1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/pagemap.h> 24 #include <linux/kthread.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/tracepoint.h> 29 #include <linux/device.h> 30 #include <linux/memcontrol.h> 31 #include "internal.h" 32 33 /* 34 * 4MB minimal write chunk size 35 */ 36 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 37 38 struct wb_completion { 39 atomic_t cnt; 40 }; 41 42 /* 43 * Passed into wb_writeback(), essentially a subset of writeback_control 44 */ 45 struct wb_writeback_work { 46 long nr_pages; 47 struct super_block *sb; 48 unsigned long *older_than_this; 49 enum writeback_sync_modes sync_mode; 50 unsigned int tagged_writepages:1; 51 unsigned int for_kupdate:1; 52 unsigned int range_cyclic:1; 53 unsigned int for_background:1; 54 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 55 unsigned int auto_free:1; /* free on completion */ 56 enum wb_reason reason; /* why was writeback initiated? */ 57 58 struct list_head list; /* pending work list */ 59 struct wb_completion *done; /* set if the caller waits */ 60 }; 61 62 /* 63 * If one wants to wait for one or more wb_writeback_works, each work's 64 * ->done should be set to a wb_completion defined using the following 65 * macro. Once all work items are issued with wb_queue_work(), the caller 66 * can wait for the completion of all using wb_wait_for_completion(). Work 67 * items which are waited upon aren't freed automatically on completion. 68 */ 69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl) \ 70 struct wb_completion cmpl = { \ 71 .cnt = ATOMIC_INIT(1), \ 72 } 73 74 75 /* 76 * If an inode is constantly having its pages dirtied, but then the 77 * updates stop dirtytime_expire_interval seconds in the past, it's 78 * possible for the worst case time between when an inode has its 79 * timestamps updated and when they finally get written out to be two 80 * dirtytime_expire_intervals. We set the default to 12 hours (in 81 * seconds), which means most of the time inodes will have their 82 * timestamps written to disk after 12 hours, but in the worst case a 83 * few inodes might not their timestamps updated for 24 hours. 84 */ 85 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 86 87 static inline struct inode *wb_inode(struct list_head *head) 88 { 89 return list_entry(head, struct inode, i_io_list); 90 } 91 92 /* 93 * Include the creation of the trace points after defining the 94 * wb_writeback_work structure and inline functions so that the definition 95 * remains local to this file. 96 */ 97 #define CREATE_TRACE_POINTS 98 #include <trace/events/writeback.h> 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 101 102 static bool wb_io_lists_populated(struct bdi_writeback *wb) 103 { 104 if (wb_has_dirty_io(wb)) { 105 return false; 106 } else { 107 set_bit(WB_has_dirty_io, &wb->state); 108 WARN_ON_ONCE(!wb->avg_write_bandwidth); 109 atomic_long_add(wb->avg_write_bandwidth, 110 &wb->bdi->tot_write_bandwidth); 111 return true; 112 } 113 } 114 115 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 116 { 117 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 118 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 119 clear_bit(WB_has_dirty_io, &wb->state); 120 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 121 &wb->bdi->tot_write_bandwidth) < 0); 122 } 123 } 124 125 /** 126 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 127 * @inode: inode to be moved 128 * @wb: target bdi_writeback 129 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 130 * 131 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 132 * Returns %true if @inode is the first occupant of the !dirty_time IO 133 * lists; otherwise, %false. 134 */ 135 static bool inode_io_list_move_locked(struct inode *inode, 136 struct bdi_writeback *wb, 137 struct list_head *head) 138 { 139 assert_spin_locked(&wb->list_lock); 140 141 list_move(&inode->i_io_list, head); 142 143 /* dirty_time doesn't count as dirty_io until expiration */ 144 if (head != &wb->b_dirty_time) 145 return wb_io_lists_populated(wb); 146 147 wb_io_lists_depopulated(wb); 148 return false; 149 } 150 151 /** 152 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 153 * @inode: inode to be removed 154 * @wb: bdi_writeback @inode is being removed from 155 * 156 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 157 * clear %WB_has_dirty_io if all are empty afterwards. 158 */ 159 static void inode_io_list_del_locked(struct inode *inode, 160 struct bdi_writeback *wb) 161 { 162 assert_spin_locked(&wb->list_lock); 163 164 list_del_init(&inode->i_io_list); 165 wb_io_lists_depopulated(wb); 166 } 167 168 static void wb_wakeup(struct bdi_writeback *wb) 169 { 170 spin_lock_bh(&wb->work_lock); 171 if (test_bit(WB_registered, &wb->state)) 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 spin_unlock_bh(&wb->work_lock); 174 } 175 176 static void finish_writeback_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 struct wb_completion *done = work->done; 180 181 if (work->auto_free) 182 kfree(work); 183 if (done && atomic_dec_and_test(&done->cnt)) 184 wake_up_all(&wb->bdi->wb_waitq); 185 } 186 187 static void wb_queue_work(struct bdi_writeback *wb, 188 struct wb_writeback_work *work) 189 { 190 trace_writeback_queue(wb, work); 191 192 if (work->done) 193 atomic_inc(&work->done->cnt); 194 195 spin_lock_bh(&wb->work_lock); 196 197 if (test_bit(WB_registered, &wb->state)) { 198 list_add_tail(&work->list, &wb->work_list); 199 mod_delayed_work(bdi_wq, &wb->dwork, 0); 200 } else 201 finish_writeback_work(wb, work); 202 203 spin_unlock_bh(&wb->work_lock); 204 } 205 206 /** 207 * wb_wait_for_completion - wait for completion of bdi_writeback_works 208 * @bdi: bdi work items were issued to 209 * @done: target wb_completion 210 * 211 * Wait for one or more work items issued to @bdi with their ->done field 212 * set to @done, which should have been defined with 213 * DEFINE_WB_COMPLETION_ONSTACK(). This function returns after all such 214 * work items are completed. Work items which are waited upon aren't freed 215 * automatically on completion. 216 */ 217 static void wb_wait_for_completion(struct backing_dev_info *bdi, 218 struct wb_completion *done) 219 { 220 atomic_dec(&done->cnt); /* put down the initial count */ 221 wait_event(bdi->wb_waitq, !atomic_read(&done->cnt)); 222 } 223 224 #ifdef CONFIG_CGROUP_WRITEBACK 225 226 /* parameters for foreign inode detection, see wb_detach_inode() */ 227 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 228 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 229 #define WB_FRN_TIME_CUT_DIV 2 /* ignore rounds < avg / 2 */ 230 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 231 232 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 233 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 234 /* each slot's duration is 2s / 16 */ 235 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 236 /* if foreign slots >= 8, switch */ 237 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 238 /* one round can affect upto 5 slots */ 239 240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 241 static struct workqueue_struct *isw_wq; 242 243 void __inode_attach_wb(struct inode *inode, struct page *page) 244 { 245 struct backing_dev_info *bdi = inode_to_bdi(inode); 246 struct bdi_writeback *wb = NULL; 247 248 if (inode_cgwb_enabled(inode)) { 249 struct cgroup_subsys_state *memcg_css; 250 251 if (page) { 252 memcg_css = mem_cgroup_css_from_page(page); 253 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 254 } else { 255 /* must pin memcg_css, see wb_get_create() */ 256 memcg_css = task_get_css(current, memory_cgrp_id); 257 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 258 css_put(memcg_css); 259 } 260 } 261 262 if (!wb) 263 wb = &bdi->wb; 264 265 /* 266 * There may be multiple instances of this function racing to 267 * update the same inode. Use cmpxchg() to tell the winner. 268 */ 269 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 270 wb_put(wb); 271 } 272 273 /** 274 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 275 * @inode: inode of interest with i_lock held 276 * 277 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 278 * held on entry and is released on return. The returned wb is guaranteed 279 * to stay @inode's associated wb until its list_lock is released. 280 */ 281 static struct bdi_writeback * 282 locked_inode_to_wb_and_lock_list(struct inode *inode) 283 __releases(&inode->i_lock) 284 __acquires(&wb->list_lock) 285 { 286 while (true) { 287 struct bdi_writeback *wb = inode_to_wb(inode); 288 289 /* 290 * inode_to_wb() association is protected by both 291 * @inode->i_lock and @wb->list_lock but list_lock nests 292 * outside i_lock. Drop i_lock and verify that the 293 * association hasn't changed after acquiring list_lock. 294 */ 295 wb_get(wb); 296 spin_unlock(&inode->i_lock); 297 spin_lock(&wb->list_lock); 298 299 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 300 if (likely(wb == inode->i_wb)) { 301 wb_put(wb); /* @inode already has ref */ 302 return wb; 303 } 304 305 spin_unlock(&wb->list_lock); 306 wb_put(wb); 307 cpu_relax(); 308 spin_lock(&inode->i_lock); 309 } 310 } 311 312 /** 313 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 314 * @inode: inode of interest 315 * 316 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 317 * on entry. 318 */ 319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 320 __acquires(&wb->list_lock) 321 { 322 spin_lock(&inode->i_lock); 323 return locked_inode_to_wb_and_lock_list(inode); 324 } 325 326 struct inode_switch_wbs_context { 327 struct inode *inode; 328 struct bdi_writeback *new_wb; 329 330 struct rcu_head rcu_head; 331 struct work_struct work; 332 }; 333 334 static void inode_switch_wbs_work_fn(struct work_struct *work) 335 { 336 struct inode_switch_wbs_context *isw = 337 container_of(work, struct inode_switch_wbs_context, work); 338 struct inode *inode = isw->inode; 339 struct address_space *mapping = inode->i_mapping; 340 struct bdi_writeback *old_wb = inode->i_wb; 341 struct bdi_writeback *new_wb = isw->new_wb; 342 XA_STATE(xas, &mapping->i_pages, 0); 343 struct page *page; 344 bool switched = false; 345 346 /* 347 * By the time control reaches here, RCU grace period has passed 348 * since I_WB_SWITCH assertion and all wb stat update transactions 349 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 350 * synchronizing against the i_pages lock. 351 * 352 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 353 * gives us exclusion against all wb related operations on @inode 354 * including IO list manipulations and stat updates. 355 */ 356 if (old_wb < new_wb) { 357 spin_lock(&old_wb->list_lock); 358 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 359 } else { 360 spin_lock(&new_wb->list_lock); 361 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 362 } 363 spin_lock(&inode->i_lock); 364 xa_lock_irq(&mapping->i_pages); 365 366 /* 367 * Once I_FREEING is visible under i_lock, the eviction path owns 368 * the inode and we shouldn't modify ->i_io_list. 369 */ 370 if (unlikely(inode->i_state & I_FREEING)) 371 goto skip_switch; 372 373 /* 374 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 375 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 376 * pages actually under writeback. 377 */ 378 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 379 if (PageDirty(page)) { 380 dec_wb_stat(old_wb, WB_RECLAIMABLE); 381 inc_wb_stat(new_wb, WB_RECLAIMABLE); 382 } 383 } 384 385 xas_set(&xas, 0); 386 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 387 WARN_ON_ONCE(!PageWriteback(page)); 388 dec_wb_stat(old_wb, WB_WRITEBACK); 389 inc_wb_stat(new_wb, WB_WRITEBACK); 390 } 391 392 wb_get(new_wb); 393 394 /* 395 * Transfer to @new_wb's IO list if necessary. The specific list 396 * @inode was on is ignored and the inode is put on ->b_dirty which 397 * is always correct including from ->b_dirty_time. The transfer 398 * preserves @inode->dirtied_when ordering. 399 */ 400 if (!list_empty(&inode->i_io_list)) { 401 struct inode *pos; 402 403 inode_io_list_del_locked(inode, old_wb); 404 inode->i_wb = new_wb; 405 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 406 if (time_after_eq(inode->dirtied_when, 407 pos->dirtied_when)) 408 break; 409 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 410 } else { 411 inode->i_wb = new_wb; 412 } 413 414 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 415 inode->i_wb_frn_winner = 0; 416 inode->i_wb_frn_avg_time = 0; 417 inode->i_wb_frn_history = 0; 418 switched = true; 419 skip_switch: 420 /* 421 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 422 * ensures that the new wb is visible if they see !I_WB_SWITCH. 423 */ 424 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 425 426 xa_unlock_irq(&mapping->i_pages); 427 spin_unlock(&inode->i_lock); 428 spin_unlock(&new_wb->list_lock); 429 spin_unlock(&old_wb->list_lock); 430 431 if (switched) { 432 wb_wakeup(new_wb); 433 wb_put(old_wb); 434 } 435 wb_put(new_wb); 436 437 iput(inode); 438 kfree(isw); 439 440 atomic_dec(&isw_nr_in_flight); 441 } 442 443 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 444 { 445 struct inode_switch_wbs_context *isw = container_of(rcu_head, 446 struct inode_switch_wbs_context, rcu_head); 447 448 /* needs to grab bh-unsafe locks, bounce to work item */ 449 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 450 queue_work(isw_wq, &isw->work); 451 } 452 453 /** 454 * inode_switch_wbs - change the wb association of an inode 455 * @inode: target inode 456 * @new_wb_id: ID of the new wb 457 * 458 * Switch @inode's wb association to the wb identified by @new_wb_id. The 459 * switching is performed asynchronously and may fail silently. 460 */ 461 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 462 { 463 struct backing_dev_info *bdi = inode_to_bdi(inode); 464 struct cgroup_subsys_state *memcg_css; 465 struct inode_switch_wbs_context *isw; 466 467 /* noop if seems to be already in progress */ 468 if (inode->i_state & I_WB_SWITCH) 469 return; 470 471 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 472 if (!isw) 473 return; 474 475 /* find and pin the new wb */ 476 rcu_read_lock(); 477 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 478 if (memcg_css) 479 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 480 rcu_read_unlock(); 481 if (!isw->new_wb) 482 goto out_free; 483 484 /* while holding I_WB_SWITCH, no one else can update the association */ 485 spin_lock(&inode->i_lock); 486 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 487 inode->i_state & (I_WB_SWITCH | I_FREEING) || 488 inode_to_wb(inode) == isw->new_wb) { 489 spin_unlock(&inode->i_lock); 490 goto out_free; 491 } 492 inode->i_state |= I_WB_SWITCH; 493 __iget(inode); 494 spin_unlock(&inode->i_lock); 495 496 isw->inode = inode; 497 498 atomic_inc(&isw_nr_in_flight); 499 500 /* 501 * In addition to synchronizing among switchers, I_WB_SWITCH tells 502 * the RCU protected stat update paths to grab the i_page 503 * lock so that stat transfer can synchronize against them. 504 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 505 */ 506 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 507 return; 508 509 out_free: 510 if (isw->new_wb) 511 wb_put(isw->new_wb); 512 kfree(isw); 513 } 514 515 /** 516 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 517 * @wbc: writeback_control of interest 518 * @inode: target inode 519 * 520 * @inode is locked and about to be written back under the control of @wbc. 521 * Record @inode's writeback context into @wbc and unlock the i_lock. On 522 * writeback completion, wbc_detach_inode() should be called. This is used 523 * to track the cgroup writeback context. 524 */ 525 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 526 struct inode *inode) 527 { 528 if (!inode_cgwb_enabled(inode)) { 529 spin_unlock(&inode->i_lock); 530 return; 531 } 532 533 wbc->wb = inode_to_wb(inode); 534 wbc->inode = inode; 535 536 wbc->wb_id = wbc->wb->memcg_css->id; 537 wbc->wb_lcand_id = inode->i_wb_frn_winner; 538 wbc->wb_tcand_id = 0; 539 wbc->wb_bytes = 0; 540 wbc->wb_lcand_bytes = 0; 541 wbc->wb_tcand_bytes = 0; 542 543 wb_get(wbc->wb); 544 spin_unlock(&inode->i_lock); 545 546 /* 547 * A dying wb indicates that the memcg-blkcg mapping has changed 548 * and a new wb is already serving the memcg. Switch immediately. 549 */ 550 if (unlikely(wb_dying(wbc->wb))) 551 inode_switch_wbs(inode, wbc->wb_id); 552 } 553 554 /** 555 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 556 * @wbc: writeback_control of the just finished writeback 557 * 558 * To be called after a writeback attempt of an inode finishes and undoes 559 * wbc_attach_and_unlock_inode(). Can be called under any context. 560 * 561 * As concurrent write sharing of an inode is expected to be very rare and 562 * memcg only tracks page ownership on first-use basis severely confining 563 * the usefulness of such sharing, cgroup writeback tracks ownership 564 * per-inode. While the support for concurrent write sharing of an inode 565 * is deemed unnecessary, an inode being written to by different cgroups at 566 * different points in time is a lot more common, and, more importantly, 567 * charging only by first-use can too readily lead to grossly incorrect 568 * behaviors (single foreign page can lead to gigabytes of writeback to be 569 * incorrectly attributed). 570 * 571 * To resolve this issue, cgroup writeback detects the majority dirtier of 572 * an inode and transfers the ownership to it. To avoid unnnecessary 573 * oscillation, the detection mechanism keeps track of history and gives 574 * out the switch verdict only if the foreign usage pattern is stable over 575 * a certain amount of time and/or writeback attempts. 576 * 577 * On each writeback attempt, @wbc tries to detect the majority writer 578 * using Boyer-Moore majority vote algorithm. In addition to the byte 579 * count from the majority voting, it also counts the bytes written for the 580 * current wb and the last round's winner wb (max of last round's current 581 * wb, the winner from two rounds ago, and the last round's majority 582 * candidate). Keeping track of the historical winner helps the algorithm 583 * to semi-reliably detect the most active writer even when it's not the 584 * absolute majority. 585 * 586 * Once the winner of the round is determined, whether the winner is 587 * foreign or not and how much IO time the round consumed is recorded in 588 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 589 * over a certain threshold, the switch verdict is given. 590 */ 591 void wbc_detach_inode(struct writeback_control *wbc) 592 { 593 struct bdi_writeback *wb = wbc->wb; 594 struct inode *inode = wbc->inode; 595 unsigned long avg_time, max_bytes, max_time; 596 u16 history; 597 int max_id; 598 599 if (!wb) 600 return; 601 602 history = inode->i_wb_frn_history; 603 avg_time = inode->i_wb_frn_avg_time; 604 605 /* pick the winner of this round */ 606 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 607 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 608 max_id = wbc->wb_id; 609 max_bytes = wbc->wb_bytes; 610 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 611 max_id = wbc->wb_lcand_id; 612 max_bytes = wbc->wb_lcand_bytes; 613 } else { 614 max_id = wbc->wb_tcand_id; 615 max_bytes = wbc->wb_tcand_bytes; 616 } 617 618 /* 619 * Calculate the amount of IO time the winner consumed and fold it 620 * into the running average kept per inode. If the consumed IO 621 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 622 * deciding whether to switch or not. This is to prevent one-off 623 * small dirtiers from skewing the verdict. 624 */ 625 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 626 wb->avg_write_bandwidth); 627 if (avg_time) 628 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 629 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 630 else 631 avg_time = max_time; /* immediate catch up on first run */ 632 633 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 634 int slots; 635 636 /* 637 * The switch verdict is reached if foreign wb's consume 638 * more than a certain proportion of IO time in a 639 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 640 * history mask where each bit represents one sixteenth of 641 * the period. Determine the number of slots to shift into 642 * history from @max_time. 643 */ 644 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 645 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 646 history <<= slots; 647 if (wbc->wb_id != max_id) 648 history |= (1U << slots) - 1; 649 650 /* 651 * Switch if the current wb isn't the consistent winner. 652 * If there are multiple closely competing dirtiers, the 653 * inode may switch across them repeatedly over time, which 654 * is okay. The main goal is avoiding keeping an inode on 655 * the wrong wb for an extended period of time. 656 */ 657 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 658 inode_switch_wbs(inode, max_id); 659 } 660 661 /* 662 * Multiple instances of this function may race to update the 663 * following fields but we don't mind occassional inaccuracies. 664 */ 665 inode->i_wb_frn_winner = max_id; 666 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 667 inode->i_wb_frn_history = history; 668 669 wb_put(wbc->wb); 670 wbc->wb = NULL; 671 } 672 673 /** 674 * wbc_account_io - account IO issued during writeback 675 * @wbc: writeback_control of the writeback in progress 676 * @page: page being written out 677 * @bytes: number of bytes being written out 678 * 679 * @bytes from @page are about to written out during the writeback 680 * controlled by @wbc. Keep the book for foreign inode detection. See 681 * wbc_detach_inode(). 682 */ 683 void wbc_account_io(struct writeback_control *wbc, struct page *page, 684 size_t bytes) 685 { 686 int id; 687 688 /* 689 * pageout() path doesn't attach @wbc to the inode being written 690 * out. This is intentional as we don't want the function to block 691 * behind a slow cgroup. Ultimately, we want pageout() to kick off 692 * regular writeback instead of writing things out itself. 693 */ 694 if (!wbc->wb) 695 return; 696 697 id = mem_cgroup_css_from_page(page)->id; 698 699 if (id == wbc->wb_id) { 700 wbc->wb_bytes += bytes; 701 return; 702 } 703 704 if (id == wbc->wb_lcand_id) 705 wbc->wb_lcand_bytes += bytes; 706 707 /* Boyer-Moore majority vote algorithm */ 708 if (!wbc->wb_tcand_bytes) 709 wbc->wb_tcand_id = id; 710 if (id == wbc->wb_tcand_id) 711 wbc->wb_tcand_bytes += bytes; 712 else 713 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 714 } 715 EXPORT_SYMBOL_GPL(wbc_account_io); 716 717 /** 718 * inode_congested - test whether an inode is congested 719 * @inode: inode to test for congestion (may be NULL) 720 * @cong_bits: mask of WB_[a]sync_congested bits to test 721 * 722 * Tests whether @inode is congested. @cong_bits is the mask of congestion 723 * bits to test and the return value is the mask of set bits. 724 * 725 * If cgroup writeback is enabled for @inode, the congestion state is 726 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 727 * associated with @inode is congested; otherwise, the root wb's congestion 728 * state is used. 729 * 730 * @inode is allowed to be NULL as this function is often called on 731 * mapping->host which is NULL for the swapper space. 732 */ 733 int inode_congested(struct inode *inode, int cong_bits) 734 { 735 /* 736 * Once set, ->i_wb never becomes NULL while the inode is alive. 737 * Start transaction iff ->i_wb is visible. 738 */ 739 if (inode && inode_to_wb_is_valid(inode)) { 740 struct bdi_writeback *wb; 741 struct wb_lock_cookie lock_cookie = {}; 742 bool congested; 743 744 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 745 congested = wb_congested(wb, cong_bits); 746 unlocked_inode_to_wb_end(inode, &lock_cookie); 747 return congested; 748 } 749 750 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 751 } 752 EXPORT_SYMBOL_GPL(inode_congested); 753 754 /** 755 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 756 * @wb: target bdi_writeback to split @nr_pages to 757 * @nr_pages: number of pages to write for the whole bdi 758 * 759 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 760 * relation to the total write bandwidth of all wb's w/ dirty inodes on 761 * @wb->bdi. 762 */ 763 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 764 { 765 unsigned long this_bw = wb->avg_write_bandwidth; 766 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 767 768 if (nr_pages == LONG_MAX) 769 return LONG_MAX; 770 771 /* 772 * This may be called on clean wb's and proportional distribution 773 * may not make sense, just use the original @nr_pages in those 774 * cases. In general, we wanna err on the side of writing more. 775 */ 776 if (!tot_bw || this_bw >= tot_bw) 777 return nr_pages; 778 else 779 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 780 } 781 782 /** 783 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 784 * @bdi: target backing_dev_info 785 * @base_work: wb_writeback_work to issue 786 * @skip_if_busy: skip wb's which already have writeback in progress 787 * 788 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 789 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 790 * distributed to the busy wbs according to each wb's proportion in the 791 * total active write bandwidth of @bdi. 792 */ 793 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 794 struct wb_writeback_work *base_work, 795 bool skip_if_busy) 796 { 797 struct bdi_writeback *last_wb = NULL; 798 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 799 struct bdi_writeback, bdi_node); 800 801 might_sleep(); 802 restart: 803 rcu_read_lock(); 804 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 805 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done); 806 struct wb_writeback_work fallback_work; 807 struct wb_writeback_work *work; 808 long nr_pages; 809 810 if (last_wb) { 811 wb_put(last_wb); 812 last_wb = NULL; 813 } 814 815 /* SYNC_ALL writes out I_DIRTY_TIME too */ 816 if (!wb_has_dirty_io(wb) && 817 (base_work->sync_mode == WB_SYNC_NONE || 818 list_empty(&wb->b_dirty_time))) 819 continue; 820 if (skip_if_busy && writeback_in_progress(wb)) 821 continue; 822 823 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 824 825 work = kmalloc(sizeof(*work), GFP_ATOMIC); 826 if (work) { 827 *work = *base_work; 828 work->nr_pages = nr_pages; 829 work->auto_free = 1; 830 wb_queue_work(wb, work); 831 continue; 832 } 833 834 /* alloc failed, execute synchronously using on-stack fallback */ 835 work = &fallback_work; 836 *work = *base_work; 837 work->nr_pages = nr_pages; 838 work->auto_free = 0; 839 work->done = &fallback_work_done; 840 841 wb_queue_work(wb, work); 842 843 /* 844 * Pin @wb so that it stays on @bdi->wb_list. This allows 845 * continuing iteration from @wb after dropping and 846 * regrabbing rcu read lock. 847 */ 848 wb_get(wb); 849 last_wb = wb; 850 851 rcu_read_unlock(); 852 wb_wait_for_completion(bdi, &fallback_work_done); 853 goto restart; 854 } 855 rcu_read_unlock(); 856 857 if (last_wb) 858 wb_put(last_wb); 859 } 860 861 /** 862 * cgroup_writeback_umount - flush inode wb switches for umount 863 * 864 * This function is called when a super_block is about to be destroyed and 865 * flushes in-flight inode wb switches. An inode wb switch goes through 866 * RCU and then workqueue, so the two need to be flushed in order to ensure 867 * that all previously scheduled switches are finished. As wb switches are 868 * rare occurrences and synchronize_rcu() can take a while, perform 869 * flushing iff wb switches are in flight. 870 */ 871 void cgroup_writeback_umount(void) 872 { 873 if (atomic_read(&isw_nr_in_flight)) { 874 synchronize_rcu(); 875 flush_workqueue(isw_wq); 876 } 877 } 878 879 static int __init cgroup_writeback_init(void) 880 { 881 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 882 if (!isw_wq) 883 return -ENOMEM; 884 return 0; 885 } 886 fs_initcall(cgroup_writeback_init); 887 888 #else /* CONFIG_CGROUP_WRITEBACK */ 889 890 static struct bdi_writeback * 891 locked_inode_to_wb_and_lock_list(struct inode *inode) 892 __releases(&inode->i_lock) 893 __acquires(&wb->list_lock) 894 { 895 struct bdi_writeback *wb = inode_to_wb(inode); 896 897 spin_unlock(&inode->i_lock); 898 spin_lock(&wb->list_lock); 899 return wb; 900 } 901 902 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 903 __acquires(&wb->list_lock) 904 { 905 struct bdi_writeback *wb = inode_to_wb(inode); 906 907 spin_lock(&wb->list_lock); 908 return wb; 909 } 910 911 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 912 { 913 return nr_pages; 914 } 915 916 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 917 struct wb_writeback_work *base_work, 918 bool skip_if_busy) 919 { 920 might_sleep(); 921 922 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 923 base_work->auto_free = 0; 924 wb_queue_work(&bdi->wb, base_work); 925 } 926 } 927 928 #endif /* CONFIG_CGROUP_WRITEBACK */ 929 930 /* 931 * Add in the number of potentially dirty inodes, because each inode 932 * write can dirty pagecache in the underlying blockdev. 933 */ 934 static unsigned long get_nr_dirty_pages(void) 935 { 936 return global_node_page_state(NR_FILE_DIRTY) + 937 global_node_page_state(NR_UNSTABLE_NFS) + 938 get_nr_dirty_inodes(); 939 } 940 941 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 942 { 943 if (!wb_has_dirty_io(wb)) 944 return; 945 946 /* 947 * All callers of this function want to start writeback of all 948 * dirty pages. Places like vmscan can call this at a very 949 * high frequency, causing pointless allocations of tons of 950 * work items and keeping the flusher threads busy retrieving 951 * that work. Ensure that we only allow one of them pending and 952 * inflight at the time. 953 */ 954 if (test_bit(WB_start_all, &wb->state) || 955 test_and_set_bit(WB_start_all, &wb->state)) 956 return; 957 958 wb->start_all_reason = reason; 959 wb_wakeup(wb); 960 } 961 962 /** 963 * wb_start_background_writeback - start background writeback 964 * @wb: bdi_writback to write from 965 * 966 * Description: 967 * This makes sure WB_SYNC_NONE background writeback happens. When 968 * this function returns, it is only guaranteed that for given wb 969 * some IO is happening if we are over background dirty threshold. 970 * Caller need not hold sb s_umount semaphore. 971 */ 972 void wb_start_background_writeback(struct bdi_writeback *wb) 973 { 974 /* 975 * We just wake up the flusher thread. It will perform background 976 * writeback as soon as there is no other work to do. 977 */ 978 trace_writeback_wake_background(wb); 979 wb_wakeup(wb); 980 } 981 982 /* 983 * Remove the inode from the writeback list it is on. 984 */ 985 void inode_io_list_del(struct inode *inode) 986 { 987 struct bdi_writeback *wb; 988 989 wb = inode_to_wb_and_lock_list(inode); 990 inode_io_list_del_locked(inode, wb); 991 spin_unlock(&wb->list_lock); 992 } 993 994 /* 995 * mark an inode as under writeback on the sb 996 */ 997 void sb_mark_inode_writeback(struct inode *inode) 998 { 999 struct super_block *sb = inode->i_sb; 1000 unsigned long flags; 1001 1002 if (list_empty(&inode->i_wb_list)) { 1003 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1004 if (list_empty(&inode->i_wb_list)) { 1005 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1006 trace_sb_mark_inode_writeback(inode); 1007 } 1008 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1009 } 1010 } 1011 1012 /* 1013 * clear an inode as under writeback on the sb 1014 */ 1015 void sb_clear_inode_writeback(struct inode *inode) 1016 { 1017 struct super_block *sb = inode->i_sb; 1018 unsigned long flags; 1019 1020 if (!list_empty(&inode->i_wb_list)) { 1021 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1022 if (!list_empty(&inode->i_wb_list)) { 1023 list_del_init(&inode->i_wb_list); 1024 trace_sb_clear_inode_writeback(inode); 1025 } 1026 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1027 } 1028 } 1029 1030 /* 1031 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1032 * furthest end of its superblock's dirty-inode list. 1033 * 1034 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1035 * already the most-recently-dirtied inode on the b_dirty list. If that is 1036 * the case then the inode must have been redirtied while it was being written 1037 * out and we don't reset its dirtied_when. 1038 */ 1039 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1040 { 1041 if (!list_empty(&wb->b_dirty)) { 1042 struct inode *tail; 1043 1044 tail = wb_inode(wb->b_dirty.next); 1045 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1046 inode->dirtied_when = jiffies; 1047 } 1048 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1049 } 1050 1051 /* 1052 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1053 */ 1054 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1055 { 1056 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1057 } 1058 1059 static void inode_sync_complete(struct inode *inode) 1060 { 1061 inode->i_state &= ~I_SYNC; 1062 /* If inode is clean an unused, put it into LRU now... */ 1063 inode_add_lru(inode); 1064 /* Waiters must see I_SYNC cleared before being woken up */ 1065 smp_mb(); 1066 wake_up_bit(&inode->i_state, __I_SYNC); 1067 } 1068 1069 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1070 { 1071 bool ret = time_after(inode->dirtied_when, t); 1072 #ifndef CONFIG_64BIT 1073 /* 1074 * For inodes being constantly redirtied, dirtied_when can get stuck. 1075 * It _appears_ to be in the future, but is actually in distant past. 1076 * This test is necessary to prevent such wrapped-around relative times 1077 * from permanently stopping the whole bdi writeback. 1078 */ 1079 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1080 #endif 1081 return ret; 1082 } 1083 1084 #define EXPIRE_DIRTY_ATIME 0x0001 1085 1086 /* 1087 * Move expired (dirtied before work->older_than_this) dirty inodes from 1088 * @delaying_queue to @dispatch_queue. 1089 */ 1090 static int move_expired_inodes(struct list_head *delaying_queue, 1091 struct list_head *dispatch_queue, 1092 int flags, 1093 struct wb_writeback_work *work) 1094 { 1095 unsigned long *older_than_this = NULL; 1096 unsigned long expire_time; 1097 LIST_HEAD(tmp); 1098 struct list_head *pos, *node; 1099 struct super_block *sb = NULL; 1100 struct inode *inode; 1101 int do_sb_sort = 0; 1102 int moved = 0; 1103 1104 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1105 older_than_this = work->older_than_this; 1106 else if (!work->for_sync) { 1107 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1108 older_than_this = &expire_time; 1109 } 1110 while (!list_empty(delaying_queue)) { 1111 inode = wb_inode(delaying_queue->prev); 1112 if (older_than_this && 1113 inode_dirtied_after(inode, *older_than_this)) 1114 break; 1115 list_move(&inode->i_io_list, &tmp); 1116 moved++; 1117 if (flags & EXPIRE_DIRTY_ATIME) 1118 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1119 if (sb_is_blkdev_sb(inode->i_sb)) 1120 continue; 1121 if (sb && sb != inode->i_sb) 1122 do_sb_sort = 1; 1123 sb = inode->i_sb; 1124 } 1125 1126 /* just one sb in list, splice to dispatch_queue and we're done */ 1127 if (!do_sb_sort) { 1128 list_splice(&tmp, dispatch_queue); 1129 goto out; 1130 } 1131 1132 /* Move inodes from one superblock together */ 1133 while (!list_empty(&tmp)) { 1134 sb = wb_inode(tmp.prev)->i_sb; 1135 list_for_each_prev_safe(pos, node, &tmp) { 1136 inode = wb_inode(pos); 1137 if (inode->i_sb == sb) 1138 list_move(&inode->i_io_list, dispatch_queue); 1139 } 1140 } 1141 out: 1142 return moved; 1143 } 1144 1145 /* 1146 * Queue all expired dirty inodes for io, eldest first. 1147 * Before 1148 * newly dirtied b_dirty b_io b_more_io 1149 * =============> gf edc BA 1150 * After 1151 * newly dirtied b_dirty b_io b_more_io 1152 * =============> g fBAedc 1153 * | 1154 * +--> dequeue for IO 1155 */ 1156 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1157 { 1158 int moved; 1159 1160 assert_spin_locked(&wb->list_lock); 1161 list_splice_init(&wb->b_more_io, &wb->b_io); 1162 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1163 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1164 EXPIRE_DIRTY_ATIME, work); 1165 if (moved) 1166 wb_io_lists_populated(wb); 1167 trace_writeback_queue_io(wb, work, moved); 1168 } 1169 1170 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1171 { 1172 int ret; 1173 1174 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1175 trace_writeback_write_inode_start(inode, wbc); 1176 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1177 trace_writeback_write_inode(inode, wbc); 1178 return ret; 1179 } 1180 return 0; 1181 } 1182 1183 /* 1184 * Wait for writeback on an inode to complete. Called with i_lock held. 1185 * Caller must make sure inode cannot go away when we drop i_lock. 1186 */ 1187 static void __inode_wait_for_writeback(struct inode *inode) 1188 __releases(inode->i_lock) 1189 __acquires(inode->i_lock) 1190 { 1191 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1192 wait_queue_head_t *wqh; 1193 1194 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1195 while (inode->i_state & I_SYNC) { 1196 spin_unlock(&inode->i_lock); 1197 __wait_on_bit(wqh, &wq, bit_wait, 1198 TASK_UNINTERRUPTIBLE); 1199 spin_lock(&inode->i_lock); 1200 } 1201 } 1202 1203 /* 1204 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1205 */ 1206 void inode_wait_for_writeback(struct inode *inode) 1207 { 1208 spin_lock(&inode->i_lock); 1209 __inode_wait_for_writeback(inode); 1210 spin_unlock(&inode->i_lock); 1211 } 1212 1213 /* 1214 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1215 * held and drops it. It is aimed for callers not holding any inode reference 1216 * so once i_lock is dropped, inode can go away. 1217 */ 1218 static void inode_sleep_on_writeback(struct inode *inode) 1219 __releases(inode->i_lock) 1220 { 1221 DEFINE_WAIT(wait); 1222 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1223 int sleep; 1224 1225 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1226 sleep = inode->i_state & I_SYNC; 1227 spin_unlock(&inode->i_lock); 1228 if (sleep) 1229 schedule(); 1230 finish_wait(wqh, &wait); 1231 } 1232 1233 /* 1234 * Find proper writeback list for the inode depending on its current state and 1235 * possibly also change of its state while we were doing writeback. Here we 1236 * handle things such as livelock prevention or fairness of writeback among 1237 * inodes. This function can be called only by flusher thread - noone else 1238 * processes all inodes in writeback lists and requeueing inodes behind flusher 1239 * thread's back can have unexpected consequences. 1240 */ 1241 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1242 struct writeback_control *wbc) 1243 { 1244 if (inode->i_state & I_FREEING) 1245 return; 1246 1247 /* 1248 * Sync livelock prevention. Each inode is tagged and synced in one 1249 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1250 * the dirty time to prevent enqueue and sync it again. 1251 */ 1252 if ((inode->i_state & I_DIRTY) && 1253 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1254 inode->dirtied_when = jiffies; 1255 1256 if (wbc->pages_skipped) { 1257 /* 1258 * writeback is not making progress due to locked 1259 * buffers. Skip this inode for now. 1260 */ 1261 redirty_tail(inode, wb); 1262 return; 1263 } 1264 1265 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1266 /* 1267 * We didn't write back all the pages. nfs_writepages() 1268 * sometimes bales out without doing anything. 1269 */ 1270 if (wbc->nr_to_write <= 0) { 1271 /* Slice used up. Queue for next turn. */ 1272 requeue_io(inode, wb); 1273 } else { 1274 /* 1275 * Writeback blocked by something other than 1276 * congestion. Delay the inode for some time to 1277 * avoid spinning on the CPU (100% iowait) 1278 * retrying writeback of the dirty page/inode 1279 * that cannot be performed immediately. 1280 */ 1281 redirty_tail(inode, wb); 1282 } 1283 } else if (inode->i_state & I_DIRTY) { 1284 /* 1285 * Filesystems can dirty the inode during writeback operations, 1286 * such as delayed allocation during submission or metadata 1287 * updates after data IO completion. 1288 */ 1289 redirty_tail(inode, wb); 1290 } else if (inode->i_state & I_DIRTY_TIME) { 1291 inode->dirtied_when = jiffies; 1292 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1293 } else { 1294 /* The inode is clean. Remove from writeback lists. */ 1295 inode_io_list_del_locked(inode, wb); 1296 } 1297 } 1298 1299 /* 1300 * Write out an inode and its dirty pages. Do not update the writeback list 1301 * linkage. That is left to the caller. The caller is also responsible for 1302 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1303 */ 1304 static int 1305 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1306 { 1307 struct address_space *mapping = inode->i_mapping; 1308 long nr_to_write = wbc->nr_to_write; 1309 unsigned dirty; 1310 int ret; 1311 1312 WARN_ON(!(inode->i_state & I_SYNC)); 1313 1314 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1315 1316 ret = do_writepages(mapping, wbc); 1317 1318 /* 1319 * Make sure to wait on the data before writing out the metadata. 1320 * This is important for filesystems that modify metadata on data 1321 * I/O completion. We don't do it for sync(2) writeback because it has a 1322 * separate, external IO completion path and ->sync_fs for guaranteeing 1323 * inode metadata is written back correctly. 1324 */ 1325 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1326 int err = filemap_fdatawait(mapping); 1327 if (ret == 0) 1328 ret = err; 1329 } 1330 1331 /* 1332 * Some filesystems may redirty the inode during the writeback 1333 * due to delalloc, clear dirty metadata flags right before 1334 * write_inode() 1335 */ 1336 spin_lock(&inode->i_lock); 1337 1338 dirty = inode->i_state & I_DIRTY; 1339 if (inode->i_state & I_DIRTY_TIME) { 1340 if ((dirty & I_DIRTY_INODE) || 1341 wbc->sync_mode == WB_SYNC_ALL || 1342 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1343 unlikely(time_after(jiffies, 1344 (inode->dirtied_time_when + 1345 dirtytime_expire_interval * HZ)))) { 1346 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1347 trace_writeback_lazytime(inode); 1348 } 1349 } else 1350 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1351 inode->i_state &= ~dirty; 1352 1353 /* 1354 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1355 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1356 * either they see the I_DIRTY bits cleared or we see the dirtied 1357 * inode. 1358 * 1359 * I_DIRTY_PAGES is always cleared together above even if @mapping 1360 * still has dirty pages. The flag is reinstated after smp_mb() if 1361 * necessary. This guarantees that either __mark_inode_dirty() 1362 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1363 */ 1364 smp_mb(); 1365 1366 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1367 inode->i_state |= I_DIRTY_PAGES; 1368 1369 spin_unlock(&inode->i_lock); 1370 1371 if (dirty & I_DIRTY_TIME) 1372 mark_inode_dirty_sync(inode); 1373 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1374 if (dirty & ~I_DIRTY_PAGES) { 1375 int err = write_inode(inode, wbc); 1376 if (ret == 0) 1377 ret = err; 1378 } 1379 trace_writeback_single_inode(inode, wbc, nr_to_write); 1380 return ret; 1381 } 1382 1383 /* 1384 * Write out an inode's dirty pages. Either the caller has an active reference 1385 * on the inode or the inode has I_WILL_FREE set. 1386 * 1387 * This function is designed to be called for writing back one inode which 1388 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1389 * and does more profound writeback list handling in writeback_sb_inodes(). 1390 */ 1391 static int writeback_single_inode(struct inode *inode, 1392 struct writeback_control *wbc) 1393 { 1394 struct bdi_writeback *wb; 1395 int ret = 0; 1396 1397 spin_lock(&inode->i_lock); 1398 if (!atomic_read(&inode->i_count)) 1399 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1400 else 1401 WARN_ON(inode->i_state & I_WILL_FREE); 1402 1403 if (inode->i_state & I_SYNC) { 1404 if (wbc->sync_mode != WB_SYNC_ALL) 1405 goto out; 1406 /* 1407 * It's a data-integrity sync. We must wait. Since callers hold 1408 * inode reference or inode has I_WILL_FREE set, it cannot go 1409 * away under us. 1410 */ 1411 __inode_wait_for_writeback(inode); 1412 } 1413 WARN_ON(inode->i_state & I_SYNC); 1414 /* 1415 * Skip inode if it is clean and we have no outstanding writeback in 1416 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1417 * function since flusher thread may be doing for example sync in 1418 * parallel and if we move the inode, it could get skipped. So here we 1419 * make sure inode is on some writeback list and leave it there unless 1420 * we have completely cleaned the inode. 1421 */ 1422 if (!(inode->i_state & I_DIRTY_ALL) && 1423 (wbc->sync_mode != WB_SYNC_ALL || 1424 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1425 goto out; 1426 inode->i_state |= I_SYNC; 1427 wbc_attach_and_unlock_inode(wbc, inode); 1428 1429 ret = __writeback_single_inode(inode, wbc); 1430 1431 wbc_detach_inode(wbc); 1432 1433 wb = inode_to_wb_and_lock_list(inode); 1434 spin_lock(&inode->i_lock); 1435 /* 1436 * If inode is clean, remove it from writeback lists. Otherwise don't 1437 * touch it. See comment above for explanation. 1438 */ 1439 if (!(inode->i_state & I_DIRTY_ALL)) 1440 inode_io_list_del_locked(inode, wb); 1441 spin_unlock(&wb->list_lock); 1442 inode_sync_complete(inode); 1443 out: 1444 spin_unlock(&inode->i_lock); 1445 return ret; 1446 } 1447 1448 static long writeback_chunk_size(struct bdi_writeback *wb, 1449 struct wb_writeback_work *work) 1450 { 1451 long pages; 1452 1453 /* 1454 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1455 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1456 * here avoids calling into writeback_inodes_wb() more than once. 1457 * 1458 * The intended call sequence for WB_SYNC_ALL writeback is: 1459 * 1460 * wb_writeback() 1461 * writeback_sb_inodes() <== called only once 1462 * write_cache_pages() <== called once for each inode 1463 * (quickly) tag currently dirty pages 1464 * (maybe slowly) sync all tagged pages 1465 */ 1466 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1467 pages = LONG_MAX; 1468 else { 1469 pages = min(wb->avg_write_bandwidth / 2, 1470 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1471 pages = min(pages, work->nr_pages); 1472 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1473 MIN_WRITEBACK_PAGES); 1474 } 1475 1476 return pages; 1477 } 1478 1479 /* 1480 * Write a portion of b_io inodes which belong to @sb. 1481 * 1482 * Return the number of pages and/or inodes written. 1483 * 1484 * NOTE! This is called with wb->list_lock held, and will 1485 * unlock and relock that for each inode it ends up doing 1486 * IO for. 1487 */ 1488 static long writeback_sb_inodes(struct super_block *sb, 1489 struct bdi_writeback *wb, 1490 struct wb_writeback_work *work) 1491 { 1492 struct writeback_control wbc = { 1493 .sync_mode = work->sync_mode, 1494 .tagged_writepages = work->tagged_writepages, 1495 .for_kupdate = work->for_kupdate, 1496 .for_background = work->for_background, 1497 .for_sync = work->for_sync, 1498 .range_cyclic = work->range_cyclic, 1499 .range_start = 0, 1500 .range_end = LLONG_MAX, 1501 }; 1502 unsigned long start_time = jiffies; 1503 long write_chunk; 1504 long wrote = 0; /* count both pages and inodes */ 1505 1506 while (!list_empty(&wb->b_io)) { 1507 struct inode *inode = wb_inode(wb->b_io.prev); 1508 struct bdi_writeback *tmp_wb; 1509 1510 if (inode->i_sb != sb) { 1511 if (work->sb) { 1512 /* 1513 * We only want to write back data for this 1514 * superblock, move all inodes not belonging 1515 * to it back onto the dirty list. 1516 */ 1517 redirty_tail(inode, wb); 1518 continue; 1519 } 1520 1521 /* 1522 * The inode belongs to a different superblock. 1523 * Bounce back to the caller to unpin this and 1524 * pin the next superblock. 1525 */ 1526 break; 1527 } 1528 1529 /* 1530 * Don't bother with new inodes or inodes being freed, first 1531 * kind does not need periodic writeout yet, and for the latter 1532 * kind writeout is handled by the freer. 1533 */ 1534 spin_lock(&inode->i_lock); 1535 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1536 spin_unlock(&inode->i_lock); 1537 redirty_tail(inode, wb); 1538 continue; 1539 } 1540 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1541 /* 1542 * If this inode is locked for writeback and we are not 1543 * doing writeback-for-data-integrity, move it to 1544 * b_more_io so that writeback can proceed with the 1545 * other inodes on s_io. 1546 * 1547 * We'll have another go at writing back this inode 1548 * when we completed a full scan of b_io. 1549 */ 1550 spin_unlock(&inode->i_lock); 1551 requeue_io(inode, wb); 1552 trace_writeback_sb_inodes_requeue(inode); 1553 continue; 1554 } 1555 spin_unlock(&wb->list_lock); 1556 1557 /* 1558 * We already requeued the inode if it had I_SYNC set and we 1559 * are doing WB_SYNC_NONE writeback. So this catches only the 1560 * WB_SYNC_ALL case. 1561 */ 1562 if (inode->i_state & I_SYNC) { 1563 /* Wait for I_SYNC. This function drops i_lock... */ 1564 inode_sleep_on_writeback(inode); 1565 /* Inode may be gone, start again */ 1566 spin_lock(&wb->list_lock); 1567 continue; 1568 } 1569 inode->i_state |= I_SYNC; 1570 wbc_attach_and_unlock_inode(&wbc, inode); 1571 1572 write_chunk = writeback_chunk_size(wb, work); 1573 wbc.nr_to_write = write_chunk; 1574 wbc.pages_skipped = 0; 1575 1576 /* 1577 * We use I_SYNC to pin the inode in memory. While it is set 1578 * evict_inode() will wait so the inode cannot be freed. 1579 */ 1580 __writeback_single_inode(inode, &wbc); 1581 1582 wbc_detach_inode(&wbc); 1583 work->nr_pages -= write_chunk - wbc.nr_to_write; 1584 wrote += write_chunk - wbc.nr_to_write; 1585 1586 if (need_resched()) { 1587 /* 1588 * We're trying to balance between building up a nice 1589 * long list of IOs to improve our merge rate, and 1590 * getting those IOs out quickly for anyone throttling 1591 * in balance_dirty_pages(). cond_resched() doesn't 1592 * unplug, so get our IOs out the door before we 1593 * give up the CPU. 1594 */ 1595 blk_flush_plug(current); 1596 cond_resched(); 1597 } 1598 1599 /* 1600 * Requeue @inode if still dirty. Be careful as @inode may 1601 * have been switched to another wb in the meantime. 1602 */ 1603 tmp_wb = inode_to_wb_and_lock_list(inode); 1604 spin_lock(&inode->i_lock); 1605 if (!(inode->i_state & I_DIRTY_ALL)) 1606 wrote++; 1607 requeue_inode(inode, tmp_wb, &wbc); 1608 inode_sync_complete(inode); 1609 spin_unlock(&inode->i_lock); 1610 1611 if (unlikely(tmp_wb != wb)) { 1612 spin_unlock(&tmp_wb->list_lock); 1613 spin_lock(&wb->list_lock); 1614 } 1615 1616 /* 1617 * bail out to wb_writeback() often enough to check 1618 * background threshold and other termination conditions. 1619 */ 1620 if (wrote) { 1621 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1622 break; 1623 if (work->nr_pages <= 0) 1624 break; 1625 } 1626 } 1627 return wrote; 1628 } 1629 1630 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1631 struct wb_writeback_work *work) 1632 { 1633 unsigned long start_time = jiffies; 1634 long wrote = 0; 1635 1636 while (!list_empty(&wb->b_io)) { 1637 struct inode *inode = wb_inode(wb->b_io.prev); 1638 struct super_block *sb = inode->i_sb; 1639 1640 if (!trylock_super(sb)) { 1641 /* 1642 * trylock_super() may fail consistently due to 1643 * s_umount being grabbed by someone else. Don't use 1644 * requeue_io() to avoid busy retrying the inode/sb. 1645 */ 1646 redirty_tail(inode, wb); 1647 continue; 1648 } 1649 wrote += writeback_sb_inodes(sb, wb, work); 1650 up_read(&sb->s_umount); 1651 1652 /* refer to the same tests at the end of writeback_sb_inodes */ 1653 if (wrote) { 1654 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1655 break; 1656 if (work->nr_pages <= 0) 1657 break; 1658 } 1659 } 1660 /* Leave any unwritten inodes on b_io */ 1661 return wrote; 1662 } 1663 1664 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1665 enum wb_reason reason) 1666 { 1667 struct wb_writeback_work work = { 1668 .nr_pages = nr_pages, 1669 .sync_mode = WB_SYNC_NONE, 1670 .range_cyclic = 1, 1671 .reason = reason, 1672 }; 1673 struct blk_plug plug; 1674 1675 blk_start_plug(&plug); 1676 spin_lock(&wb->list_lock); 1677 if (list_empty(&wb->b_io)) 1678 queue_io(wb, &work); 1679 __writeback_inodes_wb(wb, &work); 1680 spin_unlock(&wb->list_lock); 1681 blk_finish_plug(&plug); 1682 1683 return nr_pages - work.nr_pages; 1684 } 1685 1686 /* 1687 * Explicit flushing or periodic writeback of "old" data. 1688 * 1689 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1690 * dirtying-time in the inode's address_space. So this periodic writeback code 1691 * just walks the superblock inode list, writing back any inodes which are 1692 * older than a specific point in time. 1693 * 1694 * Try to run once per dirty_writeback_interval. But if a writeback event 1695 * takes longer than a dirty_writeback_interval interval, then leave a 1696 * one-second gap. 1697 * 1698 * older_than_this takes precedence over nr_to_write. So we'll only write back 1699 * all dirty pages if they are all attached to "old" mappings. 1700 */ 1701 static long wb_writeback(struct bdi_writeback *wb, 1702 struct wb_writeback_work *work) 1703 { 1704 unsigned long wb_start = jiffies; 1705 long nr_pages = work->nr_pages; 1706 unsigned long oldest_jif; 1707 struct inode *inode; 1708 long progress; 1709 struct blk_plug plug; 1710 1711 oldest_jif = jiffies; 1712 work->older_than_this = &oldest_jif; 1713 1714 blk_start_plug(&plug); 1715 spin_lock(&wb->list_lock); 1716 for (;;) { 1717 /* 1718 * Stop writeback when nr_pages has been consumed 1719 */ 1720 if (work->nr_pages <= 0) 1721 break; 1722 1723 /* 1724 * Background writeout and kupdate-style writeback may 1725 * run forever. Stop them if there is other work to do 1726 * so that e.g. sync can proceed. They'll be restarted 1727 * after the other works are all done. 1728 */ 1729 if ((work->for_background || work->for_kupdate) && 1730 !list_empty(&wb->work_list)) 1731 break; 1732 1733 /* 1734 * For background writeout, stop when we are below the 1735 * background dirty threshold 1736 */ 1737 if (work->for_background && !wb_over_bg_thresh(wb)) 1738 break; 1739 1740 /* 1741 * Kupdate and background works are special and we want to 1742 * include all inodes that need writing. Livelock avoidance is 1743 * handled by these works yielding to any other work so we are 1744 * safe. 1745 */ 1746 if (work->for_kupdate) { 1747 oldest_jif = jiffies - 1748 msecs_to_jiffies(dirty_expire_interval * 10); 1749 } else if (work->for_background) 1750 oldest_jif = jiffies; 1751 1752 trace_writeback_start(wb, work); 1753 if (list_empty(&wb->b_io)) 1754 queue_io(wb, work); 1755 if (work->sb) 1756 progress = writeback_sb_inodes(work->sb, wb, work); 1757 else 1758 progress = __writeback_inodes_wb(wb, work); 1759 trace_writeback_written(wb, work); 1760 1761 wb_update_bandwidth(wb, wb_start); 1762 1763 /* 1764 * Did we write something? Try for more 1765 * 1766 * Dirty inodes are moved to b_io for writeback in batches. 1767 * The completion of the current batch does not necessarily 1768 * mean the overall work is done. So we keep looping as long 1769 * as made some progress on cleaning pages or inodes. 1770 */ 1771 if (progress) 1772 continue; 1773 /* 1774 * No more inodes for IO, bail 1775 */ 1776 if (list_empty(&wb->b_more_io)) 1777 break; 1778 /* 1779 * Nothing written. Wait for some inode to 1780 * become available for writeback. Otherwise 1781 * we'll just busyloop. 1782 */ 1783 trace_writeback_wait(wb, work); 1784 inode = wb_inode(wb->b_more_io.prev); 1785 spin_lock(&inode->i_lock); 1786 spin_unlock(&wb->list_lock); 1787 /* This function drops i_lock... */ 1788 inode_sleep_on_writeback(inode); 1789 spin_lock(&wb->list_lock); 1790 } 1791 spin_unlock(&wb->list_lock); 1792 blk_finish_plug(&plug); 1793 1794 return nr_pages - work->nr_pages; 1795 } 1796 1797 /* 1798 * Return the next wb_writeback_work struct that hasn't been processed yet. 1799 */ 1800 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1801 { 1802 struct wb_writeback_work *work = NULL; 1803 1804 spin_lock_bh(&wb->work_lock); 1805 if (!list_empty(&wb->work_list)) { 1806 work = list_entry(wb->work_list.next, 1807 struct wb_writeback_work, list); 1808 list_del_init(&work->list); 1809 } 1810 spin_unlock_bh(&wb->work_lock); 1811 return work; 1812 } 1813 1814 static long wb_check_background_flush(struct bdi_writeback *wb) 1815 { 1816 if (wb_over_bg_thresh(wb)) { 1817 1818 struct wb_writeback_work work = { 1819 .nr_pages = LONG_MAX, 1820 .sync_mode = WB_SYNC_NONE, 1821 .for_background = 1, 1822 .range_cyclic = 1, 1823 .reason = WB_REASON_BACKGROUND, 1824 }; 1825 1826 return wb_writeback(wb, &work); 1827 } 1828 1829 return 0; 1830 } 1831 1832 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1833 { 1834 unsigned long expired; 1835 long nr_pages; 1836 1837 /* 1838 * When set to zero, disable periodic writeback 1839 */ 1840 if (!dirty_writeback_interval) 1841 return 0; 1842 1843 expired = wb->last_old_flush + 1844 msecs_to_jiffies(dirty_writeback_interval * 10); 1845 if (time_before(jiffies, expired)) 1846 return 0; 1847 1848 wb->last_old_flush = jiffies; 1849 nr_pages = get_nr_dirty_pages(); 1850 1851 if (nr_pages) { 1852 struct wb_writeback_work work = { 1853 .nr_pages = nr_pages, 1854 .sync_mode = WB_SYNC_NONE, 1855 .for_kupdate = 1, 1856 .range_cyclic = 1, 1857 .reason = WB_REASON_PERIODIC, 1858 }; 1859 1860 return wb_writeback(wb, &work); 1861 } 1862 1863 return 0; 1864 } 1865 1866 static long wb_check_start_all(struct bdi_writeback *wb) 1867 { 1868 long nr_pages; 1869 1870 if (!test_bit(WB_start_all, &wb->state)) 1871 return 0; 1872 1873 nr_pages = get_nr_dirty_pages(); 1874 if (nr_pages) { 1875 struct wb_writeback_work work = { 1876 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 1877 .sync_mode = WB_SYNC_NONE, 1878 .range_cyclic = 1, 1879 .reason = wb->start_all_reason, 1880 }; 1881 1882 nr_pages = wb_writeback(wb, &work); 1883 } 1884 1885 clear_bit(WB_start_all, &wb->state); 1886 return nr_pages; 1887 } 1888 1889 1890 /* 1891 * Retrieve work items and do the writeback they describe 1892 */ 1893 static long wb_do_writeback(struct bdi_writeback *wb) 1894 { 1895 struct wb_writeback_work *work; 1896 long wrote = 0; 1897 1898 set_bit(WB_writeback_running, &wb->state); 1899 while ((work = get_next_work_item(wb)) != NULL) { 1900 trace_writeback_exec(wb, work); 1901 wrote += wb_writeback(wb, work); 1902 finish_writeback_work(wb, work); 1903 } 1904 1905 /* 1906 * Check for a flush-everything request 1907 */ 1908 wrote += wb_check_start_all(wb); 1909 1910 /* 1911 * Check for periodic writeback, kupdated() style 1912 */ 1913 wrote += wb_check_old_data_flush(wb); 1914 wrote += wb_check_background_flush(wb); 1915 clear_bit(WB_writeback_running, &wb->state); 1916 1917 return wrote; 1918 } 1919 1920 /* 1921 * Handle writeback of dirty data for the device backed by this bdi. Also 1922 * reschedules periodically and does kupdated style flushing. 1923 */ 1924 void wb_workfn(struct work_struct *work) 1925 { 1926 struct bdi_writeback *wb = container_of(to_delayed_work(work), 1927 struct bdi_writeback, dwork); 1928 long pages_written; 1929 1930 set_worker_desc("flush-%s", dev_name(wb->bdi->dev)); 1931 current->flags |= PF_SWAPWRITE; 1932 1933 if (likely(!current_is_workqueue_rescuer() || 1934 !test_bit(WB_registered, &wb->state))) { 1935 /* 1936 * The normal path. Keep writing back @wb until its 1937 * work_list is empty. Note that this path is also taken 1938 * if @wb is shutting down even when we're running off the 1939 * rescuer as work_list needs to be drained. 1940 */ 1941 do { 1942 pages_written = wb_do_writeback(wb); 1943 trace_writeback_pages_written(pages_written); 1944 } while (!list_empty(&wb->work_list)); 1945 } else { 1946 /* 1947 * bdi_wq can't get enough workers and we're running off 1948 * the emergency worker. Don't hog it. Hopefully, 1024 is 1949 * enough for efficient IO. 1950 */ 1951 pages_written = writeback_inodes_wb(wb, 1024, 1952 WB_REASON_FORKER_THREAD); 1953 trace_writeback_pages_written(pages_written); 1954 } 1955 1956 if (!list_empty(&wb->work_list)) 1957 wb_wakeup(wb); 1958 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 1959 wb_wakeup_delayed(wb); 1960 1961 current->flags &= ~PF_SWAPWRITE; 1962 } 1963 1964 /* 1965 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 1966 * write back the whole world. 1967 */ 1968 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 1969 enum wb_reason reason) 1970 { 1971 struct bdi_writeback *wb; 1972 1973 if (!bdi_has_dirty_io(bdi)) 1974 return; 1975 1976 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 1977 wb_start_writeback(wb, reason); 1978 } 1979 1980 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 1981 enum wb_reason reason) 1982 { 1983 rcu_read_lock(); 1984 __wakeup_flusher_threads_bdi(bdi, reason); 1985 rcu_read_unlock(); 1986 } 1987 1988 /* 1989 * Wakeup the flusher threads to start writeback of all currently dirty pages 1990 */ 1991 void wakeup_flusher_threads(enum wb_reason reason) 1992 { 1993 struct backing_dev_info *bdi; 1994 1995 /* 1996 * If we are expecting writeback progress we must submit plugged IO. 1997 */ 1998 if (blk_needs_flush_plug(current)) 1999 blk_schedule_flush_plug(current); 2000 2001 rcu_read_lock(); 2002 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2003 __wakeup_flusher_threads_bdi(bdi, reason); 2004 rcu_read_unlock(); 2005 } 2006 2007 /* 2008 * Wake up bdi's periodically to make sure dirtytime inodes gets 2009 * written back periodically. We deliberately do *not* check the 2010 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2011 * kernel to be constantly waking up once there are any dirtytime 2012 * inodes on the system. So instead we define a separate delayed work 2013 * function which gets called much more rarely. (By default, only 2014 * once every 12 hours.) 2015 * 2016 * If there is any other write activity going on in the file system, 2017 * this function won't be necessary. But if the only thing that has 2018 * happened on the file system is a dirtytime inode caused by an atime 2019 * update, we need this infrastructure below to make sure that inode 2020 * eventually gets pushed out to disk. 2021 */ 2022 static void wakeup_dirtytime_writeback(struct work_struct *w); 2023 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2024 2025 static void wakeup_dirtytime_writeback(struct work_struct *w) 2026 { 2027 struct backing_dev_info *bdi; 2028 2029 rcu_read_lock(); 2030 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2031 struct bdi_writeback *wb; 2032 2033 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2034 if (!list_empty(&wb->b_dirty_time)) 2035 wb_wakeup(wb); 2036 } 2037 rcu_read_unlock(); 2038 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2039 } 2040 2041 static int __init start_dirtytime_writeback(void) 2042 { 2043 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2044 return 0; 2045 } 2046 __initcall(start_dirtytime_writeback); 2047 2048 int dirtytime_interval_handler(struct ctl_table *table, int write, 2049 void __user *buffer, size_t *lenp, loff_t *ppos) 2050 { 2051 int ret; 2052 2053 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2054 if (ret == 0 && write) 2055 mod_delayed_work(system_wq, &dirtytime_work, 0); 2056 return ret; 2057 } 2058 2059 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2060 { 2061 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2062 struct dentry *dentry; 2063 const char *name = "?"; 2064 2065 dentry = d_find_alias(inode); 2066 if (dentry) { 2067 spin_lock(&dentry->d_lock); 2068 name = (const char *) dentry->d_name.name; 2069 } 2070 printk(KERN_DEBUG 2071 "%s(%d): dirtied inode %lu (%s) on %s\n", 2072 current->comm, task_pid_nr(current), inode->i_ino, 2073 name, inode->i_sb->s_id); 2074 if (dentry) { 2075 spin_unlock(&dentry->d_lock); 2076 dput(dentry); 2077 } 2078 } 2079 } 2080 2081 /** 2082 * __mark_inode_dirty - internal function 2083 * 2084 * @inode: inode to mark 2085 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2086 * 2087 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2088 * mark_inode_dirty_sync. 2089 * 2090 * Put the inode on the super block's dirty list. 2091 * 2092 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2093 * dirty list only if it is hashed or if it refers to a blockdev. 2094 * If it was not hashed, it will never be added to the dirty list 2095 * even if it is later hashed, as it will have been marked dirty already. 2096 * 2097 * In short, make sure you hash any inodes _before_ you start marking 2098 * them dirty. 2099 * 2100 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2101 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2102 * the kernel-internal blockdev inode represents the dirtying time of the 2103 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2104 * page->mapping->host, so the page-dirtying time is recorded in the internal 2105 * blockdev inode. 2106 */ 2107 void __mark_inode_dirty(struct inode *inode, int flags) 2108 { 2109 struct super_block *sb = inode->i_sb; 2110 int dirtytime; 2111 2112 trace_writeback_mark_inode_dirty(inode, flags); 2113 2114 /* 2115 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2116 * dirty the inode itself 2117 */ 2118 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2119 trace_writeback_dirty_inode_start(inode, flags); 2120 2121 if (sb->s_op->dirty_inode) 2122 sb->s_op->dirty_inode(inode, flags); 2123 2124 trace_writeback_dirty_inode(inode, flags); 2125 } 2126 if (flags & I_DIRTY_INODE) 2127 flags &= ~I_DIRTY_TIME; 2128 dirtytime = flags & I_DIRTY_TIME; 2129 2130 /* 2131 * Paired with smp_mb() in __writeback_single_inode() for the 2132 * following lockless i_state test. See there for details. 2133 */ 2134 smp_mb(); 2135 2136 if (((inode->i_state & flags) == flags) || 2137 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2138 return; 2139 2140 if (unlikely(block_dump)) 2141 block_dump___mark_inode_dirty(inode); 2142 2143 spin_lock(&inode->i_lock); 2144 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2145 goto out_unlock_inode; 2146 if ((inode->i_state & flags) != flags) { 2147 const int was_dirty = inode->i_state & I_DIRTY; 2148 2149 inode_attach_wb(inode, NULL); 2150 2151 if (flags & I_DIRTY_INODE) 2152 inode->i_state &= ~I_DIRTY_TIME; 2153 inode->i_state |= flags; 2154 2155 /* 2156 * If the inode is being synced, just update its dirty state. 2157 * The unlocker will place the inode on the appropriate 2158 * superblock list, based upon its state. 2159 */ 2160 if (inode->i_state & I_SYNC) 2161 goto out_unlock_inode; 2162 2163 /* 2164 * Only add valid (hashed) inodes to the superblock's 2165 * dirty list. Add blockdev inodes as well. 2166 */ 2167 if (!S_ISBLK(inode->i_mode)) { 2168 if (inode_unhashed(inode)) 2169 goto out_unlock_inode; 2170 } 2171 if (inode->i_state & I_FREEING) 2172 goto out_unlock_inode; 2173 2174 /* 2175 * If the inode was already on b_dirty/b_io/b_more_io, don't 2176 * reposition it (that would break b_dirty time-ordering). 2177 */ 2178 if (!was_dirty) { 2179 struct bdi_writeback *wb; 2180 struct list_head *dirty_list; 2181 bool wakeup_bdi = false; 2182 2183 wb = locked_inode_to_wb_and_lock_list(inode); 2184 2185 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2186 !test_bit(WB_registered, &wb->state), 2187 "bdi-%s not registered\n", wb->bdi->name); 2188 2189 inode->dirtied_when = jiffies; 2190 if (dirtytime) 2191 inode->dirtied_time_when = jiffies; 2192 2193 if (inode->i_state & I_DIRTY) 2194 dirty_list = &wb->b_dirty; 2195 else 2196 dirty_list = &wb->b_dirty_time; 2197 2198 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2199 dirty_list); 2200 2201 spin_unlock(&wb->list_lock); 2202 trace_writeback_dirty_inode_enqueue(inode); 2203 2204 /* 2205 * If this is the first dirty inode for this bdi, 2206 * we have to wake-up the corresponding bdi thread 2207 * to make sure background write-back happens 2208 * later. 2209 */ 2210 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2211 wb_wakeup_delayed(wb); 2212 return; 2213 } 2214 } 2215 out_unlock_inode: 2216 spin_unlock(&inode->i_lock); 2217 } 2218 EXPORT_SYMBOL(__mark_inode_dirty); 2219 2220 /* 2221 * The @s_sync_lock is used to serialise concurrent sync operations 2222 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2223 * Concurrent callers will block on the s_sync_lock rather than doing contending 2224 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2225 * has been issued up to the time this function is enter is guaranteed to be 2226 * completed by the time we have gained the lock and waited for all IO that is 2227 * in progress regardless of the order callers are granted the lock. 2228 */ 2229 static void wait_sb_inodes(struct super_block *sb) 2230 { 2231 LIST_HEAD(sync_list); 2232 2233 /* 2234 * We need to be protected against the filesystem going from 2235 * r/o to r/w or vice versa. 2236 */ 2237 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2238 2239 mutex_lock(&sb->s_sync_lock); 2240 2241 /* 2242 * Splice the writeback list onto a temporary list to avoid waiting on 2243 * inodes that have started writeback after this point. 2244 * 2245 * Use rcu_read_lock() to keep the inodes around until we have a 2246 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2247 * the local list because inodes can be dropped from either by writeback 2248 * completion. 2249 */ 2250 rcu_read_lock(); 2251 spin_lock_irq(&sb->s_inode_wblist_lock); 2252 list_splice_init(&sb->s_inodes_wb, &sync_list); 2253 2254 /* 2255 * Data integrity sync. Must wait for all pages under writeback, because 2256 * there may have been pages dirtied before our sync call, but which had 2257 * writeout started before we write it out. In which case, the inode 2258 * may not be on the dirty list, but we still have to wait for that 2259 * writeout. 2260 */ 2261 while (!list_empty(&sync_list)) { 2262 struct inode *inode = list_first_entry(&sync_list, struct inode, 2263 i_wb_list); 2264 struct address_space *mapping = inode->i_mapping; 2265 2266 /* 2267 * Move each inode back to the wb list before we drop the lock 2268 * to preserve consistency between i_wb_list and the mapping 2269 * writeback tag. Writeback completion is responsible to remove 2270 * the inode from either list once the writeback tag is cleared. 2271 */ 2272 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2273 2274 /* 2275 * The mapping can appear untagged while still on-list since we 2276 * do not have the mapping lock. Skip it here, wb completion 2277 * will remove it. 2278 */ 2279 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2280 continue; 2281 2282 spin_unlock_irq(&sb->s_inode_wblist_lock); 2283 2284 spin_lock(&inode->i_lock); 2285 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2286 spin_unlock(&inode->i_lock); 2287 2288 spin_lock_irq(&sb->s_inode_wblist_lock); 2289 continue; 2290 } 2291 __iget(inode); 2292 spin_unlock(&inode->i_lock); 2293 rcu_read_unlock(); 2294 2295 /* 2296 * We keep the error status of individual mapping so that 2297 * applications can catch the writeback error using fsync(2). 2298 * See filemap_fdatawait_keep_errors() for details. 2299 */ 2300 filemap_fdatawait_keep_errors(mapping); 2301 2302 cond_resched(); 2303 2304 iput(inode); 2305 2306 rcu_read_lock(); 2307 spin_lock_irq(&sb->s_inode_wblist_lock); 2308 } 2309 spin_unlock_irq(&sb->s_inode_wblist_lock); 2310 rcu_read_unlock(); 2311 mutex_unlock(&sb->s_sync_lock); 2312 } 2313 2314 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2315 enum wb_reason reason, bool skip_if_busy) 2316 { 2317 DEFINE_WB_COMPLETION_ONSTACK(done); 2318 struct wb_writeback_work work = { 2319 .sb = sb, 2320 .sync_mode = WB_SYNC_NONE, 2321 .tagged_writepages = 1, 2322 .done = &done, 2323 .nr_pages = nr, 2324 .reason = reason, 2325 }; 2326 struct backing_dev_info *bdi = sb->s_bdi; 2327 2328 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2329 return; 2330 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2331 2332 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2333 wb_wait_for_completion(bdi, &done); 2334 } 2335 2336 /** 2337 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2338 * @sb: the superblock 2339 * @nr: the number of pages to write 2340 * @reason: reason why some writeback work initiated 2341 * 2342 * Start writeback on some inodes on this super_block. No guarantees are made 2343 * on how many (if any) will be written, and this function does not wait 2344 * for IO completion of submitted IO. 2345 */ 2346 void writeback_inodes_sb_nr(struct super_block *sb, 2347 unsigned long nr, 2348 enum wb_reason reason) 2349 { 2350 __writeback_inodes_sb_nr(sb, nr, reason, false); 2351 } 2352 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2353 2354 /** 2355 * writeback_inodes_sb - writeback dirty inodes from given super_block 2356 * @sb: the superblock 2357 * @reason: reason why some writeback work was initiated 2358 * 2359 * Start writeback on some inodes on this super_block. No guarantees are made 2360 * on how many (if any) will be written, and this function does not wait 2361 * for IO completion of submitted IO. 2362 */ 2363 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2364 { 2365 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2366 } 2367 EXPORT_SYMBOL(writeback_inodes_sb); 2368 2369 /** 2370 * try_to_writeback_inodes_sb - try to start writeback if none underway 2371 * @sb: the superblock 2372 * @reason: reason why some writeback work was initiated 2373 * 2374 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2375 */ 2376 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2377 { 2378 if (!down_read_trylock(&sb->s_umount)) 2379 return; 2380 2381 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2382 up_read(&sb->s_umount); 2383 } 2384 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2385 2386 /** 2387 * sync_inodes_sb - sync sb inode pages 2388 * @sb: the superblock 2389 * 2390 * This function writes and waits on any dirty inode belonging to this 2391 * super_block. 2392 */ 2393 void sync_inodes_sb(struct super_block *sb) 2394 { 2395 DEFINE_WB_COMPLETION_ONSTACK(done); 2396 struct wb_writeback_work work = { 2397 .sb = sb, 2398 .sync_mode = WB_SYNC_ALL, 2399 .nr_pages = LONG_MAX, 2400 .range_cyclic = 0, 2401 .done = &done, 2402 .reason = WB_REASON_SYNC, 2403 .for_sync = 1, 2404 }; 2405 struct backing_dev_info *bdi = sb->s_bdi; 2406 2407 /* 2408 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2409 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2410 * bdi_has_dirty() need to be written out too. 2411 */ 2412 if (bdi == &noop_backing_dev_info) 2413 return; 2414 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2415 2416 bdi_split_work_to_wbs(bdi, &work, false); 2417 wb_wait_for_completion(bdi, &done); 2418 2419 wait_sb_inodes(sb); 2420 } 2421 EXPORT_SYMBOL(sync_inodes_sb); 2422 2423 /** 2424 * write_inode_now - write an inode to disk 2425 * @inode: inode to write to disk 2426 * @sync: whether the write should be synchronous or not 2427 * 2428 * This function commits an inode to disk immediately if it is dirty. This is 2429 * primarily needed by knfsd. 2430 * 2431 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2432 */ 2433 int write_inode_now(struct inode *inode, int sync) 2434 { 2435 struct writeback_control wbc = { 2436 .nr_to_write = LONG_MAX, 2437 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2438 .range_start = 0, 2439 .range_end = LLONG_MAX, 2440 }; 2441 2442 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2443 wbc.nr_to_write = 0; 2444 2445 might_sleep(); 2446 return writeback_single_inode(inode, &wbc); 2447 } 2448 EXPORT_SYMBOL(write_inode_now); 2449 2450 /** 2451 * sync_inode - write an inode and its pages to disk. 2452 * @inode: the inode to sync 2453 * @wbc: controls the writeback mode 2454 * 2455 * sync_inode() will write an inode and its pages to disk. It will also 2456 * correctly update the inode on its superblock's dirty inode lists and will 2457 * update inode->i_state. 2458 * 2459 * The caller must have a ref on the inode. 2460 */ 2461 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2462 { 2463 return writeback_single_inode(inode, wbc); 2464 } 2465 EXPORT_SYMBOL(sync_inode); 2466 2467 /** 2468 * sync_inode_metadata - write an inode to disk 2469 * @inode: the inode to sync 2470 * @wait: wait for I/O to complete. 2471 * 2472 * Write an inode to disk and adjust its dirty state after completion. 2473 * 2474 * Note: only writes the actual inode, no associated data or other metadata. 2475 */ 2476 int sync_inode_metadata(struct inode *inode, int wait) 2477 { 2478 struct writeback_control wbc = { 2479 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2480 .nr_to_write = 0, /* metadata-only */ 2481 }; 2482 2483 return sync_inode(inode, &wbc); 2484 } 2485 EXPORT_SYMBOL(sync_inode_metadata); 2486