xref: /openbmc/linux/fs/fs-writeback.c (revision 6189f1b0)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	unsigned int single_wait:1;
57 	unsigned int single_done:1;
58 	enum wb_reason reason;		/* why was writeback initiated? */
59 
60 	struct list_head list;		/* pending work list */
61 	struct wb_completion *done;	/* set if the caller waits */
62 };
63 
64 /*
65  * If one wants to wait for one or more wb_writeback_works, each work's
66  * ->done should be set to a wb_completion defined using the following
67  * macro.  Once all work items are issued with wb_queue_work(), the caller
68  * can wait for the completion of all using wb_wait_for_completion().  Work
69  * items which are waited upon aren't freed automatically on completion.
70  */
71 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
72 	struct wb_completion cmpl = {					\
73 		.cnt		= ATOMIC_INIT(1),			\
74 	}
75 
76 
77 /*
78  * If an inode is constantly having its pages dirtied, but then the
79  * updates stop dirtytime_expire_interval seconds in the past, it's
80  * possible for the worst case time between when an inode has its
81  * timestamps updated and when they finally get written out to be two
82  * dirtytime_expire_intervals.  We set the default to 12 hours (in
83  * seconds), which means most of the time inodes will have their
84  * timestamps written to disk after 12 hours, but in the worst case a
85  * few inodes might not their timestamps updated for 24 hours.
86  */
87 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
88 
89 static inline struct inode *wb_inode(struct list_head *head)
90 {
91 	return list_entry(head, struct inode, i_wb_list);
92 }
93 
94 /*
95  * Include the creation of the trace points after defining the
96  * wb_writeback_work structure and inline functions so that the definition
97  * remains local to this file.
98  */
99 #define CREATE_TRACE_POINTS
100 #include <trace/events/writeback.h>
101 
102 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
103 
104 static bool wb_io_lists_populated(struct bdi_writeback *wb)
105 {
106 	if (wb_has_dirty_io(wb)) {
107 		return false;
108 	} else {
109 		set_bit(WB_has_dirty_io, &wb->state);
110 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
111 		atomic_long_add(wb->avg_write_bandwidth,
112 				&wb->bdi->tot_write_bandwidth);
113 		return true;
114 	}
115 }
116 
117 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
118 {
119 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
120 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
121 		clear_bit(WB_has_dirty_io, &wb->state);
122 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
123 					&wb->bdi->tot_write_bandwidth) < 0);
124 	}
125 }
126 
127 /**
128  * inode_wb_list_move_locked - move an inode onto a bdi_writeback IO list
129  * @inode: inode to be moved
130  * @wb: target bdi_writeback
131  * @head: one of @wb->b_{dirty|io|more_io}
132  *
133  * Move @inode->i_wb_list to @list of @wb and set %WB_has_dirty_io.
134  * Returns %true if @inode is the first occupant of the !dirty_time IO
135  * lists; otherwise, %false.
136  */
137 static bool inode_wb_list_move_locked(struct inode *inode,
138 				      struct bdi_writeback *wb,
139 				      struct list_head *head)
140 {
141 	assert_spin_locked(&wb->list_lock);
142 
143 	list_move(&inode->i_wb_list, head);
144 
145 	/* dirty_time doesn't count as dirty_io until expiration */
146 	if (head != &wb->b_dirty_time)
147 		return wb_io_lists_populated(wb);
148 
149 	wb_io_lists_depopulated(wb);
150 	return false;
151 }
152 
153 /**
154  * inode_wb_list_del_locked - remove an inode from its bdi_writeback IO list
155  * @inode: inode to be removed
156  * @wb: bdi_writeback @inode is being removed from
157  *
158  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
159  * clear %WB_has_dirty_io if all are empty afterwards.
160  */
161 static void inode_wb_list_del_locked(struct inode *inode,
162 				     struct bdi_writeback *wb)
163 {
164 	assert_spin_locked(&wb->list_lock);
165 
166 	list_del_init(&inode->i_wb_list);
167 	wb_io_lists_depopulated(wb);
168 }
169 
170 static void wb_wakeup(struct bdi_writeback *wb)
171 {
172 	spin_lock_bh(&wb->work_lock);
173 	if (test_bit(WB_registered, &wb->state))
174 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
175 	spin_unlock_bh(&wb->work_lock);
176 }
177 
178 static void wb_queue_work(struct bdi_writeback *wb,
179 			  struct wb_writeback_work *work)
180 {
181 	trace_writeback_queue(wb->bdi, work);
182 
183 	spin_lock_bh(&wb->work_lock);
184 	if (!test_bit(WB_registered, &wb->state)) {
185 		if (work->single_wait)
186 			work->single_done = 1;
187 		goto out_unlock;
188 	}
189 	if (work->done)
190 		atomic_inc(&work->done->cnt);
191 	list_add_tail(&work->list, &wb->work_list);
192 	mod_delayed_work(bdi_wq, &wb->dwork, 0);
193 out_unlock:
194 	spin_unlock_bh(&wb->work_lock);
195 }
196 
197 /**
198  * wb_wait_for_completion - wait for completion of bdi_writeback_works
199  * @bdi: bdi work items were issued to
200  * @done: target wb_completion
201  *
202  * Wait for one or more work items issued to @bdi with their ->done field
203  * set to @done, which should have been defined with
204  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
205  * work items are completed.  Work items which are waited upon aren't freed
206  * automatically on completion.
207  */
208 static void wb_wait_for_completion(struct backing_dev_info *bdi,
209 				   struct wb_completion *done)
210 {
211 	atomic_dec(&done->cnt);		/* put down the initial count */
212 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
213 }
214 
215 #ifdef CONFIG_CGROUP_WRITEBACK
216 
217 /* parameters for foreign inode detection, see wb_detach_inode() */
218 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
219 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
220 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
221 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
222 
223 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
224 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
225 					/* each slot's duration is 2s / 16 */
226 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
227 					/* if foreign slots >= 8, switch */
228 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
229 					/* one round can affect upto 5 slots */
230 
231 void __inode_attach_wb(struct inode *inode, struct page *page)
232 {
233 	struct backing_dev_info *bdi = inode_to_bdi(inode);
234 	struct bdi_writeback *wb = NULL;
235 
236 	if (inode_cgwb_enabled(inode)) {
237 		struct cgroup_subsys_state *memcg_css;
238 
239 		if (page) {
240 			memcg_css = mem_cgroup_css_from_page(page);
241 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
242 		} else {
243 			/* must pin memcg_css, see wb_get_create() */
244 			memcg_css = task_get_css(current, memory_cgrp_id);
245 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
246 			css_put(memcg_css);
247 		}
248 	}
249 
250 	if (!wb)
251 		wb = &bdi->wb;
252 
253 	/*
254 	 * There may be multiple instances of this function racing to
255 	 * update the same inode.  Use cmpxchg() to tell the winner.
256 	 */
257 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
258 		wb_put(wb);
259 }
260 
261 /**
262  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
263  * @inode: inode of interest with i_lock held
264  *
265  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
266  * held on entry and is released on return.  The returned wb is guaranteed
267  * to stay @inode's associated wb until its list_lock is released.
268  */
269 static struct bdi_writeback *
270 locked_inode_to_wb_and_lock_list(struct inode *inode)
271 	__releases(&inode->i_lock)
272 	__acquires(&wb->list_lock)
273 {
274 	while (true) {
275 		struct bdi_writeback *wb = inode_to_wb(inode);
276 
277 		/*
278 		 * inode_to_wb() association is protected by both
279 		 * @inode->i_lock and @wb->list_lock but list_lock nests
280 		 * outside i_lock.  Drop i_lock and verify that the
281 		 * association hasn't changed after acquiring list_lock.
282 		 */
283 		wb_get(wb);
284 		spin_unlock(&inode->i_lock);
285 		spin_lock(&wb->list_lock);
286 		wb_put(wb);		/* not gonna deref it anymore */
287 
288 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
289 		if (likely(wb == inode->i_wb))
290 			return wb;	/* @inode already has ref */
291 
292 		spin_unlock(&wb->list_lock);
293 		cpu_relax();
294 		spin_lock(&inode->i_lock);
295 	}
296 }
297 
298 /**
299  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
300  * @inode: inode of interest
301  *
302  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
303  * on entry.
304  */
305 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
306 	__acquires(&wb->list_lock)
307 {
308 	spin_lock(&inode->i_lock);
309 	return locked_inode_to_wb_and_lock_list(inode);
310 }
311 
312 struct inode_switch_wbs_context {
313 	struct inode		*inode;
314 	struct bdi_writeback	*new_wb;
315 
316 	struct rcu_head		rcu_head;
317 	struct work_struct	work;
318 };
319 
320 static void inode_switch_wbs_work_fn(struct work_struct *work)
321 {
322 	struct inode_switch_wbs_context *isw =
323 		container_of(work, struct inode_switch_wbs_context, work);
324 	struct inode *inode = isw->inode;
325 	struct address_space *mapping = inode->i_mapping;
326 	struct bdi_writeback *old_wb = inode->i_wb;
327 	struct bdi_writeback *new_wb = isw->new_wb;
328 	struct radix_tree_iter iter;
329 	bool switched = false;
330 	void **slot;
331 
332 	/*
333 	 * By the time control reaches here, RCU grace period has passed
334 	 * since I_WB_SWITCH assertion and all wb stat update transactions
335 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
336 	 * synchronizing against mapping->tree_lock.
337 	 *
338 	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
339 	 * gives us exclusion against all wb related operations on @inode
340 	 * including IO list manipulations and stat updates.
341 	 */
342 	if (old_wb < new_wb) {
343 		spin_lock(&old_wb->list_lock);
344 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
345 	} else {
346 		spin_lock(&new_wb->list_lock);
347 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
348 	}
349 	spin_lock(&inode->i_lock);
350 	spin_lock_irq(&mapping->tree_lock);
351 
352 	/*
353 	 * Once I_FREEING is visible under i_lock, the eviction path owns
354 	 * the inode and we shouldn't modify ->i_wb_list.
355 	 */
356 	if (unlikely(inode->i_state & I_FREEING))
357 		goto skip_switch;
358 
359 	/*
360 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
361 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
362 	 * pages actually under underwriteback.
363 	 */
364 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
365 				   PAGECACHE_TAG_DIRTY) {
366 		struct page *page = radix_tree_deref_slot_protected(slot,
367 							&mapping->tree_lock);
368 		if (likely(page) && PageDirty(page)) {
369 			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
370 			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
371 		}
372 	}
373 
374 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
375 				   PAGECACHE_TAG_WRITEBACK) {
376 		struct page *page = radix_tree_deref_slot_protected(slot,
377 							&mapping->tree_lock);
378 		if (likely(page)) {
379 			WARN_ON_ONCE(!PageWriteback(page));
380 			__dec_wb_stat(old_wb, WB_WRITEBACK);
381 			__inc_wb_stat(new_wb, WB_WRITEBACK);
382 		}
383 	}
384 
385 	wb_get(new_wb);
386 
387 	/*
388 	 * Transfer to @new_wb's IO list if necessary.  The specific list
389 	 * @inode was on is ignored and the inode is put on ->b_dirty which
390 	 * is always correct including from ->b_dirty_time.  The transfer
391 	 * preserves @inode->dirtied_when ordering.
392 	 */
393 	if (!list_empty(&inode->i_wb_list)) {
394 		struct inode *pos;
395 
396 		inode_wb_list_del_locked(inode, old_wb);
397 		inode->i_wb = new_wb;
398 		list_for_each_entry(pos, &new_wb->b_dirty, i_wb_list)
399 			if (time_after_eq(inode->dirtied_when,
400 					  pos->dirtied_when))
401 				break;
402 		inode_wb_list_move_locked(inode, new_wb, pos->i_wb_list.prev);
403 	} else {
404 		inode->i_wb = new_wb;
405 	}
406 
407 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
408 	inode->i_wb_frn_winner = 0;
409 	inode->i_wb_frn_avg_time = 0;
410 	inode->i_wb_frn_history = 0;
411 	switched = true;
412 skip_switch:
413 	/*
414 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
415 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
416 	 */
417 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
418 
419 	spin_unlock_irq(&mapping->tree_lock);
420 	spin_unlock(&inode->i_lock);
421 	spin_unlock(&new_wb->list_lock);
422 	spin_unlock(&old_wb->list_lock);
423 
424 	if (switched) {
425 		wb_wakeup(new_wb);
426 		wb_put(old_wb);
427 	}
428 	wb_put(new_wb);
429 
430 	iput(inode);
431 	kfree(isw);
432 }
433 
434 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
435 {
436 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
437 				struct inode_switch_wbs_context, rcu_head);
438 
439 	/* needs to grab bh-unsafe locks, bounce to work item */
440 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
441 	schedule_work(&isw->work);
442 }
443 
444 /**
445  * inode_switch_wbs - change the wb association of an inode
446  * @inode: target inode
447  * @new_wb_id: ID of the new wb
448  *
449  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
450  * switching is performed asynchronously and may fail silently.
451  */
452 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
453 {
454 	struct backing_dev_info *bdi = inode_to_bdi(inode);
455 	struct cgroup_subsys_state *memcg_css;
456 	struct inode_switch_wbs_context *isw;
457 
458 	/* noop if seems to be already in progress */
459 	if (inode->i_state & I_WB_SWITCH)
460 		return;
461 
462 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
463 	if (!isw)
464 		return;
465 
466 	/* find and pin the new wb */
467 	rcu_read_lock();
468 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
469 	if (memcg_css)
470 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
471 	rcu_read_unlock();
472 	if (!isw->new_wb)
473 		goto out_free;
474 
475 	/* while holding I_WB_SWITCH, no one else can update the association */
476 	spin_lock(&inode->i_lock);
477 	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
478 	    inode_to_wb(inode) == isw->new_wb) {
479 		spin_unlock(&inode->i_lock);
480 		goto out_free;
481 	}
482 	inode->i_state |= I_WB_SWITCH;
483 	spin_unlock(&inode->i_lock);
484 
485 	ihold(inode);
486 	isw->inode = inode;
487 
488 	/*
489 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
490 	 * the RCU protected stat update paths to grab the mapping's
491 	 * tree_lock so that stat transfer can synchronize against them.
492 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
493 	 */
494 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
495 	return;
496 
497 out_free:
498 	if (isw->new_wb)
499 		wb_put(isw->new_wb);
500 	kfree(isw);
501 }
502 
503 /**
504  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
505  * @wbc: writeback_control of interest
506  * @inode: target inode
507  *
508  * @inode is locked and about to be written back under the control of @wbc.
509  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
510  * writeback completion, wbc_detach_inode() should be called.  This is used
511  * to track the cgroup writeback context.
512  */
513 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
514 				 struct inode *inode)
515 {
516 	if (!inode_cgwb_enabled(inode)) {
517 		spin_unlock(&inode->i_lock);
518 		return;
519 	}
520 
521 	wbc->wb = inode_to_wb(inode);
522 	wbc->inode = inode;
523 
524 	wbc->wb_id = wbc->wb->memcg_css->id;
525 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
526 	wbc->wb_tcand_id = 0;
527 	wbc->wb_bytes = 0;
528 	wbc->wb_lcand_bytes = 0;
529 	wbc->wb_tcand_bytes = 0;
530 
531 	wb_get(wbc->wb);
532 	spin_unlock(&inode->i_lock);
533 
534 	/*
535 	 * A dying wb indicates that the memcg-blkcg mapping has changed
536 	 * and a new wb is already serving the memcg.  Switch immediately.
537 	 */
538 	if (unlikely(wb_dying(wbc->wb)))
539 		inode_switch_wbs(inode, wbc->wb_id);
540 }
541 
542 /**
543  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
544  * @wbc: writeback_control of the just finished writeback
545  *
546  * To be called after a writeback attempt of an inode finishes and undoes
547  * wbc_attach_and_unlock_inode().  Can be called under any context.
548  *
549  * As concurrent write sharing of an inode is expected to be very rare and
550  * memcg only tracks page ownership on first-use basis severely confining
551  * the usefulness of such sharing, cgroup writeback tracks ownership
552  * per-inode.  While the support for concurrent write sharing of an inode
553  * is deemed unnecessary, an inode being written to by different cgroups at
554  * different points in time is a lot more common, and, more importantly,
555  * charging only by first-use can too readily lead to grossly incorrect
556  * behaviors (single foreign page can lead to gigabytes of writeback to be
557  * incorrectly attributed).
558  *
559  * To resolve this issue, cgroup writeback detects the majority dirtier of
560  * an inode and transfers the ownership to it.  To avoid unnnecessary
561  * oscillation, the detection mechanism keeps track of history and gives
562  * out the switch verdict only if the foreign usage pattern is stable over
563  * a certain amount of time and/or writeback attempts.
564  *
565  * On each writeback attempt, @wbc tries to detect the majority writer
566  * using Boyer-Moore majority vote algorithm.  In addition to the byte
567  * count from the majority voting, it also counts the bytes written for the
568  * current wb and the last round's winner wb (max of last round's current
569  * wb, the winner from two rounds ago, and the last round's majority
570  * candidate).  Keeping track of the historical winner helps the algorithm
571  * to semi-reliably detect the most active writer even when it's not the
572  * absolute majority.
573  *
574  * Once the winner of the round is determined, whether the winner is
575  * foreign or not and how much IO time the round consumed is recorded in
576  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
577  * over a certain threshold, the switch verdict is given.
578  */
579 void wbc_detach_inode(struct writeback_control *wbc)
580 {
581 	struct bdi_writeback *wb = wbc->wb;
582 	struct inode *inode = wbc->inode;
583 	unsigned long avg_time, max_bytes, max_time;
584 	u16 history;
585 	int max_id;
586 
587 	if (!wb)
588 		return;
589 
590 	history = inode->i_wb_frn_history;
591 	avg_time = inode->i_wb_frn_avg_time;
592 
593 	/* pick the winner of this round */
594 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
595 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
596 		max_id = wbc->wb_id;
597 		max_bytes = wbc->wb_bytes;
598 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
599 		max_id = wbc->wb_lcand_id;
600 		max_bytes = wbc->wb_lcand_bytes;
601 	} else {
602 		max_id = wbc->wb_tcand_id;
603 		max_bytes = wbc->wb_tcand_bytes;
604 	}
605 
606 	/*
607 	 * Calculate the amount of IO time the winner consumed and fold it
608 	 * into the running average kept per inode.  If the consumed IO
609 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
610 	 * deciding whether to switch or not.  This is to prevent one-off
611 	 * small dirtiers from skewing the verdict.
612 	 */
613 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
614 				wb->avg_write_bandwidth);
615 	if (avg_time)
616 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
617 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
618 	else
619 		avg_time = max_time;	/* immediate catch up on first run */
620 
621 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
622 		int slots;
623 
624 		/*
625 		 * The switch verdict is reached if foreign wb's consume
626 		 * more than a certain proportion of IO time in a
627 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
628 		 * history mask where each bit represents one sixteenth of
629 		 * the period.  Determine the number of slots to shift into
630 		 * history from @max_time.
631 		 */
632 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
633 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
634 		history <<= slots;
635 		if (wbc->wb_id != max_id)
636 			history |= (1U << slots) - 1;
637 
638 		/*
639 		 * Switch if the current wb isn't the consistent winner.
640 		 * If there are multiple closely competing dirtiers, the
641 		 * inode may switch across them repeatedly over time, which
642 		 * is okay.  The main goal is avoiding keeping an inode on
643 		 * the wrong wb for an extended period of time.
644 		 */
645 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
646 			inode_switch_wbs(inode, max_id);
647 	}
648 
649 	/*
650 	 * Multiple instances of this function may race to update the
651 	 * following fields but we don't mind occassional inaccuracies.
652 	 */
653 	inode->i_wb_frn_winner = max_id;
654 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
655 	inode->i_wb_frn_history = history;
656 
657 	wb_put(wbc->wb);
658 	wbc->wb = NULL;
659 }
660 
661 /**
662  * wbc_account_io - account IO issued during writeback
663  * @wbc: writeback_control of the writeback in progress
664  * @page: page being written out
665  * @bytes: number of bytes being written out
666  *
667  * @bytes from @page are about to written out during the writeback
668  * controlled by @wbc.  Keep the book for foreign inode detection.  See
669  * wbc_detach_inode().
670  */
671 void wbc_account_io(struct writeback_control *wbc, struct page *page,
672 		    size_t bytes)
673 {
674 	int id;
675 
676 	/*
677 	 * pageout() path doesn't attach @wbc to the inode being written
678 	 * out.  This is intentional as we don't want the function to block
679 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
680 	 * regular writeback instead of writing things out itself.
681 	 */
682 	if (!wbc->wb)
683 		return;
684 
685 	rcu_read_lock();
686 	id = mem_cgroup_css_from_page(page)->id;
687 	rcu_read_unlock();
688 
689 	if (id == wbc->wb_id) {
690 		wbc->wb_bytes += bytes;
691 		return;
692 	}
693 
694 	if (id == wbc->wb_lcand_id)
695 		wbc->wb_lcand_bytes += bytes;
696 
697 	/* Boyer-Moore majority vote algorithm */
698 	if (!wbc->wb_tcand_bytes)
699 		wbc->wb_tcand_id = id;
700 	if (id == wbc->wb_tcand_id)
701 		wbc->wb_tcand_bytes += bytes;
702 	else
703 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
704 }
705 EXPORT_SYMBOL_GPL(wbc_account_io);
706 
707 /**
708  * inode_congested - test whether an inode is congested
709  * @inode: inode to test for congestion
710  * @cong_bits: mask of WB_[a]sync_congested bits to test
711  *
712  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
713  * bits to test and the return value is the mask of set bits.
714  *
715  * If cgroup writeback is enabled for @inode, the congestion state is
716  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
717  * associated with @inode is congested; otherwise, the root wb's congestion
718  * state is used.
719  */
720 int inode_congested(struct inode *inode, int cong_bits)
721 {
722 	/*
723 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
724 	 * Start transaction iff ->i_wb is visible.
725 	 */
726 	if (inode && inode_to_wb_is_valid(inode)) {
727 		struct bdi_writeback *wb;
728 		bool locked, congested;
729 
730 		wb = unlocked_inode_to_wb_begin(inode, &locked);
731 		congested = wb_congested(wb, cong_bits);
732 		unlocked_inode_to_wb_end(inode, locked);
733 		return congested;
734 	}
735 
736 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
737 }
738 EXPORT_SYMBOL_GPL(inode_congested);
739 
740 /**
741  * wb_wait_for_single_work - wait for completion of a single bdi_writeback_work
742  * @bdi: bdi the work item was issued to
743  * @work: work item to wait for
744  *
745  * Wait for the completion of @work which was issued to one of @bdi's
746  * bdi_writeback's.  The caller must have set @work->single_wait before
747  * issuing it.  This wait operates independently fo
748  * wb_wait_for_completion() and also disables automatic freeing of @work.
749  */
750 static void wb_wait_for_single_work(struct backing_dev_info *bdi,
751 				    struct wb_writeback_work *work)
752 {
753 	if (WARN_ON_ONCE(!work->single_wait))
754 		return;
755 
756 	wait_event(bdi->wb_waitq, work->single_done);
757 
758 	/*
759 	 * Paired with smp_wmb() in wb_do_writeback() and ensures that all
760 	 * modifications to @work prior to assertion of ->single_done is
761 	 * visible to the caller once this function returns.
762 	 */
763 	smp_rmb();
764 }
765 
766 /**
767  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
768  * @wb: target bdi_writeback to split @nr_pages to
769  * @nr_pages: number of pages to write for the whole bdi
770  *
771  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
772  * relation to the total write bandwidth of all wb's w/ dirty inodes on
773  * @wb->bdi.
774  */
775 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
776 {
777 	unsigned long this_bw = wb->avg_write_bandwidth;
778 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
779 
780 	if (nr_pages == LONG_MAX)
781 		return LONG_MAX;
782 
783 	/*
784 	 * This may be called on clean wb's and proportional distribution
785 	 * may not make sense, just use the original @nr_pages in those
786 	 * cases.  In general, we wanna err on the side of writing more.
787 	 */
788 	if (!tot_bw || this_bw >= tot_bw)
789 		return nr_pages;
790 	else
791 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
792 }
793 
794 /**
795  * wb_clone_and_queue_work - clone a wb_writeback_work and issue it to a wb
796  * @wb: target bdi_writeback
797  * @base_work: source wb_writeback_work
798  *
799  * Try to make a clone of @base_work and issue it to @wb.  If cloning
800  * succeeds, %true is returned; otherwise, @base_work is issued directly
801  * and %false is returned.  In the latter case, the caller is required to
802  * wait for @base_work's completion using wb_wait_for_single_work().
803  *
804  * A clone is auto-freed on completion.  @base_work never is.
805  */
806 static bool wb_clone_and_queue_work(struct bdi_writeback *wb,
807 				    struct wb_writeback_work *base_work)
808 {
809 	struct wb_writeback_work *work;
810 
811 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
812 	if (work) {
813 		*work = *base_work;
814 		work->auto_free = 1;
815 		work->single_wait = 0;
816 	} else {
817 		work = base_work;
818 		work->auto_free = 0;
819 		work->single_wait = 1;
820 	}
821 	work->single_done = 0;
822 	wb_queue_work(wb, work);
823 	return work != base_work;
824 }
825 
826 /**
827  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
828  * @bdi: target backing_dev_info
829  * @base_work: wb_writeback_work to issue
830  * @skip_if_busy: skip wb's which already have writeback in progress
831  *
832  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
833  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
834  * distributed to the busy wbs according to each wb's proportion in the
835  * total active write bandwidth of @bdi.
836  */
837 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
838 				  struct wb_writeback_work *base_work,
839 				  bool skip_if_busy)
840 {
841 	long nr_pages = base_work->nr_pages;
842 	int next_blkcg_id = 0;
843 	struct bdi_writeback *wb;
844 	struct wb_iter iter;
845 
846 	might_sleep();
847 
848 	if (!bdi_has_dirty_io(bdi))
849 		return;
850 restart:
851 	rcu_read_lock();
852 	bdi_for_each_wb(wb, bdi, &iter, next_blkcg_id) {
853 		if (!wb_has_dirty_io(wb) ||
854 		    (skip_if_busy && writeback_in_progress(wb)))
855 			continue;
856 
857 		base_work->nr_pages = wb_split_bdi_pages(wb, nr_pages);
858 		if (!wb_clone_and_queue_work(wb, base_work)) {
859 			next_blkcg_id = wb->blkcg_css->id + 1;
860 			rcu_read_unlock();
861 			wb_wait_for_single_work(bdi, base_work);
862 			goto restart;
863 		}
864 	}
865 	rcu_read_unlock();
866 }
867 
868 #else	/* CONFIG_CGROUP_WRITEBACK */
869 
870 static struct bdi_writeback *
871 locked_inode_to_wb_and_lock_list(struct inode *inode)
872 	__releases(&inode->i_lock)
873 	__acquires(&wb->list_lock)
874 {
875 	struct bdi_writeback *wb = inode_to_wb(inode);
876 
877 	spin_unlock(&inode->i_lock);
878 	spin_lock(&wb->list_lock);
879 	return wb;
880 }
881 
882 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
883 	__acquires(&wb->list_lock)
884 {
885 	struct bdi_writeback *wb = inode_to_wb(inode);
886 
887 	spin_lock(&wb->list_lock);
888 	return wb;
889 }
890 
891 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
892 {
893 	return nr_pages;
894 }
895 
896 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
897 				  struct wb_writeback_work *base_work,
898 				  bool skip_if_busy)
899 {
900 	might_sleep();
901 
902 	if (bdi_has_dirty_io(bdi) &&
903 	    (!skip_if_busy || !writeback_in_progress(&bdi->wb))) {
904 		base_work->auto_free = 0;
905 		base_work->single_wait = 0;
906 		base_work->single_done = 0;
907 		wb_queue_work(&bdi->wb, base_work);
908 	}
909 }
910 
911 #endif	/* CONFIG_CGROUP_WRITEBACK */
912 
913 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
914 			bool range_cyclic, enum wb_reason reason)
915 {
916 	struct wb_writeback_work *work;
917 
918 	if (!wb_has_dirty_io(wb))
919 		return;
920 
921 	/*
922 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
923 	 * wakeup the thread for old dirty data writeback
924 	 */
925 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
926 	if (!work) {
927 		trace_writeback_nowork(wb->bdi);
928 		wb_wakeup(wb);
929 		return;
930 	}
931 
932 	work->sync_mode	= WB_SYNC_NONE;
933 	work->nr_pages	= nr_pages;
934 	work->range_cyclic = range_cyclic;
935 	work->reason	= reason;
936 	work->auto_free	= 1;
937 
938 	wb_queue_work(wb, work);
939 }
940 
941 /**
942  * wb_start_background_writeback - start background writeback
943  * @wb: bdi_writback to write from
944  *
945  * Description:
946  *   This makes sure WB_SYNC_NONE background writeback happens. When
947  *   this function returns, it is only guaranteed that for given wb
948  *   some IO is happening if we are over background dirty threshold.
949  *   Caller need not hold sb s_umount semaphore.
950  */
951 void wb_start_background_writeback(struct bdi_writeback *wb)
952 {
953 	/*
954 	 * We just wake up the flusher thread. It will perform background
955 	 * writeback as soon as there is no other work to do.
956 	 */
957 	trace_writeback_wake_background(wb->bdi);
958 	wb_wakeup(wb);
959 }
960 
961 /*
962  * Remove the inode from the writeback list it is on.
963  */
964 void inode_wb_list_del(struct inode *inode)
965 {
966 	struct bdi_writeback *wb;
967 
968 	wb = inode_to_wb_and_lock_list(inode);
969 	inode_wb_list_del_locked(inode, wb);
970 	spin_unlock(&wb->list_lock);
971 }
972 
973 /*
974  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
975  * furthest end of its superblock's dirty-inode list.
976  *
977  * Before stamping the inode's ->dirtied_when, we check to see whether it is
978  * already the most-recently-dirtied inode on the b_dirty list.  If that is
979  * the case then the inode must have been redirtied while it was being written
980  * out and we don't reset its dirtied_when.
981  */
982 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
983 {
984 	if (!list_empty(&wb->b_dirty)) {
985 		struct inode *tail;
986 
987 		tail = wb_inode(wb->b_dirty.next);
988 		if (time_before(inode->dirtied_when, tail->dirtied_when))
989 			inode->dirtied_when = jiffies;
990 	}
991 	inode_wb_list_move_locked(inode, wb, &wb->b_dirty);
992 }
993 
994 /*
995  * requeue inode for re-scanning after bdi->b_io list is exhausted.
996  */
997 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
998 {
999 	inode_wb_list_move_locked(inode, wb, &wb->b_more_io);
1000 }
1001 
1002 static void inode_sync_complete(struct inode *inode)
1003 {
1004 	inode->i_state &= ~I_SYNC;
1005 	/* If inode is clean an unused, put it into LRU now... */
1006 	inode_add_lru(inode);
1007 	/* Waiters must see I_SYNC cleared before being woken up */
1008 	smp_mb();
1009 	wake_up_bit(&inode->i_state, __I_SYNC);
1010 }
1011 
1012 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1013 {
1014 	bool ret = time_after(inode->dirtied_when, t);
1015 #ifndef CONFIG_64BIT
1016 	/*
1017 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1018 	 * It _appears_ to be in the future, but is actually in distant past.
1019 	 * This test is necessary to prevent such wrapped-around relative times
1020 	 * from permanently stopping the whole bdi writeback.
1021 	 */
1022 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1023 #endif
1024 	return ret;
1025 }
1026 
1027 #define EXPIRE_DIRTY_ATIME 0x0001
1028 
1029 /*
1030  * Move expired (dirtied before work->older_than_this) dirty inodes from
1031  * @delaying_queue to @dispatch_queue.
1032  */
1033 static int move_expired_inodes(struct list_head *delaying_queue,
1034 			       struct list_head *dispatch_queue,
1035 			       int flags,
1036 			       struct wb_writeback_work *work)
1037 {
1038 	unsigned long *older_than_this = NULL;
1039 	unsigned long expire_time;
1040 	LIST_HEAD(tmp);
1041 	struct list_head *pos, *node;
1042 	struct super_block *sb = NULL;
1043 	struct inode *inode;
1044 	int do_sb_sort = 0;
1045 	int moved = 0;
1046 
1047 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1048 		older_than_this = work->older_than_this;
1049 	else if (!work->for_sync) {
1050 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1051 		older_than_this = &expire_time;
1052 	}
1053 	while (!list_empty(delaying_queue)) {
1054 		inode = wb_inode(delaying_queue->prev);
1055 		if (older_than_this &&
1056 		    inode_dirtied_after(inode, *older_than_this))
1057 			break;
1058 		list_move(&inode->i_wb_list, &tmp);
1059 		moved++;
1060 		if (flags & EXPIRE_DIRTY_ATIME)
1061 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1062 		if (sb_is_blkdev_sb(inode->i_sb))
1063 			continue;
1064 		if (sb && sb != inode->i_sb)
1065 			do_sb_sort = 1;
1066 		sb = inode->i_sb;
1067 	}
1068 
1069 	/* just one sb in list, splice to dispatch_queue and we're done */
1070 	if (!do_sb_sort) {
1071 		list_splice(&tmp, dispatch_queue);
1072 		goto out;
1073 	}
1074 
1075 	/* Move inodes from one superblock together */
1076 	while (!list_empty(&tmp)) {
1077 		sb = wb_inode(tmp.prev)->i_sb;
1078 		list_for_each_prev_safe(pos, node, &tmp) {
1079 			inode = wb_inode(pos);
1080 			if (inode->i_sb == sb)
1081 				list_move(&inode->i_wb_list, dispatch_queue);
1082 		}
1083 	}
1084 out:
1085 	return moved;
1086 }
1087 
1088 /*
1089  * Queue all expired dirty inodes for io, eldest first.
1090  * Before
1091  *         newly dirtied     b_dirty    b_io    b_more_io
1092  *         =============>    gf         edc     BA
1093  * After
1094  *         newly dirtied     b_dirty    b_io    b_more_io
1095  *         =============>    g          fBAedc
1096  *                                           |
1097  *                                           +--> dequeue for IO
1098  */
1099 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1100 {
1101 	int moved;
1102 
1103 	assert_spin_locked(&wb->list_lock);
1104 	list_splice_init(&wb->b_more_io, &wb->b_io);
1105 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1106 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1107 				     EXPIRE_DIRTY_ATIME, work);
1108 	if (moved)
1109 		wb_io_lists_populated(wb);
1110 	trace_writeback_queue_io(wb, work, moved);
1111 }
1112 
1113 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1114 {
1115 	int ret;
1116 
1117 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1118 		trace_writeback_write_inode_start(inode, wbc);
1119 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1120 		trace_writeback_write_inode(inode, wbc);
1121 		return ret;
1122 	}
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Wait for writeback on an inode to complete. Called with i_lock held.
1128  * Caller must make sure inode cannot go away when we drop i_lock.
1129  */
1130 static void __inode_wait_for_writeback(struct inode *inode)
1131 	__releases(inode->i_lock)
1132 	__acquires(inode->i_lock)
1133 {
1134 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1135 	wait_queue_head_t *wqh;
1136 
1137 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1138 	while (inode->i_state & I_SYNC) {
1139 		spin_unlock(&inode->i_lock);
1140 		__wait_on_bit(wqh, &wq, bit_wait,
1141 			      TASK_UNINTERRUPTIBLE);
1142 		spin_lock(&inode->i_lock);
1143 	}
1144 }
1145 
1146 /*
1147  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1148  */
1149 void inode_wait_for_writeback(struct inode *inode)
1150 {
1151 	spin_lock(&inode->i_lock);
1152 	__inode_wait_for_writeback(inode);
1153 	spin_unlock(&inode->i_lock);
1154 }
1155 
1156 /*
1157  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1158  * held and drops it. It is aimed for callers not holding any inode reference
1159  * so once i_lock is dropped, inode can go away.
1160  */
1161 static void inode_sleep_on_writeback(struct inode *inode)
1162 	__releases(inode->i_lock)
1163 {
1164 	DEFINE_WAIT(wait);
1165 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1166 	int sleep;
1167 
1168 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1169 	sleep = inode->i_state & I_SYNC;
1170 	spin_unlock(&inode->i_lock);
1171 	if (sleep)
1172 		schedule();
1173 	finish_wait(wqh, &wait);
1174 }
1175 
1176 /*
1177  * Find proper writeback list for the inode depending on its current state and
1178  * possibly also change of its state while we were doing writeback.  Here we
1179  * handle things such as livelock prevention or fairness of writeback among
1180  * inodes. This function can be called only by flusher thread - noone else
1181  * processes all inodes in writeback lists and requeueing inodes behind flusher
1182  * thread's back can have unexpected consequences.
1183  */
1184 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1185 			  struct writeback_control *wbc)
1186 {
1187 	if (inode->i_state & I_FREEING)
1188 		return;
1189 
1190 	/*
1191 	 * Sync livelock prevention. Each inode is tagged and synced in one
1192 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1193 	 * the dirty time to prevent enqueue and sync it again.
1194 	 */
1195 	if ((inode->i_state & I_DIRTY) &&
1196 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1197 		inode->dirtied_when = jiffies;
1198 
1199 	if (wbc->pages_skipped) {
1200 		/*
1201 		 * writeback is not making progress due to locked
1202 		 * buffers. Skip this inode for now.
1203 		 */
1204 		redirty_tail(inode, wb);
1205 		return;
1206 	}
1207 
1208 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1209 		/*
1210 		 * We didn't write back all the pages.  nfs_writepages()
1211 		 * sometimes bales out without doing anything.
1212 		 */
1213 		if (wbc->nr_to_write <= 0) {
1214 			/* Slice used up. Queue for next turn. */
1215 			requeue_io(inode, wb);
1216 		} else {
1217 			/*
1218 			 * Writeback blocked by something other than
1219 			 * congestion. Delay the inode for some time to
1220 			 * avoid spinning on the CPU (100% iowait)
1221 			 * retrying writeback of the dirty page/inode
1222 			 * that cannot be performed immediately.
1223 			 */
1224 			redirty_tail(inode, wb);
1225 		}
1226 	} else if (inode->i_state & I_DIRTY) {
1227 		/*
1228 		 * Filesystems can dirty the inode during writeback operations,
1229 		 * such as delayed allocation during submission or metadata
1230 		 * updates after data IO completion.
1231 		 */
1232 		redirty_tail(inode, wb);
1233 	} else if (inode->i_state & I_DIRTY_TIME) {
1234 		inode->dirtied_when = jiffies;
1235 		inode_wb_list_move_locked(inode, wb, &wb->b_dirty_time);
1236 	} else {
1237 		/* The inode is clean. Remove from writeback lists. */
1238 		inode_wb_list_del_locked(inode, wb);
1239 	}
1240 }
1241 
1242 /*
1243  * Write out an inode and its dirty pages. Do not update the writeback list
1244  * linkage. That is left to the caller. The caller is also responsible for
1245  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1246  */
1247 static int
1248 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1249 {
1250 	struct address_space *mapping = inode->i_mapping;
1251 	long nr_to_write = wbc->nr_to_write;
1252 	unsigned dirty;
1253 	int ret;
1254 
1255 	WARN_ON(!(inode->i_state & I_SYNC));
1256 
1257 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1258 
1259 	ret = do_writepages(mapping, wbc);
1260 
1261 	/*
1262 	 * Make sure to wait on the data before writing out the metadata.
1263 	 * This is important for filesystems that modify metadata on data
1264 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1265 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1266 	 * inode metadata is written back correctly.
1267 	 */
1268 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1269 		int err = filemap_fdatawait(mapping);
1270 		if (ret == 0)
1271 			ret = err;
1272 	}
1273 
1274 	/*
1275 	 * Some filesystems may redirty the inode during the writeback
1276 	 * due to delalloc, clear dirty metadata flags right before
1277 	 * write_inode()
1278 	 */
1279 	spin_lock(&inode->i_lock);
1280 
1281 	dirty = inode->i_state & I_DIRTY;
1282 	if (inode->i_state & I_DIRTY_TIME) {
1283 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1284 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1285 		    unlikely(time_after(jiffies,
1286 					(inode->dirtied_time_when +
1287 					 dirtytime_expire_interval * HZ)))) {
1288 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1289 			trace_writeback_lazytime(inode);
1290 		}
1291 	} else
1292 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1293 	inode->i_state &= ~dirty;
1294 
1295 	/*
1296 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1297 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1298 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1299 	 * inode.
1300 	 *
1301 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1302 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1303 	 * necessary.  This guarantees that either __mark_inode_dirty()
1304 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1305 	 */
1306 	smp_mb();
1307 
1308 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1309 		inode->i_state |= I_DIRTY_PAGES;
1310 
1311 	spin_unlock(&inode->i_lock);
1312 
1313 	if (dirty & I_DIRTY_TIME)
1314 		mark_inode_dirty_sync(inode);
1315 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1316 	if (dirty & ~I_DIRTY_PAGES) {
1317 		int err = write_inode(inode, wbc);
1318 		if (ret == 0)
1319 			ret = err;
1320 	}
1321 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1322 	return ret;
1323 }
1324 
1325 /*
1326  * Write out an inode's dirty pages. Either the caller has an active reference
1327  * on the inode or the inode has I_WILL_FREE set.
1328  *
1329  * This function is designed to be called for writing back one inode which
1330  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1331  * and does more profound writeback list handling in writeback_sb_inodes().
1332  */
1333 static int
1334 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1335 		       struct writeback_control *wbc)
1336 {
1337 	int ret = 0;
1338 
1339 	spin_lock(&inode->i_lock);
1340 	if (!atomic_read(&inode->i_count))
1341 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1342 	else
1343 		WARN_ON(inode->i_state & I_WILL_FREE);
1344 
1345 	if (inode->i_state & I_SYNC) {
1346 		if (wbc->sync_mode != WB_SYNC_ALL)
1347 			goto out;
1348 		/*
1349 		 * It's a data-integrity sync. We must wait. Since callers hold
1350 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1351 		 * away under us.
1352 		 */
1353 		__inode_wait_for_writeback(inode);
1354 	}
1355 	WARN_ON(inode->i_state & I_SYNC);
1356 	/*
1357 	 * Skip inode if it is clean and we have no outstanding writeback in
1358 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1359 	 * function since flusher thread may be doing for example sync in
1360 	 * parallel and if we move the inode, it could get skipped. So here we
1361 	 * make sure inode is on some writeback list and leave it there unless
1362 	 * we have completely cleaned the inode.
1363 	 */
1364 	if (!(inode->i_state & I_DIRTY_ALL) &&
1365 	    (wbc->sync_mode != WB_SYNC_ALL ||
1366 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1367 		goto out;
1368 	inode->i_state |= I_SYNC;
1369 	wbc_attach_and_unlock_inode(wbc, inode);
1370 
1371 	ret = __writeback_single_inode(inode, wbc);
1372 
1373 	wbc_detach_inode(wbc);
1374 	spin_lock(&wb->list_lock);
1375 	spin_lock(&inode->i_lock);
1376 	/*
1377 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1378 	 * touch it. See comment above for explanation.
1379 	 */
1380 	if (!(inode->i_state & I_DIRTY_ALL))
1381 		inode_wb_list_del_locked(inode, wb);
1382 	spin_unlock(&wb->list_lock);
1383 	inode_sync_complete(inode);
1384 out:
1385 	spin_unlock(&inode->i_lock);
1386 	return ret;
1387 }
1388 
1389 static long writeback_chunk_size(struct bdi_writeback *wb,
1390 				 struct wb_writeback_work *work)
1391 {
1392 	long pages;
1393 
1394 	/*
1395 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1396 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1397 	 * here avoids calling into writeback_inodes_wb() more than once.
1398 	 *
1399 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1400 	 *
1401 	 *      wb_writeback()
1402 	 *          writeback_sb_inodes()       <== called only once
1403 	 *              write_cache_pages()     <== called once for each inode
1404 	 *                   (quickly) tag currently dirty pages
1405 	 *                   (maybe slowly) sync all tagged pages
1406 	 */
1407 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1408 		pages = LONG_MAX;
1409 	else {
1410 		pages = min(wb->avg_write_bandwidth / 2,
1411 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1412 		pages = min(pages, work->nr_pages);
1413 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1414 				   MIN_WRITEBACK_PAGES);
1415 	}
1416 
1417 	return pages;
1418 }
1419 
1420 /*
1421  * Write a portion of b_io inodes which belong to @sb.
1422  *
1423  * Return the number of pages and/or inodes written.
1424  */
1425 static long writeback_sb_inodes(struct super_block *sb,
1426 				struct bdi_writeback *wb,
1427 				struct wb_writeback_work *work)
1428 {
1429 	struct writeback_control wbc = {
1430 		.sync_mode		= work->sync_mode,
1431 		.tagged_writepages	= work->tagged_writepages,
1432 		.for_kupdate		= work->for_kupdate,
1433 		.for_background		= work->for_background,
1434 		.for_sync		= work->for_sync,
1435 		.range_cyclic		= work->range_cyclic,
1436 		.range_start		= 0,
1437 		.range_end		= LLONG_MAX,
1438 	};
1439 	unsigned long start_time = jiffies;
1440 	long write_chunk;
1441 	long wrote = 0;  /* count both pages and inodes */
1442 
1443 	while (!list_empty(&wb->b_io)) {
1444 		struct inode *inode = wb_inode(wb->b_io.prev);
1445 
1446 		if (inode->i_sb != sb) {
1447 			if (work->sb) {
1448 				/*
1449 				 * We only want to write back data for this
1450 				 * superblock, move all inodes not belonging
1451 				 * to it back onto the dirty list.
1452 				 */
1453 				redirty_tail(inode, wb);
1454 				continue;
1455 			}
1456 
1457 			/*
1458 			 * The inode belongs to a different superblock.
1459 			 * Bounce back to the caller to unpin this and
1460 			 * pin the next superblock.
1461 			 */
1462 			break;
1463 		}
1464 
1465 		/*
1466 		 * Don't bother with new inodes or inodes being freed, first
1467 		 * kind does not need periodic writeout yet, and for the latter
1468 		 * kind writeout is handled by the freer.
1469 		 */
1470 		spin_lock(&inode->i_lock);
1471 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1472 			spin_unlock(&inode->i_lock);
1473 			redirty_tail(inode, wb);
1474 			continue;
1475 		}
1476 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1477 			/*
1478 			 * If this inode is locked for writeback and we are not
1479 			 * doing writeback-for-data-integrity, move it to
1480 			 * b_more_io so that writeback can proceed with the
1481 			 * other inodes on s_io.
1482 			 *
1483 			 * We'll have another go at writing back this inode
1484 			 * when we completed a full scan of b_io.
1485 			 */
1486 			spin_unlock(&inode->i_lock);
1487 			requeue_io(inode, wb);
1488 			trace_writeback_sb_inodes_requeue(inode);
1489 			continue;
1490 		}
1491 		spin_unlock(&wb->list_lock);
1492 
1493 		/*
1494 		 * We already requeued the inode if it had I_SYNC set and we
1495 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1496 		 * WB_SYNC_ALL case.
1497 		 */
1498 		if (inode->i_state & I_SYNC) {
1499 			/* Wait for I_SYNC. This function drops i_lock... */
1500 			inode_sleep_on_writeback(inode);
1501 			/* Inode may be gone, start again */
1502 			spin_lock(&wb->list_lock);
1503 			continue;
1504 		}
1505 		inode->i_state |= I_SYNC;
1506 		wbc_attach_and_unlock_inode(&wbc, inode);
1507 
1508 		write_chunk = writeback_chunk_size(wb, work);
1509 		wbc.nr_to_write = write_chunk;
1510 		wbc.pages_skipped = 0;
1511 
1512 		/*
1513 		 * We use I_SYNC to pin the inode in memory. While it is set
1514 		 * evict_inode() will wait so the inode cannot be freed.
1515 		 */
1516 		__writeback_single_inode(inode, &wbc);
1517 
1518 		wbc_detach_inode(&wbc);
1519 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1520 		wrote += write_chunk - wbc.nr_to_write;
1521 		spin_lock(&wb->list_lock);
1522 		spin_lock(&inode->i_lock);
1523 		if (!(inode->i_state & I_DIRTY_ALL))
1524 			wrote++;
1525 		requeue_inode(inode, wb, &wbc);
1526 		inode_sync_complete(inode);
1527 		spin_unlock(&inode->i_lock);
1528 		cond_resched_lock(&wb->list_lock);
1529 		/*
1530 		 * bail out to wb_writeback() often enough to check
1531 		 * background threshold and other termination conditions.
1532 		 */
1533 		if (wrote) {
1534 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1535 				break;
1536 			if (work->nr_pages <= 0)
1537 				break;
1538 		}
1539 	}
1540 	return wrote;
1541 }
1542 
1543 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1544 				  struct wb_writeback_work *work)
1545 {
1546 	unsigned long start_time = jiffies;
1547 	long wrote = 0;
1548 
1549 	while (!list_empty(&wb->b_io)) {
1550 		struct inode *inode = wb_inode(wb->b_io.prev);
1551 		struct super_block *sb = inode->i_sb;
1552 
1553 		if (!trylock_super(sb)) {
1554 			/*
1555 			 * trylock_super() may fail consistently due to
1556 			 * s_umount being grabbed by someone else. Don't use
1557 			 * requeue_io() to avoid busy retrying the inode/sb.
1558 			 */
1559 			redirty_tail(inode, wb);
1560 			continue;
1561 		}
1562 		wrote += writeback_sb_inodes(sb, wb, work);
1563 		up_read(&sb->s_umount);
1564 
1565 		/* refer to the same tests at the end of writeback_sb_inodes */
1566 		if (wrote) {
1567 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1568 				break;
1569 			if (work->nr_pages <= 0)
1570 				break;
1571 		}
1572 	}
1573 	/* Leave any unwritten inodes on b_io */
1574 	return wrote;
1575 }
1576 
1577 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1578 				enum wb_reason reason)
1579 {
1580 	struct wb_writeback_work work = {
1581 		.nr_pages	= nr_pages,
1582 		.sync_mode	= WB_SYNC_NONE,
1583 		.range_cyclic	= 1,
1584 		.reason		= reason,
1585 	};
1586 
1587 	spin_lock(&wb->list_lock);
1588 	if (list_empty(&wb->b_io))
1589 		queue_io(wb, &work);
1590 	__writeback_inodes_wb(wb, &work);
1591 	spin_unlock(&wb->list_lock);
1592 
1593 	return nr_pages - work.nr_pages;
1594 }
1595 
1596 /*
1597  * Explicit flushing or periodic writeback of "old" data.
1598  *
1599  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1600  * dirtying-time in the inode's address_space.  So this periodic writeback code
1601  * just walks the superblock inode list, writing back any inodes which are
1602  * older than a specific point in time.
1603  *
1604  * Try to run once per dirty_writeback_interval.  But if a writeback event
1605  * takes longer than a dirty_writeback_interval interval, then leave a
1606  * one-second gap.
1607  *
1608  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1609  * all dirty pages if they are all attached to "old" mappings.
1610  */
1611 static long wb_writeback(struct bdi_writeback *wb,
1612 			 struct wb_writeback_work *work)
1613 {
1614 	unsigned long wb_start = jiffies;
1615 	long nr_pages = work->nr_pages;
1616 	unsigned long oldest_jif;
1617 	struct inode *inode;
1618 	long progress;
1619 
1620 	oldest_jif = jiffies;
1621 	work->older_than_this = &oldest_jif;
1622 
1623 	spin_lock(&wb->list_lock);
1624 	for (;;) {
1625 		/*
1626 		 * Stop writeback when nr_pages has been consumed
1627 		 */
1628 		if (work->nr_pages <= 0)
1629 			break;
1630 
1631 		/*
1632 		 * Background writeout and kupdate-style writeback may
1633 		 * run forever. Stop them if there is other work to do
1634 		 * so that e.g. sync can proceed. They'll be restarted
1635 		 * after the other works are all done.
1636 		 */
1637 		if ((work->for_background || work->for_kupdate) &&
1638 		    !list_empty(&wb->work_list))
1639 			break;
1640 
1641 		/*
1642 		 * For background writeout, stop when we are below the
1643 		 * background dirty threshold
1644 		 */
1645 		if (work->for_background && !wb_over_bg_thresh(wb))
1646 			break;
1647 
1648 		/*
1649 		 * Kupdate and background works are special and we want to
1650 		 * include all inodes that need writing. Livelock avoidance is
1651 		 * handled by these works yielding to any other work so we are
1652 		 * safe.
1653 		 */
1654 		if (work->for_kupdate) {
1655 			oldest_jif = jiffies -
1656 				msecs_to_jiffies(dirty_expire_interval * 10);
1657 		} else if (work->for_background)
1658 			oldest_jif = jiffies;
1659 
1660 		trace_writeback_start(wb->bdi, work);
1661 		if (list_empty(&wb->b_io))
1662 			queue_io(wb, work);
1663 		if (work->sb)
1664 			progress = writeback_sb_inodes(work->sb, wb, work);
1665 		else
1666 			progress = __writeback_inodes_wb(wb, work);
1667 		trace_writeback_written(wb->bdi, work);
1668 
1669 		wb_update_bandwidth(wb, wb_start);
1670 
1671 		/*
1672 		 * Did we write something? Try for more
1673 		 *
1674 		 * Dirty inodes are moved to b_io for writeback in batches.
1675 		 * The completion of the current batch does not necessarily
1676 		 * mean the overall work is done. So we keep looping as long
1677 		 * as made some progress on cleaning pages or inodes.
1678 		 */
1679 		if (progress)
1680 			continue;
1681 		/*
1682 		 * No more inodes for IO, bail
1683 		 */
1684 		if (list_empty(&wb->b_more_io))
1685 			break;
1686 		/*
1687 		 * Nothing written. Wait for some inode to
1688 		 * become available for writeback. Otherwise
1689 		 * we'll just busyloop.
1690 		 */
1691 		if (!list_empty(&wb->b_more_io))  {
1692 			trace_writeback_wait(wb->bdi, work);
1693 			inode = wb_inode(wb->b_more_io.prev);
1694 			spin_lock(&inode->i_lock);
1695 			spin_unlock(&wb->list_lock);
1696 			/* This function drops i_lock... */
1697 			inode_sleep_on_writeback(inode);
1698 			spin_lock(&wb->list_lock);
1699 		}
1700 	}
1701 	spin_unlock(&wb->list_lock);
1702 
1703 	return nr_pages - work->nr_pages;
1704 }
1705 
1706 /*
1707  * Return the next wb_writeback_work struct that hasn't been processed yet.
1708  */
1709 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1710 {
1711 	struct wb_writeback_work *work = NULL;
1712 
1713 	spin_lock_bh(&wb->work_lock);
1714 	if (!list_empty(&wb->work_list)) {
1715 		work = list_entry(wb->work_list.next,
1716 				  struct wb_writeback_work, list);
1717 		list_del_init(&work->list);
1718 	}
1719 	spin_unlock_bh(&wb->work_lock);
1720 	return work;
1721 }
1722 
1723 /*
1724  * Add in the number of potentially dirty inodes, because each inode
1725  * write can dirty pagecache in the underlying blockdev.
1726  */
1727 static unsigned long get_nr_dirty_pages(void)
1728 {
1729 	return global_page_state(NR_FILE_DIRTY) +
1730 		global_page_state(NR_UNSTABLE_NFS) +
1731 		get_nr_dirty_inodes();
1732 }
1733 
1734 static long wb_check_background_flush(struct bdi_writeback *wb)
1735 {
1736 	if (wb_over_bg_thresh(wb)) {
1737 
1738 		struct wb_writeback_work work = {
1739 			.nr_pages	= LONG_MAX,
1740 			.sync_mode	= WB_SYNC_NONE,
1741 			.for_background	= 1,
1742 			.range_cyclic	= 1,
1743 			.reason		= WB_REASON_BACKGROUND,
1744 		};
1745 
1746 		return wb_writeback(wb, &work);
1747 	}
1748 
1749 	return 0;
1750 }
1751 
1752 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1753 {
1754 	unsigned long expired;
1755 	long nr_pages;
1756 
1757 	/*
1758 	 * When set to zero, disable periodic writeback
1759 	 */
1760 	if (!dirty_writeback_interval)
1761 		return 0;
1762 
1763 	expired = wb->last_old_flush +
1764 			msecs_to_jiffies(dirty_writeback_interval * 10);
1765 	if (time_before(jiffies, expired))
1766 		return 0;
1767 
1768 	wb->last_old_flush = jiffies;
1769 	nr_pages = get_nr_dirty_pages();
1770 
1771 	if (nr_pages) {
1772 		struct wb_writeback_work work = {
1773 			.nr_pages	= nr_pages,
1774 			.sync_mode	= WB_SYNC_NONE,
1775 			.for_kupdate	= 1,
1776 			.range_cyclic	= 1,
1777 			.reason		= WB_REASON_PERIODIC,
1778 		};
1779 
1780 		return wb_writeback(wb, &work);
1781 	}
1782 
1783 	return 0;
1784 }
1785 
1786 /*
1787  * Retrieve work items and do the writeback they describe
1788  */
1789 static long wb_do_writeback(struct bdi_writeback *wb)
1790 {
1791 	struct wb_writeback_work *work;
1792 	long wrote = 0;
1793 
1794 	set_bit(WB_writeback_running, &wb->state);
1795 	while ((work = get_next_work_item(wb)) != NULL) {
1796 		struct wb_completion *done = work->done;
1797 		bool need_wake_up = false;
1798 
1799 		trace_writeback_exec(wb->bdi, work);
1800 
1801 		wrote += wb_writeback(wb, work);
1802 
1803 		if (work->single_wait) {
1804 			WARN_ON_ONCE(work->auto_free);
1805 			/* paired w/ rmb in wb_wait_for_single_work() */
1806 			smp_wmb();
1807 			work->single_done = 1;
1808 			need_wake_up = true;
1809 		} else if (work->auto_free) {
1810 			kfree(work);
1811 		}
1812 
1813 		if (done && atomic_dec_and_test(&done->cnt))
1814 			need_wake_up = true;
1815 
1816 		if (need_wake_up)
1817 			wake_up_all(&wb->bdi->wb_waitq);
1818 	}
1819 
1820 	/*
1821 	 * Check for periodic writeback, kupdated() style
1822 	 */
1823 	wrote += wb_check_old_data_flush(wb);
1824 	wrote += wb_check_background_flush(wb);
1825 	clear_bit(WB_writeback_running, &wb->state);
1826 
1827 	return wrote;
1828 }
1829 
1830 /*
1831  * Handle writeback of dirty data for the device backed by this bdi. Also
1832  * reschedules periodically and does kupdated style flushing.
1833  */
1834 void wb_workfn(struct work_struct *work)
1835 {
1836 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1837 						struct bdi_writeback, dwork);
1838 	long pages_written;
1839 
1840 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1841 	current->flags |= PF_SWAPWRITE;
1842 
1843 	if (likely(!current_is_workqueue_rescuer() ||
1844 		   !test_bit(WB_registered, &wb->state))) {
1845 		/*
1846 		 * The normal path.  Keep writing back @wb until its
1847 		 * work_list is empty.  Note that this path is also taken
1848 		 * if @wb is shutting down even when we're running off the
1849 		 * rescuer as work_list needs to be drained.
1850 		 */
1851 		do {
1852 			pages_written = wb_do_writeback(wb);
1853 			trace_writeback_pages_written(pages_written);
1854 		} while (!list_empty(&wb->work_list));
1855 	} else {
1856 		/*
1857 		 * bdi_wq can't get enough workers and we're running off
1858 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1859 		 * enough for efficient IO.
1860 		 */
1861 		pages_written = writeback_inodes_wb(wb, 1024,
1862 						    WB_REASON_FORKER_THREAD);
1863 		trace_writeback_pages_written(pages_written);
1864 	}
1865 
1866 	if (!list_empty(&wb->work_list))
1867 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1868 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1869 		wb_wakeup_delayed(wb);
1870 
1871 	current->flags &= ~PF_SWAPWRITE;
1872 }
1873 
1874 /*
1875  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1876  * the whole world.
1877  */
1878 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1879 {
1880 	struct backing_dev_info *bdi;
1881 
1882 	if (!nr_pages)
1883 		nr_pages = get_nr_dirty_pages();
1884 
1885 	rcu_read_lock();
1886 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1887 		struct bdi_writeback *wb;
1888 		struct wb_iter iter;
1889 
1890 		if (!bdi_has_dirty_io(bdi))
1891 			continue;
1892 
1893 		bdi_for_each_wb(wb, bdi, &iter, 0)
1894 			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1895 					   false, reason);
1896 	}
1897 	rcu_read_unlock();
1898 }
1899 
1900 /*
1901  * Wake up bdi's periodically to make sure dirtytime inodes gets
1902  * written back periodically.  We deliberately do *not* check the
1903  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1904  * kernel to be constantly waking up once there are any dirtytime
1905  * inodes on the system.  So instead we define a separate delayed work
1906  * function which gets called much more rarely.  (By default, only
1907  * once every 12 hours.)
1908  *
1909  * If there is any other write activity going on in the file system,
1910  * this function won't be necessary.  But if the only thing that has
1911  * happened on the file system is a dirtytime inode caused by an atime
1912  * update, we need this infrastructure below to make sure that inode
1913  * eventually gets pushed out to disk.
1914  */
1915 static void wakeup_dirtytime_writeback(struct work_struct *w);
1916 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1917 
1918 static void wakeup_dirtytime_writeback(struct work_struct *w)
1919 {
1920 	struct backing_dev_info *bdi;
1921 
1922 	rcu_read_lock();
1923 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1924 		struct bdi_writeback *wb;
1925 		struct wb_iter iter;
1926 
1927 		bdi_for_each_wb(wb, bdi, &iter, 0)
1928 			if (!list_empty(&bdi->wb.b_dirty_time))
1929 				wb_wakeup(&bdi->wb);
1930 	}
1931 	rcu_read_unlock();
1932 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1933 }
1934 
1935 static int __init start_dirtytime_writeback(void)
1936 {
1937 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1938 	return 0;
1939 }
1940 __initcall(start_dirtytime_writeback);
1941 
1942 int dirtytime_interval_handler(struct ctl_table *table, int write,
1943 			       void __user *buffer, size_t *lenp, loff_t *ppos)
1944 {
1945 	int ret;
1946 
1947 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1948 	if (ret == 0 && write)
1949 		mod_delayed_work(system_wq, &dirtytime_work, 0);
1950 	return ret;
1951 }
1952 
1953 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1954 {
1955 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1956 		struct dentry *dentry;
1957 		const char *name = "?";
1958 
1959 		dentry = d_find_alias(inode);
1960 		if (dentry) {
1961 			spin_lock(&dentry->d_lock);
1962 			name = (const char *) dentry->d_name.name;
1963 		}
1964 		printk(KERN_DEBUG
1965 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1966 		       current->comm, task_pid_nr(current), inode->i_ino,
1967 		       name, inode->i_sb->s_id);
1968 		if (dentry) {
1969 			spin_unlock(&dentry->d_lock);
1970 			dput(dentry);
1971 		}
1972 	}
1973 }
1974 
1975 /**
1976  *	__mark_inode_dirty -	internal function
1977  *	@inode: inode to mark
1978  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1979  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1980  *  	mark_inode_dirty_sync.
1981  *
1982  * Put the inode on the super block's dirty list.
1983  *
1984  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1985  * dirty list only if it is hashed or if it refers to a blockdev.
1986  * If it was not hashed, it will never be added to the dirty list
1987  * even if it is later hashed, as it will have been marked dirty already.
1988  *
1989  * In short, make sure you hash any inodes _before_ you start marking
1990  * them dirty.
1991  *
1992  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1993  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1994  * the kernel-internal blockdev inode represents the dirtying time of the
1995  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1996  * page->mapping->host, so the page-dirtying time is recorded in the internal
1997  * blockdev inode.
1998  */
1999 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2000 void __mark_inode_dirty(struct inode *inode, int flags)
2001 {
2002 	struct super_block *sb = inode->i_sb;
2003 	int dirtytime;
2004 
2005 	trace_writeback_mark_inode_dirty(inode, flags);
2006 
2007 	/*
2008 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2009 	 * dirty the inode itself
2010 	 */
2011 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2012 		trace_writeback_dirty_inode_start(inode, flags);
2013 
2014 		if (sb->s_op->dirty_inode)
2015 			sb->s_op->dirty_inode(inode, flags);
2016 
2017 		trace_writeback_dirty_inode(inode, flags);
2018 	}
2019 	if (flags & I_DIRTY_INODE)
2020 		flags &= ~I_DIRTY_TIME;
2021 	dirtytime = flags & I_DIRTY_TIME;
2022 
2023 	/*
2024 	 * Paired with smp_mb() in __writeback_single_inode() for the
2025 	 * following lockless i_state test.  See there for details.
2026 	 */
2027 	smp_mb();
2028 
2029 	if (((inode->i_state & flags) == flags) ||
2030 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2031 		return;
2032 
2033 	if (unlikely(block_dump))
2034 		block_dump___mark_inode_dirty(inode);
2035 
2036 	spin_lock(&inode->i_lock);
2037 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2038 		goto out_unlock_inode;
2039 	if ((inode->i_state & flags) != flags) {
2040 		const int was_dirty = inode->i_state & I_DIRTY;
2041 
2042 		inode_attach_wb(inode, NULL);
2043 
2044 		if (flags & I_DIRTY_INODE)
2045 			inode->i_state &= ~I_DIRTY_TIME;
2046 		inode->i_state |= flags;
2047 
2048 		/*
2049 		 * If the inode is being synced, just update its dirty state.
2050 		 * The unlocker will place the inode on the appropriate
2051 		 * superblock list, based upon its state.
2052 		 */
2053 		if (inode->i_state & I_SYNC)
2054 			goto out_unlock_inode;
2055 
2056 		/*
2057 		 * Only add valid (hashed) inodes to the superblock's
2058 		 * dirty list.  Add blockdev inodes as well.
2059 		 */
2060 		if (!S_ISBLK(inode->i_mode)) {
2061 			if (inode_unhashed(inode))
2062 				goto out_unlock_inode;
2063 		}
2064 		if (inode->i_state & I_FREEING)
2065 			goto out_unlock_inode;
2066 
2067 		/*
2068 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2069 		 * reposition it (that would break b_dirty time-ordering).
2070 		 */
2071 		if (!was_dirty) {
2072 			struct bdi_writeback *wb;
2073 			struct list_head *dirty_list;
2074 			bool wakeup_bdi = false;
2075 
2076 			wb = locked_inode_to_wb_and_lock_list(inode);
2077 
2078 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2079 			     !test_bit(WB_registered, &wb->state),
2080 			     "bdi-%s not registered\n", wb->bdi->name);
2081 
2082 			inode->dirtied_when = jiffies;
2083 			if (dirtytime)
2084 				inode->dirtied_time_when = jiffies;
2085 
2086 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2087 				dirty_list = &wb->b_dirty;
2088 			else
2089 				dirty_list = &wb->b_dirty_time;
2090 
2091 			wakeup_bdi = inode_wb_list_move_locked(inode, wb,
2092 							       dirty_list);
2093 
2094 			spin_unlock(&wb->list_lock);
2095 			trace_writeback_dirty_inode_enqueue(inode);
2096 
2097 			/*
2098 			 * If this is the first dirty inode for this bdi,
2099 			 * we have to wake-up the corresponding bdi thread
2100 			 * to make sure background write-back happens
2101 			 * later.
2102 			 */
2103 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2104 				wb_wakeup_delayed(wb);
2105 			return;
2106 		}
2107 	}
2108 out_unlock_inode:
2109 	spin_unlock(&inode->i_lock);
2110 
2111 }
2112 EXPORT_SYMBOL(__mark_inode_dirty);
2113 
2114 static void wait_sb_inodes(struct super_block *sb)
2115 {
2116 	struct inode *inode, *old_inode = NULL;
2117 
2118 	/*
2119 	 * We need to be protected against the filesystem going from
2120 	 * r/o to r/w or vice versa.
2121 	 */
2122 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2123 
2124 	spin_lock(&inode_sb_list_lock);
2125 
2126 	/*
2127 	 * Data integrity sync. Must wait for all pages under writeback,
2128 	 * because there may have been pages dirtied before our sync
2129 	 * call, but which had writeout started before we write it out.
2130 	 * In which case, the inode may not be on the dirty list, but
2131 	 * we still have to wait for that writeout.
2132 	 */
2133 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2134 		struct address_space *mapping = inode->i_mapping;
2135 
2136 		spin_lock(&inode->i_lock);
2137 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2138 		    (mapping->nrpages == 0)) {
2139 			spin_unlock(&inode->i_lock);
2140 			continue;
2141 		}
2142 		__iget(inode);
2143 		spin_unlock(&inode->i_lock);
2144 		spin_unlock(&inode_sb_list_lock);
2145 
2146 		/*
2147 		 * We hold a reference to 'inode' so it couldn't have been
2148 		 * removed from s_inodes list while we dropped the
2149 		 * inode_sb_list_lock.  We cannot iput the inode now as we can
2150 		 * be holding the last reference and we cannot iput it under
2151 		 * inode_sb_list_lock. So we keep the reference and iput it
2152 		 * later.
2153 		 */
2154 		iput(old_inode);
2155 		old_inode = inode;
2156 
2157 		filemap_fdatawait(mapping);
2158 
2159 		cond_resched();
2160 
2161 		spin_lock(&inode_sb_list_lock);
2162 	}
2163 	spin_unlock(&inode_sb_list_lock);
2164 	iput(old_inode);
2165 }
2166 
2167 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2168 				     enum wb_reason reason, bool skip_if_busy)
2169 {
2170 	DEFINE_WB_COMPLETION_ONSTACK(done);
2171 	struct wb_writeback_work work = {
2172 		.sb			= sb,
2173 		.sync_mode		= WB_SYNC_NONE,
2174 		.tagged_writepages	= 1,
2175 		.done			= &done,
2176 		.nr_pages		= nr,
2177 		.reason			= reason,
2178 	};
2179 	struct backing_dev_info *bdi = sb->s_bdi;
2180 
2181 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2182 		return;
2183 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2184 
2185 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2186 	wb_wait_for_completion(bdi, &done);
2187 }
2188 
2189 /**
2190  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2191  * @sb: the superblock
2192  * @nr: the number of pages to write
2193  * @reason: reason why some writeback work initiated
2194  *
2195  * Start writeback on some inodes on this super_block. No guarantees are made
2196  * on how many (if any) will be written, and this function does not wait
2197  * for IO completion of submitted IO.
2198  */
2199 void writeback_inodes_sb_nr(struct super_block *sb,
2200 			    unsigned long nr,
2201 			    enum wb_reason reason)
2202 {
2203 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2204 }
2205 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2206 
2207 /**
2208  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2209  * @sb: the superblock
2210  * @reason: reason why some writeback work was initiated
2211  *
2212  * Start writeback on some inodes on this super_block. No guarantees are made
2213  * on how many (if any) will be written, and this function does not wait
2214  * for IO completion of submitted IO.
2215  */
2216 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2217 {
2218 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2219 }
2220 EXPORT_SYMBOL(writeback_inodes_sb);
2221 
2222 /**
2223  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2224  * @sb: the superblock
2225  * @nr: the number of pages to write
2226  * @reason: the reason of writeback
2227  *
2228  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2229  * Returns 1 if writeback was started, 0 if not.
2230  */
2231 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2232 				   enum wb_reason reason)
2233 {
2234 	if (!down_read_trylock(&sb->s_umount))
2235 		return false;
2236 
2237 	__writeback_inodes_sb_nr(sb, nr, reason, true);
2238 	up_read(&sb->s_umount);
2239 	return true;
2240 }
2241 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2242 
2243 /**
2244  * try_to_writeback_inodes_sb - try to start writeback if none underway
2245  * @sb: the superblock
2246  * @reason: reason why some writeback work was initiated
2247  *
2248  * Implement by try_to_writeback_inodes_sb_nr()
2249  * Returns 1 if writeback was started, 0 if not.
2250  */
2251 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2252 {
2253 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2254 }
2255 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2256 
2257 /**
2258  * sync_inodes_sb	-	sync sb inode pages
2259  * @sb: the superblock
2260  *
2261  * This function writes and waits on any dirty inode belonging to this
2262  * super_block.
2263  */
2264 void sync_inodes_sb(struct super_block *sb)
2265 {
2266 	DEFINE_WB_COMPLETION_ONSTACK(done);
2267 	struct wb_writeback_work work = {
2268 		.sb		= sb,
2269 		.sync_mode	= WB_SYNC_ALL,
2270 		.nr_pages	= LONG_MAX,
2271 		.range_cyclic	= 0,
2272 		.done		= &done,
2273 		.reason		= WB_REASON_SYNC,
2274 		.for_sync	= 1,
2275 	};
2276 	struct backing_dev_info *bdi = sb->s_bdi;
2277 
2278 	/* Nothing to do? */
2279 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2280 		return;
2281 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2282 
2283 	bdi_split_work_to_wbs(bdi, &work, false);
2284 	wb_wait_for_completion(bdi, &done);
2285 
2286 	wait_sb_inodes(sb);
2287 }
2288 EXPORT_SYMBOL(sync_inodes_sb);
2289 
2290 /**
2291  * write_inode_now	-	write an inode to disk
2292  * @inode: inode to write to disk
2293  * @sync: whether the write should be synchronous or not
2294  *
2295  * This function commits an inode to disk immediately if it is dirty. This is
2296  * primarily needed by knfsd.
2297  *
2298  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2299  */
2300 int write_inode_now(struct inode *inode, int sync)
2301 {
2302 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2303 	struct writeback_control wbc = {
2304 		.nr_to_write = LONG_MAX,
2305 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2306 		.range_start = 0,
2307 		.range_end = LLONG_MAX,
2308 	};
2309 
2310 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2311 		wbc.nr_to_write = 0;
2312 
2313 	might_sleep();
2314 	return writeback_single_inode(inode, wb, &wbc);
2315 }
2316 EXPORT_SYMBOL(write_inode_now);
2317 
2318 /**
2319  * sync_inode - write an inode and its pages to disk.
2320  * @inode: the inode to sync
2321  * @wbc: controls the writeback mode
2322  *
2323  * sync_inode() will write an inode and its pages to disk.  It will also
2324  * correctly update the inode on its superblock's dirty inode lists and will
2325  * update inode->i_state.
2326  *
2327  * The caller must have a ref on the inode.
2328  */
2329 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2330 {
2331 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2332 }
2333 EXPORT_SYMBOL(sync_inode);
2334 
2335 /**
2336  * sync_inode_metadata - write an inode to disk
2337  * @inode: the inode to sync
2338  * @wait: wait for I/O to complete.
2339  *
2340  * Write an inode to disk and adjust its dirty state after completion.
2341  *
2342  * Note: only writes the actual inode, no associated data or other metadata.
2343  */
2344 int sync_inode_metadata(struct inode *inode, int wait)
2345 {
2346 	struct writeback_control wbc = {
2347 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2348 		.nr_to_write = 0, /* metadata-only */
2349 	};
2350 
2351 	return sync_inode(inode, &wbc);
2352 }
2353 EXPORT_SYMBOL(sync_inode_metadata);
2354