xref: /openbmc/linux/fs/fs-writeback.c (revision 565d76cb)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
31 
32 /*
33  * Passed into wb_writeback(), essentially a subset of writeback_control
34  */
35 struct wb_writeback_work {
36 	long nr_pages;
37 	struct super_block *sb;
38 	enum writeback_sync_modes sync_mode;
39 	unsigned int for_kupdate:1;
40 	unsigned int range_cyclic:1;
41 	unsigned int for_background:1;
42 
43 	struct list_head list;		/* pending work list */
44 	struct completion *done;	/* set if the caller waits */
45 };
46 
47 /*
48  * Include the creation of the trace points after defining the
49  * wb_writeback_work structure so that the definition remains local to this
50  * file.
51  */
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/writeback.h>
54 
55 /*
56  * We don't actually have pdflush, but this one is exported though /proc...
57  */
58 int nr_pdflush_threads;
59 
60 /**
61  * writeback_in_progress - determine whether there is writeback in progress
62  * @bdi: the device's backing_dev_info structure.
63  *
64  * Determine whether there is writeback waiting to be handled against a
65  * backing device.
66  */
67 int writeback_in_progress(struct backing_dev_info *bdi)
68 {
69 	return test_bit(BDI_writeback_running, &bdi->state);
70 }
71 
72 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
73 {
74 	struct super_block *sb = inode->i_sb;
75 
76 	if (strcmp(sb->s_type->name, "bdev") == 0)
77 		return inode->i_mapping->backing_dev_info;
78 
79 	return sb->s_bdi;
80 }
81 
82 static inline struct inode *wb_inode(struct list_head *head)
83 {
84 	return list_entry(head, struct inode, i_wb_list);
85 }
86 
87 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
88 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
89 {
90 	if (bdi->wb.task) {
91 		wake_up_process(bdi->wb.task);
92 	} else {
93 		/*
94 		 * The bdi thread isn't there, wake up the forker thread which
95 		 * will create and run it.
96 		 */
97 		wake_up_process(default_backing_dev_info.wb.task);
98 	}
99 }
100 
101 static void bdi_queue_work(struct backing_dev_info *bdi,
102 			   struct wb_writeback_work *work)
103 {
104 	trace_writeback_queue(bdi, work);
105 
106 	spin_lock_bh(&bdi->wb_lock);
107 	list_add_tail(&work->list, &bdi->work_list);
108 	if (!bdi->wb.task)
109 		trace_writeback_nothread(bdi, work);
110 	bdi_wakeup_flusher(bdi);
111 	spin_unlock_bh(&bdi->wb_lock);
112 }
113 
114 static void
115 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
116 		      bool range_cyclic)
117 {
118 	struct wb_writeback_work *work;
119 
120 	/*
121 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
122 	 * wakeup the thread for old dirty data writeback
123 	 */
124 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
125 	if (!work) {
126 		if (bdi->wb.task) {
127 			trace_writeback_nowork(bdi);
128 			wake_up_process(bdi->wb.task);
129 		}
130 		return;
131 	}
132 
133 	work->sync_mode	= WB_SYNC_NONE;
134 	work->nr_pages	= nr_pages;
135 	work->range_cyclic = range_cyclic;
136 
137 	bdi_queue_work(bdi, work);
138 }
139 
140 /**
141  * bdi_start_writeback - start writeback
142  * @bdi: the backing device to write from
143  * @nr_pages: the number of pages to write
144  *
145  * Description:
146  *   This does WB_SYNC_NONE opportunistic writeback. The IO is only
147  *   started when this function returns, we make no guarentees on
148  *   completion. Caller need not hold sb s_umount semaphore.
149  *
150  */
151 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages)
152 {
153 	__bdi_start_writeback(bdi, nr_pages, true);
154 }
155 
156 /**
157  * bdi_start_background_writeback - start background writeback
158  * @bdi: the backing device to write from
159  *
160  * Description:
161  *   This makes sure WB_SYNC_NONE background writeback happens. When
162  *   this function returns, it is only guaranteed that for given BDI
163  *   some IO is happening if we are over background dirty threshold.
164  *   Caller need not hold sb s_umount semaphore.
165  */
166 void bdi_start_background_writeback(struct backing_dev_info *bdi)
167 {
168 	/*
169 	 * We just wake up the flusher thread. It will perform background
170 	 * writeback as soon as there is no other work to do.
171 	 */
172 	trace_writeback_wake_background(bdi);
173 	spin_lock_bh(&bdi->wb_lock);
174 	bdi_wakeup_flusher(bdi);
175 	spin_unlock_bh(&bdi->wb_lock);
176 }
177 
178 /*
179  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
180  * furthest end of its superblock's dirty-inode list.
181  *
182  * Before stamping the inode's ->dirtied_when, we check to see whether it is
183  * already the most-recently-dirtied inode on the b_dirty list.  If that is
184  * the case then the inode must have been redirtied while it was being written
185  * out and we don't reset its dirtied_when.
186  */
187 static void redirty_tail(struct inode *inode)
188 {
189 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
190 
191 	if (!list_empty(&wb->b_dirty)) {
192 		struct inode *tail;
193 
194 		tail = wb_inode(wb->b_dirty.next);
195 		if (time_before(inode->dirtied_when, tail->dirtied_when))
196 			inode->dirtied_when = jiffies;
197 	}
198 	list_move(&inode->i_wb_list, &wb->b_dirty);
199 }
200 
201 /*
202  * requeue inode for re-scanning after bdi->b_io list is exhausted.
203  */
204 static void requeue_io(struct inode *inode)
205 {
206 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
207 
208 	list_move(&inode->i_wb_list, &wb->b_more_io);
209 }
210 
211 static void inode_sync_complete(struct inode *inode)
212 {
213 	/*
214 	 * Prevent speculative execution through spin_unlock(&inode_lock);
215 	 */
216 	smp_mb();
217 	wake_up_bit(&inode->i_state, __I_SYNC);
218 }
219 
220 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
221 {
222 	bool ret = time_after(inode->dirtied_when, t);
223 #ifndef CONFIG_64BIT
224 	/*
225 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
226 	 * It _appears_ to be in the future, but is actually in distant past.
227 	 * This test is necessary to prevent such wrapped-around relative times
228 	 * from permanently stopping the whole bdi writeback.
229 	 */
230 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
231 #endif
232 	return ret;
233 }
234 
235 /*
236  * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
237  */
238 static void move_expired_inodes(struct list_head *delaying_queue,
239 			       struct list_head *dispatch_queue,
240 				unsigned long *older_than_this)
241 {
242 	LIST_HEAD(tmp);
243 	struct list_head *pos, *node;
244 	struct super_block *sb = NULL;
245 	struct inode *inode;
246 	int do_sb_sort = 0;
247 
248 	while (!list_empty(delaying_queue)) {
249 		inode = wb_inode(delaying_queue->prev);
250 		if (older_than_this &&
251 		    inode_dirtied_after(inode, *older_than_this))
252 			break;
253 		if (sb && sb != inode->i_sb)
254 			do_sb_sort = 1;
255 		sb = inode->i_sb;
256 		list_move(&inode->i_wb_list, &tmp);
257 	}
258 
259 	/* just one sb in list, splice to dispatch_queue and we're done */
260 	if (!do_sb_sort) {
261 		list_splice(&tmp, dispatch_queue);
262 		return;
263 	}
264 
265 	/* Move inodes from one superblock together */
266 	while (!list_empty(&tmp)) {
267 		sb = wb_inode(tmp.prev)->i_sb;
268 		list_for_each_prev_safe(pos, node, &tmp) {
269 			inode = wb_inode(pos);
270 			if (inode->i_sb == sb)
271 				list_move(&inode->i_wb_list, dispatch_queue);
272 		}
273 	}
274 }
275 
276 /*
277  * Queue all expired dirty inodes for io, eldest first.
278  * Before
279  *         newly dirtied     b_dirty    b_io    b_more_io
280  *         =============>    gf         edc     BA
281  * After
282  *         newly dirtied     b_dirty    b_io    b_more_io
283  *         =============>    g          fBAedc
284  *                                           |
285  *                                           +--> dequeue for IO
286  */
287 static void queue_io(struct bdi_writeback *wb, unsigned long *older_than_this)
288 {
289 	list_splice_init(&wb->b_more_io, &wb->b_io);
290 	move_expired_inodes(&wb->b_dirty, &wb->b_io, older_than_this);
291 }
292 
293 static int write_inode(struct inode *inode, struct writeback_control *wbc)
294 {
295 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
296 		return inode->i_sb->s_op->write_inode(inode, wbc);
297 	return 0;
298 }
299 
300 /*
301  * Wait for writeback on an inode to complete.
302  */
303 static void inode_wait_for_writeback(struct inode *inode)
304 {
305 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
306 	wait_queue_head_t *wqh;
307 
308 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
309 	 while (inode->i_state & I_SYNC) {
310 		spin_unlock(&inode_lock);
311 		__wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
312 		spin_lock(&inode_lock);
313 	}
314 }
315 
316 /*
317  * Write out an inode's dirty pages.  Called under inode_lock.  Either the
318  * caller has ref on the inode (either via __iget or via syscall against an fd)
319  * or the inode has I_WILL_FREE set (via generic_forget_inode)
320  *
321  * If `wait' is set, wait on the writeout.
322  *
323  * The whole writeout design is quite complex and fragile.  We want to avoid
324  * starvation of particular inodes when others are being redirtied, prevent
325  * livelocks, etc.
326  *
327  * Called under inode_lock.
328  */
329 static int
330 writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
331 {
332 	struct address_space *mapping = inode->i_mapping;
333 	unsigned dirty;
334 	int ret;
335 
336 	if (!atomic_read(&inode->i_count))
337 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
338 	else
339 		WARN_ON(inode->i_state & I_WILL_FREE);
340 
341 	if (inode->i_state & I_SYNC) {
342 		/*
343 		 * If this inode is locked for writeback and we are not doing
344 		 * writeback-for-data-integrity, move it to b_more_io so that
345 		 * writeback can proceed with the other inodes on s_io.
346 		 *
347 		 * We'll have another go at writing back this inode when we
348 		 * completed a full scan of b_io.
349 		 */
350 		if (wbc->sync_mode != WB_SYNC_ALL) {
351 			requeue_io(inode);
352 			return 0;
353 		}
354 
355 		/*
356 		 * It's a data-integrity sync.  We must wait.
357 		 */
358 		inode_wait_for_writeback(inode);
359 	}
360 
361 	BUG_ON(inode->i_state & I_SYNC);
362 
363 	/* Set I_SYNC, reset I_DIRTY_PAGES */
364 	inode->i_state |= I_SYNC;
365 	inode->i_state &= ~I_DIRTY_PAGES;
366 	spin_unlock(&inode_lock);
367 
368 	ret = do_writepages(mapping, wbc);
369 
370 	/*
371 	 * Make sure to wait on the data before writing out the metadata.
372 	 * This is important for filesystems that modify metadata on data
373 	 * I/O completion.
374 	 */
375 	if (wbc->sync_mode == WB_SYNC_ALL) {
376 		int err = filemap_fdatawait(mapping);
377 		if (ret == 0)
378 			ret = err;
379 	}
380 
381 	/*
382 	 * Some filesystems may redirty the inode during the writeback
383 	 * due to delalloc, clear dirty metadata flags right before
384 	 * write_inode()
385 	 */
386 	spin_lock(&inode_lock);
387 	dirty = inode->i_state & I_DIRTY;
388 	inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
389 	spin_unlock(&inode_lock);
390 	/* Don't write the inode if only I_DIRTY_PAGES was set */
391 	if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
392 		int err = write_inode(inode, wbc);
393 		if (ret == 0)
394 			ret = err;
395 	}
396 
397 	spin_lock(&inode_lock);
398 	inode->i_state &= ~I_SYNC;
399 	if (!(inode->i_state & I_FREEING)) {
400 		if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
401 			/*
402 			 * We didn't write back all the pages.  nfs_writepages()
403 			 * sometimes bales out without doing anything.
404 			 */
405 			inode->i_state |= I_DIRTY_PAGES;
406 			if (wbc->nr_to_write <= 0) {
407 				/*
408 				 * slice used up: queue for next turn
409 				 */
410 				requeue_io(inode);
411 			} else {
412 				/*
413 				 * Writeback blocked by something other than
414 				 * congestion. Delay the inode for some time to
415 				 * avoid spinning on the CPU (100% iowait)
416 				 * retrying writeback of the dirty page/inode
417 				 * that cannot be performed immediately.
418 				 */
419 				redirty_tail(inode);
420 			}
421 		} else if (inode->i_state & I_DIRTY) {
422 			/*
423 			 * Filesystems can dirty the inode during writeback
424 			 * operations, such as delayed allocation during
425 			 * submission or metadata updates after data IO
426 			 * completion.
427 			 */
428 			redirty_tail(inode);
429 		} else {
430 			/*
431 			 * The inode is clean.  At this point we either have
432 			 * a reference to the inode or it's on it's way out.
433 			 * No need to add it back to the LRU.
434 			 */
435 			list_del_init(&inode->i_wb_list);
436 		}
437 	}
438 	inode_sync_complete(inode);
439 	return ret;
440 }
441 
442 /*
443  * For background writeback the caller does not have the sb pinned
444  * before calling writeback. So make sure that we do pin it, so it doesn't
445  * go away while we are writing inodes from it.
446  */
447 static bool pin_sb_for_writeback(struct super_block *sb)
448 {
449 	spin_lock(&sb_lock);
450 	if (list_empty(&sb->s_instances)) {
451 		spin_unlock(&sb_lock);
452 		return false;
453 	}
454 
455 	sb->s_count++;
456 	spin_unlock(&sb_lock);
457 
458 	if (down_read_trylock(&sb->s_umount)) {
459 		if (sb->s_root)
460 			return true;
461 		up_read(&sb->s_umount);
462 	}
463 
464 	put_super(sb);
465 	return false;
466 }
467 
468 /*
469  * Write a portion of b_io inodes which belong to @sb.
470  *
471  * If @only_this_sb is true, then find and write all such
472  * inodes. Otherwise write only ones which go sequentially
473  * in reverse order.
474  *
475  * Return 1, if the caller writeback routine should be
476  * interrupted. Otherwise return 0.
477  */
478 static int writeback_sb_inodes(struct super_block *sb, struct bdi_writeback *wb,
479 		struct writeback_control *wbc, bool only_this_sb)
480 {
481 	while (!list_empty(&wb->b_io)) {
482 		long pages_skipped;
483 		struct inode *inode = wb_inode(wb->b_io.prev);
484 
485 		if (inode->i_sb != sb) {
486 			if (only_this_sb) {
487 				/*
488 				 * We only want to write back data for this
489 				 * superblock, move all inodes not belonging
490 				 * to it back onto the dirty list.
491 				 */
492 				redirty_tail(inode);
493 				continue;
494 			}
495 
496 			/*
497 			 * The inode belongs to a different superblock.
498 			 * Bounce back to the caller to unpin this and
499 			 * pin the next superblock.
500 			 */
501 			return 0;
502 		}
503 
504 		/*
505 		 * Don't bother with new inodes or inodes beeing freed, first
506 		 * kind does not need peridic writeout yet, and for the latter
507 		 * kind writeout is handled by the freer.
508 		 */
509 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
510 			requeue_io(inode);
511 			continue;
512 		}
513 
514 		/*
515 		 * Was this inode dirtied after sync_sb_inodes was called?
516 		 * This keeps sync from extra jobs and livelock.
517 		 */
518 		if (inode_dirtied_after(inode, wbc->wb_start))
519 			return 1;
520 
521 		__iget(inode);
522 		pages_skipped = wbc->pages_skipped;
523 		writeback_single_inode(inode, wbc);
524 		if (wbc->pages_skipped != pages_skipped) {
525 			/*
526 			 * writeback is not making progress due to locked
527 			 * buffers.  Skip this inode for now.
528 			 */
529 			redirty_tail(inode);
530 		}
531 		spin_unlock(&inode_lock);
532 		iput(inode);
533 		cond_resched();
534 		spin_lock(&inode_lock);
535 		if (wbc->nr_to_write <= 0) {
536 			wbc->more_io = 1;
537 			return 1;
538 		}
539 		if (!list_empty(&wb->b_more_io))
540 			wbc->more_io = 1;
541 	}
542 	/* b_io is empty */
543 	return 1;
544 }
545 
546 void writeback_inodes_wb(struct bdi_writeback *wb,
547 		struct writeback_control *wbc)
548 {
549 	int ret = 0;
550 
551 	if (!wbc->wb_start)
552 		wbc->wb_start = jiffies; /* livelock avoidance */
553 	spin_lock(&inode_lock);
554 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
555 		queue_io(wb, wbc->older_than_this);
556 
557 	while (!list_empty(&wb->b_io)) {
558 		struct inode *inode = wb_inode(wb->b_io.prev);
559 		struct super_block *sb = inode->i_sb;
560 
561 		if (!pin_sb_for_writeback(sb)) {
562 			requeue_io(inode);
563 			continue;
564 		}
565 		ret = writeback_sb_inodes(sb, wb, wbc, false);
566 		drop_super(sb);
567 
568 		if (ret)
569 			break;
570 	}
571 	spin_unlock(&inode_lock);
572 	/* Leave any unwritten inodes on b_io */
573 }
574 
575 static void __writeback_inodes_sb(struct super_block *sb,
576 		struct bdi_writeback *wb, struct writeback_control *wbc)
577 {
578 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
579 
580 	spin_lock(&inode_lock);
581 	if (!wbc->for_kupdate || list_empty(&wb->b_io))
582 		queue_io(wb, wbc->older_than_this);
583 	writeback_sb_inodes(sb, wb, wbc, true);
584 	spin_unlock(&inode_lock);
585 }
586 
587 /*
588  * The maximum number of pages to writeout in a single bdi flush/kupdate
589  * operation.  We do this so we don't hold I_SYNC against an inode for
590  * enormous amounts of time, which would block a userspace task which has
591  * been forced to throttle against that inode.  Also, the code reevaluates
592  * the dirty each time it has written this many pages.
593  */
594 #define MAX_WRITEBACK_PAGES     1024
595 
596 static inline bool over_bground_thresh(void)
597 {
598 	unsigned long background_thresh, dirty_thresh;
599 
600 	global_dirty_limits(&background_thresh, &dirty_thresh);
601 
602 	return (global_page_state(NR_FILE_DIRTY) +
603 		global_page_state(NR_UNSTABLE_NFS) > background_thresh);
604 }
605 
606 /*
607  * Explicit flushing or periodic writeback of "old" data.
608  *
609  * Define "old": the first time one of an inode's pages is dirtied, we mark the
610  * dirtying-time in the inode's address_space.  So this periodic writeback code
611  * just walks the superblock inode list, writing back any inodes which are
612  * older than a specific point in time.
613  *
614  * Try to run once per dirty_writeback_interval.  But if a writeback event
615  * takes longer than a dirty_writeback_interval interval, then leave a
616  * one-second gap.
617  *
618  * older_than_this takes precedence over nr_to_write.  So we'll only write back
619  * all dirty pages if they are all attached to "old" mappings.
620  */
621 static long wb_writeback(struct bdi_writeback *wb,
622 			 struct wb_writeback_work *work)
623 {
624 	struct writeback_control wbc = {
625 		.sync_mode		= work->sync_mode,
626 		.older_than_this	= NULL,
627 		.for_kupdate		= work->for_kupdate,
628 		.for_background		= work->for_background,
629 		.range_cyclic		= work->range_cyclic,
630 	};
631 	unsigned long oldest_jif;
632 	long wrote = 0;
633 	long write_chunk;
634 	struct inode *inode;
635 
636 	if (wbc.for_kupdate) {
637 		wbc.older_than_this = &oldest_jif;
638 		oldest_jif = jiffies -
639 				msecs_to_jiffies(dirty_expire_interval * 10);
640 	}
641 	if (!wbc.range_cyclic) {
642 		wbc.range_start = 0;
643 		wbc.range_end = LLONG_MAX;
644 	}
645 
646 	/*
647 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
648 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
649 	 * here avoids calling into writeback_inodes_wb() more than once.
650 	 *
651 	 * The intended call sequence for WB_SYNC_ALL writeback is:
652 	 *
653 	 *      wb_writeback()
654 	 *          __writeback_inodes_sb()     <== called only once
655 	 *              write_cache_pages()     <== called once for each inode
656 	 *                   (quickly) tag currently dirty pages
657 	 *                   (maybe slowly) sync all tagged pages
658 	 */
659 	if (wbc.sync_mode == WB_SYNC_NONE)
660 		write_chunk = MAX_WRITEBACK_PAGES;
661 	else
662 		write_chunk = LONG_MAX;
663 
664 	wbc.wb_start = jiffies; /* livelock avoidance */
665 	for (;;) {
666 		/*
667 		 * Stop writeback when nr_pages has been consumed
668 		 */
669 		if (work->nr_pages <= 0)
670 			break;
671 
672 		/*
673 		 * Background writeout and kupdate-style writeback may
674 		 * run forever. Stop them if there is other work to do
675 		 * so that e.g. sync can proceed. They'll be restarted
676 		 * after the other works are all done.
677 		 */
678 		if ((work->for_background || work->for_kupdate) &&
679 		    !list_empty(&wb->bdi->work_list))
680 			break;
681 
682 		/*
683 		 * For background writeout, stop when we are below the
684 		 * background dirty threshold
685 		 */
686 		if (work->for_background && !over_bground_thresh())
687 			break;
688 
689 		wbc.more_io = 0;
690 		wbc.nr_to_write = write_chunk;
691 		wbc.pages_skipped = 0;
692 
693 		trace_wbc_writeback_start(&wbc, wb->bdi);
694 		if (work->sb)
695 			__writeback_inodes_sb(work->sb, wb, &wbc);
696 		else
697 			writeback_inodes_wb(wb, &wbc);
698 		trace_wbc_writeback_written(&wbc, wb->bdi);
699 
700 		work->nr_pages -= write_chunk - wbc.nr_to_write;
701 		wrote += write_chunk - wbc.nr_to_write;
702 
703 		/*
704 		 * If we consumed everything, see if we have more
705 		 */
706 		if (wbc.nr_to_write <= 0)
707 			continue;
708 		/*
709 		 * Didn't write everything and we don't have more IO, bail
710 		 */
711 		if (!wbc.more_io)
712 			break;
713 		/*
714 		 * Did we write something? Try for more
715 		 */
716 		if (wbc.nr_to_write < write_chunk)
717 			continue;
718 		/*
719 		 * Nothing written. Wait for some inode to
720 		 * become available for writeback. Otherwise
721 		 * we'll just busyloop.
722 		 */
723 		spin_lock(&inode_lock);
724 		if (!list_empty(&wb->b_more_io))  {
725 			inode = wb_inode(wb->b_more_io.prev);
726 			trace_wbc_writeback_wait(&wbc, wb->bdi);
727 			inode_wait_for_writeback(inode);
728 		}
729 		spin_unlock(&inode_lock);
730 	}
731 
732 	return wrote;
733 }
734 
735 /*
736  * Return the next wb_writeback_work struct that hasn't been processed yet.
737  */
738 static struct wb_writeback_work *
739 get_next_work_item(struct backing_dev_info *bdi)
740 {
741 	struct wb_writeback_work *work = NULL;
742 
743 	spin_lock_bh(&bdi->wb_lock);
744 	if (!list_empty(&bdi->work_list)) {
745 		work = list_entry(bdi->work_list.next,
746 				  struct wb_writeback_work, list);
747 		list_del_init(&work->list);
748 	}
749 	spin_unlock_bh(&bdi->wb_lock);
750 	return work;
751 }
752 
753 /*
754  * Add in the number of potentially dirty inodes, because each inode
755  * write can dirty pagecache in the underlying blockdev.
756  */
757 static unsigned long get_nr_dirty_pages(void)
758 {
759 	return global_page_state(NR_FILE_DIRTY) +
760 		global_page_state(NR_UNSTABLE_NFS) +
761 		get_nr_dirty_inodes();
762 }
763 
764 static long wb_check_background_flush(struct bdi_writeback *wb)
765 {
766 	if (over_bground_thresh()) {
767 
768 		struct wb_writeback_work work = {
769 			.nr_pages	= LONG_MAX,
770 			.sync_mode	= WB_SYNC_NONE,
771 			.for_background	= 1,
772 			.range_cyclic	= 1,
773 		};
774 
775 		return wb_writeback(wb, &work);
776 	}
777 
778 	return 0;
779 }
780 
781 static long wb_check_old_data_flush(struct bdi_writeback *wb)
782 {
783 	unsigned long expired;
784 	long nr_pages;
785 
786 	/*
787 	 * When set to zero, disable periodic writeback
788 	 */
789 	if (!dirty_writeback_interval)
790 		return 0;
791 
792 	expired = wb->last_old_flush +
793 			msecs_to_jiffies(dirty_writeback_interval * 10);
794 	if (time_before(jiffies, expired))
795 		return 0;
796 
797 	wb->last_old_flush = jiffies;
798 	nr_pages = get_nr_dirty_pages();
799 
800 	if (nr_pages) {
801 		struct wb_writeback_work work = {
802 			.nr_pages	= nr_pages,
803 			.sync_mode	= WB_SYNC_NONE,
804 			.for_kupdate	= 1,
805 			.range_cyclic	= 1,
806 		};
807 
808 		return wb_writeback(wb, &work);
809 	}
810 
811 	return 0;
812 }
813 
814 /*
815  * Retrieve work items and do the writeback they describe
816  */
817 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
818 {
819 	struct backing_dev_info *bdi = wb->bdi;
820 	struct wb_writeback_work *work;
821 	long wrote = 0;
822 
823 	set_bit(BDI_writeback_running, &wb->bdi->state);
824 	while ((work = get_next_work_item(bdi)) != NULL) {
825 		/*
826 		 * Override sync mode, in case we must wait for completion
827 		 * because this thread is exiting now.
828 		 */
829 		if (force_wait)
830 			work->sync_mode = WB_SYNC_ALL;
831 
832 		trace_writeback_exec(bdi, work);
833 
834 		wrote += wb_writeback(wb, work);
835 
836 		/*
837 		 * Notify the caller of completion if this is a synchronous
838 		 * work item, otherwise just free it.
839 		 */
840 		if (work->done)
841 			complete(work->done);
842 		else
843 			kfree(work);
844 	}
845 
846 	/*
847 	 * Check for periodic writeback, kupdated() style
848 	 */
849 	wrote += wb_check_old_data_flush(wb);
850 	wrote += wb_check_background_flush(wb);
851 	clear_bit(BDI_writeback_running, &wb->bdi->state);
852 
853 	return wrote;
854 }
855 
856 /*
857  * Handle writeback of dirty data for the device backed by this bdi. Also
858  * wakes up periodically and does kupdated style flushing.
859  */
860 int bdi_writeback_thread(void *data)
861 {
862 	struct bdi_writeback *wb = data;
863 	struct backing_dev_info *bdi = wb->bdi;
864 	long pages_written;
865 
866 	current->flags |= PF_SWAPWRITE;
867 	set_freezable();
868 	wb->last_active = jiffies;
869 
870 	/*
871 	 * Our parent may run at a different priority, just set us to normal
872 	 */
873 	set_user_nice(current, 0);
874 
875 	trace_writeback_thread_start(bdi);
876 
877 	while (!kthread_should_stop()) {
878 		/*
879 		 * Remove own delayed wake-up timer, since we are already awake
880 		 * and we'll take care of the preriodic write-back.
881 		 */
882 		del_timer(&wb->wakeup_timer);
883 
884 		pages_written = wb_do_writeback(wb, 0);
885 
886 		trace_writeback_pages_written(pages_written);
887 
888 		if (pages_written)
889 			wb->last_active = jiffies;
890 
891 		set_current_state(TASK_INTERRUPTIBLE);
892 		if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
893 			__set_current_state(TASK_RUNNING);
894 			continue;
895 		}
896 
897 		if (wb_has_dirty_io(wb) && dirty_writeback_interval)
898 			schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
899 		else {
900 			/*
901 			 * We have nothing to do, so can go sleep without any
902 			 * timeout and save power. When a work is queued or
903 			 * something is made dirty - we will be woken up.
904 			 */
905 			schedule();
906 		}
907 
908 		try_to_freeze();
909 	}
910 
911 	/* Flush any work that raced with us exiting */
912 	if (!list_empty(&bdi->work_list))
913 		wb_do_writeback(wb, 1);
914 
915 	trace_writeback_thread_stop(bdi);
916 	return 0;
917 }
918 
919 
920 /*
921  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
922  * the whole world.
923  */
924 void wakeup_flusher_threads(long nr_pages)
925 {
926 	struct backing_dev_info *bdi;
927 
928 	if (!nr_pages) {
929 		nr_pages = global_page_state(NR_FILE_DIRTY) +
930 				global_page_state(NR_UNSTABLE_NFS);
931 	}
932 
933 	rcu_read_lock();
934 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
935 		if (!bdi_has_dirty_io(bdi))
936 			continue;
937 		__bdi_start_writeback(bdi, nr_pages, false);
938 	}
939 	rcu_read_unlock();
940 }
941 
942 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
943 {
944 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
945 		struct dentry *dentry;
946 		const char *name = "?";
947 
948 		dentry = d_find_alias(inode);
949 		if (dentry) {
950 			spin_lock(&dentry->d_lock);
951 			name = (const char *) dentry->d_name.name;
952 		}
953 		printk(KERN_DEBUG
954 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
955 		       current->comm, task_pid_nr(current), inode->i_ino,
956 		       name, inode->i_sb->s_id);
957 		if (dentry) {
958 			spin_unlock(&dentry->d_lock);
959 			dput(dentry);
960 		}
961 	}
962 }
963 
964 /**
965  *	__mark_inode_dirty -	internal function
966  *	@inode: inode to mark
967  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
968  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
969  *  	mark_inode_dirty_sync.
970  *
971  * Put the inode on the super block's dirty list.
972  *
973  * CAREFUL! We mark it dirty unconditionally, but move it onto the
974  * dirty list only if it is hashed or if it refers to a blockdev.
975  * If it was not hashed, it will never be added to the dirty list
976  * even if it is later hashed, as it will have been marked dirty already.
977  *
978  * In short, make sure you hash any inodes _before_ you start marking
979  * them dirty.
980  *
981  * This function *must* be atomic for the I_DIRTY_PAGES case -
982  * set_page_dirty() is called under spinlock in several places.
983  *
984  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
985  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
986  * the kernel-internal blockdev inode represents the dirtying time of the
987  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
988  * page->mapping->host, so the page-dirtying time is recorded in the internal
989  * blockdev inode.
990  */
991 void __mark_inode_dirty(struct inode *inode, int flags)
992 {
993 	struct super_block *sb = inode->i_sb;
994 	struct backing_dev_info *bdi = NULL;
995 	bool wakeup_bdi = false;
996 
997 	/*
998 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
999 	 * dirty the inode itself
1000 	 */
1001 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1002 		if (sb->s_op->dirty_inode)
1003 			sb->s_op->dirty_inode(inode);
1004 	}
1005 
1006 	/*
1007 	 * make sure that changes are seen by all cpus before we test i_state
1008 	 * -- mikulas
1009 	 */
1010 	smp_mb();
1011 
1012 	/* avoid the locking if we can */
1013 	if ((inode->i_state & flags) == flags)
1014 		return;
1015 
1016 	if (unlikely(block_dump))
1017 		block_dump___mark_inode_dirty(inode);
1018 
1019 	spin_lock(&inode_lock);
1020 	if ((inode->i_state & flags) != flags) {
1021 		const int was_dirty = inode->i_state & I_DIRTY;
1022 
1023 		inode->i_state |= flags;
1024 
1025 		/*
1026 		 * If the inode is being synced, just update its dirty state.
1027 		 * The unlocker will place the inode on the appropriate
1028 		 * superblock list, based upon its state.
1029 		 */
1030 		if (inode->i_state & I_SYNC)
1031 			goto out;
1032 
1033 		/*
1034 		 * Only add valid (hashed) inodes to the superblock's
1035 		 * dirty list.  Add blockdev inodes as well.
1036 		 */
1037 		if (!S_ISBLK(inode->i_mode)) {
1038 			if (inode_unhashed(inode))
1039 				goto out;
1040 		}
1041 		if (inode->i_state & I_FREEING)
1042 			goto out;
1043 
1044 		/*
1045 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
1046 		 * reposition it (that would break b_dirty time-ordering).
1047 		 */
1048 		if (!was_dirty) {
1049 			bdi = inode_to_bdi(inode);
1050 
1051 			if (bdi_cap_writeback_dirty(bdi)) {
1052 				WARN(!test_bit(BDI_registered, &bdi->state),
1053 				     "bdi-%s not registered\n", bdi->name);
1054 
1055 				/*
1056 				 * If this is the first dirty inode for this
1057 				 * bdi, we have to wake-up the corresponding
1058 				 * bdi thread to make sure background
1059 				 * write-back happens later.
1060 				 */
1061 				if (!wb_has_dirty_io(&bdi->wb))
1062 					wakeup_bdi = true;
1063 			}
1064 
1065 			inode->dirtied_when = jiffies;
1066 			list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1067 		}
1068 	}
1069 out:
1070 	spin_unlock(&inode_lock);
1071 
1072 	if (wakeup_bdi)
1073 		bdi_wakeup_thread_delayed(bdi);
1074 }
1075 EXPORT_SYMBOL(__mark_inode_dirty);
1076 
1077 /*
1078  * Write out a superblock's list of dirty inodes.  A wait will be performed
1079  * upon no inodes, all inodes or the final one, depending upon sync_mode.
1080  *
1081  * If older_than_this is non-NULL, then only write out inodes which
1082  * had their first dirtying at a time earlier than *older_than_this.
1083  *
1084  * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1085  * This function assumes that the blockdev superblock's inodes are backed by
1086  * a variety of queues, so all inodes are searched.  For other superblocks,
1087  * assume that all inodes are backed by the same queue.
1088  *
1089  * The inodes to be written are parked on bdi->b_io.  They are moved back onto
1090  * bdi->b_dirty as they are selected for writing.  This way, none can be missed
1091  * on the writer throttling path, and we get decent balancing between many
1092  * throttled threads: we don't want them all piling up on inode_sync_wait.
1093  */
1094 static void wait_sb_inodes(struct super_block *sb)
1095 {
1096 	struct inode *inode, *old_inode = NULL;
1097 
1098 	/*
1099 	 * We need to be protected against the filesystem going from
1100 	 * r/o to r/w or vice versa.
1101 	 */
1102 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1103 
1104 	spin_lock(&inode_lock);
1105 
1106 	/*
1107 	 * Data integrity sync. Must wait for all pages under writeback,
1108 	 * because there may have been pages dirtied before our sync
1109 	 * call, but which had writeout started before we write it out.
1110 	 * In which case, the inode may not be on the dirty list, but
1111 	 * we still have to wait for that writeout.
1112 	 */
1113 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1114 		struct address_space *mapping;
1115 
1116 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW))
1117 			continue;
1118 		mapping = inode->i_mapping;
1119 		if (mapping->nrpages == 0)
1120 			continue;
1121 		__iget(inode);
1122 		spin_unlock(&inode_lock);
1123 		/*
1124 		 * We hold a reference to 'inode' so it couldn't have
1125 		 * been removed from s_inodes list while we dropped the
1126 		 * inode_lock.  We cannot iput the inode now as we can
1127 		 * be holding the last reference and we cannot iput it
1128 		 * under inode_lock. So we keep the reference and iput
1129 		 * it later.
1130 		 */
1131 		iput(old_inode);
1132 		old_inode = inode;
1133 
1134 		filemap_fdatawait(mapping);
1135 
1136 		cond_resched();
1137 
1138 		spin_lock(&inode_lock);
1139 	}
1140 	spin_unlock(&inode_lock);
1141 	iput(old_inode);
1142 }
1143 
1144 /**
1145  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
1146  * @sb: the superblock
1147  * @nr: the number of pages to write
1148  *
1149  * Start writeback on some inodes on this super_block. No guarantees are made
1150  * on how many (if any) will be written, and this function does not wait
1151  * for IO completion of submitted IO.
1152  */
1153 void writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr)
1154 {
1155 	DECLARE_COMPLETION_ONSTACK(done);
1156 	struct wb_writeback_work work = {
1157 		.sb		= sb,
1158 		.sync_mode	= WB_SYNC_NONE,
1159 		.done		= &done,
1160 		.nr_pages	= nr,
1161 	};
1162 
1163 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1164 	bdi_queue_work(sb->s_bdi, &work);
1165 	wait_for_completion(&done);
1166 }
1167 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1168 
1169 /**
1170  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
1171  * @sb: the superblock
1172  *
1173  * Start writeback on some inodes on this super_block. No guarantees are made
1174  * on how many (if any) will be written, and this function does not wait
1175  * for IO completion of submitted IO.
1176  */
1177 void writeback_inodes_sb(struct super_block *sb)
1178 {
1179 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages());
1180 }
1181 EXPORT_SYMBOL(writeback_inodes_sb);
1182 
1183 /**
1184  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1185  * @sb: the superblock
1186  *
1187  * Invoke writeback_inodes_sb if no writeback is currently underway.
1188  * Returns 1 if writeback was started, 0 if not.
1189  */
1190 int writeback_inodes_sb_if_idle(struct super_block *sb)
1191 {
1192 	if (!writeback_in_progress(sb->s_bdi)) {
1193 		down_read(&sb->s_umount);
1194 		writeback_inodes_sb(sb);
1195 		up_read(&sb->s_umount);
1196 		return 1;
1197 	} else
1198 		return 0;
1199 }
1200 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1201 
1202 /**
1203  * writeback_inodes_sb_if_idle	-	start writeback if none underway
1204  * @sb: the superblock
1205  * @nr: the number of pages to write
1206  *
1207  * Invoke writeback_inodes_sb if no writeback is currently underway.
1208  * Returns 1 if writeback was started, 0 if not.
1209  */
1210 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1211 				   unsigned long nr)
1212 {
1213 	if (!writeback_in_progress(sb->s_bdi)) {
1214 		down_read(&sb->s_umount);
1215 		writeback_inodes_sb_nr(sb, nr);
1216 		up_read(&sb->s_umount);
1217 		return 1;
1218 	} else
1219 		return 0;
1220 }
1221 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1222 
1223 /**
1224  * sync_inodes_sb	-	sync sb inode pages
1225  * @sb: the superblock
1226  *
1227  * This function writes and waits on any dirty inode belonging to this
1228  * super_block.
1229  */
1230 void sync_inodes_sb(struct super_block *sb)
1231 {
1232 	DECLARE_COMPLETION_ONSTACK(done);
1233 	struct wb_writeback_work work = {
1234 		.sb		= sb,
1235 		.sync_mode	= WB_SYNC_ALL,
1236 		.nr_pages	= LONG_MAX,
1237 		.range_cyclic	= 0,
1238 		.done		= &done,
1239 	};
1240 
1241 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
1242 
1243 	bdi_queue_work(sb->s_bdi, &work);
1244 	wait_for_completion(&done);
1245 
1246 	wait_sb_inodes(sb);
1247 }
1248 EXPORT_SYMBOL(sync_inodes_sb);
1249 
1250 /**
1251  * write_inode_now	-	write an inode to disk
1252  * @inode: inode to write to disk
1253  * @sync: whether the write should be synchronous or not
1254  *
1255  * This function commits an inode to disk immediately if it is dirty. This is
1256  * primarily needed by knfsd.
1257  *
1258  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1259  */
1260 int write_inode_now(struct inode *inode, int sync)
1261 {
1262 	int ret;
1263 	struct writeback_control wbc = {
1264 		.nr_to_write = LONG_MAX,
1265 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1266 		.range_start = 0,
1267 		.range_end = LLONG_MAX,
1268 	};
1269 
1270 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
1271 		wbc.nr_to_write = 0;
1272 
1273 	might_sleep();
1274 	spin_lock(&inode_lock);
1275 	ret = writeback_single_inode(inode, &wbc);
1276 	spin_unlock(&inode_lock);
1277 	if (sync)
1278 		inode_sync_wait(inode);
1279 	return ret;
1280 }
1281 EXPORT_SYMBOL(write_inode_now);
1282 
1283 /**
1284  * sync_inode - write an inode and its pages to disk.
1285  * @inode: the inode to sync
1286  * @wbc: controls the writeback mode
1287  *
1288  * sync_inode() will write an inode and its pages to disk.  It will also
1289  * correctly update the inode on its superblock's dirty inode lists and will
1290  * update inode->i_state.
1291  *
1292  * The caller must have a ref on the inode.
1293  */
1294 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1295 {
1296 	int ret;
1297 
1298 	spin_lock(&inode_lock);
1299 	ret = writeback_single_inode(inode, wbc);
1300 	spin_unlock(&inode_lock);
1301 	return ret;
1302 }
1303 EXPORT_SYMBOL(sync_inode);
1304 
1305 /**
1306  * sync_inode_metadata - write an inode to disk
1307  * @inode: the inode to sync
1308  * @wait: wait for I/O to complete.
1309  *
1310  * Write an inode to disk and adjust its dirty state after completion.
1311  *
1312  * Note: only writes the actual inode, no associated data or other metadata.
1313  */
1314 int sync_inode_metadata(struct inode *inode, int wait)
1315 {
1316 	struct writeback_control wbc = {
1317 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1318 		.nr_to_write = 0, /* metadata-only */
1319 	};
1320 
1321 	return sync_inode(inode, &wbc);
1322 }
1323 EXPORT_SYMBOL(sync_inode_metadata);
1324