1 /* 2 * fs/fs-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains all the functions related to writing back and waiting 7 * upon dirty inodes against superblocks, and writing back dirty 8 * pages against inodes. ie: data writeback. Writeout of the 9 * inode itself is not handled here. 10 * 11 * 10Apr2002 Andrew Morton 12 * Split out of fs/inode.c 13 * Additions for address_space-based writeback 14 */ 15 16 #include <linux/kernel.h> 17 #include <linux/module.h> 18 #include <linux/spinlock.h> 19 #include <linux/slab.h> 20 #include <linux/sched.h> 21 #include <linux/fs.h> 22 #include <linux/mm.h> 23 #include <linux/kthread.h> 24 #include <linux/freezer.h> 25 #include <linux/writeback.h> 26 #include <linux/blkdev.h> 27 #include <linux/backing-dev.h> 28 #include <linux/buffer_head.h> 29 #include <linux/tracepoint.h> 30 #include "internal.h" 31 32 /* 33 * Passed into wb_writeback(), essentially a subset of writeback_control 34 */ 35 struct wb_writeback_work { 36 long nr_pages; 37 struct super_block *sb; 38 enum writeback_sync_modes sync_mode; 39 unsigned int for_kupdate:1; 40 unsigned int range_cyclic:1; 41 unsigned int for_background:1; 42 43 struct list_head list; /* pending work list */ 44 struct completion *done; /* set if the caller waits */ 45 }; 46 47 /* 48 * Include the creation of the trace points after defining the 49 * wb_writeback_work structure so that the definition remains local to this 50 * file. 51 */ 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/writeback.h> 54 55 /* 56 * We don't actually have pdflush, but this one is exported though /proc... 57 */ 58 int nr_pdflush_threads; 59 60 /** 61 * writeback_in_progress - determine whether there is writeback in progress 62 * @bdi: the device's backing_dev_info structure. 63 * 64 * Determine whether there is writeback waiting to be handled against a 65 * backing device. 66 */ 67 int writeback_in_progress(struct backing_dev_info *bdi) 68 { 69 return test_bit(BDI_writeback_running, &bdi->state); 70 } 71 72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode) 73 { 74 struct super_block *sb = inode->i_sb; 75 76 if (strcmp(sb->s_type->name, "bdev") == 0) 77 return inode->i_mapping->backing_dev_info; 78 79 return sb->s_bdi; 80 } 81 82 static inline struct inode *wb_inode(struct list_head *head) 83 { 84 return list_entry(head, struct inode, i_wb_list); 85 } 86 87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */ 88 static void bdi_wakeup_flusher(struct backing_dev_info *bdi) 89 { 90 if (bdi->wb.task) { 91 wake_up_process(bdi->wb.task); 92 } else { 93 /* 94 * The bdi thread isn't there, wake up the forker thread which 95 * will create and run it. 96 */ 97 wake_up_process(default_backing_dev_info.wb.task); 98 } 99 } 100 101 static void bdi_queue_work(struct backing_dev_info *bdi, 102 struct wb_writeback_work *work) 103 { 104 trace_writeback_queue(bdi, work); 105 106 spin_lock_bh(&bdi->wb_lock); 107 list_add_tail(&work->list, &bdi->work_list); 108 if (!bdi->wb.task) 109 trace_writeback_nothread(bdi, work); 110 bdi_wakeup_flusher(bdi); 111 spin_unlock_bh(&bdi->wb_lock); 112 } 113 114 static void 115 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages, 116 bool range_cyclic) 117 { 118 struct wb_writeback_work *work; 119 120 /* 121 * This is WB_SYNC_NONE writeback, so if allocation fails just 122 * wakeup the thread for old dirty data writeback 123 */ 124 work = kzalloc(sizeof(*work), GFP_ATOMIC); 125 if (!work) { 126 if (bdi->wb.task) { 127 trace_writeback_nowork(bdi); 128 wake_up_process(bdi->wb.task); 129 } 130 return; 131 } 132 133 work->sync_mode = WB_SYNC_NONE; 134 work->nr_pages = nr_pages; 135 work->range_cyclic = range_cyclic; 136 137 bdi_queue_work(bdi, work); 138 } 139 140 /** 141 * bdi_start_writeback - start writeback 142 * @bdi: the backing device to write from 143 * @nr_pages: the number of pages to write 144 * 145 * Description: 146 * This does WB_SYNC_NONE opportunistic writeback. The IO is only 147 * started when this function returns, we make no guarentees on 148 * completion. Caller need not hold sb s_umount semaphore. 149 * 150 */ 151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages) 152 { 153 __bdi_start_writeback(bdi, nr_pages, true); 154 } 155 156 /** 157 * bdi_start_background_writeback - start background writeback 158 * @bdi: the backing device to write from 159 * 160 * Description: 161 * This makes sure WB_SYNC_NONE background writeback happens. When 162 * this function returns, it is only guaranteed that for given BDI 163 * some IO is happening if we are over background dirty threshold. 164 * Caller need not hold sb s_umount semaphore. 165 */ 166 void bdi_start_background_writeback(struct backing_dev_info *bdi) 167 { 168 /* 169 * We just wake up the flusher thread. It will perform background 170 * writeback as soon as there is no other work to do. 171 */ 172 trace_writeback_wake_background(bdi); 173 spin_lock_bh(&bdi->wb_lock); 174 bdi_wakeup_flusher(bdi); 175 spin_unlock_bh(&bdi->wb_lock); 176 } 177 178 /* 179 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 180 * furthest end of its superblock's dirty-inode list. 181 * 182 * Before stamping the inode's ->dirtied_when, we check to see whether it is 183 * already the most-recently-dirtied inode on the b_dirty list. If that is 184 * the case then the inode must have been redirtied while it was being written 185 * out and we don't reset its dirtied_when. 186 */ 187 static void redirty_tail(struct inode *inode) 188 { 189 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 190 191 if (!list_empty(&wb->b_dirty)) { 192 struct inode *tail; 193 194 tail = wb_inode(wb->b_dirty.next); 195 if (time_before(inode->dirtied_when, tail->dirtied_when)) 196 inode->dirtied_when = jiffies; 197 } 198 list_move(&inode->i_wb_list, &wb->b_dirty); 199 } 200 201 /* 202 * requeue inode for re-scanning after bdi->b_io list is exhausted. 203 */ 204 static void requeue_io(struct inode *inode) 205 { 206 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb; 207 208 list_move(&inode->i_wb_list, &wb->b_more_io); 209 } 210 211 static void inode_sync_complete(struct inode *inode) 212 { 213 /* 214 * Prevent speculative execution through spin_unlock(&inode_lock); 215 */ 216 smp_mb(); 217 wake_up_bit(&inode->i_state, __I_SYNC); 218 } 219 220 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 221 { 222 bool ret = time_after(inode->dirtied_when, t); 223 #ifndef CONFIG_64BIT 224 /* 225 * For inodes being constantly redirtied, dirtied_when can get stuck. 226 * It _appears_ to be in the future, but is actually in distant past. 227 * This test is necessary to prevent such wrapped-around relative times 228 * from permanently stopping the whole bdi writeback. 229 */ 230 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 231 #endif 232 return ret; 233 } 234 235 /* 236 * Move expired dirty inodes from @delaying_queue to @dispatch_queue. 237 */ 238 static void move_expired_inodes(struct list_head *delaying_queue, 239 struct list_head *dispatch_queue, 240 unsigned long *older_than_this) 241 { 242 LIST_HEAD(tmp); 243 struct list_head *pos, *node; 244 struct super_block *sb = NULL; 245 struct inode *inode; 246 int do_sb_sort = 0; 247 248 while (!list_empty(delaying_queue)) { 249 inode = wb_inode(delaying_queue->prev); 250 if (older_than_this && 251 inode_dirtied_after(inode, *older_than_this)) 252 break; 253 if (sb && sb != inode->i_sb) 254 do_sb_sort = 1; 255 sb = inode->i_sb; 256 list_move(&inode->i_wb_list, &tmp); 257 } 258 259 /* just one sb in list, splice to dispatch_queue and we're done */ 260 if (!do_sb_sort) { 261 list_splice(&tmp, dispatch_queue); 262 return; 263 } 264 265 /* Move inodes from one superblock together */ 266 while (!list_empty(&tmp)) { 267 sb = wb_inode(tmp.prev)->i_sb; 268 list_for_each_prev_safe(pos, node, &tmp) { 269 inode = wb_inode(pos); 270 if (inode->i_sb == sb) 271 list_move(&inode->i_wb_list, dispatch_queue); 272 } 273 } 274 } 275 276 /* 277 * Queue all expired dirty inodes for io, eldest first. 278 * Before 279 * newly dirtied b_dirty b_io b_more_io 280 * =============> gf edc BA 281 * After 282 * newly dirtied b_dirty b_io b_more_io 283 * =============> g fBAedc 284 * | 285 * +--> dequeue for IO 286 */ 287 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this) 288 { 289 list_splice_init(&wb->b_more_io, &wb->b_io); 290 move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this); 291 } 292 293 static int write_inode(struct inode *inode, struct writeback_control *wbc) 294 { 295 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) 296 return inode->i_sb->s_op->write_inode(inode, wbc); 297 return 0; 298 } 299 300 /* 301 * Wait for writeback on an inode to complete. 302 */ 303 static void inode_wait_for_writeback(struct inode *inode) 304 { 305 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 306 wait_queue_head_t *wqh; 307 308 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 309 while (inode->i_state & I_SYNC) { 310 spin_unlock(&inode_lock); 311 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE); 312 spin_lock(&inode_lock); 313 } 314 } 315 316 /* 317 * Write out an inode's dirty pages. Called under inode_lock. Either the 318 * caller has ref on the inode (either via __iget or via syscall against an fd) 319 * or the inode has I_WILL_FREE set (via generic_forget_inode) 320 * 321 * If `wait' is set, wait on the writeout. 322 * 323 * The whole writeout design is quite complex and fragile. We want to avoid 324 * starvation of particular inodes when others are being redirtied, prevent 325 * livelocks, etc. 326 * 327 * Called under inode_lock. 328 */ 329 static int 330 writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 331 { 332 struct address_space *mapping = inode->i_mapping; 333 unsigned dirty; 334 int ret; 335 336 if (!atomic_read(&inode->i_count)) 337 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 338 else 339 WARN_ON(inode->i_state & I_WILL_FREE); 340 341 if (inode->i_state & I_SYNC) { 342 /* 343 * If this inode is locked for writeback and we are not doing 344 * writeback-for-data-integrity, move it to b_more_io so that 345 * writeback can proceed with the other inodes on s_io. 346 * 347 * We'll have another go at writing back this inode when we 348 * completed a full scan of b_io. 349 */ 350 if (wbc->sync_mode != WB_SYNC_ALL) { 351 requeue_io(inode); 352 return 0; 353 } 354 355 /* 356 * It's a data-integrity sync. We must wait. 357 */ 358 inode_wait_for_writeback(inode); 359 } 360 361 BUG_ON(inode->i_state & I_SYNC); 362 363 /* Set I_SYNC, reset I_DIRTY_PAGES */ 364 inode->i_state |= I_SYNC; 365 inode->i_state &= ~I_DIRTY_PAGES; 366 spin_unlock(&inode_lock); 367 368 ret = do_writepages(mapping, wbc); 369 370 /* 371 * Make sure to wait on the data before writing out the metadata. 372 * This is important for filesystems that modify metadata on data 373 * I/O completion. 374 */ 375 if (wbc->sync_mode == WB_SYNC_ALL) { 376 int err = filemap_fdatawait(mapping); 377 if (ret == 0) 378 ret = err; 379 } 380 381 /* 382 * Some filesystems may redirty the inode during the writeback 383 * due to delalloc, clear dirty metadata flags right before 384 * write_inode() 385 */ 386 spin_lock(&inode_lock); 387 dirty = inode->i_state & I_DIRTY; 388 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC); 389 spin_unlock(&inode_lock); 390 /* Don't write the inode if only I_DIRTY_PAGES was set */ 391 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 392 int err = write_inode(inode, wbc); 393 if (ret == 0) 394 ret = err; 395 } 396 397 spin_lock(&inode_lock); 398 inode->i_state &= ~I_SYNC; 399 if (!(inode->i_state & I_FREEING)) { 400 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 401 /* 402 * We didn't write back all the pages. nfs_writepages() 403 * sometimes bales out without doing anything. 404 */ 405 inode->i_state |= I_DIRTY_PAGES; 406 if (wbc->nr_to_write <= 0) { 407 /* 408 * slice used up: queue for next turn 409 */ 410 requeue_io(inode); 411 } else { 412 /* 413 * Writeback blocked by something other than 414 * congestion. Delay the inode for some time to 415 * avoid spinning on the CPU (100% iowait) 416 * retrying writeback of the dirty page/inode 417 * that cannot be performed immediately. 418 */ 419 redirty_tail(inode); 420 } 421 } else if (inode->i_state & I_DIRTY) { 422 /* 423 * Filesystems can dirty the inode during writeback 424 * operations, such as delayed allocation during 425 * submission or metadata updates after data IO 426 * completion. 427 */ 428 redirty_tail(inode); 429 } else { 430 /* 431 * The inode is clean. At this point we either have 432 * a reference to the inode or it's on it's way out. 433 * No need to add it back to the LRU. 434 */ 435 list_del_init(&inode->i_wb_list); 436 } 437 } 438 inode_sync_complete(inode); 439 return ret; 440 } 441 442 /* 443 * For background writeback the caller does not have the sb pinned 444 * before calling writeback. So make sure that we do pin it, so it doesn't 445 * go away while we are writing inodes from it. 446 */ 447 static bool pin_sb_for_writeback(struct super_block *sb) 448 { 449 spin_lock(&sb_lock); 450 if (list_empty(&sb->s_instances)) { 451 spin_unlock(&sb_lock); 452 return false; 453 } 454 455 sb->s_count++; 456 spin_unlock(&sb_lock); 457 458 if (down_read_trylock(&sb->s_umount)) { 459 if (sb->s_root) 460 return true; 461 up_read(&sb->s_umount); 462 } 463 464 put_super(sb); 465 return false; 466 } 467 468 /* 469 * Write a portion of b_io inodes which belong to @sb. 470 * 471 * If @only_this_sb is true, then find and write all such 472 * inodes. Otherwise write only ones which go sequentially 473 * in reverse order. 474 * 475 * Return 1, if the caller writeback routine should be 476 * interrupted. Otherwise return 0. 477 */ 478 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb, 479 struct writeback_control *wbc, bool only_this_sb) 480 { 481 while (!list_empty(&wb->b_io)) { 482 long pages_skipped; 483 struct inode *inode = wb_inode(wb->b_io.prev); 484 485 if (inode->i_sb != sb) { 486 if (only_this_sb) { 487 /* 488 * We only want to write back data for this 489 * superblock, move all inodes not belonging 490 * to it back onto the dirty list. 491 */ 492 redirty_tail(inode); 493 continue; 494 } 495 496 /* 497 * The inode belongs to a different superblock. 498 * Bounce back to the caller to unpin this and 499 * pin the next superblock. 500 */ 501 return 0; 502 } 503 504 /* 505 * Don't bother with new inodes or inodes beeing freed, first 506 * kind does not need peridic writeout yet, and for the latter 507 * kind writeout is handled by the freer. 508 */ 509 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 510 requeue_io(inode); 511 continue; 512 } 513 514 /* 515 * Was this inode dirtied after sync_sb_inodes was called? 516 * This keeps sync from extra jobs and livelock. 517 */ 518 if (inode_dirtied_after(inode, wbc->wb_start)) 519 return 1; 520 521 __iget(inode); 522 pages_skipped = wbc->pages_skipped; 523 writeback_single_inode(inode, wbc); 524 if (wbc->pages_skipped != pages_skipped) { 525 /* 526 * writeback is not making progress due to locked 527 * buffers. Skip this inode for now. 528 */ 529 redirty_tail(inode); 530 } 531 spin_unlock(&inode_lock); 532 iput(inode); 533 cond_resched(); 534 spin_lock(&inode_lock); 535 if (wbc->nr_to_write <= 0) { 536 wbc->more_io = 1; 537 return 1; 538 } 539 if (!list_empty(&wb->b_more_io)) 540 wbc->more_io = 1; 541 } 542 /* b_io is empty */ 543 return 1; 544 } 545 546 void writeback_inodes_wb(struct bdi_writeback *wb, 547 struct writeback_control *wbc) 548 { 549 int ret = 0; 550 551 if (!wbc->wb_start) 552 wbc->wb_start = jiffies; /* livelock avoidance */ 553 spin_lock(&inode_lock); 554 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 555 queue_io(wb, wbc->older_than_this); 556 557 while (!list_empty(&wb->b_io)) { 558 struct inode *inode = wb_inode(wb->b_io.prev); 559 struct super_block *sb = inode->i_sb; 560 561 if (!pin_sb_for_writeback(sb)) { 562 requeue_io(inode); 563 continue; 564 } 565 ret = writeback_sb_inodes(sb, wb, wbc, false); 566 drop_super(sb); 567 568 if (ret) 569 break; 570 } 571 spin_unlock(&inode_lock); 572 /* Leave any unwritten inodes on b_io */ 573 } 574 575 static void __writeback_inodes_sb(struct super_block *sb, 576 struct bdi_writeback *wb, struct writeback_control *wbc) 577 { 578 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 579 580 spin_lock(&inode_lock); 581 if (!wbc->for_kupdate || list_empty(&wb->b_io)) 582 queue_io(wb, wbc->older_than_this); 583 writeback_sb_inodes(sb, wb, wbc, true); 584 spin_unlock(&inode_lock); 585 } 586 587 /* 588 * The maximum number of pages to writeout in a single bdi flush/kupdate 589 * operation. We do this so we don't hold I_SYNC against an inode for 590 * enormous amounts of time, which would block a userspace task which has 591 * been forced to throttle against that inode. Also, the code reevaluates 592 * the dirty each time it has written this many pages. 593 */ 594 #define MAX_WRITEBACK_PAGES 1024 595 596 static inline bool over_bground_thresh(void) 597 { 598 unsigned long background_thresh, dirty_thresh; 599 600 global_dirty_limits(&background_thresh, &dirty_thresh); 601 602 return (global_page_state(NR_FILE_DIRTY) + 603 global_page_state(NR_UNSTABLE_NFS) > background_thresh); 604 } 605 606 /* 607 * Explicit flushing or periodic writeback of "old" data. 608 * 609 * Define "old": the first time one of an inode's pages is dirtied, we mark the 610 * dirtying-time in the inode's address_space. So this periodic writeback code 611 * just walks the superblock inode list, writing back any inodes which are 612 * older than a specific point in time. 613 * 614 * Try to run once per dirty_writeback_interval. But if a writeback event 615 * takes longer than a dirty_writeback_interval interval, then leave a 616 * one-second gap. 617 * 618 * older_than_this takes precedence over nr_to_write. So we'll only write back 619 * all dirty pages if they are all attached to "old" mappings. 620 */ 621 static long wb_writeback(struct bdi_writeback *wb, 622 struct wb_writeback_work *work) 623 { 624 struct writeback_control wbc = { 625 .sync_mode = work->sync_mode, 626 .older_than_this = NULL, 627 .for_kupdate = work->for_kupdate, 628 .for_background = work->for_background, 629 .range_cyclic = work->range_cyclic, 630 }; 631 unsigned long oldest_jif; 632 long wrote = 0; 633 long write_chunk; 634 struct inode *inode; 635 636 if (wbc.for_kupdate) { 637 wbc.older_than_this = &oldest_jif; 638 oldest_jif = jiffies - 639 msecs_to_jiffies(dirty_expire_interval * 10); 640 } 641 if (!wbc.range_cyclic) { 642 wbc.range_start = 0; 643 wbc.range_end = LLONG_MAX; 644 } 645 646 /* 647 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 648 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 649 * here avoids calling into writeback_inodes_wb() more than once. 650 * 651 * The intended call sequence for WB_SYNC_ALL writeback is: 652 * 653 * wb_writeback() 654 * __writeback_inodes_sb() <== called only once 655 * write_cache_pages() <== called once for each inode 656 * (quickly) tag currently dirty pages 657 * (maybe slowly) sync all tagged pages 658 */ 659 if (wbc.sync_mode == WB_SYNC_NONE) 660 write_chunk = MAX_WRITEBACK_PAGES; 661 else 662 write_chunk = LONG_MAX; 663 664 wbc.wb_start = jiffies; /* livelock avoidance */ 665 for (;;) { 666 /* 667 * Stop writeback when nr_pages has been consumed 668 */ 669 if (work->nr_pages <= 0) 670 break; 671 672 /* 673 * Background writeout and kupdate-style writeback may 674 * run forever. Stop them if there is other work to do 675 * so that e.g. sync can proceed. They'll be restarted 676 * after the other works are all done. 677 */ 678 if ((work->for_background || work->for_kupdate) && 679 !list_empty(&wb->bdi->work_list)) 680 break; 681 682 /* 683 * For background writeout, stop when we are below the 684 * background dirty threshold 685 */ 686 if (work->for_background && !over_bground_thresh()) 687 break; 688 689 wbc.more_io = 0; 690 wbc.nr_to_write = write_chunk; 691 wbc.pages_skipped = 0; 692 693 trace_wbc_writeback_start(&wbc, wb->bdi); 694 if (work->sb) 695 __writeback_inodes_sb(work->sb, wb, &wbc); 696 else 697 writeback_inodes_wb(wb, &wbc); 698 trace_wbc_writeback_written(&wbc, wb->bdi); 699 700 work->nr_pages -= write_chunk - wbc.nr_to_write; 701 wrote += write_chunk - wbc.nr_to_write; 702 703 /* 704 * If we consumed everything, see if we have more 705 */ 706 if (wbc.nr_to_write <= 0) 707 continue; 708 /* 709 * Didn't write everything and we don't have more IO, bail 710 */ 711 if (!wbc.more_io) 712 break; 713 /* 714 * Did we write something? Try for more 715 */ 716 if (wbc.nr_to_write < write_chunk) 717 continue; 718 /* 719 * Nothing written. Wait for some inode to 720 * become available for writeback. Otherwise 721 * we'll just busyloop. 722 */ 723 spin_lock(&inode_lock); 724 if (!list_empty(&wb->b_more_io)) { 725 inode = wb_inode(wb->b_more_io.prev); 726 trace_wbc_writeback_wait(&wbc, wb->bdi); 727 inode_wait_for_writeback(inode); 728 } 729 spin_unlock(&inode_lock); 730 } 731 732 return wrote; 733 } 734 735 /* 736 * Return the next wb_writeback_work struct that hasn't been processed yet. 737 */ 738 static struct wb_writeback_work * 739 get_next_work_item(struct backing_dev_info *bdi) 740 { 741 struct wb_writeback_work *work = NULL; 742 743 spin_lock_bh(&bdi->wb_lock); 744 if (!list_empty(&bdi->work_list)) { 745 work = list_entry(bdi->work_list.next, 746 struct wb_writeback_work, list); 747 list_del_init(&work->list); 748 } 749 spin_unlock_bh(&bdi->wb_lock); 750 return work; 751 } 752 753 /* 754 * Add in the number of potentially dirty inodes, because each inode 755 * write can dirty pagecache in the underlying blockdev. 756 */ 757 static unsigned long get_nr_dirty_pages(void) 758 { 759 return global_page_state(NR_FILE_DIRTY) + 760 global_page_state(NR_UNSTABLE_NFS) + 761 get_nr_dirty_inodes(); 762 } 763 764 static long wb_check_background_flush(struct bdi_writeback *wb) 765 { 766 if (over_bground_thresh()) { 767 768 struct wb_writeback_work work = { 769 .nr_pages = LONG_MAX, 770 .sync_mode = WB_SYNC_NONE, 771 .for_background = 1, 772 .range_cyclic = 1, 773 }; 774 775 return wb_writeback(wb, &work); 776 } 777 778 return 0; 779 } 780 781 static long wb_check_old_data_flush(struct bdi_writeback *wb) 782 { 783 unsigned long expired; 784 long nr_pages; 785 786 /* 787 * When set to zero, disable periodic writeback 788 */ 789 if (!dirty_writeback_interval) 790 return 0; 791 792 expired = wb->last_old_flush + 793 msecs_to_jiffies(dirty_writeback_interval * 10); 794 if (time_before(jiffies, expired)) 795 return 0; 796 797 wb->last_old_flush = jiffies; 798 nr_pages = get_nr_dirty_pages(); 799 800 if (nr_pages) { 801 struct wb_writeback_work work = { 802 .nr_pages = nr_pages, 803 .sync_mode = WB_SYNC_NONE, 804 .for_kupdate = 1, 805 .range_cyclic = 1, 806 }; 807 808 return wb_writeback(wb, &work); 809 } 810 811 return 0; 812 } 813 814 /* 815 * Retrieve work items and do the writeback they describe 816 */ 817 long wb_do_writeback(struct bdi_writeback *wb, int force_wait) 818 { 819 struct backing_dev_info *bdi = wb->bdi; 820 struct wb_writeback_work *work; 821 long wrote = 0; 822 823 set_bit(BDI_writeback_running, &wb->bdi->state); 824 while ((work = get_next_work_item(bdi)) != NULL) { 825 /* 826 * Override sync mode, in case we must wait for completion 827 * because this thread is exiting now. 828 */ 829 if (force_wait) 830 work->sync_mode = WB_SYNC_ALL; 831 832 trace_writeback_exec(bdi, work); 833 834 wrote += wb_writeback(wb, work); 835 836 /* 837 * Notify the caller of completion if this is a synchronous 838 * work item, otherwise just free it. 839 */ 840 if (work->done) 841 complete(work->done); 842 else 843 kfree(work); 844 } 845 846 /* 847 * Check for periodic writeback, kupdated() style 848 */ 849 wrote += wb_check_old_data_flush(wb); 850 wrote += wb_check_background_flush(wb); 851 clear_bit(BDI_writeback_running, &wb->bdi->state); 852 853 return wrote; 854 } 855 856 /* 857 * Handle writeback of dirty data for the device backed by this bdi. Also 858 * wakes up periodically and does kupdated style flushing. 859 */ 860 int bdi_writeback_thread(void *data) 861 { 862 struct bdi_writeback *wb = data; 863 struct backing_dev_info *bdi = wb->bdi; 864 long pages_written; 865 866 current->flags |= PF_SWAPWRITE; 867 set_freezable(); 868 wb->last_active = jiffies; 869 870 /* 871 * Our parent may run at a different priority, just set us to normal 872 */ 873 set_user_nice(current, 0); 874 875 trace_writeback_thread_start(bdi); 876 877 while (!kthread_should_stop()) { 878 /* 879 * Remove own delayed wake-up timer, since we are already awake 880 * and we'll take care of the preriodic write-back. 881 */ 882 del_timer(&wb->wakeup_timer); 883 884 pages_written = wb_do_writeback(wb, 0); 885 886 trace_writeback_pages_written(pages_written); 887 888 if (pages_written) 889 wb->last_active = jiffies; 890 891 set_current_state(TASK_INTERRUPTIBLE); 892 if (!list_empty(&bdi->work_list) || kthread_should_stop()) { 893 __set_current_state(TASK_RUNNING); 894 continue; 895 } 896 897 if (wb_has_dirty_io(wb) && dirty_writeback_interval) 898 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10)); 899 else { 900 /* 901 * We have nothing to do, so can go sleep without any 902 * timeout and save power. When a work is queued or 903 * something is made dirty - we will be woken up. 904 */ 905 schedule(); 906 } 907 908 try_to_freeze(); 909 } 910 911 /* Flush any work that raced with us exiting */ 912 if (!list_empty(&bdi->work_list)) 913 wb_do_writeback(wb, 1); 914 915 trace_writeback_thread_stop(bdi); 916 return 0; 917 } 918 919 920 /* 921 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 922 * the whole world. 923 */ 924 void wakeup_flusher_threads(long nr_pages) 925 { 926 struct backing_dev_info *bdi; 927 928 if (!nr_pages) { 929 nr_pages = global_page_state(NR_FILE_DIRTY) + 930 global_page_state(NR_UNSTABLE_NFS); 931 } 932 933 rcu_read_lock(); 934 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 935 if (!bdi_has_dirty_io(bdi)) 936 continue; 937 __bdi_start_writeback(bdi, nr_pages, false); 938 } 939 rcu_read_unlock(); 940 } 941 942 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 943 { 944 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 945 struct dentry *dentry; 946 const char *name = "?"; 947 948 dentry = d_find_alias(inode); 949 if (dentry) { 950 spin_lock(&dentry->d_lock); 951 name = (const char *) dentry->d_name.name; 952 } 953 printk(KERN_DEBUG 954 "%s(%d): dirtied inode %lu (%s) on %s\n", 955 current->comm, task_pid_nr(current), inode->i_ino, 956 name, inode->i_sb->s_id); 957 if (dentry) { 958 spin_unlock(&dentry->d_lock); 959 dput(dentry); 960 } 961 } 962 } 963 964 /** 965 * __mark_inode_dirty - internal function 966 * @inode: inode to mark 967 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 968 * Mark an inode as dirty. Callers should use mark_inode_dirty or 969 * mark_inode_dirty_sync. 970 * 971 * Put the inode on the super block's dirty list. 972 * 973 * CAREFUL! We mark it dirty unconditionally, but move it onto the 974 * dirty list only if it is hashed or if it refers to a blockdev. 975 * If it was not hashed, it will never be added to the dirty list 976 * even if it is later hashed, as it will have been marked dirty already. 977 * 978 * In short, make sure you hash any inodes _before_ you start marking 979 * them dirty. 980 * 981 * This function *must* be atomic for the I_DIRTY_PAGES case - 982 * set_page_dirty() is called under spinlock in several places. 983 * 984 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 985 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 986 * the kernel-internal blockdev inode represents the dirtying time of the 987 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 988 * page->mapping->host, so the page-dirtying time is recorded in the internal 989 * blockdev inode. 990 */ 991 void __mark_inode_dirty(struct inode *inode, int flags) 992 { 993 struct super_block *sb = inode->i_sb; 994 struct backing_dev_info *bdi = NULL; 995 bool wakeup_bdi = false; 996 997 /* 998 * Don't do this for I_DIRTY_PAGES - that doesn't actually 999 * dirty the inode itself 1000 */ 1001 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) { 1002 if (sb->s_op->dirty_inode) 1003 sb->s_op->dirty_inode(inode); 1004 } 1005 1006 /* 1007 * make sure that changes are seen by all cpus before we test i_state 1008 * -- mikulas 1009 */ 1010 smp_mb(); 1011 1012 /* avoid the locking if we can */ 1013 if ((inode->i_state & flags) == flags) 1014 return; 1015 1016 if (unlikely(block_dump)) 1017 block_dump___mark_inode_dirty(inode); 1018 1019 spin_lock(&inode_lock); 1020 if ((inode->i_state & flags) != flags) { 1021 const int was_dirty = inode->i_state & I_DIRTY; 1022 1023 inode->i_state |= flags; 1024 1025 /* 1026 * If the inode is being synced, just update its dirty state. 1027 * The unlocker will place the inode on the appropriate 1028 * superblock list, based upon its state. 1029 */ 1030 if (inode->i_state & I_SYNC) 1031 goto out; 1032 1033 /* 1034 * Only add valid (hashed) inodes to the superblock's 1035 * dirty list. Add blockdev inodes as well. 1036 */ 1037 if (!S_ISBLK(inode->i_mode)) { 1038 if (inode_unhashed(inode)) 1039 goto out; 1040 } 1041 if (inode->i_state & I_FREEING) 1042 goto out; 1043 1044 /* 1045 * If the inode was already on b_dirty/b_io/b_more_io, don't 1046 * reposition it (that would break b_dirty time-ordering). 1047 */ 1048 if (!was_dirty) { 1049 bdi = inode_to_bdi(inode); 1050 1051 if (bdi_cap_writeback_dirty(bdi)) { 1052 WARN(!test_bit(BDI_registered, &bdi->state), 1053 "bdi-%s not registered\n", bdi->name); 1054 1055 /* 1056 * If this is the first dirty inode for this 1057 * bdi, we have to wake-up the corresponding 1058 * bdi thread to make sure background 1059 * write-back happens later. 1060 */ 1061 if (!wb_has_dirty_io(&bdi->wb)) 1062 wakeup_bdi = true; 1063 } 1064 1065 inode->dirtied_when = jiffies; 1066 list_move(&inode->i_wb_list, &bdi->wb.b_dirty); 1067 } 1068 } 1069 out: 1070 spin_unlock(&inode_lock); 1071 1072 if (wakeup_bdi) 1073 bdi_wakeup_thread_delayed(bdi); 1074 } 1075 EXPORT_SYMBOL(__mark_inode_dirty); 1076 1077 /* 1078 * Write out a superblock's list of dirty inodes. A wait will be performed 1079 * upon no inodes, all inodes or the final one, depending upon sync_mode. 1080 * 1081 * If older_than_this is non-NULL, then only write out inodes which 1082 * had their first dirtying at a time earlier than *older_than_this. 1083 * 1084 * If `bdi' is non-zero then we're being asked to writeback a specific queue. 1085 * This function assumes that the blockdev superblock's inodes are backed by 1086 * a variety of queues, so all inodes are searched. For other superblocks, 1087 * assume that all inodes are backed by the same queue. 1088 * 1089 * The inodes to be written are parked on bdi->b_io. They are moved back onto 1090 * bdi->b_dirty as they are selected for writing. This way, none can be missed 1091 * on the writer throttling path, and we get decent balancing between many 1092 * throttled threads: we don't want them all piling up on inode_sync_wait. 1093 */ 1094 static void wait_sb_inodes(struct super_block *sb) 1095 { 1096 struct inode *inode, *old_inode = NULL; 1097 1098 /* 1099 * We need to be protected against the filesystem going from 1100 * r/o to r/w or vice versa. 1101 */ 1102 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1103 1104 spin_lock(&inode_lock); 1105 1106 /* 1107 * Data integrity sync. Must wait for all pages under writeback, 1108 * because there may have been pages dirtied before our sync 1109 * call, but which had writeout started before we write it out. 1110 * In which case, the inode may not be on the dirty list, but 1111 * we still have to wait for that writeout. 1112 */ 1113 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) { 1114 struct address_space *mapping; 1115 1116 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) 1117 continue; 1118 mapping = inode->i_mapping; 1119 if (mapping->nrpages == 0) 1120 continue; 1121 __iget(inode); 1122 spin_unlock(&inode_lock); 1123 /* 1124 * We hold a reference to 'inode' so it couldn't have 1125 * been removed from s_inodes list while we dropped the 1126 * inode_lock. We cannot iput the inode now as we can 1127 * be holding the last reference and we cannot iput it 1128 * under inode_lock. So we keep the reference and iput 1129 * it later. 1130 */ 1131 iput(old_inode); 1132 old_inode = inode; 1133 1134 filemap_fdatawait(mapping); 1135 1136 cond_resched(); 1137 1138 spin_lock(&inode_lock); 1139 } 1140 spin_unlock(&inode_lock); 1141 iput(old_inode); 1142 } 1143 1144 /** 1145 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 1146 * @sb: the superblock 1147 * @nr: the number of pages to write 1148 * 1149 * Start writeback on some inodes on this super_block. No guarantees are made 1150 * on how many (if any) will be written, and this function does not wait 1151 * for IO completion of submitted IO. 1152 */ 1153 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr) 1154 { 1155 DECLARE_COMPLETION_ONSTACK(done); 1156 struct wb_writeback_work work = { 1157 .sb = sb, 1158 .sync_mode = WB_SYNC_NONE, 1159 .done = &done, 1160 .nr_pages = nr, 1161 }; 1162 1163 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1164 bdi_queue_work(sb->s_bdi, &work); 1165 wait_for_completion(&done); 1166 } 1167 EXPORT_SYMBOL(writeback_inodes_sb_nr); 1168 1169 /** 1170 * writeback_inodes_sb - writeback dirty inodes from given super_block 1171 * @sb: the superblock 1172 * 1173 * Start writeback on some inodes on this super_block. No guarantees are made 1174 * on how many (if any) will be written, and this function does not wait 1175 * for IO completion of submitted IO. 1176 */ 1177 void writeback_inodes_sb(struct super_block *sb) 1178 { 1179 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages()); 1180 } 1181 EXPORT_SYMBOL(writeback_inodes_sb); 1182 1183 /** 1184 * writeback_inodes_sb_if_idle - start writeback if none underway 1185 * @sb: the superblock 1186 * 1187 * Invoke writeback_inodes_sb if no writeback is currently underway. 1188 * Returns 1 if writeback was started, 0 if not. 1189 */ 1190 int writeback_inodes_sb_if_idle(struct super_block *sb) 1191 { 1192 if (!writeback_in_progress(sb->s_bdi)) { 1193 down_read(&sb->s_umount); 1194 writeback_inodes_sb(sb); 1195 up_read(&sb->s_umount); 1196 return 1; 1197 } else 1198 return 0; 1199 } 1200 EXPORT_SYMBOL(writeback_inodes_sb_if_idle); 1201 1202 /** 1203 * writeback_inodes_sb_if_idle - start writeback if none underway 1204 * @sb: the superblock 1205 * @nr: the number of pages to write 1206 * 1207 * Invoke writeback_inodes_sb if no writeback is currently underway. 1208 * Returns 1 if writeback was started, 0 if not. 1209 */ 1210 int writeback_inodes_sb_nr_if_idle(struct super_block *sb, 1211 unsigned long nr) 1212 { 1213 if (!writeback_in_progress(sb->s_bdi)) { 1214 down_read(&sb->s_umount); 1215 writeback_inodes_sb_nr(sb, nr); 1216 up_read(&sb->s_umount); 1217 return 1; 1218 } else 1219 return 0; 1220 } 1221 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle); 1222 1223 /** 1224 * sync_inodes_sb - sync sb inode pages 1225 * @sb: the superblock 1226 * 1227 * This function writes and waits on any dirty inode belonging to this 1228 * super_block. 1229 */ 1230 void sync_inodes_sb(struct super_block *sb) 1231 { 1232 DECLARE_COMPLETION_ONSTACK(done); 1233 struct wb_writeback_work work = { 1234 .sb = sb, 1235 .sync_mode = WB_SYNC_ALL, 1236 .nr_pages = LONG_MAX, 1237 .range_cyclic = 0, 1238 .done = &done, 1239 }; 1240 1241 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 1242 1243 bdi_queue_work(sb->s_bdi, &work); 1244 wait_for_completion(&done); 1245 1246 wait_sb_inodes(sb); 1247 } 1248 EXPORT_SYMBOL(sync_inodes_sb); 1249 1250 /** 1251 * write_inode_now - write an inode to disk 1252 * @inode: inode to write to disk 1253 * @sync: whether the write should be synchronous or not 1254 * 1255 * This function commits an inode to disk immediately if it is dirty. This is 1256 * primarily needed by knfsd. 1257 * 1258 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 1259 */ 1260 int write_inode_now(struct inode *inode, int sync) 1261 { 1262 int ret; 1263 struct writeback_control wbc = { 1264 .nr_to_write = LONG_MAX, 1265 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 1266 .range_start = 0, 1267 .range_end = LLONG_MAX, 1268 }; 1269 1270 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 1271 wbc.nr_to_write = 0; 1272 1273 might_sleep(); 1274 spin_lock(&inode_lock); 1275 ret = writeback_single_inode(inode, &wbc); 1276 spin_unlock(&inode_lock); 1277 if (sync) 1278 inode_sync_wait(inode); 1279 return ret; 1280 } 1281 EXPORT_SYMBOL(write_inode_now); 1282 1283 /** 1284 * sync_inode - write an inode and its pages to disk. 1285 * @inode: the inode to sync 1286 * @wbc: controls the writeback mode 1287 * 1288 * sync_inode() will write an inode and its pages to disk. It will also 1289 * correctly update the inode on its superblock's dirty inode lists and will 1290 * update inode->i_state. 1291 * 1292 * The caller must have a ref on the inode. 1293 */ 1294 int sync_inode(struct inode *inode, struct writeback_control *wbc) 1295 { 1296 int ret; 1297 1298 spin_lock(&inode_lock); 1299 ret = writeback_single_inode(inode, wbc); 1300 spin_unlock(&inode_lock); 1301 return ret; 1302 } 1303 EXPORT_SYMBOL(sync_inode); 1304 1305 /** 1306 * sync_inode_metadata - write an inode to disk 1307 * @inode: the inode to sync 1308 * @wait: wait for I/O to complete. 1309 * 1310 * Write an inode to disk and adjust its dirty state after completion. 1311 * 1312 * Note: only writes the actual inode, no associated data or other metadata. 1313 */ 1314 int sync_inode_metadata(struct inode *inode, int wait) 1315 { 1316 struct writeback_control wbc = { 1317 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 1318 .nr_to_write = 0, /* metadata-only */ 1319 }; 1320 1321 return sync_inode(inode, &wbc); 1322 } 1323 EXPORT_SYMBOL(sync_inode_metadata); 1324