xref: /openbmc/linux/fs/fs-writeback.c (revision 2fa49589)
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Split out of fs/inode.c
13  *		Additions for address_space-based writeback
14  */
15 
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32 
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES	(4096UL >> (PAGE_SHIFT - 10))
37 
38 struct wb_completion {
39 	atomic_t		cnt;
40 };
41 
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46 	long nr_pages;
47 	struct super_block *sb;
48 	unsigned long *older_than_this;
49 	enum writeback_sync_modes sync_mode;
50 	unsigned int tagged_writepages:1;
51 	unsigned int for_kupdate:1;
52 	unsigned int range_cyclic:1;
53 	unsigned int for_background:1;
54 	unsigned int for_sync:1;	/* sync(2) WB_SYNC_ALL writeback */
55 	unsigned int auto_free:1;	/* free on completion */
56 	enum wb_reason reason;		/* why was writeback initiated? */
57 
58 	struct list_head list;		/* pending work list */
59 	struct wb_completion *done;	/* set if the caller waits */
60 };
61 
62 /*
63  * If one wants to wait for one or more wb_writeback_works, each work's
64  * ->done should be set to a wb_completion defined using the following
65  * macro.  Once all work items are issued with wb_queue_work(), the caller
66  * can wait for the completion of all using wb_wait_for_completion().  Work
67  * items which are waited upon aren't freed automatically on completion.
68  */
69 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)				\
70 	struct wb_completion cmpl = {					\
71 		.cnt		= ATOMIC_INIT(1),			\
72 	}
73 
74 
75 /*
76  * If an inode is constantly having its pages dirtied, but then the
77  * updates stop dirtytime_expire_interval seconds in the past, it's
78  * possible for the worst case time between when an inode has its
79  * timestamps updated and when they finally get written out to be two
80  * dirtytime_expire_intervals.  We set the default to 12 hours (in
81  * seconds), which means most of the time inodes will have their
82  * timestamps written to disk after 12 hours, but in the worst case a
83  * few inodes might not their timestamps updated for 24 hours.
84  */
85 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
86 
87 static inline struct inode *wb_inode(struct list_head *head)
88 {
89 	return list_entry(head, struct inode, i_io_list);
90 }
91 
92 /*
93  * Include the creation of the trace points after defining the
94  * wb_writeback_work structure and inline functions so that the definition
95  * remains local to this file.
96  */
97 #define CREATE_TRACE_POINTS
98 #include <trace/events/writeback.h>
99 
100 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
101 
102 static bool wb_io_lists_populated(struct bdi_writeback *wb)
103 {
104 	if (wb_has_dirty_io(wb)) {
105 		return false;
106 	} else {
107 		set_bit(WB_has_dirty_io, &wb->state);
108 		WARN_ON_ONCE(!wb->avg_write_bandwidth);
109 		atomic_long_add(wb->avg_write_bandwidth,
110 				&wb->bdi->tot_write_bandwidth);
111 		return true;
112 	}
113 }
114 
115 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
116 {
117 	if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
118 	    list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
119 		clear_bit(WB_has_dirty_io, &wb->state);
120 		WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
121 					&wb->bdi->tot_write_bandwidth) < 0);
122 	}
123 }
124 
125 /**
126  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
127  * @inode: inode to be moved
128  * @wb: target bdi_writeback
129  * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
130  *
131  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
132  * Returns %true if @inode is the first occupant of the !dirty_time IO
133  * lists; otherwise, %false.
134  */
135 static bool inode_io_list_move_locked(struct inode *inode,
136 				      struct bdi_writeback *wb,
137 				      struct list_head *head)
138 {
139 	assert_spin_locked(&wb->list_lock);
140 
141 	list_move(&inode->i_io_list, head);
142 
143 	/* dirty_time doesn't count as dirty_io until expiration */
144 	if (head != &wb->b_dirty_time)
145 		return wb_io_lists_populated(wb);
146 
147 	wb_io_lists_depopulated(wb);
148 	return false;
149 }
150 
151 /**
152  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
153  * @inode: inode to be removed
154  * @wb: bdi_writeback @inode is being removed from
155  *
156  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
157  * clear %WB_has_dirty_io if all are empty afterwards.
158  */
159 static void inode_io_list_del_locked(struct inode *inode,
160 				     struct bdi_writeback *wb)
161 {
162 	assert_spin_locked(&wb->list_lock);
163 
164 	list_del_init(&inode->i_io_list);
165 	wb_io_lists_depopulated(wb);
166 }
167 
168 static void wb_wakeup(struct bdi_writeback *wb)
169 {
170 	spin_lock_bh(&wb->work_lock);
171 	if (test_bit(WB_registered, &wb->state))
172 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
173 	spin_unlock_bh(&wb->work_lock);
174 }
175 
176 static void finish_writeback_work(struct bdi_writeback *wb,
177 				  struct wb_writeback_work *work)
178 {
179 	struct wb_completion *done = work->done;
180 
181 	if (work->auto_free)
182 		kfree(work);
183 	if (done && atomic_dec_and_test(&done->cnt))
184 		wake_up_all(&wb->bdi->wb_waitq);
185 }
186 
187 static void wb_queue_work(struct bdi_writeback *wb,
188 			  struct wb_writeback_work *work)
189 {
190 	trace_writeback_queue(wb, work);
191 
192 	if (work->done)
193 		atomic_inc(&work->done->cnt);
194 
195 	spin_lock_bh(&wb->work_lock);
196 
197 	if (test_bit(WB_registered, &wb->state)) {
198 		list_add_tail(&work->list, &wb->work_list);
199 		mod_delayed_work(bdi_wq, &wb->dwork, 0);
200 	} else
201 		finish_writeback_work(wb, work);
202 
203 	spin_unlock_bh(&wb->work_lock);
204 }
205 
206 /**
207  * wb_wait_for_completion - wait for completion of bdi_writeback_works
208  * @bdi: bdi work items were issued to
209  * @done: target wb_completion
210  *
211  * Wait for one or more work items issued to @bdi with their ->done field
212  * set to @done, which should have been defined with
213  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
214  * work items are completed.  Work items which are waited upon aren't freed
215  * automatically on completion.
216  */
217 static void wb_wait_for_completion(struct backing_dev_info *bdi,
218 				   struct wb_completion *done)
219 {
220 	atomic_dec(&done->cnt);		/* put down the initial count */
221 	wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
222 }
223 
224 #ifdef CONFIG_CGROUP_WRITEBACK
225 
226 /* parameters for foreign inode detection, see wb_detach_inode() */
227 #define WB_FRN_TIME_SHIFT	13	/* 1s = 2^13, upto 8 secs w/ 16bit */
228 #define WB_FRN_TIME_AVG_SHIFT	3	/* avg = avg * 7/8 + new * 1/8 */
229 #define WB_FRN_TIME_CUT_DIV	2	/* ignore rounds < avg / 2 */
230 #define WB_FRN_TIME_PERIOD	(2 * (1 << WB_FRN_TIME_SHIFT))	/* 2s */
231 
232 #define WB_FRN_HIST_SLOTS	16	/* inode->i_wb_frn_history is 16bit */
233 #define WB_FRN_HIST_UNIT	(WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
234 					/* each slot's duration is 2s / 16 */
235 #define WB_FRN_HIST_THR_SLOTS	(WB_FRN_HIST_SLOTS / 2)
236 					/* if foreign slots >= 8, switch */
237 #define WB_FRN_HIST_MAX_SLOTS	(WB_FRN_HIST_THR_SLOTS / 2 + 1)
238 					/* one round can affect upto 5 slots */
239 
240 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
241 static struct workqueue_struct *isw_wq;
242 
243 void __inode_attach_wb(struct inode *inode, struct page *page)
244 {
245 	struct backing_dev_info *bdi = inode_to_bdi(inode);
246 	struct bdi_writeback *wb = NULL;
247 
248 	if (inode_cgwb_enabled(inode)) {
249 		struct cgroup_subsys_state *memcg_css;
250 
251 		if (page) {
252 			memcg_css = mem_cgroup_css_from_page(page);
253 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
254 		} else {
255 			/* must pin memcg_css, see wb_get_create() */
256 			memcg_css = task_get_css(current, memory_cgrp_id);
257 			wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
258 			css_put(memcg_css);
259 		}
260 	}
261 
262 	if (!wb)
263 		wb = &bdi->wb;
264 
265 	/*
266 	 * There may be multiple instances of this function racing to
267 	 * update the same inode.  Use cmpxchg() to tell the winner.
268 	 */
269 	if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
270 		wb_put(wb);
271 }
272 
273 /**
274  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
275  * @inode: inode of interest with i_lock held
276  *
277  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
278  * held on entry and is released on return.  The returned wb is guaranteed
279  * to stay @inode's associated wb until its list_lock is released.
280  */
281 static struct bdi_writeback *
282 locked_inode_to_wb_and_lock_list(struct inode *inode)
283 	__releases(&inode->i_lock)
284 	__acquires(&wb->list_lock)
285 {
286 	while (true) {
287 		struct bdi_writeback *wb = inode_to_wb(inode);
288 
289 		/*
290 		 * inode_to_wb() association is protected by both
291 		 * @inode->i_lock and @wb->list_lock but list_lock nests
292 		 * outside i_lock.  Drop i_lock and verify that the
293 		 * association hasn't changed after acquiring list_lock.
294 		 */
295 		wb_get(wb);
296 		spin_unlock(&inode->i_lock);
297 		spin_lock(&wb->list_lock);
298 
299 		/* i_wb may have changed inbetween, can't use inode_to_wb() */
300 		if (likely(wb == inode->i_wb)) {
301 			wb_put(wb);	/* @inode already has ref */
302 			return wb;
303 		}
304 
305 		spin_unlock(&wb->list_lock);
306 		wb_put(wb);
307 		cpu_relax();
308 		spin_lock(&inode->i_lock);
309 	}
310 }
311 
312 /**
313  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
314  * @inode: inode of interest
315  *
316  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
317  * on entry.
318  */
319 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
320 	__acquires(&wb->list_lock)
321 {
322 	spin_lock(&inode->i_lock);
323 	return locked_inode_to_wb_and_lock_list(inode);
324 }
325 
326 struct inode_switch_wbs_context {
327 	struct inode		*inode;
328 	struct bdi_writeback	*new_wb;
329 
330 	struct rcu_head		rcu_head;
331 	struct work_struct	work;
332 };
333 
334 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
335 {
336 	down_write(&bdi->wb_switch_rwsem);
337 }
338 
339 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
340 {
341 	up_write(&bdi->wb_switch_rwsem);
342 }
343 
344 static void inode_switch_wbs_work_fn(struct work_struct *work)
345 {
346 	struct inode_switch_wbs_context *isw =
347 		container_of(work, struct inode_switch_wbs_context, work);
348 	struct inode *inode = isw->inode;
349 	struct backing_dev_info *bdi = inode_to_bdi(inode);
350 	struct address_space *mapping = inode->i_mapping;
351 	struct bdi_writeback *old_wb = inode->i_wb;
352 	struct bdi_writeback *new_wb = isw->new_wb;
353 	XA_STATE(xas, &mapping->i_pages, 0);
354 	struct page *page;
355 	bool switched = false;
356 
357 	/*
358 	 * If @inode switches cgwb membership while sync_inodes_sb() is
359 	 * being issued, sync_inodes_sb() might miss it.  Synchronize.
360 	 */
361 	down_read(&bdi->wb_switch_rwsem);
362 
363 	/*
364 	 * By the time control reaches here, RCU grace period has passed
365 	 * since I_WB_SWITCH assertion and all wb stat update transactions
366 	 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
367 	 * synchronizing against the i_pages lock.
368 	 *
369 	 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
370 	 * gives us exclusion against all wb related operations on @inode
371 	 * including IO list manipulations and stat updates.
372 	 */
373 	if (old_wb < new_wb) {
374 		spin_lock(&old_wb->list_lock);
375 		spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
376 	} else {
377 		spin_lock(&new_wb->list_lock);
378 		spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
379 	}
380 	spin_lock(&inode->i_lock);
381 	xa_lock_irq(&mapping->i_pages);
382 
383 	/*
384 	 * Once I_FREEING is visible under i_lock, the eviction path owns
385 	 * the inode and we shouldn't modify ->i_io_list.
386 	 */
387 	if (unlikely(inode->i_state & I_FREEING))
388 		goto skip_switch;
389 
390 	/*
391 	 * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
392 	 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 	 * pages actually under writeback.
394 	 */
395 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 		if (PageDirty(page)) {
397 			dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 			inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 		}
400 	}
401 
402 	xas_set(&xas, 0);
403 	xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 		WARN_ON_ONCE(!PageWriteback(page));
405 		dec_wb_stat(old_wb, WB_WRITEBACK);
406 		inc_wb_stat(new_wb, WB_WRITEBACK);
407 	}
408 
409 	wb_get(new_wb);
410 
411 	/*
412 	 * Transfer to @new_wb's IO list if necessary.  The specific list
413 	 * @inode was on is ignored and the inode is put on ->b_dirty which
414 	 * is always correct including from ->b_dirty_time.  The transfer
415 	 * preserves @inode->dirtied_when ordering.
416 	 */
417 	if (!list_empty(&inode->i_io_list)) {
418 		struct inode *pos;
419 
420 		inode_io_list_del_locked(inode, old_wb);
421 		inode->i_wb = new_wb;
422 		list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
423 			if (time_after_eq(inode->dirtied_when,
424 					  pos->dirtied_when))
425 				break;
426 		inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
427 	} else {
428 		inode->i_wb = new_wb;
429 	}
430 
431 	/* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
432 	inode->i_wb_frn_winner = 0;
433 	inode->i_wb_frn_avg_time = 0;
434 	inode->i_wb_frn_history = 0;
435 	switched = true;
436 skip_switch:
437 	/*
438 	 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
439 	 * ensures that the new wb is visible if they see !I_WB_SWITCH.
440 	 */
441 	smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
442 
443 	xa_unlock_irq(&mapping->i_pages);
444 	spin_unlock(&inode->i_lock);
445 	spin_unlock(&new_wb->list_lock);
446 	spin_unlock(&old_wb->list_lock);
447 
448 	up_read(&bdi->wb_switch_rwsem);
449 
450 	if (switched) {
451 		wb_wakeup(new_wb);
452 		wb_put(old_wb);
453 	}
454 	wb_put(new_wb);
455 
456 	iput(inode);
457 	kfree(isw);
458 
459 	atomic_dec(&isw_nr_in_flight);
460 }
461 
462 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
463 {
464 	struct inode_switch_wbs_context *isw = container_of(rcu_head,
465 				struct inode_switch_wbs_context, rcu_head);
466 
467 	/* needs to grab bh-unsafe locks, bounce to work item */
468 	INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
469 	queue_work(isw_wq, &isw->work);
470 }
471 
472 /**
473  * inode_switch_wbs - change the wb association of an inode
474  * @inode: target inode
475  * @new_wb_id: ID of the new wb
476  *
477  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
478  * switching is performed asynchronously and may fail silently.
479  */
480 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
481 {
482 	struct backing_dev_info *bdi = inode_to_bdi(inode);
483 	struct cgroup_subsys_state *memcg_css;
484 	struct inode_switch_wbs_context *isw;
485 
486 	/* noop if seems to be already in progress */
487 	if (inode->i_state & I_WB_SWITCH)
488 		return;
489 
490 	/*
491 	 * Avoid starting new switches while sync_inodes_sb() is in
492 	 * progress.  Otherwise, if the down_write protected issue path
493 	 * blocks heavily, we might end up starting a large number of
494 	 * switches which will block on the rwsem.
495 	 */
496 	if (!down_read_trylock(&bdi->wb_switch_rwsem))
497 		return;
498 
499 	isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
500 	if (!isw)
501 		goto out_unlock;
502 
503 	/* find and pin the new wb */
504 	rcu_read_lock();
505 	memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
506 	if (memcg_css)
507 		isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
508 	rcu_read_unlock();
509 	if (!isw->new_wb)
510 		goto out_free;
511 
512 	/* while holding I_WB_SWITCH, no one else can update the association */
513 	spin_lock(&inode->i_lock);
514 	if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
515 	    inode->i_state & (I_WB_SWITCH | I_FREEING) ||
516 	    inode_to_wb(inode) == isw->new_wb) {
517 		spin_unlock(&inode->i_lock);
518 		goto out_free;
519 	}
520 	inode->i_state |= I_WB_SWITCH;
521 	__iget(inode);
522 	spin_unlock(&inode->i_lock);
523 
524 	isw->inode = inode;
525 
526 	atomic_inc(&isw_nr_in_flight);
527 
528 	/*
529 	 * In addition to synchronizing among switchers, I_WB_SWITCH tells
530 	 * the RCU protected stat update paths to grab the i_page
531 	 * lock so that stat transfer can synchronize against them.
532 	 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
533 	 */
534 	call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
535 	goto out_unlock;
536 
537 out_free:
538 	if (isw->new_wb)
539 		wb_put(isw->new_wb);
540 	kfree(isw);
541 out_unlock:
542 	up_read(&bdi->wb_switch_rwsem);
543 }
544 
545 /**
546  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
547  * @wbc: writeback_control of interest
548  * @inode: target inode
549  *
550  * @inode is locked and about to be written back under the control of @wbc.
551  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
552  * writeback completion, wbc_detach_inode() should be called.  This is used
553  * to track the cgroup writeback context.
554  */
555 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
556 				 struct inode *inode)
557 {
558 	if (!inode_cgwb_enabled(inode)) {
559 		spin_unlock(&inode->i_lock);
560 		return;
561 	}
562 
563 	wbc->wb = inode_to_wb(inode);
564 	wbc->inode = inode;
565 
566 	wbc->wb_id = wbc->wb->memcg_css->id;
567 	wbc->wb_lcand_id = inode->i_wb_frn_winner;
568 	wbc->wb_tcand_id = 0;
569 	wbc->wb_bytes = 0;
570 	wbc->wb_lcand_bytes = 0;
571 	wbc->wb_tcand_bytes = 0;
572 
573 	wb_get(wbc->wb);
574 	spin_unlock(&inode->i_lock);
575 
576 	/*
577 	 * A dying wb indicates that the memcg-blkcg mapping has changed
578 	 * and a new wb is already serving the memcg.  Switch immediately.
579 	 */
580 	if (unlikely(wb_dying(wbc->wb)))
581 		inode_switch_wbs(inode, wbc->wb_id);
582 }
583 
584 /**
585  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
586  * @wbc: writeback_control of the just finished writeback
587  *
588  * To be called after a writeback attempt of an inode finishes and undoes
589  * wbc_attach_and_unlock_inode().  Can be called under any context.
590  *
591  * As concurrent write sharing of an inode is expected to be very rare and
592  * memcg only tracks page ownership on first-use basis severely confining
593  * the usefulness of such sharing, cgroup writeback tracks ownership
594  * per-inode.  While the support for concurrent write sharing of an inode
595  * is deemed unnecessary, an inode being written to by different cgroups at
596  * different points in time is a lot more common, and, more importantly,
597  * charging only by first-use can too readily lead to grossly incorrect
598  * behaviors (single foreign page can lead to gigabytes of writeback to be
599  * incorrectly attributed).
600  *
601  * To resolve this issue, cgroup writeback detects the majority dirtier of
602  * an inode and transfers the ownership to it.  To avoid unnnecessary
603  * oscillation, the detection mechanism keeps track of history and gives
604  * out the switch verdict only if the foreign usage pattern is stable over
605  * a certain amount of time and/or writeback attempts.
606  *
607  * On each writeback attempt, @wbc tries to detect the majority writer
608  * using Boyer-Moore majority vote algorithm.  In addition to the byte
609  * count from the majority voting, it also counts the bytes written for the
610  * current wb and the last round's winner wb (max of last round's current
611  * wb, the winner from two rounds ago, and the last round's majority
612  * candidate).  Keeping track of the historical winner helps the algorithm
613  * to semi-reliably detect the most active writer even when it's not the
614  * absolute majority.
615  *
616  * Once the winner of the round is determined, whether the winner is
617  * foreign or not and how much IO time the round consumed is recorded in
618  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
619  * over a certain threshold, the switch verdict is given.
620  */
621 void wbc_detach_inode(struct writeback_control *wbc)
622 {
623 	struct bdi_writeback *wb = wbc->wb;
624 	struct inode *inode = wbc->inode;
625 	unsigned long avg_time, max_bytes, max_time;
626 	u16 history;
627 	int max_id;
628 
629 	if (!wb)
630 		return;
631 
632 	history = inode->i_wb_frn_history;
633 	avg_time = inode->i_wb_frn_avg_time;
634 
635 	/* pick the winner of this round */
636 	if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
637 	    wbc->wb_bytes >= wbc->wb_tcand_bytes) {
638 		max_id = wbc->wb_id;
639 		max_bytes = wbc->wb_bytes;
640 	} else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
641 		max_id = wbc->wb_lcand_id;
642 		max_bytes = wbc->wb_lcand_bytes;
643 	} else {
644 		max_id = wbc->wb_tcand_id;
645 		max_bytes = wbc->wb_tcand_bytes;
646 	}
647 
648 	/*
649 	 * Calculate the amount of IO time the winner consumed and fold it
650 	 * into the running average kept per inode.  If the consumed IO
651 	 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
652 	 * deciding whether to switch or not.  This is to prevent one-off
653 	 * small dirtiers from skewing the verdict.
654 	 */
655 	max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
656 				wb->avg_write_bandwidth);
657 	if (avg_time)
658 		avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
659 			    (avg_time >> WB_FRN_TIME_AVG_SHIFT);
660 	else
661 		avg_time = max_time;	/* immediate catch up on first run */
662 
663 	if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
664 		int slots;
665 
666 		/*
667 		 * The switch verdict is reached if foreign wb's consume
668 		 * more than a certain proportion of IO time in a
669 		 * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
670 		 * history mask where each bit represents one sixteenth of
671 		 * the period.  Determine the number of slots to shift into
672 		 * history from @max_time.
673 		 */
674 		slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
675 			    (unsigned long)WB_FRN_HIST_MAX_SLOTS);
676 		history <<= slots;
677 		if (wbc->wb_id != max_id)
678 			history |= (1U << slots) - 1;
679 
680 		/*
681 		 * Switch if the current wb isn't the consistent winner.
682 		 * If there are multiple closely competing dirtiers, the
683 		 * inode may switch across them repeatedly over time, which
684 		 * is okay.  The main goal is avoiding keeping an inode on
685 		 * the wrong wb for an extended period of time.
686 		 */
687 		if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
688 			inode_switch_wbs(inode, max_id);
689 	}
690 
691 	/*
692 	 * Multiple instances of this function may race to update the
693 	 * following fields but we don't mind occassional inaccuracies.
694 	 */
695 	inode->i_wb_frn_winner = max_id;
696 	inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
697 	inode->i_wb_frn_history = history;
698 
699 	wb_put(wbc->wb);
700 	wbc->wb = NULL;
701 }
702 
703 /**
704  * wbc_account_io - account IO issued during writeback
705  * @wbc: writeback_control of the writeback in progress
706  * @page: page being written out
707  * @bytes: number of bytes being written out
708  *
709  * @bytes from @page are about to written out during the writeback
710  * controlled by @wbc.  Keep the book for foreign inode detection.  See
711  * wbc_detach_inode().
712  */
713 void wbc_account_io(struct writeback_control *wbc, struct page *page,
714 		    size_t bytes)
715 {
716 	int id;
717 
718 	/*
719 	 * pageout() path doesn't attach @wbc to the inode being written
720 	 * out.  This is intentional as we don't want the function to block
721 	 * behind a slow cgroup.  Ultimately, we want pageout() to kick off
722 	 * regular writeback instead of writing things out itself.
723 	 */
724 	if (!wbc->wb)
725 		return;
726 
727 	id = mem_cgroup_css_from_page(page)->id;
728 
729 	if (id == wbc->wb_id) {
730 		wbc->wb_bytes += bytes;
731 		return;
732 	}
733 
734 	if (id == wbc->wb_lcand_id)
735 		wbc->wb_lcand_bytes += bytes;
736 
737 	/* Boyer-Moore majority vote algorithm */
738 	if (!wbc->wb_tcand_bytes)
739 		wbc->wb_tcand_id = id;
740 	if (id == wbc->wb_tcand_id)
741 		wbc->wb_tcand_bytes += bytes;
742 	else
743 		wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
744 }
745 EXPORT_SYMBOL_GPL(wbc_account_io);
746 
747 /**
748  * inode_congested - test whether an inode is congested
749  * @inode: inode to test for congestion (may be NULL)
750  * @cong_bits: mask of WB_[a]sync_congested bits to test
751  *
752  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
753  * bits to test and the return value is the mask of set bits.
754  *
755  * If cgroup writeback is enabled for @inode, the congestion state is
756  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
757  * associated with @inode is congested; otherwise, the root wb's congestion
758  * state is used.
759  *
760  * @inode is allowed to be NULL as this function is often called on
761  * mapping->host which is NULL for the swapper space.
762  */
763 int inode_congested(struct inode *inode, int cong_bits)
764 {
765 	/*
766 	 * Once set, ->i_wb never becomes NULL while the inode is alive.
767 	 * Start transaction iff ->i_wb is visible.
768 	 */
769 	if (inode && inode_to_wb_is_valid(inode)) {
770 		struct bdi_writeback *wb;
771 		struct wb_lock_cookie lock_cookie = {};
772 		bool congested;
773 
774 		wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
775 		congested = wb_congested(wb, cong_bits);
776 		unlocked_inode_to_wb_end(inode, &lock_cookie);
777 		return congested;
778 	}
779 
780 	return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
781 }
782 EXPORT_SYMBOL_GPL(inode_congested);
783 
784 /**
785  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
786  * @wb: target bdi_writeback to split @nr_pages to
787  * @nr_pages: number of pages to write for the whole bdi
788  *
789  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
790  * relation to the total write bandwidth of all wb's w/ dirty inodes on
791  * @wb->bdi.
792  */
793 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
794 {
795 	unsigned long this_bw = wb->avg_write_bandwidth;
796 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
797 
798 	if (nr_pages == LONG_MAX)
799 		return LONG_MAX;
800 
801 	/*
802 	 * This may be called on clean wb's and proportional distribution
803 	 * may not make sense, just use the original @nr_pages in those
804 	 * cases.  In general, we wanna err on the side of writing more.
805 	 */
806 	if (!tot_bw || this_bw >= tot_bw)
807 		return nr_pages;
808 	else
809 		return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
810 }
811 
812 /**
813  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
814  * @bdi: target backing_dev_info
815  * @base_work: wb_writeback_work to issue
816  * @skip_if_busy: skip wb's which already have writeback in progress
817  *
818  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
819  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
820  * distributed to the busy wbs according to each wb's proportion in the
821  * total active write bandwidth of @bdi.
822  */
823 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
824 				  struct wb_writeback_work *base_work,
825 				  bool skip_if_busy)
826 {
827 	struct bdi_writeback *last_wb = NULL;
828 	struct bdi_writeback *wb = list_entry(&bdi->wb_list,
829 					      struct bdi_writeback, bdi_node);
830 
831 	might_sleep();
832 restart:
833 	rcu_read_lock();
834 	list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
835 		DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
836 		struct wb_writeback_work fallback_work;
837 		struct wb_writeback_work *work;
838 		long nr_pages;
839 
840 		if (last_wb) {
841 			wb_put(last_wb);
842 			last_wb = NULL;
843 		}
844 
845 		/* SYNC_ALL writes out I_DIRTY_TIME too */
846 		if (!wb_has_dirty_io(wb) &&
847 		    (base_work->sync_mode == WB_SYNC_NONE ||
848 		     list_empty(&wb->b_dirty_time)))
849 			continue;
850 		if (skip_if_busy && writeback_in_progress(wb))
851 			continue;
852 
853 		nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
854 
855 		work = kmalloc(sizeof(*work), GFP_ATOMIC);
856 		if (work) {
857 			*work = *base_work;
858 			work->nr_pages = nr_pages;
859 			work->auto_free = 1;
860 			wb_queue_work(wb, work);
861 			continue;
862 		}
863 
864 		/* alloc failed, execute synchronously using on-stack fallback */
865 		work = &fallback_work;
866 		*work = *base_work;
867 		work->nr_pages = nr_pages;
868 		work->auto_free = 0;
869 		work->done = &fallback_work_done;
870 
871 		wb_queue_work(wb, work);
872 
873 		/*
874 		 * Pin @wb so that it stays on @bdi->wb_list.  This allows
875 		 * continuing iteration from @wb after dropping and
876 		 * regrabbing rcu read lock.
877 		 */
878 		wb_get(wb);
879 		last_wb = wb;
880 
881 		rcu_read_unlock();
882 		wb_wait_for_completion(bdi, &fallback_work_done);
883 		goto restart;
884 	}
885 	rcu_read_unlock();
886 
887 	if (last_wb)
888 		wb_put(last_wb);
889 }
890 
891 /**
892  * cgroup_writeback_umount - flush inode wb switches for umount
893  *
894  * This function is called when a super_block is about to be destroyed and
895  * flushes in-flight inode wb switches.  An inode wb switch goes through
896  * RCU and then workqueue, so the two need to be flushed in order to ensure
897  * that all previously scheduled switches are finished.  As wb switches are
898  * rare occurrences and synchronize_rcu() can take a while, perform
899  * flushing iff wb switches are in flight.
900  */
901 void cgroup_writeback_umount(void)
902 {
903 	if (atomic_read(&isw_nr_in_flight)) {
904 		synchronize_rcu();
905 		flush_workqueue(isw_wq);
906 	}
907 }
908 
909 static int __init cgroup_writeback_init(void)
910 {
911 	isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
912 	if (!isw_wq)
913 		return -ENOMEM;
914 	return 0;
915 }
916 fs_initcall(cgroup_writeback_init);
917 
918 #else	/* CONFIG_CGROUP_WRITEBACK */
919 
920 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
921 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
922 
923 static struct bdi_writeback *
924 locked_inode_to_wb_and_lock_list(struct inode *inode)
925 	__releases(&inode->i_lock)
926 	__acquires(&wb->list_lock)
927 {
928 	struct bdi_writeback *wb = inode_to_wb(inode);
929 
930 	spin_unlock(&inode->i_lock);
931 	spin_lock(&wb->list_lock);
932 	return wb;
933 }
934 
935 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
936 	__acquires(&wb->list_lock)
937 {
938 	struct bdi_writeback *wb = inode_to_wb(inode);
939 
940 	spin_lock(&wb->list_lock);
941 	return wb;
942 }
943 
944 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
945 {
946 	return nr_pages;
947 }
948 
949 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
950 				  struct wb_writeback_work *base_work,
951 				  bool skip_if_busy)
952 {
953 	might_sleep();
954 
955 	if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
956 		base_work->auto_free = 0;
957 		wb_queue_work(&bdi->wb, base_work);
958 	}
959 }
960 
961 #endif	/* CONFIG_CGROUP_WRITEBACK */
962 
963 /*
964  * Add in the number of potentially dirty inodes, because each inode
965  * write can dirty pagecache in the underlying blockdev.
966  */
967 static unsigned long get_nr_dirty_pages(void)
968 {
969 	return global_node_page_state(NR_FILE_DIRTY) +
970 		global_node_page_state(NR_UNSTABLE_NFS) +
971 		get_nr_dirty_inodes();
972 }
973 
974 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
975 {
976 	if (!wb_has_dirty_io(wb))
977 		return;
978 
979 	/*
980 	 * All callers of this function want to start writeback of all
981 	 * dirty pages. Places like vmscan can call this at a very
982 	 * high frequency, causing pointless allocations of tons of
983 	 * work items and keeping the flusher threads busy retrieving
984 	 * that work. Ensure that we only allow one of them pending and
985 	 * inflight at the time.
986 	 */
987 	if (test_bit(WB_start_all, &wb->state) ||
988 	    test_and_set_bit(WB_start_all, &wb->state))
989 		return;
990 
991 	wb->start_all_reason = reason;
992 	wb_wakeup(wb);
993 }
994 
995 /**
996  * wb_start_background_writeback - start background writeback
997  * @wb: bdi_writback to write from
998  *
999  * Description:
1000  *   This makes sure WB_SYNC_NONE background writeback happens. When
1001  *   this function returns, it is only guaranteed that for given wb
1002  *   some IO is happening if we are over background dirty threshold.
1003  *   Caller need not hold sb s_umount semaphore.
1004  */
1005 void wb_start_background_writeback(struct bdi_writeback *wb)
1006 {
1007 	/*
1008 	 * We just wake up the flusher thread. It will perform background
1009 	 * writeback as soon as there is no other work to do.
1010 	 */
1011 	trace_writeback_wake_background(wb);
1012 	wb_wakeup(wb);
1013 }
1014 
1015 /*
1016  * Remove the inode from the writeback list it is on.
1017  */
1018 void inode_io_list_del(struct inode *inode)
1019 {
1020 	struct bdi_writeback *wb;
1021 
1022 	wb = inode_to_wb_and_lock_list(inode);
1023 	inode_io_list_del_locked(inode, wb);
1024 	spin_unlock(&wb->list_lock);
1025 }
1026 
1027 /*
1028  * mark an inode as under writeback on the sb
1029  */
1030 void sb_mark_inode_writeback(struct inode *inode)
1031 {
1032 	struct super_block *sb = inode->i_sb;
1033 	unsigned long flags;
1034 
1035 	if (list_empty(&inode->i_wb_list)) {
1036 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1037 		if (list_empty(&inode->i_wb_list)) {
1038 			list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1039 			trace_sb_mark_inode_writeback(inode);
1040 		}
1041 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1042 	}
1043 }
1044 
1045 /*
1046  * clear an inode as under writeback on the sb
1047  */
1048 void sb_clear_inode_writeback(struct inode *inode)
1049 {
1050 	struct super_block *sb = inode->i_sb;
1051 	unsigned long flags;
1052 
1053 	if (!list_empty(&inode->i_wb_list)) {
1054 		spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1055 		if (!list_empty(&inode->i_wb_list)) {
1056 			list_del_init(&inode->i_wb_list);
1057 			trace_sb_clear_inode_writeback(inode);
1058 		}
1059 		spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1060 	}
1061 }
1062 
1063 /*
1064  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1065  * furthest end of its superblock's dirty-inode list.
1066  *
1067  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1068  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1069  * the case then the inode must have been redirtied while it was being written
1070  * out and we don't reset its dirtied_when.
1071  */
1072 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1073 {
1074 	if (!list_empty(&wb->b_dirty)) {
1075 		struct inode *tail;
1076 
1077 		tail = wb_inode(wb->b_dirty.next);
1078 		if (time_before(inode->dirtied_when, tail->dirtied_when))
1079 			inode->dirtied_when = jiffies;
1080 	}
1081 	inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1082 }
1083 
1084 /*
1085  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1086  */
1087 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1088 {
1089 	inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1090 }
1091 
1092 static void inode_sync_complete(struct inode *inode)
1093 {
1094 	inode->i_state &= ~I_SYNC;
1095 	/* If inode is clean an unused, put it into LRU now... */
1096 	inode_add_lru(inode);
1097 	/* Waiters must see I_SYNC cleared before being woken up */
1098 	smp_mb();
1099 	wake_up_bit(&inode->i_state, __I_SYNC);
1100 }
1101 
1102 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1103 {
1104 	bool ret = time_after(inode->dirtied_when, t);
1105 #ifndef CONFIG_64BIT
1106 	/*
1107 	 * For inodes being constantly redirtied, dirtied_when can get stuck.
1108 	 * It _appears_ to be in the future, but is actually in distant past.
1109 	 * This test is necessary to prevent such wrapped-around relative times
1110 	 * from permanently stopping the whole bdi writeback.
1111 	 */
1112 	ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1113 #endif
1114 	return ret;
1115 }
1116 
1117 #define EXPIRE_DIRTY_ATIME 0x0001
1118 
1119 /*
1120  * Move expired (dirtied before work->older_than_this) dirty inodes from
1121  * @delaying_queue to @dispatch_queue.
1122  */
1123 static int move_expired_inodes(struct list_head *delaying_queue,
1124 			       struct list_head *dispatch_queue,
1125 			       int flags,
1126 			       struct wb_writeback_work *work)
1127 {
1128 	unsigned long *older_than_this = NULL;
1129 	unsigned long expire_time;
1130 	LIST_HEAD(tmp);
1131 	struct list_head *pos, *node;
1132 	struct super_block *sb = NULL;
1133 	struct inode *inode;
1134 	int do_sb_sort = 0;
1135 	int moved = 0;
1136 
1137 	if ((flags & EXPIRE_DIRTY_ATIME) == 0)
1138 		older_than_this = work->older_than_this;
1139 	else if (!work->for_sync) {
1140 		expire_time = jiffies - (dirtytime_expire_interval * HZ);
1141 		older_than_this = &expire_time;
1142 	}
1143 	while (!list_empty(delaying_queue)) {
1144 		inode = wb_inode(delaying_queue->prev);
1145 		if (older_than_this &&
1146 		    inode_dirtied_after(inode, *older_than_this))
1147 			break;
1148 		list_move(&inode->i_io_list, &tmp);
1149 		moved++;
1150 		if (flags & EXPIRE_DIRTY_ATIME)
1151 			set_bit(__I_DIRTY_TIME_EXPIRED, &inode->i_state);
1152 		if (sb_is_blkdev_sb(inode->i_sb))
1153 			continue;
1154 		if (sb && sb != inode->i_sb)
1155 			do_sb_sort = 1;
1156 		sb = inode->i_sb;
1157 	}
1158 
1159 	/* just one sb in list, splice to dispatch_queue and we're done */
1160 	if (!do_sb_sort) {
1161 		list_splice(&tmp, dispatch_queue);
1162 		goto out;
1163 	}
1164 
1165 	/* Move inodes from one superblock together */
1166 	while (!list_empty(&tmp)) {
1167 		sb = wb_inode(tmp.prev)->i_sb;
1168 		list_for_each_prev_safe(pos, node, &tmp) {
1169 			inode = wb_inode(pos);
1170 			if (inode->i_sb == sb)
1171 				list_move(&inode->i_io_list, dispatch_queue);
1172 		}
1173 	}
1174 out:
1175 	return moved;
1176 }
1177 
1178 /*
1179  * Queue all expired dirty inodes for io, eldest first.
1180  * Before
1181  *         newly dirtied     b_dirty    b_io    b_more_io
1182  *         =============>    gf         edc     BA
1183  * After
1184  *         newly dirtied     b_dirty    b_io    b_more_io
1185  *         =============>    g          fBAedc
1186  *                                           |
1187  *                                           +--> dequeue for IO
1188  */
1189 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
1190 {
1191 	int moved;
1192 
1193 	assert_spin_locked(&wb->list_lock);
1194 	list_splice_init(&wb->b_more_io, &wb->b_io);
1195 	moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, work);
1196 	moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1197 				     EXPIRE_DIRTY_ATIME, work);
1198 	if (moved)
1199 		wb_io_lists_populated(wb);
1200 	trace_writeback_queue_io(wb, work, moved);
1201 }
1202 
1203 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1204 {
1205 	int ret;
1206 
1207 	if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1208 		trace_writeback_write_inode_start(inode, wbc);
1209 		ret = inode->i_sb->s_op->write_inode(inode, wbc);
1210 		trace_writeback_write_inode(inode, wbc);
1211 		return ret;
1212 	}
1213 	return 0;
1214 }
1215 
1216 /*
1217  * Wait for writeback on an inode to complete. Called with i_lock held.
1218  * Caller must make sure inode cannot go away when we drop i_lock.
1219  */
1220 static void __inode_wait_for_writeback(struct inode *inode)
1221 	__releases(inode->i_lock)
1222 	__acquires(inode->i_lock)
1223 {
1224 	DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1225 	wait_queue_head_t *wqh;
1226 
1227 	wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1228 	while (inode->i_state & I_SYNC) {
1229 		spin_unlock(&inode->i_lock);
1230 		__wait_on_bit(wqh, &wq, bit_wait,
1231 			      TASK_UNINTERRUPTIBLE);
1232 		spin_lock(&inode->i_lock);
1233 	}
1234 }
1235 
1236 /*
1237  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1238  */
1239 void inode_wait_for_writeback(struct inode *inode)
1240 {
1241 	spin_lock(&inode->i_lock);
1242 	__inode_wait_for_writeback(inode);
1243 	spin_unlock(&inode->i_lock);
1244 }
1245 
1246 /*
1247  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1248  * held and drops it. It is aimed for callers not holding any inode reference
1249  * so once i_lock is dropped, inode can go away.
1250  */
1251 static void inode_sleep_on_writeback(struct inode *inode)
1252 	__releases(inode->i_lock)
1253 {
1254 	DEFINE_WAIT(wait);
1255 	wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1256 	int sleep;
1257 
1258 	prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1259 	sleep = inode->i_state & I_SYNC;
1260 	spin_unlock(&inode->i_lock);
1261 	if (sleep)
1262 		schedule();
1263 	finish_wait(wqh, &wait);
1264 }
1265 
1266 /*
1267  * Find proper writeback list for the inode depending on its current state and
1268  * possibly also change of its state while we were doing writeback.  Here we
1269  * handle things such as livelock prevention or fairness of writeback among
1270  * inodes. This function can be called only by flusher thread - noone else
1271  * processes all inodes in writeback lists and requeueing inodes behind flusher
1272  * thread's back can have unexpected consequences.
1273  */
1274 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1275 			  struct writeback_control *wbc)
1276 {
1277 	if (inode->i_state & I_FREEING)
1278 		return;
1279 
1280 	/*
1281 	 * Sync livelock prevention. Each inode is tagged and synced in one
1282 	 * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1283 	 * the dirty time to prevent enqueue and sync it again.
1284 	 */
1285 	if ((inode->i_state & I_DIRTY) &&
1286 	    (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1287 		inode->dirtied_when = jiffies;
1288 
1289 	if (wbc->pages_skipped) {
1290 		/*
1291 		 * writeback is not making progress due to locked
1292 		 * buffers. Skip this inode for now.
1293 		 */
1294 		redirty_tail(inode, wb);
1295 		return;
1296 	}
1297 
1298 	if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1299 		/*
1300 		 * We didn't write back all the pages.  nfs_writepages()
1301 		 * sometimes bales out without doing anything.
1302 		 */
1303 		if (wbc->nr_to_write <= 0) {
1304 			/* Slice used up. Queue for next turn. */
1305 			requeue_io(inode, wb);
1306 		} else {
1307 			/*
1308 			 * Writeback blocked by something other than
1309 			 * congestion. Delay the inode for some time to
1310 			 * avoid spinning on the CPU (100% iowait)
1311 			 * retrying writeback of the dirty page/inode
1312 			 * that cannot be performed immediately.
1313 			 */
1314 			redirty_tail(inode, wb);
1315 		}
1316 	} else if (inode->i_state & I_DIRTY) {
1317 		/*
1318 		 * Filesystems can dirty the inode during writeback operations,
1319 		 * such as delayed allocation during submission or metadata
1320 		 * updates after data IO completion.
1321 		 */
1322 		redirty_tail(inode, wb);
1323 	} else if (inode->i_state & I_DIRTY_TIME) {
1324 		inode->dirtied_when = jiffies;
1325 		inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1326 	} else {
1327 		/* The inode is clean. Remove from writeback lists. */
1328 		inode_io_list_del_locked(inode, wb);
1329 	}
1330 }
1331 
1332 /*
1333  * Write out an inode and its dirty pages. Do not update the writeback list
1334  * linkage. That is left to the caller. The caller is also responsible for
1335  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1336  */
1337 static int
1338 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1339 {
1340 	struct address_space *mapping = inode->i_mapping;
1341 	long nr_to_write = wbc->nr_to_write;
1342 	unsigned dirty;
1343 	int ret;
1344 
1345 	WARN_ON(!(inode->i_state & I_SYNC));
1346 
1347 	trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1348 
1349 	ret = do_writepages(mapping, wbc);
1350 
1351 	/*
1352 	 * Make sure to wait on the data before writing out the metadata.
1353 	 * This is important for filesystems that modify metadata on data
1354 	 * I/O completion. We don't do it for sync(2) writeback because it has a
1355 	 * separate, external IO completion path and ->sync_fs for guaranteeing
1356 	 * inode metadata is written back correctly.
1357 	 */
1358 	if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1359 		int err = filemap_fdatawait(mapping);
1360 		if (ret == 0)
1361 			ret = err;
1362 	}
1363 
1364 	/*
1365 	 * Some filesystems may redirty the inode during the writeback
1366 	 * due to delalloc, clear dirty metadata flags right before
1367 	 * write_inode()
1368 	 */
1369 	spin_lock(&inode->i_lock);
1370 
1371 	dirty = inode->i_state & I_DIRTY;
1372 	if (inode->i_state & I_DIRTY_TIME) {
1373 		if ((dirty & I_DIRTY_INODE) ||
1374 		    wbc->sync_mode == WB_SYNC_ALL ||
1375 		    unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1376 		    unlikely(time_after(jiffies,
1377 					(inode->dirtied_time_when +
1378 					 dirtytime_expire_interval * HZ)))) {
1379 			dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1380 			trace_writeback_lazytime(inode);
1381 		}
1382 	} else
1383 		inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1384 	inode->i_state &= ~dirty;
1385 
1386 	/*
1387 	 * Paired with smp_mb() in __mark_inode_dirty().  This allows
1388 	 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1389 	 * either they see the I_DIRTY bits cleared or we see the dirtied
1390 	 * inode.
1391 	 *
1392 	 * I_DIRTY_PAGES is always cleared together above even if @mapping
1393 	 * still has dirty pages.  The flag is reinstated after smp_mb() if
1394 	 * necessary.  This guarantees that either __mark_inode_dirty()
1395 	 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1396 	 */
1397 	smp_mb();
1398 
1399 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1400 		inode->i_state |= I_DIRTY_PAGES;
1401 
1402 	spin_unlock(&inode->i_lock);
1403 
1404 	if (dirty & I_DIRTY_TIME)
1405 		mark_inode_dirty_sync(inode);
1406 	/* Don't write the inode if only I_DIRTY_PAGES was set */
1407 	if (dirty & ~I_DIRTY_PAGES) {
1408 		int err = write_inode(inode, wbc);
1409 		if (ret == 0)
1410 			ret = err;
1411 	}
1412 	trace_writeback_single_inode(inode, wbc, nr_to_write);
1413 	return ret;
1414 }
1415 
1416 /*
1417  * Write out an inode's dirty pages. Either the caller has an active reference
1418  * on the inode or the inode has I_WILL_FREE set.
1419  *
1420  * This function is designed to be called for writing back one inode which
1421  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1422  * and does more profound writeback list handling in writeback_sb_inodes().
1423  */
1424 static int writeback_single_inode(struct inode *inode,
1425 				  struct writeback_control *wbc)
1426 {
1427 	struct bdi_writeback *wb;
1428 	int ret = 0;
1429 
1430 	spin_lock(&inode->i_lock);
1431 	if (!atomic_read(&inode->i_count))
1432 		WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1433 	else
1434 		WARN_ON(inode->i_state & I_WILL_FREE);
1435 
1436 	if (inode->i_state & I_SYNC) {
1437 		if (wbc->sync_mode != WB_SYNC_ALL)
1438 			goto out;
1439 		/*
1440 		 * It's a data-integrity sync. We must wait. Since callers hold
1441 		 * inode reference or inode has I_WILL_FREE set, it cannot go
1442 		 * away under us.
1443 		 */
1444 		__inode_wait_for_writeback(inode);
1445 	}
1446 	WARN_ON(inode->i_state & I_SYNC);
1447 	/*
1448 	 * Skip inode if it is clean and we have no outstanding writeback in
1449 	 * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1450 	 * function since flusher thread may be doing for example sync in
1451 	 * parallel and if we move the inode, it could get skipped. So here we
1452 	 * make sure inode is on some writeback list and leave it there unless
1453 	 * we have completely cleaned the inode.
1454 	 */
1455 	if (!(inode->i_state & I_DIRTY_ALL) &&
1456 	    (wbc->sync_mode != WB_SYNC_ALL ||
1457 	     !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1458 		goto out;
1459 	inode->i_state |= I_SYNC;
1460 	wbc_attach_and_unlock_inode(wbc, inode);
1461 
1462 	ret = __writeback_single_inode(inode, wbc);
1463 
1464 	wbc_detach_inode(wbc);
1465 
1466 	wb = inode_to_wb_and_lock_list(inode);
1467 	spin_lock(&inode->i_lock);
1468 	/*
1469 	 * If inode is clean, remove it from writeback lists. Otherwise don't
1470 	 * touch it. See comment above for explanation.
1471 	 */
1472 	if (!(inode->i_state & I_DIRTY_ALL))
1473 		inode_io_list_del_locked(inode, wb);
1474 	spin_unlock(&wb->list_lock);
1475 	inode_sync_complete(inode);
1476 out:
1477 	spin_unlock(&inode->i_lock);
1478 	return ret;
1479 }
1480 
1481 static long writeback_chunk_size(struct bdi_writeback *wb,
1482 				 struct wb_writeback_work *work)
1483 {
1484 	long pages;
1485 
1486 	/*
1487 	 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1488 	 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1489 	 * here avoids calling into writeback_inodes_wb() more than once.
1490 	 *
1491 	 * The intended call sequence for WB_SYNC_ALL writeback is:
1492 	 *
1493 	 *      wb_writeback()
1494 	 *          writeback_sb_inodes()       <== called only once
1495 	 *              write_cache_pages()     <== called once for each inode
1496 	 *                   (quickly) tag currently dirty pages
1497 	 *                   (maybe slowly) sync all tagged pages
1498 	 */
1499 	if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1500 		pages = LONG_MAX;
1501 	else {
1502 		pages = min(wb->avg_write_bandwidth / 2,
1503 			    global_wb_domain.dirty_limit / DIRTY_SCOPE);
1504 		pages = min(pages, work->nr_pages);
1505 		pages = round_down(pages + MIN_WRITEBACK_PAGES,
1506 				   MIN_WRITEBACK_PAGES);
1507 	}
1508 
1509 	return pages;
1510 }
1511 
1512 /*
1513  * Write a portion of b_io inodes which belong to @sb.
1514  *
1515  * Return the number of pages and/or inodes written.
1516  *
1517  * NOTE! This is called with wb->list_lock held, and will
1518  * unlock and relock that for each inode it ends up doing
1519  * IO for.
1520  */
1521 static long writeback_sb_inodes(struct super_block *sb,
1522 				struct bdi_writeback *wb,
1523 				struct wb_writeback_work *work)
1524 {
1525 	struct writeback_control wbc = {
1526 		.sync_mode		= work->sync_mode,
1527 		.tagged_writepages	= work->tagged_writepages,
1528 		.for_kupdate		= work->for_kupdate,
1529 		.for_background		= work->for_background,
1530 		.for_sync		= work->for_sync,
1531 		.range_cyclic		= work->range_cyclic,
1532 		.range_start		= 0,
1533 		.range_end		= LLONG_MAX,
1534 	};
1535 	unsigned long start_time = jiffies;
1536 	long write_chunk;
1537 	long wrote = 0;  /* count both pages and inodes */
1538 
1539 	while (!list_empty(&wb->b_io)) {
1540 		struct inode *inode = wb_inode(wb->b_io.prev);
1541 		struct bdi_writeback *tmp_wb;
1542 
1543 		if (inode->i_sb != sb) {
1544 			if (work->sb) {
1545 				/*
1546 				 * We only want to write back data for this
1547 				 * superblock, move all inodes not belonging
1548 				 * to it back onto the dirty list.
1549 				 */
1550 				redirty_tail(inode, wb);
1551 				continue;
1552 			}
1553 
1554 			/*
1555 			 * The inode belongs to a different superblock.
1556 			 * Bounce back to the caller to unpin this and
1557 			 * pin the next superblock.
1558 			 */
1559 			break;
1560 		}
1561 
1562 		/*
1563 		 * Don't bother with new inodes or inodes being freed, first
1564 		 * kind does not need periodic writeout yet, and for the latter
1565 		 * kind writeout is handled by the freer.
1566 		 */
1567 		spin_lock(&inode->i_lock);
1568 		if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1569 			spin_unlock(&inode->i_lock);
1570 			redirty_tail(inode, wb);
1571 			continue;
1572 		}
1573 		if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1574 			/*
1575 			 * If this inode is locked for writeback and we are not
1576 			 * doing writeback-for-data-integrity, move it to
1577 			 * b_more_io so that writeback can proceed with the
1578 			 * other inodes on s_io.
1579 			 *
1580 			 * We'll have another go at writing back this inode
1581 			 * when we completed a full scan of b_io.
1582 			 */
1583 			spin_unlock(&inode->i_lock);
1584 			requeue_io(inode, wb);
1585 			trace_writeback_sb_inodes_requeue(inode);
1586 			continue;
1587 		}
1588 		spin_unlock(&wb->list_lock);
1589 
1590 		/*
1591 		 * We already requeued the inode if it had I_SYNC set and we
1592 		 * are doing WB_SYNC_NONE writeback. So this catches only the
1593 		 * WB_SYNC_ALL case.
1594 		 */
1595 		if (inode->i_state & I_SYNC) {
1596 			/* Wait for I_SYNC. This function drops i_lock... */
1597 			inode_sleep_on_writeback(inode);
1598 			/* Inode may be gone, start again */
1599 			spin_lock(&wb->list_lock);
1600 			continue;
1601 		}
1602 		inode->i_state |= I_SYNC;
1603 		wbc_attach_and_unlock_inode(&wbc, inode);
1604 
1605 		write_chunk = writeback_chunk_size(wb, work);
1606 		wbc.nr_to_write = write_chunk;
1607 		wbc.pages_skipped = 0;
1608 
1609 		/*
1610 		 * We use I_SYNC to pin the inode in memory. While it is set
1611 		 * evict_inode() will wait so the inode cannot be freed.
1612 		 */
1613 		__writeback_single_inode(inode, &wbc);
1614 
1615 		wbc_detach_inode(&wbc);
1616 		work->nr_pages -= write_chunk - wbc.nr_to_write;
1617 		wrote += write_chunk - wbc.nr_to_write;
1618 
1619 		if (need_resched()) {
1620 			/*
1621 			 * We're trying to balance between building up a nice
1622 			 * long list of IOs to improve our merge rate, and
1623 			 * getting those IOs out quickly for anyone throttling
1624 			 * in balance_dirty_pages().  cond_resched() doesn't
1625 			 * unplug, so get our IOs out the door before we
1626 			 * give up the CPU.
1627 			 */
1628 			blk_flush_plug(current);
1629 			cond_resched();
1630 		}
1631 
1632 		/*
1633 		 * Requeue @inode if still dirty.  Be careful as @inode may
1634 		 * have been switched to another wb in the meantime.
1635 		 */
1636 		tmp_wb = inode_to_wb_and_lock_list(inode);
1637 		spin_lock(&inode->i_lock);
1638 		if (!(inode->i_state & I_DIRTY_ALL))
1639 			wrote++;
1640 		requeue_inode(inode, tmp_wb, &wbc);
1641 		inode_sync_complete(inode);
1642 		spin_unlock(&inode->i_lock);
1643 
1644 		if (unlikely(tmp_wb != wb)) {
1645 			spin_unlock(&tmp_wb->list_lock);
1646 			spin_lock(&wb->list_lock);
1647 		}
1648 
1649 		/*
1650 		 * bail out to wb_writeback() often enough to check
1651 		 * background threshold and other termination conditions.
1652 		 */
1653 		if (wrote) {
1654 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1655 				break;
1656 			if (work->nr_pages <= 0)
1657 				break;
1658 		}
1659 	}
1660 	return wrote;
1661 }
1662 
1663 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1664 				  struct wb_writeback_work *work)
1665 {
1666 	unsigned long start_time = jiffies;
1667 	long wrote = 0;
1668 
1669 	while (!list_empty(&wb->b_io)) {
1670 		struct inode *inode = wb_inode(wb->b_io.prev);
1671 		struct super_block *sb = inode->i_sb;
1672 
1673 		if (!trylock_super(sb)) {
1674 			/*
1675 			 * trylock_super() may fail consistently due to
1676 			 * s_umount being grabbed by someone else. Don't use
1677 			 * requeue_io() to avoid busy retrying the inode/sb.
1678 			 */
1679 			redirty_tail(inode, wb);
1680 			continue;
1681 		}
1682 		wrote += writeback_sb_inodes(sb, wb, work);
1683 		up_read(&sb->s_umount);
1684 
1685 		/* refer to the same tests at the end of writeback_sb_inodes */
1686 		if (wrote) {
1687 			if (time_is_before_jiffies(start_time + HZ / 10UL))
1688 				break;
1689 			if (work->nr_pages <= 0)
1690 				break;
1691 		}
1692 	}
1693 	/* Leave any unwritten inodes on b_io */
1694 	return wrote;
1695 }
1696 
1697 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1698 				enum wb_reason reason)
1699 {
1700 	struct wb_writeback_work work = {
1701 		.nr_pages	= nr_pages,
1702 		.sync_mode	= WB_SYNC_NONE,
1703 		.range_cyclic	= 1,
1704 		.reason		= reason,
1705 	};
1706 	struct blk_plug plug;
1707 
1708 	blk_start_plug(&plug);
1709 	spin_lock(&wb->list_lock);
1710 	if (list_empty(&wb->b_io))
1711 		queue_io(wb, &work);
1712 	__writeback_inodes_wb(wb, &work);
1713 	spin_unlock(&wb->list_lock);
1714 	blk_finish_plug(&plug);
1715 
1716 	return nr_pages - work.nr_pages;
1717 }
1718 
1719 /*
1720  * Explicit flushing or periodic writeback of "old" data.
1721  *
1722  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1723  * dirtying-time in the inode's address_space.  So this periodic writeback code
1724  * just walks the superblock inode list, writing back any inodes which are
1725  * older than a specific point in time.
1726  *
1727  * Try to run once per dirty_writeback_interval.  But if a writeback event
1728  * takes longer than a dirty_writeback_interval interval, then leave a
1729  * one-second gap.
1730  *
1731  * older_than_this takes precedence over nr_to_write.  So we'll only write back
1732  * all dirty pages if they are all attached to "old" mappings.
1733  */
1734 static long wb_writeback(struct bdi_writeback *wb,
1735 			 struct wb_writeback_work *work)
1736 {
1737 	unsigned long wb_start = jiffies;
1738 	long nr_pages = work->nr_pages;
1739 	unsigned long oldest_jif;
1740 	struct inode *inode;
1741 	long progress;
1742 	struct blk_plug plug;
1743 
1744 	oldest_jif = jiffies;
1745 	work->older_than_this = &oldest_jif;
1746 
1747 	blk_start_plug(&plug);
1748 	spin_lock(&wb->list_lock);
1749 	for (;;) {
1750 		/*
1751 		 * Stop writeback when nr_pages has been consumed
1752 		 */
1753 		if (work->nr_pages <= 0)
1754 			break;
1755 
1756 		/*
1757 		 * Background writeout and kupdate-style writeback may
1758 		 * run forever. Stop them if there is other work to do
1759 		 * so that e.g. sync can proceed. They'll be restarted
1760 		 * after the other works are all done.
1761 		 */
1762 		if ((work->for_background || work->for_kupdate) &&
1763 		    !list_empty(&wb->work_list))
1764 			break;
1765 
1766 		/*
1767 		 * For background writeout, stop when we are below the
1768 		 * background dirty threshold
1769 		 */
1770 		if (work->for_background && !wb_over_bg_thresh(wb))
1771 			break;
1772 
1773 		/*
1774 		 * Kupdate and background works are special and we want to
1775 		 * include all inodes that need writing. Livelock avoidance is
1776 		 * handled by these works yielding to any other work so we are
1777 		 * safe.
1778 		 */
1779 		if (work->for_kupdate) {
1780 			oldest_jif = jiffies -
1781 				msecs_to_jiffies(dirty_expire_interval * 10);
1782 		} else if (work->for_background)
1783 			oldest_jif = jiffies;
1784 
1785 		trace_writeback_start(wb, work);
1786 		if (list_empty(&wb->b_io))
1787 			queue_io(wb, work);
1788 		if (work->sb)
1789 			progress = writeback_sb_inodes(work->sb, wb, work);
1790 		else
1791 			progress = __writeback_inodes_wb(wb, work);
1792 		trace_writeback_written(wb, work);
1793 
1794 		wb_update_bandwidth(wb, wb_start);
1795 
1796 		/*
1797 		 * Did we write something? Try for more
1798 		 *
1799 		 * Dirty inodes are moved to b_io for writeback in batches.
1800 		 * The completion of the current batch does not necessarily
1801 		 * mean the overall work is done. So we keep looping as long
1802 		 * as made some progress on cleaning pages or inodes.
1803 		 */
1804 		if (progress)
1805 			continue;
1806 		/*
1807 		 * No more inodes for IO, bail
1808 		 */
1809 		if (list_empty(&wb->b_more_io))
1810 			break;
1811 		/*
1812 		 * Nothing written. Wait for some inode to
1813 		 * become available for writeback. Otherwise
1814 		 * we'll just busyloop.
1815 		 */
1816 		trace_writeback_wait(wb, work);
1817 		inode = wb_inode(wb->b_more_io.prev);
1818 		spin_lock(&inode->i_lock);
1819 		spin_unlock(&wb->list_lock);
1820 		/* This function drops i_lock... */
1821 		inode_sleep_on_writeback(inode);
1822 		spin_lock(&wb->list_lock);
1823 	}
1824 	spin_unlock(&wb->list_lock);
1825 	blk_finish_plug(&plug);
1826 
1827 	return nr_pages - work->nr_pages;
1828 }
1829 
1830 /*
1831  * Return the next wb_writeback_work struct that hasn't been processed yet.
1832  */
1833 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1834 {
1835 	struct wb_writeback_work *work = NULL;
1836 
1837 	spin_lock_bh(&wb->work_lock);
1838 	if (!list_empty(&wb->work_list)) {
1839 		work = list_entry(wb->work_list.next,
1840 				  struct wb_writeback_work, list);
1841 		list_del_init(&work->list);
1842 	}
1843 	spin_unlock_bh(&wb->work_lock);
1844 	return work;
1845 }
1846 
1847 static long wb_check_background_flush(struct bdi_writeback *wb)
1848 {
1849 	if (wb_over_bg_thresh(wb)) {
1850 
1851 		struct wb_writeback_work work = {
1852 			.nr_pages	= LONG_MAX,
1853 			.sync_mode	= WB_SYNC_NONE,
1854 			.for_background	= 1,
1855 			.range_cyclic	= 1,
1856 			.reason		= WB_REASON_BACKGROUND,
1857 		};
1858 
1859 		return wb_writeback(wb, &work);
1860 	}
1861 
1862 	return 0;
1863 }
1864 
1865 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1866 {
1867 	unsigned long expired;
1868 	long nr_pages;
1869 
1870 	/*
1871 	 * When set to zero, disable periodic writeback
1872 	 */
1873 	if (!dirty_writeback_interval)
1874 		return 0;
1875 
1876 	expired = wb->last_old_flush +
1877 			msecs_to_jiffies(dirty_writeback_interval * 10);
1878 	if (time_before(jiffies, expired))
1879 		return 0;
1880 
1881 	wb->last_old_flush = jiffies;
1882 	nr_pages = get_nr_dirty_pages();
1883 
1884 	if (nr_pages) {
1885 		struct wb_writeback_work work = {
1886 			.nr_pages	= nr_pages,
1887 			.sync_mode	= WB_SYNC_NONE,
1888 			.for_kupdate	= 1,
1889 			.range_cyclic	= 1,
1890 			.reason		= WB_REASON_PERIODIC,
1891 		};
1892 
1893 		return wb_writeback(wb, &work);
1894 	}
1895 
1896 	return 0;
1897 }
1898 
1899 static long wb_check_start_all(struct bdi_writeback *wb)
1900 {
1901 	long nr_pages;
1902 
1903 	if (!test_bit(WB_start_all, &wb->state))
1904 		return 0;
1905 
1906 	nr_pages = get_nr_dirty_pages();
1907 	if (nr_pages) {
1908 		struct wb_writeback_work work = {
1909 			.nr_pages	= wb_split_bdi_pages(wb, nr_pages),
1910 			.sync_mode	= WB_SYNC_NONE,
1911 			.range_cyclic	= 1,
1912 			.reason		= wb->start_all_reason,
1913 		};
1914 
1915 		nr_pages = wb_writeback(wb, &work);
1916 	}
1917 
1918 	clear_bit(WB_start_all, &wb->state);
1919 	return nr_pages;
1920 }
1921 
1922 
1923 /*
1924  * Retrieve work items and do the writeback they describe
1925  */
1926 static long wb_do_writeback(struct bdi_writeback *wb)
1927 {
1928 	struct wb_writeback_work *work;
1929 	long wrote = 0;
1930 
1931 	set_bit(WB_writeback_running, &wb->state);
1932 	while ((work = get_next_work_item(wb)) != NULL) {
1933 		trace_writeback_exec(wb, work);
1934 		wrote += wb_writeback(wb, work);
1935 		finish_writeback_work(wb, work);
1936 	}
1937 
1938 	/*
1939 	 * Check for a flush-everything request
1940 	 */
1941 	wrote += wb_check_start_all(wb);
1942 
1943 	/*
1944 	 * Check for periodic writeback, kupdated() style
1945 	 */
1946 	wrote += wb_check_old_data_flush(wb);
1947 	wrote += wb_check_background_flush(wb);
1948 	clear_bit(WB_writeback_running, &wb->state);
1949 
1950 	return wrote;
1951 }
1952 
1953 /*
1954  * Handle writeback of dirty data for the device backed by this bdi. Also
1955  * reschedules periodically and does kupdated style flushing.
1956  */
1957 void wb_workfn(struct work_struct *work)
1958 {
1959 	struct bdi_writeback *wb = container_of(to_delayed_work(work),
1960 						struct bdi_writeback, dwork);
1961 	long pages_written;
1962 
1963 	set_worker_desc("flush-%s", dev_name(wb->bdi->dev));
1964 	current->flags |= PF_SWAPWRITE;
1965 
1966 	if (likely(!current_is_workqueue_rescuer() ||
1967 		   !test_bit(WB_registered, &wb->state))) {
1968 		/*
1969 		 * The normal path.  Keep writing back @wb until its
1970 		 * work_list is empty.  Note that this path is also taken
1971 		 * if @wb is shutting down even when we're running off the
1972 		 * rescuer as work_list needs to be drained.
1973 		 */
1974 		do {
1975 			pages_written = wb_do_writeback(wb);
1976 			trace_writeback_pages_written(pages_written);
1977 		} while (!list_empty(&wb->work_list));
1978 	} else {
1979 		/*
1980 		 * bdi_wq can't get enough workers and we're running off
1981 		 * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1982 		 * enough for efficient IO.
1983 		 */
1984 		pages_written = writeback_inodes_wb(wb, 1024,
1985 						    WB_REASON_FORKER_THREAD);
1986 		trace_writeback_pages_written(pages_written);
1987 	}
1988 
1989 	if (!list_empty(&wb->work_list))
1990 		wb_wakeup(wb);
1991 	else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1992 		wb_wakeup_delayed(wb);
1993 
1994 	current->flags &= ~PF_SWAPWRITE;
1995 }
1996 
1997 /*
1998  * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
1999  * write back the whole world.
2000  */
2001 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2002 					 enum wb_reason reason)
2003 {
2004 	struct bdi_writeback *wb;
2005 
2006 	if (!bdi_has_dirty_io(bdi))
2007 		return;
2008 
2009 	list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2010 		wb_start_writeback(wb, reason);
2011 }
2012 
2013 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2014 				enum wb_reason reason)
2015 {
2016 	rcu_read_lock();
2017 	__wakeup_flusher_threads_bdi(bdi, reason);
2018 	rcu_read_unlock();
2019 }
2020 
2021 /*
2022  * Wakeup the flusher threads to start writeback of all currently dirty pages
2023  */
2024 void wakeup_flusher_threads(enum wb_reason reason)
2025 {
2026 	struct backing_dev_info *bdi;
2027 
2028 	/*
2029 	 * If we are expecting writeback progress we must submit plugged IO.
2030 	 */
2031 	if (blk_needs_flush_plug(current))
2032 		blk_schedule_flush_plug(current);
2033 
2034 	rcu_read_lock();
2035 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2036 		__wakeup_flusher_threads_bdi(bdi, reason);
2037 	rcu_read_unlock();
2038 }
2039 
2040 /*
2041  * Wake up bdi's periodically to make sure dirtytime inodes gets
2042  * written back periodically.  We deliberately do *not* check the
2043  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2044  * kernel to be constantly waking up once there are any dirtytime
2045  * inodes on the system.  So instead we define a separate delayed work
2046  * function which gets called much more rarely.  (By default, only
2047  * once every 12 hours.)
2048  *
2049  * If there is any other write activity going on in the file system,
2050  * this function won't be necessary.  But if the only thing that has
2051  * happened on the file system is a dirtytime inode caused by an atime
2052  * update, we need this infrastructure below to make sure that inode
2053  * eventually gets pushed out to disk.
2054  */
2055 static void wakeup_dirtytime_writeback(struct work_struct *w);
2056 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2057 
2058 static void wakeup_dirtytime_writeback(struct work_struct *w)
2059 {
2060 	struct backing_dev_info *bdi;
2061 
2062 	rcu_read_lock();
2063 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2064 		struct bdi_writeback *wb;
2065 
2066 		list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2067 			if (!list_empty(&wb->b_dirty_time))
2068 				wb_wakeup(wb);
2069 	}
2070 	rcu_read_unlock();
2071 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2072 }
2073 
2074 static int __init start_dirtytime_writeback(void)
2075 {
2076 	schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2077 	return 0;
2078 }
2079 __initcall(start_dirtytime_writeback);
2080 
2081 int dirtytime_interval_handler(struct ctl_table *table, int write,
2082 			       void __user *buffer, size_t *lenp, loff_t *ppos)
2083 {
2084 	int ret;
2085 
2086 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2087 	if (ret == 0 && write)
2088 		mod_delayed_work(system_wq, &dirtytime_work, 0);
2089 	return ret;
2090 }
2091 
2092 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
2093 {
2094 	if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
2095 		struct dentry *dentry;
2096 		const char *name = "?";
2097 
2098 		dentry = d_find_alias(inode);
2099 		if (dentry) {
2100 			spin_lock(&dentry->d_lock);
2101 			name = (const char *) dentry->d_name.name;
2102 		}
2103 		printk(KERN_DEBUG
2104 		       "%s(%d): dirtied inode %lu (%s) on %s\n",
2105 		       current->comm, task_pid_nr(current), inode->i_ino,
2106 		       name, inode->i_sb->s_id);
2107 		if (dentry) {
2108 			spin_unlock(&dentry->d_lock);
2109 			dput(dentry);
2110 		}
2111 	}
2112 }
2113 
2114 /**
2115  * __mark_inode_dirty -	internal function
2116  *
2117  * @inode: inode to mark
2118  * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2119  *
2120  * Mark an inode as dirty. Callers should use mark_inode_dirty or
2121  * mark_inode_dirty_sync.
2122  *
2123  * Put the inode on the super block's dirty list.
2124  *
2125  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2126  * dirty list only if it is hashed or if it refers to a blockdev.
2127  * If it was not hashed, it will never be added to the dirty list
2128  * even if it is later hashed, as it will have been marked dirty already.
2129  *
2130  * In short, make sure you hash any inodes _before_ you start marking
2131  * them dirty.
2132  *
2133  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2134  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2135  * the kernel-internal blockdev inode represents the dirtying time of the
2136  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2137  * page->mapping->host, so the page-dirtying time is recorded in the internal
2138  * blockdev inode.
2139  */
2140 void __mark_inode_dirty(struct inode *inode, int flags)
2141 {
2142 	struct super_block *sb = inode->i_sb;
2143 	int dirtytime;
2144 
2145 	trace_writeback_mark_inode_dirty(inode, flags);
2146 
2147 	/*
2148 	 * Don't do this for I_DIRTY_PAGES - that doesn't actually
2149 	 * dirty the inode itself
2150 	 */
2151 	if (flags & (I_DIRTY_INODE | I_DIRTY_TIME)) {
2152 		trace_writeback_dirty_inode_start(inode, flags);
2153 
2154 		if (sb->s_op->dirty_inode)
2155 			sb->s_op->dirty_inode(inode, flags);
2156 
2157 		trace_writeback_dirty_inode(inode, flags);
2158 	}
2159 	if (flags & I_DIRTY_INODE)
2160 		flags &= ~I_DIRTY_TIME;
2161 	dirtytime = flags & I_DIRTY_TIME;
2162 
2163 	/*
2164 	 * Paired with smp_mb() in __writeback_single_inode() for the
2165 	 * following lockless i_state test.  See there for details.
2166 	 */
2167 	smp_mb();
2168 
2169 	if (((inode->i_state & flags) == flags) ||
2170 	    (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2171 		return;
2172 
2173 	if (unlikely(block_dump))
2174 		block_dump___mark_inode_dirty(inode);
2175 
2176 	spin_lock(&inode->i_lock);
2177 	if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2178 		goto out_unlock_inode;
2179 	if ((inode->i_state & flags) != flags) {
2180 		const int was_dirty = inode->i_state & I_DIRTY;
2181 
2182 		inode_attach_wb(inode, NULL);
2183 
2184 		if (flags & I_DIRTY_INODE)
2185 			inode->i_state &= ~I_DIRTY_TIME;
2186 		inode->i_state |= flags;
2187 
2188 		/*
2189 		 * If the inode is being synced, just update its dirty state.
2190 		 * The unlocker will place the inode on the appropriate
2191 		 * superblock list, based upon its state.
2192 		 */
2193 		if (inode->i_state & I_SYNC)
2194 			goto out_unlock_inode;
2195 
2196 		/*
2197 		 * Only add valid (hashed) inodes to the superblock's
2198 		 * dirty list.  Add blockdev inodes as well.
2199 		 */
2200 		if (!S_ISBLK(inode->i_mode)) {
2201 			if (inode_unhashed(inode))
2202 				goto out_unlock_inode;
2203 		}
2204 		if (inode->i_state & I_FREEING)
2205 			goto out_unlock_inode;
2206 
2207 		/*
2208 		 * If the inode was already on b_dirty/b_io/b_more_io, don't
2209 		 * reposition it (that would break b_dirty time-ordering).
2210 		 */
2211 		if (!was_dirty) {
2212 			struct bdi_writeback *wb;
2213 			struct list_head *dirty_list;
2214 			bool wakeup_bdi = false;
2215 
2216 			wb = locked_inode_to_wb_and_lock_list(inode);
2217 
2218 			WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2219 			     !test_bit(WB_registered, &wb->state),
2220 			     "bdi-%s not registered\n", wb->bdi->name);
2221 
2222 			inode->dirtied_when = jiffies;
2223 			if (dirtytime)
2224 				inode->dirtied_time_when = jiffies;
2225 
2226 			if (inode->i_state & I_DIRTY)
2227 				dirty_list = &wb->b_dirty;
2228 			else
2229 				dirty_list = &wb->b_dirty_time;
2230 
2231 			wakeup_bdi = inode_io_list_move_locked(inode, wb,
2232 							       dirty_list);
2233 
2234 			spin_unlock(&wb->list_lock);
2235 			trace_writeback_dirty_inode_enqueue(inode);
2236 
2237 			/*
2238 			 * If this is the first dirty inode for this bdi,
2239 			 * we have to wake-up the corresponding bdi thread
2240 			 * to make sure background write-back happens
2241 			 * later.
2242 			 */
2243 			if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2244 				wb_wakeup_delayed(wb);
2245 			return;
2246 		}
2247 	}
2248 out_unlock_inode:
2249 	spin_unlock(&inode->i_lock);
2250 }
2251 EXPORT_SYMBOL(__mark_inode_dirty);
2252 
2253 /*
2254  * The @s_sync_lock is used to serialise concurrent sync operations
2255  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2256  * Concurrent callers will block on the s_sync_lock rather than doing contending
2257  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2258  * has been issued up to the time this function is enter is guaranteed to be
2259  * completed by the time we have gained the lock and waited for all IO that is
2260  * in progress regardless of the order callers are granted the lock.
2261  */
2262 static void wait_sb_inodes(struct super_block *sb)
2263 {
2264 	LIST_HEAD(sync_list);
2265 
2266 	/*
2267 	 * We need to be protected against the filesystem going from
2268 	 * r/o to r/w or vice versa.
2269 	 */
2270 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2271 
2272 	mutex_lock(&sb->s_sync_lock);
2273 
2274 	/*
2275 	 * Splice the writeback list onto a temporary list to avoid waiting on
2276 	 * inodes that have started writeback after this point.
2277 	 *
2278 	 * Use rcu_read_lock() to keep the inodes around until we have a
2279 	 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2280 	 * the local list because inodes can be dropped from either by writeback
2281 	 * completion.
2282 	 */
2283 	rcu_read_lock();
2284 	spin_lock_irq(&sb->s_inode_wblist_lock);
2285 	list_splice_init(&sb->s_inodes_wb, &sync_list);
2286 
2287 	/*
2288 	 * Data integrity sync. Must wait for all pages under writeback, because
2289 	 * there may have been pages dirtied before our sync call, but which had
2290 	 * writeout started before we write it out.  In which case, the inode
2291 	 * may not be on the dirty list, but we still have to wait for that
2292 	 * writeout.
2293 	 */
2294 	while (!list_empty(&sync_list)) {
2295 		struct inode *inode = list_first_entry(&sync_list, struct inode,
2296 						       i_wb_list);
2297 		struct address_space *mapping = inode->i_mapping;
2298 
2299 		/*
2300 		 * Move each inode back to the wb list before we drop the lock
2301 		 * to preserve consistency between i_wb_list and the mapping
2302 		 * writeback tag. Writeback completion is responsible to remove
2303 		 * the inode from either list once the writeback tag is cleared.
2304 		 */
2305 		list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2306 
2307 		/*
2308 		 * The mapping can appear untagged while still on-list since we
2309 		 * do not have the mapping lock. Skip it here, wb completion
2310 		 * will remove it.
2311 		 */
2312 		if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2313 			continue;
2314 
2315 		spin_unlock_irq(&sb->s_inode_wblist_lock);
2316 
2317 		spin_lock(&inode->i_lock);
2318 		if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2319 			spin_unlock(&inode->i_lock);
2320 
2321 			spin_lock_irq(&sb->s_inode_wblist_lock);
2322 			continue;
2323 		}
2324 		__iget(inode);
2325 		spin_unlock(&inode->i_lock);
2326 		rcu_read_unlock();
2327 
2328 		/*
2329 		 * We keep the error status of individual mapping so that
2330 		 * applications can catch the writeback error using fsync(2).
2331 		 * See filemap_fdatawait_keep_errors() for details.
2332 		 */
2333 		filemap_fdatawait_keep_errors(mapping);
2334 
2335 		cond_resched();
2336 
2337 		iput(inode);
2338 
2339 		rcu_read_lock();
2340 		spin_lock_irq(&sb->s_inode_wblist_lock);
2341 	}
2342 	spin_unlock_irq(&sb->s_inode_wblist_lock);
2343 	rcu_read_unlock();
2344 	mutex_unlock(&sb->s_sync_lock);
2345 }
2346 
2347 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2348 				     enum wb_reason reason, bool skip_if_busy)
2349 {
2350 	DEFINE_WB_COMPLETION_ONSTACK(done);
2351 	struct wb_writeback_work work = {
2352 		.sb			= sb,
2353 		.sync_mode		= WB_SYNC_NONE,
2354 		.tagged_writepages	= 1,
2355 		.done			= &done,
2356 		.nr_pages		= nr,
2357 		.reason			= reason,
2358 	};
2359 	struct backing_dev_info *bdi = sb->s_bdi;
2360 
2361 	if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2362 		return;
2363 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2364 
2365 	bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2366 	wb_wait_for_completion(bdi, &done);
2367 }
2368 
2369 /**
2370  * writeback_inodes_sb_nr -	writeback dirty inodes from given super_block
2371  * @sb: the superblock
2372  * @nr: the number of pages to write
2373  * @reason: reason why some writeback work initiated
2374  *
2375  * Start writeback on some inodes on this super_block. No guarantees are made
2376  * on how many (if any) will be written, and this function does not wait
2377  * for IO completion of submitted IO.
2378  */
2379 void writeback_inodes_sb_nr(struct super_block *sb,
2380 			    unsigned long nr,
2381 			    enum wb_reason reason)
2382 {
2383 	__writeback_inodes_sb_nr(sb, nr, reason, false);
2384 }
2385 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2386 
2387 /**
2388  * writeback_inodes_sb	-	writeback dirty inodes from given super_block
2389  * @sb: the superblock
2390  * @reason: reason why some writeback work was initiated
2391  *
2392  * Start writeback on some inodes on this super_block. No guarantees are made
2393  * on how many (if any) will be written, and this function does not wait
2394  * for IO completion of submitted IO.
2395  */
2396 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2397 {
2398 	return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2399 }
2400 EXPORT_SYMBOL(writeback_inodes_sb);
2401 
2402 /**
2403  * try_to_writeback_inodes_sb - try to start writeback if none underway
2404  * @sb: the superblock
2405  * @reason: reason why some writeback work was initiated
2406  *
2407  * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2408  */
2409 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2410 {
2411 	if (!down_read_trylock(&sb->s_umount))
2412 		return;
2413 
2414 	__writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2415 	up_read(&sb->s_umount);
2416 }
2417 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2418 
2419 /**
2420  * sync_inodes_sb	-	sync sb inode pages
2421  * @sb: the superblock
2422  *
2423  * This function writes and waits on any dirty inode belonging to this
2424  * super_block.
2425  */
2426 void sync_inodes_sb(struct super_block *sb)
2427 {
2428 	DEFINE_WB_COMPLETION_ONSTACK(done);
2429 	struct wb_writeback_work work = {
2430 		.sb		= sb,
2431 		.sync_mode	= WB_SYNC_ALL,
2432 		.nr_pages	= LONG_MAX,
2433 		.range_cyclic	= 0,
2434 		.done		= &done,
2435 		.reason		= WB_REASON_SYNC,
2436 		.for_sync	= 1,
2437 	};
2438 	struct backing_dev_info *bdi = sb->s_bdi;
2439 
2440 	/*
2441 	 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2442 	 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2443 	 * bdi_has_dirty() need to be written out too.
2444 	 */
2445 	if (bdi == &noop_backing_dev_info)
2446 		return;
2447 	WARN_ON(!rwsem_is_locked(&sb->s_umount));
2448 
2449 	/* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2450 	bdi_down_write_wb_switch_rwsem(bdi);
2451 	bdi_split_work_to_wbs(bdi, &work, false);
2452 	wb_wait_for_completion(bdi, &done);
2453 	bdi_up_write_wb_switch_rwsem(bdi);
2454 
2455 	wait_sb_inodes(sb);
2456 }
2457 EXPORT_SYMBOL(sync_inodes_sb);
2458 
2459 /**
2460  * write_inode_now	-	write an inode to disk
2461  * @inode: inode to write to disk
2462  * @sync: whether the write should be synchronous or not
2463  *
2464  * This function commits an inode to disk immediately if it is dirty. This is
2465  * primarily needed by knfsd.
2466  *
2467  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2468  */
2469 int write_inode_now(struct inode *inode, int sync)
2470 {
2471 	struct writeback_control wbc = {
2472 		.nr_to_write = LONG_MAX,
2473 		.sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2474 		.range_start = 0,
2475 		.range_end = LLONG_MAX,
2476 	};
2477 
2478 	if (!mapping_cap_writeback_dirty(inode->i_mapping))
2479 		wbc.nr_to_write = 0;
2480 
2481 	might_sleep();
2482 	return writeback_single_inode(inode, &wbc);
2483 }
2484 EXPORT_SYMBOL(write_inode_now);
2485 
2486 /**
2487  * sync_inode - write an inode and its pages to disk.
2488  * @inode: the inode to sync
2489  * @wbc: controls the writeback mode
2490  *
2491  * sync_inode() will write an inode and its pages to disk.  It will also
2492  * correctly update the inode on its superblock's dirty inode lists and will
2493  * update inode->i_state.
2494  *
2495  * The caller must have a ref on the inode.
2496  */
2497 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2498 {
2499 	return writeback_single_inode(inode, wbc);
2500 }
2501 EXPORT_SYMBOL(sync_inode);
2502 
2503 /**
2504  * sync_inode_metadata - write an inode to disk
2505  * @inode: the inode to sync
2506  * @wait: wait for I/O to complete.
2507  *
2508  * Write an inode to disk and adjust its dirty state after completion.
2509  *
2510  * Note: only writes the actual inode, no associated data or other metadata.
2511  */
2512 int sync_inode_metadata(struct inode *inode, int wait)
2513 {
2514 	struct writeback_control wbc = {
2515 		.sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2516 		.nr_to_write = 0, /* metadata-only */
2517 	};
2518 
2519 	return sync_inode(inode, &wbc);
2520 }
2521 EXPORT_SYMBOL(sync_inode_metadata);
2522