1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/fs-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * 7 * Contains all the functions related to writing back and waiting 8 * upon dirty inodes against superblocks, and writing back dirty 9 * pages against inodes. ie: data writeback. Writeout of the 10 * inode itself is not handled here. 11 * 12 * 10Apr2002 Andrew Morton 13 * Split out of fs/inode.c 14 * Additions for address_space-based writeback 15 */ 16 17 #include <linux/kernel.h> 18 #include <linux/export.h> 19 #include <linux/spinlock.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/fs.h> 23 #include <linux/mm.h> 24 #include <linux/pagemap.h> 25 #include <linux/kthread.h> 26 #include <linux/writeback.h> 27 #include <linux/blkdev.h> 28 #include <linux/backing-dev.h> 29 #include <linux/tracepoint.h> 30 #include <linux/device.h> 31 #include <linux/memcontrol.h> 32 #include "internal.h" 33 34 /* 35 * 4MB minimal write chunk size 36 */ 37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10)) 38 39 /* 40 * Passed into wb_writeback(), essentially a subset of writeback_control 41 */ 42 struct wb_writeback_work { 43 long nr_pages; 44 struct super_block *sb; 45 enum writeback_sync_modes sync_mode; 46 unsigned int tagged_writepages:1; 47 unsigned int for_kupdate:1; 48 unsigned int range_cyclic:1; 49 unsigned int for_background:1; 50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */ 51 unsigned int auto_free:1; /* free on completion */ 52 enum wb_reason reason; /* why was writeback initiated? */ 53 54 struct list_head list; /* pending work list */ 55 struct wb_completion *done; /* set if the caller waits */ 56 }; 57 58 /* 59 * If an inode is constantly having its pages dirtied, but then the 60 * updates stop dirtytime_expire_interval seconds in the past, it's 61 * possible for the worst case time between when an inode has its 62 * timestamps updated and when they finally get written out to be two 63 * dirtytime_expire_intervals. We set the default to 12 hours (in 64 * seconds), which means most of the time inodes will have their 65 * timestamps written to disk after 12 hours, but in the worst case a 66 * few inodes might not their timestamps updated for 24 hours. 67 */ 68 unsigned int dirtytime_expire_interval = 12 * 60 * 60; 69 70 static inline struct inode *wb_inode(struct list_head *head) 71 { 72 return list_entry(head, struct inode, i_io_list); 73 } 74 75 /* 76 * Include the creation of the trace points after defining the 77 * wb_writeback_work structure and inline functions so that the definition 78 * remains local to this file. 79 */ 80 #define CREATE_TRACE_POINTS 81 #include <trace/events/writeback.h> 82 83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage); 84 85 static bool wb_io_lists_populated(struct bdi_writeback *wb) 86 { 87 if (wb_has_dirty_io(wb)) { 88 return false; 89 } else { 90 set_bit(WB_has_dirty_io, &wb->state); 91 WARN_ON_ONCE(!wb->avg_write_bandwidth); 92 atomic_long_add(wb->avg_write_bandwidth, 93 &wb->bdi->tot_write_bandwidth); 94 return true; 95 } 96 } 97 98 static void wb_io_lists_depopulated(struct bdi_writeback *wb) 99 { 100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) && 101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) { 102 clear_bit(WB_has_dirty_io, &wb->state); 103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth, 104 &wb->bdi->tot_write_bandwidth) < 0); 105 } 106 } 107 108 /** 109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list 110 * @inode: inode to be moved 111 * @wb: target bdi_writeback 112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time} 113 * 114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io. 115 * Returns %true if @inode is the first occupant of the !dirty_time IO 116 * lists; otherwise, %false. 117 */ 118 static bool inode_io_list_move_locked(struct inode *inode, 119 struct bdi_writeback *wb, 120 struct list_head *head) 121 { 122 assert_spin_locked(&wb->list_lock); 123 assert_spin_locked(&inode->i_lock); 124 WARN_ON_ONCE(inode->i_state & I_FREEING); 125 126 list_move(&inode->i_io_list, head); 127 128 /* dirty_time doesn't count as dirty_io until expiration */ 129 if (head != &wb->b_dirty_time) 130 return wb_io_lists_populated(wb); 131 132 wb_io_lists_depopulated(wb); 133 return false; 134 } 135 136 static void wb_wakeup(struct bdi_writeback *wb) 137 { 138 spin_lock_irq(&wb->work_lock); 139 if (test_bit(WB_registered, &wb->state)) 140 mod_delayed_work(bdi_wq, &wb->dwork, 0); 141 spin_unlock_irq(&wb->work_lock); 142 } 143 144 static void finish_writeback_work(struct bdi_writeback *wb, 145 struct wb_writeback_work *work) 146 { 147 struct wb_completion *done = work->done; 148 149 if (work->auto_free) 150 kfree(work); 151 if (done) { 152 wait_queue_head_t *waitq = done->waitq; 153 154 /* @done can't be accessed after the following dec */ 155 if (atomic_dec_and_test(&done->cnt)) 156 wake_up_all(waitq); 157 } 158 } 159 160 static void wb_queue_work(struct bdi_writeback *wb, 161 struct wb_writeback_work *work) 162 { 163 trace_writeback_queue(wb, work); 164 165 if (work->done) 166 atomic_inc(&work->done->cnt); 167 168 spin_lock_irq(&wb->work_lock); 169 170 if (test_bit(WB_registered, &wb->state)) { 171 list_add_tail(&work->list, &wb->work_list); 172 mod_delayed_work(bdi_wq, &wb->dwork, 0); 173 } else 174 finish_writeback_work(wb, work); 175 176 spin_unlock_irq(&wb->work_lock); 177 } 178 179 /** 180 * wb_wait_for_completion - wait for completion of bdi_writeback_works 181 * @done: target wb_completion 182 * 183 * Wait for one or more work items issued to @bdi with their ->done field 184 * set to @done, which should have been initialized with 185 * DEFINE_WB_COMPLETION(). This function returns after all such work items 186 * are completed. Work items which are waited upon aren't freed 187 * automatically on completion. 188 */ 189 void wb_wait_for_completion(struct wb_completion *done) 190 { 191 atomic_dec(&done->cnt); /* put down the initial count */ 192 wait_event(*done->waitq, !atomic_read(&done->cnt)); 193 } 194 195 #ifdef CONFIG_CGROUP_WRITEBACK 196 197 /* 198 * Parameters for foreign inode detection, see wbc_detach_inode() to see 199 * how they're used. 200 * 201 * These paramters are inherently heuristical as the detection target 202 * itself is fuzzy. All we want to do is detaching an inode from the 203 * current owner if it's being written to by some other cgroups too much. 204 * 205 * The current cgroup writeback is built on the assumption that multiple 206 * cgroups writing to the same inode concurrently is very rare and a mode 207 * of operation which isn't well supported. As such, the goal is not 208 * taking too long when a different cgroup takes over an inode while 209 * avoiding too aggressive flip-flops from occasional foreign writes. 210 * 211 * We record, very roughly, 2s worth of IO time history and if more than 212 * half of that is foreign, trigger the switch. The recording is quantized 213 * to 16 slots. To avoid tiny writes from swinging the decision too much, 214 * writes smaller than 1/8 of avg size are ignored. 215 */ 216 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */ 217 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */ 218 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */ 219 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */ 220 221 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */ 222 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS) 223 /* each slot's duration is 2s / 16 */ 224 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2) 225 /* if foreign slots >= 8, switch */ 226 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1) 227 /* one round can affect upto 5 slots */ 228 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */ 229 230 /* 231 * Maximum inodes per isw. A specific value has been chosen to make 232 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc. 233 */ 234 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \ 235 / sizeof(struct inode *)) 236 237 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0); 238 static struct workqueue_struct *isw_wq; 239 240 void __inode_attach_wb(struct inode *inode, struct folio *folio) 241 { 242 struct backing_dev_info *bdi = inode_to_bdi(inode); 243 struct bdi_writeback *wb = NULL; 244 245 if (inode_cgwb_enabled(inode)) { 246 struct cgroup_subsys_state *memcg_css; 247 248 if (folio) { 249 memcg_css = mem_cgroup_css_from_folio(folio); 250 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 251 } else { 252 /* must pin memcg_css, see wb_get_create() */ 253 memcg_css = task_get_css(current, memory_cgrp_id); 254 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 255 css_put(memcg_css); 256 } 257 } 258 259 if (!wb) 260 wb = &bdi->wb; 261 262 /* 263 * There may be multiple instances of this function racing to 264 * update the same inode. Use cmpxchg() to tell the winner. 265 */ 266 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb))) 267 wb_put(wb); 268 } 269 EXPORT_SYMBOL_GPL(__inode_attach_wb); 270 271 /** 272 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list 273 * @inode: inode of interest with i_lock held 274 * @wb: target bdi_writeback 275 * 276 * Remove the inode from wb's io lists and if necessarily put onto b_attached 277 * list. Only inodes attached to cgwb's are kept on this list. 278 */ 279 static void inode_cgwb_move_to_attached(struct inode *inode, 280 struct bdi_writeback *wb) 281 { 282 assert_spin_locked(&wb->list_lock); 283 assert_spin_locked(&inode->i_lock); 284 WARN_ON_ONCE(inode->i_state & I_FREEING); 285 286 inode->i_state &= ~I_SYNC_QUEUED; 287 if (wb != &wb->bdi->wb) 288 list_move(&inode->i_io_list, &wb->b_attached); 289 else 290 list_del_init(&inode->i_io_list); 291 wb_io_lists_depopulated(wb); 292 } 293 294 /** 295 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it 296 * @inode: inode of interest with i_lock held 297 * 298 * Returns @inode's wb with its list_lock held. @inode->i_lock must be 299 * held on entry and is released on return. The returned wb is guaranteed 300 * to stay @inode's associated wb until its list_lock is released. 301 */ 302 static struct bdi_writeback * 303 locked_inode_to_wb_and_lock_list(struct inode *inode) 304 __releases(&inode->i_lock) 305 __acquires(&wb->list_lock) 306 { 307 while (true) { 308 struct bdi_writeback *wb = inode_to_wb(inode); 309 310 /* 311 * inode_to_wb() association is protected by both 312 * @inode->i_lock and @wb->list_lock but list_lock nests 313 * outside i_lock. Drop i_lock and verify that the 314 * association hasn't changed after acquiring list_lock. 315 */ 316 wb_get(wb); 317 spin_unlock(&inode->i_lock); 318 spin_lock(&wb->list_lock); 319 320 /* i_wb may have changed inbetween, can't use inode_to_wb() */ 321 if (likely(wb == inode->i_wb)) { 322 wb_put(wb); /* @inode already has ref */ 323 return wb; 324 } 325 326 spin_unlock(&wb->list_lock); 327 wb_put(wb); 328 cpu_relax(); 329 spin_lock(&inode->i_lock); 330 } 331 } 332 333 /** 334 * inode_to_wb_and_lock_list - determine an inode's wb and lock it 335 * @inode: inode of interest 336 * 337 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held 338 * on entry. 339 */ 340 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 341 __acquires(&wb->list_lock) 342 { 343 spin_lock(&inode->i_lock); 344 return locked_inode_to_wb_and_lock_list(inode); 345 } 346 347 struct inode_switch_wbs_context { 348 struct rcu_work work; 349 350 /* 351 * Multiple inodes can be switched at once. The switching procedure 352 * consists of two parts, separated by a RCU grace period. To make 353 * sure that the second part is executed for each inode gone through 354 * the first part, all inode pointers are placed into a NULL-terminated 355 * array embedded into struct inode_switch_wbs_context. Otherwise 356 * an inode could be left in a non-consistent state. 357 */ 358 struct bdi_writeback *new_wb; 359 struct inode *inodes[]; 360 }; 361 362 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) 363 { 364 down_write(&bdi->wb_switch_rwsem); 365 } 366 367 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) 368 { 369 up_write(&bdi->wb_switch_rwsem); 370 } 371 372 static bool inode_do_switch_wbs(struct inode *inode, 373 struct bdi_writeback *old_wb, 374 struct bdi_writeback *new_wb) 375 { 376 struct address_space *mapping = inode->i_mapping; 377 XA_STATE(xas, &mapping->i_pages, 0); 378 struct folio *folio; 379 bool switched = false; 380 381 spin_lock(&inode->i_lock); 382 xa_lock_irq(&mapping->i_pages); 383 384 /* 385 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction 386 * path owns the inode and we shouldn't modify ->i_io_list. 387 */ 388 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE))) 389 goto skip_switch; 390 391 trace_inode_switch_wbs(inode, old_wb, new_wb); 392 393 /* 394 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points 395 * to possibly dirty folios while PAGECACHE_TAG_WRITEBACK points to 396 * folios actually under writeback. 397 */ 398 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_DIRTY) { 399 if (folio_test_dirty(folio)) { 400 long nr = folio_nr_pages(folio); 401 wb_stat_mod(old_wb, WB_RECLAIMABLE, -nr); 402 wb_stat_mod(new_wb, WB_RECLAIMABLE, nr); 403 } 404 } 405 406 xas_set(&xas, 0); 407 xas_for_each_marked(&xas, folio, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) { 408 long nr = folio_nr_pages(folio); 409 WARN_ON_ONCE(!folio_test_writeback(folio)); 410 wb_stat_mod(old_wb, WB_WRITEBACK, -nr); 411 wb_stat_mod(new_wb, WB_WRITEBACK, nr); 412 } 413 414 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) { 415 atomic_dec(&old_wb->writeback_inodes); 416 atomic_inc(&new_wb->writeback_inodes); 417 } 418 419 wb_get(new_wb); 420 421 /* 422 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty, 423 * the specific list @inode was on is ignored and the @inode is put on 424 * ->b_dirty which is always correct including from ->b_dirty_time. 425 * The transfer preserves @inode->dirtied_when ordering. If the @inode 426 * was clean, it means it was on the b_attached list, so move it onto 427 * the b_attached list of @new_wb. 428 */ 429 if (!list_empty(&inode->i_io_list)) { 430 inode->i_wb = new_wb; 431 432 if (inode->i_state & I_DIRTY_ALL) { 433 struct inode *pos; 434 435 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list) 436 if (time_after_eq(inode->dirtied_when, 437 pos->dirtied_when)) 438 break; 439 inode_io_list_move_locked(inode, new_wb, 440 pos->i_io_list.prev); 441 } else { 442 inode_cgwb_move_to_attached(inode, new_wb); 443 } 444 } else { 445 inode->i_wb = new_wb; 446 } 447 448 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */ 449 inode->i_wb_frn_winner = 0; 450 inode->i_wb_frn_avg_time = 0; 451 inode->i_wb_frn_history = 0; 452 switched = true; 453 skip_switch: 454 /* 455 * Paired with load_acquire in unlocked_inode_to_wb_begin() and 456 * ensures that the new wb is visible if they see !I_WB_SWITCH. 457 */ 458 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH); 459 460 xa_unlock_irq(&mapping->i_pages); 461 spin_unlock(&inode->i_lock); 462 463 return switched; 464 } 465 466 static void inode_switch_wbs_work_fn(struct work_struct *work) 467 { 468 struct inode_switch_wbs_context *isw = 469 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work); 470 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]); 471 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb; 472 struct bdi_writeback *new_wb = isw->new_wb; 473 unsigned long nr_switched = 0; 474 struct inode **inodep; 475 476 /* 477 * If @inode switches cgwb membership while sync_inodes_sb() is 478 * being issued, sync_inodes_sb() might miss it. Synchronize. 479 */ 480 down_read(&bdi->wb_switch_rwsem); 481 482 /* 483 * By the time control reaches here, RCU grace period has passed 484 * since I_WB_SWITCH assertion and all wb stat update transactions 485 * between unlocked_inode_to_wb_begin/end() are guaranteed to be 486 * synchronizing against the i_pages lock. 487 * 488 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock 489 * gives us exclusion against all wb related operations on @inode 490 * including IO list manipulations and stat updates. 491 */ 492 if (old_wb < new_wb) { 493 spin_lock(&old_wb->list_lock); 494 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING); 495 } else { 496 spin_lock(&new_wb->list_lock); 497 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING); 498 } 499 500 for (inodep = isw->inodes; *inodep; inodep++) { 501 WARN_ON_ONCE((*inodep)->i_wb != old_wb); 502 if (inode_do_switch_wbs(*inodep, old_wb, new_wb)) 503 nr_switched++; 504 } 505 506 spin_unlock(&new_wb->list_lock); 507 spin_unlock(&old_wb->list_lock); 508 509 up_read(&bdi->wb_switch_rwsem); 510 511 if (nr_switched) { 512 wb_wakeup(new_wb); 513 wb_put_many(old_wb, nr_switched); 514 } 515 516 for (inodep = isw->inodes; *inodep; inodep++) 517 iput(*inodep); 518 wb_put(new_wb); 519 kfree(isw); 520 atomic_dec(&isw_nr_in_flight); 521 } 522 523 static bool inode_prepare_wbs_switch(struct inode *inode, 524 struct bdi_writeback *new_wb) 525 { 526 /* 527 * Paired with smp_mb() in cgroup_writeback_umount(). 528 * isw_nr_in_flight must be increased before checking SB_ACTIVE and 529 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0 530 * in cgroup_writeback_umount() and the isw_wq will be not flushed. 531 */ 532 smp_mb(); 533 534 if (IS_DAX(inode)) 535 return false; 536 537 /* while holding I_WB_SWITCH, no one else can update the association */ 538 spin_lock(&inode->i_lock); 539 if (!(inode->i_sb->s_flags & SB_ACTIVE) || 540 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) || 541 inode_to_wb(inode) == new_wb) { 542 spin_unlock(&inode->i_lock); 543 return false; 544 } 545 inode->i_state |= I_WB_SWITCH; 546 __iget(inode); 547 spin_unlock(&inode->i_lock); 548 549 return true; 550 } 551 552 /** 553 * inode_switch_wbs - change the wb association of an inode 554 * @inode: target inode 555 * @new_wb_id: ID of the new wb 556 * 557 * Switch @inode's wb association to the wb identified by @new_wb_id. The 558 * switching is performed asynchronously and may fail silently. 559 */ 560 static void inode_switch_wbs(struct inode *inode, int new_wb_id) 561 { 562 struct backing_dev_info *bdi = inode_to_bdi(inode); 563 struct cgroup_subsys_state *memcg_css; 564 struct inode_switch_wbs_context *isw; 565 566 /* noop if seems to be already in progress */ 567 if (inode->i_state & I_WB_SWITCH) 568 return; 569 570 /* avoid queueing a new switch if too many are already in flight */ 571 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT) 572 return; 573 574 isw = kzalloc(struct_size(isw, inodes, 2), GFP_ATOMIC); 575 if (!isw) 576 return; 577 578 atomic_inc(&isw_nr_in_flight); 579 580 /* find and pin the new wb */ 581 rcu_read_lock(); 582 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys); 583 if (memcg_css && !css_tryget(memcg_css)) 584 memcg_css = NULL; 585 rcu_read_unlock(); 586 if (!memcg_css) 587 goto out_free; 588 589 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC); 590 css_put(memcg_css); 591 if (!isw->new_wb) 592 goto out_free; 593 594 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 595 goto out_free; 596 597 isw->inodes[0] = inode; 598 599 /* 600 * In addition to synchronizing among switchers, I_WB_SWITCH tells 601 * the RCU protected stat update paths to grab the i_page 602 * lock so that stat transfer can synchronize against them. 603 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 604 */ 605 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 606 queue_rcu_work(isw_wq, &isw->work); 607 return; 608 609 out_free: 610 atomic_dec(&isw_nr_in_flight); 611 if (isw->new_wb) 612 wb_put(isw->new_wb); 613 kfree(isw); 614 } 615 616 static bool isw_prepare_wbs_switch(struct inode_switch_wbs_context *isw, 617 struct list_head *list, int *nr) 618 { 619 struct inode *inode; 620 621 list_for_each_entry(inode, list, i_io_list) { 622 if (!inode_prepare_wbs_switch(inode, isw->new_wb)) 623 continue; 624 625 isw->inodes[*nr] = inode; 626 (*nr)++; 627 628 if (*nr >= WB_MAX_INODES_PER_ISW - 1) 629 return true; 630 } 631 return false; 632 } 633 634 /** 635 * cleanup_offline_cgwb - detach associated inodes 636 * @wb: target wb 637 * 638 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order 639 * to eventually release the dying @wb. Returns %true if not all inodes were 640 * switched and the function has to be restarted. 641 */ 642 bool cleanup_offline_cgwb(struct bdi_writeback *wb) 643 { 644 struct cgroup_subsys_state *memcg_css; 645 struct inode_switch_wbs_context *isw; 646 int nr; 647 bool restart = false; 648 649 isw = kzalloc(struct_size(isw, inodes, WB_MAX_INODES_PER_ISW), 650 GFP_KERNEL); 651 if (!isw) 652 return restart; 653 654 atomic_inc(&isw_nr_in_flight); 655 656 for (memcg_css = wb->memcg_css->parent; memcg_css; 657 memcg_css = memcg_css->parent) { 658 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL); 659 if (isw->new_wb) 660 break; 661 } 662 if (unlikely(!isw->new_wb)) 663 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */ 664 665 nr = 0; 666 spin_lock(&wb->list_lock); 667 /* 668 * In addition to the inodes that have completed writeback, also switch 669 * cgwbs for those inodes only with dirty timestamps. Otherwise, those 670 * inodes won't be written back for a long time when lazytime is 671 * enabled, and thus pinning the dying cgwbs. It won't break the 672 * bandwidth restrictions, as writeback of inode metadata is not 673 * accounted for. 674 */ 675 restart = isw_prepare_wbs_switch(isw, &wb->b_attached, &nr); 676 if (!restart) 677 restart = isw_prepare_wbs_switch(isw, &wb->b_dirty_time, &nr); 678 spin_unlock(&wb->list_lock); 679 680 /* no attached inodes? bail out */ 681 if (nr == 0) { 682 atomic_dec(&isw_nr_in_flight); 683 wb_put(isw->new_wb); 684 kfree(isw); 685 return restart; 686 } 687 688 /* 689 * In addition to synchronizing among switchers, I_WB_SWITCH tells 690 * the RCU protected stat update paths to grab the i_page 691 * lock so that stat transfer can synchronize against them. 692 * Let's continue after I_WB_SWITCH is guaranteed to be visible. 693 */ 694 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn); 695 queue_rcu_work(isw_wq, &isw->work); 696 697 return restart; 698 } 699 700 /** 701 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it 702 * @wbc: writeback_control of interest 703 * @inode: target inode 704 * 705 * @inode is locked and about to be written back under the control of @wbc. 706 * Record @inode's writeback context into @wbc and unlock the i_lock. On 707 * writeback completion, wbc_detach_inode() should be called. This is used 708 * to track the cgroup writeback context. 709 */ 710 void wbc_attach_and_unlock_inode(struct writeback_control *wbc, 711 struct inode *inode) 712 { 713 if (!inode_cgwb_enabled(inode)) { 714 spin_unlock(&inode->i_lock); 715 return; 716 } 717 718 wbc->wb = inode_to_wb(inode); 719 wbc->inode = inode; 720 721 wbc->wb_id = wbc->wb->memcg_css->id; 722 wbc->wb_lcand_id = inode->i_wb_frn_winner; 723 wbc->wb_tcand_id = 0; 724 wbc->wb_bytes = 0; 725 wbc->wb_lcand_bytes = 0; 726 wbc->wb_tcand_bytes = 0; 727 728 wb_get(wbc->wb); 729 spin_unlock(&inode->i_lock); 730 731 /* 732 * A dying wb indicates that either the blkcg associated with the 733 * memcg changed or the associated memcg is dying. In the first 734 * case, a replacement wb should already be available and we should 735 * refresh the wb immediately. In the second case, trying to 736 * refresh will keep failing. 737 */ 738 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css))) 739 inode_switch_wbs(inode, wbc->wb_id); 740 } 741 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode); 742 743 /** 744 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection 745 * @wbc: writeback_control of the just finished writeback 746 * 747 * To be called after a writeback attempt of an inode finishes and undoes 748 * wbc_attach_and_unlock_inode(). Can be called under any context. 749 * 750 * As concurrent write sharing of an inode is expected to be very rare and 751 * memcg only tracks page ownership on first-use basis severely confining 752 * the usefulness of such sharing, cgroup writeback tracks ownership 753 * per-inode. While the support for concurrent write sharing of an inode 754 * is deemed unnecessary, an inode being written to by different cgroups at 755 * different points in time is a lot more common, and, more importantly, 756 * charging only by first-use can too readily lead to grossly incorrect 757 * behaviors (single foreign page can lead to gigabytes of writeback to be 758 * incorrectly attributed). 759 * 760 * To resolve this issue, cgroup writeback detects the majority dirtier of 761 * an inode and transfers the ownership to it. To avoid unnecessary 762 * oscillation, the detection mechanism keeps track of history and gives 763 * out the switch verdict only if the foreign usage pattern is stable over 764 * a certain amount of time and/or writeback attempts. 765 * 766 * On each writeback attempt, @wbc tries to detect the majority writer 767 * using Boyer-Moore majority vote algorithm. In addition to the byte 768 * count from the majority voting, it also counts the bytes written for the 769 * current wb and the last round's winner wb (max of last round's current 770 * wb, the winner from two rounds ago, and the last round's majority 771 * candidate). Keeping track of the historical winner helps the algorithm 772 * to semi-reliably detect the most active writer even when it's not the 773 * absolute majority. 774 * 775 * Once the winner of the round is determined, whether the winner is 776 * foreign or not and how much IO time the round consumed is recorded in 777 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is 778 * over a certain threshold, the switch verdict is given. 779 */ 780 void wbc_detach_inode(struct writeback_control *wbc) 781 { 782 struct bdi_writeback *wb = wbc->wb; 783 struct inode *inode = wbc->inode; 784 unsigned long avg_time, max_bytes, max_time; 785 u16 history; 786 int max_id; 787 788 if (!wb) 789 return; 790 791 history = inode->i_wb_frn_history; 792 avg_time = inode->i_wb_frn_avg_time; 793 794 /* pick the winner of this round */ 795 if (wbc->wb_bytes >= wbc->wb_lcand_bytes && 796 wbc->wb_bytes >= wbc->wb_tcand_bytes) { 797 max_id = wbc->wb_id; 798 max_bytes = wbc->wb_bytes; 799 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) { 800 max_id = wbc->wb_lcand_id; 801 max_bytes = wbc->wb_lcand_bytes; 802 } else { 803 max_id = wbc->wb_tcand_id; 804 max_bytes = wbc->wb_tcand_bytes; 805 } 806 807 /* 808 * Calculate the amount of IO time the winner consumed and fold it 809 * into the running average kept per inode. If the consumed IO 810 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for 811 * deciding whether to switch or not. This is to prevent one-off 812 * small dirtiers from skewing the verdict. 813 */ 814 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT, 815 wb->avg_write_bandwidth); 816 if (avg_time) 817 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) - 818 (avg_time >> WB_FRN_TIME_AVG_SHIFT); 819 else 820 avg_time = max_time; /* immediate catch up on first run */ 821 822 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) { 823 int slots; 824 825 /* 826 * The switch verdict is reached if foreign wb's consume 827 * more than a certain proportion of IO time in a 828 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot 829 * history mask where each bit represents one sixteenth of 830 * the period. Determine the number of slots to shift into 831 * history from @max_time. 832 */ 833 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT), 834 (unsigned long)WB_FRN_HIST_MAX_SLOTS); 835 history <<= slots; 836 if (wbc->wb_id != max_id) 837 history |= (1U << slots) - 1; 838 839 if (history) 840 trace_inode_foreign_history(inode, wbc, history); 841 842 /* 843 * Switch if the current wb isn't the consistent winner. 844 * If there are multiple closely competing dirtiers, the 845 * inode may switch across them repeatedly over time, which 846 * is okay. The main goal is avoiding keeping an inode on 847 * the wrong wb for an extended period of time. 848 */ 849 if (hweight16(history) > WB_FRN_HIST_THR_SLOTS) 850 inode_switch_wbs(inode, max_id); 851 } 852 853 /* 854 * Multiple instances of this function may race to update the 855 * following fields but we don't mind occassional inaccuracies. 856 */ 857 inode->i_wb_frn_winner = max_id; 858 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX); 859 inode->i_wb_frn_history = history; 860 861 wb_put(wbc->wb); 862 wbc->wb = NULL; 863 } 864 EXPORT_SYMBOL_GPL(wbc_detach_inode); 865 866 /** 867 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership 868 * @wbc: writeback_control of the writeback in progress 869 * @page: page being written out 870 * @bytes: number of bytes being written out 871 * 872 * @bytes from @page are about to written out during the writeback 873 * controlled by @wbc. Keep the book for foreign inode detection. See 874 * wbc_detach_inode(). 875 */ 876 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page, 877 size_t bytes) 878 { 879 struct folio *folio; 880 struct cgroup_subsys_state *css; 881 int id; 882 883 /* 884 * pageout() path doesn't attach @wbc to the inode being written 885 * out. This is intentional as we don't want the function to block 886 * behind a slow cgroup. Ultimately, we want pageout() to kick off 887 * regular writeback instead of writing things out itself. 888 */ 889 if (!wbc->wb || wbc->no_cgroup_owner) 890 return; 891 892 folio = page_folio(page); 893 css = mem_cgroup_css_from_folio(folio); 894 /* dead cgroups shouldn't contribute to inode ownership arbitration */ 895 if (!(css->flags & CSS_ONLINE)) 896 return; 897 898 id = css->id; 899 900 if (id == wbc->wb_id) { 901 wbc->wb_bytes += bytes; 902 return; 903 } 904 905 if (id == wbc->wb_lcand_id) 906 wbc->wb_lcand_bytes += bytes; 907 908 /* Boyer-Moore majority vote algorithm */ 909 if (!wbc->wb_tcand_bytes) 910 wbc->wb_tcand_id = id; 911 if (id == wbc->wb_tcand_id) 912 wbc->wb_tcand_bytes += bytes; 913 else 914 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes); 915 } 916 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner); 917 918 /** 919 * wb_split_bdi_pages - split nr_pages to write according to bandwidth 920 * @wb: target bdi_writeback to split @nr_pages to 921 * @nr_pages: number of pages to write for the whole bdi 922 * 923 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in 924 * relation to the total write bandwidth of all wb's w/ dirty inodes on 925 * @wb->bdi. 926 */ 927 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 928 { 929 unsigned long this_bw = wb->avg_write_bandwidth; 930 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 931 932 if (nr_pages == LONG_MAX) 933 return LONG_MAX; 934 935 /* 936 * This may be called on clean wb's and proportional distribution 937 * may not make sense, just use the original @nr_pages in those 938 * cases. In general, we wanna err on the side of writing more. 939 */ 940 if (!tot_bw || this_bw >= tot_bw) 941 return nr_pages; 942 else 943 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw); 944 } 945 946 /** 947 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi 948 * @bdi: target backing_dev_info 949 * @base_work: wb_writeback_work to issue 950 * @skip_if_busy: skip wb's which already have writeback in progress 951 * 952 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which 953 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's 954 * distributed to the busy wbs according to each wb's proportion in the 955 * total active write bandwidth of @bdi. 956 */ 957 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 958 struct wb_writeback_work *base_work, 959 bool skip_if_busy) 960 { 961 struct bdi_writeback *last_wb = NULL; 962 struct bdi_writeback *wb = list_entry(&bdi->wb_list, 963 struct bdi_writeback, bdi_node); 964 965 might_sleep(); 966 restart: 967 rcu_read_lock(); 968 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) { 969 DEFINE_WB_COMPLETION(fallback_work_done, bdi); 970 struct wb_writeback_work fallback_work; 971 struct wb_writeback_work *work; 972 long nr_pages; 973 974 if (last_wb) { 975 wb_put(last_wb); 976 last_wb = NULL; 977 } 978 979 /* SYNC_ALL writes out I_DIRTY_TIME too */ 980 if (!wb_has_dirty_io(wb) && 981 (base_work->sync_mode == WB_SYNC_NONE || 982 list_empty(&wb->b_dirty_time))) 983 continue; 984 if (skip_if_busy && writeback_in_progress(wb)) 985 continue; 986 987 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages); 988 989 work = kmalloc(sizeof(*work), GFP_ATOMIC); 990 if (work) { 991 *work = *base_work; 992 work->nr_pages = nr_pages; 993 work->auto_free = 1; 994 wb_queue_work(wb, work); 995 continue; 996 } 997 998 /* 999 * If wb_tryget fails, the wb has been shutdown, skip it. 1000 * 1001 * Pin @wb so that it stays on @bdi->wb_list. This allows 1002 * continuing iteration from @wb after dropping and 1003 * regrabbing rcu read lock. 1004 */ 1005 if (!wb_tryget(wb)) 1006 continue; 1007 1008 /* alloc failed, execute synchronously using on-stack fallback */ 1009 work = &fallback_work; 1010 *work = *base_work; 1011 work->nr_pages = nr_pages; 1012 work->auto_free = 0; 1013 work->done = &fallback_work_done; 1014 1015 wb_queue_work(wb, work); 1016 last_wb = wb; 1017 1018 rcu_read_unlock(); 1019 wb_wait_for_completion(&fallback_work_done); 1020 goto restart; 1021 } 1022 rcu_read_unlock(); 1023 1024 if (last_wb) 1025 wb_put(last_wb); 1026 } 1027 1028 /** 1029 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs 1030 * @bdi_id: target bdi id 1031 * @memcg_id: target memcg css id 1032 * @reason: reason why some writeback work initiated 1033 * @done: target wb_completion 1034 * 1035 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id 1036 * with the specified parameters. 1037 */ 1038 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id, 1039 enum wb_reason reason, struct wb_completion *done) 1040 { 1041 struct backing_dev_info *bdi; 1042 struct cgroup_subsys_state *memcg_css; 1043 struct bdi_writeback *wb; 1044 struct wb_writeback_work *work; 1045 unsigned long dirty; 1046 int ret; 1047 1048 /* lookup bdi and memcg */ 1049 bdi = bdi_get_by_id(bdi_id); 1050 if (!bdi) 1051 return -ENOENT; 1052 1053 rcu_read_lock(); 1054 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys); 1055 if (memcg_css && !css_tryget(memcg_css)) 1056 memcg_css = NULL; 1057 rcu_read_unlock(); 1058 if (!memcg_css) { 1059 ret = -ENOENT; 1060 goto out_bdi_put; 1061 } 1062 1063 /* 1064 * And find the associated wb. If the wb isn't there already 1065 * there's nothing to flush, don't create one. 1066 */ 1067 wb = wb_get_lookup(bdi, memcg_css); 1068 if (!wb) { 1069 ret = -ENOENT; 1070 goto out_css_put; 1071 } 1072 1073 /* 1074 * The caller is attempting to write out most of 1075 * the currently dirty pages. Let's take the current dirty page 1076 * count and inflate it by 25% which should be large enough to 1077 * flush out most dirty pages while avoiding getting livelocked by 1078 * concurrent dirtiers. 1079 * 1080 * BTW the memcg stats are flushed periodically and this is best-effort 1081 * estimation, so some potential error is ok. 1082 */ 1083 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY); 1084 dirty = dirty * 10 / 8; 1085 1086 /* issue the writeback work */ 1087 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN); 1088 if (work) { 1089 work->nr_pages = dirty; 1090 work->sync_mode = WB_SYNC_NONE; 1091 work->range_cyclic = 1; 1092 work->reason = reason; 1093 work->done = done; 1094 work->auto_free = 1; 1095 wb_queue_work(wb, work); 1096 ret = 0; 1097 } else { 1098 ret = -ENOMEM; 1099 } 1100 1101 wb_put(wb); 1102 out_css_put: 1103 css_put(memcg_css); 1104 out_bdi_put: 1105 bdi_put(bdi); 1106 return ret; 1107 } 1108 1109 /** 1110 * cgroup_writeback_umount - flush inode wb switches for umount 1111 * 1112 * This function is called when a super_block is about to be destroyed and 1113 * flushes in-flight inode wb switches. An inode wb switch goes through 1114 * RCU and then workqueue, so the two need to be flushed in order to ensure 1115 * that all previously scheduled switches are finished. As wb switches are 1116 * rare occurrences and synchronize_rcu() can take a while, perform 1117 * flushing iff wb switches are in flight. 1118 */ 1119 void cgroup_writeback_umount(void) 1120 { 1121 /* 1122 * SB_ACTIVE should be reliably cleared before checking 1123 * isw_nr_in_flight, see generic_shutdown_super(). 1124 */ 1125 smp_mb(); 1126 1127 if (atomic_read(&isw_nr_in_flight)) { 1128 /* 1129 * Use rcu_barrier() to wait for all pending callbacks to 1130 * ensure that all in-flight wb switches are in the workqueue. 1131 */ 1132 rcu_barrier(); 1133 flush_workqueue(isw_wq); 1134 } 1135 } 1136 1137 static int __init cgroup_writeback_init(void) 1138 { 1139 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0); 1140 if (!isw_wq) 1141 return -ENOMEM; 1142 return 0; 1143 } 1144 fs_initcall(cgroup_writeback_init); 1145 1146 #else /* CONFIG_CGROUP_WRITEBACK */ 1147 1148 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1149 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { } 1150 1151 static void inode_cgwb_move_to_attached(struct inode *inode, 1152 struct bdi_writeback *wb) 1153 { 1154 assert_spin_locked(&wb->list_lock); 1155 assert_spin_locked(&inode->i_lock); 1156 WARN_ON_ONCE(inode->i_state & I_FREEING); 1157 1158 inode->i_state &= ~I_SYNC_QUEUED; 1159 list_del_init(&inode->i_io_list); 1160 wb_io_lists_depopulated(wb); 1161 } 1162 1163 static struct bdi_writeback * 1164 locked_inode_to_wb_and_lock_list(struct inode *inode) 1165 __releases(&inode->i_lock) 1166 __acquires(&wb->list_lock) 1167 { 1168 struct bdi_writeback *wb = inode_to_wb(inode); 1169 1170 spin_unlock(&inode->i_lock); 1171 spin_lock(&wb->list_lock); 1172 return wb; 1173 } 1174 1175 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode) 1176 __acquires(&wb->list_lock) 1177 { 1178 struct bdi_writeback *wb = inode_to_wb(inode); 1179 1180 spin_lock(&wb->list_lock); 1181 return wb; 1182 } 1183 1184 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages) 1185 { 1186 return nr_pages; 1187 } 1188 1189 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi, 1190 struct wb_writeback_work *base_work, 1191 bool skip_if_busy) 1192 { 1193 might_sleep(); 1194 1195 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) { 1196 base_work->auto_free = 0; 1197 wb_queue_work(&bdi->wb, base_work); 1198 } 1199 } 1200 1201 #endif /* CONFIG_CGROUP_WRITEBACK */ 1202 1203 /* 1204 * Add in the number of potentially dirty inodes, because each inode 1205 * write can dirty pagecache in the underlying blockdev. 1206 */ 1207 static unsigned long get_nr_dirty_pages(void) 1208 { 1209 return global_node_page_state(NR_FILE_DIRTY) + 1210 get_nr_dirty_inodes(); 1211 } 1212 1213 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason) 1214 { 1215 if (!wb_has_dirty_io(wb)) 1216 return; 1217 1218 /* 1219 * All callers of this function want to start writeback of all 1220 * dirty pages. Places like vmscan can call this at a very 1221 * high frequency, causing pointless allocations of tons of 1222 * work items and keeping the flusher threads busy retrieving 1223 * that work. Ensure that we only allow one of them pending and 1224 * inflight at the time. 1225 */ 1226 if (test_bit(WB_start_all, &wb->state) || 1227 test_and_set_bit(WB_start_all, &wb->state)) 1228 return; 1229 1230 wb->start_all_reason = reason; 1231 wb_wakeup(wb); 1232 } 1233 1234 /** 1235 * wb_start_background_writeback - start background writeback 1236 * @wb: bdi_writback to write from 1237 * 1238 * Description: 1239 * This makes sure WB_SYNC_NONE background writeback happens. When 1240 * this function returns, it is only guaranteed that for given wb 1241 * some IO is happening if we are over background dirty threshold. 1242 * Caller need not hold sb s_umount semaphore. 1243 */ 1244 void wb_start_background_writeback(struct bdi_writeback *wb) 1245 { 1246 /* 1247 * We just wake up the flusher thread. It will perform background 1248 * writeback as soon as there is no other work to do. 1249 */ 1250 trace_writeback_wake_background(wb); 1251 wb_wakeup(wb); 1252 } 1253 1254 /* 1255 * Remove the inode from the writeback list it is on. 1256 */ 1257 void inode_io_list_del(struct inode *inode) 1258 { 1259 struct bdi_writeback *wb; 1260 1261 wb = inode_to_wb_and_lock_list(inode); 1262 spin_lock(&inode->i_lock); 1263 1264 inode->i_state &= ~I_SYNC_QUEUED; 1265 list_del_init(&inode->i_io_list); 1266 wb_io_lists_depopulated(wb); 1267 1268 spin_unlock(&inode->i_lock); 1269 spin_unlock(&wb->list_lock); 1270 } 1271 EXPORT_SYMBOL(inode_io_list_del); 1272 1273 /* 1274 * mark an inode as under writeback on the sb 1275 */ 1276 void sb_mark_inode_writeback(struct inode *inode) 1277 { 1278 struct super_block *sb = inode->i_sb; 1279 unsigned long flags; 1280 1281 if (list_empty(&inode->i_wb_list)) { 1282 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1283 if (list_empty(&inode->i_wb_list)) { 1284 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb); 1285 trace_sb_mark_inode_writeback(inode); 1286 } 1287 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1288 } 1289 } 1290 1291 /* 1292 * clear an inode as under writeback on the sb 1293 */ 1294 void sb_clear_inode_writeback(struct inode *inode) 1295 { 1296 struct super_block *sb = inode->i_sb; 1297 unsigned long flags; 1298 1299 if (!list_empty(&inode->i_wb_list)) { 1300 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags); 1301 if (!list_empty(&inode->i_wb_list)) { 1302 list_del_init(&inode->i_wb_list); 1303 trace_sb_clear_inode_writeback(inode); 1304 } 1305 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags); 1306 } 1307 } 1308 1309 /* 1310 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the 1311 * furthest end of its superblock's dirty-inode list. 1312 * 1313 * Before stamping the inode's ->dirtied_when, we check to see whether it is 1314 * already the most-recently-dirtied inode on the b_dirty list. If that is 1315 * the case then the inode must have been redirtied while it was being written 1316 * out and we don't reset its dirtied_when. 1317 */ 1318 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb) 1319 { 1320 assert_spin_locked(&inode->i_lock); 1321 1322 inode->i_state &= ~I_SYNC_QUEUED; 1323 /* 1324 * When the inode is being freed just don't bother with dirty list 1325 * tracking. Flush worker will ignore this inode anyway and it will 1326 * trigger assertions in inode_io_list_move_locked(). 1327 */ 1328 if (inode->i_state & I_FREEING) { 1329 list_del_init(&inode->i_io_list); 1330 wb_io_lists_depopulated(wb); 1331 return; 1332 } 1333 if (!list_empty(&wb->b_dirty)) { 1334 struct inode *tail; 1335 1336 tail = wb_inode(wb->b_dirty.next); 1337 if (time_before(inode->dirtied_when, tail->dirtied_when)) 1338 inode->dirtied_when = jiffies; 1339 } 1340 inode_io_list_move_locked(inode, wb, &wb->b_dirty); 1341 } 1342 1343 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb) 1344 { 1345 spin_lock(&inode->i_lock); 1346 redirty_tail_locked(inode, wb); 1347 spin_unlock(&inode->i_lock); 1348 } 1349 1350 /* 1351 * requeue inode for re-scanning after bdi->b_io list is exhausted. 1352 */ 1353 static void requeue_io(struct inode *inode, struct bdi_writeback *wb) 1354 { 1355 inode_io_list_move_locked(inode, wb, &wb->b_more_io); 1356 } 1357 1358 static void inode_sync_complete(struct inode *inode) 1359 { 1360 inode->i_state &= ~I_SYNC; 1361 /* If inode is clean an unused, put it into LRU now... */ 1362 inode_add_lru(inode); 1363 /* Waiters must see I_SYNC cleared before being woken up */ 1364 smp_mb(); 1365 wake_up_bit(&inode->i_state, __I_SYNC); 1366 } 1367 1368 static bool inode_dirtied_after(struct inode *inode, unsigned long t) 1369 { 1370 bool ret = time_after(inode->dirtied_when, t); 1371 #ifndef CONFIG_64BIT 1372 /* 1373 * For inodes being constantly redirtied, dirtied_when can get stuck. 1374 * It _appears_ to be in the future, but is actually in distant past. 1375 * This test is necessary to prevent such wrapped-around relative times 1376 * from permanently stopping the whole bdi writeback. 1377 */ 1378 ret = ret && time_before_eq(inode->dirtied_when, jiffies); 1379 #endif 1380 return ret; 1381 } 1382 1383 /* 1384 * Move expired (dirtied before dirtied_before) dirty inodes from 1385 * @delaying_queue to @dispatch_queue. 1386 */ 1387 static int move_expired_inodes(struct list_head *delaying_queue, 1388 struct list_head *dispatch_queue, 1389 unsigned long dirtied_before) 1390 { 1391 LIST_HEAD(tmp); 1392 struct list_head *pos, *node; 1393 struct super_block *sb = NULL; 1394 struct inode *inode; 1395 int do_sb_sort = 0; 1396 int moved = 0; 1397 1398 while (!list_empty(delaying_queue)) { 1399 inode = wb_inode(delaying_queue->prev); 1400 if (inode_dirtied_after(inode, dirtied_before)) 1401 break; 1402 spin_lock(&inode->i_lock); 1403 list_move(&inode->i_io_list, &tmp); 1404 moved++; 1405 inode->i_state |= I_SYNC_QUEUED; 1406 spin_unlock(&inode->i_lock); 1407 if (sb_is_blkdev_sb(inode->i_sb)) 1408 continue; 1409 if (sb && sb != inode->i_sb) 1410 do_sb_sort = 1; 1411 sb = inode->i_sb; 1412 } 1413 1414 /* just one sb in list, splice to dispatch_queue and we're done */ 1415 if (!do_sb_sort) { 1416 list_splice(&tmp, dispatch_queue); 1417 goto out; 1418 } 1419 1420 /* 1421 * Although inode's i_io_list is moved from 'tmp' to 'dispatch_queue', 1422 * we don't take inode->i_lock here because it is just a pointless overhead. 1423 * Inode is already marked as I_SYNC_QUEUED so writeback list handling is 1424 * fully under our control. 1425 */ 1426 while (!list_empty(&tmp)) { 1427 sb = wb_inode(tmp.prev)->i_sb; 1428 list_for_each_prev_safe(pos, node, &tmp) { 1429 inode = wb_inode(pos); 1430 if (inode->i_sb == sb) 1431 list_move(&inode->i_io_list, dispatch_queue); 1432 } 1433 } 1434 out: 1435 return moved; 1436 } 1437 1438 /* 1439 * Queue all expired dirty inodes for io, eldest first. 1440 * Before 1441 * newly dirtied b_dirty b_io b_more_io 1442 * =============> gf edc BA 1443 * After 1444 * newly dirtied b_dirty b_io b_more_io 1445 * =============> g fBAedc 1446 * | 1447 * +--> dequeue for IO 1448 */ 1449 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work, 1450 unsigned long dirtied_before) 1451 { 1452 int moved; 1453 unsigned long time_expire_jif = dirtied_before; 1454 1455 assert_spin_locked(&wb->list_lock); 1456 list_splice_init(&wb->b_more_io, &wb->b_io); 1457 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before); 1458 if (!work->for_sync) 1459 time_expire_jif = jiffies - dirtytime_expire_interval * HZ; 1460 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io, 1461 time_expire_jif); 1462 if (moved) 1463 wb_io_lists_populated(wb); 1464 trace_writeback_queue_io(wb, work, dirtied_before, moved); 1465 } 1466 1467 static int write_inode(struct inode *inode, struct writeback_control *wbc) 1468 { 1469 int ret; 1470 1471 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) { 1472 trace_writeback_write_inode_start(inode, wbc); 1473 ret = inode->i_sb->s_op->write_inode(inode, wbc); 1474 trace_writeback_write_inode(inode, wbc); 1475 return ret; 1476 } 1477 return 0; 1478 } 1479 1480 /* 1481 * Wait for writeback on an inode to complete. Called with i_lock held. 1482 * Caller must make sure inode cannot go away when we drop i_lock. 1483 */ 1484 static void __inode_wait_for_writeback(struct inode *inode) 1485 __releases(inode->i_lock) 1486 __acquires(inode->i_lock) 1487 { 1488 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC); 1489 wait_queue_head_t *wqh; 1490 1491 wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1492 while (inode->i_state & I_SYNC) { 1493 spin_unlock(&inode->i_lock); 1494 __wait_on_bit(wqh, &wq, bit_wait, 1495 TASK_UNINTERRUPTIBLE); 1496 spin_lock(&inode->i_lock); 1497 } 1498 } 1499 1500 /* 1501 * Wait for writeback on an inode to complete. Caller must have inode pinned. 1502 */ 1503 void inode_wait_for_writeback(struct inode *inode) 1504 { 1505 spin_lock(&inode->i_lock); 1506 __inode_wait_for_writeback(inode); 1507 spin_unlock(&inode->i_lock); 1508 } 1509 1510 /* 1511 * Sleep until I_SYNC is cleared. This function must be called with i_lock 1512 * held and drops it. It is aimed for callers not holding any inode reference 1513 * so once i_lock is dropped, inode can go away. 1514 */ 1515 static void inode_sleep_on_writeback(struct inode *inode) 1516 __releases(inode->i_lock) 1517 { 1518 DEFINE_WAIT(wait); 1519 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC); 1520 int sleep; 1521 1522 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE); 1523 sleep = inode->i_state & I_SYNC; 1524 spin_unlock(&inode->i_lock); 1525 if (sleep) 1526 schedule(); 1527 finish_wait(wqh, &wait); 1528 } 1529 1530 /* 1531 * Find proper writeback list for the inode depending on its current state and 1532 * possibly also change of its state while we were doing writeback. Here we 1533 * handle things such as livelock prevention or fairness of writeback among 1534 * inodes. This function can be called only by flusher thread - noone else 1535 * processes all inodes in writeback lists and requeueing inodes behind flusher 1536 * thread's back can have unexpected consequences. 1537 */ 1538 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb, 1539 struct writeback_control *wbc) 1540 { 1541 if (inode->i_state & I_FREEING) 1542 return; 1543 1544 /* 1545 * Sync livelock prevention. Each inode is tagged and synced in one 1546 * shot. If still dirty, it will be redirty_tail()'ed below. Update 1547 * the dirty time to prevent enqueue and sync it again. 1548 */ 1549 if ((inode->i_state & I_DIRTY) && 1550 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)) 1551 inode->dirtied_when = jiffies; 1552 1553 if (wbc->pages_skipped) { 1554 /* 1555 * Writeback is not making progress due to locked buffers. 1556 * Skip this inode for now. Although having skipped pages 1557 * is odd for clean inodes, it can happen for some 1558 * filesystems so handle that gracefully. 1559 */ 1560 if (inode->i_state & I_DIRTY_ALL) 1561 redirty_tail_locked(inode, wb); 1562 else 1563 inode_cgwb_move_to_attached(inode, wb); 1564 return; 1565 } 1566 1567 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 1568 /* 1569 * We didn't write back all the pages. nfs_writepages() 1570 * sometimes bales out without doing anything. 1571 */ 1572 if (wbc->nr_to_write <= 0) { 1573 /* Slice used up. Queue for next turn. */ 1574 requeue_io(inode, wb); 1575 } else { 1576 /* 1577 * Writeback blocked by something other than 1578 * congestion. Delay the inode for some time to 1579 * avoid spinning on the CPU (100% iowait) 1580 * retrying writeback of the dirty page/inode 1581 * that cannot be performed immediately. 1582 */ 1583 redirty_tail_locked(inode, wb); 1584 } 1585 } else if (inode->i_state & I_DIRTY) { 1586 /* 1587 * Filesystems can dirty the inode during writeback operations, 1588 * such as delayed allocation during submission or metadata 1589 * updates after data IO completion. 1590 */ 1591 redirty_tail_locked(inode, wb); 1592 } else if (inode->i_state & I_DIRTY_TIME) { 1593 inode->dirtied_when = jiffies; 1594 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time); 1595 inode->i_state &= ~I_SYNC_QUEUED; 1596 } else { 1597 /* The inode is clean. Remove from writeback lists. */ 1598 inode_cgwb_move_to_attached(inode, wb); 1599 } 1600 } 1601 1602 /* 1603 * Write out an inode and its dirty pages (or some of its dirty pages, depending 1604 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state. 1605 * 1606 * This doesn't remove the inode from the writeback list it is on, except 1607 * potentially to move it from b_dirty_time to b_dirty due to timestamp 1608 * expiration. The caller is otherwise responsible for writeback list handling. 1609 * 1610 * The caller is also responsible for setting the I_SYNC flag beforehand and 1611 * calling inode_sync_complete() to clear it afterwards. 1612 */ 1613 static int 1614 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc) 1615 { 1616 struct address_space *mapping = inode->i_mapping; 1617 long nr_to_write = wbc->nr_to_write; 1618 unsigned dirty; 1619 int ret; 1620 1621 WARN_ON(!(inode->i_state & I_SYNC)); 1622 1623 trace_writeback_single_inode_start(inode, wbc, nr_to_write); 1624 1625 ret = do_writepages(mapping, wbc); 1626 1627 /* 1628 * Make sure to wait on the data before writing out the metadata. 1629 * This is important for filesystems that modify metadata on data 1630 * I/O completion. We don't do it for sync(2) writeback because it has a 1631 * separate, external IO completion path and ->sync_fs for guaranteeing 1632 * inode metadata is written back correctly. 1633 */ 1634 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) { 1635 int err = filemap_fdatawait(mapping); 1636 if (ret == 0) 1637 ret = err; 1638 } 1639 1640 /* 1641 * If the inode has dirty timestamps and we need to write them, call 1642 * mark_inode_dirty_sync() to notify the filesystem about it and to 1643 * change I_DIRTY_TIME into I_DIRTY_SYNC. 1644 */ 1645 if ((inode->i_state & I_DIRTY_TIME) && 1646 (wbc->sync_mode == WB_SYNC_ALL || 1647 time_after(jiffies, inode->dirtied_time_when + 1648 dirtytime_expire_interval * HZ))) { 1649 trace_writeback_lazytime(inode); 1650 mark_inode_dirty_sync(inode); 1651 } 1652 1653 /* 1654 * Get and clear the dirty flags from i_state. This needs to be done 1655 * after calling writepages because some filesystems may redirty the 1656 * inode during writepages due to delalloc. It also needs to be done 1657 * after handling timestamp expiration, as that may dirty the inode too. 1658 */ 1659 spin_lock(&inode->i_lock); 1660 dirty = inode->i_state & I_DIRTY; 1661 inode->i_state &= ~dirty; 1662 1663 /* 1664 * Paired with smp_mb() in __mark_inode_dirty(). This allows 1665 * __mark_inode_dirty() to test i_state without grabbing i_lock - 1666 * either they see the I_DIRTY bits cleared or we see the dirtied 1667 * inode. 1668 * 1669 * I_DIRTY_PAGES is always cleared together above even if @mapping 1670 * still has dirty pages. The flag is reinstated after smp_mb() if 1671 * necessary. This guarantees that either __mark_inode_dirty() 1672 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY. 1673 */ 1674 smp_mb(); 1675 1676 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 1677 inode->i_state |= I_DIRTY_PAGES; 1678 else if (unlikely(inode->i_state & I_PINNING_FSCACHE_WB)) { 1679 if (!(inode->i_state & I_DIRTY_PAGES)) { 1680 inode->i_state &= ~I_PINNING_FSCACHE_WB; 1681 wbc->unpinned_fscache_wb = true; 1682 dirty |= I_PINNING_FSCACHE_WB; /* Cause write_inode */ 1683 } 1684 } 1685 1686 spin_unlock(&inode->i_lock); 1687 1688 /* Don't write the inode if only I_DIRTY_PAGES was set */ 1689 if (dirty & ~I_DIRTY_PAGES) { 1690 int err = write_inode(inode, wbc); 1691 if (ret == 0) 1692 ret = err; 1693 } 1694 wbc->unpinned_fscache_wb = false; 1695 trace_writeback_single_inode(inode, wbc, nr_to_write); 1696 return ret; 1697 } 1698 1699 /* 1700 * Write out an inode's dirty data and metadata on-demand, i.e. separately from 1701 * the regular batched writeback done by the flusher threads in 1702 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as 1703 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE). 1704 * 1705 * To prevent the inode from going away, either the caller must have a reference 1706 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set. 1707 */ 1708 static int writeback_single_inode(struct inode *inode, 1709 struct writeback_control *wbc) 1710 { 1711 struct bdi_writeback *wb; 1712 int ret = 0; 1713 1714 spin_lock(&inode->i_lock); 1715 if (!atomic_read(&inode->i_count)) 1716 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING))); 1717 else 1718 WARN_ON(inode->i_state & I_WILL_FREE); 1719 1720 if (inode->i_state & I_SYNC) { 1721 /* 1722 * Writeback is already running on the inode. For WB_SYNC_NONE, 1723 * that's enough and we can just return. For WB_SYNC_ALL, we 1724 * must wait for the existing writeback to complete, then do 1725 * writeback again if there's anything left. 1726 */ 1727 if (wbc->sync_mode != WB_SYNC_ALL) 1728 goto out; 1729 __inode_wait_for_writeback(inode); 1730 } 1731 WARN_ON(inode->i_state & I_SYNC); 1732 /* 1733 * If the inode is already fully clean, then there's nothing to do. 1734 * 1735 * For data-integrity syncs we also need to check whether any pages are 1736 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If 1737 * there are any such pages, we'll need to wait for them. 1738 */ 1739 if (!(inode->i_state & I_DIRTY_ALL) && 1740 (wbc->sync_mode != WB_SYNC_ALL || 1741 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK))) 1742 goto out; 1743 inode->i_state |= I_SYNC; 1744 wbc_attach_and_unlock_inode(wbc, inode); 1745 1746 ret = __writeback_single_inode(inode, wbc); 1747 1748 wbc_detach_inode(wbc); 1749 1750 wb = inode_to_wb_and_lock_list(inode); 1751 spin_lock(&inode->i_lock); 1752 /* 1753 * If the inode is freeing, its i_io_list shoudn't be updated 1754 * as it can be finally deleted at this moment. 1755 */ 1756 if (!(inode->i_state & I_FREEING)) { 1757 /* 1758 * If the inode is now fully clean, then it can be safely 1759 * removed from its writeback list (if any). Otherwise the 1760 * flusher threads are responsible for the writeback lists. 1761 */ 1762 if (!(inode->i_state & I_DIRTY_ALL)) 1763 inode_cgwb_move_to_attached(inode, wb); 1764 else if (!(inode->i_state & I_SYNC_QUEUED)) { 1765 if ((inode->i_state & I_DIRTY)) 1766 redirty_tail_locked(inode, wb); 1767 else if (inode->i_state & I_DIRTY_TIME) { 1768 inode->dirtied_when = jiffies; 1769 inode_io_list_move_locked(inode, 1770 wb, 1771 &wb->b_dirty_time); 1772 } 1773 } 1774 } 1775 1776 spin_unlock(&wb->list_lock); 1777 inode_sync_complete(inode); 1778 out: 1779 spin_unlock(&inode->i_lock); 1780 return ret; 1781 } 1782 1783 static long writeback_chunk_size(struct bdi_writeback *wb, 1784 struct wb_writeback_work *work) 1785 { 1786 long pages; 1787 1788 /* 1789 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty 1790 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX 1791 * here avoids calling into writeback_inodes_wb() more than once. 1792 * 1793 * The intended call sequence for WB_SYNC_ALL writeback is: 1794 * 1795 * wb_writeback() 1796 * writeback_sb_inodes() <== called only once 1797 * write_cache_pages() <== called once for each inode 1798 * (quickly) tag currently dirty pages 1799 * (maybe slowly) sync all tagged pages 1800 */ 1801 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages) 1802 pages = LONG_MAX; 1803 else { 1804 pages = min(wb->avg_write_bandwidth / 2, 1805 global_wb_domain.dirty_limit / DIRTY_SCOPE); 1806 pages = min(pages, work->nr_pages); 1807 pages = round_down(pages + MIN_WRITEBACK_PAGES, 1808 MIN_WRITEBACK_PAGES); 1809 } 1810 1811 return pages; 1812 } 1813 1814 /* 1815 * Write a portion of b_io inodes which belong to @sb. 1816 * 1817 * Return the number of pages and/or inodes written. 1818 * 1819 * NOTE! This is called with wb->list_lock held, and will 1820 * unlock and relock that for each inode it ends up doing 1821 * IO for. 1822 */ 1823 static long writeback_sb_inodes(struct super_block *sb, 1824 struct bdi_writeback *wb, 1825 struct wb_writeback_work *work) 1826 { 1827 struct writeback_control wbc = { 1828 .sync_mode = work->sync_mode, 1829 .tagged_writepages = work->tagged_writepages, 1830 .for_kupdate = work->for_kupdate, 1831 .for_background = work->for_background, 1832 .for_sync = work->for_sync, 1833 .range_cyclic = work->range_cyclic, 1834 .range_start = 0, 1835 .range_end = LLONG_MAX, 1836 }; 1837 unsigned long start_time = jiffies; 1838 long write_chunk; 1839 long total_wrote = 0; /* count both pages and inodes */ 1840 1841 while (!list_empty(&wb->b_io)) { 1842 struct inode *inode = wb_inode(wb->b_io.prev); 1843 struct bdi_writeback *tmp_wb; 1844 long wrote; 1845 1846 if (inode->i_sb != sb) { 1847 if (work->sb) { 1848 /* 1849 * We only want to write back data for this 1850 * superblock, move all inodes not belonging 1851 * to it back onto the dirty list. 1852 */ 1853 redirty_tail(inode, wb); 1854 continue; 1855 } 1856 1857 /* 1858 * The inode belongs to a different superblock. 1859 * Bounce back to the caller to unpin this and 1860 * pin the next superblock. 1861 */ 1862 break; 1863 } 1864 1865 /* 1866 * Don't bother with new inodes or inodes being freed, first 1867 * kind does not need periodic writeout yet, and for the latter 1868 * kind writeout is handled by the freer. 1869 */ 1870 spin_lock(&inode->i_lock); 1871 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) { 1872 redirty_tail_locked(inode, wb); 1873 spin_unlock(&inode->i_lock); 1874 continue; 1875 } 1876 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) { 1877 /* 1878 * If this inode is locked for writeback and we are not 1879 * doing writeback-for-data-integrity, move it to 1880 * b_more_io so that writeback can proceed with the 1881 * other inodes on s_io. 1882 * 1883 * We'll have another go at writing back this inode 1884 * when we completed a full scan of b_io. 1885 */ 1886 requeue_io(inode, wb); 1887 spin_unlock(&inode->i_lock); 1888 trace_writeback_sb_inodes_requeue(inode); 1889 continue; 1890 } 1891 spin_unlock(&wb->list_lock); 1892 1893 /* 1894 * We already requeued the inode if it had I_SYNC set and we 1895 * are doing WB_SYNC_NONE writeback. So this catches only the 1896 * WB_SYNC_ALL case. 1897 */ 1898 if (inode->i_state & I_SYNC) { 1899 /* Wait for I_SYNC. This function drops i_lock... */ 1900 inode_sleep_on_writeback(inode); 1901 /* Inode may be gone, start again */ 1902 spin_lock(&wb->list_lock); 1903 continue; 1904 } 1905 inode->i_state |= I_SYNC; 1906 wbc_attach_and_unlock_inode(&wbc, inode); 1907 1908 write_chunk = writeback_chunk_size(wb, work); 1909 wbc.nr_to_write = write_chunk; 1910 wbc.pages_skipped = 0; 1911 1912 /* 1913 * We use I_SYNC to pin the inode in memory. While it is set 1914 * evict_inode() will wait so the inode cannot be freed. 1915 */ 1916 __writeback_single_inode(inode, &wbc); 1917 1918 wbc_detach_inode(&wbc); 1919 work->nr_pages -= write_chunk - wbc.nr_to_write; 1920 wrote = write_chunk - wbc.nr_to_write - wbc.pages_skipped; 1921 wrote = wrote < 0 ? 0 : wrote; 1922 total_wrote += wrote; 1923 1924 if (need_resched()) { 1925 /* 1926 * We're trying to balance between building up a nice 1927 * long list of IOs to improve our merge rate, and 1928 * getting those IOs out quickly for anyone throttling 1929 * in balance_dirty_pages(). cond_resched() doesn't 1930 * unplug, so get our IOs out the door before we 1931 * give up the CPU. 1932 */ 1933 blk_flush_plug(current->plug, false); 1934 cond_resched(); 1935 } 1936 1937 /* 1938 * Requeue @inode if still dirty. Be careful as @inode may 1939 * have been switched to another wb in the meantime. 1940 */ 1941 tmp_wb = inode_to_wb_and_lock_list(inode); 1942 spin_lock(&inode->i_lock); 1943 if (!(inode->i_state & I_DIRTY_ALL)) 1944 total_wrote++; 1945 requeue_inode(inode, tmp_wb, &wbc); 1946 inode_sync_complete(inode); 1947 spin_unlock(&inode->i_lock); 1948 1949 if (unlikely(tmp_wb != wb)) { 1950 spin_unlock(&tmp_wb->list_lock); 1951 spin_lock(&wb->list_lock); 1952 } 1953 1954 /* 1955 * bail out to wb_writeback() often enough to check 1956 * background threshold and other termination conditions. 1957 */ 1958 if (total_wrote) { 1959 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1960 break; 1961 if (work->nr_pages <= 0) 1962 break; 1963 } 1964 } 1965 return total_wrote; 1966 } 1967 1968 static long __writeback_inodes_wb(struct bdi_writeback *wb, 1969 struct wb_writeback_work *work) 1970 { 1971 unsigned long start_time = jiffies; 1972 long wrote = 0; 1973 1974 while (!list_empty(&wb->b_io)) { 1975 struct inode *inode = wb_inode(wb->b_io.prev); 1976 struct super_block *sb = inode->i_sb; 1977 1978 if (!super_trylock_shared(sb)) { 1979 /* 1980 * super_trylock_shared() may fail consistently due to 1981 * s_umount being grabbed by someone else. Don't use 1982 * requeue_io() to avoid busy retrying the inode/sb. 1983 */ 1984 redirty_tail(inode, wb); 1985 continue; 1986 } 1987 wrote += writeback_sb_inodes(sb, wb, work); 1988 up_read(&sb->s_umount); 1989 1990 /* refer to the same tests at the end of writeback_sb_inodes */ 1991 if (wrote) { 1992 if (time_is_before_jiffies(start_time + HZ / 10UL)) 1993 break; 1994 if (work->nr_pages <= 0) 1995 break; 1996 } 1997 } 1998 /* Leave any unwritten inodes on b_io */ 1999 return wrote; 2000 } 2001 2002 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages, 2003 enum wb_reason reason) 2004 { 2005 struct wb_writeback_work work = { 2006 .nr_pages = nr_pages, 2007 .sync_mode = WB_SYNC_NONE, 2008 .range_cyclic = 1, 2009 .reason = reason, 2010 }; 2011 struct blk_plug plug; 2012 2013 blk_start_plug(&plug); 2014 spin_lock(&wb->list_lock); 2015 if (list_empty(&wb->b_io)) 2016 queue_io(wb, &work, jiffies); 2017 __writeback_inodes_wb(wb, &work); 2018 spin_unlock(&wb->list_lock); 2019 blk_finish_plug(&plug); 2020 2021 return nr_pages - work.nr_pages; 2022 } 2023 2024 /* 2025 * Explicit flushing or periodic writeback of "old" data. 2026 * 2027 * Define "old": the first time one of an inode's pages is dirtied, we mark the 2028 * dirtying-time in the inode's address_space. So this periodic writeback code 2029 * just walks the superblock inode list, writing back any inodes which are 2030 * older than a specific point in time. 2031 * 2032 * Try to run once per dirty_writeback_interval. But if a writeback event 2033 * takes longer than a dirty_writeback_interval interval, then leave a 2034 * one-second gap. 2035 * 2036 * dirtied_before takes precedence over nr_to_write. So we'll only write back 2037 * all dirty pages if they are all attached to "old" mappings. 2038 */ 2039 static long wb_writeback(struct bdi_writeback *wb, 2040 struct wb_writeback_work *work) 2041 { 2042 long nr_pages = work->nr_pages; 2043 unsigned long dirtied_before = jiffies; 2044 struct inode *inode; 2045 long progress; 2046 struct blk_plug plug; 2047 2048 blk_start_plug(&plug); 2049 for (;;) { 2050 /* 2051 * Stop writeback when nr_pages has been consumed 2052 */ 2053 if (work->nr_pages <= 0) 2054 break; 2055 2056 /* 2057 * Background writeout and kupdate-style writeback may 2058 * run forever. Stop them if there is other work to do 2059 * so that e.g. sync can proceed. They'll be restarted 2060 * after the other works are all done. 2061 */ 2062 if ((work->for_background || work->for_kupdate) && 2063 !list_empty(&wb->work_list)) 2064 break; 2065 2066 /* 2067 * For background writeout, stop when we are below the 2068 * background dirty threshold 2069 */ 2070 if (work->for_background && !wb_over_bg_thresh(wb)) 2071 break; 2072 2073 2074 spin_lock(&wb->list_lock); 2075 2076 /* 2077 * Kupdate and background works are special and we want to 2078 * include all inodes that need writing. Livelock avoidance is 2079 * handled by these works yielding to any other work so we are 2080 * safe. 2081 */ 2082 if (work->for_kupdate) { 2083 dirtied_before = jiffies - 2084 msecs_to_jiffies(dirty_expire_interval * 10); 2085 } else if (work->for_background) 2086 dirtied_before = jiffies; 2087 2088 trace_writeback_start(wb, work); 2089 if (list_empty(&wb->b_io)) 2090 queue_io(wb, work, dirtied_before); 2091 if (work->sb) 2092 progress = writeback_sb_inodes(work->sb, wb, work); 2093 else 2094 progress = __writeback_inodes_wb(wb, work); 2095 trace_writeback_written(wb, work); 2096 2097 /* 2098 * Did we write something? Try for more 2099 * 2100 * Dirty inodes are moved to b_io for writeback in batches. 2101 * The completion of the current batch does not necessarily 2102 * mean the overall work is done. So we keep looping as long 2103 * as made some progress on cleaning pages or inodes. 2104 */ 2105 if (progress) { 2106 spin_unlock(&wb->list_lock); 2107 continue; 2108 } 2109 2110 /* 2111 * No more inodes for IO, bail 2112 */ 2113 if (list_empty(&wb->b_more_io)) { 2114 spin_unlock(&wb->list_lock); 2115 break; 2116 } 2117 2118 /* 2119 * Nothing written. Wait for some inode to 2120 * become available for writeback. Otherwise 2121 * we'll just busyloop. 2122 */ 2123 trace_writeback_wait(wb, work); 2124 inode = wb_inode(wb->b_more_io.prev); 2125 spin_lock(&inode->i_lock); 2126 spin_unlock(&wb->list_lock); 2127 /* This function drops i_lock... */ 2128 inode_sleep_on_writeback(inode); 2129 } 2130 blk_finish_plug(&plug); 2131 2132 return nr_pages - work->nr_pages; 2133 } 2134 2135 /* 2136 * Return the next wb_writeback_work struct that hasn't been processed yet. 2137 */ 2138 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb) 2139 { 2140 struct wb_writeback_work *work = NULL; 2141 2142 spin_lock_irq(&wb->work_lock); 2143 if (!list_empty(&wb->work_list)) { 2144 work = list_entry(wb->work_list.next, 2145 struct wb_writeback_work, list); 2146 list_del_init(&work->list); 2147 } 2148 spin_unlock_irq(&wb->work_lock); 2149 return work; 2150 } 2151 2152 static long wb_check_background_flush(struct bdi_writeback *wb) 2153 { 2154 if (wb_over_bg_thresh(wb)) { 2155 2156 struct wb_writeback_work work = { 2157 .nr_pages = LONG_MAX, 2158 .sync_mode = WB_SYNC_NONE, 2159 .for_background = 1, 2160 .range_cyclic = 1, 2161 .reason = WB_REASON_BACKGROUND, 2162 }; 2163 2164 return wb_writeback(wb, &work); 2165 } 2166 2167 return 0; 2168 } 2169 2170 static long wb_check_old_data_flush(struct bdi_writeback *wb) 2171 { 2172 unsigned long expired; 2173 long nr_pages; 2174 2175 /* 2176 * When set to zero, disable periodic writeback 2177 */ 2178 if (!dirty_writeback_interval) 2179 return 0; 2180 2181 expired = wb->last_old_flush + 2182 msecs_to_jiffies(dirty_writeback_interval * 10); 2183 if (time_before(jiffies, expired)) 2184 return 0; 2185 2186 wb->last_old_flush = jiffies; 2187 nr_pages = get_nr_dirty_pages(); 2188 2189 if (nr_pages) { 2190 struct wb_writeback_work work = { 2191 .nr_pages = nr_pages, 2192 .sync_mode = WB_SYNC_NONE, 2193 .for_kupdate = 1, 2194 .range_cyclic = 1, 2195 .reason = WB_REASON_PERIODIC, 2196 }; 2197 2198 return wb_writeback(wb, &work); 2199 } 2200 2201 return 0; 2202 } 2203 2204 static long wb_check_start_all(struct bdi_writeback *wb) 2205 { 2206 long nr_pages; 2207 2208 if (!test_bit(WB_start_all, &wb->state)) 2209 return 0; 2210 2211 nr_pages = get_nr_dirty_pages(); 2212 if (nr_pages) { 2213 struct wb_writeback_work work = { 2214 .nr_pages = wb_split_bdi_pages(wb, nr_pages), 2215 .sync_mode = WB_SYNC_NONE, 2216 .range_cyclic = 1, 2217 .reason = wb->start_all_reason, 2218 }; 2219 2220 nr_pages = wb_writeback(wb, &work); 2221 } 2222 2223 clear_bit(WB_start_all, &wb->state); 2224 return nr_pages; 2225 } 2226 2227 2228 /* 2229 * Retrieve work items and do the writeback they describe 2230 */ 2231 static long wb_do_writeback(struct bdi_writeback *wb) 2232 { 2233 struct wb_writeback_work *work; 2234 long wrote = 0; 2235 2236 set_bit(WB_writeback_running, &wb->state); 2237 while ((work = get_next_work_item(wb)) != NULL) { 2238 trace_writeback_exec(wb, work); 2239 wrote += wb_writeback(wb, work); 2240 finish_writeback_work(wb, work); 2241 } 2242 2243 /* 2244 * Check for a flush-everything request 2245 */ 2246 wrote += wb_check_start_all(wb); 2247 2248 /* 2249 * Check for periodic writeback, kupdated() style 2250 */ 2251 wrote += wb_check_old_data_flush(wb); 2252 wrote += wb_check_background_flush(wb); 2253 clear_bit(WB_writeback_running, &wb->state); 2254 2255 return wrote; 2256 } 2257 2258 /* 2259 * Handle writeback of dirty data for the device backed by this bdi. Also 2260 * reschedules periodically and does kupdated style flushing. 2261 */ 2262 void wb_workfn(struct work_struct *work) 2263 { 2264 struct bdi_writeback *wb = container_of(to_delayed_work(work), 2265 struct bdi_writeback, dwork); 2266 long pages_written; 2267 2268 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi)); 2269 2270 if (likely(!current_is_workqueue_rescuer() || 2271 !test_bit(WB_registered, &wb->state))) { 2272 /* 2273 * The normal path. Keep writing back @wb until its 2274 * work_list is empty. Note that this path is also taken 2275 * if @wb is shutting down even when we're running off the 2276 * rescuer as work_list needs to be drained. 2277 */ 2278 do { 2279 pages_written = wb_do_writeback(wb); 2280 trace_writeback_pages_written(pages_written); 2281 } while (!list_empty(&wb->work_list)); 2282 } else { 2283 /* 2284 * bdi_wq can't get enough workers and we're running off 2285 * the emergency worker. Don't hog it. Hopefully, 1024 is 2286 * enough for efficient IO. 2287 */ 2288 pages_written = writeback_inodes_wb(wb, 1024, 2289 WB_REASON_FORKER_THREAD); 2290 trace_writeback_pages_written(pages_written); 2291 } 2292 2293 if (!list_empty(&wb->work_list)) 2294 wb_wakeup(wb); 2295 else if (wb_has_dirty_io(wb) && dirty_writeback_interval) 2296 wb_wakeup_delayed(wb); 2297 } 2298 2299 /* 2300 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero, 2301 * write back the whole world. 2302 */ 2303 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2304 enum wb_reason reason) 2305 { 2306 struct bdi_writeback *wb; 2307 2308 if (!bdi_has_dirty_io(bdi)) 2309 return; 2310 2311 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2312 wb_start_writeback(wb, reason); 2313 } 2314 2315 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi, 2316 enum wb_reason reason) 2317 { 2318 rcu_read_lock(); 2319 __wakeup_flusher_threads_bdi(bdi, reason); 2320 rcu_read_unlock(); 2321 } 2322 2323 /* 2324 * Wakeup the flusher threads to start writeback of all currently dirty pages 2325 */ 2326 void wakeup_flusher_threads(enum wb_reason reason) 2327 { 2328 struct backing_dev_info *bdi; 2329 2330 /* 2331 * If we are expecting writeback progress we must submit plugged IO. 2332 */ 2333 blk_flush_plug(current->plug, true); 2334 2335 rcu_read_lock(); 2336 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2337 __wakeup_flusher_threads_bdi(bdi, reason); 2338 rcu_read_unlock(); 2339 } 2340 2341 /* 2342 * Wake up bdi's periodically to make sure dirtytime inodes gets 2343 * written back periodically. We deliberately do *not* check the 2344 * b_dirtytime list in wb_has_dirty_io(), since this would cause the 2345 * kernel to be constantly waking up once there are any dirtytime 2346 * inodes on the system. So instead we define a separate delayed work 2347 * function which gets called much more rarely. (By default, only 2348 * once every 12 hours.) 2349 * 2350 * If there is any other write activity going on in the file system, 2351 * this function won't be necessary. But if the only thing that has 2352 * happened on the file system is a dirtytime inode caused by an atime 2353 * update, we need this infrastructure below to make sure that inode 2354 * eventually gets pushed out to disk. 2355 */ 2356 static void wakeup_dirtytime_writeback(struct work_struct *w); 2357 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback); 2358 2359 static void wakeup_dirtytime_writeback(struct work_struct *w) 2360 { 2361 struct backing_dev_info *bdi; 2362 2363 rcu_read_lock(); 2364 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) { 2365 struct bdi_writeback *wb; 2366 2367 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node) 2368 if (!list_empty(&wb->b_dirty_time)) 2369 wb_wakeup(wb); 2370 } 2371 rcu_read_unlock(); 2372 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2373 } 2374 2375 static int __init start_dirtytime_writeback(void) 2376 { 2377 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ); 2378 return 0; 2379 } 2380 __initcall(start_dirtytime_writeback); 2381 2382 int dirtytime_interval_handler(struct ctl_table *table, int write, 2383 void *buffer, size_t *lenp, loff_t *ppos) 2384 { 2385 int ret; 2386 2387 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 2388 if (ret == 0 && write) 2389 mod_delayed_work(system_wq, &dirtytime_work, 0); 2390 return ret; 2391 } 2392 2393 /** 2394 * __mark_inode_dirty - internal function to mark an inode dirty 2395 * 2396 * @inode: inode to mark 2397 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of 2398 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined 2399 * with I_DIRTY_PAGES. 2400 * 2401 * Mark an inode as dirty. We notify the filesystem, then update the inode's 2402 * dirty flags. Then, if needed we add the inode to the appropriate dirty list. 2403 * 2404 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync() 2405 * instead of calling this directly. 2406 * 2407 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it 2408 * refers to a blockdev. Unhashed inodes will never be added to the dirty list 2409 * even if they are later hashed, as they will have been marked dirty already. 2410 * 2411 * In short, ensure you hash any inodes _before_ you start marking them dirty. 2412 * 2413 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of 2414 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of 2415 * the kernel-internal blockdev inode represents the dirtying time of the 2416 * blockdev's pages. This is why for I_DIRTY_PAGES we always use 2417 * page->mapping->host, so the page-dirtying time is recorded in the internal 2418 * blockdev inode. 2419 */ 2420 void __mark_inode_dirty(struct inode *inode, int flags) 2421 { 2422 struct super_block *sb = inode->i_sb; 2423 int dirtytime = 0; 2424 struct bdi_writeback *wb = NULL; 2425 2426 trace_writeback_mark_inode_dirty(inode, flags); 2427 2428 if (flags & I_DIRTY_INODE) { 2429 /* 2430 * Inode timestamp update will piggback on this dirtying. 2431 * We tell ->dirty_inode callback that timestamps need to 2432 * be updated by setting I_DIRTY_TIME in flags. 2433 */ 2434 if (inode->i_state & I_DIRTY_TIME) { 2435 spin_lock(&inode->i_lock); 2436 if (inode->i_state & I_DIRTY_TIME) { 2437 inode->i_state &= ~I_DIRTY_TIME; 2438 flags |= I_DIRTY_TIME; 2439 } 2440 spin_unlock(&inode->i_lock); 2441 } 2442 2443 /* 2444 * Notify the filesystem about the inode being dirtied, so that 2445 * (if needed) it can update on-disk fields and journal the 2446 * inode. This is only needed when the inode itself is being 2447 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not 2448 * for just I_DIRTY_PAGES or I_DIRTY_TIME. 2449 */ 2450 trace_writeback_dirty_inode_start(inode, flags); 2451 if (sb->s_op->dirty_inode) 2452 sb->s_op->dirty_inode(inode, 2453 flags & (I_DIRTY_INODE | I_DIRTY_TIME)); 2454 trace_writeback_dirty_inode(inode, flags); 2455 2456 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */ 2457 flags &= ~I_DIRTY_TIME; 2458 } else { 2459 /* 2460 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing. 2461 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME 2462 * in one call to __mark_inode_dirty().) 2463 */ 2464 dirtytime = flags & I_DIRTY_TIME; 2465 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME); 2466 } 2467 2468 /* 2469 * Paired with smp_mb() in __writeback_single_inode() for the 2470 * following lockless i_state test. See there for details. 2471 */ 2472 smp_mb(); 2473 2474 if ((inode->i_state & flags) == flags) 2475 return; 2476 2477 spin_lock(&inode->i_lock); 2478 if ((inode->i_state & flags) != flags) { 2479 const int was_dirty = inode->i_state & I_DIRTY; 2480 2481 inode_attach_wb(inode, NULL); 2482 2483 inode->i_state |= flags; 2484 2485 /* 2486 * Grab inode's wb early because it requires dropping i_lock and we 2487 * need to make sure following checks happen atomically with dirty 2488 * list handling so that we don't move inodes under flush worker's 2489 * hands. 2490 */ 2491 if (!was_dirty) { 2492 wb = locked_inode_to_wb_and_lock_list(inode); 2493 spin_lock(&inode->i_lock); 2494 } 2495 2496 /* 2497 * If the inode is queued for writeback by flush worker, just 2498 * update its dirty state. Once the flush worker is done with 2499 * the inode it will place it on the appropriate superblock 2500 * list, based upon its state. 2501 */ 2502 if (inode->i_state & I_SYNC_QUEUED) 2503 goto out_unlock; 2504 2505 /* 2506 * Only add valid (hashed) inodes to the superblock's 2507 * dirty list. Add blockdev inodes as well. 2508 */ 2509 if (!S_ISBLK(inode->i_mode)) { 2510 if (inode_unhashed(inode)) 2511 goto out_unlock; 2512 } 2513 if (inode->i_state & I_FREEING) 2514 goto out_unlock; 2515 2516 /* 2517 * If the inode was already on b_dirty/b_io/b_more_io, don't 2518 * reposition it (that would break b_dirty time-ordering). 2519 */ 2520 if (!was_dirty) { 2521 struct list_head *dirty_list; 2522 bool wakeup_bdi = false; 2523 2524 inode->dirtied_when = jiffies; 2525 if (dirtytime) 2526 inode->dirtied_time_when = jiffies; 2527 2528 if (inode->i_state & I_DIRTY) 2529 dirty_list = &wb->b_dirty; 2530 else 2531 dirty_list = &wb->b_dirty_time; 2532 2533 wakeup_bdi = inode_io_list_move_locked(inode, wb, 2534 dirty_list); 2535 2536 spin_unlock(&wb->list_lock); 2537 spin_unlock(&inode->i_lock); 2538 trace_writeback_dirty_inode_enqueue(inode); 2539 2540 /* 2541 * If this is the first dirty inode for this bdi, 2542 * we have to wake-up the corresponding bdi thread 2543 * to make sure background write-back happens 2544 * later. 2545 */ 2546 if (wakeup_bdi && 2547 (wb->bdi->capabilities & BDI_CAP_WRITEBACK)) 2548 wb_wakeup_delayed(wb); 2549 return; 2550 } 2551 } 2552 out_unlock: 2553 if (wb) 2554 spin_unlock(&wb->list_lock); 2555 spin_unlock(&inode->i_lock); 2556 } 2557 EXPORT_SYMBOL(__mark_inode_dirty); 2558 2559 /* 2560 * The @s_sync_lock is used to serialise concurrent sync operations 2561 * to avoid lock contention problems with concurrent wait_sb_inodes() calls. 2562 * Concurrent callers will block on the s_sync_lock rather than doing contending 2563 * walks. The queueing maintains sync(2) required behaviour as all the IO that 2564 * has been issued up to the time this function is enter is guaranteed to be 2565 * completed by the time we have gained the lock and waited for all IO that is 2566 * in progress regardless of the order callers are granted the lock. 2567 */ 2568 static void wait_sb_inodes(struct super_block *sb) 2569 { 2570 LIST_HEAD(sync_list); 2571 2572 /* 2573 * We need to be protected against the filesystem going from 2574 * r/o to r/w or vice versa. 2575 */ 2576 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2577 2578 mutex_lock(&sb->s_sync_lock); 2579 2580 /* 2581 * Splice the writeback list onto a temporary list to avoid waiting on 2582 * inodes that have started writeback after this point. 2583 * 2584 * Use rcu_read_lock() to keep the inodes around until we have a 2585 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as 2586 * the local list because inodes can be dropped from either by writeback 2587 * completion. 2588 */ 2589 rcu_read_lock(); 2590 spin_lock_irq(&sb->s_inode_wblist_lock); 2591 list_splice_init(&sb->s_inodes_wb, &sync_list); 2592 2593 /* 2594 * Data integrity sync. Must wait for all pages under writeback, because 2595 * there may have been pages dirtied before our sync call, but which had 2596 * writeout started before we write it out. In which case, the inode 2597 * may not be on the dirty list, but we still have to wait for that 2598 * writeout. 2599 */ 2600 while (!list_empty(&sync_list)) { 2601 struct inode *inode = list_first_entry(&sync_list, struct inode, 2602 i_wb_list); 2603 struct address_space *mapping = inode->i_mapping; 2604 2605 /* 2606 * Move each inode back to the wb list before we drop the lock 2607 * to preserve consistency between i_wb_list and the mapping 2608 * writeback tag. Writeback completion is responsible to remove 2609 * the inode from either list once the writeback tag is cleared. 2610 */ 2611 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb); 2612 2613 /* 2614 * The mapping can appear untagged while still on-list since we 2615 * do not have the mapping lock. Skip it here, wb completion 2616 * will remove it. 2617 */ 2618 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) 2619 continue; 2620 2621 spin_unlock_irq(&sb->s_inode_wblist_lock); 2622 2623 spin_lock(&inode->i_lock); 2624 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) { 2625 spin_unlock(&inode->i_lock); 2626 2627 spin_lock_irq(&sb->s_inode_wblist_lock); 2628 continue; 2629 } 2630 __iget(inode); 2631 spin_unlock(&inode->i_lock); 2632 rcu_read_unlock(); 2633 2634 /* 2635 * We keep the error status of individual mapping so that 2636 * applications can catch the writeback error using fsync(2). 2637 * See filemap_fdatawait_keep_errors() for details. 2638 */ 2639 filemap_fdatawait_keep_errors(mapping); 2640 2641 cond_resched(); 2642 2643 iput(inode); 2644 2645 rcu_read_lock(); 2646 spin_lock_irq(&sb->s_inode_wblist_lock); 2647 } 2648 spin_unlock_irq(&sb->s_inode_wblist_lock); 2649 rcu_read_unlock(); 2650 mutex_unlock(&sb->s_sync_lock); 2651 } 2652 2653 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr, 2654 enum wb_reason reason, bool skip_if_busy) 2655 { 2656 struct backing_dev_info *bdi = sb->s_bdi; 2657 DEFINE_WB_COMPLETION(done, bdi); 2658 struct wb_writeback_work work = { 2659 .sb = sb, 2660 .sync_mode = WB_SYNC_NONE, 2661 .tagged_writepages = 1, 2662 .done = &done, 2663 .nr_pages = nr, 2664 .reason = reason, 2665 }; 2666 2667 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info) 2668 return; 2669 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2670 2671 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy); 2672 wb_wait_for_completion(&done); 2673 } 2674 2675 /** 2676 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block 2677 * @sb: the superblock 2678 * @nr: the number of pages to write 2679 * @reason: reason why some writeback work initiated 2680 * 2681 * Start writeback on some inodes on this super_block. No guarantees are made 2682 * on how many (if any) will be written, and this function does not wait 2683 * for IO completion of submitted IO. 2684 */ 2685 void writeback_inodes_sb_nr(struct super_block *sb, 2686 unsigned long nr, 2687 enum wb_reason reason) 2688 { 2689 __writeback_inodes_sb_nr(sb, nr, reason, false); 2690 } 2691 EXPORT_SYMBOL(writeback_inodes_sb_nr); 2692 2693 /** 2694 * writeback_inodes_sb - writeback dirty inodes from given super_block 2695 * @sb: the superblock 2696 * @reason: reason why some writeback work was initiated 2697 * 2698 * Start writeback on some inodes on this super_block. No guarantees are made 2699 * on how many (if any) will be written, and this function does not wait 2700 * for IO completion of submitted IO. 2701 */ 2702 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2703 { 2704 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason); 2705 } 2706 EXPORT_SYMBOL(writeback_inodes_sb); 2707 2708 /** 2709 * try_to_writeback_inodes_sb - try to start writeback if none underway 2710 * @sb: the superblock 2711 * @reason: reason why some writeback work was initiated 2712 * 2713 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway. 2714 */ 2715 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason) 2716 { 2717 if (!down_read_trylock(&sb->s_umount)) 2718 return; 2719 2720 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true); 2721 up_read(&sb->s_umount); 2722 } 2723 EXPORT_SYMBOL(try_to_writeback_inodes_sb); 2724 2725 /** 2726 * sync_inodes_sb - sync sb inode pages 2727 * @sb: the superblock 2728 * 2729 * This function writes and waits on any dirty inode belonging to this 2730 * super_block. 2731 */ 2732 void sync_inodes_sb(struct super_block *sb) 2733 { 2734 struct backing_dev_info *bdi = sb->s_bdi; 2735 DEFINE_WB_COMPLETION(done, bdi); 2736 struct wb_writeback_work work = { 2737 .sb = sb, 2738 .sync_mode = WB_SYNC_ALL, 2739 .nr_pages = LONG_MAX, 2740 .range_cyclic = 0, 2741 .done = &done, 2742 .reason = WB_REASON_SYNC, 2743 .for_sync = 1, 2744 }; 2745 2746 /* 2747 * Can't skip on !bdi_has_dirty() because we should wait for !dirty 2748 * inodes under writeback and I_DIRTY_TIME inodes ignored by 2749 * bdi_has_dirty() need to be written out too. 2750 */ 2751 if (bdi == &noop_backing_dev_info) 2752 return; 2753 WARN_ON(!rwsem_is_locked(&sb->s_umount)); 2754 2755 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */ 2756 bdi_down_write_wb_switch_rwsem(bdi); 2757 bdi_split_work_to_wbs(bdi, &work, false); 2758 wb_wait_for_completion(&done); 2759 bdi_up_write_wb_switch_rwsem(bdi); 2760 2761 wait_sb_inodes(sb); 2762 } 2763 EXPORT_SYMBOL(sync_inodes_sb); 2764 2765 /** 2766 * write_inode_now - write an inode to disk 2767 * @inode: inode to write to disk 2768 * @sync: whether the write should be synchronous or not 2769 * 2770 * This function commits an inode to disk immediately if it is dirty. This is 2771 * primarily needed by knfsd. 2772 * 2773 * The caller must either have a ref on the inode or must have set I_WILL_FREE. 2774 */ 2775 int write_inode_now(struct inode *inode, int sync) 2776 { 2777 struct writeback_control wbc = { 2778 .nr_to_write = LONG_MAX, 2779 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE, 2780 .range_start = 0, 2781 .range_end = LLONG_MAX, 2782 }; 2783 2784 if (!mapping_can_writeback(inode->i_mapping)) 2785 wbc.nr_to_write = 0; 2786 2787 might_sleep(); 2788 return writeback_single_inode(inode, &wbc); 2789 } 2790 EXPORT_SYMBOL(write_inode_now); 2791 2792 /** 2793 * sync_inode_metadata - write an inode to disk 2794 * @inode: the inode to sync 2795 * @wait: wait for I/O to complete. 2796 * 2797 * Write an inode to disk and adjust its dirty state after completion. 2798 * 2799 * Note: only writes the actual inode, no associated data or other metadata. 2800 */ 2801 int sync_inode_metadata(struct inode *inode, int wait) 2802 { 2803 struct writeback_control wbc = { 2804 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE, 2805 .nr_to_write = 0, /* metadata-only */ 2806 }; 2807 2808 return writeback_single_inode(inode, &wbc); 2809 } 2810 EXPORT_SYMBOL(sync_inode_metadata); 2811