xref: /openbmc/linux/fs/fs-writeback.c (revision 7b6d864b)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include "internal.h"
30 
31 /*
32  * 4MB minimal write chunk size
33  */
34 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
35 
36 /*
37  * Passed into wb_writeback(), essentially a subset of writeback_control
38  */
39 struct wb_writeback_work {
40 	long nr_pages;
41 	struct super_block *sb;
42 	unsigned long *older_than_this;
43 	enum writeback_sync_modes sync_mode;
44 	unsigned int tagged_writepages:1;
45 	unsigned int for_kupdate:1;
46 	unsigned int range_cyclic:1;
47 	unsigned int for_background:1;
48 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
49 	enum wb_reason reason;		/* why was writeback initiated? */
50 
51 	struct list_head list;		/* pending work list */
52 	struct completion *done;	/* set if the caller waits */
53 };
54 
55 /**
56  * writeback_in_progress - determine whether there is writeback in progress
57  * @bdi: the device's backing_dev_info structure.
58  *
59  * Determine whether there is writeback waiting to be handled against a
60  * backing device.
61  */
62 int writeback_in_progress(struct backing_dev_info *bdi)
63 {
64 	return test_bit(BDI_writeback_running, &bdi->state);
65 }
66 EXPORT_SYMBOL(writeback_in_progress);
67 
68 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
69 {
70 	struct super_block *sb = inode->i_sb;
71 
72 	if (strcmp(sb->s_type->name, "bdev") == 0)
73 		return inode->i_mapping->backing_dev_info;
74 
75 	return sb->s_bdi;
76 }
77 
78 static inline struct inode *wb_inode(struct list_head *head)
79 {
80 	return list_entry(head, struct inode, i_wb_list);
81 }
82 
83 /*
84  * Include the creation of the trace points after defining the
85  * wb_writeback_work structure and inline functions so that the definition
86  * remains local to this file.
87  */
88 #define CREATE_TRACE_POINTS
89 #include <trace/events/writeback.h>
90 
91 static void bdi_queue_work(struct backing_dev_info *bdi,
92 			   struct wb_writeback_work *work)
93 {
94 	trace_writeback_queue(bdi, work);
95 
96 	spin_lock_bh(&bdi->wb_lock);
97 	list_add_tail(&work->list, &bdi->work_list);
98 	spin_unlock_bh(&bdi->wb_lock);
99 
100 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
101 }
102 
103 static void
104 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
105 		      bool range_cyclic, enum wb_reason reason)
106 {
107 	struct wb_writeback_work *work;
108 
109 	/*
110 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
111 	 * wakeup the thread for old dirty data writeback
112 	 */
113 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
114 	if (!work) {
115 		trace_writeback_nowork(bdi);
116 		mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
117 		return;
118 	}
119 
120 	work->sync_mode	= WB_SYNC_NONE;
121 	work->nr_pages	= nr_pages;
122 	work->range_cyclic = range_cyclic;
123 	work->reason	= reason;
124 
125 	bdi_queue_work(bdi, work);
126 }
127 
128 /**
129  * bdi_start_writeback - start writeback
130  * @bdi: the backing device to write from
131  * @nr_pages: the number of pages to write
132  * @reason: reason why some writeback work was initiated
133  *
134  * Description:
135  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
136  *   started when this function returns, we make no guarantees on
137  *   completion. Caller need not hold sb s_umount semaphore.
138  *
139  */
140 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
141 			enum wb_reason reason)
142 {
143 	__bdi_start_writeback(bdi, nr_pages, true, reason);
144 }
145 
146 /**
147  * bdi_start_background_writeback - start background writeback
148  * @bdi: the backing device to write from
149  *
150  * Description:
151  *   This makes sure WB_SYNC_NONE background writeback happens. When
152  *   this function returns, it is only guaranteed that for given BDI
153  *   some IO is happening if we are over background dirty threshold.
154  *   Caller need not hold sb s_umount semaphore.
155  */
156 void bdi_start_background_writeback(struct backing_dev_info *bdi)
157 {
158 	/*
159 	 * We just wake up the flusher thread. It will perform background
160 	 * writeback as soon as there is no other work to do.
161 	 */
162 	trace_writeback_wake_background(bdi);
163 	mod_delayed_work(bdi_wq, &bdi->wb.dwork, 0);
164 }
165 
166 /*
167  * Remove the inode from the writeback list it is on.
168  */
169 void inode_wb_list_del(struct inode *inode)
170 {
171 	struct backing_dev_info *bdi = inode_to_bdi(inode);
172 
173 	spin_lock(&bdi->wb.list_lock);
174 	list_del_init(&inode->i_wb_list);
175 	spin_unlock(&bdi->wb.list_lock);
176 }
177 
178 /*
179  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
180  * furthest end of its superblock's dirty-inode list.
181  *
182  * Before stamping the inode's ->dirtied_when, we check to see whether it is
183  * already the most-recently-dirtied inode on the b_dirty list.  If that is
184  * the case then the inode must have been redirtied while it was being written
185  * out and we don't reset its dirtied_when.
186  */
187 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
188 {
189 	assert_spin_locked(&wb->list_lock);
190 	if (!list_empty(&wb->b_dirty)) {
191 		struct inode *tail;
192 
193 		tail = wb_inode(wb->b_dirty.next);
194 		if (time_before(inode->dirtied_when, tail->dirtied_when))
195 			inode->dirtied_when = jiffies;
196 	}
197 	list_move(&inode->i_wb_list, &wb->b_dirty);
198 }
199 
200 /*
201  * requeue inode for re-scanning after bdi->b_io list is exhausted.
202  */
203 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
204 {
205 	assert_spin_locked(&wb->list_lock);
206 	list_move(&inode->i_wb_list, &wb->b_more_io);
207 }
208 
209 static void inode_sync_complete(struct inode *inode)
210 {
211 	inode->i_state &= ~I_SYNC;
212 	/* If inode is clean an unused, put it into LRU now... */
213 	inode_add_lru(inode);
214 	/* Waiters must see I_SYNC cleared before being woken up */
215 	smp_mb();
216 	wake_up_bit(&inode->i_state, __I_SYNC);
217 }
218 
219 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
220 {
221 	bool ret = time_after(inode->dirtied_when, t);
222 #ifndef CONFIG_64BIT
223 	/*
224 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
225 	 * It _appears_ to be in the future, but is actually in distant past.
226 	 * This test is necessary to prevent such wrapped-around relative times
227 	 * from permanently stopping the whole bdi writeback.
228 	 */
229 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
230 #endif
231 	return ret;
232 }
233 
234 /*
235  * Move expired (dirtied before work->older_than_this) dirty inodes from
236  * @delaying_queue to @dispatch_queue.
237  */
238 static int move_expired_inodes(struct list_head *delaying_queue,
239 			       struct list_head *dispatch_queue,
240 			       struct wb_writeback_work *work)
241 {
242 	LIST_HEAD(tmp);
243 	struct list_head *pos, *node;
244 	struct super_block *sb = NULL;
245 	struct inode *inode;
246 	int do_sb_sort = 0;
247 	int moved = 0;
248 
249 	while (!list_empty(delaying_queue)) {
250 		inode = wb_inode(delaying_queue->prev);
251 		if (work->older_than_this &&
252 		    inode_dirtied_after(inode, *work->older_than_this))
253 			break;
254 		if (sb && sb != inode->i_sb)
255 			do_sb_sort = 1;
256 		sb = inode->i_sb;
257 		list_move(&inode->i_wb_list, &tmp);
258 		moved++;
259 	}
260 
261 	/* just one sb in list, splice to dispatch_queue and we're done */
262 	if (!do_sb_sort) {
263 		list_splice(&tmp, dispatch_queue);
264 		goto out;
265 	}
266 
267 	/* Move inodes from one superblock together */
268 	while (!list_empty(&tmp)) {
269 		sb = wb_inode(tmp.prev)->i_sb;
270 		list_for_each_prev_safe(pos, node, &tmp) {
271 			inode = wb_inode(pos);
272 			if (inode->i_sb == sb)
273 				list_move(&inode->i_wb_list, dispatch_queue);
274 		}
275 	}
276 out:
277 	return moved;
278 }
279 
280 /*
281  * Queue all expired dirty inodes for io, eldest first.
282  * Before
283  *         newly dirtied     b_dirty    b_io    b_more_io
284  *         =============>    gf         edc     BA
285  * After
286  *         newly dirtied     b_dirty    b_io    b_more_io
287  *         =============>    g          fBAedc
288  *                                           |
289  *                                           +--> dequeue for IO
290  */
291 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
292 {
293 	int moved;
294 	assert_spin_locked(&wb->list_lock);
295 	list_splice_init(&wb->b_more_io, &wb->b_io);
296 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
297 	trace_writeback_queue_io(wb, work, moved);
298 }
299 
300 static int write_inode(struct inode *inode, struct writeback_control *wbc)
301 {
302 	int ret;
303 
304 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
305 		trace_writeback_write_inode_start(inode, wbc);
306 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
307 		trace_writeback_write_inode(inode, wbc);
308 		return ret;
309 	}
310 	return 0;
311 }
312 
313 /*
314  * Wait for writeback on an inode to complete. Called with i_lock held.
315  * Caller must make sure inode cannot go away when we drop i_lock.
316  */
317 static void __inode_wait_for_writeback(struct inode *inode)
318 	__releases(inode->i_lock)
319 	__acquires(inode->i_lock)
320 {
321 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
322 	wait_queue_head_t *wqh;
323 
324 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
325 	while (inode->i_state & I_SYNC) {
326 		spin_unlock(&inode->i_lock);
327 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
328 		spin_lock(&inode->i_lock);
329 	}
330 }
331 
332 /*
333  * Wait for writeback on an inode to complete. Caller must have inode pinned.
334  */
335 void inode_wait_for_writeback(struct inode *inode)
336 {
337 	spin_lock(&inode->i_lock);
338 	__inode_wait_for_writeback(inode);
339 	spin_unlock(&inode->i_lock);
340 }
341 
342 /*
343  * Sleep until I_SYNC is cleared. This function must be called with i_lock
344  * held and drops it. It is aimed for callers not holding any inode reference
345  * so once i_lock is dropped, inode can go away.
346  */
347 static void inode_sleep_on_writeback(struct inode *inode)
348 	__releases(inode->i_lock)
349 {
350 	DEFINE_WAIT(wait);
351 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
352 	int sleep;
353 
354 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
355 	sleep = inode->i_state & I_SYNC;
356 	spin_unlock(&inode->i_lock);
357 	if (sleep)
358 		schedule();
359 	finish_wait(wqh, &wait);
360 }
361 
362 /*
363  * Find proper writeback list for the inode depending on its current state and
364  * possibly also change of its state while we were doing writeback.  Here we
365  * handle things such as livelock prevention or fairness of writeback among
366  * inodes. This function can be called only by flusher thread - noone else
367  * processes all inodes in writeback lists and requeueing inodes behind flusher
368  * thread's back can have unexpected consequences.
369  */
370 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
371 			  struct writeback_control *wbc)
372 {
373 	if (inode->i_state & I_FREEING)
374 		return;
375 
376 	/*
377 	 * Sync livelock prevention. Each inode is tagged and synced in one
378 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
379 	 * the dirty time to prevent enqueue and sync it again.
380 	 */
381 	if ((inode->i_state & I_DIRTY) &&
382 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
383 		inode->dirtied_when = jiffies;
384 
385 	if (wbc->pages_skipped) {
386 		/*
387 		 * writeback is not making progress due to locked
388 		 * buffers. Skip this inode for now.
389 		 */
390 		redirty_tail(inode, wb);
391 		return;
392 	}
393 
394 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
395 		/*
396 		 * We didn't write back all the pages.  nfs_writepages()
397 		 * sometimes bales out without doing anything.
398 		 */
399 		if (wbc->nr_to_write <= 0) {
400 			/* Slice used up. Queue for next turn. */
401 			requeue_io(inode, wb);
402 		} else {
403 			/*
404 			 * Writeback blocked by something other than
405 			 * congestion. Delay the inode for some time to
406 			 * avoid spinning on the CPU (100% iowait)
407 			 * retrying writeback of the dirty page/inode
408 			 * that cannot be performed immediately.
409 			 */
410 			redirty_tail(inode, wb);
411 		}
412 	} else if (inode->i_state & I_DIRTY) {
413 		/*
414 		 * Filesystems can dirty the inode during writeback operations,
415 		 * such as delayed allocation during submission or metadata
416 		 * updates after data IO completion.
417 		 */
418 		redirty_tail(inode, wb);
419 	} else {
420 		/* The inode is clean. Remove from writeback lists. */
421 		list_del_init(&inode->i_wb_list);
422 	}
423 }
424 
425 /*
426  * Write out an inode and its dirty pages. Do not update the writeback list
427  * linkage. That is left to the caller. The caller is also responsible for
428  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
429  */
430 static int
431 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
432 {
433 	struct address_space *mapping = inode->i_mapping;
434 	long nr_to_write = wbc->nr_to_write;
435 	unsigned dirty;
436 	int ret;
437 
438 	WARN_ON(!(inode->i_state & I_SYNC));
439 
440 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
441 
442 	ret = do_writepages(mapping, wbc);
443 
444 	/*
445 	 * Make sure to wait on the data before writing out the metadata.
446 	 * This is important for filesystems that modify metadata on data
447 	 * I/O completion. We don't do it for sync(2) writeback because it has a
448 	 * separate, external IO completion path and ->sync_fs for guaranteeing
449 	 * inode metadata is written back correctly.
450 	 */
451 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
452 		int err = filemap_fdatawait(mapping);
453 		if (ret == 0)
454 			ret = err;
455 	}
456 
457 	/*
458 	 * Some filesystems may redirty the inode during the writeback
459 	 * due to delalloc, clear dirty metadata flags right before
460 	 * write_inode()
461 	 */
462 	spin_lock(&inode->i_lock);
463 	/* Clear I_DIRTY_PAGES if we've written out all dirty pages */
464 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
465 		inode->i_state &= ~I_DIRTY_PAGES;
466 	dirty = inode->i_state & I_DIRTY;
467 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
468 	spin_unlock(&inode->i_lock);
469 	/* Don't write the inode if only I_DIRTY_PAGES was set */
470 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
471 		int err = write_inode(inode, wbc);
472 		if (ret == 0)
473 			ret = err;
474 	}
475 	trace_writeback_single_inode(inode, wbc, nr_to_write);
476 	return ret;
477 }
478 
479 /*
480  * Write out an inode's dirty pages. Either the caller has an active reference
481  * on the inode or the inode has I_WILL_FREE set.
482  *
483  * This function is designed to be called for writing back one inode which
484  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
485  * and does more profound writeback list handling in writeback_sb_inodes().
486  */
487 static int
488 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
489 		       struct writeback_control *wbc)
490 {
491 	int ret = 0;
492 
493 	spin_lock(&inode->i_lock);
494 	if (!atomic_read(&inode->i_count))
495 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
496 	else
497 		WARN_ON(inode->i_state & I_WILL_FREE);
498 
499 	if (inode->i_state & I_SYNC) {
500 		if (wbc->sync_mode != WB_SYNC_ALL)
501 			goto out;
502 		/*
503 		 * It's a data-integrity sync. We must wait. Since callers hold
504 		 * inode reference or inode has I_WILL_FREE set, it cannot go
505 		 * away under us.
506 		 */
507 		__inode_wait_for_writeback(inode);
508 	}
509 	WARN_ON(inode->i_state & I_SYNC);
510 	/*
511 	 * Skip inode if it is clean. We don't want to mess with writeback
512 	 * lists in this function since flusher thread may be doing for example
513 	 * sync in parallel and if we move the inode, it could get skipped. So
514 	 * here we make sure inode is on some writeback list and leave it there
515 	 * unless we have completely cleaned the inode.
516 	 */
517 	if (!(inode->i_state & I_DIRTY))
518 		goto out;
519 	inode->i_state |= I_SYNC;
520 	spin_unlock(&inode->i_lock);
521 
522 	ret = __writeback_single_inode(inode, wbc);
523 
524 	spin_lock(&wb->list_lock);
525 	spin_lock(&inode->i_lock);
526 	/*
527 	 * If inode is clean, remove it from writeback lists. Otherwise don't
528 	 * touch it. See comment above for explanation.
529 	 */
530 	if (!(inode->i_state & I_DIRTY))
531 		list_del_init(&inode->i_wb_list);
532 	spin_unlock(&wb->list_lock);
533 	inode_sync_complete(inode);
534 out:
535 	spin_unlock(&inode->i_lock);
536 	return ret;
537 }
538 
539 static long writeback_chunk_size(struct backing_dev_info *bdi,
540 				 struct wb_writeback_work *work)
541 {
542 	long pages;
543 
544 	/*
545 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
546 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
547 	 * here avoids calling into writeback_inodes_wb() more than once.
548 	 *
549 	 * The intended call sequence for WB_SYNC_ALL writeback is:
550 	 *
551 	 *      wb_writeback()
552 	 *          writeback_sb_inodes()       <== called only once
553 	 *              write_cache_pages()     <== called once for each inode
554 	 *                   (quickly) tag currently dirty pages
555 	 *                   (maybe slowly) sync all tagged pages
556 	 */
557 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
558 		pages = LONG_MAX;
559 	else {
560 		pages = min(bdi->avg_write_bandwidth / 2,
561 			    global_dirty_limit / DIRTY_SCOPE);
562 		pages = min(pages, work->nr_pages);
563 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
564 				   MIN_WRITEBACK_PAGES);
565 	}
566 
567 	return pages;
568 }
569 
570 /*
571  * Write a portion of b_io inodes which belong to @sb.
572  *
573  * Return the number of pages and/or inodes written.
574  */
575 static long writeback_sb_inodes(struct super_block *sb,
576 				struct bdi_writeback *wb,
577 				struct wb_writeback_work *work)
578 {
579 	struct writeback_control wbc = {
580 		.sync_mode		= work->sync_mode,
581 		.tagged_writepages	= work->tagged_writepages,
582 		.for_kupdate		= work->for_kupdate,
583 		.for_background		= work->for_background,
584 		.for_sync		= work->for_sync,
585 		.range_cyclic		= work->range_cyclic,
586 		.range_start		= 0,
587 		.range_end		= LLONG_MAX,
588 	};
589 	unsigned long start_time = jiffies;
590 	long write_chunk;
591 	long wrote = 0;  /* count both pages and inodes */
592 
593 	while (!list_empty(&wb->b_io)) {
594 		struct inode *inode = wb_inode(wb->b_io.prev);
595 
596 		if (inode->i_sb != sb) {
597 			if (work->sb) {
598 				/*
599 				 * We only want to write back data for this
600 				 * superblock, move all inodes not belonging
601 				 * to it back onto the dirty list.
602 				 */
603 				redirty_tail(inode, wb);
604 				continue;
605 			}
606 
607 			/*
608 			 * The inode belongs to a different superblock.
609 			 * Bounce back to the caller to unpin this and
610 			 * pin the next superblock.
611 			 */
612 			break;
613 		}
614 
615 		/*
616 		 * Don't bother with new inodes or inodes being freed, first
617 		 * kind does not need periodic writeout yet, and for the latter
618 		 * kind writeout is handled by the freer.
619 		 */
620 		spin_lock(&inode->i_lock);
621 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
622 			spin_unlock(&inode->i_lock);
623 			redirty_tail(inode, wb);
624 			continue;
625 		}
626 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
627 			/*
628 			 * If this inode is locked for writeback and we are not
629 			 * doing writeback-for-data-integrity, move it to
630 			 * b_more_io so that writeback can proceed with the
631 			 * other inodes on s_io.
632 			 *
633 			 * We'll have another go at writing back this inode
634 			 * when we completed a full scan of b_io.
635 			 */
636 			spin_unlock(&inode->i_lock);
637 			requeue_io(inode, wb);
638 			trace_writeback_sb_inodes_requeue(inode);
639 			continue;
640 		}
641 		spin_unlock(&wb->list_lock);
642 
643 		/*
644 		 * We already requeued the inode if it had I_SYNC set and we
645 		 * are doing WB_SYNC_NONE writeback. So this catches only the
646 		 * WB_SYNC_ALL case.
647 		 */
648 		if (inode->i_state & I_SYNC) {
649 			/* Wait for I_SYNC. This function drops i_lock... */
650 			inode_sleep_on_writeback(inode);
651 			/* Inode may be gone, start again */
652 			spin_lock(&wb->list_lock);
653 			continue;
654 		}
655 		inode->i_state |= I_SYNC;
656 		spin_unlock(&inode->i_lock);
657 
658 		write_chunk = writeback_chunk_size(wb->bdi, work);
659 		wbc.nr_to_write = write_chunk;
660 		wbc.pages_skipped = 0;
661 
662 		/*
663 		 * We use I_SYNC to pin the inode in memory. While it is set
664 		 * evict_inode() will wait so the inode cannot be freed.
665 		 */
666 		__writeback_single_inode(inode, &wbc);
667 
668 		work->nr_pages -= write_chunk - wbc.nr_to_write;
669 		wrote += write_chunk - wbc.nr_to_write;
670 		spin_lock(&wb->list_lock);
671 		spin_lock(&inode->i_lock);
672 		if (!(inode->i_state & I_DIRTY))
673 			wrote++;
674 		requeue_inode(inode, wb, &wbc);
675 		inode_sync_complete(inode);
676 		spin_unlock(&inode->i_lock);
677 		cond_resched_lock(&wb->list_lock);
678 		/*
679 		 * bail out to wb_writeback() often enough to check
680 		 * background threshold and other termination conditions.
681 		 */
682 		if (wrote) {
683 			if (time_is_before_jiffies(start_time + HZ / 10UL))
684 				break;
685 			if (work->nr_pages <= 0)
686 				break;
687 		}
688 	}
689 	return wrote;
690 }
691 
692 static long __writeback_inodes_wb(struct bdi_writeback *wb,
693 				  struct wb_writeback_work *work)
694 {
695 	unsigned long start_time = jiffies;
696 	long wrote = 0;
697 
698 	while (!list_empty(&wb->b_io)) {
699 		struct inode *inode = wb_inode(wb->b_io.prev);
700 		struct super_block *sb = inode->i_sb;
701 
702 		if (!grab_super_passive(sb)) {
703 			/*
704 			 * grab_super_passive() may fail consistently due to
705 			 * s_umount being grabbed by someone else. Don't use
706 			 * requeue_io() to avoid busy retrying the inode/sb.
707 			 */
708 			redirty_tail(inode, wb);
709 			continue;
710 		}
711 		wrote += writeback_sb_inodes(sb, wb, work);
712 		drop_super(sb);
713 
714 		/* refer to the same tests at the end of writeback_sb_inodes */
715 		if (wrote) {
716 			if (time_is_before_jiffies(start_time + HZ / 10UL))
717 				break;
718 			if (work->nr_pages <= 0)
719 				break;
720 		}
721 	}
722 	/* Leave any unwritten inodes on b_io */
723 	return wrote;
724 }
725 
726 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
727 				enum wb_reason reason)
728 {
729 	struct wb_writeback_work work = {
730 		.nr_pages	= nr_pages,
731 		.sync_mode	= WB_SYNC_NONE,
732 		.range_cyclic	= 1,
733 		.reason		= reason,
734 	};
735 
736 	spin_lock(&wb->list_lock);
737 	if (list_empty(&wb->b_io))
738 		queue_io(wb, &work);
739 	__writeback_inodes_wb(wb, &work);
740 	spin_unlock(&wb->list_lock);
741 
742 	return nr_pages - work.nr_pages;
743 }
744 
745 static bool over_bground_thresh(struct backing_dev_info *bdi)
746 {
747 	unsigned long background_thresh, dirty_thresh;
748 
749 	global_dirty_limits(&background_thresh, &dirty_thresh);
750 
751 	if (global_page_state(NR_FILE_DIRTY) +
752 	    global_page_state(NR_UNSTABLE_NFS) > background_thresh)
753 		return true;
754 
755 	if (bdi_stat(bdi, BDI_RECLAIMABLE) >
756 				bdi_dirty_limit(bdi, background_thresh))
757 		return true;
758 
759 	return false;
760 }
761 
762 /*
763  * Called under wb->list_lock. If there are multiple wb per bdi,
764  * only the flusher working on the first wb should do it.
765  */
766 static void wb_update_bandwidth(struct bdi_writeback *wb,
767 				unsigned long start_time)
768 {
769 	__bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
770 }
771 
772 /*
773  * Explicit flushing or periodic writeback of "old" data.
774  *
775  * Define "old": the first time one of an inode's pages is dirtied, we mark the
776  * dirtying-time in the inode's address_space.  So this periodic writeback code
777  * just walks the superblock inode list, writing back any inodes which are
778  * older than a specific point in time.
779  *
780  * Try to run once per dirty_writeback_interval.  But if a writeback event
781  * takes longer than a dirty_writeback_interval interval, then leave a
782  * one-second gap.
783  *
784  * older_than_this takes precedence over nr_to_write.  So we'll only write back
785  * all dirty pages if they are all attached to "old" mappings.
786  */
787 static long wb_writeback(struct bdi_writeback *wb,
788 			 struct wb_writeback_work *work)
789 {
790 	unsigned long wb_start = jiffies;
791 	long nr_pages = work->nr_pages;
792 	unsigned long oldest_jif;
793 	struct inode *inode;
794 	long progress;
795 
796 	oldest_jif = jiffies;
797 	work->older_than_this = &oldest_jif;
798 
799 	spin_lock(&wb->list_lock);
800 	for (;;) {
801 		/*
802 		 * Stop writeback when nr_pages has been consumed
803 		 */
804 		if (work->nr_pages <= 0)
805 			break;
806 
807 		/*
808 		 * Background writeout and kupdate-style writeback may
809 		 * run forever. Stop them if there is other work to do
810 		 * so that e.g. sync can proceed. They'll be restarted
811 		 * after the other works are all done.
812 		 */
813 		if ((work->for_background || work->for_kupdate) &&
814 		    !list_empty(&wb->bdi->work_list))
815 			break;
816 
817 		/*
818 		 * For background writeout, stop when we are below the
819 		 * background dirty threshold
820 		 */
821 		if (work->for_background && !over_bground_thresh(wb->bdi))
822 			break;
823 
824 		/*
825 		 * Kupdate and background works are special and we want to
826 		 * include all inodes that need writing. Livelock avoidance is
827 		 * handled by these works yielding to any other work so we are
828 		 * safe.
829 		 */
830 		if (work->for_kupdate) {
831 			oldest_jif = jiffies -
832 				msecs_to_jiffies(dirty_expire_interval * 10);
833 		} else if (work->for_background)
834 			oldest_jif = jiffies;
835 
836 		trace_writeback_start(wb->bdi, work);
837 		if (list_empty(&wb->b_io))
838 			queue_io(wb, work);
839 		if (work->sb)
840 			progress = writeback_sb_inodes(work->sb, wb, work);
841 		else
842 			progress = __writeback_inodes_wb(wb, work);
843 		trace_writeback_written(wb->bdi, work);
844 
845 		wb_update_bandwidth(wb, wb_start);
846 
847 		/*
848 		 * Did we write something? Try for more
849 		 *
850 		 * Dirty inodes are moved to b_io for writeback in batches.
851 		 * The completion of the current batch does not necessarily
852 		 * mean the overall work is done. So we keep looping as long
853 		 * as made some progress on cleaning pages or inodes.
854 		 */
855 		if (progress)
856 			continue;
857 		/*
858 		 * No more inodes for IO, bail
859 		 */
860 		if (list_empty(&wb->b_more_io))
861 			break;
862 		/*
863 		 * Nothing written. Wait for some inode to
864 		 * become available for writeback. Otherwise
865 		 * we'll just busyloop.
866 		 */
867 		if (!list_empty(&wb->b_more_io))  {
868 			trace_writeback_wait(wb->bdi, work);
869 			inode = wb_inode(wb->b_more_io.prev);
870 			spin_lock(&inode->i_lock);
871 			spin_unlock(&wb->list_lock);
872 			/* This function drops i_lock... */
873 			inode_sleep_on_writeback(inode);
874 			spin_lock(&wb->list_lock);
875 		}
876 	}
877 	spin_unlock(&wb->list_lock);
878 
879 	return nr_pages - work->nr_pages;
880 }
881 
882 /*
883  * Return the next wb_writeback_work struct that hasn't been processed yet.
884  */
885 static struct wb_writeback_work *
886 get_next_work_item(struct backing_dev_info *bdi)
887 {
888 	struct wb_writeback_work *work = NULL;
889 
890 	spin_lock_bh(&bdi->wb_lock);
891 	if (!list_empty(&bdi->work_list)) {
892 		work = list_entry(bdi->work_list.next,
893 				  struct wb_writeback_work, list);
894 		list_del_init(&work->list);
895 	}
896 	spin_unlock_bh(&bdi->wb_lock);
897 	return work;
898 }
899 
900 /*
901  * Add in the number of potentially dirty inodes, because each inode
902  * write can dirty pagecache in the underlying blockdev.
903  */
904 static unsigned long get_nr_dirty_pages(void)
905 {
906 	return global_page_state(NR_FILE_DIRTY) +
907 		global_page_state(NR_UNSTABLE_NFS) +
908 		get_nr_dirty_inodes();
909 }
910 
911 static long wb_check_background_flush(struct bdi_writeback *wb)
912 {
913 	if (over_bground_thresh(wb->bdi)) {
914 
915 		struct wb_writeback_work work = {
916 			.nr_pages	= LONG_MAX,
917 			.sync_mode	= WB_SYNC_NONE,
918 			.for_background	= 1,
919 			.range_cyclic	= 1,
920 			.reason		= WB_REASON_BACKGROUND,
921 		};
922 
923 		return wb_writeback(wb, &work);
924 	}
925 
926 	return 0;
927 }
928 
929 static long wb_check_old_data_flush(struct bdi_writeback *wb)
930 {
931 	unsigned long expired;
932 	long nr_pages;
933 
934 	/*
935 	 * When set to zero, disable periodic writeback
936 	 */
937 	if (!dirty_writeback_interval)
938 		return 0;
939 
940 	expired = wb->last_old_flush +
941 			msecs_to_jiffies(dirty_writeback_interval * 10);
942 	if (time_before(jiffies, expired))
943 		return 0;
944 
945 	wb->last_old_flush = jiffies;
946 	nr_pages = get_nr_dirty_pages();
947 
948 	if (nr_pages) {
949 		struct wb_writeback_work work = {
950 			.nr_pages	= nr_pages,
951 			.sync_mode	= WB_SYNC_NONE,
952 			.for_kupdate	= 1,
953 			.range_cyclic	= 1,
954 			.reason		= WB_REASON_PERIODIC,
955 		};
956 
957 		return wb_writeback(wb, &work);
958 	}
959 
960 	return 0;
961 }
962 
963 /*
964  * Retrieve work items and do the writeback they describe
965  */
966 static long wb_do_writeback(struct bdi_writeback *wb)
967 {
968 	struct backing_dev_info *bdi = wb->bdi;
969 	struct wb_writeback_work *work;
970 	long wrote = 0;
971 
972 	set_bit(BDI_writeback_running, &wb->bdi->state);
973 	while ((work = get_next_work_item(bdi)) != NULL) {
974 
975 		trace_writeback_exec(bdi, work);
976 
977 		wrote += wb_writeback(wb, work);
978 
979 		/*
980 		 * Notify the caller of completion if this is a synchronous
981 		 * work item, otherwise just free it.
982 		 */
983 		if (work->done)
984 			complete(work->done);
985 		else
986 			kfree(work);
987 	}
988 
989 	/*
990 	 * Check for periodic writeback, kupdated() style
991 	 */
992 	wrote += wb_check_old_data_flush(wb);
993 	wrote += wb_check_background_flush(wb);
994 	clear_bit(BDI_writeback_running, &wb->bdi->state);
995 
996 	return wrote;
997 }
998 
999 /*
1000  * Handle writeback of dirty data for the device backed by this bdi. Also
1001  * reschedules periodically and does kupdated style flushing.
1002  */
1003 void bdi_writeback_workfn(struct work_struct *work)
1004 {
1005 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1006 						struct bdi_writeback, dwork);
1007 	struct backing_dev_info *bdi = wb->bdi;
1008 	long pages_written;
1009 
1010 	set_worker_desc("flush-%s", dev_name(bdi->dev));
1011 	current->flags |= PF_SWAPWRITE;
1012 
1013 	if (likely(!current_is_workqueue_rescuer() ||
1014 		   list_empty(&bdi->bdi_list))) {
1015 		/*
1016 		 * The normal path.  Keep writing back @bdi until its
1017 		 * work_list is empty.  Note that this path is also taken
1018 		 * if @bdi is shutting down even when we're running off the
1019 		 * rescuer as work_list needs to be drained.
1020 		 */
1021 		do {
1022 			pages_written = wb_do_writeback(wb);
1023 			trace_writeback_pages_written(pages_written);
1024 		} while (!list_empty(&bdi->work_list));
1025 	} else {
1026 		/*
1027 		 * bdi_wq can't get enough workers and we're running off
1028 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1029 		 * enough for efficient IO.
1030 		 */
1031 		pages_written = writeback_inodes_wb(&bdi->wb, 1024,
1032 						    WB_REASON_FORKER_THREAD);
1033 		trace_writeback_pages_written(pages_written);
1034 	}
1035 
1036 	if (!list_empty(&bdi->work_list) ||
1037 	    (wb_has_dirty_io(wb) && dirty_writeback_interval))
1038 		queue_delayed_work(bdi_wq, &wb->dwork,
1039 			msecs_to_jiffies(dirty_writeback_interval * 10));
1040 
1041 	current->flags &= ~PF_SWAPWRITE;
1042 }
1043 
1044 /*
1045  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1046  * the whole world.
1047  */
1048 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1049 {
1050 	struct backing_dev_info *bdi;
1051 
1052 	if (!nr_pages) {
1053 		nr_pages = global_page_state(NR_FILE_DIRTY) +
1054 				global_page_state(NR_UNSTABLE_NFS);
1055 	}
1056 
1057 	rcu_read_lock();
1058 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1059 		if (!bdi_has_dirty_io(bdi))
1060 			continue;
1061 		__bdi_start_writeback(bdi, nr_pages, false, reason);
1062 	}
1063 	rcu_read_unlock();
1064 }
1065 
1066 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1067 {
1068 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1069 		struct dentry *dentry;
1070 		const char *name = "?";
1071 
1072 		dentry = d_find_alias(inode);
1073 		if (dentry) {
1074 			spin_lock(&dentry->d_lock);
1075 			name = (const char *) dentry->d_name.name;
1076 		}
1077 		printk(KERN_DEBUG
1078 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1079 		       current->comm, task_pid_nr(current), inode->i_ino,
1080 		       name, inode->i_sb->s_id);
1081 		if (dentry) {
1082 			spin_unlock(&dentry->d_lock);
1083 			dput(dentry);
1084 		}
1085 	}
1086 }
1087 
1088 /**
1089  *	__mark_inode_dirty -	internal function
1090  *	@inode: inode to mark
1091  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1092  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1093  *  	mark_inode_dirty_sync.
1094  *
1095  * Put the inode on the super block's dirty list.
1096  *
1097  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1098  * dirty list only if it is hashed or if it refers to a blockdev.
1099  * If it was not hashed, it will never be added to the dirty list
1100  * even if it is later hashed, as it will have been marked dirty already.
1101  *
1102  * In short, make sure you hash any inodes _before_ you start marking
1103  * them dirty.
1104  *
1105  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1106  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1107  * the kernel-internal blockdev inode represents the dirtying time of the
1108  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1109  * page->mapping->host, so the page-dirtying time is recorded in the internal
1110  * blockdev inode.
1111  */
1112 void __mark_inode_dirty(struct inode *inode, int flags)
1113 {
1114 	struct super_block *sb = inode->i_sb;
1115 	struct backing_dev_info *bdi = NULL;
1116 
1117 	/*
1118 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1119 	 * dirty the inode itself
1120 	 */
1121 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1122 		trace_writeback_dirty_inode_start(inode, flags);
1123 
1124 		if (sb->s_op->dirty_inode)
1125 			sb->s_op->dirty_inode(inode, flags);
1126 
1127 		trace_writeback_dirty_inode(inode, flags);
1128 	}
1129 
1130 	/*
1131 	 * make sure that changes are seen by all cpus before we test i_state
1132 	 * -- mikulas
1133 	 */
1134 	smp_mb();
1135 
1136 	/* avoid the locking if we can */
1137 	if ((inode->i_state & flags) == flags)
1138 		return;
1139 
1140 	if (unlikely(block_dump))
1141 		block_dump___mark_inode_dirty(inode);
1142 
1143 	spin_lock(&inode->i_lock);
1144 	if ((inode->i_state & flags) != flags) {
1145 		const int was_dirty = inode->i_state & I_DIRTY;
1146 
1147 		inode->i_state |= flags;
1148 
1149 		/*
1150 		 * If the inode is being synced, just update its dirty state.
1151 		 * The unlocker will place the inode on the appropriate
1152 		 * superblock list, based upon its state.
1153 		 */
1154 		if (inode->i_state & I_SYNC)
1155 			goto out_unlock_inode;
1156 
1157 		/*
1158 		 * Only add valid (hashed) inodes to the superblock's
1159 		 * dirty list.  Add blockdev inodes as well.
1160 		 */
1161 		if (!S_ISBLK(inode->i_mode)) {
1162 			if (inode_unhashed(inode))
1163 				goto out_unlock_inode;
1164 		}
1165 		if (inode->i_state & I_FREEING)
1166 			goto out_unlock_inode;
1167 
1168 		/*
1169 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1170 		 * reposition it (that would break b_dirty time-ordering).
1171 		 */
1172 		if (!was_dirty) {
1173 			bool wakeup_bdi = false;
1174 			bdi = inode_to_bdi(inode);
1175 
1176 			if (bdi_cap_writeback_dirty(bdi)) {
1177 				WARN(!test_bit(BDI_registered, &bdi->state),
1178 				     "bdi-%s not registered\n", bdi->name);
1179 
1180 				/*
1181 				 * If this is the first dirty inode for this
1182 				 * bdi, we have to wake-up the corresponding
1183 				 * bdi thread to make sure background
1184 				 * write-back happens later.
1185 				 */
1186 				if (!wb_has_dirty_io(&bdi->wb))
1187 					wakeup_bdi = true;
1188 			}
1189 
1190 			spin_unlock(&inode->i_lock);
1191 			spin_lock(&bdi->wb.list_lock);
1192 			inode->dirtied_when = jiffies;
1193 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1194 			spin_unlock(&bdi->wb.list_lock);
1195 
1196 			if (wakeup_bdi)
1197 				bdi_wakeup_thread_delayed(bdi);
1198 			return;
1199 		}
1200 	}
1201 out_unlock_inode:
1202 	spin_unlock(&inode->i_lock);
1203 
1204 }
1205 EXPORT_SYMBOL(__mark_inode_dirty);
1206 
1207 static void wait_sb_inodes(struct super_block *sb)
1208 {
1209 	struct inode *inode, *old_inode = NULL;
1210 
1211 	/*
1212 	 * We need to be protected against the filesystem going from
1213 	 * r/o to r/w or vice versa.
1214 	 */
1215 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1216 
1217 	spin_lock(&inode_sb_list_lock);
1218 
1219 	/*
1220 	 * Data integrity sync. Must wait for all pages under writeback,
1221 	 * because there may have been pages dirtied before our sync
1222 	 * call, but which had writeout started before we write it out.
1223 	 * In which case, the inode may not be on the dirty list, but
1224 	 * we still have to wait for that writeout.
1225 	 */
1226 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1227 		struct address_space *mapping = inode->i_mapping;
1228 
1229 		spin_lock(&inode->i_lock);
1230 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1231 		    (mapping->nrpages == 0)) {
1232 			spin_unlock(&inode->i_lock);
1233 			continue;
1234 		}
1235 		__iget(inode);
1236 		spin_unlock(&inode->i_lock);
1237 		spin_unlock(&inode_sb_list_lock);
1238 
1239 		/*
1240 		 * We hold a reference to 'inode' so it couldn't have been
1241 		 * removed from s_inodes list while we dropped the
1242 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
1243 		 * be holding the last reference and we cannot iput it under
1244 		 * inode_sb_list_lock. So we keep the reference and iput it
1245 		 * later.
1246 		 */
1247 		iput(old_inode);
1248 		old_inode = inode;
1249 
1250 		filemap_fdatawait(mapping);
1251 
1252 		cond_resched();
1253 
1254 		spin_lock(&inode_sb_list_lock);
1255 	}
1256 	spin_unlock(&inode_sb_list_lock);
1257 	iput(old_inode);
1258 }
1259 
1260 /**
1261  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1262  * @sb: the superblock
1263  * @nr: the number of pages to write
1264  * @reason: reason why some writeback work initiated
1265  *
1266  * Start writeback on some inodes on this super_block. No guarantees are made
1267  * on how many (if any) will be written, and this function does not wait
1268  * for IO completion of submitted IO.
1269  */
1270 void writeback_inodes_sb_nr(struct super_block *sb,
1271 			    unsigned long nr,
1272 			    enum wb_reason reason)
1273 {
1274 	DECLARE_COMPLETION_ONSTACK(done);
1275 	struct wb_writeback_work work = {
1276 		.sb			= sb,
1277 		.sync_mode		= WB_SYNC_NONE,
1278 		.tagged_writepages	= 1,
1279 		.done			= &done,
1280 		.nr_pages		= nr,
1281 		.reason			= reason,
1282 	};
1283 
1284 	if (sb->s_bdi == &noop_backing_dev_info)
1285 		return;
1286 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1287 	bdi_queue_work(sb->s_bdi, &work);
1288 	wait_for_completion(&done);
1289 }
1290 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1291 
1292 /**
1293  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1294  * @sb: the superblock
1295  * @reason: reason why some writeback work was initiated
1296  *
1297  * Start writeback on some inodes on this super_block. No guarantees are made
1298  * on how many (if any) will be written, and this function does not wait
1299  * for IO completion of submitted IO.
1300  */
1301 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1302 {
1303 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1304 }
1305 EXPORT_SYMBOL(writeback_inodes_sb);
1306 
1307 /**
1308  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
1309  * @sb: the superblock
1310  * @nr: the number of pages to write
1311  * @reason: the reason of writeback
1312  *
1313  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
1314  * Returns 1 if writeback was started, 0 if not.
1315  */
1316 int try_to_writeback_inodes_sb_nr(struct super_block *sb,
1317 				  unsigned long nr,
1318 				  enum wb_reason reason)
1319 {
1320 	if (writeback_in_progress(sb->s_bdi))
1321 		return 1;
1322 
1323 	if (!down_read_trylock(&sb->s_umount))
1324 		return 0;
1325 
1326 	writeback_inodes_sb_nr(sb, nr, reason);
1327 	up_read(&sb->s_umount);
1328 	return 1;
1329 }
1330 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
1331 
1332 /**
1333  * try_to_writeback_inodes_sb - try to start writeback if none underway
1334  * @sb: the superblock
1335  * @reason: reason why some writeback work was initiated
1336  *
1337  * Implement by try_to_writeback_inodes_sb_nr()
1338  * Returns 1 if writeback was started, 0 if not.
1339  */
1340 int try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1341 {
1342 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1343 }
1344 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
1345 
1346 /**
1347  * sync_inodes_sb	-	sync sb inode pages
1348  * @sb: the superblock
1349  *
1350  * This function writes and waits on any dirty inode belonging to this
1351  * super_block.
1352  */
1353 void sync_inodes_sb(struct super_block *sb)
1354 {
1355 	DECLARE_COMPLETION_ONSTACK(done);
1356 	struct wb_writeback_work work = {
1357 		.sb		= sb,
1358 		.sync_mode	= WB_SYNC_ALL,
1359 		.nr_pages	= LONG_MAX,
1360 		.range_cyclic	= 0,
1361 		.done		= &done,
1362 		.reason		= WB_REASON_SYNC,
1363 		.for_sync	= 1,
1364 	};
1365 
1366 	/* Nothing to do? */
1367 	if (sb->s_bdi == &noop_backing_dev_info)
1368 		return;
1369 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1370 
1371 	bdi_queue_work(sb->s_bdi, &work);
1372 	wait_for_completion(&done);
1373 
1374 	wait_sb_inodes(sb);
1375 }
1376 EXPORT_SYMBOL(sync_inodes_sb);
1377 
1378 /**
1379  * write_inode_now	-	write an inode to disk
1380  * @inode: inode to write to disk
1381  * @sync: whether the write should be synchronous or not
1382  *
1383  * This function commits an inode to disk immediately if it is dirty. This is
1384  * primarily needed by knfsd.
1385  *
1386  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1387  */
1388 int write_inode_now(struct inode *inode, int sync)
1389 {
1390 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1391 	struct writeback_control wbc = {
1392 		.nr_to_write = LONG_MAX,
1393 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1394 		.range_start = 0,
1395 		.range_end = LLONG_MAX,
1396 	};
1397 
1398 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1399 		wbc.nr_to_write = 0;
1400 
1401 	might_sleep();
1402 	return writeback_single_inode(inode, wb, &wbc);
1403 }
1404 EXPORT_SYMBOL(write_inode_now);
1405 
1406 /**
1407  * sync_inode - write an inode and its pages to disk.
1408  * @inode: the inode to sync
1409  * @wbc: controls the writeback mode
1410  *
1411  * sync_inode() will write an inode and its pages to disk.  It will also
1412  * correctly update the inode on its superblock's dirty inode lists and will
1413  * update inode->i_state.
1414  *
1415  * The caller must have a ref on the inode.
1416  */
1417 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1418 {
1419 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
1420 }
1421 EXPORT_SYMBOL(sync_inode);
1422 
1423 /**
1424  * sync_inode_metadata - write an inode to disk
1425  * @inode: the inode to sync
1426  * @wait: wait for I/O to complete.
1427  *
1428  * Write an inode to disk and adjust its dirty state after completion.
1429  *
1430  * Note: only writes the actual inode, no associated data or other metadata.
1431  */
1432 int sync_inode_metadata(struct inode *inode, int wait)
1433 {
1434 	struct writeback_control wbc = {
1435 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1436 		.nr_to_write = 0, /* metadata-only */
1437 	};
1438 
1439 	return sync_inode(inode, &wbc);
1440 }
1441 EXPORT_SYMBOL(sync_inode_metadata);
1442