silently. 546 */ 547 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 548 { 549 struct backing_dev_info *bdi = inode_to_bdi(inode); 550 struct cgroup_subsys_state *memcg_css; 551 struct inode_switch_wbs_context *isw; 552 553 /* noop if seems to be already in progress */ 554 if (inode->i_state & I_WB_SWITCH) 555 return; 556 557 /* avoid queueing a new switch if too many are already in flight */ 558 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 559 return; 560 561 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC); 562 if (!isw) 563 return; 564 565 atomic_inc(&isw_nr_in_flight); 566 567 /* find and pin the new wb */ 568 rcu_read_lock(); 569 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 570 if (memcg_css) 571 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 572 rcu_read_unlock(); 573 if (!isw->new_wb) 574 goto out_free; 575 576 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 577 goto out_free; 578 579 isw->inodes[0] = inode; 580 581 /* 582 * In addition to synchronizing among switchers, I_WB_SWITCH tells 583 * the RCU protected stat update paths to grab the i_page 584 * lock so that stat transfer can synchronize against them. 585 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 586 */ 587 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 588 queue_rcu_work(isw_wq, &isw->work); 589 return; 590 591 out_free: 592 atomic_dec(&isw_nr_in_flight); 593 if (isw->new_wb) 594 wb_put(isw->new_wb); 595 kfree(isw); 596 } 597 598 /** 599 * cleanup_offline_cgwb - detach associated inodes 600 * @wb: target wb 601 * 602 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 603 * to eventually release the dying @wb. Returns %true if not all inodes were 604 * switched and the function has to be restarted. 605 */ 606 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 607 { 608 struct cgroup_subsys_state *memcg_css; 609 struct inode_switch_wbs_context *isw; 610 struct inode *inode; 611 int nr; 612 bool restart = false; 613 614 isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW * 615 sizeof(struct inode *), GFP_KERNEL); 616 if (!isw) 617 return restart; 618 619 atomic_inc(&isw_nr_in_flight); 620 621 for (memcg_css = wb->memcg_css->parent; memcg_css; 622 memcg_css = memcg_css->parent) { 623 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 624 if (isw->new_wb) 625 break; 626 } 627 if (unlikely(!isw->new_wb)) 628 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 629 630 nr = 0; 631 spin_lock(&wb->list_lock); 632 list_for_each_entry(inode, &wb->b_attached, i_io_list) { 633 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 634 continue; 635 636 isw->inodes[nr++] = inode; 637 638 if (nr >= WB_MAX_INODES_PER_ISW - 1) { 639 restart = true; 640 break; 641 } 642 } 643 spin_unlock(&wb->list_lock); 644 645 /* no attached inodes? bail out */ 646 if (nr == 0) { 647 atomic_dec(&isw_nr_in_flight); 648 wb_put(isw->new_wb); 649 kfree(isw); 650 return restart; 651 } 652 653 /* 654 * In addition to synchronizing among switchers, I_WB_SWITCH tells 655 * the RCU protected stat update paths to grab the i_page 656 * lock so that stat transfer can synchronize against them. 657 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 658 */ 659 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 660 queue_rcu_work(isw_wq, &isw->work); 661 662 return restart; 663 } 664 665 /** 666 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 667 * @wbc: writeback_control of interest 668 * @inode: target inode 669 * 670 * @inode is locked and about to be written back under the control of @wbc. 671 * Record @inode's writeback context into @wbc and unlock the i_lock. On 672 * writeback completion, wbc_detach_inode() should be called. This is used 673 * to track the cgroup writeback context. 674 */ 675 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 676 struct inode *inode) 677 { 678 if (!inode_cgwb_enabled(inode)) { 679 spin_unlock(&inode->i_lock); 680 return; 681 } 682 683 wbc->wb = inode_to_wb(inode); 684 wbc->inode = inode; 685 686 wbc->wb_id = wbc->wb->memcg_css->id; 687 wbc->wb_lcand_id = inode->i_wb_frn_winner; 688 wbc->wb_tcand_id = 0; 689 wbc->wb_bytes = 0; 690 wbc->wb_lcand_bytes = 0; 691 wbc->wb_tcand_bytes = 0; 692 693 wb_get(wbc->wb); 694 spin_unlock(&inode->i_lock); 695 696 /* 697 * A dying wb indicates that either the blkcg associated with the 698 * memcg changed or the associated memcg is dying. In the first 699 * case, a replacement wb should already be available and we should 700 * refresh the wb immediately. In the second case, trying to 701 * refresh will keep failing. 702 */ 703 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 704 inode_switch_wbs(inode, wbc->wb_id); 705 } 706 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 707 708 /** 709 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 710 * @wbc: writeback_control of the just finished writeback 711 * 712 * To be called after a writeback attempt of an inode finishes and undoes 713 * wbc_attach_and_unlock_inode(). Can be called under any context. 714 * 715 * As concurrent write sharing of an inode is expected to be very rare and 716 * memcg only tracks page ownership on first-use basis severely confining 717 * the usefulness of such sharing, cgroup writeback tracks ownership 718 * per-inode. While the support for concurrent write sharing of an inode 719 * is deemed unnecessary, an inode being written to by different cgroups at 720 * different points in time is a lot more common, and, more importantly, 721 * charging only by first-use can too readily lead to grossly incorrect 722 * behaviors (single foreign page can lead to gigabytes of writeback to be 723 * incorrectly attributed). 724 * 725 * To resolve this issue, cgroup writeback detects the majority dirtier of 726 * an inode and transfers the ownership to it. To avoid unnnecessary 727 * oscillation, the detection mechanism keeps track of history and gives 728 * out the switch verdict only if the foreign usage pattern is stable over 729 * a certain amount of time and/or writeback attempts. 730 * 731 * On each writeback attempt, @wbc tries to detect the majority writer 732 * using Boyer-Moore majority vote algorithm. In addition to the byte 733 * count from the majority voting, it also counts the bytes written for the 734 * current wb and the last round's winner wb (max of last round's current 735 * wb, the winner from two rounds ago, and the last round's majority 736 * candidate). Keeping track of the historical winner helps the algorithm 737 * to semi-reliably detect the most active writer even when it's not the 738 * absolute majority. 739 * 740 * Once the winner of the round is determined, whether the winner is 741 * foreign or not and how much IO time the round consumed is recorded in 742 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 743 * over a certain threshold, the switch verdict is given. 744 */ 745 void wbc_detach_inode(struct writeback_control *wbc) 746 { 747 struct bdi_writeback *wb = wbc->wb; 748 struct inode *inode = wbc->inode; 749 unsigned long avg_time, max_bytes, max_time; 750 u16 history; 751 int max_id; 752 753 if (!wb) 754 return; 755 756 history = inode->i_wb_frn_history; 757 avg_time = inode->i_wb_frn_avg_time; 758 759 /* pick the winner of this round */ 760 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 761 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 762 max_id = wbc->wb_id; 763 max_bytes = wbc->wb_bytes; 764 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 765 max_id = wbc->wb_lcand_id; 766 max_bytes = wbc->wb_lcand_bytes; 767 } else { 768 max_id = wbc->wb_tcand_id; 769 max_bytes = wbc->wb_tcand_bytes; 770 } 771 772 /* 773 * Calculate the amount of IO time the winner consumed and fold it 774 * into the running average kept per inode. If the consumed IO 775 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 776 * deciding whether to switch or not. This is to prevent one-off 777 * small dirtiers from skewing the verdict. 778 */ 779 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 780 wb->avg_write_bandwidth); 781 if (avg_time) 782 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 783 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 784 else 785 avg_time = max_time; /* immediate catch up on first run */ 786 787 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 788 int slots; 789 790 /* 791 * The switch verdict is reached if foreign wb's consume 792 * more than a certain proportion of IO time in a 793 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 794 * history mask where each bit represents one sixteenth of 795 * the period. Determine the number of slots to shift into 796 * history from @max_time. 797 */ 798 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 799 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 800 history <<= slots; 801 if (wbc->wb_id != max_id) 802 history |= (1U << slots) - 1; 803 804 if (history) 805 trace_inode_foreign_history(inode, wbc, history); 806 807 /* 808 * Switch if the current wb isn't the consistent winner. 809 * If there are multiple closely competing dirtiers, the 810 * inode may switch across them repeatedly over time, which 811 * is okay. The main goal is avoiding keeping an inode on 812 * the wrong wb for an extended period of time. 813 */ 814 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 815 inode_switch_wbs(inode, max_id); 816 } 817 818 /* 819 * Multiple instances of this function may race to update the 820 * following fields but we don't mind occassional inaccuracies. 821 */ 822 inode->i_wb_frn_winner = max_id; 823 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 824 inode->i_wb_frn_history = history; 825 826 wb_put(wbc->wb); 827 wbc->wb = NULL; 828 } 829 EXPORT_SYMBOL_GPL(wbc_detach_inode); 830 831 /** 832 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 833 * @wbc: writeback_control of the writeback in progress 834 * @page: page being written out 835 * @bytes: number of bytes being written out 836 * 837 * @bytes from @page are about to written out during the writeback 838 * controlled by @wbc. Keep the book for foreign inode detection. See 839 * wbc_detach_inode(). 840 */ 841 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 842 size_t bytes) 843 { 844 struct cgroup_subsys_state *css; 845 int id; 846 847 /* 848 * pageout() path doesn't attach @wbc to the inode being written 849 * out. This is intentional as we don't want the function to block 850 * behind a slow cgroup. Ultimately, we want pageout() to kick off 851 * regular writeback instead of writing things out itself. 852 */ 853 if (!wbc->wb || wbc->no_cgroup_owner) 854 return; 855 856 css = mem_cgroup_css_from_page(page); 857 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 858 if (!(css->flags & CSS_ONLINE)) 859 return; 860 861 id = css->id; 862 863 if (id == wbc->wb_id) { 864 wbc->wb_bytes += bytes; 865 return; 866 } 867 868 if (id == wbc->wb_lcand_id) 869 wbc->wb_lcand_bytes += bytes; 870 871 /* Boyer-Moore majority vote algorithm */ 872 if (!wbc->wb_tcand_bytes) 873 wbc->wb_tcand_id = id; 874 if (id == wbc->wb_tcand_id) 875 wbc->wb_tcand_bytes += bytes; 876 else 877 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 878 } 879 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 880 881 /** 882 * inode_congested - test whether an inode is congested 883 * @inode: inode to test for congestion (may be NULL) 884 * @cong_bits: mask of WB_[a]sync_congested bits to test 885 * 886 * Tests whether @inode is congested. @cong_bits is the mask of congestion 887 * bits to test and the return value is the mask of set bits. 888 * 889 * If cgroup writeback is enabled for @inode, the congestion state is 890 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 891 * associated with @inode is congested; otherwise, the root wb's congestion 892 * state is used. 893 * 894 * @inode is allowed to be NULL as this function is often called on 895 * mapping->host which is NULL for the swapper space. 896 */ 897 int inode_congested(struct inode *inode, int cong_bits) 898 { 899 /* 900 * Once set, ->i_wb never becomes NULL while the inode is alive. 901 * Start transaction iff ->i_wb is visible. 902 */ 903 if (inode && inode_to_wb_is_valid(inode)) { 904 struct bdi_writeback *wb; 905 struct wb_lock_cookie lock_cookie = {}; 906 bool congested; 907 908 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 909 congested = wb_congested(wb, cong_bits); 910 unlocked_inode_to_wb_end(inode, &lock_cookie); 911 return congested; 912 } 913 914 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 915 } 916 EXPORT_SYMBOL_GPL(inode_congested); 917 918 /** 919 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 920 * @wb: target bdi_writeback to split @nr_pages to 921 * @nr_pages: number of pages to write for the whole bdi 922 * 923 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 924 * relation to the total write bandwidth of all wb's w/ dirty inodes on 925 * @wb->bdi. 926 */ 927 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 928 { 929 unsigned long this_bw = wb->avg_write_bandwidth; 930 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 931 932 if (nr_pages == LONG_MAX) 933 return LONG_MAX; 934 935 /* 936 * This may be called on clean wb's and proportional distribution 937 * may not make sense, just use the original @nr_pages in those 938 * cases. In general, we wanna err on the side of writing more. 939 */ 940 if (!tot_bw || this_bw >= tot_bw) 941 return nr_pages; 942 else 943 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 944 } 945 946 /** 947 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 948 * @bdi: target backing_dev_info 949 * @base_work: wb_writeback_work to issue 950 * @skip_if_busy: skip wb's which already have writeback in progress 951 * 952 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 953 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 954 * distributed to the busy wbs according to each wb's proportion in the 955 * total active write bandwidth of @bdi. 956 */ 957 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 958 struct wb_writeback_work *base_work, 959 bool skip_if_busy) 960 { 961 struct bdi_writeback *last_wb = NULL; 962 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 963 struct bdi_writeback, bdi_node); 964 965 might_sleep(); 966 restart: 967 rcu_read_lock(); 968 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 969 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 970 struct wb_writeback_work fallback_work; 971 struct wb_writeback_work *work; 972 long nr_pages; 973 974 if (last_wb) { 975 wb_put(last_wb); 976 last_wb = NULL; 977 } 978 979 /* SYNC_ALL writes out I_DIRTY_TIME too */ 980 if (!wb_has_dirty_io(wb) && 981 (base_work->sync_mode == WB_SYNC_NONE || 982 list_empty(&wb->b_dirty_time))) 983 continue; 984 if (skip_if_busy && writeback_in_progress(wb)) 985 continue; 986 987 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 988 989 work = kmalloc(sizeof(*work), GFP_ATOMIC); 990 if (work) { 991 *work = *base_work; 992 work->nr_pages = nr_pages; 993 work->auto_free = 1; 994 wb_queue_work(wb, work); 995 continue; 996 } 997 998 /* alloc failed, execute synchronously using on-stack fallback */ 999 work = &fallback_work; 1000 *work = *base_work; 1001 work->nr_pages = nr_pages; 1002 work->auto_free = 0; 1003 work->done = &fallback_work_done; 1004 1005 wb_queue_work(wb, work); 1006 1007 /* 1008 * Pin @wb so that it stays on @bdi->wb_list. This allows 1009 * continuing iteration from @wb after dropping and 1010 * regrabbing rcu read lock. 1011 */ 1012 wb_get(wb); 1013 last_wb = wb; 1014 1015 rcu_read_unlock(); 1016 wb_wait_for_completion(&fallback_work_done); 1017 goto restart; 1018 } 1019 rcu_read_unlock(); 1020 1021 if (last_wb) 1022 wb_put(last_wb); 1023 } 1024 1025 /** 1026 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1027 * @bdi_id: target bdi id 1028 * @memcg_id: target memcg css id 1029 * @nr: number of pages to write, 0 for best-effort dirty flushing 1030 * @reason: reason why some writeback work initiated 1031 * @done: target wb_completion 1032 * 1033 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1034 * with the specified parameters. 1035 */ 1036 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, 1037 enum wb_reason reason, struct wb_completion *done) 1038 { 1039 struct backing_dev_info *bdi; 1040 struct cgroup_subsys_state *memcg_css; 1041 struct bdi_writeback *wb; 1042 struct wb_writeback_work *work; 1043 int ret; 1044 1045 /* lookup bdi and memcg */ 1046 bdi = bdi_get_by_id(bdi_id); 1047 if (!bdi) 1048 return -ENOENT; 1049 1050 rcu_read_lock(); 1051 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1052 if (memcg_css && !css_tryget(memcg_css)) 1053 memcg_css = NULL; 1054 rcu_read_unlock(); 1055 if (!memcg_css) { 1056 ret = -ENOENT; 1057 goto out_bdi_put; 1058 } 1059 1060 /* 1061 * And find the associated wb. If the wb isn't there already 1062 * there's nothing to flush, don't create one. 1063 */ 1064 wb = wb_get_lookup(bdi, memcg_css); 1065 if (!wb) { 1066 ret = -ENOENT; 1067 goto out_css_put; 1068 } 1069 1070 /* 1071 * If @nr is zero, the caller is attempting to write out most of 1072 * the currently dirty pages. Let's take the current dirty page 1073 * count and inflate it by 25% which should be large enough to 1074 * flush out most dirty pages while avoiding getting livelocked by 1075 * concurrent dirtiers. 1076 */ 1077 if (!nr) { 1078 unsigned long filepages, headroom, dirty, writeback; 1079 1080 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, 1081 &writeback); 1082 nr = dirty * 10 / 8; 1083 } 1084 1085 /* issue the writeback work */ 1086 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1087 if (work) { 1088 work->nr_pages = nr; 1089 work->sync_mode = WB_SYNC_NONE; 1090 work->range_cyclic = 1; 1091 work->reason = reason; 1092 work->done = done; 1093 work->auto_free = 1; 1094 wb_queue_work(wb, work); 1095 ret = 0; 1096 } else { 1097 ret = -ENOMEM; 1098 } 1099 1100 wb_put(wb); 1101 out_css_put: 1102 css_put(memcg_css); 1103 out_bdi_put: 1104 bdi_put(bdi); 1105 return ret; 1106 } 1107 1108 /** 1109 * cgroup_writeback_umount - flush inode wb switches for umount 1110 * 1111 * This function is called when a super_block is about to be destroyed and 1112 * flushes in-flight inode wb switches. An inode wb switch goes through 1113 * RCU and then workqueue, so the two need to be flushed in order to ensure 1114 * that all previously scheduled switches are finished. As wb switches are 1115 * rare occurrences and synchronize_rcu() can take a while, perform 1116 * flushing iff wb switches are in flight. 1117 */ 1118 void cgroup_writeback_umount(void) 1119 { 1120 /* 1121 * SB_ACTIVE should be reliably cleared before checking 1122 * isw_nr_in_flight, see generic_shutdown_super(). 1123 */ 1124 smp_mb(); 1125 1126 if (atomic_read(&isw_nr_in_flight)) { 1127 /* 1128 * Use rcu_barrier() to wait for all pending callbacks to 1129 * ensure that all in-flight wb switches are in the workqueue. 1130 */ 1131 rcu_barrier(); 1132 flush_workqueue(isw_wq); 1133 } 1134 } 1135 1136 static int __init cgroup_writeback_init(void) 1137 { 1138 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1139 if (!isw_wq) 1140 return -ENOMEM; 1141 return 0; 1142 } 1143 fs_initcall(cgroup_writeback_init); 1144 1145 #else /* CONFIG_CGROUP_WRITEBACK */ 1146 1147 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1148 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1149 1150 static void inode_cgwb_move_to_attached(struct inode *inode, 1151 struct bdi_writeback *wb) 1152 { 1153 assert_spin_locked(&wb->list_lock); 1154 assert_spin_locked(&inode->i_lock); 1155 1156 inode->i_state &= ~I_SYNC_QUEUED; 1157 list_del_init(&inode->i_io_list); 1158 wb_io_lists_depopulated(wb); 1159 } 1160 1161 static struct bdi_writeback * 1162 locked_inode_to_wb_and_lock_list(struct inode *inode) 1163 __releases(&inode->i_lock) 1164 __acquires(&wb->list_lock) 1165 { 1166 struct bdi_writeback *wb = inode_to_wb(inode); 1167 1168 spin_unlock(&inode->i_lock); 1169 spin_lock(&wb->list_lock); 1170 return wb; 1171 } 1172 1173 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1174 __acquires(&wb->list_lock) 1175 { 1176 struct bdi_writeback *wb = inode_to_wb(inode); 1177 1178 spin_lock(&wb->list_lock); 1179 return wb; 1180 } 1181 1182 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1183 { 1184 return nr_pages; 1185 } 1186 1187 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1188 struct wb_writeback_work *base_work, 1189 bool skip_if_busy) 1190 { 1191 might_sleep(); 1192 1193 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1194 base_work->auto_free = 0; 1195 wb_queue_work(&bdi->wb, base_work); 1196 } 1197 } 1198 1199 #endif /* CONFIG_CGROUP_WRITEBACK */ 1200 1201 /* 1202 * Add in the number of potentially dirty inodes, because each inode 1203 * write can dirty pagecache in the underlying blockdev. 1204 */ 1205 static unsigned long get_nr_dirty_pages(void) 1206 { 1207 return global_node_page_state(NR_FILE_DIRTY) + 1208 get_nr_dirty_inodes(); 1209 } 1210 1211 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1212 { 1213 if (!wb_has_dirty_io(wb)) 1214 return; 1215 1216 /* 1217 * All callers of this function want to start writeback of all 1218 * dirty pages. Places like vmscan can call this at a very 1219 * high frequency, causing pointless allocations of tons of 1220 * work items and keeping the flusher threads busy retrieving 1221 * that work. Ensure that we only allow one of them pending and 1222 * inflight at the time. 1223 */ 1224 if (test_bit(WB_start_all, &wb->state) || 1225 test_and_set_bit(WB_start_all, &wb->state)) 1226 return; 1227 1228 wb->start_all_reason = reason; 1229 wb_wakeup(wb); 1230 } 1231 1232 /** 1233 * wb_start_background_writeback - start background writeback 1234 * @wb: bdi_writback to write from 1235 * 1236 * Description: 1237 * This makes sure WB_SYNC_NONE background writeback happens. When 1238 * this function returns, it is only guaranteed that for given wb 1239 * some IO is happening if we are over background dirty threshold. 1240 * Caller need not hold sb s_umount semaphore. 1241 */ 1242 void wb_start_background_writeback(struct bdi_writeback *wb) 1243 { 1244 /* 1245 * We just wake up the flusher thread. It will perform background 1246 * writeback as soon as there is no other work to do. 1247 */ 1248 trace_writeback_wake_background(wb); 1249 wb_wakeup(wb); 1250 } 1251 1252 /* 1253 * Remove the inode from the writeback list it is on. 1254 */ 1255 void inode_io_list_del(struct inode *inode) 1256 { 1257 struct bdi_writeback *wb; 1258 1259 wb = inode_to_wb_and_lock_list(inode); 1260 spin_lock(&inode->i_lock); 1261 1262 inode->i_state &= ~I_SYNC_QUEUED; 1263 list_del_init(&inode->i_io_list); 1264 wb_io_lists_depopulated(wb); 1265 1266 spin_unlock(&inode->i_lock); 1267 spin_unlock(&wb->list_lock); 1268 } 1269 EXPORT_SYMBOL(inode_io_list_del); 1270 1271 /* 1272 * mark an inode as under writeback on the sb 1273 */ 1274 void sb_mark_inode_writeback(struct inode *inode) 1275 { 1276 struct super_block *sb = inode->i_sb; 1277 unsigned long flags; 1278 1279 if (list_empty(&inode->i_wb_list)) { 1280 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1281 if (list_empty(&inode->i_wb_list)) { 1282 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1283 trace_sb_mark_inode_writeback(inode); 1284 } 1285 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1286 } 1287 } 1288 1289 /* 1290 * clear an inode as under writeback on the sb 1291 */ 1292 void sb_clear_inode_writeback(struct inode *inode) 1293 { 1294 struct super_block *sb = inode->i_sb; 1295 unsigned long flags; 1296 1297 if (!list_empty(&inode->i_wb_list)) { 1298 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1299 if (!list_empty(&inode->i_wb_list)) { 1300 list_del_init(&inode->i_wb_list); 1301 trace_sb_clear_inode_writeback(inode); 1302 } 1303 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1304 } 1305 } 1306 1307 /* 1308 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1309 * furthest end of its superblock's dirty-inode list. 1310 * 1311 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1312 * already the most-recently-dirtied inode on the b_dirty list. If that is 1313 * the case then the inode must have been redirtied while it was being written 1314 * out and we don't reset its dirtied_when. 1315 */ 1316 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1317 { 1318 assert_spin_locked(&inode->i_lock); 1319 1320 if (!list_empty(&wb->b_dirty)) { 1321 struct inode *tail; 1322 1323 tail = wb_inode(wb->b_dirty.next); 1324 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1325 inode->dirtied_when = jiffies; 1326 } 1327 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1328 inode->i_state &= ~I_SYNC_QUEUED; 1329 } 1330 1331 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1332 { 1333 spin_lock(&inode->i_lock); 1334 redirty_tail_locked(inode, wb); 1335 spin_unlock(&inode->i_lock); 1336 } 1337 1338 /* 1339 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1340 */ 1341 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1342 { 1343 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1344 } 1345 1346 static void inode_sync_complete(struct inode *inode) 1347 { 1348 inode->i_state &= ~I_SYNC; 1349 /* If inode is clean an unused, put it into LRU now... */ 1350 inode_add_lru(inode); 1351 /* Waiters must see I_SYNC cleared before being woken up */ 1352 smp_mb(); 1353 wake_up_bit(&inode->i_state, __I_SYNC); 1354 } 1355 1356 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1357 { 1358 bool ret = time_after(inode->dirtied_when, t); 1359 #ifndef CONFIG_64BIT 1360 /* 1361 * For inodes being constantly redirtied, dirtied_when can get stuck. 1362 * It _appears_ to be in the future, but is actually in distant past. 1363 * This test is necessary to prevent such wrapped-around relative times 1364 * from permanently stopping the whole bdi writeback. 1365 */ 1366 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1367 #endif 1368 return ret; 1369 } 1370 1371 #define EXPIRE_DIRTY_ATIME 0x0001 1372 1373 /* 1374 * Move expired (dirtied before dirtied_before) dirty inodes from 1375 * @delaying_queue to @dispatch_queue. 1376 */ 1377 static int move_expired_inodes(struct list_head *delaying_queue, 1378 struct list_head *dispatch_queue, 1379 unsigned long dirtied_before) 1380 { 1381 LIST_HEAD(tmp); 1382 struct list_head *pos, *node; 1383 struct super_block *sb = NULL; 1384 struct inode *inode; 1385 int do_sb_sort = 0; 1386 int moved = 0; 1387 1388 while (!list_empty(delaying_queue)) { 1389 inode = wb_inode(delaying_queue->prev); 1390 if (inode_dirtied_after(inode, dirtied_before)) 1391 break; 1392 list_move(&inode->i_io_list, &tmp); 1393 moved++; 1394 spin_lock(&inode->i_lock); 1395 inode->i_state |= I_SYNC_QUEUED; 1396 spin_unlock(&inode->i_lock); 1397 if (sb_is_blkdev_sb(inode->i_sb)) 1398 continue; 1399 if (sb && sb != inode->i_sb) 1400 do_sb_sort = 1; 1401 sb = inode->i_sb; 1402 } 1403 1404 /* just one sb in list, splice to dispatch_queue and we're done */ 1405 if (!do_sb_sort) { 1406 list_splice(&tmp, dispatch_queue); 1407 goto out; 1408 } 1409 1410 /* Move inodes from one superblock together */ 1411 while (!list_empty(&tmp)) { 1412 sb = wb_inode(tmp.prev)->i_sb; 1413 list_for_each_prev_safe(pos, node, &tmp) { 1414 inode = wb_inode(pos); 1415 if (inode->i_sb == sb) 1416 list_move(&inode->i_io_list, dispatch_queue); 1417 } 1418 } 1419 out: 1420 return moved; 1421 } 1422 1423 /* 1424 * Queue all expired dirty inodes for io, eldest first. 1425 * Before 1426 * newly dirtied b_dirty b_io b_more_io 1427 * =============> gf edc BA 1428 * After 1429 * newly dirtied b_dirty b_io b_more_io 1430 * =============> g fBAedc 1431 * | 1432 * +--> dequeue for IO 1433 */ 1434 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1435 unsigned long dirtied_before) 1436 { 1437 int moved; 1438 unsigned long time_expire_jif = dirtied_before; 1439 1440 assert_spin_locked(&wb->list_lock); 1441 list_splice_init(&wb->b_more_io, &wb->b_io); 1442 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1443 if (!work->for_sync) 1444 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1445 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1446 time_expire_jif); 1447 if (moved) 1448 wb_io_lists_populated(wb); 1449 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1450 } 1451 1452 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1453 { 1454 int ret; 1455 1456 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1457 trace_writeback_write_inode_start(inode, wbc); 1458 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1459 trace_writeback_write_inode(inode, wbc); 1460 return ret; 1461 } 1462 return 0; 1463 } 1464 1465 /* 1466 * Wait for writeback on an inode to complete. Called with i_lock held. 1467 * Caller must make sure inode cannot go away when we drop i_lock. 1468 */ 1469 static void __inode_wait_for_writeback(struct inode *inode) 1470 __releases(inode->i_lock) 1471 __acquires(inode->i_lock) 1472 { 1473 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1474 wait_queue_head_t *wqh; 1475 1476 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1477 while (inode->i_state & I_SYNC) { 1478 spin_unlock(&inode->i_lock); 1479 __wait_on_bit(wqh, &wq, bit_wait, 1480 TASK_UNINTERRUPTIBLE); 1481 spin_lock(&inode->i_lock); 1482 } 1483 } 1484 1485 /* 1486 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1487 */ 1488 void inode_wait_for_writeback(struct inode *inode) 1489 { 1490 spin_lock(&inode->i_lock); 1491 __inode_wait_for_writeback(inode); 1492 spin_unlock(&inode->i_lock); 1493 } 1494 1495 /* 1496 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1497 * held and drops it. It is aimed for callers not holding any inode reference 1498 * so once i_lock is dropped, inode can go away. 1499 */ 1500 static void inode_sleep_on_writeback(struct inode *inode) 1501 __releases(inode->i_lock) 1502 { 1503 DEFINE_WAIT(wait); 1504 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1505 int sleep; 1506 1507 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1508 sleep = inode->i_state & I_SYNC; 1509 spin_unlock(&inode->i_lock); 1510 if (sleep) 1511 schedule(); 1512 finish_wait(wqh, &wait); 1513 } 1514 1515 /* 1516 * Find proper writeback list for the inode depending on its current state and 1517 * possibly also change of its state while we were doing writeback. Here we 1518 * handle things such as livelock prevention or fairness of writeback among 1519 * inodes. This function can be called only by flusher thread - noone else 1520 * processes all inodes in writeback lists and requeueing inodes behind flusher 1521 * thread's back can have unexpected consequences. 1522 */ 1523 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1524 struct writeback_control *wbc) 1525 { 1526 if (inode->i_state & I_FREEING) 1527 return; 1528 1529 /* 1530 * Sync livelock prevention. Each inode is tagged and synced in one 1531 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1532 * the dirty time to prevent enqueue and sync it again. 1533 */ 1534 if ((inode->i_state & I_DIRTY) && 1535 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1536 inode->dirtied_when = jiffies; 1537 1538 if (wbc->pages_skipped) { 1539 /* 1540 * writeback is not making progress due to locked 1541 * buffers. Skip this inode for now. 1542 */ 1543 redirty_tail_locked(inode, wb); 1544 return; 1545 } 1546 1547 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1548 /* 1549 * We didn't write back all the pages. nfs_writepages() 1550 * sometimes bales out without doing anything. 1551 */ 1552 if (wbc->nr_to_write <= 0) { 1553 /* Slice used up. Queue for next turn. */ 1554 requeue_io(inode, wb); 1555 } else { 1556 /* 1557 * Writeback blocked by something other than 1558 * congestion. Delay the inode for some time to 1559 * avoid spinning on the CPU (100% iowait) 1560 * retrying writeback of the dirty page/inode 1561 * that cannot be performed immediately. 1562 */ 1563 redirty_tail_locked(inode, wb); 1564 } 1565 } else if (inode->i_state & I_DIRTY) { 1566 /* 1567 * Filesystems can dirty the inode during writeback operations, 1568 * such as delayed allocation during submission or metadata 1569 * updates after data IO completion. 1570 */ 1571 redirty_tail_locked(inode, wb); 1572 } else if (inode->i_state & I_DIRTY_TIME) { 1573 inode->dirtied_when = jiffies; 1574 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1575 inode->i_state &= ~I_SYNC_QUEUED; 1576 } else { 1577 /* The inode is clean. Remove from writeback lists. */ 1578 inode_cgwb_move_to_attached(inode, wb); 1579 } 1580 } 1581 1582 /* 1583 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1584 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1585 * 1586 * This doesn't remove the inode from the writeback list it is on, except 1587 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1588 * expiration. The caller is otherwise responsible for writeback list handling. 1589 * 1590 * The caller is also responsible for setting the I_SYNC flag beforehand and 1591 * calling inode_sync_complete() to clear it afterwards. 1592 */ 1593 static int 1594 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1595 { 1596 struct address_space *mapping = inode->i_mapping; 1597 long nr_to_write = wbc->nr_to_write; 1598 unsigned dirty; 1599 int ret; 1600 1601 WARN_ON(!(inode->i_state & I_SYNC)); 1602 1603 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1604 1605 ret = do_writepages(mapping, wbc); 1606 1607 /* 1608 * Make sure to wait on the data before writing out the metadata. 1609 * This is important for filesystems that modify metadata on data 1610 * I/O completion. We don't do it for sync(2) writeback because it has a 1611 * separate, external IO completion path and ->sync_fs for guaranteeing 1612 * inode metadata is written back correctly. 1613 */ 1614 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1615 int err = filemap_fdatawait(mapping); 1616 if (ret == 0) 1617 ret = err; 1618 } 1619 1620 /* 1621 * If the inode has dirty timestamps and we need to write them, call 1622 * mark_inode_dirty_sync() to notify the filesystem about it and to 1623 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1624 */ 1625 if ((inode->i_state & I_DIRTY_TIME) && 1626 (wbc->sync_mode == WB_SYNC_ALL || 1627 time_after(jiffies, inode->dirtied_time_when + 1628 dirtytime_expire_interval * HZ))) { 1629 trace_writeback_lazytime(inode); 1630 mark_inode_dirty_sync(inode); 1631 } 1632 1633 /* 1634 * Get and clear the dirty flags from i_state. This needs to be done 1635 * after calling writepages because some filesystems may redirty the 1636 * inode during writepages due to delalloc. It also needs to be done 1637 * after handling timestamp expiration, as that may dirty the inode too. 1638 */ 1639 spin_lock(&inode->i_lock); 1640 dirty = inode->i_state & I_DIRTY; 1641 inode->i_state &= ~dirty; 1642 1643 /* 1644 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1645 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1646 * either they see the I_DIRTY bits cleared or we see the dirtied 1647 * inode. 1648 * 1649 * I_DIRTY_PAGES is always cleared together above even if @mapping 1650 * still has dirty pages. The flag is reinstated after smp_mb() if 1651 * necessary. This guarantees that either __mark_inode_dirty() 1652 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1653 */ 1654 smp_mb(); 1655 1656 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1657 inode->i_state |= I_DIRTY_PAGES; 1658 1659 spin_unlock(&inode->i_lock); 1660 1661 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1662 if (dirty & ~I_DIRTY_PAGES) { 1663 int err = write_inode(inode, wbc); 1664 if (ret == 0) 1665 ret = err; 1666 } 1667 trace_writeback_single_inode(inode, wbc, nr_to_write); 1668 return ret; 1669 } 1670 1671 /* 1672 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1673 * the regular batched writeback done by the flusher threads in 1674 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1675 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1676 * 1677 * To prevent the inode from going away, either the caller must have a reference 1678 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1679 */ 1680 static int writeback_single_inode(struct inode *inode, 1681 struct writeback_control *wbc) 1682 { 1683 struct bdi_writeback *wb; 1684 int ret = 0; 1685 1686 spin_lock(&inode->i_lock); 1687 if (!atomic_read(&inode->i_count)) 1688 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1689 else 1690 WARN_ON(inode->i_state & I_WILL_FREE); 1691 1692 if (inode->i_state & I_SYNC) { 1693 /* 1694 * Writeback is already running on the inode. For WB_SYNC_NONE, 1695 * that's enough and we can just return. For WB_SYNC_ALL, we 1696 * must wait for the existing writeback to complete, then do 1697 * writeback again if there's anything left. 1698 */ 1699 if (wbc->sync_mode != WB_SYNC_ALL) 1700 goto out; 1701 __inode_wait_for_writeback(inode); 1702 } 1703 WARN_ON(inode->i_state & I_SYNC); 1704 /* 1705 * If the inode is already fully clean, then there's nothing to do. 1706 * 1707 * For data-integrity syncs we also need to check whether any pages are 1708 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1709 * there are any such pages, we'll need to wait for them. 1710 */ 1711 if (!(inode->i_state & I_DIRTY_ALL) && 1712 (wbc->sync_mode != WB_SYNC_ALL || 1713 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1714 goto out; 1715 inode->i_state |= I_SYNC; 1716 wbc_attach_and_unlock_inode(wbc, inode); 1717 1718 ret = __writeback_single_inode(inode, wbc); 1719 1720 wbc_detach_inode(wbc); 1721 1722 wb = inode_to_wb_and_lock_list(inode); 1723 spin_lock(&inode->i_lock); 1724 /* 1725 * If the inode is now fully clean, then it can be safely removed from 1726 * its writeback list (if any). Otherwise the flusher threads are 1727 * responsible for the writeback lists. 1728 */ 1729 if (!(inode->i_state & I_DIRTY_ALL)) 1730 inode_cgwb_move_to_attached(inode, wb); 1731 spin_unlock(&wb->list_lock); 1732 inode_sync_complete(inode); 1733 out: 1734 spin_unlock(&inode->i_lock); 1735 return ret; 1736 } 1737 1738 static long writeback_chunk_size(struct bdi_writeback *wb, 1739 struct wb_writeback_work *work) 1740 { 1741 long pages; 1742 1743 /* 1744 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1745 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1746 * here avoids calling into writeback_inodes_wb() more than once. 1747 * 1748 * The intended call sequence for WB_SYNC_ALL writeback is: 1749 * 1750 * wb_writeback() 1751 * writeback_sb_inodes() <== called only once 1752 * write_cache_pages() <== called once for each inode 1753 * (quickly) tag currently dirty pages 1754 * (maybe slowly) sync all tagged pages 1755 */ 1756 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1757 pages = LONG_MAX; 1758 else { 1759 pages = min(wb->avg_write_bandwidth / 2, 1760 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1761 pages = min(pages, work->nr_pages); 1762 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1763 MIN_WRITEBACK_PAGES); 1764 } 1765 1766 return pages; 1767 } 1768 1769 /* 1770 * Write a portion of b_io inodes which belong to @sb. 1771 * 1772 * Return the number of pages and/or inodes written. 1773 * 1774 * NOTE! This is called with wb->list_lock held, and will 1775 * unlock and relock that for each inode it ends up doing 1776 * IO for. 1777 */ 1778 static long writeback_sb_inodes(struct super_block *sb, 1779 struct bdi_writeback *wb, 1780 struct wb_writeback_work *work) 1781 { 1782 struct writeback_control wbc = { 1783 .sync_mode = work->sync_mode, 1784 .tagged_writepages = work->tagged_writepages, 1785 .for_kupdate = work->for_kupdate, 1786 .for_background = work->for_background, 1787 .for_sync = work->for_sync, 1788 .range_cyclic = work->range_cyclic, 1789 .range_start = 0, 1790 .range_end = LLONG_MAX, 1791 }; 1792 unsigned long start_time = jiffies; 1793 long write_chunk; 1794 long wrote = 0; /* count both pages and inodes */ 1795 1796 while (!list_empty(&wb->b_io)) { 1797 struct inode *inode = wb_inode(wb->b_io.prev); 1798 struct bdi_writeback *tmp_wb; 1799 1800 if (inode->i_sb != sb) { 1801 if (work->sb) { 1802 /* 1803 * We only want to write back data for this 1804 * superblock, move all inodes not belonging 1805 * to it back onto the dirty list. 1806 */ 1807 redirty_tail(inode, wb); 1808 continue; 1809 } 1810 1811 /* 1812 * The inode belongs to a different superblock. 1813 * Bounce back to the caller to unpin this and 1814 * pin the next superblock. 1815 */ 1816 break; 1817 } 1818 1819 /* 1820 * Don't bother with new inodes or inodes being freed, first 1821 * kind does not need periodic writeout yet, and for the latter 1822 * kind writeout is handled by the freer. 1823 */ 1824 spin_lock(&inode->i_lock); 1825 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1826 redirty_tail_locked(inode, wb); 1827 spin_unlock(&inode->i_lock); 1828 continue; 1829 } 1830 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1831 /* 1832 * If this inode is locked for writeback and we are not 1833 * doing writeback-for-data-integrity, move it to 1834 * b_more_io so that writeback can proceed with the 1835 * other inodes on s_io. 1836 * 1837 * We'll have another go at writing back this inode 1838 * when we completed a full scan of b_io. 1839 */ 1840 spin_unlock(&inode->i_lock); 1841 requeue_io(inode, wb); 1842 trace_writeback_sb_inodes_requeue(inode); 1843 continue; 1844 } 1845 spin_unlock(&wb->list_lock); 1846 1847 /* 1848 * We already requeued the inode if it had I_SYNC set and we 1849 * are doing WB_SYNC_NONE writeback. So this catches only the 1850 * WB_SYNC_ALL case. 1851 */ 1852 if (inode->i_state & I_SYNC) { 1853 /* Wait for I_SYNC. This function drops i_lock... */ 1854 inode_sleep_on_writeback(inode); 1855 /* Inode may be gone, start again */ 1856 spin_lock(&wb->list_lock); 1857 continue; 1858 } 1859 inode->i_state |= I_SYNC; 1860 wbc_attach_and_unlock_inode(&wbc, inode); 1861 1862 write_chunk = writeback_chunk_size(wb, work); 1863 wbc.nr_to_write = write_chunk; 1864 wbc.pages_skipped = 0; 1865 1866 /* 1867 * We use I_SYNC to pin the inode in memory. While it is set 1868 * evict_inode() will wait so the inode cannot be freed. 1869 */ 1870 __writeback_single_inode(inode, &wbc); 1871 1872 wbc_detach_inode(&wbc); 1873 work->nr_pages -= write_chunk - wbc.nr_to_write; 1874 wrote += write_chunk - wbc.nr_to_write; 1875 1876 if (need_resched()) { 1877 /* 1878 * We're trying to balance between building up a nice 1879 * long list of IOs to improve our merge rate, and 1880 * getting those IOs out quickly for anyone throttling 1881 * in balance_dirty_pages(). cond_resched() doesn't 1882 * unplug, so get our IOs out the door before we 1883 * give up the CPU. 1884 */ 1885 blk_flush_plug(current); 1886 cond_resched(); 1887 } 1888 1889 /* 1890 * Requeue @inode if still dirty. Be careful as @inode may 1891 * have been switched to another wb in the meantime. 1892 */ 1893 tmp_wb = inode_to_wb_and_lock_list(inode); 1894 spin_lock(&inode->i_lock); 1895 if (!(inode->i_state & I_DIRTY_ALL)) 1896 wrote++; 1897 requeue_inode(inode, tmp_wb, &wbc); 1898 inode_sync_complete(inode); 1899 spin_unlock(&inode->i_lock); 1900 1901 if (unlikely(tmp_wb != wb)) { 1902 spin_unlock(&tmp_wb->list_lock); 1903 spin_lock(&wb->list_lock); 1904 } 1905 1906 /* 1907 * bail out to wb_writeback() often enough to check 1908 * background threshold and other termination conditions. 1909 */ 1910 if (wrote) { 1911 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1912 break; 1913 if (work->nr_pages <= 0) 1914 break; 1915 } 1916 } 1917 return wrote; 1918 } 1919 1920 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1921 struct wb_writeback_work *work) 1922 { 1923 unsigned long start_time = jiffies; 1924 long wrote = 0; 1925 1926 while (!list_empty(&wb->b_io)) { 1927 struct inode *inode = wb_inode(wb->b_io.prev); 1928 struct super_block *sb = inode->i_sb; 1929 1930 if (!trylock_super(sb)) { 1931 /* 1932 * trylock_super() may fail consistently due to 1933 * s_umount being grabbed by someone else. Don't use 1934 * requeue_io() to avoid busy retrying the inode/sb. 1935 */ 1936 redirty_tail(inode, wb); 1937 continue; 1938 } 1939 wrote += writeback_sb_inodes(sb, wb, work); 1940 up_read(&sb->s_umount); 1941 1942 /* refer to the same tests at the end of writeback_sb_inodes */ 1943 if (wrote) { 1944 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1945 break; 1946 if (work->nr_pages <= 0) 1947 break; 1948 } 1949 } 1950 /* Leave any unwritten inodes on b_io */ 1951 return wrote; 1952 } 1953 1954 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1955 enum wb_reason reason) 1956 { 1957 struct wb_writeback_work work = { 1958 .nr_pages = nr_pages, 1959 .sync_mode = WB_SYNC_NONE, 1960 .range_cyclic = 1, 1961 .reason = reason, 1962 }; 1963 struct blk_plug plug; 1964 1965 blk_start_plug(&plug); 1966 spin_lock(&wb->list_lock); 1967 if (list_empty(&wb->b_io)) 1968 queue_io(wb, &work, jiffies); 1969 __writeback_inodes_wb(wb, &work); 1970 spin_unlock(&wb->list_lock); 1971 blk_finish_plug(&plug); 1972 1973 return nr_pages - work.nr_pages; 1974 } 1975 1976 /* 1977 * Explicit flushing or periodic writeback of "old" data. 1978 * 1979 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1980 * dirtying-time in the inode's address_space. So this periodic writeback code 1981 * just walks the superblock inode list, writing back any inodes which are 1982 * older than a specific point in time. 1983 * 1984 * Try to run once per dirty_writeback_interval. But if a writeback event 1985 * takes longer than a dirty_writeback_interval interval, then leave a 1986 * one-second gap. 1987 * 1988 * dirtied_before takes precedence over nr_to_write. So we'll only write back 1989 * all dirty pages if they are all attached to "old" mappings. 1990 */ 1991 static long wb_writeback(struct bdi_writeback *wb, 1992 struct wb_writeback_work *work) 1993 { 1994 unsigned long wb_start = jiffies; 1995 long nr_pages = work->nr_pages; 1996 unsigned long dirtied_before = jiffies; 1997 struct inode *inode; 1998 long progress; 1999 struct blk_plug plug; 2000 2001 blk_start_plug(&plug); 2002 spin_lock(&wb->list_lock); 2003 for (;;) { 2004 /* 2005 * Stop writeback when nr_pages has been consumed 2006 */ 2007 if (work->nr_pages <= 0) 2008 break; 2009 2010 /* 2011 * Background writeout and kupdate-style writeback may 2012 * run forever. Stop them if there is other work to do 2013 * so that e.g. sync can proceed. They'll be restarted 2014 * after the other works are all done. 2015 */ 2016 if ((work->for_background || work->for_kupdate) && 2017 !list_empty(&wb->work_list)) 2018 break; 2019 2020 /* 2021 * For background writeout, stop when we are below the 2022 * background dirty threshold 2023 */ 2024 if (work->for_background && !wb_over_bg_thresh(wb)) 2025 break; 2026 2027 /* 2028 * Kupdate and background works are special and we want to 2029 * include all inodes that need writing. Livelock avoidance is 2030 * handled by these works yielding to any other work so we are 2031 * safe. 2032 */ 2033 if (work->for_kupdate) { 2034 dirtied_before = jiffies - 2035 msecs_to_jiffies(dirty_expire_interval * 10); 2036 } else if (work->for_background) 2037 dirtied_before = jiffies; 2038 2039 trace_writeback_start(wb, work); 2040 if (list_empty(&wb->b_io)) 2041 queue_io(wb, work, dirtied_before); 2042 if (work->sb) 2043 progress = writeback_sb_inodes(work->sb, wb, work); 2044 else 2045 progress = __writeback_inodes_wb(wb, work); 2046 trace_writeback_written(wb, work); 2047 2048 wb_update_bandwidth(wb, wb_start); 2049 2050 /* 2051 * Did we write something? Try for more 2052 * 2053 * Dirty inodes are moved to b_io for writeback in batches. 2054 * The completion of the current batch does not necessarily 2055 * mean the overall work is done. So we keep looping as long 2056 * as made some progress on cleaning pages or inodes. 2057 */ 2058 if (progress) 2059 continue; 2060 /* 2061 * No more inodes for IO, bail 2062 */ 2063 if (list_empty(&wb->b_more_io)) 2064 break; 2065 /* 2066 * Nothing written. Wait for some inode to 2067 * become available for writeback. Otherwise 2068 * we'll just busyloop. 2069 */ 2070 trace_writeback_wait(wb, work); 2071 inode = wb_inode(wb->b_more_io.prev); 2072 spin_lock(&inode->i_lock); 2073 spin_unlock(&wb->list_lock); 2074 /* This function drops i_lock... */ 2075 inode_sleep_on_writeback(inode); 2076 spin_lock(&wb->list_lock); 2077 } 2078 spin_unlock(&wb->list_lock); 2079 blk_finish_plug(&plug); 2080 2081 return nr_pages - work->nr_pages; 2082 } 2083 2084 /* 2085 * Return the next wb_writeback_work struct that hasn't been processed yet. 2086 */ 2087 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2088 { 2089 struct wb_writeback_work *work = NULL; 2090 2091 spin_lock_bh(&wb->work_lock); 2092 if (!list_empty(&wb->work_list)) { 2093 work = list_entry(wb->work_list.next, 2094 struct wb_writeback_work, list); 2095 list_del_init(&work->list); 2096 } 2097 spin_unlock_bh(&wb->work_lock); 2098 return work; 2099 } 2100 2101 static long wb_check_background_flush(struct bdi_writeback *wb) 2102 { 2103 if (wb_over_bg_thresh(wb)) { 2104 2105 struct wb_writeback_work work = { 2106 .nr_pages = LONG_MAX, 2107 .sync_mode = WB_SYNC_NONE, 2108 .for_background = 1, 2109 .range_cyclic = 1, 2110 .reason = WB_REASON_BACKGROUND, 2111 }; 2112 2113 return wb_writeback(wb, &work); 2114 } 2115 2116 return 0; 2117 } 2118 2119 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2120 { 2121 unsigned long expired; 2122 long nr_pages; 2123 2124 /* 2125 * When set to zero, disable periodic writeback 2126 */ 2127 if (!dirty_writeback_interval) 2128 return 0; 2129 2130 expired = wb->last_old_flush + 2131 msecs_to_jiffies(dirty_writeback_interval * 10); 2132 if (time_before(jiffies, expired)) 2133 return 0; 2134 2135 wb->last_old_flush = jiffies; 2136 nr_pages = get_nr_dirty_pages(); 2137 2138 if (nr_pages) { 2139 struct wb_writeback_work work = { 2140 .nr_pages = nr_pages, 2141 .sync_mode = WB_SYNC_NONE, 2142 .for_kupdate = 1, 2143 .range_cyclic = 1, 2144 .reason = WB_REASON_PERIODIC, 2145 }; 2146 2147 return wb_writeback(wb, &work); 2148 } 2149 2150 return 0; 2151 } 2152 2153 static long wb_check_start_all(struct bdi_writeback *wb) 2154 { 2155 long nr_pages; 2156 2157 if (!test_bit(WB_start_all, &wb->state)) 2158 return 0; 2159 2160 nr_pages = get_nr_dirty_pages(); 2161 if (nr_pages) { 2162 struct wb_writeback_work work = { 2163 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2164 .sync_mode = WB_SYNC_NONE, 2165 .range_cyclic = 1, 2166 .reason = wb->start_all_reason, 2167 }; 2168 2169 nr_pages = wb_writeback(wb, &work); 2170 } 2171 2172 clear_bit(WB_start_all, &wb->state); 2173 return nr_pages; 2174 } 2175 2176 2177 /* 2178 * Retrieve work items and do the writeback they describe 2179 */ 2180 static long wb_do_writeback(struct bdi_writeback *wb) 2181 { 2182 struct wb_writeback_work *work; 2183 long wrote = 0; 2184 2185 set_bit(WB_writeback_running, &wb->state); 2186 while ((work = get_next_work_item(wb)) != NULL) { 2187 trace_writeback_exec(wb, work); 2188 wrote += wb_writeback(wb, work); 2189 finish_writeback_work(wb, work); 2190 } 2191 2192 /* 2193 * Check for a flush-everything request 2194 */ 2195 wrote += wb_check_start_all(wb); 2196 2197 /* 2198 * Check for periodic writeback, kupdated() style 2199 */ 2200 wrote += wb_check_old_data_flush(wb); 2201 wrote += wb_check_background_flush(wb); 2202 clear_bit(WB_writeback_running, &wb->state); 2203 2204 return wrote; 2205 } 2206 2207 /* 2208 * Handle writeback of dirty data for the device backed by this bdi. Also 2209 * reschedules periodically and does kupdated style flushing. 2210 */ 2211 void wb_workfn(struct work_struct *work) 2212 { 2213 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2214 struct bdi_writeback, dwork); 2215 long pages_written; 2216 2217 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2218 current->flags |= PF_SWAPWRITE; 2219 2220 if (likely(!current_is_workqueue_rescuer() || 2221 !test_bit(WB_registered, &wb->state))) { 2222 /* 2223 * The normal path. Keep writing back @wb until its 2224 * work_list is empty. Note that this path is also taken 2225 * if @wb is shutting down even when we're running off the 2226 * rescuer as work_list needs to be drained. 2227 */ 2228 do { 2229 pages_written = wb_do_writeback(wb); 2230 trace_writeback_pages_written(pages_written); 2231 } while (!list_empty(&wb->work_list)); 2232 } else { 2233 /* 2234 * bdi_wq can't get enough workers and we're running off 2235 * the emergency worker. Don't hog it. Hopefully, 1024 is 2236 * enough for efficient IO. 2237 */ 2238 pages_written = writeback_inodes_wb(wb, 1024, 2239 WB_REASON_FORKER_THREAD); 2240 trace_writeback_pages_written(pages_written); 2241 } 2242 2243 if (!list_empty(&wb->work_list)) 2244 wb_wakeup(wb); 2245 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2246 wb_wakeup_delayed(wb); 2247 2248 current->flags &= ~PF_SWAPWRITE; 2249 } 2250 2251 /* 2252 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2253 * write back the whole world. 2254 */ 2255 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2256 enum wb_reason reason) 2257 { 2258 struct bdi_writeback *wb; 2259 2260 if (!bdi_has_dirty_io(bdi)) 2261 return; 2262 2263 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2264 wb_start_writeback(wb, reason); 2265 } 2266 2267 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2268 enum wb_reason reason) 2269 { 2270 rcu_read_lock(); 2271 __wakeup_flusher_threads_bdi(bdi, reason); 2272 rcu_read_unlock(); 2273 } 2274 2275 /* 2276 * Wakeup the flusher threads to start writeback of all currently dirty pages 2277 */ 2278 void wakeup_flusher_threads(enum wb_reason reason) 2279 { 2280 struct backing_dev_info *bdi; 2281 2282 /* 2283 * If we are expecting writeback progress we must submit plugged IO. 2284 */ 2285 if (blk_needs_flush_plug(current)) 2286 blk_schedule_flush_plug(current); 2287 2288 rcu_read_lock(); 2289 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2290 __wakeup_flusher_threads_bdi(bdi, reason); 2291 rcu_read_unlock(); 2292 } 2293 2294 /* 2295 * Wake up bdi's periodically to make sure dirtytime inodes gets 2296 * written back periodically. We deliberately do *not* check the 2297 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2298 * kernel to be constantly waking up once there are any dirtytime 2299 * inodes on the system. So instead we define a separate delayed work 2300 * function which gets called much more rarely. (By default, only 2301 * once every 12 hours.) 2302 * 2303 * If there is any other write activity going on in the file system, 2304 * this function won't be necessary. But if the only thing that has 2305 * happened on the file system is a dirtytime inode caused by an atime 2306 * update, we need this infrastructure below to make sure that inode 2307 * eventually gets pushed out to disk. 2308 */ 2309 static void wakeup_dirtytime_writeback(struct work_struct *w); 2310 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2311 2312 static void wakeup_dirtytime_writeback(struct work_struct *w) 2313 { 2314 struct backing_dev_info *bdi; 2315 2316 rcu_read_lock(); 2317 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2318 struct bdi_writeback *wb; 2319 2320 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2321 if (!list_empty(&wb->b_dirty_time)) 2322 wb_wakeup(wb); 2323 } 2324 rcu_read_unlock(); 2325 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2326 } 2327 2328 static int __init start_dirtytime_writeback(void) 2329 { 2330 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2331 return 0; 2332 } 2333 __initcall(start_dirtytime_writeback); 2334 2335 int dirtytime_interval_handler(struct ctl_table *table, int write, 2336 void *buffer, size_t *lenp, loff_t *ppos) 2337 { 2338 int ret; 2339 2340 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2341 if (ret == 0 && write) 2342 mod_delayed_work(system_wq, &dirtytime_work, 0); 2343 return ret; 2344 } 2345 2346 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2347 { 2348 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2349 struct dentry *dentry; 2350 const char *name = "?"; 2351 2352 dentry = d_find_alias(inode); 2353 if (dentry) { 2354 spin_lock(&dentry->d_lock); 2355 name = (const char *) dentry->d_name.name; 2356 } 2357 printk(KERN_DEBUG 2358 "%s(%d): dirtied inode %lu (%s) on %s\n", 2359 current->comm, task_pid_nr(current), inode->i_ino, 2360 name, inode->i_sb->s_id); 2361 if (dentry) { 2362 spin_unlock(&dentry->d_lock); 2363 dput(dentry); 2364 } 2365 } 2366 } 2367 2368 /** 2369 * __mark_inode_dirty - internal function to mark an inode dirty 2370 * 2371 * @inode: inode to mark 2372 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2373 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2374 * with I_DIRTY_PAGES. 2375 * 2376 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2377 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2378 * 2379 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2380 * instead of calling this directly. 2381 * 2382 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2383 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2384 * even if they are later hashed, as they will have been marked dirty already. 2385 * 2386 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2387 * 2388 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2389 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2390 * the kernel-internal blockdev inode represents the dirtying time of the 2391 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2392 * page->mapping->host, so the page-dirtying time is recorded in the internal 2393 * blockdev inode. 2394 */ 2395 void __mark_inode_dirty(struct inode *inode, int flags) 2396 { 2397 struct super_block *sb = inode->i_sb; 2398 int dirtytime = 0; 2399 2400 trace_writeback_mark_inode_dirty(inode, flags); 2401 2402 if (flags & I_DIRTY_INODE) { 2403 /* 2404 * Notify the filesystem about the inode being dirtied, so that 2405 * (if needed) it can update on-disk fields and journal the 2406 * inode. This is only needed when the inode itself is being 2407 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2408 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2409 */ 2410 trace_writeback_dirty_inode_start(inode, flags); 2411 if (sb->s_op->dirty_inode) 2412 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE); 2413 trace_writeback_dirty_inode(inode, flags); 2414 2415 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2416 flags &= ~I_DIRTY_TIME; 2417 } else { 2418 /* 2419 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2420 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2421 * in one call to __mark_inode_dirty().) 2422 */ 2423 dirtytime = flags & I_DIRTY_TIME; 2424 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2425 } 2426 2427 /* 2428 * Paired with smp_mb() in __writeback_single_inode() for the 2429 * following lockless i_state test. See there for details. 2430 */ 2431 smp_mb(); 2432 2433 if (((inode->i_state & flags) == flags) || 2434 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2435 return; 2436 2437 if (unlikely(block_dump)) 2438 block_dump___mark_inode_dirty(inode); 2439 2440 spin_lock(&inode->i_lock); 2441 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2442 goto out_unlock_inode; 2443 if ((inode->i_state & flags) != flags) { 2444 const int was_dirty = inode->i_state & I_DIRTY; 2445 2446 inode_attach_wb(inode, NULL); 2447 2448 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2449 if (flags & I_DIRTY_INODE) 2450 inode->i_state &= ~I_DIRTY_TIME; 2451 inode->i_state |= flags; 2452 2453 /* 2454 * If the inode is queued for writeback by flush worker, just 2455 * update its dirty state. Once the flush worker is done with 2456 * the inode it will place it on the appropriate superblock 2457 * list, based upon its state. 2458 */ 2459 if (inode->i_state & I_SYNC_QUEUED) 2460 goto out_unlock_inode; 2461 2462 /* 2463 * Only add valid (hashed) inodes to the superblock's 2464 * dirty list. Add blockdev inodes as well. 2465 */ 2466 if (!S_ISBLK(inode->i_mode)) { 2467 if (inode_unhashed(inode)) 2468 goto out_unlock_inode; 2469 } 2470 if (inode->i_state & I_FREEING) 2471 goto out_unlock_inode; 2472 2473 /* 2474 * If the inode was already on b_dirty/b_io/b_more_io, don't 2475 * reposition it (that would break b_dirty time-ordering). 2476 */ 2477 if (!was_dirty) { 2478 struct bdi_writeback *wb; 2479 struct list_head *dirty_list; 2480 bool wakeup_bdi = false; 2481 2482 wb = locked_inode_to_wb_and_lock_list(inode); 2483 2484 inode->dirtied_when = jiffies; 2485 if (dirtytime) 2486 inode->dirtied_time_when = jiffies; 2487 2488 if (inode->i_state & I_DIRTY) 2489 dirty_list = &wb->b_dirty; 2490 else 2491 dirty_list = &wb->b_dirty_time; 2492 2493 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2494 dirty_list); 2495 2496 spin_unlock(&wb->list_lock); 2497 trace_writeback_dirty_inode_enqueue(inode); 2498 2499 /* 2500 * If this is the first dirty inode for this bdi, 2501 * we have to wake-up the corresponding bdi thread 2502 * to make sure background write-back happens 2503 * later. 2504 */ 2505 if (wakeup_bdi && 2506 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2507 wb_wakeup_delayed(wb); 2508 return; 2509 } 2510 } 2511 out_unlock_inode: 2512 spin_unlock(&inode->i_lock); 2513 } 2514 EXPORT_SYMBOL(__mark_inode_dirty); 2515 2516 /* 2517 * The @s_sync_lock is used to serialise concurrent sync operations 2518 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2519 * Concurrent callers will block on the s_sync_lock rather than doing contending 2520 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2521 * has been issued up to the time this function is enter is guaranteed to be 2522 * completed by the time we have gained the lock and waited for all IO that is 2523 * in progress regardless of the order callers are granted the lock. 2524 */ 2525 static void wait_sb_inodes(struct super_block *sb) 2526 { 2527 LIST_HEAD(sync_list); 2528 2529 /* 2530 * We need to be protected against the filesystem going from 2531 * r/o to r/w or vice versa. 2532 */ 2533 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2534 2535 mutex_lock(&sb->s_sync_lock); 2536 2537 /* 2538 * Splice the writeback list onto a temporary list to avoid waiting on 2539 * inodes that have started writeback after this point. 2540 * 2541 * Use rcu_read_lock() to keep the inodes around until we have a 2542 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2543 * the local list because inodes can be dropped from either by writeback 2544 * completion. 2545 */ 2546 rcu_read_lock(); 2547 spin_lock_irq(&sb->s_inode_wblist_lock); 2548 list_splice_init(&sb->s_inodes_wb, &sync_list); 2549 2550 /* 2551 * Data integrity sync. Must wait for all pages under writeback, because 2552 * there may have been pages dirtied before our sync call, but which had 2553 * writeout started before we write it out. In which case, the inode 2554 * may not be on the dirty list, but we still have to wait for that 2555 * writeout. 2556 */ 2557 while (!list_empty(&sync_list)) { 2558 struct inode *inode = list_first_entry(&sync_list, struct inode, 2559 i_wb_list); 2560 struct address_space *mapping = inode->i_mapping; 2561 2562 /* 2563 * Move each inode back to the wb list before we drop the lock 2564 * to preserve consistency between i_wb_list and the mapping 2565 * writeback tag. Writeback completion is responsible to remove 2566 * the inode from either list once the writeback tag is cleared. 2567 */ 2568 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2569 2570 /* 2571 * The mapping can appear untagged while still on-list since we 2572 * do not have the mapping lock. Skip it here, wb completion 2573 * will remove it. 2574 */ 2575 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2576 continue; 2577 2578 spin_unlock_irq(&sb->s_inode_wblist_lock); 2579 2580 spin_lock(&inode->i_lock); 2581 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2582 spin_unlock(&inode->i_lock); 2583 2584 spin_lock_irq(&sb->s_inode_wblist_lock); 2585 continue; 2586 } 2587 __iget(inode); 2588 spin_unlock(&inode->i_lock); 2589 rcu_read_unlock(); 2590 2591 /* 2592 * We keep the error status of individual mapping so that 2593 * applications can catch the writeback error using fsync(2). 2594 * See filemap_fdatawait_keep_errors() for details. 2595 */ 2596 filemap_fdatawait_keep_errors(mapping); 2597 2598 cond_resched(); 2599 2600 iput(inode); 2601 2602 rcu_read_lock(); 2603 spin_lock_irq(&sb->s_inode_wblist_lock); 2604 } 2605 spin_unlock_irq(&sb->s_inode_wblist_lock); 2606 rcu_read_unlock(); 2607 mutex_unlock(&sb->s_sync_lock); 2608 } 2609 2610 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2611 enum wb_reason reason, bool skip_if_busy) 2612 { 2613 struct backing_dev_info *bdi = sb->s_bdi; 2614 DEFINE_WB_COMPLETION(done, bdi); 2615 struct wb_writeback_work work = { 2616 .sb = sb, 2617 .sync_mode = WB_SYNC_NONE, 2618 .tagged_writepages = 1, 2619 .done = &done, 2620 .nr_pages = nr, 2621 .reason = reason, 2622 }; 2623 2624 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2625 return; 2626 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2627 2628 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2629 wb_wait_for_completion(&done); 2630 } 2631 2632 /** 2633 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2634 * @sb: the superblock 2635 * @nr: the number of pages to write 2636 * @reason: reason why some writeback work initiated 2637 * 2638 * Start writeback on some inodes on this super_block. No guarantees are made 2639 * on how many (if any) will be written, and this function does not wait 2640 * for IO completion of submitted IO. 2641 */ 2642 void writeback_inodes_sb_nr(struct super_block *sb, 2643 unsigned long nr, 2644 enum wb_reason reason) 2645 { 2646 __writeback_inodes_sb_nr(sb, nr, reason, false); 2647 } 2648 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2649 2650 /** 2651 * writeback_inodes_sb - writeback dirty inodes from given super_block 2652 * @sb: the superblock 2653 * @reason: reason why some writeback work was initiated 2654 * 2655 * Start writeback on some inodes on this super_block. No guarantees are made 2656 * on how many (if any) will be written, and this function does not wait 2657 * for IO completion of submitted IO. 2658 */ 2659 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2660 { 2661 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2662 } 2663 EXPORT_SYMBOL(writeback_inodes_sb); 2664 2665 /** 2666 * try_to_writeback_inodes_sb - try to start writeback if none underway 2667 * @sb: the superblock 2668 * @reason: reason why some writeback work was initiated 2669 * 2670 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2671 */ 2672 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2673 { 2674 if (!down_read_trylock(&sb->s_umount)) 2675 return; 2676 2677 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2678 up_read(&sb->s_umount); 2679 } 2680 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2681 2682 /** 2683 * sync_inodes_sb - sync sb inode pages 2684 * @sb: the superblock 2685 * 2686 * This function writes and waits on any dirty inode belonging to this 2687 * super_block. 2688 */ 2689 void sync_inodes_sb(struct super_block *sb) 2690 { 2691 struct backing_dev_info *bdi = sb->s_bdi; 2692 DEFINE_WB_COMPLETION(done, bdi); 2693 struct wb_writeback_work work = { 2694 .sb = sb, 2695 .sync_mode = WB_SYNC_ALL, 2696 .nr_pages = LONG_MAX, 2697 .range_cyclic = 0, 2698 .done = &done, 2699 .reason = WB_REASON_SYNC, 2700 .for_sync = 1, 2701 }; 2702 2703 /* 2704 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2705 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2706 * bdi_has_dirty() need to be written out too. 2707 */ 2708 if (bdi == &noop_backing_dev_info) 2709 return; 2710 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2711 2712 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2713 bdi_down_write_wb_switch_rwsem(bdi); 2714 bdi_split_work_to_wbs(bdi, &work, false); 2715 wb_wait_for_completion(&done); 2716 bdi_up_write_wb_switch_rwsem(bdi); 2717 2718 wait_sb_inodes(sb); 2719 } 2720 EXPORT_SYMBOL(sync_inodes_sb); 2721 2722 /** 2723 * write_inode_now - write an inode to disk 2724 * @inode: inode to write to disk 2725 * @sync: whether the write should be synchronous or not 2726 * 2727 * This function commits an inode to disk immediately if it is dirty. This is 2728 * primarily needed by knfsd. 2729 * 2730 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2731 */ 2732 int write_inode_now(struct inode *inode, int sync) 2733 { 2734 struct writeback_control wbc = { 2735 .nr_to_write = LONG_MAX, 2736 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2737 .range_start = 0, 2738 .range_end = LLONG_MAX, 2739 }; 2740 2741 if (!mapping_can_writeback(inode->i_mapping)) 2742 wbc.nr_to_write = 0; 2743 2744 might_sleep(); 2745 return writeback_single_inode(inode, &wbc); 2746 } 2747 EXPORT_SYMBOL(write_inode_now); 2748 2749 /** 2750 * sync_inode - write an inode and its pages to disk. 2751 * @inode: the inode to sync 2752 * @wbc: controls the writeback mode 2753 * 2754 * sync_inode() will write an inode and its pages to disk. It will also 2755 * correctly update the inode on its superblock's dirty inode lists and will 2756 * update inode->i_state. 2757 * 2758 * The caller must have a ref on the inode. 2759 */ 2760 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2761 { 2762 return writeback_single_inode(inode, wbc); 2763 } 2764 EXPORT_SYMBOL(sync_inode); 2765 2766 /** 2767 * sync_inode_metadata - write an inode to disk 2768 * @inode: the inode to sync 2769 * @wait: wait for I/O to complete. 2770 * 2771 * Write an inode to disk and adjust its dirty state after completion. 2772 * 2773 * Note: only writes the actual inode, no associated data or other metadata. 2774 */ 2775 int sync_inode_metadata(struct inode *inode, int wait) 2776 { 2777 struct writeback_control wbc = { 2778 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2779 .nr_to_write = 0, /* metadata-only */ 2780 }; 2781 2782 return sync_inode(inode, &wbc); 2783 } 2784 EXPORT_SYMBOL(sync_inode_metadata); 2785