xref: /openbmc/linux/fs/fs-writeback.c (revision 7b73a9c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/fs-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  *
7  * Contains all the functions related to writing back and waiting
8  * upon dirty inodes against superblocks, and writing back dirty
9  * pages against inodes.  ie: data writeback.  Writeout of the
10  * inode itself is not handled here.
11  *
12  * 10Apr2002	Andrew Morton
13  *		Split out of fs/inode.c
14  *		Additions for address_space-based writeback
15  */
16 
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33 
34 /*
35  * 4MB minimal write chunk size
36  */
37 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
38 
39 /*
40  * Passed into wb_writeback(), essentially a subset of writeback_control
41  */
42 struct wb_writeback_work {
43 	long nr_pages;
44 	struct super_block *sb;
45 	unsigned long *older_than_this;
46 	enum writeback_sync_modes sync_mode;
47 	unsigned int tagged_writepages:1;
48 	unsigned int for_kupdate:1;
49 	unsigned int range_cyclic:1;
50 	unsigned int for_background:1;
51 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
52 	unsigned int auto_free:1;	/* free on completion */
53 	enum wb_reason reason;		/* why was writeback initiated? */
54 
55 	struct list_head list;		/* pending work list */
56 	struct wb_completion *done;	/* set if the caller waits */
57 };
58 
59 /*
60  * If an inode is constantly having its pages dirtied, but then the
61  * updates stop dirtytime_expire_interval seconds in the past, it's
62  * possible for the worst case time between when an inode has its
63  * timestamps updated and when they finally get written out to be two
64  * dirtytime_expire_intervals.  We set the default to 12 hours (in
65  * seconds), which means most of the time inodes will have their
66  * timestamps written to disk after 12 hours, but in the worst case a
67  * few inodes might not their timestamps updated for 24 hours.
68  */
69 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
70 
71 static inline struct inode *wb_inode(struct list_head *head)
72 {
73 	return list_entry(head, struct inode, i_io_list);
74 }
75 
76 /*
77  * Include the creation of the trace points after defining the
78  * wb_writeback_work structure and inline functions so that the definition
79  * remains local to this file.
80  */
81 #define CREATE_TRACE_POINTS
82 #include <trace/events/writeback.h>
83 
84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
85 
86 static bool wb_io_lists_populated(struct bdi_writeback *wb)
87 {
88 	if (wb_has_dirty_io(wb)) {
89 		return false;
90 	} else {
91 		set_bit(WB_has_dirty_io, &wb->state);
92 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
93 		atomic_long_add(wb->avg_write_bandwidth,
94 				&wb->bdi->tot_write_bandwidth);
95 		return true;
96 	}
97 }
98 
99 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
100 {
101 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
102 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
103 		clear_bit(WB_has_dirty_io, &wb->state);
104 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
105 					&wb->bdi->tot_write_bandwidth) < 0);
106 	}
107 }
108 
109 /**
110  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
111  * @inode: inode to be moved
112  * @wb: target bdi_writeback
113  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
114  *
115  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
116  * Returns %true if @inode is the first occupant of the !dirty_time IO
117  * lists; otherwise, %false.
118  */
119 static bool inode_io_list_move_locked(struct inode *inode,
120 				      struct bdi_writeback *wb,
121 				      struct list_head *head)
122 {
123 	assert_spin_locked(&wb->list_lock);
124 
125 	list_move(&inode->i_io_list, head);
126 
127 	/* dirty_time doesn't count as dirty_io until expiration */
128 	if (head != &wb->b_dirty_time)
129 		return wb_io_lists_populated(wb);
130 
131 	wb_io_lists_depopulated(wb);
132 	return false;
133 }
134 
135 /**
136  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
137  * @inode: inode to be removed
138  * @wb: bdi_writeback @inode is being removed from
139  *
140  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
141  * clear %WB_has_dirty_io if all are empty afterwards.
142  */
143 static void inode_io_list_del_locked(struct inode *inode,
144 				     struct bdi_writeback *wb)
145 {
146 	assert_spin_locked(&wb->list_lock);
147 
148 	list_del_init(&inode->i_io_list);
149 	wb_io_lists_depopulated(wb);
150 }
151 
152 static void wb_wakeup(struct bdi_writeback *wb)
153 {
154 	spin_lock_bh(&wb->work_lock);
155 	if (test_bit(WB_registered, &wb->state))
156 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
157 	spin_unlock_bh(&wb->work_lock);
158 }
159 
160 static void finish_writeback_work(struct bdi_writeback *wb,
161 				  struct wb_writeback_work *work)
162 {
163 	struct wb_completion *done = work->done;
164 
165 	if (work->auto_free)
166 		kfree(work);
167 	if (done) {
168 		wait_queue_head_t *waitq = done->waitq;
169 
170 		/* @done can't be accessed after the following dec */
171 		if (atomic_dec_and_test(&done->cnt))
172 			wake_up_all(waitq);
173 	}
174 }
175 
176 static void wb_queue_work(struct bdi_writeback *wb,
177 			  struct wb_writeback_work *work)
178 {
179 	trace_writeback_queue(wb, work);
180 
181 	if (work->done)
182 		atomic_inc(&work->done->cnt);
183 
184 	spin_lock_bh(&wb->work_lock);
185 
186 	if (test_bit(WB_registered, &wb->state)) {
187 		list_add_tail(&work->list, &wb->work_list);
188 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
189 	} else
190 		finish_writeback_work(wb, work);
191 
192 	spin_unlock_bh(&wb->work_lock);
193 }
194 
195 /**
196  * wb_wait_for_completion - wait for completion of bdi_writeback_works
197  * @done: target wb_completion
198  *
199  * Wait for one or more work items issued to @bdi with their ->done field
200  * set to @done, which should have been initialized with
201  * DEFINE_WB_COMPLETION().  This function returns after all such work items
202  * are completed.  Work items which are waited upon aren't freed
203  * automatically on completion.
204  */
205 void wb_wait_for_completion(struct wb_completion *done)
206 {
207 	atomic_dec(&done->cnt);		/* put down the initial count */
208 	wait_event(*done->waitq, !atomic_read(&done->cnt));
209 }
210 
211 #ifdef CONFIG_CGROUP_WRITEBACK
212 
213 /*
214  * Parameters for foreign inode detection, see wbc_detach_inode() to see
215  * how they're used.
216  *
217  * These paramters are inherently heuristical as the detection target
218  * itself is fuzzy.  All we want to do is detaching an inode from the
219  * current owner if it's being written to by some other cgroups too much.
220  *
221  * The current cgroup writeback is built on the assumption that multiple
222  * cgroups writing to the same inode concurrently is very rare and a mode
223  * of operation which isn't well supported.  As such, the goal is not
224  * taking too long when a different cgroup takes over an inode while
225  * avoiding too aggressive flip-flops from occasional foreign writes.
226  *
227  * We record, very roughly, 2s worth of IO time history and if more than
228  * half of that is foreign, trigger the switch.  The recording is quantized
229  * to 16 slots.  To avoid tiny writes from swinging the decision too much,
230  * writes smaller than 1/8 of avg size are ignored.
231  */
232 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
233 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
234 #define WB_FRN_TIME_CUT_DIV	8	/* ignore rounds < avg / 8 */
235 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
236 
237 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
238 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
239 					/* each slot's duration is 2s / 16 */
240 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
241 					/* if foreign slots >= 8, switch */
242 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
243 					/* one round can affect upto 5 slots */
244 #define WB_FRN_MAX_IN_FLIGHT	1024	/* don't queue too many concurrently */
245 
246 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
247 static struct workqueue_struct *isw_wq;
248 
249 void __inode_attach_wb(struct inode *inode, struct page *page)
250 {
251 	struct backing_dev_info *bdi = inode_to_bdi(inode);
252 	struct bdi_writeback *wb = NULL;
253 
254 	if (inode_cgwb_enabled(inode)) {
255 		struct cgroup_subsys_state *memcg_css;
256 
257 		if (page) {
258 			memcg_css = mem_cgroup_css_from_page(page);
259 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
260 		} else {
261 			/* must pin memcg_css, see wb_get_create() */
262 			memcg_css = task_get_css(current, memory_cgrp_id);
263 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
264 			css_put(memcg_css);
265 		}
266 	}
267 
268 	if (!wb)
269 		wb = &bdi->wb;
270 
271 	/*
272 	 * There may be multiple instances of this function racing to
273 	 * update the same inode.  Use cmpxchg() to tell the winner.
274 	 */
275 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
276 		wb_put(wb);
277 }
278 EXPORT_SYMBOL_GPL(__inode_attach_wb);
279 
280 /**
281  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
282  * @inode: inode of interest with i_lock held
283  *
284  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
285  * held on entry and is released on return.  The returned wb is guaranteed
286  * to stay @inode's associated wb until its list_lock is released.
287  */
288 static struct bdi_writeback *
289 locked_inode_to_wb_and_lock_list(struct inode *inode)
290 	__releases(&inode->i_lock)
291 	__acquires(&wb->list_lock)
292 {
293 	while (true) {
294 		struct bdi_writeback *wb = inode_to_wb(inode);
295 
296 		/*
297 		 * inode_to_wb() association is protected by both
298 		 * @inode->i_lock and @wb->list_lock but list_lock nests
299 		 * outside i_lock.  Drop i_lock and verify that the
300 		 * association hasn't changed after acquiring list_lock.
301 		 */
302 		wb_get(wb);
303 		spin_unlock(&inode->i_lock);
304 		spin_lock(&wb->list_lock);
305 
306 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
307 		if (likely(wb == inode->i_wb)) {
308 			wb_put(wb);	/* @inode already has ref */
309 			return wb;
310 		}
311 
312 		spin_unlock(&wb->list_lock);
313 		wb_put(wb);
314 		cpu_relax();
315 		spin_lock(&inode->i_lock);
316 	}
317 }
318 
319 /**
320  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
321  * @inode: inode of interest
322  *
323  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
324  * on entry.
325  */
326 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
327 	__acquires(&wb->list_lock)
328 {
329 	spin_lock(&inode->i_lock);
330 	return locked_inode_to_wb_and_lock_list(inode);
331 }
332 
333 struct inode_switch_wbs_context {
334 	struct inode		*inode;
335 	struct bdi_writeback	*new_wb;
336 
337 	struct rcu_head		rcu_head;
338 	struct work_struct	work;
339 };
340 
341 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343 	down_write(&bdi->wb_switch_rwsem);
344 }
345 
346 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
347 {
348 	up_write(&bdi->wb_switch_rwsem);
349 }
350 
351 static void inode_switch_wbs_work_fn(struct work_struct *work)
352 {
353 	struct inode_switch_wbs_context *isw =
354 		container_of(work, struct inode_switch_wbs_context, work);
355 	struct inode *inode = isw->inode;
356 	struct backing_dev_info *bdi = inode_to_bdi(inode);
357 	struct address_space *mapping = inode->i_mapping;
358 	struct bdi_writeback *old_wb = inode->i_wb;
359 	struct bdi_writeback *new_wb = isw->new_wb;
360 	XA_STATE(xas, &mapping->i_pages, 0);
361 	struct page *page;
362 	bool switched = false;
363 
364 	/*
365 	 * If @inode switches cgwb membership while sync_inodes_sb() is
366 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
367 	 */
368 	down_read(&bdi->wb_switch_rwsem);
369 
370 	/*
371 	 * By the time control reaches here, RCU grace period has passed
372 	 * since I_WB_SWITCH assertion and all wb stat update transactions
373 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
374 	 * synchronizing against the i_pages lock.
375 	 *
376 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
377 	 * gives us exclusion against all wb related operations on @inode
378 	 * including IO list manipulations and stat updates.
379 	 */
380 	if (old_wb < new_wb) {
381 		spin_lock(&old_wb->list_lock);
382 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
383 	} else {
384 		spin_lock(&new_wb->list_lock);
385 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
386 	}
387 	spin_lock(&inode->i_lock);
388 	xa_lock_irq(&mapping->i_pages);
389 
390 	/*
391 	 * Once I_FREEING is visible under i_lock, the eviction path owns
392 	 * the inode and we shouldn't modify ->i_io_list.
393 	 */
394 	if (unlikely(inode->i_state & I_FREEING))
395 		goto skip_switch;
396 
397 	trace_inode_switch_wbs(inode, old_wb, new_wb);
398 
399 	/*
400 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
401 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
402 	 * pages actually under writeback.
403 	 */
404 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
405 		if (PageDirty(page)) {
406 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
407 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
408 		}
409 	}
410 
411 	xas_set(&xas, 0);
412 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
413 		WARN_ON_ONCE(!PageWriteback(page));
414 		dec_wb_stat(old_wb, WB_WRITEBACK);
415 		inc_wb_stat(new_wb, WB_WRITEBACK);
416 	}
417 
418 	wb_get(new_wb);
419 
420 	/*
421 	 * Transfer to @new_wb's IO list if necessary.  The specific list
422 	 * @inode was on is ignored and the inode is put on ->b_dirty which
423 	 * is always correct including from ->b_dirty_time.  The transfer
424 	 * preserves @inode->dirtied_when ordering.
425 	 */
426 	if (!list_empty(&inode->i_io_list)) {
427 		struct inode *pos;
428 
429 		inode_io_list_del_locked(inode, old_wb);
430 		inode->i_wb = new_wb;
431 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432 			if (time_after_eq(inode->dirtied_when,
433 					  pos->dirtied_when))
434 				break;
435 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436 	} else {
437 		inode->i_wb = new_wb;
438 	}
439 
440 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441 	inode->i_wb_frn_winner = 0;
442 	inode->i_wb_frn_avg_time = 0;
443 	inode->i_wb_frn_history = 0;
444 	switched = true;
445 skip_switch:
446 	/*
447 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
449 	 */
450 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451 
452 	xa_unlock_irq(&mapping->i_pages);
453 	spin_unlock(&inode->i_lock);
454 	spin_unlock(&new_wb->list_lock);
455 	spin_unlock(&old_wb->list_lock);
456 
457 	up_read(&bdi->wb_switch_rwsem);
458 
459 	if (switched) {
460 		wb_wakeup(new_wb);
461 		wb_put(old_wb);
462 	}
463 	wb_put(new_wb);
464 
465 	iput(inode);
466 	kfree(isw);
467 
468 	atomic_dec(&isw_nr_in_flight);
469 }
470 
471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
474 				struct inode_switch_wbs_context, rcu_head);
475 
476 	/* needs to grab bh-unsafe locks, bounce to work item */
477 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478 	queue_work(isw_wq, &isw->work);
479 }
480 
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491 	struct backing_dev_info *bdi = inode_to_bdi(inode);
492 	struct cgroup_subsys_state *memcg_css;
493 	struct inode_switch_wbs_context *isw;
494 
495 	/* noop if seems to be already in progress */
496 	if (inode->i_state & I_WB_SWITCH)
497 		return;
498 
499 	/* avoid queueing a new switch if too many are already in flight */
500 	if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
501 		return;
502 
503 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
504 	if (!isw)
505 		return;
506 
507 	/* find and pin the new wb */
508 	rcu_read_lock();
509 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
510 	if (memcg_css)
511 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
512 	rcu_read_unlock();
513 	if (!isw->new_wb)
514 		goto out_free;
515 
516 	/* while holding I_WB_SWITCH, no one else can update the association */
517 	spin_lock(&inode->i_lock);
518 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
519 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
520 	    inode_to_wb(inode) == isw->new_wb) {
521 		spin_unlock(&inode->i_lock);
522 		goto out_free;
523 	}
524 	inode->i_state |= I_WB_SWITCH;
525 	__iget(inode);
526 	spin_unlock(&inode->i_lock);
527 
528 	isw->inode = inode;
529 
530 	/*
531 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
532 	 * the RCU protected stat update paths to grab the i_page
533 	 * lock so that stat transfer can synchronize against them.
534 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
535 	 */
536 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
537 
538 	atomic_inc(&isw_nr_in_flight);
539 	return;
540 
541 out_free:
542 	if (isw->new_wb)
543 		wb_put(isw->new_wb);
544 	kfree(isw);
545 }
546 
547 /**
548  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
549  * @wbc: writeback_control of interest
550  * @inode: target inode
551  *
552  * @inode is locked and about to be written back under the control of @wbc.
553  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
554  * writeback completion, wbc_detach_inode() should be called.  This is used
555  * to track the cgroup writeback context.
556  */
557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
558 				 struct inode *inode)
559 {
560 	if (!inode_cgwb_enabled(inode)) {
561 		spin_unlock(&inode->i_lock);
562 		return;
563 	}
564 
565 	wbc->wb = inode_to_wb(inode);
566 	wbc->inode = inode;
567 
568 	wbc->wb_id = wbc->wb->memcg_css->id;
569 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
570 	wbc->wb_tcand_id = 0;
571 	wbc->wb_bytes = 0;
572 	wbc->wb_lcand_bytes = 0;
573 	wbc->wb_tcand_bytes = 0;
574 
575 	wb_get(wbc->wb);
576 	spin_unlock(&inode->i_lock);
577 
578 	/*
579 	 * A dying wb indicates that either the blkcg associated with the
580 	 * memcg changed or the associated memcg is dying.  In the first
581 	 * case, a replacement wb should already be available and we should
582 	 * refresh the wb immediately.  In the second case, trying to
583 	 * refresh will keep failing.
584 	 */
585 	if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
586 		inode_switch_wbs(inode, wbc->wb_id);
587 }
588 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
589 
590 /**
591  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
592  * @wbc: writeback_control of the just finished writeback
593  *
594  * To be called after a writeback attempt of an inode finishes and undoes
595  * wbc_attach_and_unlock_inode().  Can be called under any context.
596  *
597  * As concurrent write sharing of an inode is expected to be very rare and
598  * memcg only tracks page ownership on first-use basis severely confining
599  * the usefulness of such sharing, cgroup writeback tracks ownership
600  * per-inode.  While the support for concurrent write sharing of an inode
601  * is deemed unnecessary, an inode being written to by different cgroups at
602  * different points in time is a lot more common, and, more importantly,
603  * charging only by first-use can too readily lead to grossly incorrect
604  * behaviors (single foreign page can lead to gigabytes of writeback to be
605  * incorrectly attributed).
606  *
607  * To resolve this issue, cgroup writeback detects the majority dirtier of
608  * an inode and transfers the ownership to it.  To avoid unnnecessary
609  * oscillation, the detection mechanism keeps track of history and gives
610  * out the switch verdict only if the foreign usage pattern is stable over
611  * a certain amount of time and/or writeback attempts.
612  *
613  * On each writeback attempt, @wbc tries to detect the majority writer
614  * using Boyer-Moore majority vote algorithm.  In addition to the byte
615  * count from the majority voting, it also counts the bytes written for the
616  * current wb and the last round's winner wb (max of last round's current
617  * wb, the winner from two rounds ago, and the last round's majority
618  * candidate).  Keeping track of the historical winner helps the algorithm
619  * to semi-reliably detect the most active writer even when it's not the
620  * absolute majority.
621  *
622  * Once the winner of the round is determined, whether the winner is
623  * foreign or not and how much IO time the round consumed is recorded in
624  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
625  * over a certain threshold, the switch verdict is given.
626  */
627 void wbc_detach_inode(struct writeback_control *wbc)
628 {
629 	struct bdi_writeback *wb = wbc->wb;
630 	struct inode *inode = wbc->inode;
631 	unsigned long avg_time, max_bytes, max_time;
632 	u16 history;
633 	int max_id;
634 
635 	if (!wb)
636 		return;
637 
638 	history = inode->i_wb_frn_history;
639 	avg_time = inode->i_wb_frn_avg_time;
640 
641 	/* pick the winner of this round */
642 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
643 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
644 		max_id = wbc->wb_id;
645 		max_bytes = wbc->wb_bytes;
646 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
647 		max_id = wbc->wb_lcand_id;
648 		max_bytes = wbc->wb_lcand_bytes;
649 	} else {
650 		max_id = wbc->wb_tcand_id;
651 		max_bytes = wbc->wb_tcand_bytes;
652 	}
653 
654 	/*
655 	 * Calculate the amount of IO time the winner consumed and fold it
656 	 * into the running average kept per inode.  If the consumed IO
657 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
658 	 * deciding whether to switch or not.  This is to prevent one-off
659 	 * small dirtiers from skewing the verdict.
660 	 */
661 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
662 				wb->avg_write_bandwidth);
663 	if (avg_time)
664 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
665 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
666 	else
667 		avg_time = max_time;	/* immediate catch up on first run */
668 
669 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
670 		int slots;
671 
672 		/*
673 		 * The switch verdict is reached if foreign wb's consume
674 		 * more than a certain proportion of IO time in a
675 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
676 		 * history mask where each bit represents one sixteenth of
677 		 * the period.  Determine the number of slots to shift into
678 		 * history from @max_time.
679 		 */
680 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
681 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
682 		history <<= slots;
683 		if (wbc->wb_id != max_id)
684 			history |= (1U << slots) - 1;
685 
686 		if (history)
687 			trace_inode_foreign_history(inode, wbc, history);
688 
689 		/*
690 		 * Switch if the current wb isn't the consistent winner.
691 		 * If there are multiple closely competing dirtiers, the
692 		 * inode may switch across them repeatedly over time, which
693 		 * is okay.  The main goal is avoiding keeping an inode on
694 		 * the wrong wb for an extended period of time.
695 		 */
696 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
697 			inode_switch_wbs(inode, max_id);
698 	}
699 
700 	/*
701 	 * Multiple instances of this function may race to update the
702 	 * following fields but we don't mind occassional inaccuracies.
703 	 */
704 	inode->i_wb_frn_winner = max_id;
705 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
706 	inode->i_wb_frn_history = history;
707 
708 	wb_put(wbc->wb);
709 	wbc->wb = NULL;
710 }
711 EXPORT_SYMBOL_GPL(wbc_detach_inode);
712 
713 /**
714  * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
715  * @wbc: writeback_control of the writeback in progress
716  * @page: page being written out
717  * @bytes: number of bytes being written out
718  *
719  * @bytes from @page are about to written out during the writeback
720  * controlled by @wbc.  Keep the book for foreign inode detection.  See
721  * wbc_detach_inode().
722  */
723 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
724 			      size_t bytes)
725 {
726 	struct cgroup_subsys_state *css;
727 	int id;
728 
729 	/*
730 	 * pageout() path doesn't attach @wbc to the inode being written
731 	 * out.  This is intentional as we don't want the function to block
732 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
733 	 * regular writeback instead of writing things out itself.
734 	 */
735 	if (!wbc->wb || wbc->no_cgroup_owner)
736 		return;
737 
738 	css = mem_cgroup_css_from_page(page);
739 	/* dead cgroups shouldn't contribute to inode ownership arbitration */
740 	if (!(css->flags & CSS_ONLINE))
741 		return;
742 
743 	id = css->id;
744 
745 	if (id == wbc->wb_id) {
746 		wbc->wb_bytes += bytes;
747 		return;
748 	}
749 
750 	if (id == wbc->wb_lcand_id)
751 		wbc->wb_lcand_bytes += bytes;
752 
753 	/* Boyer-Moore majority vote algorithm */
754 	if (!wbc->wb_tcand_bytes)
755 		wbc->wb_tcand_id = id;
756 	if (id == wbc->wb_tcand_id)
757 		wbc->wb_tcand_bytes += bytes;
758 	else
759 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
760 }
761 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
762 
763 /**
764  * inode_congested - test whether an inode is congested
765  * @inode: inode to test for congestion (may be NULL)
766  * @cong_bits: mask of WB_[a]sync_congested bits to test
767  *
768  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
769  * bits to test and the return value is the mask of set bits.
770  *
771  * If cgroup writeback is enabled for @inode, the congestion state is
772  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
773  * associated with @inode is congested; otherwise, the root wb's congestion
774  * state is used.
775  *
776  * @inode is allowed to be NULL as this function is often called on
777  * mapping->host which is NULL for the swapper space.
778  */
779 int inode_congested(struct inode *inode, int cong_bits)
780 {
781 	/*
782 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
783 	 * Start transaction iff ->i_wb is visible.
784 	 */
785 	if (inode && inode_to_wb_is_valid(inode)) {
786 		struct bdi_writeback *wb;
787 		struct wb_lock_cookie lock_cookie = {};
788 		bool congested;
789 
790 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
791 		congested = wb_congested(wb, cong_bits);
792 		unlocked_inode_to_wb_end(inode, &lock_cookie);
793 		return congested;
794 	}
795 
796 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
797 }
798 EXPORT_SYMBOL_GPL(inode_congested);
799 
800 /**
801  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
802  * @wb: target bdi_writeback to split @nr_pages to
803  * @nr_pages: number of pages to write for the whole bdi
804  *
805  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
806  * relation to the total write bandwidth of all wb's w/ dirty inodes on
807  * @wb->bdi.
808  */
809 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
810 {
811 	unsigned long this_bw = wb->avg_write_bandwidth;
812 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
813 
814 	if (nr_pages == LONG_MAX)
815 		return LONG_MAX;
816 
817 	/*
818 	 * This may be called on clean wb's and proportional distribution
819 	 * may not make sense, just use the original @nr_pages in those
820 	 * cases.  In general, we wanna err on the side of writing more.
821 	 */
822 	if (!tot_bw || this_bw >= tot_bw)
823 		return nr_pages;
824 	else
825 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
826 }
827 
828 /**
829  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
830  * @bdi: target backing_dev_info
831  * @base_work: wb_writeback_work to issue
832  * @skip_if_busy: skip wb's which already have writeback in progress
833  *
834  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
835  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
836  * distributed to the busy wbs according to each wb's proportion in the
837  * total active write bandwidth of @bdi.
838  */
839 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
840 				  struct wb_writeback_work *base_work,
841 				  bool skip_if_busy)
842 {
843 	struct bdi_writeback *last_wb = NULL;
844 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
845 					      struct bdi_writeback, bdi_node);
846 
847 	might_sleep();
848 restart:
849 	rcu_read_lock();
850 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
851 		DEFINE_WB_COMPLETION(fallback_work_done, bdi);
852 		struct wb_writeback_work fallback_work;
853 		struct wb_writeback_work *work;
854 		long nr_pages;
855 
856 		if (last_wb) {
857 			wb_put(last_wb);
858 			last_wb = NULL;
859 		}
860 
861 		/* SYNC_ALL writes out I_DIRTY_TIME too */
862 		if (!wb_has_dirty_io(wb) &&
863 		    (base_work->sync_mode == WB_SYNC_NONE ||
864 		     list_empty(&wb->b_dirty_time)))
865 			continue;
866 		if (skip_if_busy && writeback_in_progress(wb))
867 			continue;
868 
869 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
870 
871 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
872 		if (work) {
873 			*work = *base_work;
874 			work->nr_pages = nr_pages;
875 			work->auto_free = 1;
876 			wb_queue_work(wb, work);
877 			continue;
878 		}
879 
880 		/* alloc failed, execute synchronously using on-stack fallback */
881 		work = &fallback_work;
882 		*work = *base_work;
883 		work->nr_pages = nr_pages;
884 		work->auto_free = 0;
885 		work->done = &fallback_work_done;
886 
887 		wb_queue_work(wb, work);
888 
889 		/*
890 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
891 		 * continuing iteration from @wb after dropping and
892 		 * regrabbing rcu read lock.
893 		 */
894 		wb_get(wb);
895 		last_wb = wb;
896 
897 		rcu_read_unlock();
898 		wb_wait_for_completion(&fallback_work_done);
899 		goto restart;
900 	}
901 	rcu_read_unlock();
902 
903 	if (last_wb)
904 		wb_put(last_wb);
905 }
906 
907 /**
908  * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
909  * @bdi_id: target bdi id
910  * @memcg_id: target memcg css id
911  * @nr: number of pages to write, 0 for best-effort dirty flushing
912  * @reason: reason why some writeback work initiated
913  * @done: target wb_completion
914  *
915  * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
916  * with the specified parameters.
917  */
918 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr,
919 			   enum wb_reason reason, struct wb_completion *done)
920 {
921 	struct backing_dev_info *bdi;
922 	struct cgroup_subsys_state *memcg_css;
923 	struct bdi_writeback *wb;
924 	struct wb_writeback_work *work;
925 	int ret;
926 
927 	/* lookup bdi and memcg */
928 	bdi = bdi_get_by_id(bdi_id);
929 	if (!bdi)
930 		return -ENOENT;
931 
932 	rcu_read_lock();
933 	memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
934 	if (memcg_css && !css_tryget(memcg_css))
935 		memcg_css = NULL;
936 	rcu_read_unlock();
937 	if (!memcg_css) {
938 		ret = -ENOENT;
939 		goto out_bdi_put;
940 	}
941 
942 	/*
943 	 * And find the associated wb.  If the wb isn't there already
944 	 * there's nothing to flush, don't create one.
945 	 */
946 	wb = wb_get_lookup(bdi, memcg_css);
947 	if (!wb) {
948 		ret = -ENOENT;
949 		goto out_css_put;
950 	}
951 
952 	/*
953 	 * If @nr is zero, the caller is attempting to write out most of
954 	 * the currently dirty pages.  Let's take the current dirty page
955 	 * count and inflate it by 25% which should be large enough to
956 	 * flush out most dirty pages while avoiding getting livelocked by
957 	 * concurrent dirtiers.
958 	 */
959 	if (!nr) {
960 		unsigned long filepages, headroom, dirty, writeback;
961 
962 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty,
963 				      &writeback);
964 		nr = dirty * 10 / 8;
965 	}
966 
967 	/* issue the writeback work */
968 	work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
969 	if (work) {
970 		work->nr_pages = nr;
971 		work->sync_mode = WB_SYNC_NONE;
972 		work->range_cyclic = 1;
973 		work->reason = reason;
974 		work->done = done;
975 		work->auto_free = 1;
976 		wb_queue_work(wb, work);
977 		ret = 0;
978 	} else {
979 		ret = -ENOMEM;
980 	}
981 
982 	wb_put(wb);
983 out_css_put:
984 	css_put(memcg_css);
985 out_bdi_put:
986 	bdi_put(bdi);
987 	return ret;
988 }
989 
990 /**
991  * cgroup_writeback_umount - flush inode wb switches for umount
992  *
993  * This function is called when a super_block is about to be destroyed and
994  * flushes in-flight inode wb switches.  An inode wb switch goes through
995  * RCU and then workqueue, so the two need to be flushed in order to ensure
996  * that all previously scheduled switches are finished.  As wb switches are
997  * rare occurrences and synchronize_rcu() can take a while, perform
998  * flushing iff wb switches are in flight.
999  */
1000 void cgroup_writeback_umount(void)
1001 {
1002 	if (atomic_read(&isw_nr_in_flight)) {
1003 		/*
1004 		 * Use rcu_barrier() to wait for all pending callbacks to
1005 		 * ensure that all in-flight wb switches are in the workqueue.
1006 		 */
1007 		rcu_barrier();
1008 		flush_workqueue(isw_wq);
1009 	}
1010 }
1011 
1012 static int __init cgroup_writeback_init(void)
1013 {
1014 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1015 	if (!isw_wq)
1016 		return -ENOMEM;
1017 	return 0;
1018 }
1019 fs_initcall(cgroup_writeback_init);
1020 
1021 #else	/* CONFIG_CGROUP_WRITEBACK */
1022 
1023 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1024 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1025 
1026 static struct bdi_writeback *
1027 locked_inode_to_wb_and_lock_list(struct inode *inode)
1028 	__releases(&inode->i_lock)
1029 	__acquires(&wb->list_lock)
1030 {
1031 	struct bdi_writeback *wb = inode_to_wb(inode);
1032 
1033 	spin_unlock(&inode->i_lock);
1034 	spin_lock(&wb->list_lock);
1035 	return wb;
1036 }
1037 
1038 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1039 	__acquires(&wb->list_lock)
1040 {
1041 	struct bdi_writeback *wb = inode_to_wb(inode);
1042 
1043 	spin_lock(&wb->list_lock);
1044 	return wb;
1045 }
1046 
1047 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1048 {
1049 	return nr_pages;
1050 }
1051 
1052 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1053 				  struct wb_writeback_work *base_work,
1054 				  bool skip_if_busy)
1055 {
1056 	might_sleep();
1057 
1058 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1059 		base_work->auto_free = 0;
1060 		wb_queue_work(&bdi->wb, base_work);
1061 	}
1062 }
1063 
1064 #endif	/* CONFIG_CGROUP_WRITEBACK */
1065 
1066 /*
1067  * Add in the number of potentially dirty inodes, because each inode
1068  * write can dirty pagecache in the underlying blockdev.
1069  */
1070 static unsigned long get_nr_dirty_pages(void)
1071 {
1072 	return global_node_page_state(NR_FILE_DIRTY) +
1073 		global_node_page_state(NR_UNSTABLE_NFS) +
1074 		get_nr_dirty_inodes();
1075 }
1076 
1077 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1078 {
1079 	if (!wb_has_dirty_io(wb))
1080 		return;
1081 
1082 	/*
1083 	 * All callers of this function want to start writeback of all
1084 	 * dirty pages. Places like vmscan can call this at a very
1085 	 * high frequency, causing pointless allocations of tons of
1086 	 * work items and keeping the flusher threads busy retrieving
1087 	 * that work. Ensure that we only allow one of them pending and
1088 	 * inflight at the time.
1089 	 */
1090 	if (test_bit(WB_start_all, &wb->state) ||
1091 	    test_and_set_bit(WB_start_all, &wb->state))
1092 		return;
1093 
1094 	wb->start_all_reason = reason;
1095 	wb_wakeup(wb);
1096 }
1097 
1098 /**
1099  * wb_start_background_writeback - start background writeback
1100  * @wb: bdi_writback to write from
1101  *
1102  * Description:
1103  *   This makes sure WB_SYNC_NONE background writeback happens. When
1104  *   this function returns, it is only guaranteed that for given wb
1105  *   some IO is happening if we are over background dirty threshold.
1106  *   Caller need not hold sb s_umount semaphore.
1107  */
1108 void wb_start_background_writeback(struct bdi_writeback *wb)
1109 {
1110 	/*
1111 	 * We just wake up the flusher thread. It will perform background
1112 	 * writeback as soon as there is no other work to do.
1113 	 */
1114 	trace_writeback_wake_background(wb);
1115 	wb_wakeup(wb);
1116 }
1117 
1118 /*
1119  * Remove the inode from the writeback list it is on.
1120  */
1121 void inode_io_list_del(struct inode *inode)
1122 {
1123 	struct bdi_writeback *wb;
1124 
1125 	wb = inode_to_wb_and_lock_list(inode);
1126 	inode_io_list_del_locked(inode, wb);
1127 	spin_unlock(&wb->list_lock);
1128 }
1129 
1130 /*
1131  * mark an inode as under writeback on the sb
1132  */
1133 void sb_mark_inode_writeback(struct inode *inode)
1134 {
1135 	struct super_block *sb = inode->i_sb;
1136 	unsigned long flags;
1137 
1138 	if (list_empty(&inode->i_wb_list)) {
1139 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1140 		if (list_empty(&inode->i_wb_list)) {
1141 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1142 			trace_sb_mark_inode_writeback(inode);
1143 		}
1144 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1145 	}
1146 }
1147 
1148 /*
1149  * clear an inode as under writeback on the sb
1150  */
1151 void sb_clear_inode_writeback(struct inode *inode)
1152 {
1153 	struct super_block *sb = inode->i_sb;
1154 	unsigned long flags;
1155 
1156 	if (!list_empty(&inode->i_wb_list)) {
1157 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1158 		if (!list_empty(&inode->i_wb_list)) {
1159 			list_del_init(&inode->i_wb_list);
1160 			trace_sb_clear_inode_writeback(inode);
1161 		}
1162 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1163 	}
1164 }
1165 
1166 /*
1167  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1168  * furthest end of its superblock's dirty-inode list.
1169  *
1170  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1171  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1172  * the case then the inode must have been redirtied while it was being written
1173  * out and we don't reset its dirtied_when.
1174  */
1175 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1176 {
1177 	if (!list_empty(&wb->b_dirty)) {
1178 		struct inode *tail;
1179 
1180 		tail = wb_inode(wb->b_dirty.next);
1181 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1182 			inode->dirtied_when = jiffies;
1183 	}
1184 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1185 }
1186 
1187 /*
1188  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1189  */
1190 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1191 {
1192 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1193 }
1194 
1195 static void inode_sync_complete(struct inode *inode)
1196 {
1197 	inode->i_state &= ~I_SYNC;
1198 	/* If inode is clean an unused, put it into LRU now... */
1199 	inode_add_lru(inode);
1200 	/* Waiters must see I_SYNC cleared before being woken up */
1201 	smp_mb();
1202 	wake_up_bit(&inode->i_state, __I_SYNC);
1203 }
1204 
1205 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1206 {
1207 	bool ret = time_after(inode->dirtied_when, t);
1208 #ifndef CONFIG_64BIT
1209 	/*
1210 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1211 	 * It _appears_ to be in the future, but is actually in distant past.
1212 	 * This test is necessary to prevent such wrapped-around relative times
1213 	 * from permanently stopping the whole bdi writeback.
1214 	 */
1215 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1216 #endif
1217 	return ret;
1218 }
1219 
1220 #define EXPIRE_DIRTY_ATIME 0x0001
1221 
1222 /*
1223  * Move expired (dirtied before work->older_than_this) dirty inodes from
1224  * @delaying_queue to @dispatch_queue.
1225  */
1226 static int move_expired_inodes(struct list_head *delaying_queue,
1227 			       struct list_head *dispatch_queue,
1228 			       int flags,
1229 			       struct wb_writeback_work *work)
1230 {
1231 	unsigned long *older_than_this = NULL;
1232 	unsigned long expire_time;
1233 	LIST_HEAD(tmp);
1234 	struct list_head *pos, *node;
1235 	struct super_block *sb = NULL;
1236 	struct inode *inode;
1237 	int do_sb_sort = 0;
1238 	int moved = 0;
1239 
1240 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1241 		older_than_this = work->older_than_this;
1242 	else if (!work->for_sync) {
1243 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1244 		older_than_this = &expire_time;
1245 	}
1246 	while (!list_empty(delaying_queue)) {
1247 		inode = wb_inode(delaying_queue->prev);
1248 		if (older_than_this &&
1249 		    inode_dirtied_after(inode, *older_than_this))
1250 			break;
1251 		list_move(&inode->i_io_list, &tmp);
1252 		moved++;
1253 		if (flags & EXPIRE_DIRTY_ATIME)
1254 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1255 		if (sb_is_blkdev_sb(inode->i_sb))
1256 			continue;
1257 		if (sb && sb != inode->i_sb)
1258 			do_sb_sort = 1;
1259 		sb = inode->i_sb;
1260 	}
1261 
1262 	/* just one sb in list, splice to dispatch_queue and we're done */
1263 	if (!do_sb_sort) {
1264 		list_splice(&tmp, dispatch_queue);
1265 		goto out;
1266 	}
1267 
1268 	/* Move inodes from one superblock together */
1269 	while (!list_empty(&tmp)) {
1270 		sb = wb_inode(tmp.prev)->i_sb;
1271 		list_for_each_prev_safe(pos, node, &tmp) {
1272 			inode = wb_inode(pos);
1273 			if (inode->i_sb == sb)
1274 				list_move(&inode->i_io_list, dispatch_queue);
1275 		}
1276 	}
1277 out:
1278 	return moved;
1279 }
1280 
1281 /*
1282  * Queue all expired dirty inodes for io, eldest first.
1283  * Before
1284  *         newly dirtied     b_dirty    b_io    b_more_io
1285  *         =============>    gf         edc     BA
1286  * After
1287  *         newly dirtied     b_dirty    b_io    b_more_io
1288  *         =============>    g          fBAedc
1289  *                                           |
1290  *                                           +--> dequeue for IO
1291  */
1292 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1293 {
1294 	int moved;
1295 
1296 	assert_spin_locked(&wb->list_lock);
1297 	list_splice_init(&wb->b_more_io, &wb->b_io);
1298 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1299 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1300 				     EXPIRE_DIRTY_ATIME, work);
1301 	if (moved)
1302 		wb_io_lists_populated(wb);
1303 	trace_writeback_queue_io(wb, work, moved);
1304 }
1305 
1306 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1307 {
1308 	int ret;
1309 
1310 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1311 		trace_writeback_write_inode_start(inode, wbc);
1312 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1313 		trace_writeback_write_inode(inode, wbc);
1314 		return ret;
1315 	}
1316 	return 0;
1317 }
1318 
1319 /*
1320  * Wait for writeback on an inode to complete. Called with i_lock held.
1321  * Caller must make sure inode cannot go away when we drop i_lock.
1322  */
1323 static void __inode_wait_for_writeback(struct inode *inode)
1324 	__releases(inode->i_lock)
1325 	__acquires(inode->i_lock)
1326 {
1327 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1328 	wait_queue_head_t *wqh;
1329 
1330 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1331 	while (inode->i_state & I_SYNC) {
1332 		spin_unlock(&inode->i_lock);
1333 		__wait_on_bit(wqh, &wq, bit_wait,
1334 			      TASK_UNINTERRUPTIBLE);
1335 		spin_lock(&inode->i_lock);
1336 	}
1337 }
1338 
1339 /*
1340  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1341  */
1342 void inode_wait_for_writeback(struct inode *inode)
1343 {
1344 	spin_lock(&inode->i_lock);
1345 	__inode_wait_for_writeback(inode);
1346 	spin_unlock(&inode->i_lock);
1347 }
1348 
1349 /*
1350  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1351  * held and drops it. It is aimed for callers not holding any inode reference
1352  * so once i_lock is dropped, inode can go away.
1353  */
1354 static void inode_sleep_on_writeback(struct inode *inode)
1355 	__releases(inode->i_lock)
1356 {
1357 	DEFINE_WAIT(wait);
1358 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1359 	int sleep;
1360 
1361 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1362 	sleep = inode->i_state & I_SYNC;
1363 	spin_unlock(&inode->i_lock);
1364 	if (sleep)
1365 		schedule();
1366 	finish_wait(wqh, &wait);
1367 }
1368 
1369 /*
1370  * Find proper writeback list for the inode depending on its current state and
1371  * possibly also change of its state while we were doing writeback.  Here we
1372  * handle things such as livelock prevention or fairness of writeback among
1373  * inodes. This function can be called only by flusher thread - noone else
1374  * processes all inodes in writeback lists and requeueing inodes behind flusher
1375  * thread's back can have unexpected consequences.
1376  */
1377 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1378 			  struct writeback_control *wbc)
1379 {
1380 	if (inode->i_state & I_FREEING)
1381 		return;
1382 
1383 	/*
1384 	 * Sync livelock prevention. Each inode is tagged and synced in one
1385 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1386 	 * the dirty time to prevent enqueue and sync it again.
1387 	 */
1388 	if ((inode->i_state & I_DIRTY) &&
1389 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1390 		inode->dirtied_when = jiffies;
1391 
1392 	if (wbc->pages_skipped) {
1393 		/*
1394 		 * writeback is not making progress due to locked
1395 		 * buffers. Skip this inode for now.
1396 		 */
1397 		redirty_tail(inode, wb);
1398 		return;
1399 	}
1400 
1401 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1402 		/*
1403 		 * We didn't write back all the pages.  nfs_writepages()
1404 		 * sometimes bales out without doing anything.
1405 		 */
1406 		if (wbc->nr_to_write <= 0) {
1407 			/* Slice used up. Queue for next turn. */
1408 			requeue_io(inode, wb);
1409 		} else {
1410 			/*
1411 			 * Writeback blocked by something other than
1412 			 * congestion. Delay the inode for some time to
1413 			 * avoid spinning on the CPU (100% iowait)
1414 			 * retrying writeback of the dirty page/inode
1415 			 * that cannot be performed immediately.
1416 			 */
1417 			redirty_tail(inode, wb);
1418 		}
1419 	} else if (inode->i_state & I_DIRTY) {
1420 		/*
1421 		 * Filesystems can dirty the inode during writeback operations,
1422 		 * such as delayed allocation during submission or metadata
1423 		 * updates after data IO completion.
1424 		 */
1425 		redirty_tail(inode, wb);
1426 	} else if (inode->i_state & I_DIRTY_TIME) {
1427 		inode->dirtied_when = jiffies;
1428 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1429 	} else {
1430 		/* The inode is clean. Remove from writeback lists. */
1431 		inode_io_list_del_locked(inode, wb);
1432 	}
1433 }
1434 
1435 /*
1436  * Write out an inode and its dirty pages. Do not update the writeback list
1437  * linkage. That is left to the caller. The caller is also responsible for
1438  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1439  */
1440 static int
1441 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1442 {
1443 	struct address_space *mapping = inode->i_mapping;
1444 	long nr_to_write = wbc->nr_to_write;
1445 	unsigned dirty;
1446 	int ret;
1447 
1448 	WARN_ON(!(inode->i_state & I_SYNC));
1449 
1450 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1451 
1452 	ret = do_writepages(mapping, wbc);
1453 
1454 	/*
1455 	 * Make sure to wait on the data before writing out the metadata.
1456 	 * This is important for filesystems that modify metadata on data
1457 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1458 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1459 	 * inode metadata is written back correctly.
1460 	 */
1461 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1462 		int err = filemap_fdatawait(mapping);
1463 		if (ret == 0)
1464 			ret = err;
1465 	}
1466 
1467 	/*
1468 	 * Some filesystems may redirty the inode during the writeback
1469 	 * due to delalloc, clear dirty metadata flags right before
1470 	 * write_inode()
1471 	 */
1472 	spin_lock(&inode->i_lock);
1473 
1474 	dirty = inode->i_state & I_DIRTY;
1475 	if (inode->i_state & I_DIRTY_TIME) {
1476 		if ((dirty & I_DIRTY_INODE) ||
1477 		    wbc->sync_mode == WB_SYNC_ALL ||
1478 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1479 		    unlikely(time_after(jiffies,
1480 					(inode->dirtied_time_when +
1481 					 dirtytime_expire_interval * HZ)))) {
1482 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1483 			trace_writeback_lazytime(inode);
1484 		}
1485 	} else
1486 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1487 	inode->i_state &= ~dirty;
1488 
1489 	/*
1490 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1491 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1492 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1493 	 * inode.
1494 	 *
1495 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1496 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1497 	 * necessary.  This guarantees that either __mark_inode_dirty()
1498 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1499 	 */
1500 	smp_mb();
1501 
1502 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1503 		inode->i_state |= I_DIRTY_PAGES;
1504 
1505 	spin_unlock(&inode->i_lock);
1506 
1507 	if (dirty & I_DIRTY_TIME)
1508 		mark_inode_dirty_sync(inode);
1509 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1510 	if (dirty & ~I_DIRTY_PAGES) {
1511 		int err = write_inode(inode, wbc);
1512 		if (ret == 0)
1513 			ret = err;
1514 	}
1515 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1516 	return ret;
1517 }
1518 
1519 /*
1520  * Write out an inode's dirty pages. Either the caller has an active reference
1521  * on the inode or the inode has I_WILL_FREE set.
1522  *
1523  * This function is designed to be called for writing back one inode which
1524  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1525  * and does more profound writeback list handling in writeback_sb_inodes().
1526  */
1527 static int writeback_single_inode(struct inode *inode,
1528 				  struct writeback_control *wbc)
1529 {
1530 	struct bdi_writeback *wb;
1531 	int ret = 0;
1532 
1533 	spin_lock(&inode->i_lock);
1534 	if (!atomic_read(&inode->i_count))
1535 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1536 	else
1537 		WARN_ON(inode->i_state & I_WILL_FREE);
1538 
1539 	if (inode->i_state & I_SYNC) {
1540 		if (wbc->sync_mode != WB_SYNC_ALL)
1541 			goto out;
1542 		/*
1543 		 * It's a data-integrity sync. We must wait. Since callers hold
1544 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1545 		 * away under us.
1546 		 */
1547 		__inode_wait_for_writeback(inode);
1548 	}
1549 	WARN_ON(inode->i_state & I_SYNC);
1550 	/*
1551 	 * Skip inode if it is clean and we have no outstanding writeback in
1552 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1553 	 * function since flusher thread may be doing for example sync in
1554 	 * parallel and if we move the inode, it could get skipped. So here we
1555 	 * make sure inode is on some writeback list and leave it there unless
1556 	 * we have completely cleaned the inode.
1557 	 */
1558 	if (!(inode->i_state & I_DIRTY_ALL) &&
1559 	    (wbc->sync_mode != WB_SYNC_ALL ||
1560 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1561 		goto out;
1562 	inode->i_state |= I_SYNC;
1563 	wbc_attach_and_unlock_inode(wbc, inode);
1564 
1565 	ret = __writeback_single_inode(inode, wbc);
1566 
1567 	wbc_detach_inode(wbc);
1568 
1569 	wb = inode_to_wb_and_lock_list(inode);
1570 	spin_lock(&inode->i_lock);
1571 	/*
1572 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1573 	 * touch it. See comment above for explanation.
1574 	 */
1575 	if (!(inode->i_state & I_DIRTY_ALL))
1576 		inode_io_list_del_locked(inode, wb);
1577 	spin_unlock(&wb->list_lock);
1578 	inode_sync_complete(inode);
1579 out:
1580 	spin_unlock(&inode->i_lock);
1581 	return ret;
1582 }
1583 
1584 static long writeback_chunk_size(struct bdi_writeback *wb,
1585 				 struct wb_writeback_work *work)
1586 {
1587 	long pages;
1588 
1589 	/*
1590 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1591 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1592 	 * here avoids calling into writeback_inodes_wb() more than once.
1593 	 *
1594 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1595 	 *
1596 	 *      wb_writeback()
1597 	 *          writeback_sb_inodes()       <== called only once
1598 	 *              write_cache_pages()     <== called once for each inode
1599 	 *                   (quickly) tag currently dirty pages
1600 	 *                   (maybe slowly) sync all tagged pages
1601 	 */
1602 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1603 		pages = LONG_MAX;
1604 	else {
1605 		pages = min(wb->avg_write_bandwidth / 2,
1606 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1607 		pages = min(pages, work->nr_pages);
1608 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1609 				   MIN_WRITEBACK_PAGES);
1610 	}
1611 
1612 	return pages;
1613 }
1614 
1615 /*
1616  * Write a portion of b_io inodes which belong to @sb.
1617  *
1618  * Return the number of pages and/or inodes written.
1619  *
1620  * NOTE! This is called with wb->list_lock held, and will
1621  * unlock and relock that for each inode it ends up doing
1622  * IO for.
1623  */
1624 static long writeback_sb_inodes(struct super_block *sb,
1625 				struct bdi_writeback *wb,
1626 				struct wb_writeback_work *work)
1627 {
1628 	struct writeback_control wbc = {
1629 		.sync_mode		= work->sync_mode,
1630 		.tagged_writepages	= work->tagged_writepages,
1631 		.for_kupdate		= work->for_kupdate,
1632 		.for_background		= work->for_background,
1633 		.for_sync		= work->for_sync,
1634 		.range_cyclic		= work->range_cyclic,
1635 		.range_start		= 0,
1636 		.range_end		= LLONG_MAX,
1637 	};
1638 	unsigned long start_time = jiffies;
1639 	long write_chunk;
1640 	long wrote = 0;  /* count both pages and inodes */
1641 
1642 	while (!list_empty(&wb->b_io)) {
1643 		struct inode *inode = wb_inode(wb->b_io.prev);
1644 		struct bdi_writeback *tmp_wb;
1645 
1646 		if (inode->i_sb != sb) {
1647 			if (work->sb) {
1648 				/*
1649 				 * We only want to write back data for this
1650 				 * superblock, move all inodes not belonging
1651 				 * to it back onto the dirty list.
1652 				 */
1653 				redirty_tail(inode, wb);
1654 				continue;
1655 			}
1656 
1657 			/*
1658 			 * The inode belongs to a different superblock.
1659 			 * Bounce back to the caller to unpin this and
1660 			 * pin the next superblock.
1661 			 */
1662 			break;
1663 		}
1664 
1665 		/*
1666 		 * Don't bother with new inodes or inodes being freed, first
1667 		 * kind does not need periodic writeout yet, and for the latter
1668 		 * kind writeout is handled by the freer.
1669 		 */
1670 		spin_lock(&inode->i_lock);
1671 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1672 			spin_unlock(&inode->i_lock);
1673 			redirty_tail(inode, wb);
1674 			continue;
1675 		}
1676 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1677 			/*
1678 			 * If this inode is locked for writeback and we are not
1679 			 * doing writeback-for-data-integrity, move it to
1680 			 * b_more_io so that writeback can proceed with the
1681 			 * other inodes on s_io.
1682 			 *
1683 			 * We'll have another go at writing back this inode
1684 			 * when we completed a full scan of b_io.
1685 			 */
1686 			spin_unlock(&inode->i_lock);
1687 			requeue_io(inode, wb);
1688 			trace_writeback_sb_inodes_requeue(inode);
1689 			continue;
1690 		}
1691 		spin_unlock(&wb->list_lock);
1692 
1693 		/*
1694 		 * We already requeued the inode if it had I_SYNC set and we
1695 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1696 		 * WB_SYNC_ALL case.
1697 		 */
1698 		if (inode->i_state & I_SYNC) {
1699 			/* Wait for I_SYNC. This function drops i_lock... */
1700 			inode_sleep_on_writeback(inode);
1701 			/* Inode may be gone, start again */
1702 			spin_lock(&wb->list_lock);
1703 			continue;
1704 		}
1705 		inode->i_state |= I_SYNC;
1706 		wbc_attach_and_unlock_inode(&wbc, inode);
1707 
1708 		write_chunk = writeback_chunk_size(wb, work);
1709 		wbc.nr_to_write = write_chunk;
1710 		wbc.pages_skipped = 0;
1711 
1712 		/*
1713 		 * We use I_SYNC to pin the inode in memory. While it is set
1714 		 * evict_inode() will wait so the inode cannot be freed.
1715 		 */
1716 		__writeback_single_inode(inode, &wbc);
1717 
1718 		wbc_detach_inode(&wbc);
1719 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1720 		wrote += write_chunk - wbc.nr_to_write;
1721 
1722 		if (need_resched()) {
1723 			/*
1724 			 * We're trying to balance between building up a nice
1725 			 * long list of IOs to improve our merge rate, and
1726 			 * getting those IOs out quickly for anyone throttling
1727 			 * in balance_dirty_pages().  cond_resched() doesn't
1728 			 * unplug, so get our IOs out the door before we
1729 			 * give up the CPU.
1730 			 */
1731 			blk_flush_plug(current);
1732 			cond_resched();
1733 		}
1734 
1735 		/*
1736 		 * Requeue @inode if still dirty.  Be careful as @inode may
1737 		 * have been switched to another wb in the meantime.
1738 		 */
1739 		tmp_wb = inode_to_wb_and_lock_list(inode);
1740 		spin_lock(&inode->i_lock);
1741 		if (!(inode->i_state & I_DIRTY_ALL))
1742 			wrote++;
1743 		requeue_inode(inode, tmp_wb, &wbc);
1744 		inode_sync_complete(inode);
1745 		spin_unlock(&inode->i_lock);
1746 
1747 		if (unlikely(tmp_wb != wb)) {
1748 			spin_unlock(&tmp_wb->list_lock);
1749 			spin_lock(&wb->list_lock);
1750 		}
1751 
1752 		/*
1753 		 * bail out to wb_writeback() often enough to check
1754 		 * background threshold and other termination conditions.
1755 		 */
1756 		if (wrote) {
1757 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1758 				break;
1759 			if (work->nr_pages <= 0)
1760 				break;
1761 		}
1762 	}
1763 	return wrote;
1764 }
1765 
1766 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1767 				  struct wb_writeback_work *work)
1768 {
1769 	unsigned long start_time = jiffies;
1770 	long wrote = 0;
1771 
1772 	while (!list_empty(&wb->b_io)) {
1773 		struct inode *inode = wb_inode(wb->b_io.prev);
1774 		struct super_block *sb = inode->i_sb;
1775 
1776 		if (!trylock_super(sb)) {
1777 			/*
1778 			 * trylock_super() may fail consistently due to
1779 			 * s_umount being grabbed by someone else. Don't use
1780 			 * requeue_io() to avoid busy retrying the inode/sb.
1781 			 */
1782 			redirty_tail(inode, wb);
1783 			continue;
1784 		}
1785 		wrote += writeback_sb_inodes(sb, wb, work);
1786 		up_read(&sb->s_umount);
1787 
1788 		/* refer to the same tests at the end of writeback_sb_inodes */
1789 		if (wrote) {
1790 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1791 				break;
1792 			if (work->nr_pages <= 0)
1793 				break;
1794 		}
1795 	}
1796 	/* Leave any unwritten inodes on b_io */
1797 	return wrote;
1798 }
1799 
1800 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1801 				enum wb_reason reason)
1802 {
1803 	struct wb_writeback_work work = {
1804 		.nr_pages	= nr_pages,
1805 		.sync_mode	= WB_SYNC_NONE,
1806 		.range_cyclic	= 1,
1807 		.reason		= reason,
1808 	};
1809 	struct blk_plug plug;
1810 
1811 	blk_start_plug(&plug);
1812 	spin_lock(&wb->list_lock);
1813 	if (list_empty(&wb->b_io))
1814 		queue_io(wb, &work);
1815 	__writeback_inodes_wb(wb, &work);
1816 	spin_unlock(&wb->list_lock);
1817 	blk_finish_plug(&plug);
1818 
1819 	return nr_pages - work.nr_pages;
1820 }
1821 
1822 /*
1823  * Explicit flushing or periodic writeback of "old" data.
1824  *
1825  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1826  * dirtying-time in the inode's address_space.  So this periodic writeback code
1827  * just walks the superblock inode list, writing back any inodes which are
1828  * older than a specific point in time.
1829  *
1830  * Try to run once per dirty_writeback_interval.  But if a writeback event
1831  * takes longer than a dirty_writeback_interval interval, then leave a
1832  * one-second gap.
1833  *
1834  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1835  * all dirty pages if they are all attached to "old" mappings.
1836  */
1837 static long wb_writeback(struct bdi_writeback *wb,
1838 			 struct wb_writeback_work *work)
1839 {
1840 	unsigned long wb_start = jiffies;
1841 	long nr_pages = work->nr_pages;
1842 	unsigned long oldest_jif;
1843 	struct inode *inode;
1844 	long progress;
1845 	struct blk_plug plug;
1846 
1847 	oldest_jif = jiffies;
1848 	work->older_than_this = &oldest_jif;
1849 
1850 	blk_start_plug(&plug);
1851 	spin_lock(&wb->list_lock);
1852 	for (;;) {
1853 		/*
1854 		 * Stop writeback when nr_pages has been consumed
1855 		 */
1856 		if (work->nr_pages <= 0)
1857 			break;
1858 
1859 		/*
1860 		 * Background writeout and kupdate-style writeback may
1861 		 * run forever. Stop them if there is other work to do
1862 		 * so that e.g. sync can proceed. They'll be restarted
1863 		 * after the other works are all done.
1864 		 */
1865 		if ((work->for_background || work->for_kupdate) &&
1866 		    !list_empty(&wb->work_list))
1867 			break;
1868 
1869 		/*
1870 		 * For background writeout, stop when we are below the
1871 		 * background dirty threshold
1872 		 */
1873 		if (work->for_background && !wb_over_bg_thresh(wb))
1874 			break;
1875 
1876 		/*
1877 		 * Kupdate and background works are special and we want to
1878 		 * include all inodes that need writing. Livelock avoidance is
1879 		 * handled by these works yielding to any other work so we are
1880 		 * safe.
1881 		 */
1882 		if (work->for_kupdate) {
1883 			oldest_jif = jiffies -
1884 				msecs_to_jiffies(dirty_expire_interval * 10);
1885 		} else if (work->for_background)
1886 			oldest_jif = jiffies;
1887 
1888 		trace_writeback_start(wb, work);
1889 		if (list_empty(&wb->b_io))
1890 			queue_io(wb, work);
1891 		if (work->sb)
1892 			progress = writeback_sb_inodes(work->sb, wb, work);
1893 		else
1894 			progress = __writeback_inodes_wb(wb, work);
1895 		trace_writeback_written(wb, work);
1896 
1897 		wb_update_bandwidth(wb, wb_start);
1898 
1899 		/*
1900 		 * Did we write something? Try for more
1901 		 *
1902 		 * Dirty inodes are moved to b_io for writeback in batches.
1903 		 * The completion of the current batch does not necessarily
1904 		 * mean the overall work is done. So we keep looping as long
1905 		 * as made some progress on cleaning pages or inodes.
1906 		 */
1907 		if (progress)
1908 			continue;
1909 		/*
1910 		 * No more inodes for IO, bail
1911 		 */
1912 		if (list_empty(&wb->b_more_io))
1913 			break;
1914 		/*
1915 		 * Nothing written. Wait for some inode to
1916 		 * become available for writeback. Otherwise
1917 		 * we'll just busyloop.
1918 		 */
1919 		trace_writeback_wait(wb, work);
1920 		inode = wb_inode(wb->b_more_io.prev);
1921 		spin_lock(&inode->i_lock);
1922 		spin_unlock(&wb->list_lock);
1923 		/* This function drops i_lock... */
1924 		inode_sleep_on_writeback(inode);
1925 		spin_lock(&wb->list_lock);
1926 	}
1927 	spin_unlock(&wb->list_lock);
1928 	blk_finish_plug(&plug);
1929 
1930 	return nr_pages - work->nr_pages;
1931 }
1932 
1933 /*
1934  * Return the next wb_writeback_work struct that hasn't been processed yet.
1935  */
1936 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1937 {
1938 	struct wb_writeback_work *work = NULL;
1939 
1940 	spin_lock_bh(&wb->work_lock);
1941 	if (!list_empty(&wb->work_list)) {
1942 		work = list_entry(wb->work_list.next,
1943 				  struct wb_writeback_work, list);
1944 		list_del_init(&work->list);
1945 	}
1946 	spin_unlock_bh(&wb->work_lock);
1947 	return work;
1948 }
1949 
1950 static long wb_check_background_flush(struct bdi_writeback *wb)
1951 {
1952 	if (wb_over_bg_thresh(wb)) {
1953 
1954 		struct wb_writeback_work work = {
1955 			.nr_pages	= LONG_MAX,
1956 			.sync_mode	= WB_SYNC_NONE,
1957 			.for_background	= 1,
1958 			.range_cyclic	= 1,
1959 			.reason		= WB_REASON_BACKGROUND,
1960 		};
1961 
1962 		return wb_writeback(wb, &work);
1963 	}
1964 
1965 	return 0;
1966 }
1967 
1968 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1969 {
1970 	unsigned long expired;
1971 	long nr_pages;
1972 
1973 	/*
1974 	 * When set to zero, disable periodic writeback
1975 	 */
1976 	if (!dirty_writeback_interval)
1977 		return 0;
1978 
1979 	expired = wb->last_old_flush +
1980 			msecs_to_jiffies(dirty_writeback_interval * 10);
1981 	if (time_before(jiffies, expired))
1982 		return 0;
1983 
1984 	wb->last_old_flush = jiffies;
1985 	nr_pages = get_nr_dirty_pages();
1986 
1987 	if (nr_pages) {
1988 		struct wb_writeback_work work = {
1989 			.nr_pages	= nr_pages,
1990 			.sync_mode	= WB_SYNC_NONE,
1991 			.for_kupdate	= 1,
1992 			.range_cyclic	= 1,
1993 			.reason		= WB_REASON_PERIODIC,
1994 		};
1995 
1996 		return wb_writeback(wb, &work);
1997 	}
1998 
1999 	return 0;
2000 }
2001 
2002 static long wb_check_start_all(struct bdi_writeback *wb)
2003 {
2004 	long nr_pages;
2005 
2006 	if (!test_bit(WB_start_all, &wb->state))
2007 		return 0;
2008 
2009 	nr_pages = get_nr_dirty_pages();
2010 	if (nr_pages) {
2011 		struct wb_writeback_work work = {
2012 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
2013 			.sync_mode	= WB_SYNC_NONE,
2014 			.range_cyclic	= 1,
2015 			.reason		= wb->start_all_reason,
2016 		};
2017 
2018 		nr_pages = wb_writeback(wb, &work);
2019 	}
2020 
2021 	clear_bit(WB_start_all, &wb->state);
2022 	return nr_pages;
2023 }
2024 
2025 
2026 /*
2027  * Retrieve work items and do the writeback they describe
2028  */
2029 static long wb_do_writeback(struct bdi_writeback *wb)
2030 {
2031 	struct wb_writeback_work *work;
2032 	long wrote = 0;
2033 
2034 	set_bit(WB_writeback_running, &wb->state);
2035 	while ((work = get_next_work_item(wb)) != NULL) {
2036 		trace_writeback_exec(wb, work);
2037 		wrote += wb_writeback(wb, work);
2038 		finish_writeback_work(wb, work);
2039 	}
2040 
2041 	/*
2042 	 * Check for a flush-everything request
2043 	 */
2044 	wrote += wb_check_start_all(wb);
2045 
2046 	/*
2047 	 * Check for periodic writeback, kupdated() style
2048 	 */
2049 	wrote += wb_check_old_data_flush(wb);
2050 	wrote += wb_check_background_flush(wb);
2051 	clear_bit(WB_writeback_running, &wb->state);
2052 
2053 	return wrote;
2054 }
2055 
2056 /*
2057  * Handle writeback of dirty data for the device backed by this bdi. Also
2058  * reschedules periodically and does kupdated style flushing.
2059  */
2060 void wb_workfn(struct work_struct *work)
2061 {
2062 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
2063 						struct bdi_writeback, dwork);
2064 	long pages_written;
2065 
2066 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
2067 	current->flags |= PF_SWAPWRITE;
2068 
2069 	if (likely(!current_is_workqueue_rescuer() ||
2070 		   !test_bit(WB_registered, &wb->state))) {
2071 		/*
2072 		 * The normal path.  Keep writing back @wb until its
2073 		 * work_list is empty.  Note that this path is also taken
2074 		 * if @wb is shutting down even when we're running off the
2075 		 * rescuer as work_list needs to be drained.
2076 		 */
2077 		do {
2078 			pages_written = wb_do_writeback(wb);
2079 			trace_writeback_pages_written(pages_written);
2080 		} while (!list_empty(&wb->work_list));
2081 	} else {
2082 		/*
2083 		 * bdi_wq can't get enough workers and we're running off
2084 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
2085 		 * enough for efficient IO.
2086 		 */
2087 		pages_written = writeback_inodes_wb(wb, 1024,
2088 						    WB_REASON_FORKER_THREAD);
2089 		trace_writeback_pages_written(pages_written);
2090 	}
2091 
2092 	if (!list_empty(&wb->work_list))
2093 		wb_wakeup(wb);
2094 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2095 		wb_wakeup_delayed(wb);
2096 
2097 	current->flags &= ~PF_SWAPWRITE;
2098 }
2099 
2100 /*
2101  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2102  * write back the whole world.
2103  */
2104 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2105 					 enum wb_reason reason)
2106 {
2107 	struct bdi_writeback *wb;
2108 
2109 	if (!bdi_has_dirty_io(bdi))
2110 		return;
2111 
2112 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2113 		wb_start_writeback(wb, reason);
2114 }
2115 
2116 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2117 				enum wb_reason reason)
2118 {
2119 	rcu_read_lock();
2120 	__wakeup_flusher_threads_bdi(bdi, reason);
2121 	rcu_read_unlock();
2122 }
2123 
2124 /*
2125  * Wakeup the flusher threads to start writeback of all currently dirty pages
2126  */
2127 void wakeup_flusher_threads(enum wb_reason reason)
2128 {
2129 	struct backing_dev_info *bdi;
2130 
2131 	/*
2132 	 * If we are expecting writeback progress we must submit plugged IO.
2133 	 */
2134 	if (blk_needs_flush_plug(current))
2135 		blk_schedule_flush_plug(current);
2136 
2137 	rcu_read_lock();
2138 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2139 		__wakeup_flusher_threads_bdi(bdi, reason);
2140 	rcu_read_unlock();
2141 }
2142 
2143 /*
2144  * Wake up bdi's periodically to make sure dirtytime inodes gets
2145  * written back periodically.  We deliberately do *not* check the
2146  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2147  * kernel to be constantly waking up once there are any dirtytime
2148  * inodes on the system.  So instead we define a separate delayed work
2149  * function which gets called much more rarely.  (By default, only
2150  * once every 12 hours.)
2151  *
2152  * If there is any other write activity going on in the file system,
2153  * this function won't be necessary.  But if the only thing that has
2154  * happened on the file system is a dirtytime inode caused by an atime
2155  * update, we need this infrastructure below to make sure that inode
2156  * eventually gets pushed out to disk.
2157  */
2158 static void wakeup_dirtytime_writeback(struct work_struct *w);
2159 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2160 
2161 static void wakeup_dirtytime_writeback(struct work_struct *w)
2162 {
2163 	struct backing_dev_info *bdi;
2164 
2165 	rcu_read_lock();
2166 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2167 		struct bdi_writeback *wb;
2168 
2169 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2170 			if (!list_empty(&wb->b_dirty_time))
2171 				wb_wakeup(wb);
2172 	}
2173 	rcu_read_unlock();
2174 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2175 }
2176 
2177 static int __init start_dirtytime_writeback(void)
2178 {
2179 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2180 	return 0;
2181 }
2182 __initcall(start_dirtytime_writeback);
2183 
2184 int dirtytime_interval_handler(struct ctl_table *table, int write,
2185 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2186 {
2187 	int ret;
2188 
2189 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2190 	if (ret == 0 && write)
2191 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2192 	return ret;
2193 }
2194 
2195 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2196 {
2197 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2198 		struct dentry *dentry;
2199 		const char *name = "?";
2200 
2201 		dentry = d_find_alias(inode);
2202 		if (dentry) {
2203 			spin_lock(&dentry->d_lock);
2204 			name = (const char *) dentry->d_name.name;
2205 		}
2206 		printk(KERN_DEBUG
2207 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2208 		       current->comm, task_pid_nr(current), inode->i_ino,
2209 		       name, inode->i_sb->s_id);
2210 		if (dentry) {
2211 			spin_unlock(&dentry->d_lock);
2212 			dput(dentry);
2213 		}
2214 	}
2215 }
2216 
2217 /**
2218  * __mark_inode_dirty -	internal function
2219  *
2220  * @inode: inode to mark
2221  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2222  *
2223  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2224  * mark_inode_dirty_sync.
2225  *
2226  * Put the inode on the super block's dirty list.
2227  *
2228  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2229  * dirty list only if it is hashed or if it refers to a blockdev.
2230  * If it was not hashed, it will never be added to the dirty list
2231  * even if it is later hashed, as it will have been marked dirty already.
2232  *
2233  * In short, make sure you hash any inodes _before_ you start marking
2234  * them dirty.
2235  *
2236  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2237  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2238  * the kernel-internal blockdev inode represents the dirtying time of the
2239  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2240  * page->mapping->host, so the page-dirtying time is recorded in the internal
2241  * blockdev inode.
2242  */
2243 void __mark_inode_dirty(struct inode *inode, int flags)
2244 {
2245 	struct super_block *sb = inode->i_sb;
2246 	int dirtytime;
2247 
2248 	trace_writeback_mark_inode_dirty(inode, flags);
2249 
2250 	/*
2251 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2252 	 * dirty the inode itself
2253 	 */
2254 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2255 		trace_writeback_dirty_inode_start(inode, flags);
2256 
2257 		if (sb->s_op->dirty_inode)
2258 			sb->s_op->dirty_inode(inode, flags);
2259 
2260 		trace_writeback_dirty_inode(inode, flags);
2261 	}
2262 	if (flags & I_DIRTY_INODE)
2263 		flags &= ~I_DIRTY_TIME;
2264 	dirtytime = flags & I_DIRTY_TIME;
2265 
2266 	/*
2267 	 * Paired with smp_mb() in __writeback_single_inode() for the
2268 	 * following lockless i_state test.  See there for details.
2269 	 */
2270 	smp_mb();
2271 
2272 	if (((inode->i_state & flags) == flags) ||
2273 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2274 		return;
2275 
2276 	if (unlikely(block_dump))
2277 		block_dump___mark_inode_dirty(inode);
2278 
2279 	spin_lock(&inode->i_lock);
2280 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2281 		goto out_unlock_inode;
2282 	if ((inode->i_state & flags) != flags) {
2283 		const int was_dirty = inode->i_state & I_DIRTY;
2284 
2285 		inode_attach_wb(inode, NULL);
2286 
2287 		if (flags & I_DIRTY_INODE)
2288 			inode->i_state &= ~I_DIRTY_TIME;
2289 		inode->i_state |= flags;
2290 
2291 		/*
2292 		 * If the inode is being synced, just update its dirty state.
2293 		 * The unlocker will place the inode on the appropriate
2294 		 * superblock list, based upon its state.
2295 		 */
2296 		if (inode->i_state & I_SYNC)
2297 			goto out_unlock_inode;
2298 
2299 		/*
2300 		 * Only add valid (hashed) inodes to the superblock's
2301 		 * dirty list.  Add blockdev inodes as well.
2302 		 */
2303 		if (!S_ISBLK(inode->i_mode)) {
2304 			if (inode_unhashed(inode))
2305 				goto out_unlock_inode;
2306 		}
2307 		if (inode->i_state & I_FREEING)
2308 			goto out_unlock_inode;
2309 
2310 		/*
2311 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2312 		 * reposition it (that would break b_dirty time-ordering).
2313 		 */
2314 		if (!was_dirty) {
2315 			struct bdi_writeback *wb;
2316 			struct list_head *dirty_list;
2317 			bool wakeup_bdi = false;
2318 
2319 			wb = locked_inode_to_wb_and_lock_list(inode);
2320 
2321 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2322 			     !test_bit(WB_registered, &wb->state),
2323 			     "bdi-%s not registered\n", wb->bdi->name);
2324 
2325 			inode->dirtied_when = jiffies;
2326 			if (dirtytime)
2327 				inode->dirtied_time_when = jiffies;
2328 
2329 			if (inode->i_state & I_DIRTY)
2330 				dirty_list = &wb->b_dirty;
2331 			else
2332 				dirty_list = &wb->b_dirty_time;
2333 
2334 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2335 							       dirty_list);
2336 
2337 			spin_unlock(&wb->list_lock);
2338 			trace_writeback_dirty_inode_enqueue(inode);
2339 
2340 			/*
2341 			 * If this is the first dirty inode for this bdi,
2342 			 * we have to wake-up the corresponding bdi thread
2343 			 * to make sure background write-back happens
2344 			 * later.
2345 			 */
2346 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2347 				wb_wakeup_delayed(wb);
2348 			return;
2349 		}
2350 	}
2351 out_unlock_inode:
2352 	spin_unlock(&inode->i_lock);
2353 }
2354 EXPORT_SYMBOL(__mark_inode_dirty);
2355 
2356 /*
2357  * The @s_sync_lock is used to serialise concurrent sync operations
2358  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2359  * Concurrent callers will block on the s_sync_lock rather than doing contending
2360  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2361  * has been issued up to the time this function is enter is guaranteed to be
2362  * completed by the time we have gained the lock and waited for all IO that is
2363  * in progress regardless of the order callers are granted the lock.
2364  */
2365 static void wait_sb_inodes(struct super_block *sb)
2366 {
2367 	LIST_HEAD(sync_list);
2368 
2369 	/*
2370 	 * We need to be protected against the filesystem going from
2371 	 * r/o to r/w or vice versa.
2372 	 */
2373 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2374 
2375 	mutex_lock(&sb->s_sync_lock);
2376 
2377 	/*
2378 	 * Splice the writeback list onto a temporary list to avoid waiting on
2379 	 * inodes that have started writeback after this point.
2380 	 *
2381 	 * Use rcu_read_lock() to keep the inodes around until we have a
2382 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2383 	 * the local list because inodes can be dropped from either by writeback
2384 	 * completion.
2385 	 */
2386 	rcu_read_lock();
2387 	spin_lock_irq(&sb->s_inode_wblist_lock);
2388 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2389 
2390 	/*
2391 	 * Data integrity sync. Must wait for all pages under writeback, because
2392 	 * there may have been pages dirtied before our sync call, but which had
2393 	 * writeout started before we write it out.  In which case, the inode
2394 	 * may not be on the dirty list, but we still have to wait for that
2395 	 * writeout.
2396 	 */
2397 	while (!list_empty(&sync_list)) {
2398 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2399 						       i_wb_list);
2400 		struct address_space *mapping = inode->i_mapping;
2401 
2402 		/*
2403 		 * Move each inode back to the wb list before we drop the lock
2404 		 * to preserve consistency between i_wb_list and the mapping
2405 		 * writeback tag. Writeback completion is responsible to remove
2406 		 * the inode from either list once the writeback tag is cleared.
2407 		 */
2408 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2409 
2410 		/*
2411 		 * The mapping can appear untagged while still on-list since we
2412 		 * do not have the mapping lock. Skip it here, wb completion
2413 		 * will remove it.
2414 		 */
2415 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2416 			continue;
2417 
2418 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2419 
2420 		spin_lock(&inode->i_lock);
2421 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2422 			spin_unlock(&inode->i_lock);
2423 
2424 			spin_lock_irq(&sb->s_inode_wblist_lock);
2425 			continue;
2426 		}
2427 		__iget(inode);
2428 		spin_unlock(&inode->i_lock);
2429 		rcu_read_unlock();
2430 
2431 		/*
2432 		 * We keep the error status of individual mapping so that
2433 		 * applications can catch the writeback error using fsync(2).
2434 		 * See filemap_fdatawait_keep_errors() for details.
2435 		 */
2436 		filemap_fdatawait_keep_errors(mapping);
2437 
2438 		cond_resched();
2439 
2440 		iput(inode);
2441 
2442 		rcu_read_lock();
2443 		spin_lock_irq(&sb->s_inode_wblist_lock);
2444 	}
2445 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2446 	rcu_read_unlock();
2447 	mutex_unlock(&sb->s_sync_lock);
2448 }
2449 
2450 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2451 				     enum wb_reason reason, bool skip_if_busy)
2452 {
2453 	struct backing_dev_info *bdi = sb->s_bdi;
2454 	DEFINE_WB_COMPLETION(done, bdi);
2455 	struct wb_writeback_work work = {
2456 		.sb			= sb,
2457 		.sync_mode		= WB_SYNC_NONE,
2458 		.tagged_writepages	= 1,
2459 		.done			= &done,
2460 		.nr_pages		= nr,
2461 		.reason			= reason,
2462 	};
2463 
2464 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2465 		return;
2466 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2467 
2468 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2469 	wb_wait_for_completion(&done);
2470 }
2471 
2472 /**
2473  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2474  * @sb: the superblock
2475  * @nr: the number of pages to write
2476  * @reason: reason why some writeback work initiated
2477  *
2478  * Start writeback on some inodes on this super_block. No guarantees are made
2479  * on how many (if any) will be written, and this function does not wait
2480  * for IO completion of submitted IO.
2481  */
2482 void writeback_inodes_sb_nr(struct super_block *sb,
2483 			    unsigned long nr,
2484 			    enum wb_reason reason)
2485 {
2486 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2487 }
2488 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2489 
2490 /**
2491  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2492  * @sb: the superblock
2493  * @reason: reason why some writeback work was initiated
2494  *
2495  * Start writeback on some inodes on this super_block. No guarantees are made
2496  * on how many (if any) will be written, and this function does not wait
2497  * for IO completion of submitted IO.
2498  */
2499 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2500 {
2501 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2502 }
2503 EXPORT_SYMBOL(writeback_inodes_sb);
2504 
2505 /**
2506  * try_to_writeback_inodes_sb - try to start writeback if none underway
2507  * @sb: the superblock
2508  * @reason: reason why some writeback work was initiated
2509  *
2510  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2511  */
2512 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2513 {
2514 	if (!down_read_trylock(&sb->s_umount))
2515 		return;
2516 
2517 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2518 	up_read(&sb->s_umount);
2519 }
2520 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2521 
2522 /**
2523  * sync_inodes_sb	-	sync sb inode pages
2524  * @sb: the superblock
2525  *
2526  * This function writes and waits on any dirty inode belonging to this
2527  * super_block.
2528  */
2529 void sync_inodes_sb(struct super_block *sb)
2530 {
2531 	struct backing_dev_info *bdi = sb->s_bdi;
2532 	DEFINE_WB_COMPLETION(done, bdi);
2533 	struct wb_writeback_work work = {
2534 		.sb		= sb,
2535 		.sync_mode	= WB_SYNC_ALL,
2536 		.nr_pages	= LONG_MAX,
2537 		.range_cyclic	= 0,
2538 		.done		= &done,
2539 		.reason		= WB_REASON_SYNC,
2540 		.for_sync	= 1,
2541 	};
2542 
2543 	/*
2544 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2545 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2546 	 * bdi_has_dirty() need to be written out too.
2547 	 */
2548 	if (bdi == &noop_backing_dev_info)
2549 		return;
2550 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2551 
2552 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2553 	bdi_down_write_wb_switch_rwsem(bdi);
2554 	bdi_split_work_to_wbs(bdi, &work, false);
2555 	wb_wait_for_completion(&done);
2556 	bdi_up_write_wb_switch_rwsem(bdi);
2557 
2558 	wait_sb_inodes(sb);
2559 }
2560 EXPORT_SYMBOL(sync_inodes_sb);
2561 
2562 /**
2563  * write_inode_now	-	write an inode to disk
2564  * @inode: inode to write to disk
2565  * @sync: whether the write should be synchronous or not
2566  *
2567  * This function commits an inode to disk immediately if it is dirty. This is
2568  * primarily needed by knfsd.
2569  *
2570  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2571  */
2572 int write_inode_now(struct inode *inode, int sync)
2573 {
2574 	struct writeback_control wbc = {
2575 		.nr_to_write = LONG_MAX,
2576 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2577 		.range_start = 0,
2578 		.range_end = LLONG_MAX,
2579 	};
2580 
2581 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2582 		wbc.nr_to_write = 0;
2583 
2584 	might_sleep();
2585 	return writeback_single_inode(inode, &wbc);
2586 }
2587 EXPORT_SYMBOL(write_inode_now);
2588 
2589 /**
2590  * sync_inode - write an inode and its pages to disk.
2591  * @inode: the inode to sync
2592  * @wbc: controls the writeback mode
2593  *
2594  * sync_inode() will write an inode and its pages to disk.  It will also
2595  * correctly update the inode on its superblock's dirty inode lists and will
2596  * update inode->i_state.
2597  *
2598  * The caller must have a ref on the inode.
2599  */
2600 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2601 {
2602 	return writeback_single_inode(inode, wbc);
2603 }
2604 EXPORT_SYMBOL(sync_inode);
2605 
2606 /**
2607  * sync_inode_metadata - write an inode to disk
2608  * @inode: the inode to sync
2609  * @wait: wait for I/O to complete.
2610  *
2611  * Write an inode to disk and adjust its dirty state after completion.
2612  *
2613  * Note: only writes the actual inode, no associated data or other metadata.
2614  */
2615 int sync_inode_metadata(struct inode *inode, int wait)
2616 {
2617 	struct writeback_control wbc = {
2618 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2619 		.nr_to_write = 0, /* metadata-only */
2620 	};
2621 
2622 	return sync_inode(inode, &wbc);
2623 }
2624 EXPORT_SYMBOL(sync_inode_metadata);
2625