xref: /openbmc/linux/fs/fs-writeback.c (revision 4f38b9f2)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_CACHE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void wb_queue_work(struct bdi_writeback *wb,
177 			  struct wb_writeback_work *work)
178 {
179 	trace_writeback_queue(wb, work);
180 
181 	spin_lock_bh(&wb->work_lock);
182 	if (!test_bit(WB_registered, &wb->state))
183 		goto out_unlock;
184 	if (work->done)
185 		atomic_inc(&work->done->cnt);
186 	list_add_tail(&work->list, &wb->work_list);
187 	mod_delayed_work(bdi_wq, &wb->dwork, 0);
188 out_unlock:
189 	spin_unlock_bh(&wb->work_lock);
190 }
191 
192 /**
193  * wb_wait_for_completion - wait for completion of bdi_writeback_works
194  * @bdi: bdi work items were issued to
195  * @done: target wb_completion
196  *
197  * Wait for one or more work items issued to @bdi with their ->done field
198  * set to @done, which should have been defined with
199  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
200  * work items are completed.  Work items which are waited upon aren't freed
201  * automatically on completion.
202  */
203 static void wb_wait_for_completion(struct backing_dev_info *bdi,
204 				   struct wb_completion *done)
205 {
206 	atomic_dec(&done->cnt);		/* put down the initial count */
207 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
208 }
209 
210 #ifdef CONFIG_CGROUP_WRITEBACK
211 
212 /* parameters for foreign inode detection, see wb_detach_inode() */
213 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
214 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
215 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
216 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
217 
218 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
219 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
220 					/* each slot's duration is 2s / 16 */
221 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
222 					/* if foreign slots >= 8, switch */
223 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
224 					/* one round can affect upto 5 slots */
225 
226 void __inode_attach_wb(struct inode *inode, struct page *page)
227 {
228 	struct backing_dev_info *bdi = inode_to_bdi(inode);
229 	struct bdi_writeback *wb = NULL;
230 
231 	if (inode_cgwb_enabled(inode)) {
232 		struct cgroup_subsys_state *memcg_css;
233 
234 		if (page) {
235 			memcg_css = mem_cgroup_css_from_page(page);
236 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
237 		} else {
238 			/* must pin memcg_css, see wb_get_create() */
239 			memcg_css = task_get_css(current, memory_cgrp_id);
240 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
241 			css_put(memcg_css);
242 		}
243 	}
244 
245 	if (!wb)
246 		wb = &bdi->wb;
247 
248 	/*
249 	 * There may be multiple instances of this function racing to
250 	 * update the same inode.  Use cmpxchg() to tell the winner.
251 	 */
252 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
253 		wb_put(wb);
254 }
255 
256 /**
257  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
258  * @inode: inode of interest with i_lock held
259  *
260  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
261  * held on entry and is released on return.  The returned wb is guaranteed
262  * to stay @inode's associated wb until its list_lock is released.
263  */
264 static struct bdi_writeback *
265 locked_inode_to_wb_and_lock_list(struct inode *inode)
266 	__releases(&inode->i_lock)
267 	__acquires(&wb->list_lock)
268 {
269 	while (true) {
270 		struct bdi_writeback *wb = inode_to_wb(inode);
271 
272 		/*
273 		 * inode_to_wb() association is protected by both
274 		 * @inode->i_lock and @wb->list_lock but list_lock nests
275 		 * outside i_lock.  Drop i_lock and verify that the
276 		 * association hasn't changed after acquiring list_lock.
277 		 */
278 		wb_get(wb);
279 		spin_unlock(&inode->i_lock);
280 		spin_lock(&wb->list_lock);
281 		wb_put(wb);		/* not gonna deref it anymore */
282 
283 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
284 		if (likely(wb == inode->i_wb))
285 			return wb;	/* @inode already has ref */
286 
287 		spin_unlock(&wb->list_lock);
288 		cpu_relax();
289 		spin_lock(&inode->i_lock);
290 	}
291 }
292 
293 /**
294  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
295  * @inode: inode of interest
296  *
297  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
298  * on entry.
299  */
300 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
301 	__acquires(&wb->list_lock)
302 {
303 	spin_lock(&inode->i_lock);
304 	return locked_inode_to_wb_and_lock_list(inode);
305 }
306 
307 struct inode_switch_wbs_context {
308 	struct inode		*inode;
309 	struct bdi_writeback	*new_wb;
310 
311 	struct rcu_head		rcu_head;
312 	struct work_struct	work;
313 };
314 
315 static void inode_switch_wbs_work_fn(struct work_struct *work)
316 {
317 	struct inode_switch_wbs_context *isw =
318 		container_of(work, struct inode_switch_wbs_context, work);
319 	struct inode *inode = isw->inode;
320 	struct address_space *mapping = inode->i_mapping;
321 	struct bdi_writeback *old_wb = inode->i_wb;
322 	struct bdi_writeback *new_wb = isw->new_wb;
323 	struct radix_tree_iter iter;
324 	bool switched = false;
325 	void **slot;
326 
327 	/*
328 	 * By the time control reaches here, RCU grace period has passed
329 	 * since I_WB_SWITCH assertion and all wb stat update transactions
330 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
331 	 * synchronizing against mapping->tree_lock.
332 	 *
333 	 * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
334 	 * gives us exclusion against all wb related operations on @inode
335 	 * including IO list manipulations and stat updates.
336 	 */
337 	if (old_wb < new_wb) {
338 		spin_lock(&old_wb->list_lock);
339 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
340 	} else {
341 		spin_lock(&new_wb->list_lock);
342 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
343 	}
344 	spin_lock(&inode->i_lock);
345 	spin_lock_irq(&mapping->tree_lock);
346 
347 	/*
348 	 * Once I_FREEING is visible under i_lock, the eviction path owns
349 	 * the inode and we shouldn't modify ->i_io_list.
350 	 */
351 	if (unlikely(inode->i_state & I_FREEING))
352 		goto skip_switch;
353 
354 	/*
355 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
356 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
357 	 * pages actually under underwriteback.
358 	 */
359 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
360 				   PAGECACHE_TAG_DIRTY) {
361 		struct page *page = radix_tree_deref_slot_protected(slot,
362 							&mapping->tree_lock);
363 		if (likely(page) && PageDirty(page)) {
364 			__dec_wb_stat(old_wb, WB_RECLAIMABLE);
365 			__inc_wb_stat(new_wb, WB_RECLAIMABLE);
366 		}
367 	}
368 
369 	radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
370 				   PAGECACHE_TAG_WRITEBACK) {
371 		struct page *page = radix_tree_deref_slot_protected(slot,
372 							&mapping->tree_lock);
373 		if (likely(page)) {
374 			WARN_ON_ONCE(!PageWriteback(page));
375 			__dec_wb_stat(old_wb, WB_WRITEBACK);
376 			__inc_wb_stat(new_wb, WB_WRITEBACK);
377 		}
378 	}
379 
380 	wb_get(new_wb);
381 
382 	/*
383 	 * Transfer to @new_wb's IO list if necessary.  The specific list
384 	 * @inode was on is ignored and the inode is put on ->b_dirty which
385 	 * is always correct including from ->b_dirty_time.  The transfer
386 	 * preserves @inode->dirtied_when ordering.
387 	 */
388 	if (!list_empty(&inode->i_io_list)) {
389 		struct inode *pos;
390 
391 		inode_io_list_del_locked(inode, old_wb);
392 		inode->i_wb = new_wb;
393 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
394 			if (time_after_eq(inode->dirtied_when,
395 					  pos->dirtied_when))
396 				break;
397 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
398 	} else {
399 		inode->i_wb = new_wb;
400 	}
401 
402 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
403 	inode->i_wb_frn_winner = 0;
404 	inode->i_wb_frn_avg_time = 0;
405 	inode->i_wb_frn_history = 0;
406 	switched = true;
407 skip_switch:
408 	/*
409 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
410 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
411 	 */
412 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
413 
414 	spin_unlock_irq(&mapping->tree_lock);
415 	spin_unlock(&inode->i_lock);
416 	spin_unlock(&new_wb->list_lock);
417 	spin_unlock(&old_wb->list_lock);
418 
419 	if (switched) {
420 		wb_wakeup(new_wb);
421 		wb_put(old_wb);
422 	}
423 	wb_put(new_wb);
424 
425 	iput(inode);
426 	kfree(isw);
427 }
428 
429 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
430 {
431 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
432 				struct inode_switch_wbs_context, rcu_head);
433 
434 	/* needs to grab bh-unsafe locks, bounce to work item */
435 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
436 	schedule_work(&isw->work);
437 }
438 
439 /**
440  * inode_switch_wbs - change the wb association of an inode
441  * @inode: target inode
442  * @new_wb_id: ID of the new wb
443  *
444  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
445  * switching is performed asynchronously and may fail silently.
446  */
447 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
448 {
449 	struct backing_dev_info *bdi = inode_to_bdi(inode);
450 	struct cgroup_subsys_state *memcg_css;
451 	struct inode_switch_wbs_context *isw;
452 
453 	/* noop if seems to be already in progress */
454 	if (inode->i_state & I_WB_SWITCH)
455 		return;
456 
457 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
458 	if (!isw)
459 		return;
460 
461 	/* find and pin the new wb */
462 	rcu_read_lock();
463 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
464 	if (memcg_css)
465 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
466 	rcu_read_unlock();
467 	if (!isw->new_wb)
468 		goto out_free;
469 
470 	/* while holding I_WB_SWITCH, no one else can update the association */
471 	spin_lock(&inode->i_lock);
472 	if (inode->i_state & (I_WB_SWITCH | I_FREEING) ||
473 	    inode_to_wb(inode) == isw->new_wb) {
474 		spin_unlock(&inode->i_lock);
475 		goto out_free;
476 	}
477 	inode->i_state |= I_WB_SWITCH;
478 	spin_unlock(&inode->i_lock);
479 
480 	ihold(inode);
481 	isw->inode = inode;
482 
483 	/*
484 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
485 	 * the RCU protected stat update paths to grab the mapping's
486 	 * tree_lock so that stat transfer can synchronize against them.
487 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
488 	 */
489 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
490 	return;
491 
492 out_free:
493 	if (isw->new_wb)
494 		wb_put(isw->new_wb);
495 	kfree(isw);
496 }
497 
498 /**
499  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
500  * @wbc: writeback_control of interest
501  * @inode: target inode
502  *
503  * @inode is locked and about to be written back under the control of @wbc.
504  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
505  * writeback completion, wbc_detach_inode() should be called.  This is used
506  * to track the cgroup writeback context.
507  */
508 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
509 				 struct inode *inode)
510 {
511 	if (!inode_cgwb_enabled(inode)) {
512 		spin_unlock(&inode->i_lock);
513 		return;
514 	}
515 
516 	wbc->wb = inode_to_wb(inode);
517 	wbc->inode = inode;
518 
519 	wbc->wb_id = wbc->wb->memcg_css->id;
520 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
521 	wbc->wb_tcand_id = 0;
522 	wbc->wb_bytes = 0;
523 	wbc->wb_lcand_bytes = 0;
524 	wbc->wb_tcand_bytes = 0;
525 
526 	wb_get(wbc->wb);
527 	spin_unlock(&inode->i_lock);
528 
529 	/*
530 	 * A dying wb indicates that the memcg-blkcg mapping has changed
531 	 * and a new wb is already serving the memcg.  Switch immediately.
532 	 */
533 	if (unlikely(wb_dying(wbc->wb)))
534 		inode_switch_wbs(inode, wbc->wb_id);
535 }
536 
537 /**
538  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
539  * @wbc: writeback_control of the just finished writeback
540  *
541  * To be called after a writeback attempt of an inode finishes and undoes
542  * wbc_attach_and_unlock_inode().  Can be called under any context.
543  *
544  * As concurrent write sharing of an inode is expected to be very rare and
545  * memcg only tracks page ownership on first-use basis severely confining
546  * the usefulness of such sharing, cgroup writeback tracks ownership
547  * per-inode.  While the support for concurrent write sharing of an inode
548  * is deemed unnecessary, an inode being written to by different cgroups at
549  * different points in time is a lot more common, and, more importantly,
550  * charging only by first-use can too readily lead to grossly incorrect
551  * behaviors (single foreign page can lead to gigabytes of writeback to be
552  * incorrectly attributed).
553  *
554  * To resolve this issue, cgroup writeback detects the majority dirtier of
555  * an inode and transfers the ownership to it.  To avoid unnnecessary
556  * oscillation, the detection mechanism keeps track of history and gives
557  * out the switch verdict only if the foreign usage pattern is stable over
558  * a certain amount of time and/or writeback attempts.
559  *
560  * On each writeback attempt, @wbc tries to detect the majority writer
561  * using Boyer-Moore majority vote algorithm.  In addition to the byte
562  * count from the majority voting, it also counts the bytes written for the
563  * current wb and the last round's winner wb (max of last round's current
564  * wb, the winner from two rounds ago, and the last round's majority
565  * candidate).  Keeping track of the historical winner helps the algorithm
566  * to semi-reliably detect the most active writer even when it's not the
567  * absolute majority.
568  *
569  * Once the winner of the round is determined, whether the winner is
570  * foreign or not and how much IO time the round consumed is recorded in
571  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
572  * over a certain threshold, the switch verdict is given.
573  */
574 void wbc_detach_inode(struct writeback_control *wbc)
575 {
576 	struct bdi_writeback *wb = wbc->wb;
577 	struct inode *inode = wbc->inode;
578 	unsigned long avg_time, max_bytes, max_time;
579 	u16 history;
580 	int max_id;
581 
582 	if (!wb)
583 		return;
584 
585 	history = inode->i_wb_frn_history;
586 	avg_time = inode->i_wb_frn_avg_time;
587 
588 	/* pick the winner of this round */
589 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
590 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
591 		max_id = wbc->wb_id;
592 		max_bytes = wbc->wb_bytes;
593 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
594 		max_id = wbc->wb_lcand_id;
595 		max_bytes = wbc->wb_lcand_bytes;
596 	} else {
597 		max_id = wbc->wb_tcand_id;
598 		max_bytes = wbc->wb_tcand_bytes;
599 	}
600 
601 	/*
602 	 * Calculate the amount of IO time the winner consumed and fold it
603 	 * into the running average kept per inode.  If the consumed IO
604 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
605 	 * deciding whether to switch or not.  This is to prevent one-off
606 	 * small dirtiers from skewing the verdict.
607 	 */
608 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
609 				wb->avg_write_bandwidth);
610 	if (avg_time)
611 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
612 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
613 	else
614 		avg_time = max_time;	/* immediate catch up on first run */
615 
616 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
617 		int slots;
618 
619 		/*
620 		 * The switch verdict is reached if foreign wb's consume
621 		 * more than a certain proportion of IO time in a
622 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
623 		 * history mask where each bit represents one sixteenth of
624 		 * the period.  Determine the number of slots to shift into
625 		 * history from @max_time.
626 		 */
627 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
628 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
629 		history <<= slots;
630 		if (wbc->wb_id != max_id)
631 			history |= (1U << slots) - 1;
632 
633 		/*
634 		 * Switch if the current wb isn't the consistent winner.
635 		 * If there are multiple closely competing dirtiers, the
636 		 * inode may switch across them repeatedly over time, which
637 		 * is okay.  The main goal is avoiding keeping an inode on
638 		 * the wrong wb for an extended period of time.
639 		 */
640 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
641 			inode_switch_wbs(inode, max_id);
642 	}
643 
644 	/*
645 	 * Multiple instances of this function may race to update the
646 	 * following fields but we don't mind occassional inaccuracies.
647 	 */
648 	inode->i_wb_frn_winner = max_id;
649 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
650 	inode->i_wb_frn_history = history;
651 
652 	wb_put(wbc->wb);
653 	wbc->wb = NULL;
654 }
655 
656 /**
657  * wbc_account_io - account IO issued during writeback
658  * @wbc: writeback_control of the writeback in progress
659  * @page: page being written out
660  * @bytes: number of bytes being written out
661  *
662  * @bytes from @page are about to written out during the writeback
663  * controlled by @wbc.  Keep the book for foreign inode detection.  See
664  * wbc_detach_inode().
665  */
666 void wbc_account_io(struct writeback_control *wbc, struct page *page,
667 		    size_t bytes)
668 {
669 	int id;
670 
671 	/*
672 	 * pageout() path doesn't attach @wbc to the inode being written
673 	 * out.  This is intentional as we don't want the function to block
674 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
675 	 * regular writeback instead of writing things out itself.
676 	 */
677 	if (!wbc->wb)
678 		return;
679 
680 	rcu_read_lock();
681 	id = mem_cgroup_css_from_page(page)->id;
682 	rcu_read_unlock();
683 
684 	if (id == wbc->wb_id) {
685 		wbc->wb_bytes += bytes;
686 		return;
687 	}
688 
689 	if (id == wbc->wb_lcand_id)
690 		wbc->wb_lcand_bytes += bytes;
691 
692 	/* Boyer-Moore majority vote algorithm */
693 	if (!wbc->wb_tcand_bytes)
694 		wbc->wb_tcand_id = id;
695 	if (id == wbc->wb_tcand_id)
696 		wbc->wb_tcand_bytes += bytes;
697 	else
698 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
699 }
700 EXPORT_SYMBOL_GPL(wbc_account_io);
701 
702 /**
703  * inode_congested - test whether an inode is congested
704  * @inode: inode to test for congestion (may be NULL)
705  * @cong_bits: mask of WB_[a]sync_congested bits to test
706  *
707  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
708  * bits to test and the return value is the mask of set bits.
709  *
710  * If cgroup writeback is enabled for @inode, the congestion state is
711  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
712  * associated with @inode is congested; otherwise, the root wb's congestion
713  * state is used.
714  *
715  * @inode is allowed to be NULL as this function is often called on
716  * mapping->host which is NULL for the swapper space.
717  */
718 int inode_congested(struct inode *inode, int cong_bits)
719 {
720 	/*
721 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
722 	 * Start transaction iff ->i_wb is visible.
723 	 */
724 	if (inode && inode_to_wb_is_valid(inode)) {
725 		struct bdi_writeback *wb;
726 		bool locked, congested;
727 
728 		wb = unlocked_inode_to_wb_begin(inode, &locked);
729 		congested = wb_congested(wb, cong_bits);
730 		unlocked_inode_to_wb_end(inode, locked);
731 		return congested;
732 	}
733 
734 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
735 }
736 EXPORT_SYMBOL_GPL(inode_congested);
737 
738 /**
739  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
740  * @wb: target bdi_writeback to split @nr_pages to
741  * @nr_pages: number of pages to write for the whole bdi
742  *
743  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
744  * relation to the total write bandwidth of all wb's w/ dirty inodes on
745  * @wb->bdi.
746  */
747 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
748 {
749 	unsigned long this_bw = wb->avg_write_bandwidth;
750 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
751 
752 	if (nr_pages == LONG_MAX)
753 		return LONG_MAX;
754 
755 	/*
756 	 * This may be called on clean wb's and proportional distribution
757 	 * may not make sense, just use the original @nr_pages in those
758 	 * cases.  In general, we wanna err on the side of writing more.
759 	 */
760 	if (!tot_bw || this_bw >= tot_bw)
761 		return nr_pages;
762 	else
763 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
764 }
765 
766 /**
767  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
768  * @bdi: target backing_dev_info
769  * @base_work: wb_writeback_work to issue
770  * @skip_if_busy: skip wb's which already have writeback in progress
771  *
772  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
773  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
774  * distributed to the busy wbs according to each wb's proportion in the
775  * total active write bandwidth of @bdi.
776  */
777 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
778 				  struct wb_writeback_work *base_work,
779 				  bool skip_if_busy)
780 {
781 	int next_memcg_id = 0;
782 	struct bdi_writeback *wb;
783 	struct wb_iter iter;
784 
785 	might_sleep();
786 restart:
787 	rcu_read_lock();
788 	bdi_for_each_wb(wb, bdi, &iter, next_memcg_id) {
789 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
790 		struct wb_writeback_work fallback_work;
791 		struct wb_writeback_work *work;
792 		long nr_pages;
793 
794 		/* SYNC_ALL writes out I_DIRTY_TIME too */
795 		if (!wb_has_dirty_io(wb) &&
796 		    (base_work->sync_mode == WB_SYNC_NONE ||
797 		     list_empty(&wb->b_dirty_time)))
798 			continue;
799 		if (skip_if_busy && writeback_in_progress(wb))
800 			continue;
801 
802 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
803 
804 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
805 		if (work) {
806 			*work = *base_work;
807 			work->nr_pages = nr_pages;
808 			work->auto_free = 1;
809 			wb_queue_work(wb, work);
810 			continue;
811 		}
812 
813 		/* alloc failed, execute synchronously using on-stack fallback */
814 		work = &fallback_work;
815 		*work = *base_work;
816 		work->nr_pages = nr_pages;
817 		work->auto_free = 0;
818 		work->done = &fallback_work_done;
819 
820 		wb_queue_work(wb, work);
821 
822 		next_memcg_id = wb->memcg_css->id + 1;
823 		rcu_read_unlock();
824 		wb_wait_for_completion(bdi, &fallback_work_done);
825 		goto restart;
826 	}
827 	rcu_read_unlock();
828 }
829 
830 #else	/* CONFIG_CGROUP_WRITEBACK */
831 
832 static struct bdi_writeback *
833 locked_inode_to_wb_and_lock_list(struct inode *inode)
834 	__releases(&inode->i_lock)
835 	__acquires(&wb->list_lock)
836 {
837 	struct bdi_writeback *wb = inode_to_wb(inode);
838 
839 	spin_unlock(&inode->i_lock);
840 	spin_lock(&wb->list_lock);
841 	return wb;
842 }
843 
844 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
845 	__acquires(&wb->list_lock)
846 {
847 	struct bdi_writeback *wb = inode_to_wb(inode);
848 
849 	spin_lock(&wb->list_lock);
850 	return wb;
851 }
852 
853 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
854 {
855 	return nr_pages;
856 }
857 
858 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
859 				  struct wb_writeback_work *base_work,
860 				  bool skip_if_busy)
861 {
862 	might_sleep();
863 
864 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
865 		base_work->auto_free = 0;
866 		wb_queue_work(&bdi->wb, base_work);
867 	}
868 }
869 
870 #endif	/* CONFIG_CGROUP_WRITEBACK */
871 
872 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
873 			bool range_cyclic, enum wb_reason reason)
874 {
875 	struct wb_writeback_work *work;
876 
877 	if (!wb_has_dirty_io(wb))
878 		return;
879 
880 	/*
881 	 * This is WB_SYNC_NONE writeback, so if allocation fails just
882 	 * wakeup the thread for old dirty data writeback
883 	 */
884 	work = kzalloc(sizeof(*work), GFP_ATOMIC);
885 	if (!work) {
886 		trace_writeback_nowork(wb);
887 		wb_wakeup(wb);
888 		return;
889 	}
890 
891 	work->sync_mode	= WB_SYNC_NONE;
892 	work->nr_pages	= nr_pages;
893 	work->range_cyclic = range_cyclic;
894 	work->reason	= reason;
895 	work->auto_free	= 1;
896 
897 	wb_queue_work(wb, work);
898 }
899 
900 /**
901  * wb_start_background_writeback - start background writeback
902  * @wb: bdi_writback to write from
903  *
904  * Description:
905  *   This makes sure WB_SYNC_NONE background writeback happens. When
906  *   this function returns, it is only guaranteed that for given wb
907  *   some IO is happening if we are over background dirty threshold.
908  *   Caller need not hold sb s_umount semaphore.
909  */
910 void wb_start_background_writeback(struct bdi_writeback *wb)
911 {
912 	/*
913 	 * We just wake up the flusher thread. It will perform background
914 	 * writeback as soon as there is no other work to do.
915 	 */
916 	trace_writeback_wake_background(wb);
917 	wb_wakeup(wb);
918 }
919 
920 /*
921  * Remove the inode from the writeback list it is on.
922  */
923 void inode_io_list_del(struct inode *inode)
924 {
925 	struct bdi_writeback *wb;
926 
927 	wb = inode_to_wb_and_lock_list(inode);
928 	inode_io_list_del_locked(inode, wb);
929 	spin_unlock(&wb->list_lock);
930 }
931 
932 /*
933  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
934  * furthest end of its superblock's dirty-inode list.
935  *
936  * Before stamping the inode's ->dirtied_when, we check to see whether it is
937  * already the most-recently-dirtied inode on the b_dirty list.  If that is
938  * the case then the inode must have been redirtied while it was being written
939  * out and we don't reset its dirtied_when.
940  */
941 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
942 {
943 	if (!list_empty(&wb->b_dirty)) {
944 		struct inode *tail;
945 
946 		tail = wb_inode(wb->b_dirty.next);
947 		if (time_before(inode->dirtied_when, tail->dirtied_when))
948 			inode->dirtied_when = jiffies;
949 	}
950 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
951 }
952 
953 /*
954  * requeue inode for re-scanning after bdi->b_io list is exhausted.
955  */
956 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
957 {
958 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
959 }
960 
961 static void inode_sync_complete(struct inode *inode)
962 {
963 	inode->i_state &= ~I_SYNC;
964 	/* If inode is clean an unused, put it into LRU now... */
965 	inode_add_lru(inode);
966 	/* Waiters must see I_SYNC cleared before being woken up */
967 	smp_mb();
968 	wake_up_bit(&inode->i_state, __I_SYNC);
969 }
970 
971 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
972 {
973 	bool ret = time_after(inode->dirtied_when, t);
974 #ifndef CONFIG_64BIT
975 	/*
976 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
977 	 * It _appears_ to be in the future, but is actually in distant past.
978 	 * This test is necessary to prevent such wrapped-around relative times
979 	 * from permanently stopping the whole bdi writeback.
980 	 */
981 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
982 #endif
983 	return ret;
984 }
985 
986 #define EXPIRE_DIRTY_ATIME 0x0001
987 
988 /*
989  * Move expired (dirtied before work->older_than_this) dirty inodes from
990  * @delaying_queue to @dispatch_queue.
991  */
992 static int move_expired_inodes(struct list_head *delaying_queue,
993 			       struct list_head *dispatch_queue,
994 			       int flags,
995 			       struct wb_writeback_work *work)
996 {
997 	unsigned long *older_than_this = NULL;
998 	unsigned long expire_time;
999 	LIST_HEAD(tmp);
1000 	struct list_head *pos, *node;
1001 	struct super_block *sb = NULL;
1002 	struct inode *inode;
1003 	int do_sb_sort = 0;
1004 	int moved = 0;
1005 
1006 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1007 		older_than_this = work->older_than_this;
1008 	else if (!work->for_sync) {
1009 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1010 		older_than_this = &expire_time;
1011 	}
1012 	while (!list_empty(delaying_queue)) {
1013 		inode = wb_inode(delaying_queue->prev);
1014 		if (older_than_this &&
1015 		    inode_dirtied_after(inode, *older_than_this))
1016 			break;
1017 		list_move(&inode->i_io_list, &tmp);
1018 		moved++;
1019 		if (flags & EXPIRE_DIRTY_ATIME)
1020 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1021 		if (sb_is_blkdev_sb(inode->i_sb))
1022 			continue;
1023 		if (sb && sb != inode->i_sb)
1024 			do_sb_sort = 1;
1025 		sb = inode->i_sb;
1026 	}
1027 
1028 	/* just one sb in list, splice to dispatch_queue and we're done */
1029 	if (!do_sb_sort) {
1030 		list_splice(&tmp, dispatch_queue);
1031 		goto out;
1032 	}
1033 
1034 	/* Move inodes from one superblock together */
1035 	while (!list_empty(&tmp)) {
1036 		sb = wb_inode(tmp.prev)->i_sb;
1037 		list_for_each_prev_safe(pos, node, &tmp) {
1038 			inode = wb_inode(pos);
1039 			if (inode->i_sb == sb)
1040 				list_move(&inode->i_io_list, dispatch_queue);
1041 		}
1042 	}
1043 out:
1044 	return moved;
1045 }
1046 
1047 /*
1048  * Queue all expired dirty inodes for io, eldest first.
1049  * Before
1050  *         newly dirtied     b_dirty    b_io    b_more_io
1051  *         =============>    gf         edc     BA
1052  * After
1053  *         newly dirtied     b_dirty    b_io    b_more_io
1054  *         =============>    g          fBAedc
1055  *                                           |
1056  *                                           +--> dequeue for IO
1057  */
1058 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1059 {
1060 	int moved;
1061 
1062 	assert_spin_locked(&wb->list_lock);
1063 	list_splice_init(&wb->b_more_io, &wb->b_io);
1064 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1065 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1066 				     EXPIRE_DIRTY_ATIME, work);
1067 	if (moved)
1068 		wb_io_lists_populated(wb);
1069 	trace_writeback_queue_io(wb, work, moved);
1070 }
1071 
1072 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1073 {
1074 	int ret;
1075 
1076 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1077 		trace_writeback_write_inode_start(inode, wbc);
1078 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1079 		trace_writeback_write_inode(inode, wbc);
1080 		return ret;
1081 	}
1082 	return 0;
1083 }
1084 
1085 /*
1086  * Wait for writeback on an inode to complete. Called with i_lock held.
1087  * Caller must make sure inode cannot go away when we drop i_lock.
1088  */
1089 static void __inode_wait_for_writeback(struct inode *inode)
1090 	__releases(inode->i_lock)
1091 	__acquires(inode->i_lock)
1092 {
1093 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1094 	wait_queue_head_t *wqh;
1095 
1096 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1097 	while (inode->i_state & I_SYNC) {
1098 		spin_unlock(&inode->i_lock);
1099 		__wait_on_bit(wqh, &wq, bit_wait,
1100 			      TASK_UNINTERRUPTIBLE);
1101 		spin_lock(&inode->i_lock);
1102 	}
1103 }
1104 
1105 /*
1106  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1107  */
1108 void inode_wait_for_writeback(struct inode *inode)
1109 {
1110 	spin_lock(&inode->i_lock);
1111 	__inode_wait_for_writeback(inode);
1112 	spin_unlock(&inode->i_lock);
1113 }
1114 
1115 /*
1116  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1117  * held and drops it. It is aimed for callers not holding any inode reference
1118  * so once i_lock is dropped, inode can go away.
1119  */
1120 static void inode_sleep_on_writeback(struct inode *inode)
1121 	__releases(inode->i_lock)
1122 {
1123 	DEFINE_WAIT(wait);
1124 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1125 	int sleep;
1126 
1127 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1128 	sleep = inode->i_state & I_SYNC;
1129 	spin_unlock(&inode->i_lock);
1130 	if (sleep)
1131 		schedule();
1132 	finish_wait(wqh, &wait);
1133 }
1134 
1135 /*
1136  * Find proper writeback list for the inode depending on its current state and
1137  * possibly also change of its state while we were doing writeback.  Here we
1138  * handle things such as livelock prevention or fairness of writeback among
1139  * inodes. This function can be called only by flusher thread - noone else
1140  * processes all inodes in writeback lists and requeueing inodes behind flusher
1141  * thread's back can have unexpected consequences.
1142  */
1143 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1144 			  struct writeback_control *wbc)
1145 {
1146 	if (inode->i_state & I_FREEING)
1147 		return;
1148 
1149 	/*
1150 	 * Sync livelock prevention. Each inode is tagged and synced in one
1151 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1152 	 * the dirty time to prevent enqueue and sync it again.
1153 	 */
1154 	if ((inode->i_state & I_DIRTY) &&
1155 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1156 		inode->dirtied_when = jiffies;
1157 
1158 	if (wbc->pages_skipped) {
1159 		/*
1160 		 * writeback is not making progress due to locked
1161 		 * buffers. Skip this inode for now.
1162 		 */
1163 		redirty_tail(inode, wb);
1164 		return;
1165 	}
1166 
1167 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1168 		/*
1169 		 * We didn't write back all the pages.  nfs_writepages()
1170 		 * sometimes bales out without doing anything.
1171 		 */
1172 		if (wbc->nr_to_write <= 0) {
1173 			/* Slice used up. Queue for next turn. */
1174 			requeue_io(inode, wb);
1175 		} else {
1176 			/*
1177 			 * Writeback blocked by something other than
1178 			 * congestion. Delay the inode for some time to
1179 			 * avoid spinning on the CPU (100% iowait)
1180 			 * retrying writeback of the dirty page/inode
1181 			 * that cannot be performed immediately.
1182 			 */
1183 			redirty_tail(inode, wb);
1184 		}
1185 	} else if (inode->i_state & I_DIRTY) {
1186 		/*
1187 		 * Filesystems can dirty the inode during writeback operations,
1188 		 * such as delayed allocation during submission or metadata
1189 		 * updates after data IO completion.
1190 		 */
1191 		redirty_tail(inode, wb);
1192 	} else if (inode->i_state & I_DIRTY_TIME) {
1193 		inode->dirtied_when = jiffies;
1194 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1195 	} else {
1196 		/* The inode is clean. Remove from writeback lists. */
1197 		inode_io_list_del_locked(inode, wb);
1198 	}
1199 }
1200 
1201 /*
1202  * Write out an inode and its dirty pages. Do not update the writeback list
1203  * linkage. That is left to the caller. The caller is also responsible for
1204  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1205  */
1206 static int
1207 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1208 {
1209 	struct address_space *mapping = inode->i_mapping;
1210 	long nr_to_write = wbc->nr_to_write;
1211 	unsigned dirty;
1212 	int ret;
1213 
1214 	WARN_ON(!(inode->i_state & I_SYNC));
1215 
1216 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1217 
1218 	ret = do_writepages(mapping, wbc);
1219 
1220 	/*
1221 	 * Make sure to wait on the data before writing out the metadata.
1222 	 * This is important for filesystems that modify metadata on data
1223 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1224 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1225 	 * inode metadata is written back correctly.
1226 	 */
1227 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1228 		int err = filemap_fdatawait(mapping);
1229 		if (ret == 0)
1230 			ret = err;
1231 	}
1232 
1233 	/*
1234 	 * Some filesystems may redirty the inode during the writeback
1235 	 * due to delalloc, clear dirty metadata flags right before
1236 	 * write_inode()
1237 	 */
1238 	spin_lock(&inode->i_lock);
1239 
1240 	dirty = inode->i_state & I_DIRTY;
1241 	if (inode->i_state & I_DIRTY_TIME) {
1242 		if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1243 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1244 		    unlikely(time_after(jiffies,
1245 					(inode->dirtied_time_when +
1246 					 dirtytime_expire_interval * HZ)))) {
1247 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1248 			trace_writeback_lazytime(inode);
1249 		}
1250 	} else
1251 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1252 	inode->i_state &= ~dirty;
1253 
1254 	/*
1255 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1256 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1257 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1258 	 * inode.
1259 	 *
1260 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1261 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1262 	 * necessary.  This guarantees that either __mark_inode_dirty()
1263 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1264 	 */
1265 	smp_mb();
1266 
1267 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1268 		inode->i_state |= I_DIRTY_PAGES;
1269 
1270 	spin_unlock(&inode->i_lock);
1271 
1272 	if (dirty & I_DIRTY_TIME)
1273 		mark_inode_dirty_sync(inode);
1274 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1275 	if (dirty & ~I_DIRTY_PAGES) {
1276 		int err = write_inode(inode, wbc);
1277 		if (ret == 0)
1278 			ret = err;
1279 	}
1280 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1281 	return ret;
1282 }
1283 
1284 /*
1285  * Write out an inode's dirty pages. Either the caller has an active reference
1286  * on the inode or the inode has I_WILL_FREE set.
1287  *
1288  * This function is designed to be called for writing back one inode which
1289  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1290  * and does more profound writeback list handling in writeback_sb_inodes().
1291  */
1292 static int
1293 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
1294 		       struct writeback_control *wbc)
1295 {
1296 	int ret = 0;
1297 
1298 	spin_lock(&inode->i_lock);
1299 	if (!atomic_read(&inode->i_count))
1300 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1301 	else
1302 		WARN_ON(inode->i_state & I_WILL_FREE);
1303 
1304 	if (inode->i_state & I_SYNC) {
1305 		if (wbc->sync_mode != WB_SYNC_ALL)
1306 			goto out;
1307 		/*
1308 		 * It's a data-integrity sync. We must wait. Since callers hold
1309 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1310 		 * away under us.
1311 		 */
1312 		__inode_wait_for_writeback(inode);
1313 	}
1314 	WARN_ON(inode->i_state & I_SYNC);
1315 	/*
1316 	 * Skip inode if it is clean and we have no outstanding writeback in
1317 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1318 	 * function since flusher thread may be doing for example sync in
1319 	 * parallel and if we move the inode, it could get skipped. So here we
1320 	 * make sure inode is on some writeback list and leave it there unless
1321 	 * we have completely cleaned the inode.
1322 	 */
1323 	if (!(inode->i_state & I_DIRTY_ALL) &&
1324 	    (wbc->sync_mode != WB_SYNC_ALL ||
1325 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1326 		goto out;
1327 	inode->i_state |= I_SYNC;
1328 	wbc_attach_and_unlock_inode(wbc, inode);
1329 
1330 	ret = __writeback_single_inode(inode, wbc);
1331 
1332 	wbc_detach_inode(wbc);
1333 	spin_lock(&wb->list_lock);
1334 	spin_lock(&inode->i_lock);
1335 	/*
1336 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1337 	 * touch it. See comment above for explanation.
1338 	 */
1339 	if (!(inode->i_state & I_DIRTY_ALL))
1340 		inode_io_list_del_locked(inode, wb);
1341 	spin_unlock(&wb->list_lock);
1342 	inode_sync_complete(inode);
1343 out:
1344 	spin_unlock(&inode->i_lock);
1345 	return ret;
1346 }
1347 
1348 static long writeback_chunk_size(struct bdi_writeback *wb,
1349 				 struct wb_writeback_work *work)
1350 {
1351 	long pages;
1352 
1353 	/*
1354 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1355 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1356 	 * here avoids calling into writeback_inodes_wb() more than once.
1357 	 *
1358 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1359 	 *
1360 	 *      wb_writeback()
1361 	 *          writeback_sb_inodes()       <== called only once
1362 	 *              write_cache_pages()     <== called once for each inode
1363 	 *                   (quickly) tag currently dirty pages
1364 	 *                   (maybe slowly) sync all tagged pages
1365 	 */
1366 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1367 		pages = LONG_MAX;
1368 	else {
1369 		pages = min(wb->avg_write_bandwidth / 2,
1370 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1371 		pages = min(pages, work->nr_pages);
1372 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1373 				   MIN_WRITEBACK_PAGES);
1374 	}
1375 
1376 	return pages;
1377 }
1378 
1379 /*
1380  * Write a portion of b_io inodes which belong to @sb.
1381  *
1382  * Return the number of pages and/or inodes written.
1383  *
1384  * NOTE! This is called with wb->list_lock held, and will
1385  * unlock and relock that for each inode it ends up doing
1386  * IO for.
1387  */
1388 static long writeback_sb_inodes(struct super_block *sb,
1389 				struct bdi_writeback *wb,
1390 				struct wb_writeback_work *work)
1391 {
1392 	struct writeback_control wbc = {
1393 		.sync_mode		= work->sync_mode,
1394 		.tagged_writepages	= work->tagged_writepages,
1395 		.for_kupdate		= work->for_kupdate,
1396 		.for_background		= work->for_background,
1397 		.for_sync		= work->for_sync,
1398 		.range_cyclic		= work->range_cyclic,
1399 		.range_start		= 0,
1400 		.range_end		= LLONG_MAX,
1401 	};
1402 	unsigned long start_time = jiffies;
1403 	long write_chunk;
1404 	long wrote = 0;  /* count both pages and inodes */
1405 
1406 	while (!list_empty(&wb->b_io)) {
1407 		struct inode *inode = wb_inode(wb->b_io.prev);
1408 
1409 		if (inode->i_sb != sb) {
1410 			if (work->sb) {
1411 				/*
1412 				 * We only want to write back data for this
1413 				 * superblock, move all inodes not belonging
1414 				 * to it back onto the dirty list.
1415 				 */
1416 				redirty_tail(inode, wb);
1417 				continue;
1418 			}
1419 
1420 			/*
1421 			 * The inode belongs to a different superblock.
1422 			 * Bounce back to the caller to unpin this and
1423 			 * pin the next superblock.
1424 			 */
1425 			break;
1426 		}
1427 
1428 		/*
1429 		 * Don't bother with new inodes or inodes being freed, first
1430 		 * kind does not need periodic writeout yet, and for the latter
1431 		 * kind writeout is handled by the freer.
1432 		 */
1433 		spin_lock(&inode->i_lock);
1434 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1435 			spin_unlock(&inode->i_lock);
1436 			redirty_tail(inode, wb);
1437 			continue;
1438 		}
1439 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1440 			/*
1441 			 * If this inode is locked for writeback and we are not
1442 			 * doing writeback-for-data-integrity, move it to
1443 			 * b_more_io so that writeback can proceed with the
1444 			 * other inodes on s_io.
1445 			 *
1446 			 * We'll have another go at writing back this inode
1447 			 * when we completed a full scan of b_io.
1448 			 */
1449 			spin_unlock(&inode->i_lock);
1450 			requeue_io(inode, wb);
1451 			trace_writeback_sb_inodes_requeue(inode);
1452 			continue;
1453 		}
1454 		spin_unlock(&wb->list_lock);
1455 
1456 		/*
1457 		 * We already requeued the inode if it had I_SYNC set and we
1458 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1459 		 * WB_SYNC_ALL case.
1460 		 */
1461 		if (inode->i_state & I_SYNC) {
1462 			/* Wait for I_SYNC. This function drops i_lock... */
1463 			inode_sleep_on_writeback(inode);
1464 			/* Inode may be gone, start again */
1465 			spin_lock(&wb->list_lock);
1466 			continue;
1467 		}
1468 		inode->i_state |= I_SYNC;
1469 		wbc_attach_and_unlock_inode(&wbc, inode);
1470 
1471 		write_chunk = writeback_chunk_size(wb, work);
1472 		wbc.nr_to_write = write_chunk;
1473 		wbc.pages_skipped = 0;
1474 
1475 		/*
1476 		 * We use I_SYNC to pin the inode in memory. While it is set
1477 		 * evict_inode() will wait so the inode cannot be freed.
1478 		 */
1479 		__writeback_single_inode(inode, &wbc);
1480 
1481 		wbc_detach_inode(&wbc);
1482 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1483 		wrote += write_chunk - wbc.nr_to_write;
1484 
1485 		if (need_resched()) {
1486 			/*
1487 			 * We're trying to balance between building up a nice
1488 			 * long list of IOs to improve our merge rate, and
1489 			 * getting those IOs out quickly for anyone throttling
1490 			 * in balance_dirty_pages().  cond_resched() doesn't
1491 			 * unplug, so get our IOs out the door before we
1492 			 * give up the CPU.
1493 			 */
1494 			blk_flush_plug(current);
1495 			cond_resched();
1496 		}
1497 
1498 
1499 		spin_lock(&wb->list_lock);
1500 		spin_lock(&inode->i_lock);
1501 		if (!(inode->i_state & I_DIRTY_ALL))
1502 			wrote++;
1503 		requeue_inode(inode, wb, &wbc);
1504 		inode_sync_complete(inode);
1505 		spin_unlock(&inode->i_lock);
1506 
1507 		/*
1508 		 * bail out to wb_writeback() often enough to check
1509 		 * background threshold and other termination conditions.
1510 		 */
1511 		if (wrote) {
1512 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1513 				break;
1514 			if (work->nr_pages <= 0)
1515 				break;
1516 		}
1517 	}
1518 	return wrote;
1519 }
1520 
1521 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1522 				  struct wb_writeback_work *work)
1523 {
1524 	unsigned long start_time = jiffies;
1525 	long wrote = 0;
1526 
1527 	while (!list_empty(&wb->b_io)) {
1528 		struct inode *inode = wb_inode(wb->b_io.prev);
1529 		struct super_block *sb = inode->i_sb;
1530 
1531 		if (!trylock_super(sb)) {
1532 			/*
1533 			 * trylock_super() may fail consistently due to
1534 			 * s_umount being grabbed by someone else. Don't use
1535 			 * requeue_io() to avoid busy retrying the inode/sb.
1536 			 */
1537 			redirty_tail(inode, wb);
1538 			continue;
1539 		}
1540 		wrote += writeback_sb_inodes(sb, wb, work);
1541 		up_read(&sb->s_umount);
1542 
1543 		/* refer to the same tests at the end of writeback_sb_inodes */
1544 		if (wrote) {
1545 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1546 				break;
1547 			if (work->nr_pages <= 0)
1548 				break;
1549 		}
1550 	}
1551 	/* Leave any unwritten inodes on b_io */
1552 	return wrote;
1553 }
1554 
1555 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1556 				enum wb_reason reason)
1557 {
1558 	struct wb_writeback_work work = {
1559 		.nr_pages	= nr_pages,
1560 		.sync_mode	= WB_SYNC_NONE,
1561 		.range_cyclic	= 1,
1562 		.reason		= reason,
1563 	};
1564 	struct blk_plug plug;
1565 
1566 	blk_start_plug(&plug);
1567 	spin_lock(&wb->list_lock);
1568 	if (list_empty(&wb->b_io))
1569 		queue_io(wb, &work);
1570 	__writeback_inodes_wb(wb, &work);
1571 	spin_unlock(&wb->list_lock);
1572 	blk_finish_plug(&plug);
1573 
1574 	return nr_pages - work.nr_pages;
1575 }
1576 
1577 /*
1578  * Explicit flushing or periodic writeback of "old" data.
1579  *
1580  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1581  * dirtying-time in the inode's address_space.  So this periodic writeback code
1582  * just walks the superblock inode list, writing back any inodes which are
1583  * older than a specific point in time.
1584  *
1585  * Try to run once per dirty_writeback_interval.  But if a writeback event
1586  * takes longer than a dirty_writeback_interval interval, then leave a
1587  * one-second gap.
1588  *
1589  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1590  * all dirty pages if they are all attached to "old" mappings.
1591  */
1592 static long wb_writeback(struct bdi_writeback *wb,
1593 			 struct wb_writeback_work *work)
1594 {
1595 	unsigned long wb_start = jiffies;
1596 	long nr_pages = work->nr_pages;
1597 	unsigned long oldest_jif;
1598 	struct inode *inode;
1599 	long progress;
1600 	struct blk_plug plug;
1601 
1602 	oldest_jif = jiffies;
1603 	work->older_than_this = &oldest_jif;
1604 
1605 	blk_start_plug(&plug);
1606 	spin_lock(&wb->list_lock);
1607 	for (;;) {
1608 		/*
1609 		 * Stop writeback when nr_pages has been consumed
1610 		 */
1611 		if (work->nr_pages <= 0)
1612 			break;
1613 
1614 		/*
1615 		 * Background writeout and kupdate-style writeback may
1616 		 * run forever. Stop them if there is other work to do
1617 		 * so that e.g. sync can proceed. They'll be restarted
1618 		 * after the other works are all done.
1619 		 */
1620 		if ((work->for_background || work->for_kupdate) &&
1621 		    !list_empty(&wb->work_list))
1622 			break;
1623 
1624 		/*
1625 		 * For background writeout, stop when we are below the
1626 		 * background dirty threshold
1627 		 */
1628 		if (work->for_background && !wb_over_bg_thresh(wb))
1629 			break;
1630 
1631 		/*
1632 		 * Kupdate and background works are special and we want to
1633 		 * include all inodes that need writing. Livelock avoidance is
1634 		 * handled by these works yielding to any other work so we are
1635 		 * safe.
1636 		 */
1637 		if (work->for_kupdate) {
1638 			oldest_jif = jiffies -
1639 				msecs_to_jiffies(dirty_expire_interval * 10);
1640 		} else if (work->for_background)
1641 			oldest_jif = jiffies;
1642 
1643 		trace_writeback_start(wb, work);
1644 		if (list_empty(&wb->b_io))
1645 			queue_io(wb, work);
1646 		if (work->sb)
1647 			progress = writeback_sb_inodes(work->sb, wb, work);
1648 		else
1649 			progress = __writeback_inodes_wb(wb, work);
1650 		trace_writeback_written(wb, work);
1651 
1652 		wb_update_bandwidth(wb, wb_start);
1653 
1654 		/*
1655 		 * Did we write something? Try for more
1656 		 *
1657 		 * Dirty inodes are moved to b_io for writeback in batches.
1658 		 * The completion of the current batch does not necessarily
1659 		 * mean the overall work is done. So we keep looping as long
1660 		 * as made some progress on cleaning pages or inodes.
1661 		 */
1662 		if (progress)
1663 			continue;
1664 		/*
1665 		 * No more inodes for IO, bail
1666 		 */
1667 		if (list_empty(&wb->b_more_io))
1668 			break;
1669 		/*
1670 		 * Nothing written. Wait for some inode to
1671 		 * become available for writeback. Otherwise
1672 		 * we'll just busyloop.
1673 		 */
1674 		if (!list_empty(&wb->b_more_io))  {
1675 			trace_writeback_wait(wb, work);
1676 			inode = wb_inode(wb->b_more_io.prev);
1677 			spin_lock(&inode->i_lock);
1678 			spin_unlock(&wb->list_lock);
1679 			/* This function drops i_lock... */
1680 			inode_sleep_on_writeback(inode);
1681 			spin_lock(&wb->list_lock);
1682 		}
1683 	}
1684 	spin_unlock(&wb->list_lock);
1685 	blk_finish_plug(&plug);
1686 
1687 	return nr_pages - work->nr_pages;
1688 }
1689 
1690 /*
1691  * Return the next wb_writeback_work struct that hasn't been processed yet.
1692  */
1693 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1694 {
1695 	struct wb_writeback_work *work = NULL;
1696 
1697 	spin_lock_bh(&wb->work_lock);
1698 	if (!list_empty(&wb->work_list)) {
1699 		work = list_entry(wb->work_list.next,
1700 				  struct wb_writeback_work, list);
1701 		list_del_init(&work->list);
1702 	}
1703 	spin_unlock_bh(&wb->work_lock);
1704 	return work;
1705 }
1706 
1707 /*
1708  * Add in the number of potentially dirty inodes, because each inode
1709  * write can dirty pagecache in the underlying blockdev.
1710  */
1711 static unsigned long get_nr_dirty_pages(void)
1712 {
1713 	return global_page_state(NR_FILE_DIRTY) +
1714 		global_page_state(NR_UNSTABLE_NFS) +
1715 		get_nr_dirty_inodes();
1716 }
1717 
1718 static long wb_check_background_flush(struct bdi_writeback *wb)
1719 {
1720 	if (wb_over_bg_thresh(wb)) {
1721 
1722 		struct wb_writeback_work work = {
1723 			.nr_pages	= LONG_MAX,
1724 			.sync_mode	= WB_SYNC_NONE,
1725 			.for_background	= 1,
1726 			.range_cyclic	= 1,
1727 			.reason		= WB_REASON_BACKGROUND,
1728 		};
1729 
1730 		return wb_writeback(wb, &work);
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1737 {
1738 	unsigned long expired;
1739 	long nr_pages;
1740 
1741 	/*
1742 	 * When set to zero, disable periodic writeback
1743 	 */
1744 	if (!dirty_writeback_interval)
1745 		return 0;
1746 
1747 	expired = wb->last_old_flush +
1748 			msecs_to_jiffies(dirty_writeback_interval * 10);
1749 	if (time_before(jiffies, expired))
1750 		return 0;
1751 
1752 	wb->last_old_flush = jiffies;
1753 	nr_pages = get_nr_dirty_pages();
1754 
1755 	if (nr_pages) {
1756 		struct wb_writeback_work work = {
1757 			.nr_pages	= nr_pages,
1758 			.sync_mode	= WB_SYNC_NONE,
1759 			.for_kupdate	= 1,
1760 			.range_cyclic	= 1,
1761 			.reason		= WB_REASON_PERIODIC,
1762 		};
1763 
1764 		return wb_writeback(wb, &work);
1765 	}
1766 
1767 	return 0;
1768 }
1769 
1770 /*
1771  * Retrieve work items and do the writeback they describe
1772  */
1773 static long wb_do_writeback(struct bdi_writeback *wb)
1774 {
1775 	struct wb_writeback_work *work;
1776 	long wrote = 0;
1777 
1778 	set_bit(WB_writeback_running, &wb->state);
1779 	while ((work = get_next_work_item(wb)) != NULL) {
1780 		struct wb_completion *done = work->done;
1781 
1782 		trace_writeback_exec(wb, work);
1783 
1784 		wrote += wb_writeback(wb, work);
1785 
1786 		if (work->auto_free)
1787 			kfree(work);
1788 		if (done && atomic_dec_and_test(&done->cnt))
1789 			wake_up_all(&wb->bdi->wb_waitq);
1790 	}
1791 
1792 	/*
1793 	 * Check for periodic writeback, kupdated() style
1794 	 */
1795 	wrote += wb_check_old_data_flush(wb);
1796 	wrote += wb_check_background_flush(wb);
1797 	clear_bit(WB_writeback_running, &wb->state);
1798 
1799 	return wrote;
1800 }
1801 
1802 /*
1803  * Handle writeback of dirty data for the device backed by this bdi. Also
1804  * reschedules periodically and does kupdated style flushing.
1805  */
1806 void wb_workfn(struct work_struct *work)
1807 {
1808 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1809 						struct bdi_writeback, dwork);
1810 	long pages_written;
1811 
1812 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1813 	current->flags |= PF_SWAPWRITE;
1814 
1815 	if (likely(!current_is_workqueue_rescuer() ||
1816 		   !test_bit(WB_registered, &wb->state))) {
1817 		/*
1818 		 * The normal path.  Keep writing back @wb until its
1819 		 * work_list is empty.  Note that this path is also taken
1820 		 * if @wb is shutting down even when we're running off the
1821 		 * rescuer as work_list needs to be drained.
1822 		 */
1823 		do {
1824 			pages_written = wb_do_writeback(wb);
1825 			trace_writeback_pages_written(pages_written);
1826 		} while (!list_empty(&wb->work_list));
1827 	} else {
1828 		/*
1829 		 * bdi_wq can't get enough workers and we're running off
1830 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1831 		 * enough for efficient IO.
1832 		 */
1833 		pages_written = writeback_inodes_wb(wb, 1024,
1834 						    WB_REASON_FORKER_THREAD);
1835 		trace_writeback_pages_written(pages_written);
1836 	}
1837 
1838 	if (!list_empty(&wb->work_list))
1839 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
1840 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1841 		wb_wakeup_delayed(wb);
1842 
1843 	current->flags &= ~PF_SWAPWRITE;
1844 }
1845 
1846 /*
1847  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1848  * the whole world.
1849  */
1850 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1851 {
1852 	struct backing_dev_info *bdi;
1853 
1854 	if (!nr_pages)
1855 		nr_pages = get_nr_dirty_pages();
1856 
1857 	rcu_read_lock();
1858 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1859 		struct bdi_writeback *wb;
1860 		struct wb_iter iter;
1861 
1862 		if (!bdi_has_dirty_io(bdi))
1863 			continue;
1864 
1865 		bdi_for_each_wb(wb, bdi, &iter, 0)
1866 			wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1867 					   false, reason);
1868 	}
1869 	rcu_read_unlock();
1870 }
1871 
1872 /*
1873  * Wake up bdi's periodically to make sure dirtytime inodes gets
1874  * written back periodically.  We deliberately do *not* check the
1875  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
1876  * kernel to be constantly waking up once there are any dirtytime
1877  * inodes on the system.  So instead we define a separate delayed work
1878  * function which gets called much more rarely.  (By default, only
1879  * once every 12 hours.)
1880  *
1881  * If there is any other write activity going on in the file system,
1882  * this function won't be necessary.  But if the only thing that has
1883  * happened on the file system is a dirtytime inode caused by an atime
1884  * update, we need this infrastructure below to make sure that inode
1885  * eventually gets pushed out to disk.
1886  */
1887 static void wakeup_dirtytime_writeback(struct work_struct *w);
1888 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
1889 
1890 static void wakeup_dirtytime_writeback(struct work_struct *w)
1891 {
1892 	struct backing_dev_info *bdi;
1893 
1894 	rcu_read_lock();
1895 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1896 		struct bdi_writeback *wb;
1897 		struct wb_iter iter;
1898 
1899 		bdi_for_each_wb(wb, bdi, &iter, 0)
1900 			if (!list_empty(&bdi->wb.b_dirty_time))
1901 				wb_wakeup(&bdi->wb);
1902 	}
1903 	rcu_read_unlock();
1904 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1905 }
1906 
1907 static int __init start_dirtytime_writeback(void)
1908 {
1909 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
1910 	return 0;
1911 }
1912 __initcall(start_dirtytime_writeback);
1913 
1914 int dirtytime_interval_handler(struct ctl_table *table, int write,
1915 			       void __user *buffer, size_t *lenp, loff_t *ppos)
1916 {
1917 	int ret;
1918 
1919 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
1920 	if (ret == 0 && write)
1921 		mod_delayed_work(system_wq, &dirtytime_work, 0);
1922 	return ret;
1923 }
1924 
1925 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1926 {
1927 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1928 		struct dentry *dentry;
1929 		const char *name = "?";
1930 
1931 		dentry = d_find_alias(inode);
1932 		if (dentry) {
1933 			spin_lock(&dentry->d_lock);
1934 			name = (const char *) dentry->d_name.name;
1935 		}
1936 		printk(KERN_DEBUG
1937 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
1938 		       current->comm, task_pid_nr(current), inode->i_ino,
1939 		       name, inode->i_sb->s_id);
1940 		if (dentry) {
1941 			spin_unlock(&dentry->d_lock);
1942 			dput(dentry);
1943 		}
1944 	}
1945 }
1946 
1947 /**
1948  *	__mark_inode_dirty -	internal function
1949  *	@inode: inode to mark
1950  *	@flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1951  *	Mark an inode as dirty. Callers should use mark_inode_dirty or
1952  *  	mark_inode_dirty_sync.
1953  *
1954  * Put the inode on the super block's dirty list.
1955  *
1956  * CAREFUL! We mark it dirty unconditionally, but move it onto the
1957  * dirty list only if it is hashed or if it refers to a blockdev.
1958  * If it was not hashed, it will never be added to the dirty list
1959  * even if it is later hashed, as it will have been marked dirty already.
1960  *
1961  * In short, make sure you hash any inodes _before_ you start marking
1962  * them dirty.
1963  *
1964  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1965  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
1966  * the kernel-internal blockdev inode represents the dirtying time of the
1967  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
1968  * page->mapping->host, so the page-dirtying time is recorded in the internal
1969  * blockdev inode.
1970  */
1971 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
1972 void __mark_inode_dirty(struct inode *inode, int flags)
1973 {
1974 	struct super_block *sb = inode->i_sb;
1975 	int dirtytime;
1976 
1977 	trace_writeback_mark_inode_dirty(inode, flags);
1978 
1979 	/*
1980 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1981 	 * dirty the inode itself
1982 	 */
1983 	if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
1984 		trace_writeback_dirty_inode_start(inode, flags);
1985 
1986 		if (sb->s_op->dirty_inode)
1987 			sb->s_op->dirty_inode(inode, flags);
1988 
1989 		trace_writeback_dirty_inode(inode, flags);
1990 	}
1991 	if (flags & I_DIRTY_INODE)
1992 		flags &= ~I_DIRTY_TIME;
1993 	dirtytime = flags & I_DIRTY_TIME;
1994 
1995 	/*
1996 	 * Paired with smp_mb() in __writeback_single_inode() for the
1997 	 * following lockless i_state test.  See there for details.
1998 	 */
1999 	smp_mb();
2000 
2001 	if (((inode->i_state & flags) == flags) ||
2002 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2003 		return;
2004 
2005 	if (unlikely(block_dump))
2006 		block_dump___mark_inode_dirty(inode);
2007 
2008 	spin_lock(&inode->i_lock);
2009 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2010 		goto out_unlock_inode;
2011 	if ((inode->i_state & flags) != flags) {
2012 		const int was_dirty = inode->i_state & I_DIRTY;
2013 
2014 		inode_attach_wb(inode, NULL);
2015 
2016 		if (flags & I_DIRTY_INODE)
2017 			inode->i_state &= ~I_DIRTY_TIME;
2018 		inode->i_state |= flags;
2019 
2020 		/*
2021 		 * If the inode is being synced, just update its dirty state.
2022 		 * The unlocker will place the inode on the appropriate
2023 		 * superblock list, based upon its state.
2024 		 */
2025 		if (inode->i_state & I_SYNC)
2026 			goto out_unlock_inode;
2027 
2028 		/*
2029 		 * Only add valid (hashed) inodes to the superblock's
2030 		 * dirty list.  Add blockdev inodes as well.
2031 		 */
2032 		if (!S_ISBLK(inode->i_mode)) {
2033 			if (inode_unhashed(inode))
2034 				goto out_unlock_inode;
2035 		}
2036 		if (inode->i_state & I_FREEING)
2037 			goto out_unlock_inode;
2038 
2039 		/*
2040 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2041 		 * reposition it (that would break b_dirty time-ordering).
2042 		 */
2043 		if (!was_dirty) {
2044 			struct bdi_writeback *wb;
2045 			struct list_head *dirty_list;
2046 			bool wakeup_bdi = false;
2047 
2048 			wb = locked_inode_to_wb_and_lock_list(inode);
2049 
2050 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2051 			     !test_bit(WB_registered, &wb->state),
2052 			     "bdi-%s not registered\n", wb->bdi->name);
2053 
2054 			inode->dirtied_when = jiffies;
2055 			if (dirtytime)
2056 				inode->dirtied_time_when = jiffies;
2057 
2058 			if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2059 				dirty_list = &wb->b_dirty;
2060 			else
2061 				dirty_list = &wb->b_dirty_time;
2062 
2063 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2064 							       dirty_list);
2065 
2066 			spin_unlock(&wb->list_lock);
2067 			trace_writeback_dirty_inode_enqueue(inode);
2068 
2069 			/*
2070 			 * If this is the first dirty inode for this bdi,
2071 			 * we have to wake-up the corresponding bdi thread
2072 			 * to make sure background write-back happens
2073 			 * later.
2074 			 */
2075 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2076 				wb_wakeup_delayed(wb);
2077 			return;
2078 		}
2079 	}
2080 out_unlock_inode:
2081 	spin_unlock(&inode->i_lock);
2082 
2083 }
2084 EXPORT_SYMBOL(__mark_inode_dirty);
2085 
2086 /*
2087  * The @s_sync_lock is used to serialise concurrent sync operations
2088  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2089  * Concurrent callers will block on the s_sync_lock rather than doing contending
2090  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2091  * has been issued up to the time this function is enter is guaranteed to be
2092  * completed by the time we have gained the lock and waited for all IO that is
2093  * in progress regardless of the order callers are granted the lock.
2094  */
2095 static void wait_sb_inodes(struct super_block *sb)
2096 {
2097 	struct inode *inode, *old_inode = NULL;
2098 
2099 	/*
2100 	 * We need to be protected against the filesystem going from
2101 	 * r/o to r/w or vice versa.
2102 	 */
2103 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2104 
2105 	mutex_lock(&sb->s_sync_lock);
2106 	spin_lock(&sb->s_inode_list_lock);
2107 
2108 	/*
2109 	 * Data integrity sync. Must wait for all pages under writeback,
2110 	 * because there may have been pages dirtied before our sync
2111 	 * call, but which had writeout started before we write it out.
2112 	 * In which case, the inode may not be on the dirty list, but
2113 	 * we still have to wait for that writeout.
2114 	 */
2115 	list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2116 		struct address_space *mapping = inode->i_mapping;
2117 
2118 		spin_lock(&inode->i_lock);
2119 		if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2120 		    (mapping->nrpages == 0)) {
2121 			spin_unlock(&inode->i_lock);
2122 			continue;
2123 		}
2124 		__iget(inode);
2125 		spin_unlock(&inode->i_lock);
2126 		spin_unlock(&sb->s_inode_list_lock);
2127 
2128 		/*
2129 		 * We hold a reference to 'inode' so it couldn't have been
2130 		 * removed from s_inodes list while we dropped the
2131 		 * s_inode_list_lock.  We cannot iput the inode now as we can
2132 		 * be holding the last reference and we cannot iput it under
2133 		 * s_inode_list_lock. So we keep the reference and iput it
2134 		 * later.
2135 		 */
2136 		iput(old_inode);
2137 		old_inode = inode;
2138 
2139 		filemap_fdatawait(mapping);
2140 
2141 		cond_resched();
2142 
2143 		spin_lock(&sb->s_inode_list_lock);
2144 	}
2145 	spin_unlock(&sb->s_inode_list_lock);
2146 	iput(old_inode);
2147 	mutex_unlock(&sb->s_sync_lock);
2148 }
2149 
2150 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2151 				     enum wb_reason reason, bool skip_if_busy)
2152 {
2153 	DEFINE_WB_COMPLETION_ONSTACK(done);
2154 	struct wb_writeback_work work = {
2155 		.sb			= sb,
2156 		.sync_mode		= WB_SYNC_NONE,
2157 		.tagged_writepages	= 1,
2158 		.done			= &done,
2159 		.nr_pages		= nr,
2160 		.reason			= reason,
2161 	};
2162 	struct backing_dev_info *bdi = sb->s_bdi;
2163 
2164 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2165 		return;
2166 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2167 
2168 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2169 	wb_wait_for_completion(bdi, &done);
2170 }
2171 
2172 /**
2173  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2174  * @sb: the superblock
2175  * @nr: the number of pages to write
2176  * @reason: reason why some writeback work initiated
2177  *
2178  * Start writeback on some inodes on this super_block. No guarantees are made
2179  * on how many (if any) will be written, and this function does not wait
2180  * for IO completion of submitted IO.
2181  */
2182 void writeback_inodes_sb_nr(struct super_block *sb,
2183 			    unsigned long nr,
2184 			    enum wb_reason reason)
2185 {
2186 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2187 }
2188 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2189 
2190 /**
2191  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2192  * @sb: the superblock
2193  * @reason: reason why some writeback work was initiated
2194  *
2195  * Start writeback on some inodes on this super_block. No guarantees are made
2196  * on how many (if any) will be written, and this function does not wait
2197  * for IO completion of submitted IO.
2198  */
2199 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2200 {
2201 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2202 }
2203 EXPORT_SYMBOL(writeback_inodes_sb);
2204 
2205 /**
2206  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2207  * @sb: the superblock
2208  * @nr: the number of pages to write
2209  * @reason: the reason of writeback
2210  *
2211  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2212  * Returns 1 if writeback was started, 0 if not.
2213  */
2214 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2215 				   enum wb_reason reason)
2216 {
2217 	if (!down_read_trylock(&sb->s_umount))
2218 		return false;
2219 
2220 	__writeback_inodes_sb_nr(sb, nr, reason, true);
2221 	up_read(&sb->s_umount);
2222 	return true;
2223 }
2224 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2225 
2226 /**
2227  * try_to_writeback_inodes_sb - try to start writeback if none underway
2228  * @sb: the superblock
2229  * @reason: reason why some writeback work was initiated
2230  *
2231  * Implement by try_to_writeback_inodes_sb_nr()
2232  * Returns 1 if writeback was started, 0 if not.
2233  */
2234 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2235 {
2236 	return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2237 }
2238 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2239 
2240 /**
2241  * sync_inodes_sb	-	sync sb inode pages
2242  * @sb: the superblock
2243  *
2244  * This function writes and waits on any dirty inode belonging to this
2245  * super_block.
2246  */
2247 void sync_inodes_sb(struct super_block *sb)
2248 {
2249 	DEFINE_WB_COMPLETION_ONSTACK(done);
2250 	struct wb_writeback_work work = {
2251 		.sb		= sb,
2252 		.sync_mode	= WB_SYNC_ALL,
2253 		.nr_pages	= LONG_MAX,
2254 		.range_cyclic	= 0,
2255 		.done		= &done,
2256 		.reason		= WB_REASON_SYNC,
2257 		.for_sync	= 1,
2258 	};
2259 	struct backing_dev_info *bdi = sb->s_bdi;
2260 
2261 	/*
2262 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2263 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2264 	 * bdi_has_dirty() need to be written out too.
2265 	 */
2266 	if (bdi == &noop_backing_dev_info)
2267 		return;
2268 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2269 
2270 	bdi_split_work_to_wbs(bdi, &work, false);
2271 	wb_wait_for_completion(bdi, &done);
2272 
2273 	wait_sb_inodes(sb);
2274 }
2275 EXPORT_SYMBOL(sync_inodes_sb);
2276 
2277 /**
2278  * write_inode_now	-	write an inode to disk
2279  * @inode: inode to write to disk
2280  * @sync: whether the write should be synchronous or not
2281  *
2282  * This function commits an inode to disk immediately if it is dirty. This is
2283  * primarily needed by knfsd.
2284  *
2285  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2286  */
2287 int write_inode_now(struct inode *inode, int sync)
2288 {
2289 	struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
2290 	struct writeback_control wbc = {
2291 		.nr_to_write = LONG_MAX,
2292 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2293 		.range_start = 0,
2294 		.range_end = LLONG_MAX,
2295 	};
2296 
2297 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2298 		wbc.nr_to_write = 0;
2299 
2300 	might_sleep();
2301 	return writeback_single_inode(inode, wb, &wbc);
2302 }
2303 EXPORT_SYMBOL(write_inode_now);
2304 
2305 /**
2306  * sync_inode - write an inode and its pages to disk.
2307  * @inode: the inode to sync
2308  * @wbc: controls the writeback mode
2309  *
2310  * sync_inode() will write an inode and its pages to disk.  It will also
2311  * correctly update the inode on its superblock's dirty inode lists and will
2312  * update inode->i_state.
2313  *
2314  * The caller must have a ref on the inode.
2315  */
2316 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2317 {
2318 	return writeback_single_inode(inode, &inode_to_bdi(inode)->wb, wbc);
2319 }
2320 EXPORT_SYMBOL(sync_inode);
2321 
2322 /**
2323  * sync_inode_metadata - write an inode to disk
2324  * @inode: the inode to sync
2325  * @wait: wait for I/O to complete.
2326  *
2327  * Write an inode to disk and adjust its dirty state after completion.
2328  *
2329  * Note: only writes the actual inode, no associated data or other metadata.
2330  */
2331 int sync_inode_metadata(struct inode *inode, int wait)
2332 {
2333 	struct writeback_control wbc = {
2334 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2335 		.nr_to_write = 0, /* metadata-only */
2336 	};
2337 
2338 	return sync_inode(inode, &wbc);
2339 }
2340 EXPORT_SYMBOL(sync_inode_metadata);
2341