1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 unsigned long *older_than_this; 46 enum writeback_sync_modes sync_mode; 47 unsigned int tagged_writepages:1; 48 unsigned int for_kupdate:1; 49 unsigned int range_cyclic:1; 50 unsigned int for_background:1; 51 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 52 unsigned int auto_free:1; /* free on completion */ 53 enum wb_reason reason; /* why was writeback initiated? */ 54 55 struct list_head list; /* pending work list */ 56 struct wb_completion *done; /* set if the caller waits */ 57 }; 58 59 /* 60 * If an inode is constantly having its pages dirtied, but then the 61 * updates stop dirtytime_expire_interval seconds in the past, it's 62 * possible for the worst case time between when an inode has its 63 * timestamps updated and when they finally get written out to be two 64 * dirtytime_expire_intervals. We set the default to 12 hours (in 65 * seconds), which means most of the time inodes will have their 66 * timestamps written to disk after 12 hours, but in the worst case a 67 * few inodes might not their timestamps updated for 24 hours. 68 */ 69 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 70 71 static inline struct inode *wb_inode(struct list_head *head) 72 { 73 return list_entry(head, struct inode, i_io_list); 74 } 75 76 /* 77 * Include the creation of the trace points after defining the 78 * wb_writeback_work structure and inline functions so that the definition 79 * remains local to this file. 80 */ 81 #define CREATE_TRACE_POINTS 82 #include <trace/events/writeback.h> 83 84 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 85 86 static bool wb_io_lists_populated(struct bdi_writeback *wb) 87 { 88 if (wb_has_dirty_io(wb)) { 89 return false; 90 } else { 91 set_bit(WB_has_dirty_io, &wb->state); 92 WARN_ON_ONCE(!wb->avg_write_bandwidth); 93 atomic_long_add(wb->avg_write_bandwidth, 94 &wb->bdi->tot_write_bandwidth); 95 return true; 96 } 97 } 98 99 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 100 { 101 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 102 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 103 clear_bit(WB_has_dirty_io, &wb->state); 104 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 105 &wb->bdi->tot_write_bandwidth) < 0); 106 } 107 } 108 109 /** 110 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 111 * @inode: inode to be moved 112 * @wb: target bdi_writeback 113 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 114 * 115 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 116 * Returns %true if @inode is the first occupant of the !dirty_time IO 117 * lists; otherwise, %false. 118 */ 119 static bool inode_io_list_move_locked(struct inode *inode, 120 struct bdi_writeback *wb, 121 struct list_head *head) 122 { 123 assert_spin_locked(&wb->list_lock); 124 125 list_move(&inode->i_io_list, head); 126 127 /* dirty_time doesn't count as dirty_io until expiration */ 128 if (head != &wb->b_dirty_time) 129 return wb_io_lists_populated(wb); 130 131 wb_io_lists_depopulated(wb); 132 return false; 133 } 134 135 /** 136 * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list 137 * @inode: inode to be removed 138 * @wb: bdi_writeback @inode is being removed from 139 * 140 * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and 141 * clear %WB_has_dirty_io if all are empty afterwards. 142 */ 143 static void inode_io_list_del_locked(struct inode *inode, 144 struct bdi_writeback *wb) 145 { 146 assert_spin_locked(&wb->list_lock); 147 148 list_del_init(&inode->i_io_list); 149 wb_io_lists_depopulated(wb); 150 } 151 152 static void wb_wakeup(struct bdi_writeback *wb) 153 { 154 spin_lock_bh(&wb->work_lock); 155 if (test_bit(WB_registered, &wb->state)) 156 mod_delayed_work(bdi_wq, &wb->dwork, 0); 157 spin_unlock_bh(&wb->work_lock); 158 } 159 160 static void finish_writeback_work(struct bdi_writeback *wb, 161 struct wb_writeback_work *work) 162 { 163 struct wb_completion *done = work->done; 164 165 if (work->auto_free) 166 kfree(work); 167 if (done) { 168 wait_queue_head_t *waitq = done->waitq; 169 170 /* @done can't be accessed after the following dec */ 171 if (atomic_dec_and_test(&done->cnt)) 172 wake_up_all(waitq); 173 } 174 } 175 176 static void wb_queue_work(struct bdi_writeback *wb, 177 struct wb_writeback_work *work) 178 { 179 trace_writeback_queue(wb, work); 180 181 if (work->done) 182 atomic_inc(&work->done->cnt); 183 184 spin_lock_bh(&wb->work_lock); 185 186 if (test_bit(WB_registered, &wb->state)) { 187 list_add_tail(&work->list, &wb->work_list); 188 mod_delayed_work(bdi_wq, &wb->dwork, 0); 189 } else 190 finish_writeback_work(wb, work); 191 192 spin_unlock_bh(&wb->work_lock); 193 } 194 195 /** 196 * wb_wait_for_completion - wait for completion of bdi_writeback_works 197 * @done: target wb_completion 198 * 199 * Wait for one or more work items issued to @bdi with their ->done field 200 * set to @done, which should have been initialized with 201 * DEFINE_WB_COMPLETION(). This function returns after all such work items 202 * are completed. Work items which are waited upon aren't freed 203 * automatically on completion. 204 */ 205 void wb_wait_for_completion(struct wb_completion *done) 206 { 207 atomic_dec(&done->cnt); /* put down the initial count */ 208 wait_event(*done->waitq, !atomic_read(&done->cnt)); 209 } 210 211 #ifdef CONFIG_CGROUP_WRITEBACK 212 213 /* 214 * Parameters for foreign inode detection, see wbc_detach_inode() to see 215 * how they're used. 216 * 217 * These paramters are inherently heuristical as the detection target 218 * itself is fuzzy. All we want to do is detaching an inode from the 219 * current owner if it's being written to by some other cgroups too much. 220 * 221 * The current cgroup writeback is built on the assumption that multiple 222 * cgroups writing to the same inode concurrently is very rare and a mode 223 * of operation which isn't well supported. As such, the goal is not 224 * taking too long when a different cgroup takes over an inode while 225 * avoiding too aggressive flip-flops from occasional foreign writes. 226 * 227 * We record, very roughly, 2s worth of IO time history and if more than 228 * half of that is foreign, trigger the switch. The recording is quantized 229 * to 16 slots. To avoid tiny writes from swinging the decision too much, 230 * writes smaller than 1/8 of avg size are ignored. 231 */ 232 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 233 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 234 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 235 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 236 237 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 238 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 239 /* each slot's duration is 2s / 16 */ 240 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 241 /* if foreign slots >= 8, switch */ 242 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 243 /* one round can affect upto 5 slots */ 244 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 245 246 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 247 static struct workqueue_struct *isw_wq; 248 249 void __inode_attach_wb(struct inode *inode, struct page *page) 250 { 251 struct backing_dev_info *bdi = inode_to_bdi(inode); 252 struct bdi_writeback *wb = NULL; 253 254 if (inode_cgwb_enabled(inode)) { 255 struct cgroup_subsys_state *memcg_css; 256 257 if (page) { 258 memcg_css = mem_cgroup_css_from_page(page); 259 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 260 } else { 261 /* must pin memcg_css, see wb_get_create() */ 262 memcg_css = task_get_css(current, memory_cgrp_id); 263 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 264 css_put(memcg_css); 265 } 266 } 267 268 if (!wb) 269 wb = &bdi->wb; 270 271 /* 272 * There may be multiple instances of this function racing to 273 * update the same inode. Use cmpxchg() to tell the winner. 274 */ 275 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 276 wb_put(wb); 277 } 278 EXPORT_SYMBOL_GPL(__inode_attach_wb); 279 280 /** 281 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 282 * @inode: inode of interest with i_lock held 283 * 284 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 285 * held on entry and is released on return. The returned wb is guaranteed 286 * to stay @inode's associated wb until its list_lock is released. 287 */ 288 static struct bdi_writeback * 289 locked_inode_to_wb_and_lock_list(struct inode *inode) 290 __releases(&inode->i_lock) 291 __acquires(&wb->list_lock) 292 { 293 while (true) { 294 struct bdi_writeback *wb = inode_to_wb(inode); 295 296 /* 297 * inode_to_wb() association is protected by both 298 * @inode->i_lock and @wb->list_lock but list_lock nests 299 * outside i_lock. Drop i_lock and verify that the 300 * association hasn't changed after acquiring list_lock. 301 */ 302 wb_get(wb); 303 spin_unlock(&inode->i_lock); 304 spin_lock(&wb->list_lock); 305 306 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 307 if (likely(wb == inode->i_wb)) { 308 wb_put(wb); /* @inode already has ref */ 309 return wb; 310 } 311 312 spin_unlock(&wb->list_lock); 313 wb_put(wb); 314 cpu_relax(); 315 spin_lock(&inode->i_lock); 316 } 317 } 318 319 /** 320 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 321 * @inode: inode of interest 322 * 323 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 324 * on entry. 325 */ 326 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 327 __acquires(&wb->list_lock) 328 { 329 spin_lock(&inode->i_lock); 330 return locked_inode_to_wb_and_lock_list(inode); 331 } 332 333 struct inode_switch_wbs_context { 334 struct inode *inode; 335 struct bdi_writeback *new_wb; 336 337 struct rcu_head rcu_head; 338 struct work_struct work; 339 }; 340 341 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 342 { 343 down_write(&bdi->wb_switch_rwsem); 344 } 345 346 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 347 { 348 up_write(&bdi->wb_switch_rwsem); 349 } 350 351 static void inode_switch_wbs_work_fn(struct work_struct *work) 352 { 353 struct inode_switch_wbs_context *isw = 354 container_of(work, struct inode_switch_wbs_context, work); 355 struct inode *inode = isw->inode; 356 struct backing_dev_info *bdi = inode_to_bdi(inode); 357 struct address_space *mapping = inode->i_mapping; 358 struct bdi_writeback *old_wb = inode->i_wb; 359 struct bdi_writeback *new_wb = isw->new_wb; 360 XA_STATE(xas, &mapping->i_pages, 0); 361 struct page *page; 362 bool switched = false; 363 364 /* 365 * If @inode switches cgwb membership while sync_inodes_sb() is 366 * being issued, sync_inodes_sb() might miss it. Synchronize. 367 */ 368 down_read(&bdi->wb_switch_rwsem); 369 370 /* 371 * By the time control reaches here, RCU grace period has passed 372 * since I_WB_SWITCH assertion and all wb stat update transactions 373 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 374 * synchronizing against the i_pages lock. 375 * 376 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 377 * gives us exclusion against all wb related operations on @inode 378 * including IO list manipulations and stat updates. 379 */ 380 if (old_wb < new_wb) { 381 spin_lock(&old_wb->list_lock); 382 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 383 } else { 384 spin_lock(&new_wb->list_lock); 385 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 386 } 387 spin_lock(&inode->i_lock); 388 xa_lock_irq(&mapping->i_pages); 389 390 /* 391 * Once I_FREEING is visible under i_lock, the eviction path owns 392 * the inode and we shouldn't modify ->i_io_list. 393 */ 394 if (unlikely(inode->i_state & I_FREEING)) 395 goto skip_switch; 396 397 trace_inode_switch_wbs(inode, old_wb, new_wb); 398 399 /* 400 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 401 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to 402 * pages actually under writeback. 403 */ 404 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 405 if (PageDirty(page)) { 406 dec_wb_stat(old_wb, WB_RECLAIMABLE); 407 inc_wb_stat(new_wb, WB_RECLAIMABLE); 408 } 409 } 410 411 xas_set(&xas, 0); 412 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 413 WARN_ON_ONCE(!PageWriteback(page)); 414 dec_wb_stat(old_wb, WB_WRITEBACK); 415 inc_wb_stat(new_wb, WB_WRITEBACK); 416 } 417 418 wb_get(new_wb); 419 420 /* 421 * Transfer to @new_wb's IO list if necessary. The specific list 422 * @inode was on is ignored and the inode is put on ->b_dirty which 423 * is always correct including from ->b_dirty_time. The transfer 424 * preserves @inode->dirtied_when ordering. 425 */ 426 if (!list_empty(&inode->i_io_list)) { 427 struct inode *pos; 428 429 inode_io_list_del_locked(inode, old_wb); 430 inode->i_wb = new_wb; 431 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 432 if (time_after_eq(inode->dirtied_when, 433 pos->dirtied_when)) 434 break; 435 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev); 436 } else { 437 inode->i_wb = new_wb; 438 } 439 440 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 441 inode->i_wb_frn_winner = 0; 442 inode->i_wb_frn_avg_time = 0; 443 inode->i_wb_frn_history = 0; 444 switched = true; 445 skip_switch: 446 /* 447 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 448 * ensures that the new wb is visible if they see !I_WB_SWITCH. 449 */ 450 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 451 452 xa_unlock_irq(&mapping->i_pages); 453 spin_unlock(&inode->i_lock); 454 spin_unlock(&new_wb->list_lock); 455 spin_unlock(&old_wb->list_lock); 456 457 up_read(&bdi->wb_switch_rwsem); 458 459 if (switched) { 460 wb_wakeup(new_wb); 461 wb_put(old_wb); 462 } 463 wb_put(new_wb); 464 465 iput(inode); 466 kfree(isw); 467 468 atomic_dec(&isw_nr_in_flight); 469 } 470 471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head) 472 { 473 struct inode_switch_wbs_context *isw = container_of(rcu_head, 474 struct inode_switch_wbs_context, rcu_head); 475 476 /* needs to grab bh-unsafe locks, bounce to work item */ 477 INIT_WORK(&isw->work, inode_switch_wbs_work_fn); 478 queue_work(isw_wq, &isw->work); 479 } 480 481 /** 482 * inode_switch_wbs - change the wb association of an inode 483 * @inode: target inode 484 * @new_wb_id: ID of the new wb 485 * 486 * Switch @inode's wb association to the wb identified by @new_wb_id. The 487 * switching is performed asynchronously and may fail silently. 488 */ 489 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 490 { 491 struct backing_dev_info *bdi = inode_to_bdi(inode); 492 struct cgroup_subsys_state *memcg_css; 493 struct inode_switch_wbs_context *isw; 494 495 /* noop if seems to be already in progress */ 496 if (inode->i_state & I_WB_SWITCH) 497 return; 498 499 /* avoid queueing a new switch if too many are already in flight */ 500 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 501 return; 502 503 isw = kzalloc(sizeof(*isw), GFP_ATOMIC); 504 if (!isw) 505 return; 506 507 /* find and pin the new wb */ 508 rcu_read_lock(); 509 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 510 if (memcg_css) 511 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 512 rcu_read_unlock(); 513 if (!isw->new_wb) 514 goto out_free; 515 516 /* while holding I_WB_SWITCH, no one else can update the association */ 517 spin_lock(&inode->i_lock); 518 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 519 inode->i_state & (I_WB_SWITCH | I_FREEING) || 520 inode_to_wb(inode) == isw->new_wb) { 521 spin_unlock(&inode->i_lock); 522 goto out_free; 523 } 524 inode->i_state |= I_WB_SWITCH; 525 __iget(inode); 526 spin_unlock(&inode->i_lock); 527 528 isw->inode = inode; 529 530 /* 531 * In addition to synchronizing among switchers, I_WB_SWITCH tells 532 * the RCU protected stat update paths to grab the i_page 533 * lock so that stat transfer can synchronize against them. 534 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 535 */ 536 call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn); 537 538 atomic_inc(&isw_nr_in_flight); 539 return; 540 541 out_free: 542 if (isw->new_wb) 543 wb_put(isw->new_wb); 544 kfree(isw); 545 } 546 547 /** 548 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 549 * @wbc: writeback_control of interest 550 * @inode: target inode 551 * 552 * @inode is locked and about to be written back under the control of @wbc. 553 * Record @inode's writeback context into @wbc and unlock the i_lock. On 554 * writeback completion, wbc_detach_inode() should be called. This is used 555 * to track the cgroup writeback context. 556 */ 557 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 558 struct inode *inode) 559 { 560 if (!inode_cgwb_enabled(inode)) { 561 spin_unlock(&inode->i_lock); 562 return; 563 } 564 565 wbc->wb = inode_to_wb(inode); 566 wbc->inode = inode; 567 568 wbc->wb_id = wbc->wb->memcg_css->id; 569 wbc->wb_lcand_id = inode->i_wb_frn_winner; 570 wbc->wb_tcand_id = 0; 571 wbc->wb_bytes = 0; 572 wbc->wb_lcand_bytes = 0; 573 wbc->wb_tcand_bytes = 0; 574 575 wb_get(wbc->wb); 576 spin_unlock(&inode->i_lock); 577 578 /* 579 * A dying wb indicates that either the blkcg associated with the 580 * memcg changed or the associated memcg is dying. In the first 581 * case, a replacement wb should already be available and we should 582 * refresh the wb immediately. In the second case, trying to 583 * refresh will keep failing. 584 */ 585 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 586 inode_switch_wbs(inode, wbc->wb_id); 587 } 588 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 589 590 /** 591 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 592 * @wbc: writeback_control of the just finished writeback 593 * 594 * To be called after a writeback attempt of an inode finishes and undoes 595 * wbc_attach_and_unlock_inode(). Can be called under any context. 596 * 597 * As concurrent write sharing of an inode is expected to be very rare and 598 * memcg only tracks page ownership on first-use basis severely confining 599 * the usefulness of such sharing, cgroup writeback tracks ownership 600 * per-inode. While the support for concurrent write sharing of an inode 601 * is deemed unnecessary, an inode being written to by different cgroups at 602 * different points in time is a lot more common, and, more importantly, 603 * charging only by first-use can too readily lead to grossly incorrect 604 * behaviors (single foreign page can lead to gigabytes of writeback to be 605 * incorrectly attributed). 606 * 607 * To resolve this issue, cgroup writeback detects the majority dirtier of 608 * an inode and transfers the ownership to it. To avoid unnnecessary 609 * oscillation, the detection mechanism keeps track of history and gives 610 * out the switch verdict only if the foreign usage pattern is stable over 611 * a certain amount of time and/or writeback attempts. 612 * 613 * On each writeback attempt, @wbc tries to detect the majority writer 614 * using Boyer-Moore majority vote algorithm. In addition to the byte 615 * count from the majority voting, it also counts the bytes written for the 616 * current wb and the last round's winner wb (max of last round's current 617 * wb, the winner from two rounds ago, and the last round's majority 618 * candidate). Keeping track of the historical winner helps the algorithm 619 * to semi-reliably detect the most active writer even when it's not the 620 * absolute majority. 621 * 622 * Once the winner of the round is determined, whether the winner is 623 * foreign or not and how much IO time the round consumed is recorded in 624 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 625 * over a certain threshold, the switch verdict is given. 626 */ 627 void wbc_detach_inode(struct writeback_control *wbc) 628 { 629 struct bdi_writeback *wb = wbc->wb; 630 struct inode *inode = wbc->inode; 631 unsigned long avg_time, max_bytes, max_time; 632 u16 history; 633 int max_id; 634 635 if (!wb) 636 return; 637 638 history = inode->i_wb_frn_history; 639 avg_time = inode->i_wb_frn_avg_time; 640 641 /* pick the winner of this round */ 642 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 643 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 644 max_id = wbc->wb_id; 645 max_bytes = wbc->wb_bytes; 646 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 647 max_id = wbc->wb_lcand_id; 648 max_bytes = wbc->wb_lcand_bytes; 649 } else { 650 max_id = wbc->wb_tcand_id; 651 max_bytes = wbc->wb_tcand_bytes; 652 } 653 654 /* 655 * Calculate the amount of IO time the winner consumed and fold it 656 * into the running average kept per inode. If the consumed IO 657 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 658 * deciding whether to switch or not. This is to prevent one-off 659 * small dirtiers from skewing the verdict. 660 */ 661 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 662 wb->avg_write_bandwidth); 663 if (avg_time) 664 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 665 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 666 else 667 avg_time = max_time; /* immediate catch up on first run */ 668 669 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 670 int slots; 671 672 /* 673 * The switch verdict is reached if foreign wb's consume 674 * more than a certain proportion of IO time in a 675 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 676 * history mask where each bit represents one sixteenth of 677 * the period. Determine the number of slots to shift into 678 * history from @max_time. 679 */ 680 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 681 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 682 history <<= slots; 683 if (wbc->wb_id != max_id) 684 history |= (1U << slots) - 1; 685 686 if (history) 687 trace_inode_foreign_history(inode, wbc, history); 688 689 /* 690 * Switch if the current wb isn't the consistent winner. 691 * If there are multiple closely competing dirtiers, the 692 * inode may switch across them repeatedly over time, which 693 * is okay. The main goal is avoiding keeping an inode on 694 * the wrong wb for an extended period of time. 695 */ 696 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS) 697 inode_switch_wbs(inode, max_id); 698 } 699 700 /* 701 * Multiple instances of this function may race to update the 702 * following fields but we don't mind occassional inaccuracies. 703 */ 704 inode->i_wb_frn_winner = max_id; 705 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 706 inode->i_wb_frn_history = history; 707 708 wb_put(wbc->wb); 709 wbc->wb = NULL; 710 } 711 EXPORT_SYMBOL_GPL(wbc_detach_inode); 712 713 /** 714 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 715 * @wbc: writeback_control of the writeback in progress 716 * @page: page being written out 717 * @bytes: number of bytes being written out 718 * 719 * @bytes from @page are about to written out during the writeback 720 * controlled by @wbc. Keep the book for foreign inode detection. See 721 * wbc_detach_inode(). 722 */ 723 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 724 size_t bytes) 725 { 726 struct cgroup_subsys_state *css; 727 int id; 728 729 /* 730 * pageout() path doesn't attach @wbc to the inode being written 731 * out. This is intentional as we don't want the function to block 732 * behind a slow cgroup. Ultimately, we want pageout() to kick off 733 * regular writeback instead of writing things out itself. 734 */ 735 if (!wbc->wb || wbc->no_cgroup_owner) 736 return; 737 738 css = mem_cgroup_css_from_page(page); 739 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 740 if (!(css->flags & CSS_ONLINE)) 741 return; 742 743 id = css->id; 744 745 if (id == wbc->wb_id) { 746 wbc->wb_bytes += bytes; 747 return; 748 } 749 750 if (id == wbc->wb_lcand_id) 751 wbc->wb_lcand_bytes += bytes; 752 753 /* Boyer-Moore majority vote algorithm */ 754 if (!wbc->wb_tcand_bytes) 755 wbc->wb_tcand_id = id; 756 if (id == wbc->wb_tcand_id) 757 wbc->wb_tcand_bytes += bytes; 758 else 759 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 760 } 761 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 762 763 /** 764 * inode_congested - test whether an inode is congested 765 * @inode: inode to test for congestion (may be NULL) 766 * @cong_bits: mask of WB_[a]sync_congested bits to test 767 * 768 * Tests whether @inode is congested. @cong_bits is the mask of congestion 769 * bits to test and the return value is the mask of set bits. 770 * 771 * If cgroup writeback is enabled for @inode, the congestion state is 772 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg 773 * associated with @inode is congested; otherwise, the root wb's congestion 774 * state is used. 775 * 776 * @inode is allowed to be NULL as this function is often called on 777 * mapping->host which is NULL for the swapper space. 778 */ 779 int inode_congested(struct inode *inode, int cong_bits) 780 { 781 /* 782 * Once set, ->i_wb never becomes NULL while the inode is alive. 783 * Start transaction iff ->i_wb is visible. 784 */ 785 if (inode && inode_to_wb_is_valid(inode)) { 786 struct bdi_writeback *wb; 787 struct wb_lock_cookie lock_cookie = {}; 788 bool congested; 789 790 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie); 791 congested = wb_congested(wb, cong_bits); 792 unlocked_inode_to_wb_end(inode, &lock_cookie); 793 return congested; 794 } 795 796 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits); 797 } 798 EXPORT_SYMBOL_GPL(inode_congested); 799 800 /** 801 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 802 * @wb: target bdi_writeback to split @nr_pages to 803 * @nr_pages: number of pages to write for the whole bdi 804 * 805 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 806 * relation to the total write bandwidth of all wb's w/ dirty inodes on 807 * @wb->bdi. 808 */ 809 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 810 { 811 unsigned long this_bw = wb->avg_write_bandwidth; 812 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 813 814 if (nr_pages == LONG_MAX) 815 return LONG_MAX; 816 817 /* 818 * This may be called on clean wb's and proportional distribution 819 * may not make sense, just use the original @nr_pages in those 820 * cases. In general, we wanna err on the side of writing more. 821 */ 822 if (!tot_bw || this_bw >= tot_bw) 823 return nr_pages; 824 else 825 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 826 } 827 828 /** 829 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 830 * @bdi: target backing_dev_info 831 * @base_work: wb_writeback_work to issue 832 * @skip_if_busy: skip wb's which already have writeback in progress 833 * 834 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 835 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 836 * distributed to the busy wbs according to each wb's proportion in the 837 * total active write bandwidth of @bdi. 838 */ 839 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 840 struct wb_writeback_work *base_work, 841 bool skip_if_busy) 842 { 843 struct bdi_writeback *last_wb = NULL; 844 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 845 struct bdi_writeback, bdi_node); 846 847 might_sleep(); 848 restart: 849 rcu_read_lock(); 850 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 851 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 852 struct wb_writeback_work fallback_work; 853 struct wb_writeback_work *work; 854 long nr_pages; 855 856 if (last_wb) { 857 wb_put(last_wb); 858 last_wb = NULL; 859 } 860 861 /* SYNC_ALL writes out I_DIRTY_TIME too */ 862 if (!wb_has_dirty_io(wb) && 863 (base_work->sync_mode == WB_SYNC_NONE || 864 list_empty(&wb->b_dirty_time))) 865 continue; 866 if (skip_if_busy && writeback_in_progress(wb)) 867 continue; 868 869 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 870 871 work = kmalloc(sizeof(*work), GFP_ATOMIC); 872 if (work) { 873 *work = *base_work; 874 work->nr_pages = nr_pages; 875 work->auto_free = 1; 876 wb_queue_work(wb, work); 877 continue; 878 } 879 880 /* alloc failed, execute synchronously using on-stack fallback */ 881 work = &fallback_work; 882 *work = *base_work; 883 work->nr_pages = nr_pages; 884 work->auto_free = 0; 885 work->done = &fallback_work_done; 886 887 wb_queue_work(wb, work); 888 889 /* 890 * Pin @wb so that it stays on @bdi->wb_list. This allows 891 * continuing iteration from @wb after dropping and 892 * regrabbing rcu read lock. 893 */ 894 wb_get(wb); 895 last_wb = wb; 896 897 rcu_read_unlock(); 898 wb_wait_for_completion(&fallback_work_done); 899 goto restart; 900 } 901 rcu_read_unlock(); 902 903 if (last_wb) 904 wb_put(last_wb); 905 } 906 907 /** 908 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 909 * @bdi_id: target bdi id 910 * @memcg_id: target memcg css id 911 * @nr: number of pages to write, 0 for best-effort dirty flushing 912 * @reason: reason why some writeback work initiated 913 * @done: target wb_completion 914 * 915 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 916 * with the specified parameters. 917 */ 918 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, unsigned long nr, 919 enum wb_reason reason, struct wb_completion *done) 920 { 921 struct backing_dev_info *bdi; 922 struct cgroup_subsys_state *memcg_css; 923 struct bdi_writeback *wb; 924 struct wb_writeback_work *work; 925 int ret; 926 927 /* lookup bdi and memcg */ 928 bdi = bdi_get_by_id(bdi_id); 929 if (!bdi) 930 return -ENOENT; 931 932 rcu_read_lock(); 933 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 934 if (memcg_css && !css_tryget(memcg_css)) 935 memcg_css = NULL; 936 rcu_read_unlock(); 937 if (!memcg_css) { 938 ret = -ENOENT; 939 goto out_bdi_put; 940 } 941 942 /* 943 * And find the associated wb. If the wb isn't there already 944 * there's nothing to flush, don't create one. 945 */ 946 wb = wb_get_lookup(bdi, memcg_css); 947 if (!wb) { 948 ret = -ENOENT; 949 goto out_css_put; 950 } 951 952 /* 953 * If @nr is zero, the caller is attempting to write out most of 954 * the currently dirty pages. Let's take the current dirty page 955 * count and inflate it by 25% which should be large enough to 956 * flush out most dirty pages while avoiding getting livelocked by 957 * concurrent dirtiers. 958 */ 959 if (!nr) { 960 unsigned long filepages, headroom, dirty, writeback; 961 962 mem_cgroup_wb_stats(wb, &filepages, &headroom, &dirty, 963 &writeback); 964 nr = dirty * 10 / 8; 965 } 966 967 /* issue the writeback work */ 968 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 969 if (work) { 970 work->nr_pages = nr; 971 work->sync_mode = WB_SYNC_NONE; 972 work->range_cyclic = 1; 973 work->reason = reason; 974 work->done = done; 975 work->auto_free = 1; 976 wb_queue_work(wb, work); 977 ret = 0; 978 } else { 979 ret = -ENOMEM; 980 } 981 982 wb_put(wb); 983 out_css_put: 984 css_put(memcg_css); 985 out_bdi_put: 986 bdi_put(bdi); 987 return ret; 988 } 989 990 /** 991 * cgroup_writeback_umount - flush inode wb switches for umount 992 * 993 * This function is called when a super_block is about to be destroyed and 994 * flushes in-flight inode wb switches. An inode wb switch goes through 995 * RCU and then workqueue, so the two need to be flushed in order to ensure 996 * that all previously scheduled switches are finished. As wb switches are 997 * rare occurrences and synchronize_rcu() can take a while, perform 998 * flushing iff wb switches are in flight. 999 */ 1000 void cgroup_writeback_umount(void) 1001 { 1002 if (atomic_read(&isw_nr_in_flight)) { 1003 /* 1004 * Use rcu_barrier() to wait for all pending callbacks to 1005 * ensure that all in-flight wb switches are in the workqueue. 1006 */ 1007 rcu_barrier(); 1008 flush_workqueue(isw_wq); 1009 } 1010 } 1011 1012 static int __init cgroup_writeback_init(void) 1013 { 1014 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1015 if (!isw_wq) 1016 return -ENOMEM; 1017 return 0; 1018 } 1019 fs_initcall(cgroup_writeback_init); 1020 1021 #else /* CONFIG_CGROUP_WRITEBACK */ 1022 1023 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1024 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1025 1026 static struct bdi_writeback * 1027 locked_inode_to_wb_and_lock_list(struct inode *inode) 1028 __releases(&inode->i_lock) 1029 __acquires(&wb->list_lock) 1030 { 1031 struct bdi_writeback *wb = inode_to_wb(inode); 1032 1033 spin_unlock(&inode->i_lock); 1034 spin_lock(&wb->list_lock); 1035 return wb; 1036 } 1037 1038 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1039 __acquires(&wb->list_lock) 1040 { 1041 struct bdi_writeback *wb = inode_to_wb(inode); 1042 1043 spin_lock(&wb->list_lock); 1044 return wb; 1045 } 1046 1047 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1048 { 1049 return nr_pages; 1050 } 1051 1052 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1053 struct wb_writeback_work *base_work, 1054 bool skip_if_busy) 1055 { 1056 might_sleep(); 1057 1058 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1059 base_work->auto_free = 0; 1060 wb_queue_work(&bdi->wb, base_work); 1061 } 1062 } 1063 1064 #endif /* CONFIG_CGROUP_WRITEBACK */ 1065 1066 /* 1067 * Add in the number of potentially dirty inodes, because each inode 1068 * write can dirty pagecache in the underlying blockdev. 1069 */ 1070 static unsigned long get_nr_dirty_pages(void) 1071 { 1072 return global_node_page_state(NR_FILE_DIRTY) + 1073 get_nr_dirty_inodes(); 1074 } 1075 1076 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1077 { 1078 if (!wb_has_dirty_io(wb)) 1079 return; 1080 1081 /* 1082 * All callers of this function want to start writeback of all 1083 * dirty pages. Places like vmscan can call this at a very 1084 * high frequency, causing pointless allocations of tons of 1085 * work items and keeping the flusher threads busy retrieving 1086 * that work. Ensure that we only allow one of them pending and 1087 * inflight at the time. 1088 */ 1089 if (test_bit(WB_start_all, &wb->state) || 1090 test_and_set_bit(WB_start_all, &wb->state)) 1091 return; 1092 1093 wb->start_all_reason = reason; 1094 wb_wakeup(wb); 1095 } 1096 1097 /** 1098 * wb_start_background_writeback - start background writeback 1099 * @wb: bdi_writback to write from 1100 * 1101 * Description: 1102 * This makes sure WB_SYNC_NONE background writeback happens. When 1103 * this function returns, it is only guaranteed that for given wb 1104 * some IO is happening if we are over background dirty threshold. 1105 * Caller need not hold sb s_umount semaphore. 1106 */ 1107 void wb_start_background_writeback(struct bdi_writeback *wb) 1108 { 1109 /* 1110 * We just wake up the flusher thread. It will perform background 1111 * writeback as soon as there is no other work to do. 1112 */ 1113 trace_writeback_wake_background(wb); 1114 wb_wakeup(wb); 1115 } 1116 1117 /* 1118 * Remove the inode from the writeback list it is on. 1119 */ 1120 void inode_io_list_del(struct inode *inode) 1121 { 1122 struct bdi_writeback *wb; 1123 1124 wb = inode_to_wb_and_lock_list(inode); 1125 inode_io_list_del_locked(inode, wb); 1126 spin_unlock(&wb->list_lock); 1127 } 1128 1129 /* 1130 * mark an inode as under writeback on the sb 1131 */ 1132 void sb_mark_inode_writeback(struct inode *inode) 1133 { 1134 struct super_block *sb = inode->i_sb; 1135 unsigned long flags; 1136 1137 if (list_empty(&inode->i_wb_list)) { 1138 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1139 if (list_empty(&inode->i_wb_list)) { 1140 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1141 trace_sb_mark_inode_writeback(inode); 1142 } 1143 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1144 } 1145 } 1146 1147 /* 1148 * clear an inode as under writeback on the sb 1149 */ 1150 void sb_clear_inode_writeback(struct inode *inode) 1151 { 1152 struct super_block *sb = inode->i_sb; 1153 unsigned long flags; 1154 1155 if (!list_empty(&inode->i_wb_list)) { 1156 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1157 if (!list_empty(&inode->i_wb_list)) { 1158 list_del_init(&inode->i_wb_list); 1159 trace_sb_clear_inode_writeback(inode); 1160 } 1161 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1162 } 1163 } 1164 1165 /* 1166 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1167 * furthest end of its superblock's dirty-inode list. 1168 * 1169 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1170 * already the most-recently-dirtied inode on the b_dirty list. If that is 1171 * the case then the inode must have been redirtied while it was being written 1172 * out and we don't reset its dirtied_when. 1173 */ 1174 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1175 { 1176 if (!list_empty(&wb->b_dirty)) { 1177 struct inode *tail; 1178 1179 tail = wb_inode(wb->b_dirty.next); 1180 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1181 inode->dirtied_when = jiffies; 1182 } 1183 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1184 } 1185 1186 /* 1187 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1188 */ 1189 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1190 { 1191 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1192 } 1193 1194 static void inode_sync_complete(struct inode *inode) 1195 { 1196 inode->i_state &= ~I_SYNC; 1197 /* If inode is clean an unused, put it into LRU now... */ 1198 inode_add_lru(inode); 1199 /* Waiters must see I_SYNC cleared before being woken up */ 1200 smp_mb(); 1201 wake_up_bit(&inode->i_state, __I_SYNC); 1202 } 1203 1204 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1205 { 1206 bool ret = time_after(inode->dirtied_when, t); 1207 #ifndef CONFIG_64BIT 1208 /* 1209 * For inodes being constantly redirtied, dirtied_when can get stuck. 1210 * It _appears_ to be in the future, but is actually in distant past. 1211 * This test is necessary to prevent such wrapped-around relative times 1212 * from permanently stopping the whole bdi writeback. 1213 */ 1214 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1215 #endif 1216 return ret; 1217 } 1218 1219 #define EXPIRE_DIRTY_ATIME 0x0001 1220 1221 /* 1222 * Move expired (dirtied before work->older_than_this) dirty inodes from 1223 * @delaying_queue to @dispatch_queue. 1224 */ 1225 static int move_expired_inodes(struct list_head *delaying_queue, 1226 struct list_head *dispatch_queue, 1227 int flags, 1228 struct wb_writeback_work *work) 1229 { 1230 unsigned long *older_than_this = NULL; 1231 unsigned long expire_time; 1232 LIST_HEAD(tmp); 1233 struct list_head *pos, *node; 1234 struct super_block *sb = NULL; 1235 struct inode *inode; 1236 int do_sb_sort = 0; 1237 int moved = 0; 1238 1239 if ((flags & EXPIRE_DIRTY_ATIME) == 0) 1240 older_than_this = work->older_than_this; 1241 else if (!work->for_sync) { 1242 expire_time = jiffies - (dirtytime_expire_interval * HZ); 1243 older_than_this = &expire_time; 1244 } 1245 while (!list_empty(delaying_queue)) { 1246 inode = wb_inode(delaying_queue->prev); 1247 if (older_than_this && 1248 inode_dirtied_after(inode, *older_than_this)) 1249 break; 1250 list_move(&inode->i_io_list, &tmp); 1251 moved++; 1252 if (flags & EXPIRE_DIRTY_ATIME) 1253 set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state); 1254 if (sb_is_blkdev_sb(inode->i_sb)) 1255 continue; 1256 if (sb && sb != inode->i_sb) 1257 do_sb_sort = 1; 1258 sb = inode->i_sb; 1259 } 1260 1261 /* just one sb in list, splice to dispatch_queue and we're done */ 1262 if (!do_sb_sort) { 1263 list_splice(&tmp, dispatch_queue); 1264 goto out; 1265 } 1266 1267 /* Move inodes from one superblock together */ 1268 while (!list_empty(&tmp)) { 1269 sb = wb_inode(tmp.prev)->i_sb; 1270 list_for_each_prev_safe(pos, node, &tmp) { 1271 inode = wb_inode(pos); 1272 if (inode->i_sb == sb) 1273 list_move(&inode->i_io_list, dispatch_queue); 1274 } 1275 } 1276 out: 1277 return moved; 1278 } 1279 1280 /* 1281 * Queue all expired dirty inodes for io, eldest first. 1282 * Before 1283 * newly dirtied b_dirty b_io b_more_io 1284 * =============> gf edc BA 1285 * After 1286 * newly dirtied b_dirty b_io b_more_io 1287 * =============> g fBAedc 1288 * | 1289 * +--> dequeue for IO 1290 */ 1291 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work) 1292 { 1293 int moved; 1294 1295 assert_spin_locked(&wb->list_lock); 1296 list_splice_init(&wb->b_more_io, &wb->b_io); 1297 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work); 1298 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1299 EXPIRE_DIRTY_ATIME, work); 1300 if (moved) 1301 wb_io_lists_populated(wb); 1302 trace_writeback_queue_io(wb, work, moved); 1303 } 1304 1305 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1306 { 1307 int ret; 1308 1309 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1310 trace_writeback_write_inode_start(inode, wbc); 1311 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1312 trace_writeback_write_inode(inode, wbc); 1313 return ret; 1314 } 1315 return 0; 1316 } 1317 1318 /* 1319 * Wait for writeback on an inode to complete. Called with i_lock held. 1320 * Caller must make sure inode cannot go away when we drop i_lock. 1321 */ 1322 static void __inode_wait_for_writeback(struct inode *inode) 1323 __releases(inode->i_lock) 1324 __acquires(inode->i_lock) 1325 { 1326 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1327 wait_queue_head_t *wqh; 1328 1329 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1330 while (inode->i_state & I_SYNC) { 1331 spin_unlock(&inode->i_lock); 1332 __wait_on_bit(wqh, &wq, bit_wait, 1333 TASK_UNINTERRUPTIBLE); 1334 spin_lock(&inode->i_lock); 1335 } 1336 } 1337 1338 /* 1339 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1340 */ 1341 void inode_wait_for_writeback(struct inode *inode) 1342 { 1343 spin_lock(&inode->i_lock); 1344 __inode_wait_for_writeback(inode); 1345 spin_unlock(&inode->i_lock); 1346 } 1347 1348 /* 1349 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1350 * held and drops it. It is aimed for callers not holding any inode reference 1351 * so once i_lock is dropped, inode can go away. 1352 */ 1353 static void inode_sleep_on_writeback(struct inode *inode) 1354 __releases(inode->i_lock) 1355 { 1356 DEFINE_WAIT(wait); 1357 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1358 int sleep; 1359 1360 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1361 sleep = inode->i_state & I_SYNC; 1362 spin_unlock(&inode->i_lock); 1363 if (sleep) 1364 schedule(); 1365 finish_wait(wqh, &wait); 1366 } 1367 1368 /* 1369 * Find proper writeback list for the inode depending on its current state and 1370 * possibly also change of its state while we were doing writeback. Here we 1371 * handle things such as livelock prevention or fairness of writeback among 1372 * inodes. This function can be called only by flusher thread - noone else 1373 * processes all inodes in writeback lists and requeueing inodes behind flusher 1374 * thread's back can have unexpected consequences. 1375 */ 1376 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1377 struct writeback_control *wbc) 1378 { 1379 if (inode->i_state & I_FREEING) 1380 return; 1381 1382 /* 1383 * Sync livelock prevention. Each inode is tagged and synced in one 1384 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1385 * the dirty time to prevent enqueue and sync it again. 1386 */ 1387 if ((inode->i_state & I_DIRTY) && 1388 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1389 inode->dirtied_when = jiffies; 1390 1391 if (wbc->pages_skipped) { 1392 /* 1393 * writeback is not making progress due to locked 1394 * buffers. Skip this inode for now. 1395 */ 1396 redirty_tail(inode, wb); 1397 return; 1398 } 1399 1400 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1401 /* 1402 * We didn't write back all the pages. nfs_writepages() 1403 * sometimes bales out without doing anything. 1404 */ 1405 if (wbc->nr_to_write <= 0) { 1406 /* Slice used up. Queue for next turn. */ 1407 requeue_io(inode, wb); 1408 } else { 1409 /* 1410 * Writeback blocked by something other than 1411 * congestion. Delay the inode for some time to 1412 * avoid spinning on the CPU (100% iowait) 1413 * retrying writeback of the dirty page/inode 1414 * that cannot be performed immediately. 1415 */ 1416 redirty_tail(inode, wb); 1417 } 1418 } else if (inode->i_state & I_DIRTY) { 1419 /* 1420 * Filesystems can dirty the inode during writeback operations, 1421 * such as delayed allocation during submission or metadata 1422 * updates after data IO completion. 1423 */ 1424 redirty_tail(inode, wb); 1425 } else if (inode->i_state & I_DIRTY_TIME) { 1426 inode->dirtied_when = jiffies; 1427 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1428 } else { 1429 /* The inode is clean. Remove from writeback lists. */ 1430 inode_io_list_del_locked(inode, wb); 1431 } 1432 } 1433 1434 /* 1435 * Write out an inode and its dirty pages. Do not update the writeback list 1436 * linkage. That is left to the caller. The caller is also responsible for 1437 * setting I_SYNC flag and calling inode_sync_complete() to clear it. 1438 */ 1439 static int 1440 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1441 { 1442 struct address_space *mapping = inode->i_mapping; 1443 long nr_to_write = wbc->nr_to_write; 1444 unsigned dirty; 1445 int ret; 1446 1447 WARN_ON(!(inode->i_state & I_SYNC)); 1448 1449 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1450 1451 ret = do_writepages(mapping, wbc); 1452 1453 /* 1454 * Make sure to wait on the data before writing out the metadata. 1455 * This is important for filesystems that modify metadata on data 1456 * I/O completion. We don't do it for sync(2) writeback because it has a 1457 * separate, external IO completion path and ->sync_fs for guaranteeing 1458 * inode metadata is written back correctly. 1459 */ 1460 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1461 int err = filemap_fdatawait(mapping); 1462 if (ret == 0) 1463 ret = err; 1464 } 1465 1466 /* 1467 * Some filesystems may redirty the inode during the writeback 1468 * due to delalloc, clear dirty metadata flags right before 1469 * write_inode() 1470 */ 1471 spin_lock(&inode->i_lock); 1472 1473 dirty = inode->i_state & I_DIRTY; 1474 if (inode->i_state & I_DIRTY_TIME) { 1475 if ((dirty & I_DIRTY_INODE) || 1476 wbc->sync_mode == WB_SYNC_ALL || 1477 unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) || 1478 unlikely(time_after(jiffies, 1479 (inode->dirtied_time_when + 1480 dirtytime_expire_interval * HZ)))) { 1481 dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED; 1482 trace_writeback_lazytime(inode); 1483 } 1484 } else 1485 inode->i_state &= ~I_DIRTY_TIME_EXPIRED; 1486 inode->i_state &= ~dirty; 1487 1488 /* 1489 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1490 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1491 * either they see the I_DIRTY bits cleared or we see the dirtied 1492 * inode. 1493 * 1494 * I_DIRTY_PAGES is always cleared together above even if @mapping 1495 * still has dirty pages. The flag is reinstated after smp_mb() if 1496 * necessary. This guarantees that either __mark_inode_dirty() 1497 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1498 */ 1499 smp_mb(); 1500 1501 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1502 inode->i_state |= I_DIRTY_PAGES; 1503 1504 spin_unlock(&inode->i_lock); 1505 1506 if (dirty & I_DIRTY_TIME) 1507 mark_inode_dirty_sync(inode); 1508 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1509 if (dirty & ~I_DIRTY_PAGES) { 1510 int err = write_inode(inode, wbc); 1511 if (ret == 0) 1512 ret = err; 1513 } 1514 trace_writeback_single_inode(inode, wbc, nr_to_write); 1515 return ret; 1516 } 1517 1518 /* 1519 * Write out an inode's dirty pages. Either the caller has an active reference 1520 * on the inode or the inode has I_WILL_FREE set. 1521 * 1522 * This function is designed to be called for writing back one inode which 1523 * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode() 1524 * and does more profound writeback list handling in writeback_sb_inodes(). 1525 */ 1526 static int writeback_single_inode(struct inode *inode, 1527 struct writeback_control *wbc) 1528 { 1529 struct bdi_writeback *wb; 1530 int ret = 0; 1531 1532 spin_lock(&inode->i_lock); 1533 if (!atomic_read(&inode->i_count)) 1534 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1535 else 1536 WARN_ON(inode->i_state & I_WILL_FREE); 1537 1538 if (inode->i_state & I_SYNC) { 1539 if (wbc->sync_mode != WB_SYNC_ALL) 1540 goto out; 1541 /* 1542 * It's a data-integrity sync. We must wait. Since callers hold 1543 * inode reference or inode has I_WILL_FREE set, it cannot go 1544 * away under us. 1545 */ 1546 __inode_wait_for_writeback(inode); 1547 } 1548 WARN_ON(inode->i_state & I_SYNC); 1549 /* 1550 * Skip inode if it is clean and we have no outstanding writeback in 1551 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this 1552 * function since flusher thread may be doing for example sync in 1553 * parallel and if we move the inode, it could get skipped. So here we 1554 * make sure inode is on some writeback list and leave it there unless 1555 * we have completely cleaned the inode. 1556 */ 1557 if (!(inode->i_state & I_DIRTY_ALL) && 1558 (wbc->sync_mode != WB_SYNC_ALL || 1559 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1560 goto out; 1561 inode->i_state |= I_SYNC; 1562 wbc_attach_and_unlock_inode(wbc, inode); 1563 1564 ret = __writeback_single_inode(inode, wbc); 1565 1566 wbc_detach_inode(wbc); 1567 1568 wb = inode_to_wb_and_lock_list(inode); 1569 spin_lock(&inode->i_lock); 1570 /* 1571 * If inode is clean, remove it from writeback lists. Otherwise don't 1572 * touch it. See comment above for explanation. 1573 */ 1574 if (!(inode->i_state & I_DIRTY_ALL)) 1575 inode_io_list_del_locked(inode, wb); 1576 spin_unlock(&wb->list_lock); 1577 inode_sync_complete(inode); 1578 out: 1579 spin_unlock(&inode->i_lock); 1580 return ret; 1581 } 1582 1583 static long writeback_chunk_size(struct bdi_writeback *wb, 1584 struct wb_writeback_work *work) 1585 { 1586 long pages; 1587 1588 /* 1589 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1590 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1591 * here avoids calling into writeback_inodes_wb() more than once. 1592 * 1593 * The intended call sequence for WB_SYNC_ALL writeback is: 1594 * 1595 * wb_writeback() 1596 * writeback_sb_inodes() <== called only once 1597 * write_cache_pages() <== called once for each inode 1598 * (quickly) tag currently dirty pages 1599 * (maybe slowly) sync all tagged pages 1600 */ 1601 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1602 pages = LONG_MAX; 1603 else { 1604 pages = min(wb->avg_write_bandwidth / 2, 1605 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1606 pages = min(pages, work->nr_pages); 1607 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1608 MIN_WRITEBACK_PAGES); 1609 } 1610 1611 return pages; 1612 } 1613 1614 /* 1615 * Write a portion of b_io inodes which belong to @sb. 1616 * 1617 * Return the number of pages and/or inodes written. 1618 * 1619 * NOTE! This is called with wb->list_lock held, and will 1620 * unlock and relock that for each inode it ends up doing 1621 * IO for. 1622 */ 1623 static long writeback_sb_inodes(struct super_block *sb, 1624 struct bdi_writeback *wb, 1625 struct wb_writeback_work *work) 1626 { 1627 struct writeback_control wbc = { 1628 .sync_mode = work->sync_mode, 1629 .tagged_writepages = work->tagged_writepages, 1630 .for_kupdate = work->for_kupdate, 1631 .for_background = work->for_background, 1632 .for_sync = work->for_sync, 1633 .range_cyclic = work->range_cyclic, 1634 .range_start = 0, 1635 .range_end = LLONG_MAX, 1636 }; 1637 unsigned long start_time = jiffies; 1638 long write_chunk; 1639 long wrote = 0; /* count both pages and inodes */ 1640 1641 while (!list_empty(&wb->b_io)) { 1642 struct inode *inode = wb_inode(wb->b_io.prev); 1643 struct bdi_writeback *tmp_wb; 1644 1645 if (inode->i_sb != sb) { 1646 if (work->sb) { 1647 /* 1648 * We only want to write back data for this 1649 * superblock, move all inodes not belonging 1650 * to it back onto the dirty list. 1651 */ 1652 redirty_tail(inode, wb); 1653 continue; 1654 } 1655 1656 /* 1657 * The inode belongs to a different superblock. 1658 * Bounce back to the caller to unpin this and 1659 * pin the next superblock. 1660 */ 1661 break; 1662 } 1663 1664 /* 1665 * Don't bother with new inodes or inodes being freed, first 1666 * kind does not need periodic writeout yet, and for the latter 1667 * kind writeout is handled by the freer. 1668 */ 1669 spin_lock(&inode->i_lock); 1670 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1671 spin_unlock(&inode->i_lock); 1672 redirty_tail(inode, wb); 1673 continue; 1674 } 1675 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1676 /* 1677 * If this inode is locked for writeback and we are not 1678 * doing writeback-for-data-integrity, move it to 1679 * b_more_io so that writeback can proceed with the 1680 * other inodes on s_io. 1681 * 1682 * We'll have another go at writing back this inode 1683 * when we completed a full scan of b_io. 1684 */ 1685 spin_unlock(&inode->i_lock); 1686 requeue_io(inode, wb); 1687 trace_writeback_sb_inodes_requeue(inode); 1688 continue; 1689 } 1690 spin_unlock(&wb->list_lock); 1691 1692 /* 1693 * We already requeued the inode if it had I_SYNC set and we 1694 * are doing WB_SYNC_NONE writeback. So this catches only the 1695 * WB_SYNC_ALL case. 1696 */ 1697 if (inode->i_state & I_SYNC) { 1698 /* Wait for I_SYNC. This function drops i_lock... */ 1699 inode_sleep_on_writeback(inode); 1700 /* Inode may be gone, start again */ 1701 spin_lock(&wb->list_lock); 1702 continue; 1703 } 1704 inode->i_state |= I_SYNC; 1705 wbc_attach_and_unlock_inode(&wbc, inode); 1706 1707 write_chunk = writeback_chunk_size(wb, work); 1708 wbc.nr_to_write = write_chunk; 1709 wbc.pages_skipped = 0; 1710 1711 /* 1712 * We use I_SYNC to pin the inode in memory. While it is set 1713 * evict_inode() will wait so the inode cannot be freed. 1714 */ 1715 __writeback_single_inode(inode, &wbc); 1716 1717 wbc_detach_inode(&wbc); 1718 work->nr_pages -= write_chunk - wbc.nr_to_write; 1719 wrote += write_chunk - wbc.nr_to_write; 1720 1721 if (need_resched()) { 1722 /* 1723 * We're trying to balance between building up a nice 1724 * long list of IOs to improve our merge rate, and 1725 * getting those IOs out quickly for anyone throttling 1726 * in balance_dirty_pages(). cond_resched() doesn't 1727 * unplug, so get our IOs out the door before we 1728 * give up the CPU. 1729 */ 1730 blk_flush_plug(current); 1731 cond_resched(); 1732 } 1733 1734 /* 1735 * Requeue @inode if still dirty. Be careful as @inode may 1736 * have been switched to another wb in the meantime. 1737 */ 1738 tmp_wb = inode_to_wb_and_lock_list(inode); 1739 spin_lock(&inode->i_lock); 1740 if (!(inode->i_state & I_DIRTY_ALL)) 1741 wrote++; 1742 requeue_inode(inode, tmp_wb, &wbc); 1743 inode_sync_complete(inode); 1744 spin_unlock(&inode->i_lock); 1745 1746 if (unlikely(tmp_wb != wb)) { 1747 spin_unlock(&tmp_wb->list_lock); 1748 spin_lock(&wb->list_lock); 1749 } 1750 1751 /* 1752 * bail out to wb_writeback() often enough to check 1753 * background threshold and other termination conditions. 1754 */ 1755 if (wrote) { 1756 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1757 break; 1758 if (work->nr_pages <= 0) 1759 break; 1760 } 1761 } 1762 return wrote; 1763 } 1764 1765 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1766 struct wb_writeback_work *work) 1767 { 1768 unsigned long start_time = jiffies; 1769 long wrote = 0; 1770 1771 while (!list_empty(&wb->b_io)) { 1772 struct inode *inode = wb_inode(wb->b_io.prev); 1773 struct super_block *sb = inode->i_sb; 1774 1775 if (!trylock_super(sb)) { 1776 /* 1777 * trylock_super() may fail consistently due to 1778 * s_umount being grabbed by someone else. Don't use 1779 * requeue_io() to avoid busy retrying the inode/sb. 1780 */ 1781 redirty_tail(inode, wb); 1782 continue; 1783 } 1784 wrote += writeback_sb_inodes(sb, wb, work); 1785 up_read(&sb->s_umount); 1786 1787 /* refer to the same tests at the end of writeback_sb_inodes */ 1788 if (wrote) { 1789 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1790 break; 1791 if (work->nr_pages <= 0) 1792 break; 1793 } 1794 } 1795 /* Leave any unwritten inodes on b_io */ 1796 return wrote; 1797 } 1798 1799 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 1800 enum wb_reason reason) 1801 { 1802 struct wb_writeback_work work = { 1803 .nr_pages = nr_pages, 1804 .sync_mode = WB_SYNC_NONE, 1805 .range_cyclic = 1, 1806 .reason = reason, 1807 }; 1808 struct blk_plug plug; 1809 1810 blk_start_plug(&plug); 1811 spin_lock(&wb->list_lock); 1812 if (list_empty(&wb->b_io)) 1813 queue_io(wb, &work); 1814 __writeback_inodes_wb(wb, &work); 1815 spin_unlock(&wb->list_lock); 1816 blk_finish_plug(&plug); 1817 1818 return nr_pages - work.nr_pages; 1819 } 1820 1821 /* 1822 * Explicit flushing or periodic writeback of "old" data. 1823 * 1824 * Define "old": the first time one of an inode's pages is dirtied, we mark the 1825 * dirtying-time in the inode's address_space. So this periodic writeback code 1826 * just walks the superblock inode list, writing back any inodes which are 1827 * older than a specific point in time. 1828 * 1829 * Try to run once per dirty_writeback_interval. But if a writeback event 1830 * takes longer than a dirty_writeback_interval interval, then leave a 1831 * one-second gap. 1832 * 1833 * older_than_this takes precedence over nr_to_write. So we'll only write back 1834 * all dirty pages if they are all attached to "old" mappings. 1835 */ 1836 static long wb_writeback(struct bdi_writeback *wb, 1837 struct wb_writeback_work *work) 1838 { 1839 unsigned long wb_start = jiffies; 1840 long nr_pages = work->nr_pages; 1841 unsigned long oldest_jif; 1842 struct inode *inode; 1843 long progress; 1844 struct blk_plug plug; 1845 1846 oldest_jif = jiffies; 1847 work->older_than_this = &oldest_jif; 1848 1849 blk_start_plug(&plug); 1850 spin_lock(&wb->list_lock); 1851 for (;;) { 1852 /* 1853 * Stop writeback when nr_pages has been consumed 1854 */ 1855 if (work->nr_pages <= 0) 1856 break; 1857 1858 /* 1859 * Background writeout and kupdate-style writeback may 1860 * run forever. Stop them if there is other work to do 1861 * so that e.g. sync can proceed. They'll be restarted 1862 * after the other works are all done. 1863 */ 1864 if ((work->for_background || work->for_kupdate) && 1865 !list_empty(&wb->work_list)) 1866 break; 1867 1868 /* 1869 * For background writeout, stop when we are below the 1870 * background dirty threshold 1871 */ 1872 if (work->for_background && !wb_over_bg_thresh(wb)) 1873 break; 1874 1875 /* 1876 * Kupdate and background works are special and we want to 1877 * include all inodes that need writing. Livelock avoidance is 1878 * handled by these works yielding to any other work so we are 1879 * safe. 1880 */ 1881 if (work->for_kupdate) { 1882 oldest_jif = jiffies - 1883 msecs_to_jiffies(dirty_expire_interval * 10); 1884 } else if (work->for_background) 1885 oldest_jif = jiffies; 1886 1887 trace_writeback_start(wb, work); 1888 if (list_empty(&wb->b_io)) 1889 queue_io(wb, work); 1890 if (work->sb) 1891 progress = writeback_sb_inodes(work->sb, wb, work); 1892 else 1893 progress = __writeback_inodes_wb(wb, work); 1894 trace_writeback_written(wb, work); 1895 1896 wb_update_bandwidth(wb, wb_start); 1897 1898 /* 1899 * Did we write something? Try for more 1900 * 1901 * Dirty inodes are moved to b_io for writeback in batches. 1902 * The completion of the current batch does not necessarily 1903 * mean the overall work is done. So we keep looping as long 1904 * as made some progress on cleaning pages or inodes. 1905 */ 1906 if (progress) 1907 continue; 1908 /* 1909 * No more inodes for IO, bail 1910 */ 1911 if (list_empty(&wb->b_more_io)) 1912 break; 1913 /* 1914 * Nothing written. Wait for some inode to 1915 * become available for writeback. Otherwise 1916 * we'll just busyloop. 1917 */ 1918 trace_writeback_wait(wb, work); 1919 inode = wb_inode(wb->b_more_io.prev); 1920 spin_lock(&inode->i_lock); 1921 spin_unlock(&wb->list_lock); 1922 /* This function drops i_lock... */ 1923 inode_sleep_on_writeback(inode); 1924 spin_lock(&wb->list_lock); 1925 } 1926 spin_unlock(&wb->list_lock); 1927 blk_finish_plug(&plug); 1928 1929 return nr_pages - work->nr_pages; 1930 } 1931 1932 /* 1933 * Return the next wb_writeback_work struct that hasn't been processed yet. 1934 */ 1935 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 1936 { 1937 struct wb_writeback_work *work = NULL; 1938 1939 spin_lock_bh(&wb->work_lock); 1940 if (!list_empty(&wb->work_list)) { 1941 work = list_entry(wb->work_list.next, 1942 struct wb_writeback_work, list); 1943 list_del_init(&work->list); 1944 } 1945 spin_unlock_bh(&wb->work_lock); 1946 return work; 1947 } 1948 1949 static long wb_check_background_flush(struct bdi_writeback *wb) 1950 { 1951 if (wb_over_bg_thresh(wb)) { 1952 1953 struct wb_writeback_work work = { 1954 .nr_pages = LONG_MAX, 1955 .sync_mode = WB_SYNC_NONE, 1956 .for_background = 1, 1957 .range_cyclic = 1, 1958 .reason = WB_REASON_BACKGROUND, 1959 }; 1960 1961 return wb_writeback(wb, &work); 1962 } 1963 1964 return 0; 1965 } 1966 1967 static long wb_check_old_data_flush(struct bdi_writeback *wb) 1968 { 1969 unsigned long expired; 1970 long nr_pages; 1971 1972 /* 1973 * When set to zero, disable periodic writeback 1974 */ 1975 if (!dirty_writeback_interval) 1976 return 0; 1977 1978 expired = wb->last_old_flush + 1979 msecs_to_jiffies(dirty_writeback_interval * 10); 1980 if (time_before(jiffies, expired)) 1981 return 0; 1982 1983 wb->last_old_flush = jiffies; 1984 nr_pages = get_nr_dirty_pages(); 1985 1986 if (nr_pages) { 1987 struct wb_writeback_work work = { 1988 .nr_pages = nr_pages, 1989 .sync_mode = WB_SYNC_NONE, 1990 .for_kupdate = 1, 1991 .range_cyclic = 1, 1992 .reason = WB_REASON_PERIODIC, 1993 }; 1994 1995 return wb_writeback(wb, &work); 1996 } 1997 1998 return 0; 1999 } 2000 2001 static long wb_check_start_all(struct bdi_writeback *wb) 2002 { 2003 long nr_pages; 2004 2005 if (!test_bit(WB_start_all, &wb->state)) 2006 return 0; 2007 2008 nr_pages = get_nr_dirty_pages(); 2009 if (nr_pages) { 2010 struct wb_writeback_work work = { 2011 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2012 .sync_mode = WB_SYNC_NONE, 2013 .range_cyclic = 1, 2014 .reason = wb->start_all_reason, 2015 }; 2016 2017 nr_pages = wb_writeback(wb, &work); 2018 } 2019 2020 clear_bit(WB_start_all, &wb->state); 2021 return nr_pages; 2022 } 2023 2024 2025 /* 2026 * Retrieve work items and do the writeback they describe 2027 */ 2028 static long wb_do_writeback(struct bdi_writeback *wb) 2029 { 2030 struct wb_writeback_work *work; 2031 long wrote = 0; 2032 2033 set_bit(WB_writeback_running, &wb->state); 2034 while ((work = get_next_work_item(wb)) != NULL) { 2035 trace_writeback_exec(wb, work); 2036 wrote += wb_writeback(wb, work); 2037 finish_writeback_work(wb, work); 2038 } 2039 2040 /* 2041 * Check for a flush-everything request 2042 */ 2043 wrote += wb_check_start_all(wb); 2044 2045 /* 2046 * Check for periodic writeback, kupdated() style 2047 */ 2048 wrote += wb_check_old_data_flush(wb); 2049 wrote += wb_check_background_flush(wb); 2050 clear_bit(WB_writeback_running, &wb->state); 2051 2052 return wrote; 2053 } 2054 2055 /* 2056 * Handle writeback of dirty data for the device backed by this bdi. Also 2057 * reschedules periodically and does kupdated style flushing. 2058 */ 2059 void wb_workfn(struct work_struct *work) 2060 { 2061 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2062 struct bdi_writeback, dwork); 2063 long pages_written; 2064 2065 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2066 current->flags |= PF_SWAPWRITE; 2067 2068 if (likely(!current_is_workqueue_rescuer() || 2069 !test_bit(WB_registered, &wb->state))) { 2070 /* 2071 * The normal path. Keep writing back @wb until its 2072 * work_list is empty. Note that this path is also taken 2073 * if @wb is shutting down even when we're running off the 2074 * rescuer as work_list needs to be drained. 2075 */ 2076 do { 2077 pages_written = wb_do_writeback(wb); 2078 trace_writeback_pages_written(pages_written); 2079 } while (!list_empty(&wb->work_list)); 2080 } else { 2081 /* 2082 * bdi_wq can't get enough workers and we're running off 2083 * the emergency worker. Don't hog it. Hopefully, 1024 is 2084 * enough for efficient IO. 2085 */ 2086 pages_written = writeback_inodes_wb(wb, 1024, 2087 WB_REASON_FORKER_THREAD); 2088 trace_writeback_pages_written(pages_written); 2089 } 2090 2091 if (!list_empty(&wb->work_list)) 2092 wb_wakeup(wb); 2093 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2094 wb_wakeup_delayed(wb); 2095 2096 current->flags &= ~PF_SWAPWRITE; 2097 } 2098 2099 /* 2100 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2101 * write back the whole world. 2102 */ 2103 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2104 enum wb_reason reason) 2105 { 2106 struct bdi_writeback *wb; 2107 2108 if (!bdi_has_dirty_io(bdi)) 2109 return; 2110 2111 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2112 wb_start_writeback(wb, reason); 2113 } 2114 2115 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2116 enum wb_reason reason) 2117 { 2118 rcu_read_lock(); 2119 __wakeup_flusher_threads_bdi(bdi, reason); 2120 rcu_read_unlock(); 2121 } 2122 2123 /* 2124 * Wakeup the flusher threads to start writeback of all currently dirty pages 2125 */ 2126 void wakeup_flusher_threads(enum wb_reason reason) 2127 { 2128 struct backing_dev_info *bdi; 2129 2130 /* 2131 * If we are expecting writeback progress we must submit plugged IO. 2132 */ 2133 if (blk_needs_flush_plug(current)) 2134 blk_schedule_flush_plug(current); 2135 2136 rcu_read_lock(); 2137 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2138 __wakeup_flusher_threads_bdi(bdi, reason); 2139 rcu_read_unlock(); 2140 } 2141 2142 /* 2143 * Wake up bdi's periodically to make sure dirtytime inodes gets 2144 * written back periodically. We deliberately do *not* check the 2145 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2146 * kernel to be constantly waking up once there are any dirtytime 2147 * inodes on the system. So instead we define a separate delayed work 2148 * function which gets called much more rarely. (By default, only 2149 * once every 12 hours.) 2150 * 2151 * If there is any other write activity going on in the file system, 2152 * this function won't be necessary. But if the only thing that has 2153 * happened on the file system is a dirtytime inode caused by an atime 2154 * update, we need this infrastructure below to make sure that inode 2155 * eventually gets pushed out to disk. 2156 */ 2157 static void wakeup_dirtytime_writeback(struct work_struct *w); 2158 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2159 2160 static void wakeup_dirtytime_writeback(struct work_struct *w) 2161 { 2162 struct backing_dev_info *bdi; 2163 2164 rcu_read_lock(); 2165 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2166 struct bdi_writeback *wb; 2167 2168 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2169 if (!list_empty(&wb->b_dirty_time)) 2170 wb_wakeup(wb); 2171 } 2172 rcu_read_unlock(); 2173 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2174 } 2175 2176 static int __init start_dirtytime_writeback(void) 2177 { 2178 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2179 return 0; 2180 } 2181 __initcall(start_dirtytime_writeback); 2182 2183 int dirtytime_interval_handler(struct ctl_table *table, int write, 2184 void __user *buffer, size_t *lenp, loff_t *ppos) 2185 { 2186 int ret; 2187 2188 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2189 if (ret == 0 && write) 2190 mod_delayed_work(system_wq, &dirtytime_work, 0); 2191 return ret; 2192 } 2193 2194 static noinline void block_dump___mark_inode_dirty(struct inode *inode) 2195 { 2196 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) { 2197 struct dentry *dentry; 2198 const char *name = "?"; 2199 2200 dentry = d_find_alias(inode); 2201 if (dentry) { 2202 spin_lock(&dentry->d_lock); 2203 name = (const char *) dentry->d_name.name; 2204 } 2205 printk(KERN_DEBUG 2206 "%s(%d): dirtied inode %lu (%s) on %s\n", 2207 current->comm, task_pid_nr(current), inode->i_ino, 2208 name, inode->i_sb->s_id); 2209 if (dentry) { 2210 spin_unlock(&dentry->d_lock); 2211 dput(dentry); 2212 } 2213 } 2214 } 2215 2216 /** 2217 * __mark_inode_dirty - internal function 2218 * 2219 * @inode: inode to mark 2220 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC) 2221 * 2222 * Mark an inode as dirty. Callers should use mark_inode_dirty or 2223 * mark_inode_dirty_sync. 2224 * 2225 * Put the inode on the super block's dirty list. 2226 * 2227 * CAREFUL! We mark it dirty unconditionally, but move it onto the 2228 * dirty list only if it is hashed or if it refers to a blockdev. 2229 * If it was not hashed, it will never be added to the dirty list 2230 * even if it is later hashed, as it will have been marked dirty already. 2231 * 2232 * In short, make sure you hash any inodes _before_ you start marking 2233 * them dirty. 2234 * 2235 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2236 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2237 * the kernel-internal blockdev inode represents the dirtying time of the 2238 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2239 * page->mapping->host, so the page-dirtying time is recorded in the internal 2240 * blockdev inode. 2241 */ 2242 void __mark_inode_dirty(struct inode *inode, int flags) 2243 { 2244 struct super_block *sb = inode->i_sb; 2245 int dirtytime; 2246 2247 trace_writeback_mark_inode_dirty(inode, flags); 2248 2249 /* 2250 * Don't do this for I_DIRTY_PAGES - that doesn't actually 2251 * dirty the inode itself 2252 */ 2253 if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) { 2254 trace_writeback_dirty_inode_start(inode, flags); 2255 2256 if (sb->s_op->dirty_inode) 2257 sb->s_op->dirty_inode(inode, flags); 2258 2259 trace_writeback_dirty_inode(inode, flags); 2260 } 2261 if (flags & I_DIRTY_INODE) 2262 flags &= ~I_DIRTY_TIME; 2263 dirtytime = flags & I_DIRTY_TIME; 2264 2265 /* 2266 * Paired with smp_mb() in __writeback_single_inode() for the 2267 * following lockless i_state test. See there for details. 2268 */ 2269 smp_mb(); 2270 2271 if (((inode->i_state & flags) == flags) || 2272 (dirtytime && (inode->i_state & I_DIRTY_INODE))) 2273 return; 2274 2275 if (unlikely(block_dump)) 2276 block_dump___mark_inode_dirty(inode); 2277 2278 spin_lock(&inode->i_lock); 2279 if (dirtytime && (inode->i_state & I_DIRTY_INODE)) 2280 goto out_unlock_inode; 2281 if ((inode->i_state & flags) != flags) { 2282 const int was_dirty = inode->i_state & I_DIRTY; 2283 2284 inode_attach_wb(inode, NULL); 2285 2286 if (flags & I_DIRTY_INODE) 2287 inode->i_state &= ~I_DIRTY_TIME; 2288 inode->i_state |= flags; 2289 2290 /* 2291 * If the inode is being synced, just update its dirty state. 2292 * The unlocker will place the inode on the appropriate 2293 * superblock list, based upon its state. 2294 */ 2295 if (inode->i_state & I_SYNC) 2296 goto out_unlock_inode; 2297 2298 /* 2299 * Only add valid (hashed) inodes to the superblock's 2300 * dirty list. Add blockdev inodes as well. 2301 */ 2302 if (!S_ISBLK(inode->i_mode)) { 2303 if (inode_unhashed(inode)) 2304 goto out_unlock_inode; 2305 } 2306 if (inode->i_state & I_FREEING) 2307 goto out_unlock_inode; 2308 2309 /* 2310 * If the inode was already on b_dirty/b_io/b_more_io, don't 2311 * reposition it (that would break b_dirty time-ordering). 2312 */ 2313 if (!was_dirty) { 2314 struct bdi_writeback *wb; 2315 struct list_head *dirty_list; 2316 bool wakeup_bdi = false; 2317 2318 wb = locked_inode_to_wb_and_lock_list(inode); 2319 2320 WARN(bdi_cap_writeback_dirty(wb->bdi) && 2321 !test_bit(WB_registered, &wb->state), 2322 "bdi-%s not registered\n", bdi_dev_name(wb->bdi)); 2323 2324 inode->dirtied_when = jiffies; 2325 if (dirtytime) 2326 inode->dirtied_time_when = jiffies; 2327 2328 if (inode->i_state & I_DIRTY) 2329 dirty_list = &wb->b_dirty; 2330 else 2331 dirty_list = &wb->b_dirty_time; 2332 2333 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2334 dirty_list); 2335 2336 spin_unlock(&wb->list_lock); 2337 trace_writeback_dirty_inode_enqueue(inode); 2338 2339 /* 2340 * If this is the first dirty inode for this bdi, 2341 * we have to wake-up the corresponding bdi thread 2342 * to make sure background write-back happens 2343 * later. 2344 */ 2345 if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi) 2346 wb_wakeup_delayed(wb); 2347 return; 2348 } 2349 } 2350 out_unlock_inode: 2351 spin_unlock(&inode->i_lock); 2352 } 2353 EXPORT_SYMBOL(__mark_inode_dirty); 2354 2355 /* 2356 * The @s_sync_lock is used to serialise concurrent sync operations 2357 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2358 * Concurrent callers will block on the s_sync_lock rather than doing contending 2359 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2360 * has been issued up to the time this function is enter is guaranteed to be 2361 * completed by the time we have gained the lock and waited for all IO that is 2362 * in progress regardless of the order callers are granted the lock. 2363 */ 2364 static void wait_sb_inodes(struct super_block *sb) 2365 { 2366 LIST_HEAD(sync_list); 2367 2368 /* 2369 * We need to be protected against the filesystem going from 2370 * r/o to r/w or vice versa. 2371 */ 2372 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2373 2374 mutex_lock(&sb->s_sync_lock); 2375 2376 /* 2377 * Splice the writeback list onto a temporary list to avoid waiting on 2378 * inodes that have started writeback after this point. 2379 * 2380 * Use rcu_read_lock() to keep the inodes around until we have a 2381 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2382 * the local list because inodes can be dropped from either by writeback 2383 * completion. 2384 */ 2385 rcu_read_lock(); 2386 spin_lock_irq(&sb->s_inode_wblist_lock); 2387 list_splice_init(&sb->s_inodes_wb, &sync_list); 2388 2389 /* 2390 * Data integrity sync. Must wait for all pages under writeback, because 2391 * there may have been pages dirtied before our sync call, but which had 2392 * writeout started before we write it out. In which case, the inode 2393 * may not be on the dirty list, but we still have to wait for that 2394 * writeout. 2395 */ 2396 while (!list_empty(&sync_list)) { 2397 struct inode *inode = list_first_entry(&sync_list, struct inode, 2398 i_wb_list); 2399 struct address_space *mapping = inode->i_mapping; 2400 2401 /* 2402 * Move each inode back to the wb list before we drop the lock 2403 * to preserve consistency between i_wb_list and the mapping 2404 * writeback tag. Writeback completion is responsible to remove 2405 * the inode from either list once the writeback tag is cleared. 2406 */ 2407 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2408 2409 /* 2410 * The mapping can appear untagged while still on-list since we 2411 * do not have the mapping lock. Skip it here, wb completion 2412 * will remove it. 2413 */ 2414 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2415 continue; 2416 2417 spin_unlock_irq(&sb->s_inode_wblist_lock); 2418 2419 spin_lock(&inode->i_lock); 2420 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2421 spin_unlock(&inode->i_lock); 2422 2423 spin_lock_irq(&sb->s_inode_wblist_lock); 2424 continue; 2425 } 2426 __iget(inode); 2427 spin_unlock(&inode->i_lock); 2428 rcu_read_unlock(); 2429 2430 /* 2431 * We keep the error status of individual mapping so that 2432 * applications can catch the writeback error using fsync(2). 2433 * See filemap_fdatawait_keep_errors() for details. 2434 */ 2435 filemap_fdatawait_keep_errors(mapping); 2436 2437 cond_resched(); 2438 2439 iput(inode); 2440 2441 rcu_read_lock(); 2442 spin_lock_irq(&sb->s_inode_wblist_lock); 2443 } 2444 spin_unlock_irq(&sb->s_inode_wblist_lock); 2445 rcu_read_unlock(); 2446 mutex_unlock(&sb->s_sync_lock); 2447 } 2448 2449 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2450 enum wb_reason reason, bool skip_if_busy) 2451 { 2452 struct backing_dev_info *bdi = sb->s_bdi; 2453 DEFINE_WB_COMPLETION(done, bdi); 2454 struct wb_writeback_work work = { 2455 .sb = sb, 2456 .sync_mode = WB_SYNC_NONE, 2457 .tagged_writepages = 1, 2458 .done = &done, 2459 .nr_pages = nr, 2460 .reason = reason, 2461 }; 2462 2463 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2464 return; 2465 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2466 2467 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2468 wb_wait_for_completion(&done); 2469 } 2470 2471 /** 2472 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2473 * @sb: the superblock 2474 * @nr: the number of pages to write 2475 * @reason: reason why some writeback work initiated 2476 * 2477 * Start writeback on some inodes on this super_block. No guarantees are made 2478 * on how many (if any) will be written, and this function does not wait 2479 * for IO completion of submitted IO. 2480 */ 2481 void writeback_inodes_sb_nr(struct super_block *sb, 2482 unsigned long nr, 2483 enum wb_reason reason) 2484 { 2485 __writeback_inodes_sb_nr(sb, nr, reason, false); 2486 } 2487 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2488 2489 /** 2490 * writeback_inodes_sb - writeback dirty inodes from given super_block 2491 * @sb: the superblock 2492 * @reason: reason why some writeback work was initiated 2493 * 2494 * Start writeback on some inodes on this super_block. No guarantees are made 2495 * on how many (if any) will be written, and this function does not wait 2496 * for IO completion of submitted IO. 2497 */ 2498 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2499 { 2500 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2501 } 2502 EXPORT_SYMBOL(writeback_inodes_sb); 2503 2504 /** 2505 * try_to_writeback_inodes_sb - try to start writeback if none underway 2506 * @sb: the superblock 2507 * @reason: reason why some writeback work was initiated 2508 * 2509 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2510 */ 2511 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2512 { 2513 if (!down_read_trylock(&sb->s_umount)) 2514 return; 2515 2516 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2517 up_read(&sb->s_umount); 2518 } 2519 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2520 2521 /** 2522 * sync_inodes_sb - sync sb inode pages 2523 * @sb: the superblock 2524 * 2525 * This function writes and waits on any dirty inode belonging to this 2526 * super_block. 2527 */ 2528 void sync_inodes_sb(struct super_block *sb) 2529 { 2530 struct backing_dev_info *bdi = sb->s_bdi; 2531 DEFINE_WB_COMPLETION(done, bdi); 2532 struct wb_writeback_work work = { 2533 .sb = sb, 2534 .sync_mode = WB_SYNC_ALL, 2535 .nr_pages = LONG_MAX, 2536 .range_cyclic = 0, 2537 .done = &done, 2538 .reason = WB_REASON_SYNC, 2539 .for_sync = 1, 2540 }; 2541 2542 /* 2543 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2544 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2545 * bdi_has_dirty() need to be written out too. 2546 */ 2547 if (bdi == &noop_backing_dev_info) 2548 return; 2549 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2550 2551 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2552 bdi_down_write_wb_switch_rwsem(bdi); 2553 bdi_split_work_to_wbs(bdi, &work, false); 2554 wb_wait_for_completion(&done); 2555 bdi_up_write_wb_switch_rwsem(bdi); 2556 2557 wait_sb_inodes(sb); 2558 } 2559 EXPORT_SYMBOL(sync_inodes_sb); 2560 2561 /** 2562 * write_inode_now - write an inode to disk 2563 * @inode: inode to write to disk 2564 * @sync: whether the write should be synchronous or not 2565 * 2566 * This function commits an inode to disk immediately if it is dirty. This is 2567 * primarily needed by knfsd. 2568 * 2569 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2570 */ 2571 int write_inode_now(struct inode *inode, int sync) 2572 { 2573 struct writeback_control wbc = { 2574 .nr_to_write = LONG_MAX, 2575 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2576 .range_start = 0, 2577 .range_end = LLONG_MAX, 2578 }; 2579 2580 if (!mapping_cap_writeback_dirty(inode->i_mapping)) 2581 wbc.nr_to_write = 0; 2582 2583 might_sleep(); 2584 return writeback_single_inode(inode, &wbc); 2585 } 2586 EXPORT_SYMBOL(write_inode_now); 2587 2588 /** 2589 * sync_inode - write an inode and its pages to disk. 2590 * @inode: the inode to sync 2591 * @wbc: controls the writeback mode 2592 * 2593 * sync_inode() will write an inode and its pages to disk. It will also 2594 * correctly update the inode on its superblock's dirty inode lists and will 2595 * update inode->i_state. 2596 * 2597 * The caller must have a ref on the inode. 2598 */ 2599 int sync_inode(struct inode *inode, struct writeback_control *wbc) 2600 { 2601 return writeback_single_inode(inode, wbc); 2602 } 2603 EXPORT_SYMBOL(sync_inode); 2604 2605 /** 2606 * sync_inode_metadata - write an inode to disk 2607 * @inode: the inode to sync 2608 * @wait: wait for I/O to complete. 2609 * 2610 * Write an inode to disk and adjust its dirty state after completion. 2611 * 2612 * Note: only writes the actual inode, no associated data or other metadata. 2613 */ 2614 int sync_inode_metadata(struct inode *inode, int wait) 2615 { 2616 struct writeback_control wbc = { 2617 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2618 .nr_to_write = 0, /* metadata-only */ 2619 }; 2620 2621 return sync_inode(inode, &wbc); 2622 } 2623 EXPORT_SYMBOL(sync_inode_metadata); 2624